ATmega164A/PA/324A/PA/644A/PA/1284/P
megaAVR® Data Sheet
Introduction
The ATmega164A/PA/324A/PA/644A/PA/1284/P is a low power, CMOS 8-bit microcontrollers based on the
AVR® enhanced RISC architecture. The ATmega164A/PA/324A/PA/644A/PA/1284/P is a 40/49-pins device
ranging from 16 KB to 128 KB Flash, with 1 KB to 16 KB SRAM, 512 Bytes to 4 KB EEPROM. By executing
instructions in a single clock cycle, the devices achieve CPU throughput approaching one million instructions per second (MIPS) per megahertz, allowing the system designer to optimize power consumption versus processing speed.
Features
High-performance, low-power 8-bit AVR® Microcontroller
Advanced RISC architecture
131 powerful Instructions – most single-clock cycle execution
32 × 8 general purpose working registers
Fully static operation
Up to 20MIPS throughput at 20MHz
On-chip 2-cycle multiplier
High endurance non-volatile memory segments
16/32/64/128KBytes of In-System Self-programmable Flash program memory
512/1K/2K/4KBytes EEPROM
1/2/4/16KBytes Internal SRAM
Write/Erase Cycles: 10,000 Flash/ 100,000 EEPROM
Data retention: 20 years at 85°C/ 100 years at 25°C(1)
Optional Boot Code Section with Independent Lock Bits
In-System Programming by On-chip Boot Program
True Read-While-Write Operation
Programming Lock for Software Security
QTouch® Library Support
Capacitive touch buttons, sliders and wheels
QTouch and QMatrix™ acquisition
Up to 64 sense channels
JTAG (IEEE std. 1149.1 Compliant) Interface
Boundary-scan Capabilities According to the JTAG Standard
Extensive On-chip Debug Support
Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface
2020 Microchip Technology Inc.
Data Sheet Complete
DS40002070B-page 1
ATmega164A/PA/324A/PA/644A/PA/1284/P
Peripheral Features
Two 8-bit Timer/Counters with Separate Prescalers and Compare Modes
One/two 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture Mode
Real Time Counter with Separate Oscillator
Six PWM Channels
8-channel, 10-bit ADC
Differential mode with selectable gain at 1×, 10× or 200×
Byte-oriented Two-wire Serial Interface
Two Programmable Serial USART
Master/Slave SPI Serial Interface
Programmable Watchdog Timer with Separate On-chip Oscillator
On-chip Analog Comparator
Interrupt and Wake-up on Pin Change
Special Microcontroller Features
Power-on Reset and Programmable Brown-out Detection
Internal Calibrated RC Oscillator
External and Internal Interrupt Sources
Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby and Extended Standby
I/O and Packages
32 Programmable I/O Lines
40-pin PDIP, 44-lead TQFP, 44-pad VQFN/QFN/MLF
44-pad DRQFN
49-ball VFBGA
Operating Voltages
1.8 - 5.5V
Speed Grades
0 - 4MHz @ 1.8 - 5.5V
0 - 10MHz @ 2.7 - 5.5V
0 - 20MHz @ 4.5 - 5.5V
Power Consumption at 1MHz, 1.8V, 25C
Note:
Active: 0.4mA
Power-down Mode: 0.1µA
Power-save Mode: 0.6µA (Including 32kHz RTC)
1. See “Data retention” on page 17 for details.
2020 Microchip Technology Inc.
Data Sheet Complete
DS40002070B-page 2
ATmega164A/PA/324A/PA/644A/PA/1284/P
Table of Contents
1
2
Pin configurations ............................................................................................................... 11
1.1
Pinout - PDIP/TQFP/VQFN/QFN/MLF for ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P 11
1.2
Pinout - DRQFN for ATmega164A/164PA/324A/324PA ................................. 12
1.3
Pinout - VFBGA for ATmega164A/164PA/324A/324PA .................................. 13
Overview .................................................................................................................................... 13
2.1
Block diagram .................................................................................................. 14
2.2
Comparison between ATmega164A, ATmega164PA, ATmega324A, ATmega324PA, ATmega644A, ATmega644PA, ATmega1284 and ATmega1284P
...................................................................................................................................... 15
2.3
Pin Descriptions............................................................................................... 15
3
Resources
4
About code examples
5
Data retention ......................................................................................................................... 17
6
Capacitive touch sensing
7
AVR CPU Core
8
9
................................................................................................................................ 17
....................................................................................................... 17
............................................................................................... 17
....................................................................................................................... 18
7.1
Overview.......................................................................................................... 18
7.2
ALU – Arithmetic Logic Unit............................................................................. 19
7.3
Status Register ................................................................................................ 19
7.4
General Purpose Register File ........................................................................ 21
7.5
Stack Pointer ................................................................................................... 22
7.6
Instruction Execution Timing ........................................................................... 23
7.7
Reset and interrupt handling ........................................................................... 24
AVR memories ....................................................................................................................... 27
8.1
Overview.......................................................................................................... 27
8.2
In-System Reprogrammable Flash Program Memory ..................................... 27
8.3
SRAM data memory ........................................................................................ 28
8.4
EEPROM data memory ................................................................................... 30
8.5
I/O memory...................................................................................................... 31
8.6
Register Description ........................................................................................ 32
System clock and clock options
................................................................................ 38
9.1
Clock systems and their distribution ................................................................ 38
9.2
Clock Sources ................................................................................................. 39
2020 Microchip Technology Inc.
Data Sheet Complete
DS40002070B-page 3
ATmega164A/PA/324A/PA/644A/PA/1284/P
9.3
Low Power Crystal Oscillator........................................................................... 41
9.4
Full swing Crystal Oscillator ............................................................................ 42
9.5
Low Frequency Crystal Oscillator .................................................................... 43
9.6
Calibrated Internal RC Oscillator ..................................................................... 44
9.7
128kHz internal oscillator ................................................................................ 45
9.8
External clock .................................................................................................. 46
9.9
Timer/Counter Oscillator.................................................................................. 46
9.10
Clock Output Buffer ......................................................................................... 47
9.11
System Clock Prescaler .................................................................................. 47
9.12
Register description ......................................................................................... 48
10 Power management and sleep modes
................................................................... 50
10.1
Overview.......................................................................................................... 50
10.2
Sleep Modes.................................................................................................... 50
10.3
BOD disable(1) ................................................................................................. 51
10.4
Idle mode......................................................................................................... 51
10.5
ADC Noise Reduction mode............................................................................ 51
10.6
Power-down mode........................................................................................... 52
10.7
Power-save mode............................................................................................ 52
10.8
Standby mode ................................................................................................. 52
10.9
Extended Standby mode ................................................................................. 52
10.10
Power Reduction Register ............................................................................... 53
10.11
Minimizing Power Consumption ...................................................................... 53
10.12
Register description ......................................................................................... 55
11 System Control and Reset
............................................................................................. 58
11.1
Resetting the AVR ........................................................................................... 58
11.2
Internal Voltage Reference.............................................................................. 62
11.3
Watchdog Timer .............................................................................................. 63
11.4
Register description ......................................................................................... 66
12 Interrupts ................................................................................................................................... 69
12.1
Overview.......................................................................................................... 69
12.2
Interrupt Vectors in ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P 69
12.3
Register description ......................................................................................... 73
13 External Interrupts
.............................................................................................................. 75
13.1
Overview.......................................................................................................... 75
13.2
Register description ......................................................................................... 75
