0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ATMEGA32A-ANR

ATMEGA32A-ANR

  • 厂商:

    ACTEL(微芯科技)

  • 封装:

    TQFP44

  • 描述:

    AVR AVR® ATmega Microcontroller IC 8-Bit 16MHz 32KB (16K x 16) FLASH 44-TQFP (10x10)

  • 数据手册
  • 价格&库存
ATMEGA32A-ANR 数据手册
ATmega32A megaAVR® Data Sheet Introduction The ATmega32A is a low power, CMOS 8-bit microcontrollers based on the AVR® enhanced RISC architecture. The ATmega32A is a 40/44-pins device with 32 KB Flash, 2 KB SRAM and 1 KB EEPROM. By executing instructions in a single clock cycle, the devices achieve CPU throughput approaching one million instructions per second (MIPS) per megahertz, allowing the system designer to optimize power consumption versus processing speed. Features • High-performance, Low-power AVR® 8-bit Microcontroller • Advanced RISC Architecture – 131 Powerful Instructions – Most Single-clock Cycle Execution – 32 × 8 General Purpose Working Registers – Fully Static Operation – Up to 16MIPS Throughput at 16MHz – On-chip 2-cycle Multiplier • High Endurance Non-volatile Memory segments – 32Kbytes of In-System Self-programmable Flash program memory – 1024Bytes EEPROM – 2Kbytes Internal SRAM – Write/Erase Cycles: 10,000 Flash/100,000 EEPROM – Data retention: 20 years at 85°C/100 years at 25°C(1) – Optional Boot Code Section with Independent Lock Bits • In-System Programming by On-chip Boot Program • True Read-While-Write Operation – Programming Lock for Software Security • JTAG (IEEE std. 1149.1 Compliant) Interface – Boundary-scan Capabilities According to the JTAG Standard – Extensive On-chip Debug Support – Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface • QTouch® Library Support – Capacitive touch buttons, sliders and wheels – QTouch and QMatrix™ acquisition – Up to 64 sense channels  2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 1 ATmega32A • Peripheral Features – Two 8-bit Timer/Counters with Separate Prescalers and Compare Modes – One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture Mode – Real Time Counter with Separate Oscillator – Four PWM Channels – 8-channel, 10-bit ADC • 8 Single-ended Channels • 7 Differential Channels in TQFP Package Only • 2 Differential Channels with Programmable Gain at 1x, 10x, or 200x – Byte-oriented Two-wire Serial Interface – Programmable Serial USART – Master/Slave SPI Serial Interface – Programmable Watchdog Timer with Separate On-chip Oscillator – On-chip Analog Comparator • Special Microcontroller Features – Power-on Reset and Programmable Brown-out Detection – Internal Calibrated RC Oscillator – External and Internal Interrupt Sources – Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby and Extended Standby • I/O and Packages – 32 Programmable I/O Lines – 40-pin PDIP, 44-lead TQFP, and 44-pad QFN/MLF • Operating Voltages – 2.7V - 5.5V • Speed Grades – 0 - 16MHz • Power Consumption at 1MHz, 3V, 25°C – Active: 0.6mA – Idle Mode: 0.2mA – Power-down Mode: < 1µA  2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 2 ATmega32A Table of Contents 1 Pin Configurations ................................................................................. 10 2 Overview ................................................................................................. 11 2.1 Block Diagram ................................................................................................. 11 2.2 Pin Descriptions............................................................................................... 12 3 Resources ............................................................................................... 13 4 Data Retention ........................................................................................ 13 5 About Code Examples ........................................................................... 14 6 Capacitive touch sensing ...................................................................... 14 7 AVR CPU Core ........................................................................................ 15 8 9 7.1 Overview.......................................................................................................... 15 7.2 ALU – Arithmetic Logic Unit............................................................................. 16 7.3 Status Register ................................................................................................ 16 7.4 General Purpose Register File ........................................................................ 17 7.5 Stack Pointer ................................................................................................... 19 7.6 Instruction Execution Timing ........................................................................... 20 7.7 Reset and Interrupt Handling........................................................................... 21 AVR Memories ........................................................................................ 23 8.1 Overview.......................................................................................................... 23 8.2 In-System Reprogrammable Flash Program Memory ..................................... 23 8.3 SRAM Data Memory........................................................................................ 24 8.4 EEPROM Data Memory .................................................................................. 25 8.5 I/O Memory...................................................................................................... 26 8.6 Register Description ........................................................................................ 27 System Clock and Clock Options ......................................................... 31 9.1 Clock Systems and their Distribution ............................................................... 31 9.2 Clock Sources ................................................................................................. 32 9.3 Default Clock Source....................................................................................... 32 9.4 Crystal Oscillator ............................................................................................. 32 9.5 Low-frequency Crystal Oscillator ..................................................................... 34 9.6 External RC Oscillator ..................................................................................... 34 9.7 Calibrated Internal RC Oscillator ..................................................................... 35 9.8 External Clock ................................................................................................. 