Features
• High performance, low power AVR® 8-bit Microcontroller
• Advanced RISC architecture
•
•
•
•
•
•
– 135 powerful instructions – most single clock cycle execution
– 32 × 8 general purpose working registers
– Fully static operation
– Up to 16MIPS throughput at 16MHz
– On-chip 2-cycle multiplier
Non-volatile program and data memories
– 64/128Kbytes of in-system self-programmable flash
• Endurance: 100,000 write/erase cycles
– Optional Boot Code section with independent lock bits
• USB boot loader programmed by default in the factory
• In-system programming by on-chip boot program hardware activated after
reset
• True read-while-write operation
• All supplied parts are pre-programed with a default USB bootloader
– 2K/4K (64K/128K flash version) bytes EEPROM
• Endurance: 100,000 write/erase cycles
– 4K/8K (64K/128K flash version) bytes internal SRAM
– Up to 64Kbytes optional external memory space
– Programming lock for software security
JTAG (IEEE std. 1149.1 compliant) interface
– Boundary-scan capabilities according to the JTAG standard
– Extensive on-chip debug support
– Programming of flash, EEPROM, fuses, and lock bits through the JTAG interface
USB 2.0 full-speed/low-speed device and on-the-go module
– Complies fully with:
– Universal serial bus specification REV 2.0
– On-the-go supplement to the USB 2.0 specification rev 1.0
– Supports data transfer rates up to 12Mbit/s and 1.5Mbit/s
USB full-speed/low speed device module with interrupt on transfer completion
– Endpoint 0 for control transfers: up to 64-bytes
– Six programmable endpoints with in or out directions and with bulk, interrupt or
isochronous transfers
– Configurable endpoints size up to 256bytes in double bank mode
– Fully independent 832bytes USB DPRAM for endpoint memory allocation
– Suspend/resume interrupts
– Power-on reset and USB bus reset
– 48MHz PLL for full-speed bus operation
– USB bus disconnection on microcontroller request
USB OTG reduced host:
– Supports host negotiation protocol (HNP) and session request protocol (SRP) for
OTG dual-role devices
– Provide status and control signals for software implementation of HNP and SRP
– Provides programmable times required for HNP and SRP
Peripheral features
– Two 8-bit timer/counters with separate prescaler and compare mode
– Two16-bit timer/counter with separate prescaler, compare- and capture mode
8-bit Atmel
Microcontroller
with
64/128Kbytes
of ISP Flash
and USB
Controller
AT90USB646
AT90USB647
AT90USB1286
AT90USB1287
7593L–AVR–09/12
•
•
•
•
•
2
– Real time counter with separate oscillator
– Four 8-bit PWM channels
– Six PWM channels with programmable resolution from 2 to 16 bits
– Output compare modulator
– 8-channels, 10-bit ADC
– Programmable serial USART
– Master/slave SPI serial interface
– Byte oriented 2-wire serial interface
– Programmable watchdog timer with separate on-chip oscillator
– On-chip analog comparator
– Interrupt and wake-up on pin change
Special microcontroller features
– Power-on reset and programmable brown-out detection
– Internal calibrated oscillator
– External and internal interrupt sources
– Six sleep modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby, and Extended Standby
I/O and packages
– 48 programmable I/O lines
– 64-lead TQFP and 64-lead QFN
Operating voltages
– 2.7 - 5.5V
Operating temperature
– Industrial (-40°C to +85°C)
Maximum frequency
– 8MHz at 2.7V - industrial range
– 16MHz at 4.5V - industrial range
AT90USB64/128
7593L–AVR–09/12
AT90USB64/128
1. Pin configurations
AVCC
GND
AREF
PF0 (ADC0)
PF1 (ADC1)
PF2 (ADC2)
PF3 (ADC3)
PF4 (ADC4/TCK)
PF5 (ADC5/TMS)
PF6 (ADC6/TDO)
PF7 (ADC7/TDI)
GND
VCC
PA0 (AD0)
PA1 (AD1)
PA2 (AD2)
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
Pinout Atmel AT90USB64/128-TQFP.
64
Figure 1-1.