2020 Microchip Technology Inc.
Data Sheet Complete
DS40002070B-page 4
ATmega164A/PA/324A/PA/644A/PA/1284/P
14 I/O-Ports ..................................................................................................................................... 80
14.1
Overview.......................................................................................................... 80
14.2
Ports as General Digital I/O ............................................................................. 81
14.3
Alternate Port Functions .................................................................................. 85
14.4
Register description ......................................................................................... 97
15 8-bit Timer/Counter0 with PWM
.................................................................................. 99
15.1
Features .......................................................................................................... 99
15.2
Overview.......................................................................................................... 99
15.3
Timer/Counter Clock Sources ....................................................................... 100
15.4
Counter Unit .................................................................................................. 100
15.5
Output Compare unit ..................................................................................... 101
15.6
Compare Match Output unit .......................................................................... 102
15.7
Modes of operation........................................................................................ 103
15.8
Timer/Counter Timing diagrams .................................................................... 107
15.9
Register description ....................................................................................... 109
16 16-bit Timer/Counter1 and Timer/Counter3(1) with PWM
.......................... 115
16.1
Features ........................................................................................................ 115
16.2
Overview........................................................................................................ 115
16.3
Accessing 16-bit Registers ............................................................................ 117
16.4
Timer/Counter Clock Sources ....................................................................... 120
16.5
Prescaler Reset ............................................................................................. 120
16.6
Counter Unit .................................................................................................. 121
16.7
Input Capture Unit ......................................................................................... 122
16.8
Output Compare units ................................................................................... 123
16.9
Compare Match Output unit .......................................................................... 126
16.10
Modes of Operation ....................................................................................... 127
16.11
Timer/Counter Timing diagrams .................................................................... 134
16.12
Register description ....................................................................................... 136
17 8-bit Timer/Counter2 with PWM and asynchronous operation ............. 146
17.1
Features ........................................................................................................ 146
17.2
Overview........................................................................................................ 146
17.3
Timer/Counter clock sources ......................................................................... 147
17.4
Counter unit ................................................................................................... 148
17.5
Output Compare unit ..................................................................................... 148
17.6
Compare Match Output unit .......................................................................... 150
2020 Microchip Technology Inc.
Data Sheet Complete
DS40002070B-page 5
ATmega164A/PA/324A/PA/644A/PA/1284/P
17.7
Modes of operation........................................................................................ 151
17.8
Timer/Counter Timing diagrams .................................................................... 155
17.9
Asynchronous Operation of Timer/Counter2 ................................................. 156
17.10
Timer/Counter Prescaler ............................................................................... 158
17.11
Register description ....................................................................................... 159
18 SPI – Serial Peripheral Interface ............................................................................... 166
18.1
Features ........................................................................................................ 166
18.2
Overview........................................................................................................ 166
18.3
SS pin functionality ........................................................................................ 170
18.4
Data modes ................................................................................................... 170
18.5
Register description ....................................................................................... 172
19 USART
...................................................................................................................................... 175
19.1
Features ........................................................................................................ 175
19.2
USART1 and USART0 .................................................................................. 175
19.3
Overview........................................................................................................ 175
19.4
Clock Generation ........................................................................................... 176
19.5
Frame formats ............................................................................................... 179
19.6
USART Initialization....................................................................................... 180
19.7
Data Transmission – The USART Transmitter .............................................. 181
19.8
Data Reception – The USART Receiver ....................................................... 184
19.9
Asynchronous Data Reception ...................................................................... 188
19.10
Multi-processor Communication mode .......................................................... 191
19.11
Register description ....................................................................................... 193
19.12
Examples of Baud Rate Setting..................................................................... 198
20 USART in SPI mode .......................................................................................................... 202
20.1
Features ........................................................................................................ 202
20.2
Overview........................................................................................................ 202
20.3
Clock Generation ........................................................................................... 202
20.4
SPI Data Modes and Timing.......................................................................... 203
20.5
Frame Formats .............................................................................................. 203
20.6
Data Transfer................................................................................................. 205
20.7
AVR USART MSPIM vs. AVR SPI ................................................................ 207
20.8
Register description ....................................................................................... 208
21 Two-wire Serial Interface
21.1
.............................................................................................. 211
Features ........................................................................................................ 211
2020 Microchip Technology Inc.
Data Sheet Complete
DS40002070B-page 6
ATmega164A/PA/324A/PA/644A/PA/1284/P
21.2
Two-wire Serial Interface bus definition......................................................... 211
21.3
Data Transfer and Frame Format .................................................................. 212
21.4
Multi-master Bus Systems, Arbitration and Synchronization ......................... 214
21.5
Overview of the TWI Module ......................................................................... 217
21.6
Using the TWI................................................................................................ 219
21.7
Transmission modes ..................................................................................... 222
21.8
Multi-master Systems and Arbitration............................................................ 234
21.9
Register description ....................................................................................... 236
22 AC - Analog Comparator
............................................................................................... 240
22.1
Overview........................................................................................................ 240
22.2
Analog Comparator Multiplexed Input ........................................................... 240
22.3
Register description ....................................................................................... 241
23 ADC - Analog-to-digital converter
........................................................................... 243
23.1
Features ........................................................................................................ 243
23.2
Overview........................................................................................................ 243
23.3
Operation....................................................................................................... 244
23.4
Starting a conversion..................................................................................... 245
23.5
Prescaling and Conversion Timing ................................................................ 246
23.6
Changing Channel or Reference Selection ................................................... 249
23.7
ADC Noise Canceler ..................................................................................... 250
23.8
ADC Conversion Result................................................................................. 255
23.9
Register description ....................................................................................... 257
24 JTAG interface and on-chip debug system ....................................................... 262
24.1
Features ........................................................................................................ 262
24.2
Overview........................................................................................................ 262
24.3
TAP – Test Access Port ................................................................................ 262
24.4
TAP controller................................................................................................ 264
24.5
Using the Boundary-scan Chain .................................................................... 265
24.6
Using the On-chip Debug System ................................................................. 265
24.7
On-chip Debug Specific JTAG Instructions ................................................... 266
24.8
Using the JTAG Programming Capabilities ................................................... 266
24.9
Bibliography................................................................................................... 267
24.10
Register description ....................................................................................... 267
25 IEEE 1149.1 (JTAG) Boundary-scan
25.1
...................................................................... 268
Features ........................................................................................................ 268