36  2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 3 ATmega32A 9.9 Timer/Counter Oscillator.................................................................................. 37 9.10 Register Description ........................................................................................ 38 10 Power Management and Sleep Modes ................................................. 39 10.1 Sleep Modes.................................................................................................... 39 10.2 Idle Mode......................................................................................................... 39 10.3 ADC Noise Reduction Mode............................................................................ 40 10.4 Power-down Mode........................................................................................... 40 10.5 Power-save Mode............................................................................................ 40 10.6 Standby Mode ................................................................................................. 40 10.7 Extended Standby Mode ................................................................................. 41 10.8 Minimizing Power Consumption ...................................................................... 41 10.9 Register Description ........................................................................................ 43 11 System Control and Reset .................................................................... 44 11.1 Resetting the AVR ........................................................................................... 44 11.2 Reset Sources ................................................................................................. 44 11.3 Internal Voltage Reference.............................................................................. 47 11.4 Watchdog Timer .............................................................................................. 48 11.5 Register Description ........................................................................................ 49 12 Interrupts ................................................................................................ 51 12.1 Interrupt Vectors in ATmega32A ..................................................................... 51 12.2 Register Description ........................................................................................ 54 13 I/O Ports .................................................................................................. 56 13.1 Overview.......................................................................................................... 56 13.2 Ports as General Digital I/O ............................................................................. 57 13.3 Alternate Port Functions .................................................................................. 61 13.4 Register Description ........................................................................................ 70 14 External Interrupts ................................................................................. 73 14.1 Register Description ........................................................................................ 73 15 8-bit Timer/Counter0 with PWM ............................................................ 76 15.1 Features .......................................................................................................... 76 15.2 Overview.......................................................................................................... 76 15.3 Timer/Counter Clock Sources ......................................................................... 77 15.4 Counter Unit .................................................................................................... 77 15.5 Output Compare Unit....................................................................................... 78  2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 4 ATmega32A 15.6 Compare Match Output Unit ............................................................................ 79 15.7 Modes of Operation ......................................................................................... 80 15.8 Timer/Counter Timing Diagrams ..................................................................... 84 15.9 Register Description ........................................................................................ 86 16 Timer/Counter0 and Timer/Counter1 Prescalers ................................ 90 16.1 Overview.......................................................................................................... 90 16.2 Internal Clock Source ...................................................................................... 90 16.3 Prescaler Reset ............................................................................................... 90 16.4 External Clock Source ..................................................................................... 90 16.5 Register Description ........................................................................................ 92 17 16-bit Timer/Counter1 ............................................................................ 93 17.1 Features .......................................................................................................... 93 17.2 Overview.......................................................................................................... 93 17.3 Accessing 16-bit Registers .............................................................................. 95 17.4 Timer/Counter Clock Sources ......................................................................... 98 17.5 Counter Unit .................................................................................................... 98 17.6 Input Capture Unit ........................................................................................... 99 17.7 Compare Match Output Unit .......................................................................... 103 17.8 Modes of Operation ....................................................................................... 104 17.9 Timer/Counter Timing Diagrams ................................................................... 111 17.10 Register Description ...................................................................................... 112 18 8-bit Timer/Counter2 with PWM and Asynchronous Operation ...... 119 18.1 Features ........................................................................................................ 119 18.2 Overview........................................................................................................ 