Features
• Utilizes the AVR® RISC Architecture
• AVR – High-performance and Low-power RISC Architecture
•
•
•
•
•
•
•
•
– 118 Powerful Instructions – Most Single Clock Cycle Execution
– 32 x 8 General Purpose Working Registers
– Up to 10 MIPS Throughput at 10 MHz
Data and Non-volatile Program Memory
– 2K Bytes of In-System Programmable Flash
Endurance 1,000 Write/Erase Cycles
– 128 Bytes of SRAM
– 128 Bytes of In-System Programmable EEPROM
Endurance: 100,000 Write/Erase Cycles
– Programming Lock for Flash Program and EEPROM Data Security
Peripheral Features
– One 8-bit Timer/Counter with Separate Prescaler
– One 16-bit Timer/Counter with Separate Prescaler,
Compare, Capture Modes and 8-, 9-, or 10-bit PWM
– On-chip Analog Comparator
– Programmable Watchdog Timer with On-chip Oscillator
– SPI Serial Interface for In-System Programming
– Full Duplex UART
• Special Microcontroller Features
– Low-power Idle and Power-down Modes
– External and Internal Interrupt Sources
• Specifications
– Low-power, High-speed CMOS Process Technology
– Fully Static Operation
Power Consumption at 4 MHz, 3V, 25°C
– Active: 2.8 mA
– Idle Mode: 0.8 mA
– Power-down Mode: 2 XTAL1 clock cycle
High: > 2 XTAL1 clock cycles
Serial Programming
Algorithm
When writing serial data to the AT90S2313, data is clocked on the rising edge of SCK.
When reading data from the AT90S2313, data is clocked on the falling edge of SCK.
See Figure 54, Figure and Table 29 for timing details.
To program and verify the AT90S2313 in the Serial Programming mode, the following
sequence is recommended (See 4-byte instruction formats in Table 28):
1. Power-up sequence:
Apply power between VCC and GND while RESET and SCK are set to “0”. If a crystal is not connected across pins XTAL1 and XTAL2, apply a clock signal to the
XTAL1 pin. In some systems, the programmer cannot guarantee that SCK is held
low during Power-up. In this case, RESET must be given a positive pulse of at least
two XTAL1 cycles duration after SCK has been set to “0”.
2. Wait for at least 20 ms and enable serial programming by sending the Programming Enable serial instruction to the MOSI (PB5) pin.
3. The serial programming instructions will not work if the communication is out of
synchronization. When in sync, the second byte ($53) will echo back when issu-
68
AT90S2313
0839I–AVR–06/02
AT90S2313
ing the third byte of the Programming Enable instruction. Whether the echo is
correct or not, all four bytes of the instruction must be transmitted. If the $53 did
not echo back, give SCK a positive pulse and issue a new Programming Enable
instruction. If the $53 is not seen within 32 attempts, there is no functional device
connected.
4. If a Chip Erase is performed (must be done to erase the Flash), wait tWD_ERASE
after the instruction, give RESET a positive pulse, and start over from step 2.
See Table 30 for tWD_ERASE value.
5. The Flash or EEPROM array is programmed one byte at a time by supplying the
address and data together with the appropriate Write instruction. An EEPROM
memory location is first automatically erased before new data is written. Use
Data Polling to detect when the next byte in the Flash or EEPROM can be written. If polling is not used, wait tWD_PROG before transmitting the next instruction.
See Table 31 for tWD_PROG value. In an erased device, no $FFs in the data file(s)
need to be programmed.
6. Any memory location can be verified by using the Read instruction that returns
the content at the selected address at the serial output MISO (PB6) pin.
7. At the end of the programming session, RESET can be set high to commence
normal operation.
8. Power-off sequence (if needed):
Set XTAL1 to “0” (if a crystal is not used).
Set RESET to “1”.
Turn VCC power off.
Data Polling EEPROM
When a byte is being programmed into the EEPROM, reading the address location
being programmed will give the value P1 until the auto-erase is finished, and then the
value P2. See Table 27 for P1 and P2 values.
At the time the device is ready for a new EEPROM byte, the programmed value will read
correctly. This is used to determine when the next byte can be written. This will not work
for the values P1 and P2, so when programming these values, the user will have to wait
for at least the prescribed time tWD_PROG before programming the next byte. See Table
30 for tWD_PROG value. As a chip-erased device contains $FF in all locations, programming of addresses that are meant to contain $FF can be skipped. This does not apply if
the EEPROM is reprogrammed without first chip-erasing the device.
Table 27. Read Back Value during EEPROM Polling
Part
P1
P2
AT90S2313
$80
$7F
69
0839I–AVR–06/02
Data Polling Flash
When a byte is being programmed into the Flash, reading the address location being
programmed will give the value $7F. At the time the device is ready for a new byte, the
programmed value will read correctly. This is used to determine when the next byte can
be written. This will not work for the value $7F, so when programming this value, the
user will have to wait for at least tWD_PROG before programming the next byte. As a chiperased device contains $FF in all locations, programming of addresses that are meant
to contain $FF can be skipped.
Figure 54. Serial Programming Waveforms
Table 28. Serial Programming Instruction Set
Instruction Format
Instruction
Byte 1
Byte 2
Byte 3
Byte4
1010 1100
0101 0011
xxxx xxxx
xxxx xxxx
Enable serial programming while
RESET is low.
1010 1100
100x xxxx
xxxx xxxx
xxxx xxxx
Chip erase Flash and EEPROM
memory arrays.
0010 H000
xxxx xxaa
bbbb bbbb
oooo oooo
Read H (high or low) data o from
program memory at word address
a:b.
