0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ATMEGA168PA-PU

ATMEGA168PA-PU

  • 厂商:

    ACTEL(微芯科技)

  • 封装:

    DIP28

  • 描述:

    IC MCU 8BIT 16KB FLASH 28DIP

  • 数据手册
  • 价格&库存
ATMEGA168PA-PU 数据手册
ATmega48PA/88PA/168PA AVR® Microcontroller with picoPower® Technology Introduction ® The picoPower ATmega48PA/88PA/168PA is a low-power CMOS 8-bit microcontroller based on the ® AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ® ATmega48PA/88PA/168PA achieves throughputs close to 1 MIPS per MHz. This empowers system designers to optimize the device for power consumption versus processing speed. Feature ® High Performance, Low-Power AVR 8-Bit Microcontroller Family Advanced RISC Architecture • – 131 Powerful instructions – Most single clock cycle execution – 32 x 8 General purpose working registers – Fully static operation – Up to 20 MIPS throughput at 20 MHz – On-chip 2-cycle multiplier • High Endurance Nonvolatile Memory Segments – 4K/8K/16K Bytes of in-system self-programmable Flash program memory – 256/512/512 Bytes EEPROM – 512/1K/1K Bytes internal SRAM – Write/erase cycles: 10,000 Flash/100,000 EEPROM – Data retention: 20 years at 85°C/100 years at 25°C(1) – Optional boot code section with independent lock bits • In-system programming by on-chip boot program • True read-while-write operation – Programming lock for software security • QTouch Library Support – Capacitive touch buttons, sliders and wheels – QTouch and QMatrix acquisition – Up to 64 sense channels • Peripheral Features – Two 8-bit Timer/counters with separate prescaler and Compare mode – One 16-bit Timer/counter with separate prescaler, Compare mode, and Capture mode – Real time counter with separate oscillator – Six PWM channels © 2018 Microchip Technology Inc. Datasheet Complete DS40002011A-page 1 ATmega48PA/88PA/168PA – – – – – – • • • • • • 8-channel 10-bit ADC in TQFP and QFN/MLF package • Temperature measurement 6-channel 10-bit ADC in PDIP package • Temperature measurement Two master/slave SPI serial interface One programmable serial USART One byte-oriented 2-wire serial interface (Philips I2C compatible) Programmable watchdog timer with separate on-chip oscillator – One on-chip analog comparator – Interrupt and wake-up on pin change Special Microcontroller Features – Power-on Reset and programmable Brown-out Detection – Internal calibrated oscillator – External and internal interrupt sources – Six sleep modes: idle, ADC noise reduction, power-save, power-down, standby, and extended standby I/O and Packages – 23 Programmable I/O lines – 28-pin PDIP, 32-lead TQFP, 28-pad QFN/MLF and 32-pad QFN/MLF Operating Voltage: – 1.8 - 5.5V Temperature Range: – -40°C to 105°C Speed Grade: – ATmega48PA/88PA/168PA: 0 - 4 MHz @ 1.8 - 5.5V, 0 - 10 MHz @ 2.7 - 5.5V, 0 - 20 MHz @ 4.5 5.5V Power Consumption at 1 MHz, 1.8V, 25°C – Active mode: 0.2 mA – Power-Down mode: 0.1 μA – Power-Save mode: 0.75 μA (Including 32 kHz RTC) © 2018 Microchip Technology Inc. Datasheet Complete DS40002011A-page 2 Table of Contents Introduction......................................................................................................................1 Feature............................................................................................................................ 1 1. Description...............................................................................................................10 2. Configuration Summary........................................................................................... 11 3. Ordering Information ...............................................................................................12 3.1. 3.2. 3.3. ATmega48PA..............................................................................................................................12 ATmega88PA .............................................................................................................................13 ATmega168PA............................................................................................................................14 4. Block Diagram......................................................................................................... 15 5. Pin Configurations................................................................................................... 16 5.1. 5.2. Pin-out........................................................................................................................................ 16 Pin Descriptions......................................................................................................................... 20 6. I/O Multiplexing........................................................................................................22 7. Resources............................................................................................................... 24 8. Data Retention.........................................................................................................25 9. About Code Examples.............................................................................................26 10. Capacitive Touch Sensing....................................................................................... 27 10.1. QTouch Library........................................................................................................................... 27 11. AVR CPU Core........................................................................................................ 28 11.1. 11.2. 11.3. 11.4. 11.5. Overview.................................................................................................................................... 28 Arithmetic Logic Unit (ALU)........................................................................................................ 29 Status Register...........................................................................................................................29 General Purpose Register File................................................................................................... 32 Stack Pointer.............................................................................................................................. 33 11.6. Instruction Execution Timing...................................................................................................... 35 11.7. Reset and Interrupt Handling..................................................................................................... 36 12. AVR Memories.........................................................................................................39 12.1. 12.2. 12.3. 12.4. 12.5. 12.6. Overview.................................................................................................................................... 39 In-System Reprogrammable Flash Program Memory................................................................39 SRAM Data Memory.................................................................................................................. 40 EEPROM Data Memory............................................................................................................. 42 I/O Memory.................................................................................................................................43 Register Description................................................................................................................... 44 © 2018 Microchip Technology Inc. Datasheet Complete DS40002011A-page 3 ATmega48PA/88PA/168PA 13. System Clock and Clock Options............................................................................ 53 13.1. Clock Systems and Their Distribution........................................................................................ 53 13.2. Clock Sources............................................................................................................................ 54 13.3. Low-Power Crystal Oscillator..................................................................................................... 56 13.4. Full Swing Crystal Oscillator.......................................................................................................58 13.5. Low-Frequency Crystal Oscillator.............................................................................................. 59 13.6. Calibrated Internal RC Oscillator................................................................................................60 13.7. 128 kHz Internal Oscillator......................................................................................................... 61 13.8. External Clock............................................................................................................................ 62 13.9. Timer/Counter Oscillator.............................................................................................................63 13.10. Clock Output Buffer....................................................................................................................63 13.11. System Clock Prescaler............................................................................................................. 