0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ATMEGA328PB-AU

ATMEGA328PB-AU

  • 厂商:

    ACTEL(微芯科技)

  • 封装:

    TQFP32_7X7MM

  • 描述:

    2x8KB 1.8~5.5V

  • 数据手册
  • 价格&库存
ATMEGA328PB-AU 数据手册
ATmega328PB AVR® Microcontroller with Core Independent Peripherals and PicoPower® Technology Introduction ® ® The picoPower ATmega328PB is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATmega328PB achieves throughputs close to 1 MIPS per MHz. This empowers system designers to optimize the device for power consumption versus processing speed. Features High Performance, Low-Power AVR® 8-bit Microcontroller Family • Advanced RISC Architecture – 131 Powerful Instructions – Most Single Clock Cycle Execution – 32 x 8 General Purpose Working Registers – Fully Static Operation – Up to 20 MIPS Throughput at 20 MHz – On-Chip 2-Cycle Multiplier • High Endurance Nonvolatile Memory Segments – 32 KB of In-System Self-Programmable Flash program memory – 1 KB EEPROM – 2 KB Internal SRAM – Write/Erase Cycles: 10,000 Flash/100,000 EEPROM – Optional Boot Code Section with Independent Lock Bits • In-System Programming by On-chip Boot Program • True Read-While-Write Operation • – Programming Lock for Software Security Peripheral Features – Peripheral Touch Controller (PTC) • Capacitive Touch Buttons, Sliders, and Wheels • 24 Self-Cap Channels and 144 Mutual Cap Channels – Two 8-bit Timer/Counters with Separate Prescaler and Compare Mode – Three 16-bit Timer/Counters with Separate Prescaler, Compare Mode, and Capture Mode – Real-Time Counter with Separate Oscillator – Ten PWM Channels – 8-channel 10-bit ADC © 2018 Microchip Technology Inc. Datasheet Complete DS40001906C-page 1 ATmega328PB • – Two Programmable Serial USARTs – Two Master/Slave SPI Serial Interfaces – Two Byte-Oriented Two-Wire Serial Interfaces (Philips I2C Compatible) – Programmable Watchdog Timer with Separate On-chip Oscillator – On-Chip Analog Comparator – Interrupt and Wake-Up on Pin Change Special Microcontroller Features – Power-On Reset and Programmable Brown-Out Detection – – – • • • • • Internal 8 MHz Calibrated Oscillator External and Internal Interrupt Sources Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby, and Extended Standby – Clock Failure Detection Mechanism and Switch to Internal 8 MHz RC Oscillator in case of Failure – Individual Serial Number to Represent a Unique ID I/O and Packages – 27 Programmable I/O Lines – 32-pin TQFP and 32-pin QFN /MLF Operating Voltage: – 1.8 - 5.5V Temperature Range: – -40°C to 105°C Speed Grade: – 0 - 4 MHz @ 1.8 - 5.5V – 0 - 10 MHz @ 2.7 - 5.5V – 0 - 20 MHz @ 4.5 - 5.5V Power Consumption at 1 MHz, 1.8V, 25°C – Active Mode: 0.24 mA – Power-Down Mode: 0.2 μA – Power-Save Mode: 1.3 μA (Including 32 kHz RTC) © 2018 Microchip Technology Inc. Datasheet Complete DS40001906C-page 2 Table of Contents Introduction......................................................................................................................1 Features.......................................................................................................................... 1 1. Description...............................................................................................................10 2. Configuration Summary........................................................................................... 11 3. Ordering Information................................................................................................12 4. Block Diagram......................................................................................................... 13 5. Pin Configurations................................................................................................... 14 5.1. Pin Descriptions......................................................................................................................... 15 6. I/O Multiplexing........................................................................................................18 7. Resources............................................................................................................... 20 8. About Code Examples.............................................................................................21 9. AVR CPU Core........................................................................................................ 22 9.1. 9.2. 9.3. 9.4. 9.5. 9.6. 9.7. Overview.................................................................................................................................... 22 ALU – Arithmetic Logic Unit....................................................................................................... 23 Status Register...........................................................................................................................23 General Purpose Register File................................................................................................... 26 Stack Pointer.............................................................................................................................. 27 Instruction Execution Timing...................................................................................................... 29 Reset and Interrupt Handling..................................................................................................... 30 10. AVR Memories.........................................................................................................33 10.1. 10.2. 10.3. 10.4. 10.5. Overview.................................................................................................................................... 33 In-System Reprogrammable Flash Program Memory................................................................33 SRAM Data Memory.................................................................................................................. 34 EEPROM Data Memory............................................................................................................. 35 I/O Memory.................................................................................................................................36 10.6. Register Description................................................................................................................... 37 11. System Clock and Clock Options............................................................................ 46 11.1. 11.2. 11.3. 11.4. 11.5. 11.6. 11.7. Clock Systems and Their Distribution........................................................................................ 46 Clock Sources............................................................................................................................ 47 Low-Power Crystal Oscillator..................................................................................................... 49 Low Frequency Crystal Oscillator...............................................................................................50 Calibrated Internal RC Oscillator................................................................................................52 128 kHz Internal Oscillator......................................................................................................... 53 External Clock............................................................................................................................ 54 © 2018 Microchip Technology Inc. Datasheet Complete DS40001906C-page 3 ATmega328PB 11.8. 11.9. 11.10. 11.11. Clock Output Buffer.................................................................................................................... 54 Timer/Counter Oscillator.............................................................................................................55 System Clock Prescaler............................................................................................................. 55 Register Description................................................................................................................... 55 12. CFD - Clock Failure Detection mechanism............................................................. 59 12.1. 12.2. 12.3. 12.4. 12.5. Overview.................................................................................................................................... 59 Features..................................................................................................................................... 