0100 H000
xxxx xxaa
bbbb bbbb
iiii iiii
Write H (high or low) data i to
program memory at word address
a:b.
Read EEPROM
Memory
1010 0000
xxxx xxxx
xbbb bbbb
oooo oooo
Read data o from EEPROM memory
at address b.
Write EEPROM
Memory
1100 0000
xxxx xxxx
xbbb bbbb
iiii iiii
Write data i to EEPROM memory at
address b.
1010 1100
111x x21x
xxxx xxxx
xxxx xxxx
Write Lock bits. Set bits 1,2 = “0” to
program Lock bits.
0011 0000
xxxx xxxx
xxxx xxbb
oooo oooo
Read signature byte o at address b.(1)
Programming Enable
Chip Erase
Read Program Memory
Write Program Memory
Write Lock Bits
Read Signature Bytes
Operation
Note:
a = address high bits, b = address low bits, H = 0 – Low byte, 1 – High Byte, o = data out, i = data in, x = don’t care, 1 = Lock bit
1, 2 = Lock bit 2.
Note:
1. The signature bytes are not readable in lock mode 3, i.e. both Lock bits programmed.
70
AT90S2313
0839I–AVR–06/02
AT90S2313
Serial Programming
Characteristics
Figure 55. Serial Programming Timing
MOSI
tOVSH
SCK
tSHOX
tSLSH
tSHSL
MISO
tSLIV
Table 29. Serial Programming Characteristics, TA = -40°C to 85°C, V CC = 2.7 - 6.0V
(unless otherwise noted)
Symbol
Parameter
Min
1/tCLCL
Oscillator Frequency (VCC = 2.7 - 6.0V)
tCLCL
Oscillator Period (VCC = 2.7 - 6.0V)
1/tCLCL
Oscillator Frequency (VCC = 4.0 - 6.0V)
tCLCL
Oscillator Period (VCC = 4.0 - 6.0V)
tSHSL
Typ
0
Max
Units
4.0
MHz
250.0
ns
0
10.0
MHz
100.0
ns
SCK Pulse Width High
2.0 tCLCL
ns
tSLSH
SCK Pulse Width Low
2.0 tCLCL
ns
tOVSH
MOSI Setup to SCK High
tCLCL
ns
tSHOX
MOSI Hold after SCK High
2.0 tCLCL
ns
tSLIV
SCK Low to MISO Valid
10.0
16.0
32.0
ns
Table 30. Minimum Wait Delay after the Chip Erase Instruction
Symbol
3.2V
3.6V
4.0V
5.0V
tWD_ERASE
18 ms
14 ms
12 ms
8 ms
Table 31. Minimum Wait Delay after Writing a Flash or EEPROM Location
Symbol
3.2V
3.6V
4.0V
5.0V
tWD_PROG
9 ms
7 ms
6 ms
4 ms
71
0839I–AVR–06/02
Electrical Characteristics
Absolute Maximum Ratings*
Operating Temperature.................................. -55°C to +125°C
*NOTICE:
Stresses beyond those listed under “Absolute
Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and
functional operation of the device at these or
other conditions beyond those indicated in the
operational sections of this specification is not
implied. Exposure to absolute maximum rating
conditions for extended periods may affect device
reliability.
Storage Temperature ..................................... -65°C to +150°C
Voltage on Any Pin Except RESET
with Respect to Ground ...............................-1.0V to VCC +0.5V
Voltage on RESET with Respect to Ground ....-1.0V to +13.0V
Maximum Operating Voltage ............................................ 6.6V
DC Current per I/O Pin ............................................... 40.0 mA
DC Current VCC and GND Pins ................................ 200.0 mA
DC Characteristics
TA = -40°C to 85°C, VCC = 2.7V to 6.0V (unless otherwise noted)
Symbol
Parameter
Condition
Min
Typ
Max
Units
(1)
V
VIL
Input Low Voltage
(Except XTAL1)
-0.5
0.3 VCC
VIL1
Input Low Voltage
(XTAL1)
-0.5
0.3 VCC(1)
V
0.6
V CC(2)
VCC + 0.5
V
0.7
V CC(2)
VCC + 0.5
V
VCC + 0.5
V
0.6
0.5
V
V
VIH
VIH1
Input High Voltage
Input High Voltage
(Except XTAL1, RESET)
(XTAL1)
VIH2
Input High Voltage
(RESET)
VOL
Output Low Voltage(3)
(Ports B, D)
IOL = 20 mA, VCC = 5V
IOL = 10 mA, VCC = 3V
VOH
Output High Voltage(4)
(Ports B, D)
IOH = -3 mA, VCC = 5V
IOH = -1.5 mA, V CC = 3V
IIL
Input Leakage
Current I/O pin
VCC = 6V, pin low
(absolute value)
1.5
µA
IIH
Input Leakage
Current I/O pin
VCC = 6V, pin high
(absolute value)
980.0
nA
RRST
Reset Pull-up Resistor
100.0
500.0
kΩ
RI/O
I/O Pin Pull-up Resistor
35.0
120.0
kΩ
mA
Power Supply Current
Active Mode, V CC = 3V, 4 MHz
3.0
ICC
Idle Mode VCC = 3V, 4 MHz
1.0
mA
ICC
Power-down Mode(5)
VACIO
Analog Comparator
Input Offset Voltage
VCC = 5V
Vin = VCC /2
IACLK
Analog Comparator
Input Leakage Current
VCC = 5V
Vin = VCC/2
tACPD
Analog Comparator
Propagation Delay
VCC = 2.7V
VCC = 4.0V
72
0.85 VCC
(2)
4.3
2.3
V
V
WDT enabled, VCC = 3V
9.0
15.0
µA
WDT disabled, VCC = 3V