63 13.12. Register Description...................................................................................................................64 14. Power Management and Sleep Modes................................................................... 68 14.1. Overview.................................................................................................................................... 68 14.2. Sleep Modes.............................................................................................................................. 68 14.3. BOD Disable...............................................................................................................................69 14.4. Idle Mode....................................................................................................................................69 14.5. ADC Noise Reduction Mode...................................................................................................... 69 14.6. Power-Down Mode.....................................................................................................................70 14.7. Power-Save Mode......................................................................................................................70 14.8. Standby Mode............................................................................................................................ 71 14.9. Extended Standby Mode............................................................................................................ 71 14.10. Power Reduction Register......................................................................................................... 71 14.11. Minimizing Power Consumption................................................................................................. 71 14.12. Register Description...................................................................................................................73 15. System Control and Reset.......................................................................................78 15.1. 15.2. 15.3. 15.4. 15.5. 15.6. 15.7. 15.8. 15.9. Resetting the AVR...................................................................................................................... 78 Reset Sources............................................................................................................................78 Power-on Reset..........................................................................................................................79 External Reset............................................................................................................................80 Brown-out Detection...................................................................................................................80 Watchdog System Reset............................................................................................................ 81 Internal Voltage Reference.........................................................................................................81 Watchdog Timer......................................................................................................................... 82 Register Description................................................................................................................... 84 16. Interrupts................................................................................................................. 88 16.1. 16.2. 16.3. 16.4. Interrupt Vectors in ATmega48PA.............................................................................................. 88 Interrupt Vectors in ATmega88PA.............................................................................................. 89 Interrupt Vectors in ATmega168PA............................................................................................ 92 Register Description................................................................................................................... 95 17. EXTINT - External Interrupts................................................................................... 98 17.1. Pin Change Interrupt Timing.......................................................................................................98 © 2018 Microchip Technology Inc. Datasheet Complete DS40002011A-page 4 ATmega48PA/88PA/168PA 17.2. Register Description................................................................................................................... 99 18. I/O-Ports................................................................................................................ 108 18.1. 18.2. 18.3. 18.4. Overview.................................................................................................................................. 108 Ports as General Digital I/O......................................................................................................109 Alternate Port Functions........................................................................................................... 112 Register Description................................................................................................................. 124 19. 8-bit Timer/Counter0 (TC0) with PWM.................................................................. 136 19.1. 19.2. 19.3. 19.4. 19.5. 19.6. 19.7. 19.8. 19.9. Features................................................................................................................................... 136 Overview.................................................................................................................................. 136 Timer/Counter Clock Sources.................................................................................................. 138 Counter Unit............................................................................................................................. 138 Output Compare Unit............................................................................................................... 139 Compare Match Output Unit.....................................................................................................141 Modes of Operation..................................................................................................................143 Timer/Counter Timing Diagrams.............................................................................................. 147 Register Description................................................................................................................. 149 20. 16-bit Timer/Counter1 (TC1) with PWM................................................................ 161 20.1. Overview.................................................................................................................................. 161 20.2. Features................................................................................................................................... 161 20.3. Block Diagram.......................................................................................................................... 161 20.4. Definitions.................................................................................................................................162 20.5. Registers.................................................................................................................................. 163 20.6. Accessing 16-bit Timer/Counter Registers............................................................................... 163 20.7. Timer/Counter Clock Sources.................................................................................................. 166 20.8. Counter Unit............................................................................................................................. 166 20.9. Input Capture Unit.................................................................................................................... 167 20.10. Output Compare Units............................................................................................................. 169 20.11. Compare Match Output Unit.....................................................................................................171 20.12. Modes of Operation..................................................................................................................172 20.13. Timer/Counter 0, 1 Prescalers................................................................................................. 180 20.14. Timer/Counter Timing Diagrams.............................................................................................. 180 20.15. Register Description.................................................................................................................182 21. Timer/Counter 0, 1 Prescalers...............................................................................195 21.1. 21.2. 21.3. 21.4. Internal Clock Source............................................................................................................... 