2020 Microchip Technology Inc.
Data Sheet Complete
DS40002070B-page 7
ATmega164A/PA/324A/PA/644A/PA/1284/P
25.2
Overview........................................................................................................ 268
25.3
Data Registers............................................................................................... 269
25.4
Boundary-scan Specific JTAG Instructions ................................................... 270
25.5
Boundary-scan Chain .................................................................................... 271
25.6
ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P Boundary-scan order 274
25.7
Boundary-scan Description Language Files .................................................. 275
25.8
Register description ....................................................................................... 276
26 Boot loader support – read-while-write self-programming
..................... 277
26.1
Features ........................................................................................................ 277
26.2
Overview........................................................................................................ 277
26.3
Application and Boot Loader Flash Sections ................................................. 277
26.4
Read-While-Write and No Read-While-Write Flash Sections........................ 278
26.5
Boot Loader Lock Bits ................................................................................... 280
26.6
Entering the Boot Loader Program ................................................................ 281
26.7
Addressing the Flash During Self-Programming ........................................... 282
26.8
Self-Programming the Flash .......................................................................... 283
26.9
Register description ....................................................................................... 293
27 Memory programming
.................................................................................................... 295
27.1
Program And Data Memory Lock Bits ........................................................... 295
27.2
Fuse bits ........................................................................................................ 296
27.3
Signature Bytes ............................................................................................. 298
27.4
Calibration byte.............................................................................................. 298
27.5
Page Size ...................................................................................................... 298
27.6
Parallel Programming Parameters, Pin Mapping, and Commands ............... 299
27.7
Parallel programming .................................................................................... 301
27.8
Serial downloading ........................................................................................ 309
27.9
Serial Programming Instruction set ............................................................... 312
27.10
Programming via the JTAG Interface ............................................................ 314
28 Electrical characteristics (TA = -40°C to 85°C) ................................................ 326
28.1
DC Characteristics......................................................................................... 326
28.2
Speed grades ................................................................................................ 332
28.3
Clock characteristics...................................................................................... 333
28.4
System and reset characteristics................................................................... 334
28.5
External interrupts characteristics ................................................................. 334
28.6
SPI timing characteristics .............................................................................. 335
2020 Microchip Technology Inc.
Data Sheet Complete
DS40002070B-page 8
ATmega164A/PA/324A/PA/644A/PA/1284/P
28.7
Two-wire Serial Interface Characteristics ...................................................... 336
28.8
ADC characteristics ....................................................................................... 338
29 Electrical Characteristics - TA = -40°C to 105°C ............................................. 341
29.1
DC Characteristics......................................................................................... 341
30 Typical characteristics -TA = -40°C to 85°C
...................................................... 345
30.1
ATmega164A typical characteristics - TA = -40°C to 85°C ........................... 345
30.2
ATmega164PA typical characteristics - TA = -40°C to 85°C ......................... 372
30.3
ATmega324A typical characteristics - TA = -40°C to 85°C ........................... 398
30.4
ATmega324PA typical characteristics - TA = -40°C to 85°C ......................... 424
30.5
ATmega644A typical characteristics - TA = -40°C to 85°C ........................... 450
30.6
ATmega644PA typical characteristics - TA = -40°C to 85°C ......................... 476
30.7
ATmega1284 typical characteristics - TA = -40°C to 85°C............................ 502
30.8
ATmega1284P typical characteristics - TA = -40°C to 85°C ......................... 528
31 Typical Characteristics - TA = -40°C to 105°C
................................................. 554
31.1
ATmega164PA Typical Characteristics - TA = -40°C to 105°C ..................... 555
31.2
ATmega324PA Typical Characteristics - TA = -40°C to 105°C ..................... 575
31.3
ATmega644PA Typical Characteristics - TA = -40°C to 105°C ..................... 595
31.4
ATmega1284P typical characteristics - TA = -40°C to 105°C ....................... 614
32 Register summary
............................................................................................................. 637
33 Instruction set summary
34 Ordering information
............................................................................................... 641
....................................................................................................... 644
34.1
ATmega164A................................................................................................. 644
34.2
ATmega164PA .............................................................................................. 645
34.3
ATmega324A................................................................................................. 646
34.4
ATmega324PA .............................................................................................. 647
34.5
ATmega644A................................................................................................. 648
34.6
ATmega644PA .............................................................................................. 649
34.7
ATmega1284 ................................................................................................. 650
34.8
ATmega1284P............................................................................................... 651
35 Packaging information
................................................................................................... 652
35.1
44A ................................................................................................................ 652
35.2
40P6 .............................................................................................................. 654
35.3
44M1.............................................................................................................. 655
35.4
44MC ............................................................................................................. 658
2020 Microchip Technology Inc.
Data Sheet Complete
DS40002070B-page 9
ATmega164A/PA/324A/PA/644A/PA/1284/P
35.5
36 Errata
49C2 .............................................................................................................. 661
......................................................................................................................................... 664
37 Data sheet revision history .......................................................................................... 665
37.1
Rev. B - 01/2020............................................................................................ 665
37.2
Rev. A - 10/2018............................................................................................ 665
37.3
Rev. 8272G - 01/2015 ................................................................................... 665
37.4
Rev. 8272F - 08/2014 .................................................................................... 665
37.5
Rev. 8272E - 04/2013.................................................................................... 666
37.6
Rev. 8272D - 05/12 ....................................................................................... 666
37.7
Rev. 8272C - 06/11 ....................................................................................... 666
37.8
Rev. 8272B - 05/11........................................................................................ 666
37.9
Rev. 8272A - 01/10........................................................................................ 667
2020 Microchip Technology Inc.
Data Sheet Complete
DS40002070B-page 10
ATmega164A/PA/324A/PA/644A/PA/1284/P
1.