(INT.6/AIN.0) PE6
1
48
PA3 (AD3)
(INT.7/AIN.1/UVcon) PE7
2
47
PA4 (AD4)
46
PA5 (AD5)
INDEX CORNER
UVcc
3
D-
4
45
PA6 (AD6)
D+
5
44
PA7 (AD7)
UGnd
6
43
PE2 (ALE/HWB)
UCap
7
42
PC7 (A15/IC.3/CLKO)
VBus
8
41
PC6 (A14/OC.3A)
40
PC5 (A13/OC.3B)
AT90USB90128/64
TQFP64
31
32
(T0) PD7
PE0 (WR)
(T1) PD6
33
30
16
(XCK1) PD5
(PCINT6/OC.1B) PB6
29
PE1 (RD)
(ICP1) PD4
34
28
15
(TXD1/INT3) PD3
(PCINT5/OC.1A) PB5
27
PC0 (A8)
(RXD1/INT2) PD2
35
26
14
(OC2B/SDA/INT1) PD1
(PCINT4/OC.2A) PB4
25
PC1 (A9)
(OC0B/SCL/INT0) PD0
36
24
13
XTAL1
(PDO/PCINT3/MISO) PB3
23
PC2 (A10)
XTAL2
37
22
12
GND
(PDI/PCINT2/MOSI) PB2
21
PC3 (A11/T.3)
VCC
38
20
11
RESET
(PCINT1/SCLK) PB1
19
PC4 (A12/OC.3C)
(INT.5/TOSC2) PE5
39
18
10
(INT4/TOSC1) PE4
(SS/PCINT0) PB0
17
9
(PCINT7/OC.0A/OC.1C) PB7
(IUID) PE3
3
7593L–AVR–09/12
AVCC
GND
AREF
PF0 (ADC0)
PF1 (ADC1)
PF2 (ADC2)
PF3 (ADC3)
PF4 (ADC4/TCK)
PF5 (ADC5/TMS)
PF6 (ADC6/TDO)
PF7 (ADC7/TDI)
GND
VCC
PA0 (AD0)
PA1 (AD1)
PA2 (AD2)
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
Pinout Atmel AT90USB64/128-QFN.
64
Figure 1-2.
(INT.6/AIN.0) PE6
1
48
PA3 (AD3)
(INT.7/AIN.1/UVcon) PE7
2
47
PA4 (AD4)
46
PA5 (AD5)
45
PA6 (AD6)
UVcc
3
D-
4
D+
5
44
PA7 (AD7)
UGnd
6
43
PE2 (ALE/HWB)
UCap
7
42
PC7 (A15/IC.3/CLKO)
VBus
8
41
PC6 (A14/OC.3A)
40
PC5 (A13/OC.3B)
39
PC4 (A12/OC.3C)
INDEX CORNER
AT90USB128/64
(IUID) PE3
9
(SS/PCINT0) PB0
10
(PCINT1/SCLK) PB1
11
38
PC3 (A11/T.3)
(PDI/PCINT2/MOSI) PB2
12
37
PC2 (A10)
(PDO/PCINT3/MISO) PB3
13
36
PC1 (A9)
(PCINT4/OC.2A) PB4
14
35
PC0 (A8)
(PCINT5/OC.1A) PB5
15
34
PE1 (RD)
(PCINT6/OC.1B) PB6
16
33
PE0 (WR)
Note:
4
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
(PCINT7/OC.0A/OC.1C) PB7
(INT4/TOSC1) PE4
(INT.5/TOSC2) PE5
RESET
VCC
GND
XTAL2
XTAL1
(OC0B/SCL/INT0) PD0
(OC2B/SDA/INT1) PD1
(RXD1/INT2) PD2
(TXD1/INT3) PD3
(ICP1) PD4
(XCK1) PD5
(T1) PD6
(T0) PD7
(64-lead QFN top view)
The large center pad underneath the MLF packages is made of metal and internally connected to
GND. It should be soldered or glued to the board to ensure good mechanical stability. If the center
pad is left unconnected, the package might loosen from the board.
AT90USB64/128
7593L–AVR–09/12
AT90USB64/128
2. Overview
The Atmel® AVR® AT90USB64/128 is a low-power CMOS 8-bit microcontroller based on the
Atmel® AVR® enhanced RISC architecture. By executing powerful instructions in a single clock
cycle, the AT90USB64/128 achieves throughputs approaching 1MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.