119 18.3 Timer/Counter Clock Sources ....................................................................... 120 18.4 Counter Unit .................................................................................................. 120 18.5 Output Compare Unit..................................................................................... 121 18.6 Compare Match Output Unit .......................................................................... 123 18.7 Modes of Operation ....................................................................................... 123 18.8 Timer/Counter Timing Diagrams ................................................................... 127 18.9 Asynchronous Operation of the Timer/Counter ............................................. 129 18.10 Timer/Counter Prescaler ............................................................................... 131 18.11 Register Description ...................................................................................... 131 19 SPI – Serial Peripheral Interface ......................................................... 136 19.1 Features ........................................................................................................ 136  2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 5 ATmega32A 19.2 Overview........................................................................................................ 136 19.3 SS Pin Functionality ...................................................................................... 140 19.4 Data Modes ................................................................................................... 142 20 USART ................................................................................................... 144 20.1 Features ........................................................................................................ 144 20.2 Overview........................................................................................................ 144 20.3 Clock Generation ........................................................................................... 146 20.4 Frame Formats .............................................................................................. 148 20.5 USART Initialization....................................................................................... 149 20.6 Data Transmission – The USART Transmitter .............................................. 150 20.7 Data Reception – The USART Receiver ....................................................... 153 20.8 Asynchronous Data Reception ...................................................................... 157 20.9 Multi-processor Communication Mode .......................................................... 160 20.10 Accessing UBRRH/UCSRC Registers ......................................................... 161 20.11 Register Description ...................................................................................... 163 20.12 Examples of Baud Rate Setting..................................................................... 167 21 Two-wire Serial Interface ..................................................................... 172 21.1 Features ........................................................................................................ 172 21.2 Two-wire Serial Interface Bus Definition........................................................ 172 21.3 Data Transfer and Frame Format .................................................................. 173 21.4 Multi-master Bus Systems, Arbitration and Synchronization ......................... 175 21.5 Overview of the TWI Module ......................................................................... 177 21.6 Using the TWI................................................................................................ 179 21.7 Transmission Modes ..................................................................................... 181 21.8 Multi-master Systems and Arbitration............................................................ 192 21.9 Register Description ...................................................................................... 195 22 Analog Comparator .............................................................................. 198 22.1 Overview........................................................................................................ 198 22.2 Analog Comparator Multiplexed Input ........................................................... 198 22.3 Register Description ...................................................................................... 199 23 Analog to Digital Converter ................................................................. 201 23.1 Features ........................................................................................................ 201 23.2 Overview........................................................................................................ 201 23.3 Operation....................................................................................................... 202 23.4 Starting a Conversion .................................................................................... 203  2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 6 ATmega32A 23.5 Prescaling and Conversion Timing ................................................................ 204 23.6 Changing Channel or Reference Selection ................................................... 207 23.7 ADC Noise Canceler ..................................................................................... 208 23.8 ADC Conversion Result................................................................................. 212 23.9 Register Description ...................................................................................... 214 24 JTAG Interface and On-chip Debug System ...................................... 218 24.1 Features ........................................................................................................ 218 24.2 Overview........................................................................................................ 218 24.3 TAP – Test Access Port ................................................................................ 218 24.4 TAP Controller ............................................................................................... 220 24.5 Using the Boundary-scan Chain .................................................................... 221 24.6 Using the On-chip Debug System ................................................................. 221 24.7 On-chip Debug Specific JTAG Instructions ................................................... 