195 Prescaler Reset........................................................................................................................195 External Clock Source..............................................................................................................195 Register Description................................................................................................................. 197 22. 8-bit Timer/Counter2 (TC2) with PWM and Asynchronous Operation...................199 22.1. 22.2. 22.3. 22.4. 22.5. Features................................................................................................................................... 199 Overview.................................................................................................................................. 199 Timer/Counter Clock Sources.................................................................................................. 201 Counter Unit............................................................................................................................. 201 Output Compare Unit............................................................................................................... 202 © 2018 Microchip Technology Inc. Datasheet Complete DS40002011A-page 5 ATmega48PA/88PA/168PA 22.6. Compare Match Output Unit.....................................................................................................204 22.7. Modes of Operation..................................................................................................................205 22.8. Timer/Counter Timing Diagrams.............................................................................................. 209 22.9. Asynchronous Operation of Timer/Counter2............................................................................ 210 22.10. Timer/Counter Prescaler.......................................................................................................... 212 22.11. Register Description................................................................................................................. 212 23. Serial Peripheral Interface (SPI)............................................................................227 23.1. 23.2. 23.3. 23.4. 23.5. Features................................................................................................................................... 227 Overview.................................................................................................................................. 227 SS Pin Functionality................................................................................................................. 231 Data Modes.............................................................................................................................. 231 Register Description................................................................................................................. 232 24. Universal Synchronous Asynchronous Receiver Transceiver (USART)............... 237 24.1. Features................................................................................................................................... 237 24.2. Overview.................................................................................................................................. 237 24.3. Block Diagram.......................................................................................................................... 237 24.4. Clock Generation......................................................................................................................238 24.5. Frame Formats.........................................................................................................................241 24.6. USART Initialization................................................................................................................. 242 24.7. Data Transmission – The USART Transmitter......................................................................... 243 24.8. Data Reception – The USART Receiver.................................................................................. 245 24.9. Asynchronous Data Reception.................................................................................................249 24.10. Multi-Processor Communication Mode.................................................................................... 252 24.11. Examples of Baud Rate Setting............................................................................................... 252 24.12. Register Description.................................................................................................................255 25. USART in SPI (USARTSPI) Mode.........................................................................265 25.1. 25.2. 25.3. 25.4. 25.5. 25.6. 25.7. 25.8. Features................................................................................................................................... 265 Overview.................................................................................................................................. 265 Clock Generation......................................................................................................................265 SPI Data Modes and Timing.....................................................................................................266 Frame Formats.........................................................................................................................266 Data Transfer............................................................................................................................268 AVR USART MSPIM vs. AVR SPI............................................................................................269 Register Description................................................................................................................. 270 26. Two-Wire Serial Interface (TWI)............................................................................ 271 26.1. 26.2. 26.3. 26.4. 26.5. 26.6. 26.7. 26.8. 26.9. Features................................................................................................................................... 271 Two-Wire Serial Interface Bus Definition..................................................................................271 Data Transfer and Frame Format.............................................................................................272 Multi-Master Bus Systems, Arbitration, and Synchronization...................................................275 Overview of the TWI Module.................................................................................................... 277 Using the TWI...........................................................................................................................279 Transmission Modes................................................................................................................ 282 Multi-Master Systems and Arbitration...................................................................................... 300 Register Description................................................................................................................. 301 © 2018 Microchip Technology Inc. Datasheet Complete DS40002011A-page 6 ATmega48PA/88PA/168PA 27. Analog Comparator (AC)....................................................................................... 309 27.1. Overview.................................................................................................................................. 309 27.2. Analog Comparator Multiplexed Input...................................................................................... 309 27.3. Register Description................................................................................................................. 310 28. Analog-to-Digital Converter (ADC)........................................................................ 314 28.1. 28.2. 28.3. 28.4. 28.5. 28.6. 28.7. 28.8. 28.9. Features................................................................................................................................... 314 Overview.................................................................................................................................. 314 Starting a Conversion...............................................................................................................316 Prescaling and Conversion Timing...........................................................................................317 Changing Channel or Reference Selection.............................................................................. 319 ADC Noise Canceler................................................................................................................ 321 ADC Conversion Result........................................................................................................... 324 Temperature Measurement...................................................................................................... 325 Register Description................................................................................................................. 