Pin configurations
1.1
Pinout - PDIP/TQFP/VQFN/QFN/MLF for
ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P
Figure 1-1.
Pinout
(PCINT8/XCK0/T0) PB0
(PCINT9/CLKO/T1) PB1
(PCINT10/INT2/AIN0) PB2
(PCINT11/OC0A/AIN1) PB3
(PCINT12/OC0B/SS) PB4
(PCINT13/ICP3/MOSI) PB5
(PCINT14/OC3A/MISO) PB6
(PCINT15/OC3B/SCK) PB7
RESET
VCC
GND
XTAL2
XTAL1
(PCINT24/RXD0/T3*) PD0
(PCINT25/TXD0) PD1
(PCINT26/RXD1/INT0) PD2
(PCINT27/TXD1/INT1) PD3
(PCINT28/XCK1/OC1B) PD4
(PCINT29/OC1A) PD5
(PCINT30/OC2B/ICP) PD6
PA0 (ADC0/PCINT0)
PA1 (ADC1/PCINT1)
PA2 (ADC2/PCINT2)
PA3 (ADC3/PCINT3)
PA4 (ADC4/PCINT4)
PA5 (ADC5/PCINT5)
PA6 (ADC6/PCINT6)
PA7 (ADC7/PCINT7)
AREF
GND
AVCC
PC7 (TOSC2/PCINT23)
PC6 (TOSC1/PCINT22)
PC5 (TDI/PCINT21)
PC4 (TDO/PCINT20)
PC3 (TMS/PCINT19)
PC2 (TCK/PCINT18)
PC1 (SDA/PCINT17)
PC0 (SCL/PCINT16)
PD7 (OC2A/PCINT31)
PB4 (SS/OC0B/PCINT12)
PB3 (AIN1/OC0A/PCINT11)
PB2 (AIN0/INT2/PCINT10)
PB1 (T1/CLKO/PCINT9)
PB0 (XCK0/T0/PCINT8)
GND
VCC
PA0 (ADC0/PCINT0)
PA1 (ADC1/PCINT1)
PA2 (ADC2/PCINT2)
PA3 (ADC3/PCINT3)
TQFP/QFN/MLF
(PCINT13/ICP3/MOSI) PB5
(PCINT14/OC3A/MISO) PB6
(PCINT15/OC3B/SCK) PB7
RESET
VCC
GND
XTAL2
XTAL1
(PCINT24/RXD0/T3*) PD0
(PCINT25/TXD0) PD1
(PCINT26/RXD1/INT0) PD2
PD3
PD4
PD5
PD6
PD7
VCC
GND
(PCINT16/SCL) PC0
(PCINT17/SDA) PC1
(PCINT18/TCK) PC2
(PCINT19/TMS) PC3
(PCINT27/TXD1/INT1)
(PCINT28/XCK1/OC1B)
(PCINT29/OC1A)
(PCINT30/OC2B/ICP)
(PCINT31/OC2A)
*T3 is only available for ATmega1284/1284P
PA4 (ADC4/PCINT4)
PA5 (ADC5/PCINT5)
PA6 (ADC6/PCINT6)
PA7 (ADC7/PCINT7)
AREF
GND
AVCC
PC7 (TOSC2/PCINT23)
PC6 (TOSC1/PCINT22)
PC5 (TDI/PCINT21)
PC4 (TDO/PCINT20)
Note:
The large center pad underneath the VQFN/QFN/MLF package should be soldered to ground on the board to
ensure good mechanical stability.
2020 Microchip Technology Inc.
Data Sheet Complete
DS40002070B-page 11
ATmega164A/PA/324A/PA/644A/PA/1284/P
Pinout - DRQFN for ATmega164A/164PA/324A/324PA
Figure 1-2.
DRQFN - pinout
Top view
Bottom view
A18
B1
B15
A17
B2
B14
B3
A2
A3
A4
B14
B2
A16
B13
A16
B13
B3
A15
A15
B12
B4
B5
B11
A13
A2
A3
A4
A14
A5
B11
A13
B5
A6
A12
B10
A11
B9
A10
B8
A9
B7
A8
B6
A7
B8
A10
B9
A11
B10
A12
B7
A9
B6
A8
A1
B1
B12
A14
A6
A18
B15
A17
B4
A5
Table 1-1.
A24
B20
A23
B19
A22
B18
A21
B17
A20
B16
A19
A19
B16
A20
B17
A21
B18
A22
B19
A23
B20
A24
A1
A7
1.2
DRQFN - pinout.
A1
PB5
A7
PD3
A13
PC4
A19
PA3
B1
PB6
B6
PD4
B11
PC5
B16
PA2
A2
PB7
A8
PD5
A14
PC6
A20
PA1
B2
RESET
B7
PD6
B12
PC7
B17
PA0
A3
VCC
A9
PD7
A15
AVCC
A21
VCC
B3
GND
B8
VCC
B13
GND
B18
GND
A4
XTAL2
A10
GND
A16
AREF
A22
PB0
B4
XTAL1
B9
PC0
B14
PA7
B19
PB1
A5
PD0
A11
PC1
A17
PA6
A23
PB2
B5
PD1
B10
PC2
B15
PA5
B20
PB3
A6
PD2
A12
PC3
A18
PA4
A24
PB4
2020 Microchip Technology Inc.
Data Sheet Complete
DS40002070B-page 12
ATmega164A/PA/324A/PA/644A/PA/1284/P
1.3
Pinout - VFBGA for ATmega164A/164PA/324A/324PA
Figure 1-3.
VFBGA - pinout
Top view
1
3
4
5
6
7
7
6
5
4
3
2
1
A
A
B
B
C
C
D
D
E
E
F
F
G
G
Table 1-2.
2.
2
Bottom view
BGA - pinout
1
2
3
4
5
6
7
A
GND
PB4
PB2
GND
VCC
PA2
GND
B
PB6
PB5
PB3
PB0
PA0
PA3
PA5
C
VCC
RESET
PB7
PB1
PA1
PA6
AREF
D
GND
XTAL2
PD0
GND
PA4
PA7
GND
E
XTAL1
PD1
PD5
PD7
PC5
PC7
AVCC
F
PD2
PD3
PD6
PC0
PC2
PC4
PC6
G
GND
PD4
VCC
GND
PC1
PC3
GND
Overview
The ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P is a low-power CMOS 8-bit microcontroller
based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the
ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P achieves throughputs approaching 1 MIPS per
MHz allowing the system designer to optimize power consumption versus processing speed.