222 24.8 Using the JTAG Programming Capabilities ................................................... 222 24.9 Register Description ...................................................................................... 223 24.10 Bibliography................................................................................................... 223 25 IEEE 1149.1 (JTAG) Boundary-scan ................................................... 224 25.1 Features ........................................................................................................ 224 25.2 Overview........................................................................................................ 224 25.3 Data Registers............................................................................................... 224 25.4 Boundary-scan Specific JTAG Instructions ................................................... 226 25.5 Boundary-scan Chain .................................................................................... 227 25.6 ATmega32A Boundary-scan Order ............................................................... 237 25.7 Boundary-scan Description Language Files .................................................. 242 25.8 Register Description ...................................................................................... 242 26 Boot Loader Support – Read-While-Write Self-Programming ......... 243 26.1 Features ........................................................................................................ 243 26.2 Overview........................................................................................................ 243 26.3 Application and Boot Loader Flash Sections ................................................. 243 26.4 Read-While-Write and no Read-While-Write Flash Sections ........................ 243 26.5 Boot Loader Lock Bits ................................................................................... 246 26.6 Entering the Boot Loader Program ................................................................ 247 26.7 Addressing the Flash during Self-Programming ............................................ 248 26.8 Self-Programming the Flash .......................................................................... 249 26.9 Register Description ...................................................................................... 254  2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 7 ATmega32A 27 Memory Programming ......................................................................... 256 27.1 Program And Data Memory Lock Bits ........................................................... 256 27.2 Fuse Bits........................................................................................................ 257 27.3 Signature Bytes ............................................................................................. 258 27.4 Calibration Byte ............................................................................................. 258 27.5 Page Size ...................................................................................................... 259 27.6 Parallel Programming Parameters, Pin Mapping, and Commands ............... 259 27.7 Parallel Programming .................................................................................... 261 27.8 SPI Serial Downloading ................................................................................. 269 27.9 SPI Serial Programming Pin Mapping ........................................................... 269 27.10 Programming via the JTAG Interface ............................................................ 274 28 Electrical Characteristics .................................................................... 286 28.1 Absolute Maximum Ratings* ......................................................................... 286 28.2 DC Characteristics ........................................................................................ 286 28.3 Speed Grades ............................................................................................... 288 28.4 Clock Characteristics..................................................................................... 288 28.5 System and Reset Characteristics ................................................................ 289 28.6 Two-wire Serial Interface Characteristics ...................................................... 289 28.7 SPI Timing Characteristics ............................................................................ 291 28.8 ADC Characteristics ...................................................................................... 293 29 Typical Characteristics ........................................................................ 296 29.1 Active Supply Current .................................................................................... 296 29.2 Idle Supply Current........................................................................................ 299 29.3 Power-down Supply Current.......................................................................... 302 29.4 Power-save Supply Current........................................................................... 303 29.5 Standby Supply Current ................................................................................ 304 29.6 Pin Pull-up ..................................................................................................... 304 29.7 Pin Driver Strength ........................................................................................ 306 29.8 Pin Thresholds and Hysteresis ...................................................................... 308 29.9 BOD Thresholds and Analog Comparator Offset .......................................... 311 29.10 Internal Oscillator Speed ............................................................................... 313 29.11 Current Consumption of Peripheral Units ...................................................... 319 29.12 Current Consumption in Reset and Reset Pulsewidth .................................. 322 30 Register Summary ............................................................................... 324 31 Instruction Set Summary ..................................................................... 326  2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 8 ATmega32A 32 Ordering Information ........................................................................... 329 33 Packaging Information ........................................................................ 330 33.1 44A ................................................................................................................ 