325 29. debugWIRE On-chip Debug System..................................................................... 334 29.1. 29.2. 29.3. 29.4. 29.5. 29.6. Features................................................................................................................................... 334 Overview.................................................................................................................................. 334 Physical Interface..................................................................................................................... 334 Software Breakpoints............................................................................................................... 335 Limitations of debugWIRE........................................................................................................335 Register Description................................................................................................................. 335 30. Self-Programming the Flash..................................................................................337 30.1. Overview.................................................................................................................................. 337 30.2. Addressing the Flash During Self-Programming...................................................................... 338 30.3. Register Description................................................................................................................. 343 31. Boot Loader Support – Read-While-Write Self-programming (BTLDR)................ 346 31.1. 31.2. 31.3. 31.4. 31.5. 31.6. 31.7. 31.8. 31.9. Features................................................................................................................................... 346 Overview.................................................................................................................................. 346 Application and Boot Loader Flash Sections............................................................................346 Read-While-Write and No Read-While-Write Flash Sections...................................................347 Boot Loader Lock Bits.............................................................................................................. 349 Entering the Boot Loader Program...........................................................................................351 Addressing the Flash During Self-Programming...................................................................... 351 Self-Programming the Flash.....................................................................................................352 Register Description................................................................................................................. 361 32. Memory Programming (MEMPROG).....................................................................364 32.1. 32.2. 32.3. 32.4. 32.5. 32.6. Program And Data Memory Lock Bits...................................................................................... 364 Fuse Bits.................................................................................................................................. 365 Signature Bytes........................................................................................................................ 368 Calibration Byte........................................................................................................................ 368 Serial Number.......................................................................................................................... 368 Page Size................................................................................................................................. 369 © 2018 Microchip Technology Inc. Datasheet Complete DS40002011A-page 7 ATmega48PA/88PA/168PA 32.7. Parallel Programming Parameters, Pin Mapping, and Commands..........................................369 32.8. Parallel Programming...............................................................................................................371 32.9. Serial Downloading.................................................................................................................. 378 33. Electrical Characteristics....................................................................................... 384 33.1. 33.2. 33.3. 33.4. 33.5. 33.6. 33.7. 33.8. 33.9. Absolute Maximum Ratings......................................................................................................384 Common DC Characteristics....................................................................................................384 Speed Grades.......................................................................................................................... 388 Clock Characteristics................................................................................................................389 System and Reset Characteristics........................................................................................... 390 SPI Timing Characteristics....................................................................................................... 391 Two-Wire Serial Interface Characteristics................................................................................ 392 ADC Characteristics................................................................................................................. 394 Parallel Programming Characteristics...................................................................................... 395 34. Typical Characteristics (TA = -40°C to 105°C).......................................................398 34.1. ATmega48PA Typical Characteristics.......................................................................................398 34.2. ATmega88PA: Typical Characteristics......................................................................................423 34.3. ATmega168PA Typical Characteristics.....................................................................................448 35. Register Summary.................................................................................................472 35.1. Note..........................................................................................................................................474 36. Instruction Set Summary....................................................................................... 476 37. Packaging Information...........................................................................................481 37.1. 37.2. 37.3. 37.4. 37.5. 32-pin 32A................................................................................................................................ 481 32-pin 32M1-A..........................................................................................................................482 32-pin 32CC1........................................................................................................................... 483 28-pin 28M1............................................................................................................................. 483 28-pin 28P3.............................................................................................................................. 484 38. Errata.....................................................................................................................486 38.1. Errata ATmega48PA.................................................................................................................486 38.2. Errata ATmega88PA.................................................................................................................487 38.3. Errata ATmega168PA...............................................................................................................488 39. Datasheet Revision History................................................................................... 490 39.1. Revision A – 4/2018................................................................................................................. 490 39.2. Pre Microchip Revisions...........................................................................................................490 The Microchip Web Site.............................................................................................. 491 Customer Change Notification Service........................................................................491 Customer Support....................................................................................................... 491 Product Identification System...................................................................................... 492 © 2018 Microchip Technology Inc. Datasheet Complete DS40002011A-page 8 ATmega48PA/88PA/168PA Microchip Devices Code Protection Feature............................................................... 492 Legal Notice.................................................................................................................493 Trademarks................................................................................................................. 