59 Operations..................................................................................................................................59 Timing Diagram.......................................................................................................................... 61 Register Description................................................................................................................... 61 13. Power Management and Sleep Modes................................................................... 63 13.1. Overview.................................................................................................................................... 63 13.2. Sleep Modes.............................................................................................................................. 63 13.3. BOD Disable...............................................................................................................................64 13.4. Idle Mode....................................................................................................................................64 13.5. ADC Noise Reduction Mode...................................................................................................... 64 13.6. Power-Down Mode.....................................................................................................................65 13.7. Power-Save Mode......................................................................................................................65 13.8. Standby Mode............................................................................................................................ 66 13.9. Extended Standby Mode............................................................................................................ 66 13.10. Power Reduction Registers........................................................................................................66 13.11. Minimizing Power Consumption................................................................................................. 66 13.12. Register Description...................................................................................................................68 14. System Control and Reset.......................................................................................74 14.1. 14.2. 14.3. 14.4. 14.5. 14.6. 14.7. 14.8. 14.9. Resetting the AVR...................................................................................................................... 74 Reset Sources............................................................................................................................74 Power-on Reset..........................................................................................................................75 External Reset............................................................................................................................76 Brown-out Detection...................................................................................................................76 Watchdog System Reset............................................................................................................ 77 Internal Voltage Reference.........................................................................................................77 Watchdog Timer......................................................................................................................... 78 Register Description................................................................................................................... 80 15. INT - Interrupts........................................................................................................ 84 15.1. Interrupt Vectors in ATmega328PB............................................................................................ 84 15.2. Register Description................................................................................................................... 85 16. EXTINT - External Interrupts................................................................................... 88 16.1. Pin Change Interrupt Timing.......................................................................................................88 16.2. Register Description................................................................................................................... 89 17. I/O-Ports.................................................................................................................. 99 17.1. Overview.................................................................................................................................... 99 17.2. Ports as General Digital I/O......................................................................................................100 © 2018 Microchip Technology Inc. Datasheet Complete DS40001906C-page 4 ATmega328PB 17.3. Alternate Port Functions...........................................................................................................103 17.4. Register Description................................................................................................................. 118 18. TC0 - 8-bit Timer/Counter0 with PWM...................................................................133 18.1. 18.2. 18.3. 18.4. 18.5. 18.6. 18.7. 18.8. 18.9. Features................................................................................................................................... 133 Overview.................................................................................................................................. 133 Timer/Counter Clock Sources.................................................................................................. 135 Counter Unit............................................................................................................................. 135 Output Compare Unit............................................................................................................... 136 Compare Match Output Unit.....................................................................................................138 Modes of Operation..................................................................................................................140 Timer/Counter Timing Diagrams.............................................................................................. 144 Register Description................................................................................................................. 146 19. TC1, 3, 4 - 16-bit Timer/Counter1, 3, 4 with PWM.................................................158 19.1. Features................................................................................................................................... 158 19.2. Overview.................................................................................................................................. 158 19.3. Accessing 16-bit Timer/Counter Registers............................................................................... 159 19.4. Timer/Counter Clock Sources.................................................................................................. 162 19.5. Counter Unit............................................................................................................................. 162 19.6. Input Capture Unit.................................................................................................................... 163 19.7. Compare Match Output Unit.....................................................................................................165 19.8. Output Compare Units..............................................................................................................166 19.9. Modes of Operation..................................................................................................................168 19.10. Timer/Counter Timing Diagrams.............................................................................................. 175 19.11. Register Description................................................................................................................. 177 20. Timer/Counter 0, 1, 3, 4 Prescalers.......................................................................214 20.1. 20.2. 20.3. 20.4. Internal Clock Source............................................................................................................... 