330 33.2 40P6 .............................................................................................................. 331 33.3 44M1.............................................................................................................. 332 34 Errata ..................................................................................................... 333 34.1 ATmega32A, rev. J to rev. K ......................................................................... 333 34.2 ATmega32A, rev. G to rev. I .......................................................................... 334 35 Datasheet Revision History ................................................................. 335 35.1 Rev. A – 11/2018 ........................................................................................... 335 35.2 Rev. 8155E – 02/2014................................................................................... 335 35.3 Rev. 8155D – 10/2013................................................................................... 335 35.4 Rev. 8155C – 02/2011................................................................................... 335 35.5 Rev. 8155B – 07/2009................................................................................... 335 35.6 Rev. 8155A – 06/2008................................................................................... 336  2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 9 ATmega32A 1. Pin Configurations Figure 1-1. Pinout ATmega32A PDIP (XCK/T0) PB0 (T1) PB1 (INT2/AIN0) PB2 (OC0/AIN1) PB3 (SS) PB4 (MOSI) PB5 (MISO) PB6 (SCK) PB7 RESET VCC GND XTAL2 XTAL1 (RXD) PD0 (TXD) PD1 (INT0) PD2 (INT1) PD3 (OC1B) PD4 (OC1A) PD5 (ICP1) PD6 PA0 (ADC0) PA1 (ADC1) PA2 (ADC2) PA3 (ADC3) PA4 (ADC4) PA5 (ADC5) PA6 (ADC6) PA7 (ADC7) AREF GND AVCC PC7 (TOSC2) PC6 (TOSC1) PC5 (TDI) PC4 (TDO) PC3 (TMS) PC2 (TCK) PC1 (SDA) PC0 (SCL) PD7 (OC2) PB4 (SS) PB3 (AIN1/OC0) PB2 (AIN0/INT2) PB1 (T1) PB0 (XCK/T0) GND VCC PA0 (ADC0) PA1 (ADC1) PA2 (ADC2) PA3 (ADC3) TQFP/MLF (MOSI) PB5 (MISO) PB6 (SCK) PB7 RESET VCC GND XTAL2 XTAL1 (RXD) PD0 (TXD) PD1 (INT0) PD2  2018 Microchip Technology Inc. PD3 PD4 PD5 PD6 PD7 VCC GND (SCL) PC0 (SDA) PC1 (TCK) PC2 (TMS) PC3 (INT1) (OC1B) (OC1A) (ICP1) (OC2) Note: Bottom pad should be soldered to ground. PA4 (ADC4) PA5 (ADC5) PA6 (ADC6) PA7 (ADC7) AREF GND AVCC PC7 (TOSC2) PC6 (TOSC1) PC5 (TDI) PC4 (TDO) Data Sheet Complete DS40002072A-page 10 ATmega32A 2. Overview The AVR® ATmega32A is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATmega32A achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed. 2.1 Block Diagram Figure 2-1. Block Diagram PA0 - PA7 PC0 - PC7 PORTA DRIVERS/BUFFERS PORTC DRIVERS/BUFFERS PORTA DIGITAL INTERFACE PORTC DIGITAL INTERFACE VCC GND AVCC MUX & ADC ADC INTERFACE TWI AREF PROGRAM COUNTER STACK POINTER PROGRAM FLASH SRAM TIMERS/ COUNTERS OSCILLATOR INTERNAL OSCILLATOR XTAL1 INSTRUCTION REGISTER GENERAL PURPOSE REGISTERS WATCHDOG TIMER OSCILLATOR XTAL2 X INSTRUCTION DECODER Y MCU CTRL. & TIMING RESET Z CONTROL LINES ALU AVR CPU STATUS REGISTER EEPROM PROGRAMMING LOGIC SPI USART + - INTERNAL CALIBRATED OSCILLATOR INTERRUPT UNIT COMP. INTERFACE PORTB DIGITAL INTERFACE PORTD DIGITAL INTERFACE PORTB DRIVERS/BUFFERS PORTD DRIVERS/BUFFERS PB0 - PB7 PD0 - PD7 The AVR® core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one  2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 11 ATmega32A single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers. The ATmega32A provides the following features: 32Kbytes of In-System Programmable Flash Program memory with Read-While-Write capabilities, 1024bytes EEPROM, 2Kbyte SRAM, 32 general purpose I/O lines, 32 general purpose working registers, a JTAG interface for Boundary-scan, On-chip Debugging support and programming, three flexible Timer/Counters with compare modes, Internal and External Interrupts, a serial programmable USART, a byte oriented Two-wire Serial Interface, an 8-channel, 10-bit ADC with optional differential input stage with programmable gain (TQFP package only), a programmable Watchdog Timer with Internal Oscillator, an SPI serial port, and six software selectable power saving modes. The Idle mode stops the CPU while allowing the USART, Two-wire interface, A/D Converter, SRAM, Timer/Counters, SPI port, and interrupt system to continue functioning. The Power-down mode saves the register contents but freezes the Oscillator, disabling all other chip functions until the next External Interrupt or Hardware Reset. In Power-save mode, the Asynchronous Timer continues to run, allowing the user to maintain a timer base while the rest of the device is sleeping. The ADC Noise Reduction mode stops the CPU and all I/O modules except Asynchronous Timer and ADC, to minimize switching noise during ADC conversions. In Standby mode, the crystal/resonator Oscillator is running while the rest of the device is sleeping. This allows very fast start-up combined with low-power consumption. In Extended Standby mode, both the main Oscillator and the Asynchronous Timer continue to run. The device is manufactured using Microchip’s high density nonvolatile memory technology. The On-chip ISP Flash allows the program memory to be reprogrammed in-system through an SPI serial interface, by a conventional nonvolatile memory programmer, or by an On-chip Boot program running on the AVR core. The boot program can use any interface to download the application program in the Application Flash memory. Software in the Boot Flash section will continue to run while the Application Flash section is updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip, the ATmega32A is a powerful microcontroller that provides a highly-flexible and cost-effective solution to many embedded control applications. The AVR ATmega32A is supported with a full suite of program and system development tools including: C compilers, macro assemblers, program debugger/simulators, in-circuit emulators, and evaluation kits. 2.2 Pin Descriptions 2.2.1 VCC Digital supply voltage. 2.2.2 GND Ground. 2.2.3 Port A (PA7:PA0) Port A serves as the analog inputs to the A/D Converter. Port A also serves as an 8-bit bi-directional I/O port, if the A/D Converter is not used. Port pins can provide internal pull-up resistors (selected for each bit). The Port A output buffers have symmetrical drive characteristics with both high sink and source capability. When pins PA0 to PA7 are used as inputs and are externally pulled low, they will source current if the internal pull-up resistors are activated. The Port A pins are tri-stated when a reset condition becomes active, even if the clock is not running. 