493 Quality Management System Certified by DNV...........................................................494 Worldwide Sales and Service......................................................................................495 © 2018 Microchip Technology Inc. Datasheet Complete DS40002011A-page 9 ATmega48PA/88PA/168PA Description 1. Description ® The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in a single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers. The ATmega48PA/88PA/168PA provides the following features: 4K/8K/16Kbytes of in-system programmable Flash with read-while-write capabilities, 256/512/512bytes EEPROM, 512/1K/1Kbytes SRAM, 23 general purpose I/O lines, 32 general purpose working registers, Real Time Counter (RTC), three flexible timer/counters with Compare modes and PWM, 1 serial programmable USARTs , 1 byteoriented 2-wire Serial Interface (I2C), a 6-channel 10-bit ADC (8 channels in TQFP and QFN/MLF packages), a programmable watchdog timer with internal oscillator, an SPI serial port, and six software selectable power saving modes. The Idle mode stops the CPU while allowing the SRAM, timer/counters, SPI port, and interrupt system to continue functioning. The Power-Down mode saves the register contents but freezes the oscillator, disabling all other chip functions until the next interrupt or hardware Reset. In Power-Save mode, the asynchronous timer continues to run, allowing the user to maintain a timer base while the rest of the device is sleeping. The ADC Noise Reduction mode stops the CPU and all I/O modules except asynchronous timer and ADC to minimize switching noise during ADC conversions. In Standby mode, the crystal/resonator oscillator is running while the rest of the device is sleeping. This allows very fast start-up combined with low-power consumption. In Extended Standby mode, both the main oscillator and the asynchronous timer continue to run. ® Microchip offers the QTouch library for embedding capacitive touch buttons, sliders and wheels functionality into AVR microcontrollers. The patented charge-transfer signal acquisition offers robust sensing and includes fully debounced reporting of touch keys and includes Adjacent Key Suppression™ (AKS™) technology for unambiguous detection of key events. The easy-to-use QTouch Suite toolchain allows you to explore, develop and debug your own touch applications. The device is manufactured using Microchip’s high density nonvolatile memory technology. The on-chip ISP Flash allows the program memory to be reprogrammed in-system through an SPI serial interface, by a conventional nonvolatile memory programmer, or by an on-chip boot program running on the AVR core. The boot program can use any interface to download the application program in the application Flash memory. Software in the boot Flash section will continue to run while the application Flash section is updated, providing true read-while-write operation. By combining an 8-bit RISC CPU with in-system selfprogrammable Flash on a monolithic chip, the ATmega48PA/88PA/168PA is a powerful microcontroller that provides a highly flexible and cost effective solution to many embedded control applications. The ATmega48PA/88PA/168PA is supported with a full suite of program and system development tools including: C compilers, macro assemblers, program debugger/simulators, in-circuit emulators, and evaluation kits. © 2018 Microchip Technology Inc. Datasheet Complete DS40002011A-page 10 ATmega48PA/88PA/168PA Configuration Summary 2. Configuration Summary Features ATmega48PA/88PA/168PA Pin Count 28/32 Flash (Bytes) 4K/8K/16K SRAM (Bytes) 512/1K/1K EEPROM (Bytes) 256/512/512 Interrupt Vector Size (instruction word/vector) 1/1/2 General Purpose I/O Lines 23 SPI 2 TWI (I2C) 1 USART 1 ADC 10-bit 15 kSPS ADC Channels 8 8-bit Timer/Counters 2 16-bit Timer/Counters 1 ATmega88PA and ATmega168PA support a real read-while-write self-programming mechanism. There is a separate boot loader section, and the SPM instruction can only execute from there. In ATmega48PA, there is no read-while-write support and no separate boot loader section. The SPM instruction can execute from the entire Flash. © 2018 Microchip Technology Inc. Datasheet Complete DS40002011A-page 11 ATmega48PA/88PA/168PA Ordering Information 3. Ordering Information 3.1 ATmega48PA Speed [MHz](3) Power Supply [V] Ordering Code(2) Package(1) Operational Range 20 1.8 - 5.5 ATmega48PA-AU ATmega48PA-AUR(4) ATmega48PA-CCU ATmega48PA-CCUR(4) ATmega48PA-MMH(5) ATmega48PA-MMHR(4)(5) ATmega48PA-MU ATmega48PA-MUR(4) ATmega48PA-PU 32A 32A 32CC1 32CC1 28M1 28M1 32M1-A 32M1-A 28P3 Industrial (-40°C to 85°C) ATmega48PA-AN ATmega48PA-ANR(4) ATmega48PA-MMN ATmega48PA-MMNR(4) ATmega48PA-MN ATmega48PA-MNR(4) ATmega48PA-PN 32A 32A 28M1 28M1 32M1-A 32M1-A 28P3 Industrial (-40°C to 105°C) Note:  1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities. 2. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green. 3. Please refer to Speed Grades for Speed vs. VCC 4. Tape & Reel. 5. NiPdAu Lead Finish. Package Type 28M1 28-pad, 4 x 4 x 1.0 body, Lead Pitch 0.45mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/ MLF) 28P3 28-lead, 0.300” Wide, Plastic Dual Inline Package (PDIP) 32M1-A 32-pad, 5 x 5 x 1.0 body, Lead Pitch 0.50mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/ MLF) 32A 32-lead, Thin (1.0mm) Plastic Quad Flat Package (TQFP) 32CC1 32-ball, 4 x 4 x 0.6mm package, ball pitch 0.5mm, Ultra Thin, Fine-Pitch Ball Grill Array (UFBGA) © 2018 Microchip Technology Inc. Datasheet Complete DS40002011A-page 12 ATmega48PA/88PA/168PA Ordering Information 3.2 ATmega88PA Speed [MHz](3) Power Supply [V] Ordering Code(2) Package(1) Operational Range 20 1.8 - 5.5 ATmega88PA-AU ATmega88PA-AUR(4) ATmega88PA-CCU ATmega88PA-CCUR(4) ATmega88PA-MMH(5) ATmega88PA-MMHR(4)(5) ATmega88PA-MU ATmega88PA-MUR(4) ATmega88PA-PU 32A 32A 32CC1 32CC1 28M1 28M1 32M1-A 32M1-A 28P3 Industrial (-40°C to 85°C) ATmega88PA-AN ATmega88PA-ANR(4) ATmega88PA-MMN ATmega88PA-MMNR(4) ATmega88PA-MN ATmega88PA-MNR(4) ATmega88PA-PN 32A 32A 28M1 28M1 32M1-A 32M1-A 28P3 Industrial (-40°C to 105°C) Note:  1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities. 2. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green. 3. Please refer to Speed Grades for Speed vs. VCC 4. Tape & Reel. 5. NiPdAu Lead Finish. Package Type 28M1 28-pad, 4 x 4 x 1.0 body, Lead Pitch 0.45mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/ MLF) 28P3 28-lead, 0.300” Wide, Plastic Dual Inline Package (PDIP) 32M1-A 32-pad, 5 x 5 x 1.0 body, Lead Pitch 0.50mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/ MLF) 32A 32-lead, Thin (1.0mm) Plastic Quad Flat Package (TQFP) 32CC1 32-ball, 4 x 4 x 0.6mm package, ball pitch 0.5mm, Ultra Thin, Fine-Pitch Ball Grill Array (UFBGA) © 2018 Microchip Technology Inc. Datasheet Complete DS40002011A-page 13 ATmega48PA/88PA/168PA Ordering Information 3.3 ATmega168PA Speed [MHz](3) Power Supply [V] Ordering Code(2) Package(1) Operational Range 20 1.8 - 5.5 ATmega168PA-AU ATmega168PA-AUR(4) ATmega168PA-CCU ATmega168PA-CCUR(4) ATmega168PA-MMH(5) ATmega168PA-MMHR(4)(5) ATmega168PA-MU ATmega168PA-MUR(4) ATmega168PA-PU 32A 32A 32CC1 32CC1 28M1 28M1 32M1-A 32M1-A 28P3 Industrial (-40°C to 85°C) ATmega168PA-AN ATmega168PA-ANR(4) ATmega168PA-MN ATmega168PA-MNR(4) ATmega168PA-PN 32A 32A 32M1-A 32M1-A 28P3 Industrial (-40°C to 105°C) Note:  1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities. 2. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green. 3. Please refer to Speed Grades for Speed vs. VCC 4. Tape & Reel. 5. NiPdAu Lead Finish. Package Type 28M1 28-pad, 4 x 4 x 1.0 body, Lead Pitch 0.45mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/ MLF) 28P3 28-lead, 0.300” Wide, Plastic Dual Inline Package (PDIP) 32M1-A 32-pad, 5 x 5 x 1.0 body, Lead Pitch 0.50mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/ MLF) 32A 32-lead, Thin (1.0mm) Plastic Quad Flat Package (TQFP) 32CC1 32-ball, 4 x 4 x 0.6mm package, ball pitch 0.5mm, Ultra Thin, Fine-Pitch Ball Grill Array (UFBGA) © 2018 Microchip Technology Inc. Datasheet Complete DS40002011A-page 14 ATmega48PA/88PA/168PA Block Diagram 4. Block Diagram Figure 4-1. Block Diagram SRAM debugWire CPU OCD Clock generation XTAL1 / TOSC1 XTAL2 / TOSC2 32.768kHz XOSC 8MHz Calib RC External clock 16MHz LP XOSC VCC 128kHz int osc Power Supervision POR/BOD & RESET RESET GND ADC6,ADC7,PC[5:0] AREF ADC[7:0] AREF PD[7:0], PC[6:0], PB[7:0] PD3, PD2 PCINT[23:0] INT[1:0] PB1, PB2 PD5 PB0 OC1A/B T1 ICP1 PB3 PD3 OC2A OC2B © 2018 Microchip Technology Inc. NVM programming Power management and clock control Watchdog Timer ADC EXTINT FLASH D A T A B U S EEPROM EEPROMIF I/O PORTS I N / O U T PB[7:0] PC[6:0] PD[7:0] GPIOR[2:0] TC 0 D A T A B U S (8-bit) SPI 0 AC Internal Reference USART 0 RxD0 TxD0 XCK0 PD0 PD1 PD4 TWI 0 SDA0 SCL0 PC4 PC5 T0 OC0A OC0B PD4 PD6 PD5 MISO0 MOSI0 SCK0 SS0 PB4 PB3 PB5 PB2 AIN0 AIN1 PD6 PD7 ADCMUX ADC6, ADC7 PC[5:0] TC 1 (16-bit) TC 2 (8-bit async) Datasheet Complete DS40002011A-page 15 ATmega48PA/88PA/168PA Pin Configurations 5. 5.1 Pin Configurations Pin-out Figure 5-1. 