214 Prescaler Reset........................................................................................................................214 External Clock Source..............................................................................................................214 Register Description................................................................................................................. 216 21. TC2 - 8-bit Timer/Counter2 with PWM and Asynchronous Operation................... 218 21.1. Features................................................................................................................................... 218 21.2. Overview.................................................................................................................................. 218 21.3. Timer/Counter Clock Sources.................................................................................................. 220 21.4. Counter Unit............................................................................................................................. 220 21.5. Output Compare Unit............................................................................................................... 221 21.6. Compare Match Output Unit.....................................................................................................223 21.7. Modes of Operation..................................................................................................................224 21.8. Timer/Counter Timing Diagrams.............................................................................................. 228 21.9. Asynchronous Operation of Timer/Counter2............................................................................ 229 21.10. Timer/Counter Prescaler.......................................................................................................... 231 21.11. Register Description................................................................................................................. 231 22. OCM - Output Compare Modulator....................................................................... 246 22.1. Overview.................................................................................................................................. 246 © 2018 Microchip Technology Inc. Datasheet Complete DS40001906C-page 5 ATmega328PB 22.2. Description............................................................................................................................... 246 23. SPI – Serial Peripheral Interface........................................................................... 248 23.1. 23.2. 23.3. 23.4. 23.5. Features................................................................................................................................... 248 Overview.................................................................................................................................. 248 SS Pin Functionality................................................................................................................. 252 Data Modes.............................................................................................................................. 252 Register Description................................................................................................................. 253 24. USART - Universal Synchronous Asynchronous Receiver Transceiver................262 24.1. Features................................................................................................................................... 262 24.2. Overview.................................................................................................................................. 262 24.3. Block Diagram.......................................................................................................................... 262 24.4. Clock Generation......................................................................................................................263 24.5. Frame Formats.........................................................................................................................266 24.6. USART Initialization................................................................................................................. 267 24.7. Data Transmission – The USART Transmitter......................................................................... 268 24.8. Data Reception – The USART Receiver.................................................................................. 270 24.9. Asynchronous Data Reception.................................................................................................273 24.10. Multi-Processor Communication Mode.................................................................................... 277 24.11. Examples of Baud Rate Setting............................................................................................... 278 24.12. Register Description.................................................................................................................281 25. USARTSPI - USART in SPI Mode.........................................................................291 25.1. 25.2. 25.3. 25.4. 25.5. 25.6. 25.7. 25.8. Features................................................................................................................................... 291 Overview.................................................................................................................................. 291 Clock Generation......................................................................................................................291 SPI Data Modes and Timing.....................................................................................................292 Frame Formats.........................................................................................................................292 Data Transfer............................................................................................................................294 AVR USART MSPIM vs. AVR SPI............................................................................................295 Register Description................................................................................................................. 296 26. TWI - Two-Wire Serial Interface............................................................................ 297 26.1. 26.2. 26.3. 26.4. 26.5. 26.6. 26.7. 26.8. 26.9. Features................................................................................................................................... 297 Two-Wire Serial Interface Bus Definition..................................................................................297 Data Transfer and Frame Format.............................................................................................298 Multi-Master Bus Systems, Arbitration, and Synchronization...................................................301 Overview of the TWI Module.................................................................................................... 303 Using the TWI...........................................................................................................................305 Transmission Modes................................................................................................................ 308 Multi-Master Systems and Arbitration...................................................................................... 326 Register Description................................................................................................................. 327 27. AC - Analog Comparator....................................................................................... 335 27.1. Overview.................................................................................................................................. 335 27.2. Analog Comparator Multiplexed Input...................................................................................... 335 27.3. Register Description................................................................................................................. 336 © 2018 Microchip Technology Inc. Datasheet Complete DS40001906C-page 6 ATmega328PB 28. ADC - Analog-to-Digital Converter........................................................................ 340 28.1. 28.2. 28.3. 28.4. 28.5. 28.6. 28.7. 28.8. 28.9. Features................................................................................................................................... 