2.2.4 Port B (PB7:PB0) Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running.  2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 12 ATmega32A Port B also serves the functions of various special features of the ATmega32A as listed on page 64. 2.2.5 Port C (PC7:PC0) Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port C output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset condition becomes active, even if the clock is not running. If the JTAG interface is enabled, the pull-up resistors on pins PC5(TDI), PC3(TMS) and PC2(TCK) will be activated even if a reset occurs. The TD0 pin is tri-stated unless TAP states that shift out data are entered. Port C also serves the functions of the JTAG interface and other special features of the ATmega32A as listed on page 66. 2.2.6 Port D (PD7:PD0) Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port D output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port D also serves the functions of various special features of the ATmega32A as listed on page 68. 2.2.7 RESET Reset Input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the clock is not running. The minimum pulse length is given in Table 28-3 on page 289. Shorter pulses are not ensured to generate a reset. 2.2.8 XTAL1 Input to the inverting Oscillator amplifier and input to the internal clock operating circuit. 2.2.9 XTAL2 Output from the inverting Oscillator amplifier. 2.2.10 AVCC AVCC is the supply voltage pin for Port A and the A/D Converter. It should be externally connected to VCC, even if the ADC is not used. If the ADC is used, it should be connected to VCC through a low-pass filter. 2.2.11 AREF AREF is the analog reference pin for the A/D Converter. 3. Resources A comprehensive set of development tools, application notes and data sheets are available for download on http://www.microchip.com. Note: 1. 4. Data Retention Reliability Qualification results show that the projected data retention failure rate is much less than 1 PPM over 20 years at 85°C or 100 years at 25°C.  2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 13 ATmega32A 5. About Code Examples This documentation contains simple code examples that briefly show how to use various parts of the device. These code examples assume that the part specific header file is included before compilation. Be aware that not all C Compiler vendors include bit definitions in the header files and interrupt handling in C is compiler dependent. Confirm with the C Compiler documentation for more details. 6. Capacitive touch sensing The QTouch® Library provides a simple to use solution to realize touch sensitive interfaces on most AVR microcontrollers. The QTouch Library includes support for the QTouch and QMatrix™ acquisition methods. Touch sensing can be added to any application by linking the appropriate QTouch Library for the AVR Microcontroller. This is done by using a simple set of APIs to define the touch channels and sensors, and then calling the touch sensing API’s to retrieve the channel information and determine the touch sensor states. The QTouch Library is FREE and downloadable from the Microchip website at the following location http://www.microchip.com. For implementation details and other information, refer to the QTouch Library User Guide - also available for download from the Microchip website.  2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 14 ATmega32A 7. AVR CPU Core Overview This section discusses the AVR® core architecture in general. The main function of the CPU core is to ensure correct program execution. The CPU must therefore be able to access memories, perform calculations, control peripherals, and handle interrupts. Figure 7-1. Block Diagram of the AVR MCU Architecture Data Bus 8-bit Flash Program Memory Program Counter Status and Control 32 x 8 General Purpose Registrers Instruction Decoder Control Lines Indirect Addressing Instruction Register Direct Addressing 7.1 Interrupt Unit SPI Unit Watchdog Timer ALU Analog Comparator I/O Module1 Data SRAM I/O Module 2 I/O Module n EEPROM I/O Lines In order to maximize performance and parallelism, the AVR uses a Harvard architecture – with separate memories and buses for program and data. Instructions in the program memory are executed with a single level pipelining. While one instruction is being executed, the next instruction is pre-fetched from the program memory. This concept enables instructions to be executed in every clock cycle. The program memory is In-System Reprogrammable Flash memory. The fast-access Register File contains 32 × 8-bit general purpose working registers with a single clock cycle access time. This allows single-cycle Arithmetic Logic Unit (ALU) operation. In a typical ALU operation, two operands are output from the Register File, the operation is executed, and the result is stored back in the Register File – in one clock cycle. Six of the 32 registers can be used as three 16-bit indirect address register pointers for Data Space addressing – enabling efficient address calculations. One of the these address pointers can also be used as an address pointer for look up tables in Flash Program memory. These added function registers are the 16-bit X-, Y-, and Z-register, described later in this section.  2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 15 ATmega32A The ALU supports arithmetic and logic operations between registers or between a constant and a register. Single register operations can also be executed in the ALU. After an arithmetic operation, the Status Register is updated to reflect information about the result of the operation. Program flow is provided by conditional and unconditional jump and call instructions, able to directly address the whole address space. Most AVR instructions have a single 16-bit word format. Every program memory address contains a 16-bit or 32-bit instruction. Program Flash memory space is divided in two sections, the Boot program section and the Application Program section. Both sections have dedicated Lock bits for write and read/write protection. The SPM instruction that writes into the Application Flash memory section must reside in the Boot Program section. During interrupts and subroutine calls, the return address Program Counter (PC) is stored on the Stack. The Stack is effectively allocated in the general data SRAM, and consequently the Stack size is only limited by the total SRAM size and the usage of the SRAM. All user programs must initialize the SP in the reset routine (before subroutines or interrupts are executed). The Stack Pointer SP is read/write accessible in the I/O space. The data SRAM can easily be accessed through the five different addressing modes supported in the AVR