28-pin PDIP (PCINT14/RESET) PC6 1 28 PC5 (ADC5/SCL/PCINT13) (PCINT16/RXD) PD0 2 27 PC4 (ADC4/SDA/PCINT12) (PCINT17/TXD) PD1 3 26 PC3 (ADC3/PCINT11) (PCINT18/INT0) PD2 4 25 PC2 (ADC2/PCINT10) (PCINT19/OC2B/INT1) PD3 5 24 PC1 (ADC1/PCINT9) (PCINT20/XCK/T0) PD4 6 23 PC0 (ADC0/PCINT8) VCC 7 22 GND GND 8 21 AREF (PCINT6/XTAL1/TOSC1) PB6 9 20 AVCC (PCINT7/XTAL2/TOSC2) PB7 10 19 PB5 (SCK/PCINT5) (PCINT21/OC0B/T1) PD5 11 18 PB4 (MISO/PCINT4) (PCINT22/OC0A/AIN0) PD6 12 17 PB3 (MOSI/OC2A/PCINT3) (PCINT23/AIN1) PD7 13 16 PB2 (SS/OC1B/PCINT2) (PCINT0/CLKO/ICP1) PB0 14 15 PB1 (OC1A/PCINT1) © 2018 Microchip Technology Inc. Datasheet Complete Power Ground Programming/debug Digital Analog Crystal/Osc DS40002011A-page 16 ATmega48PA/88PA/168PA Pin Configurations PD2 (INT0/PCINT18) PD1 (TXD/PCINT17) PD0 (RXD/PCINT16) PC6 (RESET/PCINT14) PC5 (ADC5/SCL/PCINT13) PC4 (ADC4/SDA/PCINT12) PC3 (ADC3/PCINT11) 28 27 26 25 24 23 22 Figure 5-2. 28-pin MLF Top View Power Ground Programming/debug Digital Analog Crystal/CLK 18 GND (PCINT6/XTAL1/TOSC1) PB6 5 17 AREF (PCINT7/XTAL2/TOSC2) PB7 6 16 AVCC (PCINT21/OC0B/T1) PD5 7 15 PB5 (SCK/PCINT5) Bottom pad should be soldered to ground © 2018 Microchip Technology Inc. 14 4 (PCINT4/MISO) PB4 GND 13 PC0 (ADC0/PCINT8) (PCINT3/OC2A/MOSI) PB3 19 12 3 (PCINT2/SS/OC1B) PB2 VCC 11 PC1 (ADC1/PCINT9) (PCINT1/OC1A) PB1 20 10 2 (PCINT0/CLKO/ICP1) PB0 (PCINT20/XCK/T0) PD4 (PCINT23/AIN1) PD7 PC2 (ADC2/PCINT10) 9 21 8 1 (PCINT22/OC0A/AIN0) PD6 (PCINT19/OC2B/INT1) PD3 Datasheet Complete DS40002011A-page 17 ATmega48PA/88PA/168PA Pin Configurations PC6 (RESET/PCINT14) PC5 (ADC5/SCL/PCINT13) PC4 (ADC4/SDA/PCINT12) 29 28 27 Digital Analog Crystal/CLK PC2 (ADC2/PCINT10) PD0 (RXD/PCINT16) 30 Programming/debug 25 PD1 (TXD/PCINT17) 31 Ground 26 PD2 (INT0/PCINT18) 32 Power PC3 (ADC3/PCINT11) Figure 5-3. 32-pin TQFP Top View GND GND 5 20 AREF VCC 6 19 ADC6 (PCINT6/XTAL1/TOSC1) PB6 7 18 AVCC (PCINT7/XTAL2/TOSC2) PB7 8 17 PB5 (SCK/PCINT5) (PCINT21/OC0B/T1) PD5 © 2018 Microchip Technology Inc. 16 21 (PCINT4/MISO) PB4 4 15 VCC (PCINT3/OC2A/MOSI) PB3 ADC7 14 22 (PCINT2/SS/OC1B) PB2 3 13 GND (PCINT1/OC1A) PB1 PC0 (ADC0/PCINT8) 12 23 (PCINT0/CLKO/ICP1) PB0 2 11 (PCINT20/XCK/T0) PD4 (PCINT23/AIN1) PD7 PC1 (ADC1/PCINT9) 10 24 (PCINT22/OC0A/AIN0) PD6 1 9 (PCINT19/OC2B/INT1) PD3 Datasheet Complete DS40002011A-page 18 ATmega48PA/88PA/168PA Pin Configurations PD2 (INT0/PCINT18) PD1 (TXD/PCINT17) PD0 (RXD/PCINT16) PC6 (RESET/PCINT14) PC5 (ADC5/SCL/PCINT13) PC4 (ADC4/SDA/PCINT12) PC3 (ADC3/PCINT11) PC2 (ADC2/PCINT10) 32 31 30 29 28 27 26 25 Figure 5-4. 32-pin MLF Top View Power Ground Programming/debug Digital Analog Crystal/CLK GND 5 20 AREF VCC 6 19 ADC6 (PCINT6/XTAL1/TOSC1) PB6 7 18 AVCC (PCINT7/XTAL2/TOSC2) PB7 8 17 PB5 (SCK/PCINT5) 16 GND (PCINT4/MISO) PB4 21 15 4 (PCINT3/OC2A/MOSI) PB3 VCC 14 ADC7 (PCINT2/SS/OC1B) PB2 22 13 3 (PCINT1/OC1A) PB1 GND 12 PC0 (ADC0/PCINT8) (PCINT0/CLKO/ICP1) PB0 23 11 2 (PCINT23/AIN1) PD7 (PCINT20/XCK/T0) PD4 10 PC1 (ADC1/PCINT9) (PCINT22/OC0A/AIN0) PD6 24 9 1 (PCINT21/OC0B/T1) PD5 (PCINT19/OC2B/INT1) PD3 Bottom pad should be soldered to ground Table 5-1. 32UFBGA 1 2 3 4 5 6 A PD2 PD1 PC6 PC4 PC2 PC1 B PD3 PD4 PD0 PC5 PC3 PC0 C GND GND - - ADC7 GND D VCC VCC - - AREF ADC6 E PB6 PD6 PB0 PB2 AVCC PB5 F PB7 PD5 PD7 PB1 PB3 PB4 © 2018 Microchip Technology Inc. Datasheet Complete DS40002011A-page 19 ATmega48PA/88PA/168PA Pin Configurations 5.2 Pin Descriptions 5.2.1 VCC Digital supply voltage pin. 5.2.2 GND Ground. 5.2.3 Port B (PB[7:0]) XTAL1/XTAL2/TOSC1/TOSC2 Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each pin). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated during a Reset condition even if the clock is not running. Depending on the clock selection fuse settings, PB6 can be used as input to the inverting oscillator amplifier and input to the internal clock operating circuit. Depending on the clock selection fuse settings, PB7 can be used as output from the inverting oscillator amplifier. If the internal calibrated RC oscillator is used as chip clock source, PB[7:6] is used as TOSC[2:1] input for the asynchronous timer/counter2 if the AS2 bit in ASSR is set. 5.2.4 Port C (PC[5:0]) Port C is a 7-bit bi-directional I/O port with internal pull-up resistors (selected for each pin). The PC[5:0] output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up resistors are activated. The Port C pins are tri-stated during a Reset condition even if the clock is not running. 5.2.5 PC6/RESET If the RSTDISBL fuse is programmed, PC6 is used as an I/O pin. Note that the electrical characteristics of PC6 differ from those of the other pins of Port C. If the RSTDISBL fuse is unprogrammed, PC6 is used as a Reset input. A low level on this pin for longer than the minimum pulse length will generate a Reset, even if the clock is not running. Shorter pulses are not guaranteed to generate a Reset. The various special features of Port C are elaborated in the Alternate Functions of Port C section. 5.2.6 Port D (PD[7:0]) Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each pin). The Port D output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri-stated during a Reset condition even if the clock is not running. 5.2.7 AVCC AVCC is the supply voltage pin for the A/D Converter (ADC), PC[3:0], and PE[3:2]. It should be externally connected to VCC, even if the ADC is not used. If the ADC is used, it should be connected to VCC through a low-pass filter. Note that PC[6:4] use digital supply voltage, VCC. 5.2.8 AREF AREF is the analog reference pin for the A/D Converter. © 2018 Microchip Technology Inc. Datasheet Complete DS40002011A-page 20 ATmega48PA/88PA/168PA Pin Configurations 5.2.9 ADC[7:6] In the TQFP and VFQFN package, ADC[7:6] serve as analog inputs to the A/D converter. These pins are powered by the analog supply and serve as 10-bit ADC channels. © 2018 Microchip Technology Inc. Datasheet Complete DS40002011A-page 21 ATmega48PA/88PA/168PA I/O Multiplexing 6. I/O Multiplexing Each pin is by default controlled by the PORT as a general purpose I/O and alternatively it can be assigned to one of the peripheral functions. The following table describes the peripheral signals multiplexed to the PORT I/O pins. Table 6-1. PORT Function Multiplexing I2C 0 (32-pin 32UFBGA) Pin# (32-pin MLF/ TQFP) Pin# (28-pin MLF) Pin# (28-pin PIPD) Pin# PAD EXTINT PCINT B1 1 1 5 PD3 INT1 B2 2 2 6 PD4 D1 4 3 7 VCC C1 3 4 8 GND D2 6 - - VCC C2 5 - - GND E1 7 5 9 PB6 PCINT6 XTAL1/ TOSC1 F1 8 6 10 PB7 PCINT7 XTAL2/ TOSC2 F2 9 7 11 PD5 PCINT21 OC0B E2 10 8 12 PD6 PCINT22 AIN0 OC0A F3 11 9 13 PD7 PCINT23 AIN1 E3 12 10 14 PB0 PCINT0 F4 13 11 15 PB1 PCINT1 OC1A E4 14 12 16 PB2 PCINT2 OC1B SS0 F5 15 13 17 PB3 PCINT3 OC2A MOSI0 F6 16 14 18 PB4 PCINT4 MISO0 E6 17 15 19 PB5 PCINT5 SCK0 E5 18 16 20 AVCC D6 19 - - ADC6 D5 20 17 21 AREF C6 21 18 22 GND C5 22 - - ADC7 B6 23 19 13 PC0 PCINT8 ADC0 A6 24 20 24 PC1 PCINT9 ADC1 A2 25 21 25 PC2 PCINT10 ADC2 B5 26 22 26 PC3 PCINT11 ADC3 A4 27 23 27 PC4 PCINT12 ADC4 SDA0 B4 28 24 28 PC5 PCINT13 ADC5 SCL0 © 2018 Microchip Technology Inc. ADC/A C OSC T/C #0 T/C USART #1 0 PCINT19 OC2B PCINT20 T0 CLKO SPI 0 XCK0 T1 ICP1 ADC6 ADC7 Datasheet Complete DS40002011A-page 22 ATmega48PA/88PA/168PA I/O Multiplexing (32-pin 32UFBGA) Pin# (32-pin MLF/ TQFP) Pin# (28-pin MLF) Pin# (28-pin PIPD) Pin# PAD A3 29 25 1 PC6/ RESET PCINT14 B3 30 26 2 PD0 PCINT16 RXD0 A2 31 27 3 PD1 PCINT17 TXD0 A1 32 28 4 PD2 © 2018 Microchip Technology Inc. EXTINT PCINT INT0 ADC/A C OSC T/C #0 T/C USART #1 0 I2C 0 SPI 0 PCINT18 Datasheet Complete DS40002011A-page 23 ATmega48PA/88PA/168PA Resources 7. Resources A comprehensive set of development tools, application notes, and datasheets are available for download on http://www.microchip.com/design-centers/8-bit/microchip-avr-mcus. © 2018 Microchip Technology Inc. Datasheet Complete DS40002011A-page 24 ATmega48PA/88PA/168PA Data Retention 8. Data Retention Reliability qualification results show that the projected data retention failure rate is much less than 1 PPM over 20 years at 85°C. © 2018 Microchip Technology Inc. Datasheet Complete DS40002011A-page 25 ATmega48PA/88PA/168PA About Code Examples 9. About Code Examples This documentation contains simple code examples that briefly show how to use various parts of the device. These code examples assume that the part specific header file is included before compilation. Be aware that not all C compiler vendors include bit definitions in the header files and interrupt handling in C is compiler dependent. Confirm with the C compiler documentation for more details. For I/O registers located in extended I/O map, IN, OUT, SBIS, SBIC, CBI, and SBI instructions must be replaced with instructions that allow access to extended I/O. Typically LDS and STS combined with SBRS, SBRC, SBR, and CBR. © 2018 Microchip Technology Inc. Datasheet Complete DS40002011A-page 26 ATmega48PA/88PA/168PA Capacitive Touch Sensing 10. 