340 Overview.................................................................................................................................. 340 Starting a Conversion...............................................................................................................342 Prescaling and Conversion Timing...........................................................................................343 Changing Channel or Reference Selection.............................................................................. 345 ADC Noise Canceler................................................................................................................ 347 ADC Conversion Result........................................................................................................... 350 Temperature Measurement...................................................................................................... 351 Register Description................................................................................................................. 351 29. PTC - Peripheral Touch Controller.........................................................................360 29.1. 29.2. 29.3. 29.4. 29.5. 29.6. Features................................................................................................................................... 360 Overview.................................................................................................................................. 360 Block Diagram.......................................................................................................................... 361 Signal Description.................................................................................................................... 362 System Dependencies............................................................................................................. 362 Functional Description..............................................................................................................363 30. debugWIRE On-chip Debug System..................................................................... 364 30.1. 30.2. 30.3. 30.4. 30.5. 30.6. Features................................................................................................................................... 364 Overview.................................................................................................................................. 364 Physical Interface..................................................................................................................... 364 Software Breakpoints............................................................................................................... 365 Limitations of debugWIRE........................................................................................................365 Register Description................................................................................................................. 365 31. BTLDR - Boot Loader Support – Read-While-Write Self-Programming................ 367 31.1. 31.2. 31.3. 31.4. 31.5. 31.6. 31.7. 31.8. 31.9. Features................................................................................................................................... 367 Overview.................................................................................................................................. 367 Application and Boot Loader Flash Sections............................................................................367 Read-While-Write and No Read-While-Write Flash Sections...................................................368 Entering the Boot Loader Program...........................................................................................370 Boot Loader Lock Bits.............................................................................................................. 371 Addressing the Flash During Self-Programming...................................................................... 372 Self-Programming the Flash.....................................................................................................373 Register Description................................................................................................................. 381 32. MEMPROG - Memory Programming.....................................................................384 32.1. 32.2. 32.3. 32.4. 32.5. 32.6. 32.7. 32.8. Program And Data Memory Lock Bits...................................................................................... 384 Fuse Bits.................................................................................................................................. 385 Signature Bytes........................................................................................................................ 387 Calibration Byte........................................................................................................................ 388 Serial Number.......................................................................................................................... 388 Page Size................................................................................................................................. 390 Parallel Programming Parameters, Pin Mapping, and Commands..........................................390 Parallel Programming...............................................................................................................392 © 2018 Microchip Technology Inc. Datasheet Complete DS40001906C-page 7 ATmega328PB 32.9. Serial Downloading.................................................................................................................. 399 33. Electrical Characteristics....................................................................................... 405 33.1. Absolute Maximum Ratings......................................................................................................405 33.2. DC Characteristics................................................................................................................... 405 33.3. Power Consumption................................................................................................................. 407 33.4. Speed Grades.......................................................................................................................... 408 33.5. Clock Characteristics................................................................................................................409 33.6. System and Reset Characteristics........................................................................................... 410 33.7. SPI Timing Characteristics....................................................................................................... 411 33.8. Two-Wire Serial Interface Characteristics................................................................................ 412 33.9. ADC Characteristics................................................................................................................. 414 33.10. Parallel Programming Characteristics......................................................................................415 34. Typical Characteristics...........................................................................................418 34.1. Active Supply Current...............................................................................................................418 34.2. Idle Supply Current...................................................................................................................421 34.3. ATmega328PB Supply Current of I/O Modules........................................................................423 34.4. Power-Down Supply Current....................................................................................................424 34.5. Pin Pull-Up............................................................................................................................... 425 34.6. Pin Driver Strength................................................................................................................... 428 34.7. Pin Threshold and Hysteresis.................................................................................................. 