5
7593L–AVR–09/12
Block diagram
PF7 - PF0
VCC
PC7 - PC0
PA7 - P A0
POR TA DRIVERS
POR TF DRIVERS
RESET
Block diagram.
XT AL2
Figure 2-1.
XT AL1
2.1
POR TC DRIVERS
GND
DATA DIR.
REG. PORT F
DATA REGISTER
PORT F
DATA DIR.
REG. PORT A
DATA REGISTER
PORT A
DATA REGISTER
PORT C
DATA DIR.
REG. PORT C
8-BIT DA TA BUS
POR - BOD
RESET
AVCC
INTERNAL
OSCILLA TOR
CALIB. OSC
ADC
AGND
AREF
JTAG TAP
PROGRAM
COUNTER
ST ACK
POINTER
ON-CHIP DEBUG
PROGRAM
FLASH
SRAM
BOUNDARYSCAN
INSTRUCTION
REGISTER
OSCILLA TOR
WATCHDOG
TIMER
TIMING AND
CONTROL
MCU CONTROL
REGISTER
TIMER/
COUNTERS
GENERAL
PURPOSE
REGISTERS
X
PROGRAMMING
LOGIC
INSTRUCTION
DECODER
CONTROL
LINES
Z
INTERRUPT
UNIT
ALU
EEPROM
Y
PLL
ST ATUS
REGISTER
+
-
ANALOG
COMP ARATOR
USART1
USB
SPI
DATA DIR.
REG. PORTE
DATA REGISTER
PORTE
POR TE DRIVERS
PE7 - PE0
DATA DIR.
REG. PORTB
DATA REGISTER
PORTB
POR TB DRIVERS
PB7 - PB0
DATA REGISTER
PORTD
TWO-WIRE SERIAL
INTERFACE
DATA DIR.
REG. PORTD
POR TD DRIVERS
PD7 - PD0
The AVR core combines a rich instruction set with 32 general purpose working registers. All the
32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent
registers to be accessed in one single instruction executed in one clock cycle. The resulting
6
AT90USB64/128
7593L–AVR–09/12
AT90USB64/128
architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.
The Atmel AT90USB64/128 provides the following features: 64/128Kbytes of In-System Programmable Flash with Read-While-Write capabilities, 2K/4Kbytes EEPROM, 4K/8K bytes
SRAM, 48 general purpose I/O lines, 32 general purpose working registers, Real Time Counter
(RTC), four flexible Timer/Counters with compare modes and PWM, one USART, a byte oriented 2-wire Serial Interface, a 8-channels, 10-bit ADC with optional differential input stage with
programmable gain, programmable Watchdog Timer with Internal Oscillator, an SPI serial port,
IEEE std. 1149.1 compliant JTAG test interface, also used for accessing the On-chip Debug system and programming and six software selectable power saving modes. The Idle mode stops
the CPU while allowing the SRAM, Timer/Counters, SPI port, and interrupt system to continue
functioning. The Power-down mode saves the register contents but freezes the Oscillator, disabling all other chip functions until the next interrupt or Hardware Reset. In Power-save mode,
the asynchronous timer continues to run, allowing the user to maintain a timer base while the
rest of the device is sleeping. The ADC Noise Reduction mode stops the CPU and all I/O modules except Asynchronous Timer and ADC, to minimize switching noise during ADC
conversions. In Standby mode, the Crystal/Resonator Oscillator is running while the rest of the
device is sleeping. This allows very fast start-up combined with low power consumption. In
Extended Standby mode, both the main Oscillator and the Asynchronous Timer continue to run.
The device is manufactured using the Atmel high-density nonvolatile memory technology. The
On-chip ISP Flash allows the program memory to be reprogrammed in-system through an SPI
serial interface, by a conventional nonvolatile memory programmer, or by an On-chip Boot program running on the AVR core. The boot program can use any interface to download the
application program in the application Flash memory. Software in the Boot Flash section will
continue to run while the Application Flash section is updated, providing true Read-While-Write
operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a
monolithic chip, the AT90USB64/128 is a powerful microcontroller that provides a highly flexible
and cost effective solution to many embedded control applications.