10.1 Capacitive Touch Sensing QTouch Library ® ® The QTouch library provides a simple to use solution to realize touch sensitive interfaces on most AVR ™ microcontrollers. The QTouch library includes support for the QTouch and QMatrix acquisition methods. Touch sensing can be added to any application by linking the appropriate QTouch library for the AVR microcontroller. This is done by using a simple set of APIs to define the touch channels and sensors, and then calling the touch sensing API’s to retrieve the channel information and determine the touch sensor states. The QTouch library is FREE and downloadable from QTouch Library . For implementation details and other information, refer to the QTouch Library User Guide, also available for download from the Microchip website. © 2018 Microchip Technology Inc. Datasheet Complete DS40002011A-page 27 ATmega48PA/88PA/168PA AVR CPU Core 11. AVR CPU Core 11.1 Overview This section discusses the AVR core architecture in general. The main function of the CPU core is to ensure correct program execution. The CPU must, therefore, be able to access memories, perform calculations, control peripherals, and handle interrupts. Figure 11-1. Block Diagram of the AVR Architecture Register file R31 (ZH) R29 (YH) R27 (XH) R25 R23 R21 R19 R17 R15 R13 R11 R9 R7 R5 R3 R1 R30 (ZL) R28 (YL) R26 (XL) R24 R22 R20 R18 R16 R14 R12 R10 R8 R6 R4 R2 R0 Program counter Flash program memory Instruction register Instruction decode Data memory Stack pointer Status register ALU In order to maximize performance and parallelism, the AVR uses a Harvard architecture – with separate memories and buses for program and data. Instructions in the program memory are executed with a single level pipelining. While one instruction is being executed, the next instruction is pre-fetched from the program memory. This concept enables instructions to be executed in every clock cycle. The program memory is In-System Reprogrammable Flash memory. The fast-access register file contains 32 x 8-bit general purpose working registers with a single clock cycle access time. This allows single-cycle Arithmetic Logic Unit (ALU) operation. In a typical ALU operation, two operands are output from the register file, the operation is executed, and the result is stored back in the register file – in one clock cycle. Six of the 32 registers can be used as three 16-bit indirect address register pointers for data space addressing – enabling efficient address calculations. One of these address pointers can be used as an © 2018 Microchip Technology Inc. Datasheet Complete DS40002011A-page 28 ATmega48PA/88PA/168PA AVR CPU Core address pointer for lookup tables in Flash program memory. These added function registers are the 16-bit X-, Y-, and Z-register, described later in this section. The ALU supports arithmetic and logic operations between registers or between a constant and a register. Single register operations can also be executed in the ALU. After an arithmetic operation, the Status register is updated to reflect information about the result of the operation. Program flow is provided by conditional and unconditional jump and call instructions, able to directly address the whole address space. Most AVR instructions have a single 16-bit word format. Every program memory address contains a 16- or 32-bit instruction. Program Flash memory space is divided into two sections, the Boot Program section and the Application Program section. Both sections have dedicated Lock bits for write and read/write protection. The SPM instruction that writes into the Application Flash memory section must reside in the Boot Program section. During interrupts and subroutine calls, the return address Program Counter (PC) is stored on the Stack. The Stack is effectively allocated in the general data SRAM, and consequently, the Stack size is only limited by the total SRAM size and the usage of the SRAM. All user programs must initialize the Stack Pointer (SP) in the Reset routine (before subroutines or interrupts are executed). The SP is read/write accessible in the I/O space. The data SRAM can easily be accessed through the five different addressing modes supported in the AVR architecture. The memory spaces in the AVR architecture are all linear and regular memory maps. A flexible interrupt module has its control registers in the I/O space with an additional global interrupt enable bit in the Status register. All interrupts have a separate interrupt vector in the interrupt vector table. The interrupts have priority in accordance with their interrupt vector position. The lower the interrupt vector address, the higher the priority. The I/O memory space contains 64 addresses for CPU peripheral functions as Control registers, SPI, and other I/O functions. The I/O memory can be accessed directly, or as the data space locations following those of the register file, 0x20 - 0x5F. In addition, this device has extended I/O space from 0x60 - 0xFF in SRAM where only the ST/STS/STD and LD/LDS/LDD instructions can be used. 11.2 Arithmetic Logic Unit (ALU) The high-performance AVR ALU operates in direct connection with all the 32 general purpose working registers. Within a single clock cycle, arithmetic operations between general purpose registers or between a register and an immediate are executed. The ALU operations are divided into three main categories: arithmetic, logical, and bit-functions. Some implementations of the architecture provide a powerful multiplier supporting both signed/unsigned multiplication and fractional format. See Instruction Set Summary section for a detailed description. Related Links 36. Instruction Set Summary 11.3 Status Register The Status register contains information about the result of the most recently executed arithmetic instruction. This information can be used for altering program flow in order to perform conditional operations. The Status register is updated after all ALU operations, as specified in the instruction set reference. This will in many cases remove the need for using the dedicated compare instructions, resulting in faster and more compact code. © 2018 Microchip Technology Inc. Datasheet Complete DS40002011A-page 29 ATmega48PA/88PA/168PA AVR CPU Core The Status register is not automatically stored when entering an interrupt routine and restored when returning from an interrupt. This must be handled by software. © 2018 Microchip Technology Inc. Datasheet Complete DS40002011A-page 30 ATmega48PA/88PA/168PA AVR CPU Core 11.3.1 Status Register Name:  Offset:  Reset:  Property:  SREG 0x5F 0x00 When addressing as I/O Register: address offset is 0x3F When addressing I/O registers as data space using LD and ST instructions, the provided offset must be used. When using the I/O specific commands IN and OUT, the offset is reduced by 0x20, resulting in an I/O address offset within 0x00 - 0x3F. Bit Access Reset 7 6 5 4 3 2 1 0 I T H S V N Z C R/W R/W R/W R/W R/W R/W R/W R/W 0 0 0 0 0 0 0 0 Bit 7 – I Global Interrupt Enable The global interrupt enable bit must be set for the interrupts to be enabled. The individual interrupt enable control is then performed in separate control registers. If the Global Interrupt Enable register is cleared, none of the interrupts are enabled independent of the individual interrupt enable settings. The I-bit is cleared by hardware after an interrupt has occurred, and is set by the RETI instruction to enable subsequent interrupts. The I-bit can also be set and cleared by the application with the SEI and CLI instructions, as described in the instruction set reference. Bit 6 – T Copy Storage The bit copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source or destination for the operated bit. A bit from a register in the register file can be copied into T by the BST instruction, and a bit in T can be copied into a bit in a register in the register file by the BLD instruction. Bit 5 – H Half Carry Flag The half carry flag H indicates a half carry in some arithmetic operations. Half carry flag is useful in BCD arithmetic. See the Instruction Set Description for detailed information. Bit 4 – S Sign Flag, S = N ㊉ V The S-bit is always an exclusive or between the negative flag N and the two’s complement overflow flag V. See the Instruction Set Description for detailed information. Bit 3 – V Two’s Complement Overflow Flag The two’s complement overflow flag V supports two’s complement arithmetic. See the Instruction Set Description for detailed information. Bit 2 – N Negative Flag The negative flag N indicates a negative result in an arithmetic or logic operation. See the Instruction Set Description for detailed information. Bit 1 – Z Zero Flag The zero flag Z indicates a zero result in an arithmetic or logic operation. See the Instruction Set Description for detailed information. © 2018 Microchip Technology Inc. Datasheet Complete DS40002011A-page 31 ATmega48PA/88PA/168PA AVR CPU Core Bit 0 – C Carry Flag The carry flag C indicates a carry in an arithmetic or logic operation. See the Instruction Set Description for detailed information. 