2020 Microchip Technology Inc.
Data Sheet Complete
DS40002070B-page 13
ATmega164A/PA/324A/PA/644A/PA/1284/P
2.1
Block diagram
Figure 2-1.
Block diagram
PA7..0
PB7..0
VCC
RESET
GND
Power
Supervision
POR / BOD &
RESET
PORT A (8)
PORT B (8)
Watchdog
Timer
Analog
Comparator
A/D
Converter
Watchdog
Oscillator
USART 0
XTAL1
Oscillator
Circuits /
Clock
Generation
EEPROM
Internal
Bandgap reference
XTAL2
SPI
8bit T/C 0
CPU
16bit T/C 1
16bit T/C 1
JTAG/OCD
8bit T/C 2
TWI
FLASH
SRAM
PORT C (8)
TOSC2/PC7
TOSC1/PC6
USART 1
16bit T/C 3*
PORT D (8)
PD7..0
PC5..0
* Only available in ATmega1284/1284P
The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are
directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one
single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving
throughputs up to ten times faster than conventional CISC microcontrollers.
The ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P provide the following features:
16/32/64/128Kbytes of In-System Programmable Flash with Read-While-Write capabilities, 512/1K/2K/4Kbytes
EEPROM, 1/2/4/16Kbytes SRAM, 32 general purpose I/O lines, 32 general purpose working registers, Real
Time Counter (RTC), three (four for ATmega1284/1284P) flexible Timer/Counters with compare modes and
PWM, 2 USARTs, a byte oriented two-wire Serial Interface, a 8-channel, 10-bit ADC with optional differential
input stage with programmable gain, programmable Watchdog Timer with Internal Oscillator, an SPI serial port,
IEEE std. 1149.1 compliant JTAG test interface, also used for accessing the On-chip Debug system and
programming and six software selectable power saving modes. The Idle mode stops the CPU while allowing the
SRAM, Timer/Counters, SPI port, and interrupt system to continue functioning. The Power-down mode saves
the register contents but freezes the Oscillator, disabling all other chip functions until the next interrupt or
Hardware Reset. In Power-save mode, the asynchronous timer continues to run, allowing the user to maintain a
2020 Microchip Technology Inc.
Data Sheet Complete
DS40002070B-page 14
ATmega164A/PA/324A/PA/644A/PA/1284/P
timer base while the rest of the device is sleeping. The ADC Noise Reduction mode stops the CPU and all I/O
modules except Asynchronous Timer and ADC, to minimize switching noise during ADC conversions. In
Standby mode, the Crystal/Resonator Oscillator is running while the rest of the device is sleeping. This allows
very fast start-up combined with low power consumption. In Extended Standby mode, both the main Oscillator
and the Asynchronous Timer continue to run.
Microchip offers the QTouch library for embedding capacitive touch buttons, sliders and wheels functionality into
AVR microcontrollers. The patented charge-transfer signal acquisition offers robust sensing and includes fully
debounced reporting of touch keys and includes Adjacent Key Suppression™ (AKS™) technology for
unambiguous detection of key events. The easy-to-use QTouch Suite toolchain allows you to explore, develop
and debug your own touch applications.
The device is manufactured using the high-density nonvolatile memory technology. The On-chip ISP Flash
allows the program memory to be reprogrammed in-system through an SPI serial interface, by a conventional
nonvolatile memory programmer, or by an On-chip Boot program running on the AVR core. The boot program
can use any interface to download the application program in the application Flash memory. Software in the
Boot Flash section will continue to run while the Application Flash section is updated, providing true ReadWhile-Write operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a
monolithic chip, the ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P is a powerful microcontroller
that provides a highly flexible and cost effective solution to many embedded control applications.
The ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P is supported with a full suite of program and
system development tools including: C compilers, macro assemblers, program debugger/simulators, in-circuit
emulators, and evaluation kits.
2.2
Comparison between ATmega164A, ATmega164PA, ATmega324A, ATmega324PA,
ATmega644A, ATmega644PA, ATmega1284 and ATmega1284P
Table 2-1.
Differences between ATmega164A, ATmega164PA, ATmega324A, ATmega324PA, ATmega644A, ATmega644PA, ATmega1284 and ATmega1284P
Device
Flash
EEPROM
RAM
ATmega164A
16K
512
1K
ATmega164PA
16K
512
1K
ATmega324A
32K
1K
2K
ATmega324PA
32K
1K
2K
ATmega644A
64K
2K
4K
ATmega644PA
64K
2K
4K
ATmega1284
128K
4K
16K
ATmega1284P
128K
4K
16K
2.3
Pin Descriptions
2.3.1
VC
Units
bytes
Digital supply voltage.
2.3.2
GND
Ground.
2020 Microchip Technology Inc.
Data Sheet Complete
DS40002070B-page 15
ATmega164A/PA/324A/PA/644A/PA/1284/P
2.3.3
Port A (PA7:PA0)
Port A serves as analog inputs to the Analog-to-digital Converter.
Port A also serves as an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port A output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs,
Port A pins that are externally pulled low will source current if the pull-up resistors are activated. The Port A pins
are tri-stated when a reset condition becomes active, even if the clock is not running.
Port A also serves the functions of various special features of the
ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P as listed on page 87.
2.3.4
Port B (PB7:PB0)
Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output
buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins
that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tristated when a reset condition becomes active, even if the clock is not running.
Port B also serves the functions of various special features of the
ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P as listed on page 88.
2.3.5
Port C (PC7:PC0)
Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port C output
buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port C pins
that are externally pulled low will source current if the pull-up resistors are activated. The Port C pins are tristated when a reset condition becomes active, even if the clock is not running.
Port C also serves the functions of the JTAG interface, along with special features of the
ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P as listed on page 91.
2.3.6
Port D (PD7:PD0)
Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port D output
buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port D pins
that are externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tristated when a reset condition becomes active, even if the clock is not running.
Port D also serves the functions of various special features of the
ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P as listed on page 94.
2.3.7
RESET
Reset input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the
clock is not running. The minimum pulse length is given in ”System and reset characteristics” on page 334.
Shorter pulses are not guaranteed to generate a reset.
2.3.8
XTAL1
Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.
2.3.9
XTAL2
Output from the inverting Oscillator amplifier.
2.3.10 AVCC
AVCC is the supply voltage pin for Port A and the Analog-to-digital Converter. It should be externally connected
to VCC, even if the ADC is not used. If the ADC is used, it should be connected to VCC through a low-pass filter.