architecture. The memory spaces in the AVR architecture are all linear and regular memory maps. A flexible interrupt module has its control registers in the I/O space with an additional global interrupt enable bit in the Status Register. All interrupts have a separate interrupt vector in the interrupt vector table. The interrupts have priority in accordance with their interrupt vector position. The lower the interrupt vector address, the higher the priority. The I/O memory space contains 64 addresses for CPU peripheral functions as Control Registers, SPI, and other I/O functions. The I/O Memory can be accessed directly, or as the Data Space locations following those of the Register File, $20 - $5F. 7.2 7.3 ALU – Arithmetic Logic Unit The high-performance AVR ALU operates in direct connection with all the 32 general purpose working registers. Within a single clock cycle, arithmetic operations between general purpose registers or between a register and an immediate are executed. The ALU operations are divided into three main categories – arithmetic, logical, and bitfunctions. Some implementations of the architecture also provide a powerful multiplier supporting both signed/unsigned multiplication and fractional format. See the AVR Instruction Set Manual on www.microchip.com for a detailed description. Status Register The Status Register contains information about the result of the most recently executed arithmetic instruction. This information can be used for altering program flow in order to perform conditional operations. Note that the Status Register is updated after all ALU operations, as specified in the AVR Instruction Set Manual. This will in many cases remove the need for using the dedicated compare instructions, resulting in faster and more compact code. The Status Register is not automatically stored when entering an interrupt routine and restored when returning from an interrupt. This must be handled by software. 7.3.1 SREG – AVR Status Register(1) Bit 7 6 5 4 3 2 1 0 I T H S V N Z C Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Initial Value 0 0 0 0 0 0 0 0  2018 Microchip Technology Inc. Data Sheet Complete SREG DS40002072A-page 16 ATmega32A • Bit 7 – I: Global Interrupt Enable The Global Interrupt Enable bit must be set for the interrupts to be enabled. The individual interrupt enable control is then performed in separate control registers. If the Global Interrupt Enable Register is cleared, none of the interrupts are enabled independent of the individual interrupt enable settings. The I-bit is cleared by hardware after an interrupt has occurred, and is set by the RETI instruction to enable subsequent interrupts. The I-bit can also be set and cleared by the application with the SEI and CLI instructions, as described in the Instruction Set Manual on www.microchip.com. • Bit 6 – T: Bit Copy Storage The Bit Copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source or destination for the operated bit. A bit from a register in the Register File can be copied into T by the BST instruction, and a bit in T can be copied into a bit in a register in the Register File by the BLD instruction. • Bit 5 – H: Half Carry Flag The Half Carry Flag H indicates a half carry in some arithmetic operations. Half Carry is useful in BCD arithmetic. • Bit 4 – S: Sign Bit, S = N  V The S-bit is always an exclusive or between the Negative Flag N and the Two’s Complement Overflow Flag V. • Bit 3 – V: Two’s Complement Overflow Flag The Two’s Complement Overflow Flag V supports two’s complement arithmetic. • Bit 2 – N: Negative Flag The Negative Flag N indicates a negative result in an arithmetic or logic operation. • Bit 1 – Z: Zero Flag The Zero Flag Z indicates a zero result in an arithmetic or logic operation. • Bit 0 – C: Carry Flag The Carry Flag C indicates a carry in an arithmetic or logic operation. Note: 7.4 1. Refer to the AVR Instruction Set Manual on www.microchip.com for more details. General Purpose Register File The Register File is optimized for the AVR Enhanced RISC instruction set. In order to achieve the required performance and flexibility, the following input/output schemes are supported by the Register File: • One 8-bit output operand and one 8-bit result input • Two 8-bit output operands and one 8-bit result input • Two 8-bit output operands and one 16-bit result input • One 16-bit output operand and one 16-bit result input Figure 7-2 shows the structure of the 32 general purpose working registers in the CPU.  2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 17 ATmega32A Figure 7-2. AVR CPU General Purpose Working Registers 7 0 Addr. R0 $00 R1 $01 R2 $02 … R13 $0D General R14 $0E Purpose R15 $0F Working R16 $10 Registers R17 $11 … R26 $1A X-register Low Byte R27 $1B X-register High Byte R28 $1C Y-register Low Byte R29 $1D Y-register High Byte R30 $1E Z-register Low Byte R31 $1F Z-register High Byte Most of the instructions operating on the Register File have direct access to all registers, and most of them are single cycle instructions. As shown in Figure 7-2, each register is also assigned a data memory address, mapping them directly into the first 32 locations of the user Data Space. Although not being physically implemented as SRAM locations, this memory organization provides great flexibility in access of the registers, as the X-, Y-, and Z-pointer Registers can be set to index any register in the file.  2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 18 ATmega32A 7.4.1 The X-register, Y-register and Z-register The registers R26:R31 have some added functions to their general purpose usage. These registers are 16-bit address pointers for indirect addressing of the Data Space. The three indirect address registers X, Y, and Z are defined as described in Figure 7-3. Figure 7-3. The X-, Y-, and Z-registers 15 X - register XH 7 XL 0 R27 ($1B) 15 Y - register 0 R26 ($1A) YH 7 YL 0 R29 ($1D) Z - register 0 7 0 7 0 R28 ($1C) 15 ZH 7 0 R31 ($1F) ZL 7 0 0 R30 ($1E) In the different addressing modes these address registers have functions as fixed displacement, automatic increment, and automatic decrement (see the AVR Instruction Set Manual on www.microchip.com for details). 