The AT90USB64/128 AVR is supported with a full suite of program and system development
tools including: C compilers, macro assemblers, program debugger/simulators, in-circuit emulators, and evaluation kits.
7
7593L–AVR–09/12
2.2
2.2.1
Pin descriptions
VCC
Digital supply voltage.
2.2.2
GND
Ground.
2.2.3
AVCC
Analog supply voltage.
2.2.4
Port A (PA7..PA0)
Port A is an 8-bit bidirectional I/O port with internal pull-up resistors (selected for each bit). The
Port A output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port A pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port A pins are tri-stated when a reset condition becomes active,
even if the clock is not running.
Port A also serves the functions of various special features of the Atmel AT90USB64/128 as
listed on page 78.
2.2.5
Port B (PB7..PB0)
Port B is an 8-bit bidirectional I/O port with internal pull-up resistors (selected for each bit). The
Port B output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port B pins are tri-stated when a reset condition becomes active,
even if the clock is not running.
Port B has better driving capabilities than the other ports.
Port B also serves the functions of various special features of the AT90USB64/128 as listed on
page 79.
2.2.6
Port C (PC7..PC0)
Port C is an 8-bit bidirectional I/O port with internal pull-up resistors (selected for each bit). The
Port C output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port C pins are tri-stated when a reset condition becomes active,
even if the clock is not running.
Port C also serves the functions of special features of the AT90USB64/128 as listed on page 82.
2.2.7
Port D (PD7..PD0)
Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port D output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port D pins are tri-stated when a reset condition becomes active,
even if the clock is not running.
Port D also serves the functions of various special features of the AT90USB64/128 as listed on
page 83.
8
AT90USB64/128
7593L–AVR–09/12
AT90USB64/128
2.2.8
Port E (PE7..PE0)
Port E is an 8-bit bidirectional I/O port with internal pull-up resistors (selected for each bit). The
Port E output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port E pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port E pins are tri-stated when a reset condition becomes active,
even if the clock is not running.
Port E also serves the functions of various special features of the AT90USB64/128 as listed on
page 86.
2.2.9
Port F (PF7..PF0)
Port F serves as analog inputs to the A/D Converter.
Port F also serves as an 8-bit bidirectional I/O port, if the A/D Converter is not used. Port pins
can provide internal pull-up resistors (selected for each bit). The Port F output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port F pins
that are externally pulled low will source current if the pull-up resistors are activated. The Port F
pins are tri-stated when a reset condition becomes active, even if the clock is not running. If the
JTAG interface is enabled, the pull-up resistors on pins PF7(TDI), PF5(TMS), and PF4(TCK) will
be activated even if a reset occurs.
Port F also serves the functions of the JTAG interface.
2.2.10
DUSB Full speed / Low Speed Negative Data Upstream Port. Should be connected to the USB Dconnector pin with a serial 22Ω resistor.
2.2.11
D+
USB Full speed / Low Speed Positive Data Upstream Port. Should be connected to the USB D+
connector pin with a serial 22Ω resistor.
2.2.12
UGND
USB Pads Ground.
2.2.13
UVCC
USB Pads Internal Regulator Input supply voltage.
2.2.14
UCAP
USB Pads Internal Regulator Output supply voltage. Should be connected to an external capacitor (1µF).
2.2.15
VBUS
USB VBUS monitor and OTG negociations.
2.2.16
RESET
Reset input. A low level on this pin for longer than the minimum pulse length will generate a
reset, even if the clock is not running. The minimum pulse length is given in Table 9-1 on page
58. Shorter pulses are not guaranteed to generate a reset.
2.2.17
XTAL1
Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.
9
7593L–AVR–09/12
2.2.18
XTAL2
Output from the inverting oscillator amplifier.
2.2.19
AVCC
AVCC is the supply voltage pin for Port F and the A/D Converter. It should be externally connected to VCC, even if the ADC is not used. If the ADC is used, it should be connected to VCC
through a low-pass filter.
2.2.20
AREF
This is the analog reference pin for the A/D Converter.
3. Resources
A comprehensive set of development tools, application notes and datasheets are available for
download on http://www.atmel.com/avr.