2.3.11 AREF
This is the analog reference pin for the Analog-to-digital Converter.
2020 Microchip Technology Inc.
Data Sheet Complete
DS40002070B-page 16
ATmega164A/PA/324A/PA/644A/PA/1284/P
3.
Resources
A comprehensive set of development tools, application notes and datasheets are available for download on
www.microchip.com
4.
About code examples
This documentation contains simple code examples that briefly show how to use various parts of the device. Be
aware that not all C compiler vendors include bit definitions in the header files and interrupt handling in C is
compiler dependent. Confirm with the C compiler documentation for more details.
The code examples assume that the part specific header file is included before compilation. For I/O registers
located in extended I/O map, "IN", "OUT", "SBIS", "SBIC", "CBI", and "SBI" instructions must be replaced with
instructions that allow access to extended I/O. Typically "LDS" and "STS" combined with "SBRS", "SBRC",
"SBR", and "CBR".
Note:
5.
1.
Data retention
Reliability Qualification results show that the projected data retention failure rate is much less than 1 PPM over
20 years at 85°C or 100 years at 25°C.
6. Capacitive touch sensing
The QTouch Library provides a simple to use solution to realize touch sensitive interfaces on most AVR
microcontrollers. The QTouch Library includes support for the QTouch and QMatrix acquisition methods.
Touch sensing can be added to any application by linking the appropriate QTouch Library for the AVR
Microcontroller. This is done by using a simple set of APIs to define the touch channels and sensors, and then
calling the touch sensing API’s to retrieve the channel information and determine the touch sensor states.
The QTouch Library is FREE and downloadable from www.microchip.com. For implementation details and other
information, refer to the “QTouch Library User Guide” - also available for download from the microchip website.
2020 Microchip Technology Inc.
Data Sheet Complete
DS40002070B-page 17
ATmega164A/PA/324A/PA/644A/PA/1284/P
7.
AVR CPU Core
7.1
Overview
This section discusses the AVR core architecture in general. The main function of the CPU core is to ensure
correct program execution. The CPU must therefore be able to access memories, perform calculations, control
peripherals, and handle interrupts.
Figure 7-1.
Block diagram of the AVR architecture
Data Bus 8-bit
Flash
Program
Memory
Program
Counter
Status
and Control
32 x 8
General
Purpose
Registrers
Control Lines
Direct Addressing
Instruction
Decoder
Indirect Addressing
Instruction
Register
Interrupt
Unit
SPI
Unit
Watchdog
Timer
ALU
Analog
Comparator
I/O Module1
Data
SRAM
I/O Module 2
I/O Module n
EEPROM
I/O Lines
In order to maximize performance and parallelism, the AVR uses a Harvard architecture – with separate
memories and buses for program and data. Instructions in the program memory are executed with a single level
pipelining. While one instruction is being executed, the next instruction is pre-fetched from the program memory.
This concept enables instructions to be executed in every clock cycle. The program memory is In-System
Reprogrammable Flash memory.
The fast-access Register File contains 32 x 8-bit general purpose working registers with a single clock cycle
access time. This allows single-cycle Arithmetic Logic Unit (ALU) operation. In a typical ALU operation, two
2020 Microchip Technology Inc.
Data Sheet Complete
DS40002070B-page 18
ATmega164A/PA/324A/PA/644A/PA/1284/P
operands are output from the Register File, the operation is executed, and the result is stored back in the
Register File – in one clock cycle.
Six of the 32 registers can be used as three 16-bit indirect address register pointers for Data Space addressing
– enabling efficient address calculations. One of the these address pointers can also be used as an address
pointer for look up tables in Flash program memory. These added function registers are the 16-bit X-, Y-, and Zregister, described later in this section.
The ALU supports arithmetic and logic operations between registers or between a constant and a register.
Single register operations can also be executed in the ALU. After an arithmetic operation, the Status Register is
updated to reflect information about the result of the operation.
Program flow is provided by conditional and unconditional jump and call instructions, able to directly address the
whole address space. Most AVR instructions have a single 16-bit word format. Every program memory address
contains a 16- or 32-bit instruction.
Program Flash memory space is divided in two sections, the Boot Program section and the Application Program
section. Both sections have dedicated Lock bits for write and read/write protection. The SPM instruction that
writes into the Application Flash memory section must reside in the Boot Program section.
During interrupts and subroutine calls, the return address Program Counter (PC) is stored on the Stack. The
Stack is effectively allocated in the general data SRAM, and consequently the Stack size is only limited by the
total SRAM size and the usage of the SRAM. All user programs must initialize the SP in the Reset routine
(before subroutines or interrupts are executed). The Stack Pointer (SP) is read/write accessible in the I/O space.
The data SRAM can easily be accessed through the five different addressing modes supported in the AVR
architecture.
The memory spaces in the AVR architecture are all linear and regular memory maps.
A flexible interrupt module has its control registers in the I/O space with an additional Global Interrupt Enable bit
in the Status Register. All interrupts have a separate Interrupt Vector in the Interrupt Vector table. The interrupts
have priority in accordance with their Interrupt Vector position. The lower the Interrupt Vector address, the
higher the priority.
The I/O memory space contains 64 addresses for CPU peripheral functions as Control Registers, SPI, and other
I/O functions. The I/O Memory can be accessed directly, or as the Data Space locations following those of the
Register File, 0x20 - 0x5F. In addition, the ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P has
Extended I/O space from 0x60 - 0xFF in SRAM where only the ST/STS/STD and LD/LDS/LDD instructions can
be used.
7.2
ALU – Arithmetic Logic Unit
The high-performance AVR ALU operates in direct connection with all the 32 general purpose working registers.
Within a single clock cycle, arithmetic operations between general purpose registers or between a register and
an immediate are executed. The ALU operations are divided into three main categories – arithmetic, logical, and
bit-functions. Some implementations of the architecture also provide a powerful multiplier supporting both
signed/unsigned multiplication and fractional format. See the “Instruction Set” section for a detailed description.
7.3
Status Register
The Status Register contains information about the result of the most recently executed arithmetic instruction.
This information can be used for altering program flow in order to perform conditional operations. Note that the
Status Register is updated after all ALU operations, as specified in the AVR Instruction Set Manual. This will in
many cases remove the need for using the dedicated compare instructions, resulting in faster and more
compact code.
The Status Register is not automatically stored when entering an interrupt routine and restored when returning
from an interrupt. This must be handled by software.