11.4 General Purpose Register File The register file is optimized for the AVR Enhanced RISC instruction set. In order to achieve the required performance and flexibility, the following input/output schemes are supported by the register file: • • • • One 8-bit output operand and one 8-bit result input Two 8-bit output operands and one 8-bit result input Two 8-bit output operands and one 16-bit result input One 16-bit output operand and one 16-bit result input Figure 11-2. AVR CPU General Purpose Working Registers 7 0 Addr. R0 0x00 R1 0x01 R2 0x02 … R13 0x0D General R14 0x0E Purpose R15 0x0F Working R16 0x10 Registers R17 0x11 … R26 0x1A X-register Low Byte R27 0x1B X-register High Byte R28 0x1C Y-register Low Byte R29 0x1D Y-register High Byte R30 0x1E Z-register Low Byte R31 0x1F Z-register High Byte Most of the instructions operating on the register file have direct access to all registers, and most of them are single cycle instructions. As shown in the figure, each register is also assigned a data memory address, mapping them directly into the first 32 locations of the user data space. Although not being physically implemented as SRAM locations, this memory organization provides great flexibility in access of the registers, as the X-, Y-, and Z-pointer registers can be set to index any register in the file. 11.4.1 The X-register, Y-register, and Z-register The registers R26...R31 have some added functions to their general purpose usage. These registers are 16-bit address pointers for indirect addressing of the data space. The three indirect address registers X, Y, and Z are defined as described in the figure. © 2018 Microchip Technology Inc. Datasheet Complete DS40002011A-page 32 ATmega48PA/88PA/168PA AVR CPU Core Figure 11-3. The X-, Y-, and Z-registers 15 X-register 0 7 R26 YH YL 0 7 R28 ZH ZL 0 7 R31 0 0 R29 7 0 0 R27 7 15 Z-register XL 7 15 Y-register XH 0 0 R30 In the different addressing modes, these address registers have functions as fixed displacement, automatic increment, and automatic decrement (see the instruction set reference for details). Related Links 36. Instruction Set Summary 11.5 Stack Pointer The stack is mainly used for storing temporary data, local variables, and return addresses after interrupts and subroutine calls. The stack is implemented as growing from higher to lower memory locations. The Stack Pointer register always points to the top of the stack. The stack pointer points to the data SRAM stack area where the subroutine and interrupt stacks are located. A stack PUSH command will decrease the stack pointer. The stack in the data SRAM must be defined by the program before any subroutine calls are executed or interrupts are enabled. Initial stack pointer value equals the last address of the internal SRAM and the stack pointer must be set to point above start of the SRAM. See the table for stack pointer details. Table 11-1. Stack Pointer Instructions Instruction Stack Pointer Description PUSH Decremented by 1 Data is pushed onto the stack CALL Decremented by 2 Return address is pushed onto the stack with a subroutine call or interrupt ICALL RCALL POP Incremented by 1 Data is popped from the stack RET Incremented by 2 Return address is popped from the stack with return from subroutine or return from interrupt RETI © 2018 Microchip Technology Inc. Datasheet Complete DS40002011A-page 33 ATmega48PA/88PA/168PA AVR CPU Core The AVR stack pointer is implemented as two 8-bit registers in the I/O space. The number of bits actually used is implementation dependent. Note that the data space in some implementations of the AVR architecture is so small that only SPL is needed. In this case, the SPH register will not be present. © 2018 Microchip Technology Inc. Datasheet Complete DS40002011A-page 34 ATmega48PA/88PA/168PA AVR CPU Core 11.5.1 Stack Pointer Register Low and High byte Name:  Offset:  Reset:  Property:  SPL and SPH 0x5D 0x4FF When addressing I/O registers as data space the offset address is 0x3D The SPL and SPH register pair represents the 16-bit value, SP. The low byte [7:0] (suffix L) is accessible at the original offset. The high byte [15:8] (suffix H) can be accessed at offset + 0x01. For more details on reading and writing 16-bit registers, refer to Accessing 16-bit Timer/Counter Registers. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When addressing I/O registers as data space using LD and ST instructions, 0x20 must be added to these offset addresses. Bit 15 14 13 12 11 10 9 8 SP10 SP9 SP8 Access R R R R R RW RW RW Reset 0 0 0 0 0 1 0 0 Bit Access Reset 7 6 5 4 3 2 1 0 SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 RW RW RW RW RW RW RW RW 1 1 1 1 1 1 1 1 Bits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 – SP Stack Pointer Register SPL and SPH are combined into SP. Related Links 20.6 Accessing 16-bit Timer/Counter Registers 11.6 Instruction Execution Timing This section describes the general access timing concepts for instruction execution. The AVR CPU is driven by the CPU clock clkCPU, directly generated from the selected clock source for the chip. No internal clock division is used. The figure below shows the parallel instruction fetches and instruction executions enabled by the Harvard architecture and the fast-access register file concept. This is the basic pipelining concept to obtain up to 1 MIPS per MHz with the corresponding unique results for functions per cost, functions per clocks, and functions per power unit. © 2018 Microchip Technology Inc. Datasheet Complete DS40002011A-page 35 ATmega48PA/88PA/168PA AVR CPU Core Figure 11-4. The Parallel Instruction Fetches and Instruction Executions T1 T2 T3 T4 clkCPU 1st Instruction Fetch 1st Instruction Execute 2nd Instruction Fetch 2nd Instruction Execute 3rd Instruction Fetch 3rd Instruction Execute 4th Instruction Fetch The following figure shows the internal timing concept for the register file. In a single clock cycle, an ALU operation using two register operands is executed and the result is stored back to the destination register. Figure 11-5. Single Cycle ALU Operation T1 T2 T3 T4 clkCPU Total Execution Time Register Operands Fetch ALU Operation Execute Result Write Back 11.7 Reset and Interrupt Handling The AVR provides several different interrupt sources. These interrupts and the separate Reset vector each have a separate program vector in the program memory space. All interrupts are assigned individual enable bits, which must be written logic one together with the global interrupt enable bit in the Status register in order to enable the interrupt. Depending on the program counter value, interrupts may be automatically disabled when Boot Lock bits BLB02 or BLB12 are programmed. This feature improves software security. The lowest addresses in the program memory space are by default defined as the Reset and interrupt vectors. They have determined priority levels: The lower the address the higher is the priority level. RESET has the highest priority, and next is INT0 – the External Interrupt Request 0. The interrupt vectors can be moved to the start of the boot Flash section by setting the IVSEL bit in the MCU Control Register (MCUCR). The Reset vector can be moved to the start of the boot Flash section by programming the BOOTRST Fuse. When an interrupt occurs, the global interrupt enable I-bit is cleared and all interrupts are disabled. The user software can write logic one to the I-bit to enable nested interrupts. All enabled interrupts can then interrupt the current interrupt routine. The I-bit is automatically set when a return from interrupt instruction – RETI – is executed. There are basically two types of interrupts: The first type is triggered by an event that sets the interrupt flag. For these interrupts, the program counter is vectored to the actual interrupt vector in order to execute the interrupt handling routine, and © 2018 Microchip Technology Inc. Datasheet Complete DS40002011A-page 36 ATmega48PA/88PA/168PA AVR CPU Core hardware clears the corresponding interrupt flag. Interrupt flags can be cleared by writing a logic one to the flag bit position(s) to be cleared. If an interrupt condition occurs while the corresponding interrupt enable bit is cleared, the interrupt flag will be set and remembered until the interrupt is enabled, or the flag is cleared by software. Similarly, if one or more interrupt conditions occur while the global interrupt enable bit is cleared, the corresponding interrupt flag(s) will be set and remembered until the global interrupt enable bit is set and will then be executed by order of priority. The second type of interrupts will trigger as long as the interrupt condition is present. These interrupts do not necessarily have interrupt flags. If the interrupt condition disappears before the interrupt is enabled, the interrupt will not be triggered. When the AVR exits from an interrupt, it will always return to the main program and execute one more instruction before any pending interrupt is served. The Status register is not automatically stored when entering an interrupt routine, nor restored when returning from an interrupt routine. This must be handled by software. When using the CLI instruction to disable interrupts, the interrupts will be immediately disabled. No interrupt will be executed after the CLI instruction, even if it occurs simultaneously with the CLI instruction. The following example shows how this can be used to avoid interrupts during the timed EEPROM write sequence. Assembly Code Example(1) in r16, SREG ; store SREG value cli ; disable interrupts during timed sequence sbi EECR, EEMPE ; start EEPROM write sbi EECR, EEPE out SREG, r16 ; restore SREG value (I-bit) C Code Example(1) char cSREG; cSREG = SREG; /* store SREG value */ /* disable interrupts during timed sequence */ _CLI(); EECR |= (1
ATMEGA168PA-PU 价格&库存

很抱歉,暂时无法提供与“ATMEGA168PA-PU”相匹配的价格&库存,您可以联系我们找货

免费人工找货