4. About code examples
This documentation contains simple code examples that briefly show how to use various parts of
the device. Be aware that not all C compiler vendors include bit definitions in the header files
and interrupt handling in C is compiler dependent. Please confirm with the C compiler documentation for more details.
These code examples assume that the part specific header file is included before compilation.
For I/O registers located in extended I/O map, "IN", "OUT", "SBIS", "SBIC", "CBI", and "SBI"
instructions must be replaced with instructions that allow access to extended I/O. Typically
"LDS" and "STS" combined with "SBRS", "SBRC", "SBR", and "CBR".
10
AT90USB64/128
7593L–AVR–09/12
AT90USB64/128
5. AVR CPU core
5.1
Introduction
This section discusses the AVR core architecture in general. The main function of the CPU core
is to ensure correct program execution. The CPU must therefore be able to access memories,
perform calculations, control peripherals, and handle interrupts.
5.2
Architectural overview
Figure 5-1.
Block diagram of the AVR architecture.
Data bus 8-bit
Flash
program
memory
Program
counter
Status
and control
32 x 8
general
purpose
registrers
Control lines
Direct addressing
Instruction
decoder
Indirect addressing
Instruction
register
Interrupt
unit
SPI
unit
Watchdog
timer
ALU
Analog
comparator
I/O Module1
Data
SRAM
I/O Module 2
I/O Module n
EEPROM
I/O lines
In order to maximize performance and parallelism, the AVR uses a Harvard architecture – with
separate memories and buses for program and data. Instructions in the program memory are
executed with a single level pipelining. While one instruction is being executed, the next instruction is pre-fetched from the program memory. This concept enables instructions to be executed
in every clock cycle. The program memory is In-System Re-programmable Flash memory.
11
7593L–AVR–09/12
The fast-access Register File contains 32 × 8-bit general purpose working registers with a single
clock cycle access time. This allows single-cycle Arithmetic Logic Unit (ALU) operation. In a typical ALU operation, two operands are output from the Register File, the operation is executed,
and the result is stored back in the Register File – in one clock cycle.
Six of the 32 registers can be used as three 16-bit indirect address register pointers for Data
Space addressing – enabling efficient address calculations. One of the these address pointers
can also be used as an address pointer for look up tables in Flash program memory. These
added function registers are the 16-bit X-, Y-, and Z-register, described later in this section.
The ALU supports arithmetic and logic operations between registers or between a constant and
a register. Single register operations can also be executed in the ALU. After an arithmetic operation, the Status Register is updated to reflect information about the result of the operation.
Program flow is provided by conditional and unconditional jump and call instructions, able to
directly address the whole address space. Most AVR instructions have a single 16-bit word format. Every program memory address contains a 16- or 32-bit instruction.
Program Flash memory space is divided in two sections, the Boot Program section and the
Application Program section. Both sections have dedicated Lock bits for write and read/write
protection. The SPM instruction that writes into the Application Flash memory section must
reside in the Boot Program section.
During interrupts and subroutine calls, the return address Program Counter (PC) is stored on the
Stack. The Stack is effectively allocated in the general data SRAM, and consequently the Stack
size is only limited by the total SRAM size and the usage of the SRAM. All user programs must
initialize the SP in the Reset routine (before subroutines or interrupts are executed). The Stack
Pointer (SP) is read/write accessible in the I/O space. The data SRAM can easily be accessed
through the five different addressing modes supported in the AVR architecture.
The memory spaces in the AVR architecture are all linear and regular memory maps.
A flexible interrupt module has its control registers in the I/O space with an additional Global
Interrupt Enable bit in the Status Register. All interrupts have a separate Interrupt Vector in the
Interrupt Vector table. The interrupts have priority in accordance with their Interrupt Vector position. The lower the Interrupt Vector address, the higher the priority.
The I/O memory space contains 64 addresses for CPU peripheral functions as Control Registers, SPI, and other I/O functions. The I/O Memory can be accessed directly, or as the Data
Space locations following those of the Register File, 0x20 - 0x5F. In addition, the Atmel
AT90USB64/128 has Extended I/O space from 0x60 - 0xFF in SRAM where only the
ST/STS/STD and LD/LDS/LDD instructions can be used.