2020 Microchip Technology Inc.
Data Sheet Complete
DS40002070B-page 19
ATmega164A/PA/324A/PA/644A/PA/1284/P
7.3.1
SREG – Status Register(1)
The AVR Status Register – SREG – is defined as:
Bit
7
6
5
4
3
2
1
0
0x3F (0x5F)
I
T
H
S
V
N
Z
C
Read/Write
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Initial Value
0
0
0
0
0
0
0
0
SREG
• Bit 7 – I: Global Interrupt Enable
The Global Interrupt Enable bit must be set for the interrupts to be enabled. The individual interrupt enable
control is then performed in separate control registers. If the Global Interrupt Enable Register is cleared, none of
the interrupts are enabled independent of the individual interrupt enable settings. The I-bit is cleared by
hardware after an interrupt has occurred, and is set by the RETI instruction to enable subsequent interrupts.
The I-bit can also be set and cleared by the application with the SEI and CLI instructions, as described in the
AVR Instruction Set Manual on www.microchip.com.
• Bit 6 – T: Bit Copy Storage
The Bit Copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source or destination for the
operated bit. A bit from a register in the Register File can be copied into T by the BST instruction, and a bit in T
can be copied into a bit in a register in the Register File by the BLD instruction.
• Bit 5 – H: Half Carry Flag
The Half Carry Flag H indicates a Half Carry in some arithmetic operations. Half Carry Is useful in BCD
arithmetic.
• Bit 4 – S: Sign Bit, S = N V
The S-bit is always an exclusive or between the Negative Flag N and the Two’s Complement Overflow Flag V.
• Bit 3 – V: Two’s Complement Overflow Flag
The Two’s Complement Overflow Flag V supports two’s complement arithmetic.
• Bit 2 – N: Negative Flag
The Negative Flag N indicates a negative result in an arithmetic or logic operation.
• Bit 1 – Z: Zero Flag
The Zero Flag Z indicates a zero result in an arithmetic or logic operation.
• Bit 0 – C: Carry Flag
The Carry Flag C indicates a carry in an arithmetic or logic operation.
Note:
1.
Refer to the Instruction Set Manual on www.microchip.com for more details
2020 Microchip Technology Inc.
Data Sheet Complete
DS40002070B-page 20
ATmega164A/PA/324A/PA/644A/PA/1284/P
7.4
General Purpose Register File
The Register File is optimized for the AVR Enhanced RISC instruction set. In order to achieve the required
performance and flexibility, the following input/output schemes are supported by the Register File:
One 8-bit output operand and one 8-bit result input
Two 8-bit output operands and one 8-bit result input
Two 8-bit output operands and one 16-bit result input
One 16-bit output operand and one 16-bit result input
Figure 7-2 shows the structure of the 32 general purpose working registers in the CPU.
Figure 7-2.
AVR CPU General Purpose Working Registers
7
0
Addr.
R0
0x00
R1
0x01
R2
0x02
…
R13
0x0D
General
R14
0x0E
Purpose
R15
0x0F
Working
R16
0x10
Registers
R17
0x11
…
R26
0x1A
X-register Low Byte
R27
0x1B
X-register High Byte
R28
0x1C
Y-register Low Byte
R29
0x1D
Y-register High Byte
R30
0x1E
Z-register Low Byte
R31
0x1F
Z-register High Byte
Most of the instructions operating on the Register File have direct access to all registers, and most of them are
single cycle instructions.
As shown in Figure 7-2, each register is also assigned a data memory address, mapping them directly into the
first 32 locations of the user Data Space. Although not being physically implemented as SRAM locations, this
memory organization provides great flexibility in access of the registers, as the X-, Y- and Z-pointer registers
can be set to index any register in the file.
2020 Microchip Technology Inc.
Data Sheet Complete
DS40002070B-page 21
ATmega164A/PA/324A/PA/644A/PA/1284/P
7.4.1
The X-register, Y-register, and Z-register
The registers R26..R31 have some added functions to their general purpose usage. These registers are 16-bit
address pointers for indirect addressing of the data space. The three indirect address registers X, Y, and Z are
defined as described in Figure 7-3.
Figure 7-3.
The X-, Y-, and Z-registers
15
X-register
XH
7
XL
0
R27 (0x1B)
15
Y-register
0
R26 (0x1A)
YH
7
YL
0
R29 (0x1D)
Z-register
0
7
0
7
0
R28 (0x1C)
15
ZH
7
0
R31 (0x1F)
ZL
7
0
0
R30 (0x1E)
In the different addressing modes these address registers have functions as fixed displacement, automatic
increment, and automatic decrement (see the AVR Instruction Set Manual for details).
7.5
Stack Pointer
The Stack is mainly used for storing temporary data, for storing local variables and for storing return addresses
after interrupts and subroutine calls. Note that the Stack is implemented as growing from higher to lower
memory locations. The Stack Pointer Register always points to the top of the Stack. The Stack Pointer points to
the data SRAM Stack area where the Subroutine and Interrupt Stacks are located. A Stack PUSH command will
decrease the Stack Pointer.
The Stack in the data SRAM must be defined by the program before any subroutine calls are executed or
interrupts are enabled. Initial Stack Pointer value equals the last address of the internal SRAM and the Stack
Pointer must be set to point above start of the SRAM, see Figure 8-2 on page 29.
See Table 7-1 for Stack Pointer details.
Table 7-1.
Stack Pointer instructions
Instruction
Stack pointer
Description
PUSH
Decremented by 1
Data is pushed onto the stack
CALL
ICALL
RCALL
Decremented by 2
Return address is pushed onto the stack with a subroutine call or interrupt
POP
Incremented by 1
Data is popped from the stack
RET
RETI
Incremented by 2
Return address is popped from the stack with return from subroutine or return from
interrupt
The AVR Stack Pointer is implemented as two 8-bit registers in the I/O space. The number of bits actually used
is implementation dependent, see Table 7-2 on page 23. Note that the data space in some implementations of
the AVR architecture is so small that only SPL is needed. In this case, the SPH Register will not be present.
2020 Microchip Technology Inc.
Data Sheet Complete
DS40002070B-page 22
ATmega164A/PA/324A/PA/644A/PA/1284/P
7.5.1
SPH and SPL – Stack Pointer High and Stack pointer Low
Bit
15
14
13
12
11
10
9
8
0x3E (0x5E)
–
–
–
SP12
SP11
SP10
SP9
SP8
SPH
0x3D (0x5D)
SP7
SP6
SP5
SP4
SP3
SP2
SP1
SP0
SPL
7
6
5
4
3
2
1
0
Read/Write
Initial Value
Note:
1.