430 34.8. BOD Threshold.........................................................................................................................433 34.9. Analog Comparator Offset........................................................................................................436 34.10. Internal Oscillator Speed..........................................................................................................437 34.11. Current Consumption of Peripheral Units.................................................................................440 34.12. Current Consumption in Reset and Reset Pulse Width........................................................... 443 35. Register Summary.................................................................................................445 36. Instruction Set Summary....................................................................................... 449 37. Packaging Information...........................................................................................454 37.1. 32A........................................................................................................................................... 454 37.2. 32-Pin VQFN............................................................................................................................ 455 38. Errata.....................................................................................................................456 38.1. 38.2. 38.3. 38.4. Rev. A.......................................................................................................................................456 Rev. B.......................................................................................................................................456 Rev. C - D.................................................................................................................................457 Rev. A - D................................................................................................................................. 457 39. Revision History.....................................................................................................458 The Microchip Web Site.............................................................................................. 460 Customer Change Notification Service........................................................................460 Customer Support....................................................................................................... 460 © 2018 Microchip Technology Inc. Datasheet Complete DS40001906C-page 8 ATmega328PB Microchip Devices Code Protection Feature............................................................... 460 Legal Notice.................................................................................................................461 Trademarks................................................................................................................. 461 Quality Management System Certified by DNV...........................................................462 Worldwide Sales and Service......................................................................................463 © 2018 Microchip Technology Inc. Datasheet Complete DS40001906C-page 9 ATmega328PB Description 1. Description The ATmega328PB is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATmega328PB achieves throughputs close to 1 MIPS per MHz. This empowers system designer to optimize the device for power consumption versus processing speed. The core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in a single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers. The ATmega328PB provides the following features: 32 KB of In-System Programmable Flash with ReadWhile-Write capabilities, 1 KB EEPROM, 2 KB SRAM, 27 general purpose I/O lines, 32 general purpose working registers, five flexible Timer/Counters with compare modes, internal and external interrupts, two serial programmable USART, two byte-oriented two-wire Serial Interface (I2C), two SPI serial ports, an 8channel 10-bit ADC in TQFP and QFN/MLF package, a programmable Watchdog Timer with internal Oscillator, Clock failure detection mechanism, and six software selectable power saving modes. The Idle mode stops the CPU while allowing the SRAM, Timer/Counters, USART, two-wire Serial Interface, SPI port, and interrupt system to continue functioning. PTC with enabling up to 24 self-cap and 144 mutualcap sensors. The Power-Down mode saves the register contents but freezes the Oscillator, disabling all other chip functions until the next interrupt or hardware reset. In Power-Save mode, the asynchronous timer continues to run, allowing the user to maintain a timer base while the rest of the device is sleeping. Also ability to run PTC in Power-Save mode/wake-up on touch and Dynamic ON/OFF of PTC analog and digital portion. The ADC Noise Reduction mode stops the CPU and all I/O modules except asynchronous timer, PTC, and ADC to minimize switching noise during ADC conversions. In Standby mode, the crystal/ resonator Oscillator is running while the rest of the device is sleeping. This allows very fast start-up combined with low power consumption. The device is manufactured using high-density non-volatile memory technology. The On-chip ISP Flash allows the program memory to be reprogrammed In-System through an SPI serial interface, by a conventional nonvolatile memory programmer or by an On-chip Boot program running on the AVR core. The Boot program can use any interface to download the application program in the Application Flash memory. Software in the Boot Flash section will continue to run while the Application Flash section is updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip, the ATmega328PB is a powerful microcontroller that provides a highly flexible and cost-effective solution to many embedded control applications. The ATmega328PB is supported by a full suite of program and system development tools including C Compilers, Macro Assemblers, Program Debugger/Simulators, In-Circuit Emulators, and Evaluation kits. © 2018 Microchip Technology Inc. Datasheet Complete DS40001906C-page 10 ATmega328PB Configuration Summary 2. Configuration Summary Features ATmega328PB Pin count 32 Flash (KB) 32 SRAM (KB) 2 EEPROM (KB) 1 General Purpose I/O pins 27 SPI 2 TWI (I2C) 2 USART 2 ADC 10-bit 15 ksps ADC channels 8 AC propagation delay 400 ns (Typical) 8-bit Timer/Counters 2 16-bit Timer/Counters 3 PWM channels 10 PTC Available Clock Failure Detector (CFD) Available Output Compare Modulator (OCM1C2) Available © 2018 Microchip Technology Inc. Datasheet Complete DS40001906C-page 11 ATmega328PB Ordering Information 3. Ordering Information Speed [MHz] Power Supply [V] Ordering Code(2) Package(1) Operational Range 20 1.8 - 5.5 ATmega328PB-AU ATmega328PB-AUR(3) ATmega328PB-MU ATmega328PB-MUR(3) 32A 32A 32MS1 32MS1 Industrial (-40°C to 85°C) ATmega328PB-AN ATmega328PB-ANR(3) ATmega328PB-MN ATmega328PB-MNR(3) 32A 32A 32MS1 32MS1 Industrial (-40°C to 105°C) Note:  1. This device can also be supplied in wafer form. Contact your local Microchip sales office for detailed ordering information and minimum quantities. 2. Pb-free packaging complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green. 3. Tape & Reel. Package Type 32A 32-lead, Thin (1.0 mm) Plastic Quad Flat Package (TQFP) 32MS1 32-pad, 5.0x5.0x0.9 mm body, Lead Pitch 0.50 mm, Very-thin Fine pitch, Quad Flat No Lead Package (VQFN) © 2018 Microchip Technology Inc. Datasheet Complete DS40001906C-page 12 ATmega328PB Block Diagram 4. Block Diagram Figure 4-1. Block Diagram SRAM debugWire PARPROG CPU OCD SPIPROG Clock generation XTAL1 / TOSC1 XTAL2 / TOSC2 32.768kHz XOSC 8MHz Calib RC External clock 16MHz LP XOSC 128kHz int osc Crystal failure detection VCC Power Supervision POR/BOD & RESET RESET GND NVM programming Power management and clock control Watchdog Timer PE[3:2], PC[5:0] AREF ADC[7:0] AREF ADC PB[5:0], PE[1:0], PD[7:0] PB[5:0], PE[1:0], PD[7:0], PE[3:2], PC[5:0] X[15:0] Y[23:0] PTC PE[3:0], PD[7:0], PC[6:0], PB[7:0] PD3, PD2 PCINT[27:0] INT[1:0] PB1, PB2 PD5 PB0 OC1A/B T1 ICP1 PB3 PD3 OC2A OC2B PD0, PD2 PE3 PE2 OC3A/B T3 ICP3 PD1, PD2 PE1 PE0 OC4A/B T4 ICP4 © 2018 Microchip Technology Inc. FLASH D A T A B U S EEPROM EEPROMIF I/O PORTS I N / O U T GPIOR[2:0] TC 0 D A T A B U S (8-bit) SPI 0 AC Internal Reference EXTINT USART 0 RxD0 TxD0 XCK0 PD0 PD1 PD4 TC 1 USART 1 RxD1 TxD1 XCK1 PB4 PB3 PB5 TC 2 TWI 0 SDA0 SCL0 PC4 PC5 TC 3 TWI 1 SDA1 SCL1 PE0 PE1 TC 4 SPI 1 MISO1 MOSI1 SCK1 SS1 PC0 PE3 PC1 PE2 (16-bit) PB[7:0] PC[6 :0] PD[7:0] PE[3:0] T0 OC0A OC0B PD4 PD6 PD5 MISO0 MOSI0 SCK0 SS0 PB4 PB3 PB5 PB2 AIN0 AIN1 ACO PD6 PD7 PE0 (8-bit async) (16-bit) (16-bit) Datasheet Complete DS40001906C-page 13 ATmega328PB Pin Configurations Pin Configurations PC6 (RESET) PC5 (ADC5/PTCY/SCL0) PC4 (ADC4/PTCY/SDA0) PC3 (ADC3/PTCY) PC2 (ADC2/PTCY) 29 28 27 26 25 Crystal/CLK PD0 (PTCXY/OC3A/RXD0) Analog 30 Digital PD1 (PTCXY/OC4A/TXD0) Programming/debug 31 Ground PD2 (PTCXY/INT0/OC3B/OC4B) Power 32 Figure 5-1. 