5.3
ALU – Arithmetic Logic Unit
The high-performance AVR ALU operates in direct connection with all the 32 general purpose
working registers. Within a single clock cycle, arithmetic operations between general purpose
registers or between a register and an immediate are executed. The ALU operations are divided
into three main categories – arithmetic, logical, and bit-functions. Some implementations of the
architecture also provide a powerful multiplier supporting both signed/unsigned multiplication
and fractional format. See the “Instruction set summary” on page 423 for a detailed description.
12
AT90USB64/128
7593L–AVR–09/12
AT90USB64/128
5.4
Status register
The status register contains information about the result of the most recently executed arithmetic
instruction. This information can be used for altering program flow in order to perform conditional
operations. Note that the status register is updated after all ALU operations, as specified in the
Instruction Set Reference. This will in many cases remove the need for using the dedicated compare instructions, resulting in faster and more compact code.
The status register is not automatically stored when entering an interrupt routine and restored
when returning from an interrupt. This must be handled by software.
The AVR status register – SREG – is defined as:
Bit
7
6
5
4
3
2
1
0
I
T
H
S
V
N
Z
C
Read/write
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Initial value
0
0
0
0
0
0
0
0
SREG
• Bit 7 – I: Global Interrupt Enable
The Global Interrupt Enable bit must be set for the interrupts to be enabled. The individual interrupt enable control is then performed in separate control registers. If the Global Interrupt Enable
Register is cleared, none of the interrupts are enabled independent of the individual interrupt
enable settings. The I-bit is cleared by hardware after an interrupt has occurred, and is set by
the RETI instruction to enable subsequent interrupts. The I-bit can also be set and cleared by
the application with the SEI and CLI instructions, as described in the instruction set reference.
• Bit 6 – T: Bit Copy Storage
The Bit Copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source or destination for the operated bit. A bit from a register in the Register File can be copied into T by the
BST instruction, and a bit in T can be copied into a bit in a register in the Register File by the
BLD instruction.
• Bit 5 – H: Half Carry Flag
The Half Carry Flag H indicates a Half Carry in some arithmetic operations. Half Carry Is useful
in BCD arithmetic. See the “Instruction set summary” on page 423 for detailed information.
• Bit 4 – S: Sign Bit, S = N ⊕ V
The S-bit is always an exclusive or between the Negative Flag N and the Two’s Complement
Overflow Flag V. See the “Instruction set summary” on page 423 for detailed information.
• Bit 3 – V: Two’s Complement Overflow Flag
The Two’s Complement Overflow Flag V supports two’s complement arithmetics. See the
“Instruction set summary” on page 423 for detailed information.
• Bit 2 – N: Negative Flag
The Negative Flag N indicates a negative result in an arithmetic or logic operation. See the
“Instruction set summary” on page 423 for detailed information.
• Bit 1 – Z: Zero Flag
The Zero Flag Z indicates a zero result in an arithmetic or logic operation. See the “Instruction
set summary” on page 423 for detailed information.
13
7593L–AVR–09/12
• Bit 0 – C: Carry Flag
The Carry Flag C indicates a carry in an arithmetic or logic operation. See the “Instruction set
summary” on page 423 for detailed information.
5.5
General purpose register file
The register file is optimized for the AVR Enhanced RISC instruction set. In order to achieve the
required performance and flexibility, the following input/output schemes are supported by the
register file:
• One 8-bit output operand and one 8-bit result input
• Two 8-bit output operands and one 8-bit result input
• Two 8-bit output operands and one 16-bit result input
• One 16-bit output operand and one 16-bit result input
Figure 5-2 shows the structure of the 32 general purpose working registers in the CPU.
Figure 5-2.
AVR CPU general purpose working registers.
7
0
Addr.
R0
0x00
R1
0x01
R2
0x02
…
R13
0x0D
General
R14
0x0E
purpose
R15
0x0F
working
R16
0x10
registers
R17
0x11
…
R26
0x1A
R27
0x1B
X-register Low byte
X-register High byte
R28
0x1C
Y-register Low byte
R29
0x1D
Y-register High byte
R30
0x1E
Z-register Low byte
R31
0x1F
Z-register High byte
Most of the instructions operating on the Register File have direct access to all registers, and
most of them are single cycle instructions.