7.5 Stack Pointer The Stack is mainly used for storing temporary data, for storing local variables and for storing return addresses after interrupts and subroutine calls. Note that the Stack is implemented as growing from higher to lower memory locations. The Stack Pointer Register always points to the top of the Stack. The Stack Pointer points to the data SRAM Stack area where the Subroutine and Interrupt Stacks are located. A Stack PUSH command will decrease the Stack Pointer. The Stack in the data SRAM must be defined by the program before any subroutine calls are executed or interrupts are enabled. Initial Stack Pointer value equals the last address of the internal SRAM and the Stack Pointer must be set to point above start of the SRAM, see Figure 8-2 on page 24. See Table 7-1 on page 19 for Stack Pointer details. Table 7-1. Stack Pointer instructions Instruction Stack pointer Description PUSH Decremented by 1 Data is pushed onto the stack CALL ICALL RCALL Decremented by 2 Return address is pushed onto the stack with a subroutine call or interrupt POP Incremented by 1 Data is popped from the stack RET RETI Incremented by 2 Return address is popped from the stack with return from subroutine or return from interrupt The AVR Stack Pointer is implemented as two 8-bit registers in the I/O space. The number of bits actually used is implementation dependent. Note that the data space in some implementations of the AVR architecture is so small that only SPL is needed. In this case, the SPH Register will not be present.  2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 19 ATmega32A 7.5.1 SPH and SPL – Stack Pointer High and Low Register Bit Read/Write Initial Value 7.6 15 14 13 12 11 10 9 8 SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 SPH SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 SPL 7 6 5 4 3 2 1 0 R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Instruction Execution Timing This section describes the general access timing concepts for instruction execution. The AVR CPU is driven by the CPU clock clkCPU, directly generated from the selected clock source for the chip. No internal clock division is used. Figure 7-4 shows the parallel instruction fetches and instruction executions enabled by the Harvard architecture and the fast-access Register File concept. This is the basic pipelining concept to obtain up to 1 MIPS per MHz with the corresponding unique results for functions per cost, functions per clocks, and functions per power-unit. Figure 7-4. The Parallel Instruction Fetches and Instruction Executions T1 T2 T3 T4 clkCPU 1st Instruction Fetch 1st Instruction Execute 2nd Instruction Fetch 2nd Instruction Execute 3rd Instruction Fetch 3rd Instruction Execute 4th Instruction Fetch Figure 7-5 shows the internal timing concept for the Register File. In a single clock cycle an ALU operation using two register operands is executed, and the result is stored back to the destination register. Figure 7-5. Single Cycle ALU Operation T1 T2 T3 T4 clkCPU Total Execution Time Register Operands Fetch ALU Operation Execute Result Write Back  2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 20 ATmega32A 7.7 Reset and Interrupt Handling The AVR® provides several different interrupt sources. These interrupts and the separate reset vector each have a separate program vector in the program memory space. All interrupts are assigned individual enable bits which must be written logic one together with the Global Interrupt Enable bit in the Status Register in order to enable the interrupt. Depending on the Program Counter value, interrupts may be automatically disabled when Boot Lock bits BLB02 or BLB12 are programmed. This feature improves software security. See the section “Memory Programming” on page 256 for details. The lowest addresses in the program memory space are by default defined as the Reset and Interrupt Vectors. The complete list of vectors is shown in “Interrupts” on page 51. The list also determines the priority levels of the different interrupts. The lower the address the higher is the priority level. RESET has the highest priority, and next is INT0 – the External Interrupt Request 0. The Interrupt Vectors can be moved to the start of the Boot Flash section by setting the IVSEL bit in the General Interrupt Control Register (GICR). Refer to “Interrupts” on page 51 for more information. The Reset Vector can also be moved to the start of the boot Flash section by programming the BOOTRST fuse, see “Boot Loader Support – Read-While-Write Self-Programming” on page 243. When an interrupt occurs, the Global Interrupt Enable I-bit is cleared and all interrupts are disabled. The user software can write logic one to the I-bit to enable nested interrupts. All enabled interrupts can then interrupt the current interrupt routine. The I-bit is automatically set when a Return from Interrupt instruction – RETI – is executed. There are basically two types of interrupts. The first type is triggered by an event that sets the Interrupt Flag. For these interrupts, the Program Counter is vectored to the actual Interrupt Vector in order to execute the interrupt handling routine, and hardware clears the corresponding Interrupt Flag. Interrupt Flags can also be cleared by writing a logic one to the flag bit position(s) to be cleared. If an interrupt condition occurs while the corresponding interrupt enable bit is cleared, the Interrupt Flag will be set and remembered until the interrupt is enabled, or the flag is cleared by software. Similarly, if one or more interrupt conditions occur while the Global Interrupt Enable bit is cleared, the corresponding Interrupt Flag(s) will be set and remembered until the global interrupt enable bit is set, and will then be executed by order of priority. The second type of interrupts will trigger as long as the interrupt condition is present. These interrupts do not necessarily have Interrupt Flags. If the interrupt condition disappears before the interrupt is enabled, the interrupt will not be triggered. When the AVR® exits from an interrupt, it will always return to the main program and execute one more instruction before any pending interrupt is served. Note that the Status Register is not automatically stored when entering an interrupt routine, nor restored when returning from an interrupt routine. This must be handled by software. When using the CLI instruction to disable interrupts, the interrupts will be immediately disabled. No interrupt will be executed after the CLI instruction, even if it occurs simultaneously with the CLI instruction. The following example shows how this can be used to avoid interrupts during the timed EEPROM write sequence.  2018 Microchip Technology Inc. Data Sheet Complete DS40002072A-page 21 ATmega32A Assembly Code Example in r16, SREG cli ; store SREG value ; disable interrupts during timed sequence sbi EECR, EEMWE ; start EEPROM write sbi EECR, EEWE out SREG, r16 ; restore SREG value (I-bit) C Code Example char cSREG; cSREG = SREG; /* store SREG value */ /* disable interrupts during timed sequence */ _CLI(); EECR |= (1
ATMEGA32A-ANR 价格&库存

很抱歉,暂时无法提供与“ATMEGA32A-ANR”相匹配的价格&库存,您可以联系我们找货

免费人工找货