R
R
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
0
0
0
0/0(1)
0/1(1)
1/0(1)
0
0
1
1
1
1
1
1
1
1
Initial values respectively for the ATmega164A/164PA/324A/324PA/644A/644PA/1284/1284P.
Table 7-2.
7.5.2
R
R/W
Stack Pointer size
Device
Stack Pointer size
ATmega164A/ATmega164PA
SP[10:0]
ATmega324A/ATmega324PA
SP[11:0]
ATmega644A/ATmega644PA
SP[12:0]
ATmega1284/ATmega1284P
SP[13:0]
RAMPZ – Extended Z-pointer Register for ELPM/SPM(1)
Bit
7
6
5
4
3
2
1
0
0x3B (0x5B)
RAMPZ7
RAMPZ6
RAMPZ5
RAMPZ4
RAMPZ3
RAMPZ2
RAMPZ1
RAMPZ0
Read/Write
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Initial Value
0
0
0
0
0
0
0
0
RAMPZ
For ELPM/SPM instructions, the Z-pointer is a concatenation of RAMPZ, ZH, and ZL, as shown in Figure 7-4 on
page 23. Note that LPM is not affected by the RAMPZ setting.
Figure 7-4.
The Z-pointer used by ELPM and SPM.
Bit (Individually)
7
0
7
0
RAMPZ
Bit (Z-pointer)
23
7
ZH
16
15
0
ZL
8
7
0
The actual number of bits is implementation dependent. Unused bits in an implementation will always read as
zero. For compatibility with future devices, be sure to write these bits to zero.
Note:
7.6
1.
RAMPZ is only valid for ATmega1284/ATmega1284P.
Instruction Execution Timing
This section describes the general access timing concepts for instruction execution. The AVR CPU is driven by
the CPU clock clkCPU, directly generated from the selected clock source for the chip. No internal clock division is
used.
Figure 7-5 on page 24 shows the parallel instruction fetches and instruction executions enabled by the Harvard
architecture and the fast-access Register File concept. This is the basic pipelining concept to obtain up to 1
MIPS per MHz with the corresponding unique results for functions per cost, functions per clocks, and functions
per power-unit.
2020 Microchip Technology Inc.
Data Sheet Complete
DS40002070B-page 23
ATmega164A/PA/324A/PA/644A/PA/1284/P
Figure 7-5.
The Parallel Instruction Fetches and Instruction Executions
T1
T2
T3
T4
clkCPU
1st Instruction Fetch
1st Instruction Execute
2nd Instruction Fetch
2nd Instruction Execute
3rd Instruction Fetch
3rd Instruction Execute
4th Instruction Fetch
Figure 7-6 shows the internal timing concept for the Register File. In a single clock cycle an ALU operation using
two register operands is executed, and the result is stored back to the destination register.
Figure 7-6.
Single Cycle ALU operation
T1
T2
T3
T4
clkCPU
Total Execution Time
Register Operands Fetch
ALU Operation Execute
Result Write Back
7.7
Reset and interrupt handling
The AVR provides several different interrupt sources. These interrupts and the separate Reset Vector each
have a separate program vector in the program memory space. All interrupts are assigned individual enable bits
which must be written logic one together with the Global Interrupt Enable bit in the Status Register in order to
enable the interrupt. Depending on the Program Counter value, interrupts may be automatically disabled when
Boot Lock bits BLB02 or BLB12 are programmed. This feature improves software security. See the section
”Memory programming” on page 295 for details.
The lowest addresses in the program memory space are by default defined as the Reset and Interrupt Vectors.
The complete list of vectors is shown in ”Interrupts” on page 69. The list also determines the priority levels of the
different interrupts. The lower the address the higher is the priority level. RESET has the highest priority, and
next is INT0 – the External Interrupt Request 0. The Interrupt Vectors can be moved to the start of the Boot
Flash section by setting the IVSEL bit in the MCU Control Register (MCUCR). Refer to ”Interrupts” on page 69
for more information. The Reset Vector can also be moved to the start of the Boot Flash section by
programming the BOOTRST Fuse, see ”Memory programming” on page 295.
When an interrupt occurs, the Global Interrupt Enable I-bit is cleared and all interrupts are disabled. The user
software can write logic one to the I-bit to enable nested interrupts. All enabled interrupts can then interrupt the
current interrupt routine. The I-bit is automatically set when a Return from Interrupt instruction – RETI – is
executed.
There are basically two types of interrupts. The first type is triggered by an event that sets the Interrupt Flag. For
these interrupts, the Program Counter is vectored to the actual Interrupt Vector in order to execute the interrupt
handling routine, and hardware clears the corresponding Interrupt Flag. Interrupt Flags can also be cleared by
2020 Microchip Technology Inc.
Data Sheet Complete
DS40002070B-page 24
ATmega164A/PA/324A/PA/644A/PA/1284/P
writing a logic one to the flag bit position(s) to be cleared. If an interrupt condition occurs while the
corresponding interrupt enable bit is cleared, the Interrupt Flag will be set and remembered until the interrupt is
enabled, or the flag is cleared by software. Similarly, if one or more interrupt conditions occur while the Global
Interrupt Enable bit is cleared, the corresponding Interrupt Flag(s) will be set and remembered until the Global
Interrupt Enable bit is set, and will then be executed by order of priority.
The second type of interrupts will trigger as long as the interrupt condition is present. These interrupts do not
necessarily have Interrupt Flags. If the interrupt condition disappears before the interrupt is enabled, the
interrupt will not be triggered.
When the AVR exits from an interrupt, it will always return to the main program and execute one more
instruction before any pending interrupt is served.
Note that the Status Register is not automatically stored when entering an interrupt routine, nor restored when
returning from an interrupt routine. This must be handled by software.
When using the CLI instruction to disable interrupts, the interrupts will be immediately disabled. No interrupt will
be executed after the CLI instruction, even if it occurs simultaneously with the CLI instruction. The following
example shows how this can be used to avoid interrupts during the timed EEPROM write sequence.
Assembly Code Example
in
r16, SREG
; store SREG
value
cli
; disable interrupts during timed
sequence
sbi
EECR, EEMPE
; start
EEPROM write
sbi
EECR, EEPE
out
SREG, r16
; restore
SREG value (I-bit)
C Code Example
char cSREG;
cSREG = SREG;
SREG value */
/* disable interrupts during timed sequence */
__disable_interrupt();
EECR |= (1