As shown in Figure 5-2, each register is also assigned a data memory address, mapping them
directly into the first 32 locations of the user Data Space. Although not being physically implemented as SRAM locations, this memory organization provides great flexibility in access of the
registers, as the X-, Y-, and Z-pointer registers can be set to index any register in the file.
5.5.1
14
The X-register, Y-register, and Z-register
The registers R26..R31 have some added functions to their general purpose usage. These registers are 16-bit address pointers for indirect addressing of the data space. The three indirect
address registers X, Y, and Z are defined as described in Figure 5-3.
AT90USB64/128
7593L–AVR–09/12
AT90USB64/128
Figure 5-3.
The X-, Y-, and Z-registers.
15
XH
XL
7
X-register
0
R27 (0x1B)
YH
YL
7
0
R29 (0x1D)
Z-register
0
R26 (0x1A)
15
Y-register
0
7
0
7
0
R28 (0x1C)
15
ZH
7
0
ZL
7
R31 (0x1F)
0
0
R30 (0x1E)
In the different addressing modes these address registers have functions as fixed displacement,
automatic increment, and automatic decrement (see the instruction set reference for details).
5.6
Stack pointer
The Stack is mainly used for storing temporary data, for storing local variables and for storing
return addresses after interrupts and subroutine calls. The Stack Pointer Register always points
to the top of the Stack. Note that the Stack is implemented as growing from higher memory locations to lower memory locations. This implies that a Stack PUSH command decreases the Stack
Pointer.
The Stack Pointer points to the data SRAM Stack area where the Subroutine and Interrupt
Stacks are located. This Stack space in the data SRAM must be defined by the program before
any subroutine calls are executed or interrupts are enabled. The Stack Pointer must be set to
point above 0x0100. The initial value of the stack pointer is the last address of the internal
SRAM. The Stack Pointer is decremented by one when data is pushed onto the Stack with the
PUSH instruction, and it is decremented by three when the return address is pushed onto the
Stack with subroutine call or interrupt. The Stack Pointer is incremented by one when data is
popped from the Stack with the POP instruction, and it is incremented by three when data is
popped from the Stack with return from subroutine RET or return from interrupt RETI.
The AVR Stack Pointer is implemented as two 8-bit registers in the I/O space. The number of
bits actually used is implementation dependent. Note that the data space in some implementations of the AVR architecture is so small that only SPL is needed. In this case, the SPH Register
will not be present.
Bit
Read/write
Initial value
15
14
13
12
11
10
9
SP15
SP14
SP13
SP12
SP11
SP10
SP9
8
SP8
SPH
SP7
SP6
SP5
SP4
SP3
SP2
SP1
SP0
SPL
7
6
5
4
3
2
1
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
0
0
1
0
0
0
0
0
1
1
1
1
1
1
1
1
15
7593L–AVR–09/12
5.6.1
RAMPZ - Extended Z-pointer register for ELPM/SPM
Bit
7
6
5
4
3
2
1
0
RAMPZ7
RAMPZ6
RAMPZ5
RAMPZ4
RAMPZ3
RAMPZ2
RAMPZ1
RAMPZ0
Read/write
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Initial value
0
0
0
0
0
0
0
0
RAMPZ
For ELPM/SPM instructions, the Z-pointer is a concatenation of RAMPZ, ZH, and ZL, as shown
in Figure 5-4. Note that LPM is not affected by the RAMPZ setting.
Figure 5-4.
Bit (individually)
The Z-pointer used by ELPM and SPM.
7
0
7
RAMPZ
Bit (Z-pointer)
23
0
7
ZH
16
0
ZL
15
8
7
0
The actual number of bits is implementation dependent. Unused bits in an implementation will
always read as zero. For compatibility with future devices, be sure to write these bits to zero.
5.7
Instruction execution timing
This section describes the general access timing concepts for instruction execution. The AVR
CPU is driven by the CPU clock clkCPU, directly generated from the selected clock source for the
chip. No internal clock division is used.