32 TQFP Pinout ATmega328PB GND GND 5 20 AREF (SCL1/T4/PTCXY) PE1 6 19 PE2 (ADC6/PTCY/ICP3/SS1) (XTAL1/TOSC1) PB6 7 18 AVCC (XTAL2/TOSC2) PB7 8 17 PB5 (PTCXY/XCK1/SCK0) © 2018 Microchip Technology Inc. 16 21 (MISO0/RXD1/PTCXY) PB4 4 15 VCC (MOSI0/TXD1/OC2A/PTCXY) PB3 PE3 (ADC7/PTCY/T3/MOSI1) 14 22 (SS0/OC1B/PTCXY) PB2 3 13 (SDA1/ICP4/ACO/PTCXY) PE0 (OC1A/PTCXY) PB1 PC0 (ADC0/PTCY/MISO1) 12 23 (ICP1/CLKO/PTCXY) PB0 2 11 (XCK0/T0/PTCXY) PD4 (PTCXY/AIN1) PD7 PC1 (ADC1/PTCY/SCK1) 10 24 (OC0A/PTCXY/AIN0) PD6 1 9 (OC2B/INT1/PTCXY) PD3 (OC0B/T1/PTCXY) PD5 5. Datasheet Complete DS40001906C-page 14 ATmega328PB Pin Configurations PD2 (PTCXY/INT0/OC3B/OC4B) PD1 (PTCXY/OC4A/TXD0) PD0 (PTCXY/OC3A/RXD0) PC6 (RESET) PC5 (ADC5/PTCY/SCL0) PC4 (ADC4/PTCY/SDA0) PC3 (ADC3/PTCY) PC2 (ADC2/PTCY) 32 31 30 29 28 27 26 25 Figure 5-2. 32 VQFN Pinout ATmega328PB GND 5 20 AREF (SCL1/T4/PTCXY) PE1 6 19 PE2 (ADC6/PTCY/ICP3/SS1) (XTAL1/TOSC1) PB6 7 18 AVCC (XTAL2/TOSC2) PB7 8 17 PB5 (PTCXY/XCK1/SCK0) 16 GND (MISO0/RXD1/PTCXY) PB4 21 15 4 (MOSI0/TXD1/OC2A/PTCXY) PB3 VCC 14 PE3 (ADC7/PTCY/T3/MOSI1) (SS0/OC1B/PTCXY) PB2 22 13 3 (OC1A/PTCXY) PB1 (SDA1/ICP4/ACO/PTCXY) PE0 12 PC0 (ADC0/PTCY/MISO1) (ICP1/CLKO/PTCXY) PB0 23 11 2 (PTCXY/AIN1) PD7 (XCK0/T0/PTCXY) PD4 10 PC1 (ADC1/PTCY/SCK1) (OC0A/PTCXY/AIN0) PD6 24 9 1 (OC0B/T1/PTCXY) PD5 (OC2B/INT1/PTCXY) PD3 Bottom pad should be soldered to ground 5.1 Pin Descriptions 5.1.1 VCC Digital supply voltage pin. 5.1.2 GND Ground. © 2018 Microchip Technology Inc. Datasheet Complete DS40001906C-page 15 ATmega328PB Pin Configurations 5.1.3 Port B (PB[7:0]) XTAL1/XTAL2/TOSC1/TOSC2 Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each pin). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated during a reset condition even if the clock is not running. Depending on the clock selection fuse settings, PB6 can be used as input to the inverting Oscillator amplifier and input to the internal clock operating circuit. Depending on the clock selection fuse settings, PB7 can be used as output from the inverting Oscillator amplifier. If the Internal Calibrated RC Oscillator is used as chip clock source, PB[7:6] is used as TOSC[2:1] input for the Asynchronous Timer/Counter2 if the AS2 bit in ASSR is set. 5.1.4 Port C (PC[5:0]) Port C is a 7-bit bi-directional I/O port with internal pull-up resistors (selected for each pin). The PC[5:0] output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up resistors are activated. The Port C pins are tri-stated during a reset condition even if the clock is not running. 5.1.5 PC6/RESET If the RSTDISBL Fuse is programmed, PC6 is used as an I/O pin. Note that the electrical characteristics of PC6 differ from those of the other pins of Port C. If the RSTDISBL Fuse is unprogrammed, PC6 is used as a Reset input. A low level on this pin for longer than the minimum pulse length will generate a Reset, even if the clock is not running. Shorter pulses are not guaranteed to generate a Reset. The various special features of Port C are elaborated in the Alternate Functions of Port C section. 5.1.6 Port D (PD[7:0]) Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each pin). The Port D output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri-stated during a reset condition even if the clock is not running. 5.1.7 Port E (PE[3:0]) Port E is a 4-bit bi-directional I/O port with internal pull-up resistors (selected for each pin). The Port E output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port E pins that are externally pulled low will source current if the pull-up resistors are activated. The Port E pins are tri-stated during a reset condition even if the clock is not running. 5.1.8 AVCC AVCC is the supply voltage pin for the A/D Converter, PC[3:0], and PE[3:2]. It should be externally connected to VCC, even if the ADC is not used. If the ADC is used, it should be connected to VCC through a low-pass filter. Note that PC[6:4] use digital supply voltage, VCC. 5.1.9 AREF AREF is the analog reference pin for the A/D Converter. © 2018 Microchip Technology Inc. Datasheet Complete DS40001906C-page 16 ATmega328PB Pin Configurations 5.1.10 ADC[7:6] In the TQFP and VFQFN package, ADC[7:6] serve as analog inputs to the A/D converter. These pins are powered by the analog supply and serve as 10-bit ADC channels. © 2018 Microchip Technology Inc. Datasheet Complete DS40001906C-page 17 ATmega328PB I/O Multiplexing 6. I/O Multiplexing Each pin is by default controlled by the PORT as a general purpose I/O and alternatively, it can be assigned to one of the peripheral functions. The following table describes the peripheral signals multiplexed to the PORT I/O pins. Table 6-1. PORT Function Multiplexing No PAD EXTINT PCINT 1 PD[3] INT1 2 ADC/AC PTC X PTC Y PCINT19 X3 Y11 OC2B PD[4] PCINT20 X4 Y12 T0 3 PE[0] PCINT24 X8 Y16 ICP4 SDA1 4 VCC 5 GND 6 PE[1] PCINT25 X9 Y17 T4 SCL1 7 PB[6] PCINT6 XTAL1/TOSC1 8 PB[7] PCINT7 XTAL2/TOSC2 9 PD[5] PCINT21 10 PD[6] PCINT22 11 PD[7] PCINT23 12 PB[0] 13 ACO OSC T/C X5 Y13 OC0B / T1 AIN0 X6 Y14 OC0A AIN1 X7 Y15 PCINT0 X10 Y18 PB[1] PCINT1 X11 Y19 OC1A 14 PB[2] PCINT2 X12 Y20 OC1B 15 PB[3] PCINT3 X13 Y21 OC2A 16 PB[4] PCINT4 X14 17 PB[5] PCINT5 X15 18 AVCC 19 PE[2] 20 AREF 21 GND 22 CLKO USART I2C SPI XCK0 ICP1 SS0 TXD1 MOSI0 Y22 RXD1 MISO0 Y23 XCK1 SCK0 PCINT26 ADC6 Y6 ICP3 SS1 PE[3] PCINT27 ADC7 Y7 T3 MOSI1 23 PC[0] PCINT8 ADC0 Y0 MISO1 24 PC[1] PCINT9 ADC1 Y1 SCK1 25 PC[2] PCINT10 ADC2 Y2 26 PC[3] PCINT11 ADC3 Y3 27 PC[4] PCINT12 ADC4 Y4 SDA0 28 PC[5] PCINT13 ADC5 Y5 SCL0 29 PC[6]/RESET PCINT14 30 PD[0] PCINT16 © 2018 Microchip Technology Inc. X0 Y8 Datasheet Complete OC3A RXD0 DS40001906C-page 18 ATmega328PB I/O Multiplexing No PAD EXTINT 31 PD[1] 32 PD[2] INT0 PCINT PTC X PTC Y PCINT17 X1 PCINT18 X2 © 2018 Microchip Technology Inc. ADC/AC OSC T/C USART Y9 OC4A TXD0 Y10 OC3B / OC4B Datasheet Complete I2C SPI DS40001906C-page 19 ATmega328PB Resources 7. Resources A comprehensive set of development tools, application notes, and datasheets are available for download on http://www.microchip.com/design-centers/8-bit/microchip-avr-mcus. © 2018 Microchip Technology Inc. Datasheet Complete DS40001906C-page 20 ATmega328PB About Code Examples 8. About Code Examples This documentation contains simple code examples that briefly show how to use various parts of the device. These code examples assume that the part specific header file is included before compilation. Be aware that not all C compiler vendors include bit definitions in the header files and interrupt handling in C is compiler dependent. Confirm with the C compiler documentation for more details. For I/O Registers located in extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI” instructions must be replaced with instructions that allow access to extended I/O. Typically “LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and “CBR”. © 2018 Microchip Technology Inc. Datasheet Complete DS40001906C-page 21 ATmega328PB AVR CPU Core 9. AVR CPU Core 9.1 Overview This section discusses the AVR core architecture in general. The main function of the CPU core is to ensure correct program execution. The CPU must, therefore, be able to access memories, perform calculations, control peripherals, and handle interrupts. Figure 9-1. Block Diagram of the AVR Architecture Register file R31 (ZH) R29 (YH) R27 (XH) R25 R23 R21 R19 R17 R15 R13 R11 R9 R7 R5 R3 R1 R30 (ZL) R28 (YL) R26 (XL) R24 R22 R20 R18 R16 R14 R12 R10 R8 R6 R4 R2 R0 Program counter Flash program memory Instruction register Instruction decode Data memory Stack pointer Status register ALU In order to maximize performance and parallelism, the AVR uses a Harvard architecture – with separate memories and buses for program and data. Instructions in the program memory are executed with a single level pipelining. While one instruction is being executed, the next instruction is pre-fetched from the program memory. This concept enables instructions to be executed in every clock cycle. The program memory is In-System Reprogrammable Flash memory. The fast-access register file contains 32 x 8-bit general purpose working registers with a single clock cycle access time. This allows single-cycle Arithmetic Logic Unit (ALU) operation. In a typical ALU operation, two operands are output from the register file, the operation is executed, and the result is stored back in the register file – in one clock cycle. Six of the 32 registers can be used as three 16-bit indirect address register pointers for data space addressing – enabling efficient address calculations. One of these address pointers can be used as an © 2018 Microchip Technology Inc. Datasheet Complete DS40001906C-page 22 ATmega328PB AVR CPU Core address pointer for lookup tables in Flash program memory. These added function registers are the 16-bit X-, Y-, and Z-register, described later in this section. The ALU supports arithmetic and logic operations between registers or between a constant and a register. Single register operations can also be executed in the ALU. After an arithmetic operation, the Status register is updated to reflect information about the result of the operation. Program flow is provided by conditional and unconditional jump and call instructions, able to directly address the whole address space. Most AVR instructions have a single 16-bit word format. Every program memory address contains a 16- or 32-bit instruction. Program Flash memory space is divided into two sections, the Boot Program section and the Application Program section. Both sections have dedicated Lock bits for write and read/write protection. The SPM instruction that writes into the Application Flash memory section must reside in the Boot Program section. During interrupts and subroutine calls, the return address Program Counter (PC) is stored on the Stack. The Stack is effectively allocated in the general data SRAM, and consequently, the Stack size is only limited by the total SRAM size and the usage of the SRAM. All user programs must initialize the Stack Pointer (SP) in the Reset routine (before subroutines or interrupts are executed). The SP is read/write accessible in the I/O space. The data SRAM can easily be accessed through the five different addressing modes supported in the AVR architecture. The memory spaces in the AVR architecture are all linear and regular memory maps. A flexible interrupt module has its control registers in the I/O space with an additional global interrupt enable bit in the Status register. All interrupts have a separate interrupt vector in the interrupt vector table. The interrupts have priority in accordance with their interrupt vector position. The lower the interrupt vector address, the higher the priority. The I/O memory space contains 64 addresses for CPU peripheral functions as Control registers, SPI, and other I/O functions. The I/O memory can be accessed directly, or as the data space locations following those of the register file, 0x20 - 0x5F. In addition, this device has extended I/O space from 0x60 - 0xFF in SRAM where only the ST/STS/STD and LD/LDS/LDD instructions can be used. 9.2 ALU – Arithmetic Logic Unit The high-performance AVR ALU operates in direct connection with all the 32 general purpose working registers. Within a single clock cycle, arithmetic operations between general purpose registers or between a register and an immediate are executed. The ALU operations are divided into three main categories – arithmetic, logical, and bit-functions. Some implementations of the architecture also provide a powerful multiplier supporting both signed/unsigned multiplication and fractional format. See Instruction Set Summary section for a detailed description. Related Links Instruction Set Summary 9.3 Status Register The Status register contains information about the result of the most recently executed arithmetic instruction. This information can be used for altering program flow in order to perform conditional operations. The Status register is updated after all ALU operations, as specified in the instruction set reference. This will in many cases remove the need for using the dedicated compare instructions, resulting in faster and more compact code. © 2018 Microchip Technology Inc. Datasheet Complete DS40001906C-page 23 ATmega328PB AVR CPU Core The Status register is not automatically stored when entering an interrupt routine and restored when returning from an interrupt. This must be handled by software. © 2018 Microchip Technology Inc. Datasheet Complete DS40001906C-page 24 ATmega328PB AVR CPU Core 9.3.1 Status Register Name:  Offset:  Reset:  Property:  SREG 0x5F 0x00 When addressing as I/O Register: address offset is 0x3F When addressing I/O registers as data space using LD and ST instructions, the provided offset must be used. When using the I/O specific commands IN and OUT, the offset is reduced by 0x20, resulting in an I/O address offset within 0x00 - 0x3F. The device is a complex microcontroller with more peripheral units than can be supported within the 64 locations reserved in Opcode for the IN and OUT instructions. For the extended I/O space from 0x60 in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used. Bit Access Reset 7 6 5 4 3 2 1 0 I T H S V N Z C R/W R/W R/W R/W R/W R/W R/W R/W 0 0 0 0 0 0 0 0 Bit 7 – I Global Interrupt Enable The global interrupt enable bit must be set for the interrupts to be enabled. The individual interrupt enable control is then performed in separate control registers. If the Global Interrupt Enable register is cleared, none of the interrupts are enabled independent of the individual interrupt enable settings. The I-bit is cleared by hardware after an interrupt has occurred, and is set by the RETI instruction to enable subsequent interrupts. The I-bit can also be set and cleared by the application with the SEI and CLI instructions, as described in the instruction set reference. Bit 6 – T Copy Storage The bit copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source or destination for the operated bit. A bit from a register in the register file can be copied into T by the BST instruction, and a bit in T can be copied into a bit in a register in the register file by the BLD instruction. Bit 5 – H Half Carry Flag The half carry flag H indicates a half carry in some arithmetic operations. Half carry flag is useful in BCD arithmetic. See the Instruction Set Description for detailed information. Bit 4 – S Sign Flag, S = N ㊉ V The S-bit is always an exclusive or between the negative flag N and the two’s complement overflow flag V. See the Instruction Set Description for detailed information. Bit 3 – V Two’s Complement Overflow Flag The two’s complement overflow flag V supports two’s complement arithmetic. See the Instruction Set Description for detailed information. Bit 2 – N Negative Flag The negative flag N indicates a negative result in an arithmetic or logic operation. See the Instruction Set Description for detailed information. © 2018 Microchip Technology Inc. Datasheet Complete DS40001906C-page 25 ATmega328PB AVR CPU Core Bit 1 – Z Zero Flag The zero flag Z indicates a zero result in an arithmetic or logic operation. See the Instruction Set Description for detailed information. Bit 0 – C Carry Flag The carry flag C indicates a carry in an arithmetic or logic operation. See the Instruction Set Description for detailed information. 9.4 General Purpose Register File The register file is optimized for the AVR Enhanced RISC instruction set. In order to achieve the required performance and flexibility, the following input/output schemes are supported by the register file: • • • • One 8-bit output operand and one 8-bit result input Two 8-bit output operands and one 8-bit result input Two 8-bit output operands and one 16-bit result input One 16-bit output operand and one 16-bit result input Figure 9-2. AVR CPU General Purpose Working Registers 7 0 Addr. R0 0x00 R1 0x01 R2 0x02 … R13 0x0D General R14 0x0E Purpose R15 0x0F Working R16 0x10 Registers R17 0x11 … R26 0x1A X-register Low Byte R27 0x1B X-register High Byte R28 0x1C Y-register Low Byte R29 0x1D Y-register High Byte R30 0x1E Z-register Low Byte R31 0x1F Z-register High Byte Most of the instructions operating on the register file have direct access to all registers, and most of them are single cycle instructions. As shown in the figure, each register is also assigned a data memory address, mapping them directly into the first 32 locations of the user data space. Although not being physically implemented as SRAM locations, this memory organization provides great flexibility in access of the registers, as the X-, Y-, and Z-pointer registers can be set to index any register in the file. 9.4.1 The X-register, Y-register, and Z-register The registers R26...R31 have some added functions to their general purpose usage. These registers are 16-bit address pointers for indirect addressing of the data space. The three indirect address registers X, Y, and Z