Figure 5-5 shows the parallel instruction fetches and instruction executions enabled by the Harvard architecture and the fast-access Register File concept. This is the basic pipelining concept
to obtain up to 1 MIPS per MHz with the corresponding unique results for functions per cost,
functions per clocks, and functions per power-unit.
Figure 5-5.
The parallel instruction fetches and instruction executions.
T1
T2
T3
T4
clkCPU
1st instruction fetch
1st instruction execute
2nd instruction fetch
2nd instruction execute
3rd instruction fetch
3rd instruction execute
4th instruction fetch
Figure 5-6 shows the internal timing concept for the Register File. In a single clock cycle an ALU
operation using two register operands is executed, and the result is stored back to the destination register.
16
AT90USB64/128
7593L–AVR–09/12
AT90USB64/128
Figure 5-6.
Single cycle ALU operation.
T1
T2
T3
T4
clkCPU
Total execution time
Register operands fetch
ALU operation execute
Result write back
5.8
Reset and interrupt handling
The AVR provides several different interrupt sources. These interrupts and the separate Reset
Vector each have a separate program vector in the program memory space. All interrupts are
assigned individual enable bits which must be written logic one together with the Global Interrupt
Enable bit in the Status Register in order to enable the interrupt. Depending on the Program
Counter value, interrupts may be automatically disabled when Boot Lock bits BLB02 or BLB12
are programmed. This feature improves software security. See the section “Memory programming” on page 359 for details.
The lowest addresses in the program memory space are by default defined as the Reset and
Interrupt Vectors. The complete list of vectors is shown in “Interrupts” on page 68. The list also
determines the priority levels of the different interrupts. The lower the address the higher is the
priority level. RESET has the highest priority, and next is INT0 – the External Interrupt Request
0. The Interrupt Vectors can be moved to the start of the Boot Flash section by setting the IVSEL
bit in the MCU Control Register (MCUCR). Refer to “Interrupts” on page 68 for more information.
The Reset Vector can also be moved to the start of the Boot Flash section by programming the
BOOTRST Fuse, see “Memory programming” on page 359.
When an interrupt occurs, the Global Interrupt Enable I-bit is cleared and all interrupts are disabled. The user software can write logic one to the I-bit to enable nested interrupts. All enabled
interrupts can then interrupt the current interrupt routine. The I-bit is automatically set when a
Return from Interrupt instruction – RETI – is executed.
There are basically two types of interrupts. The first type is triggered by an event that sets the
Interrupt Flag. For these interrupts, the Program Counter is vectored to the actual Interrupt Vector in order to execute the interrupt handling routine, and hardware clears the corresponding
Interrupt Flag. Interrupt Flags can also be cleared by writing a logic one to the flag bit position(s)
to be cleared. If an interrupt condition occurs while the corresponding interrupt enable bit is
cleared, the Interrupt Flag will be set and remembered until the interrupt is enabled, or the flag is
cleared by software. Similarly, if one or more interrupt conditions occur while the Global Interrupt
Enable bit is cleared, the corresponding Interrupt Flag(s) will be set and remembered until the
Global Interrupt Enable bit is set, and will then be executed by order of priority.
The second type of interrupts will trigger as long as the interrupt condition is present. These
interrupts do not necessarily have Interrupt Flags. If the interrupt condition disappears before the
interrupt is enabled, the interrupt will not be triggered.
When the AVR exits from an interrupt, it will always return to the main program and execute one
more instruction before any pending interrupt is served.
17
7593L–AVR–09/12
Note that the Status Register is not automatically stored when entering an interrupt routine, nor
restored when returning from an interrupt routine. This must be handled by software.
When using the CLI instruction to disable interrupts, the interrupts will be immediately disabled.
No interrupt will be executed after the CLI instruction, even if it occurs simultaneously with the
CLI instruction. The following example shows how this can be used to avoid interrupts during the
timed EEPROM write sequence.
Assembly code example
in r16, SREG
cli
; store SREG value
; disable interrupts during timed sequence
sbi EECR, EEMPE
; start EEPROM write
sbi EECR, EEPE
out SREG, r16
; restore SREG value (I-bit)
C code example
char cSREG;
cSREG = SREG; /* store SREG value */
/* disable interrupts during timed sequence */
__disable_interrupt();
EECR |= (1