are defined as described in the figure. © 2018 Microchip Technology Inc. Datasheet Complete DS40001906C-page 26 ATmega328PB AVR CPU Core Figure 9-3. The X-, Y-, and Z-registers 15 X-register 0 7 R26 YH YL 0 7 R28 ZH ZL 0 7 R31 0 0 R29 7 0 0 R27 7 15 Z-register XL 7 15 Y-register XH 0 0 R30 In the different addressing modes, these address registers have functions as fixed displacement, automatic increment, and automatic decrement (see the instruction set reference for details). Related Links Instruction Set Summary 9.5 Stack Pointer The Stack is mainly used for storing temporary data, local variables, and return addresses after interrupts and subroutine calls. The Stack is implemented as growing from higher to lower memory locations. The Stack Pointer register always points to the top of the Stack. The Stack Pointer points to the data SRAM Stack area where the Subroutine and Interrupt Stacks are located. A Stack PUSH command will decrease the Stack Pointer. The Stack in the data SRAM must be defined by the program before any subroutine calls are executed or interrupts are enabled. Initial Stack Pointer value equals the last address of the internal SRAM and the Stack Pointer must be set to point above start of the SRAM. See the table for Stack Pointer details. Table 9-1. Stack Pointer Instructions Instruction Stack Pointer Description PUSH Decremented by 1 Data is pushed onto the stack CALL Decremented by 2 Return address is pushed onto the stack with a subroutine call or interrupt ICALL RCALL POP Incremented by 1 Data is popped from the stack RET Incremented by 2 Return address is popped from the stack with return from subroutine or return from interrupt RETI © 2018 Microchip Technology Inc. Datasheet Complete DS40001906C-page 27 ATmega328PB AVR CPU Core The AVR Stack Pointer is implemented as two 8-bit registers in the I/O space. The number of bits actually used is implementation dependent. Note that the data space in some implementations of the AVR architecture is so small that only SPL is needed. In this case, the SPH register will not be present. © 2018 Microchip Technology Inc. Datasheet Complete DS40001906C-page 28 ATmega328PB AVR CPU Core 9.5.1 Stack Pointer Register Low and High byte Name:  Offset:  Reset:  Property:  SPL and SPH 0x5D 0x4FF When addressing I/O Registers as data space the offset address is 0x3D The SPL and SPH register pair represents the 16-bit value, SP. The low byte [7:0] (suffix L) is accessible at the original offset. The high byte [15:8] (suffix H) can be accessed at offset + 0x01. For more details on reading and writing 16-bit registers, refer to Accessing 16-bit Timer/Counter Registers. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When addressing I/O registers as data space using LD and ST instructions, 0x20 must be added to these offset addresses. The device is a complex microcontroller with more peripheral units than can be supported within the 64 locations reserved in Opcode for the IN and OUT instructions. For the extended I/O space from 0x60 in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used. Bit 15 14 13 12 Access R R R R Reset 0 0 0 0 Bit Access Reset 11 10 9 8 SP11 SP10 SP9 SP8 RW RW RW RW 0 1 0 0 7 6 5 4 3 2 1 0 SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 RW RW RW RW RW RW RW RW 1 1 1 1 1 1 1 1 Bits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 – SP Stack Pointer Register SPL and SPH are combined into SP. Related Links Accessing 16-bit Timer/Counter Registers 9.6 Instruction Execution Timing This section describes the general access timing concepts for instruction execution. The AVR CPU is driven by the CPU clock clkCPU, directly generated from the selected clock source for the chip. No internal clock division is used. The figure below shows the parallel instruction fetches and instruction executions enabled by the Harvard architecture and the fast-access register file concept. This is the basic pipelining concept to obtain up to 1 MIPS per MHz with the corresponding unique results for functions per cost, functions per clocks, and functions per power unit. © 2018 Microchip Technology Inc. Datasheet Complete DS40001906C-page 29 ATmega328PB AVR CPU Core Figure 9-4. The Parallel Instruction Fetches and Instruction Executions T1 T2 T3 T4 clkCPU 1st Instruction Fetch 1st Instruction Execute 2nd Instruction Fetch 2nd Instruction Execute 3rd Instruction Fetch 3rd Instruction Execute 4th Instruction Fetch The following figure shows the internal timing concept for the register file. In a single clock cycle, an ALU operation using two register operands is executed and the result is stored back to the destination register. Figure 9-5. Single Cycle ALU Operation T1 T2 T3 T4 clkCPU Total Execution Time Register Operands Fetch ALU Operation Execute Result Write Back 9.7 Reset and Interrupt Handling The AVR provides several different interrupt sources. These interrupts and the separate Reset vector each have a separate program vector in the program memory space. All interrupts are assigned individual enable bits, which must be written logic one together with the global interrupt enable bit in the Status register in order to enable the interrupt. Depending on the program counter value, interrupts may be automatically disabled when Boot Lock bits BLB02 or BLB12 are programmed. This feature improves software security. The lowest addresses in the program memory space are by default defined as the Reset and interrupt vectors. They have determined priority levels: The lower the address the higher is the priority level. RESET has the highest priority, and next is INT0 – the External Interrupt Request 0. The interrupt vectors can be moved to the start of the boot Flash section by setting the IVSEL bit in the MCU Control Register (MCUCR). The Reset vector can be moved to the start of the boot Flash section by programming the BOOTRST Fuse. When an interrupt occurs, the global interrupt enable I-bit is cleared and all interrupts are disabled. The user software can write logic one to the I-bit to enable nested interrupts. All enabled interrupts can then interrupt the current interrupt routine. The I-bit is automatically set when a return from interrupt instruction – RETI – is executed. There are basically two types of interrupts: The first type is triggered by an event that sets the interrupt flag. For these interrupts, the program counter is vectored to the actual interrupt vector in order to execute the interrupt handling routine, and © 2018 Microchip Technology Inc. Datasheet Complete DS40001906C-page 30 ATmega328PB AVR CPU Core hardware clears the corresponding interrupt flag. Interrupt flags can be cleared by writing a logic one to the flag bit position(s) to be cleared. If an interrupt condition occurs while the corresponding interrupt enable bit is cleared, the interrupt flag will be set and remembered until the interrupt is enabled, or the flag is cleared by software. Similarly, if one or more interrupt conditions occur while the global interrupt enable bit is cleared, the corresponding interrupt flag(s) will be set and remembered until the global interrupt enable bit is set and will then be executed by order of priority. The second type of interrupts will trigger as long as the interrupt condition is present. These interrupts do not necessarily have interrupt flags. If the interrupt condition disappears before the interrupt is enabled, the interrupt will not be triggered. When the AVR exits from an interrupt, it will always return to the main program and execute one more instruction before any pending interrupt is served. The Status register is not automatically stored when entering an interrupt routine, nor restored when returning from an interrupt routine. This must be handled by software. When using the CLI instruction to disable interrupts, the interrupts will be immediately disabled. No interrupt will be executed after the CLI instruction, even if it occurs simultaneously with the CLI instruction. The following example shows how this can be used to avoid interrupts during the timed EEPROM write sequence. Assembly Code Example(1) in r16, SREG ; store SREG value cli ; disable interrupts during timed sequence sbi EECR, EEMPE ; start EEPROM write sbi EECR, EEPE out SREG, r16 ; restore SREG value (I-bit) C Code Example(1) char cSREG; cSREG = SREG; /* store SREG value */ /* disable interrupts during timed sequence */ _CLI(); EECR |= (1
ATMEGA328PB-AU 价格&库存

很抱歉,暂时无法提供与“ATMEGA328PB-AU”相匹配的价格&库存,您可以联系我们找货

免费人工找货
ATMEGA328PB-AU
    •  国内价格
    • 1+8.96768
    • 10+8.24448
    • 30+8.09984

    库存:194