0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ATMEGA8515L-8JU

ATMEGA8515L-8JU

  • 厂商:

    ACTEL(微芯科技)

  • 封装:

    LCC44

  • 描述:

    IC MCU 8BIT 8KB FLASH 44PLCC

  • 数据手册
  • 价格&库存
ATMEGA8515L-8JU 数据手册
Features • High-performance, Low-power AVR® 8-bit Microcontroller • RISC Architecture • • • • • • – 130 Powerful Instructions – Most Single Clock Cycle Execution – 32 x 8 General Purpose Working Registers – Fully Static Operation – Up to 16 MIPS Throughput at 16 MHz – On-chip 2-cycle Multiplier Nonvolatile Program and Data Memories – 8K Bytes of In-System Self-programmable Flash Endurance: 10,000 Write/Erase Cycles – Optional Boot Code Section with Independent Lock bits In-System Programming by On-chip Boot Program True Read-While-Write Operation – 512 Bytes EEPROM Endurance: 100,000 Write/Erase Cycles – 512 Bytes Internal SRAM – Up to 64K Bytes Optional External Memory Space – Programming Lock for Software Security Peripheral Features – One 8-bit Timer/Counter with Separate Prescaler and Compare Mode – One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture Mode – Three PWM Channels – Programmable Serial USART – Master/Slave SPI Serial Interface – Programmable Watchdog Timer with Separate On-chip Oscillator – On-chip Analog Comparator Special Microcontroller Features – Power-on Reset and Programmable Brown-out Detection – Internal Calibrated RC Oscillator – External and Internal Interrupt Sources – Three Sleep Modes: Idle, Power-down and Standby I/O and Packages – 35 Programmable I/O Lines – 40-pin PDIP, 44-lead TQFP, 44-lead PLCC, and 44-pad QFN/MLF Operating Voltages – 2.7 - 5.5V for ATmega8515L – 4.5 - 5.5V for ATmega8515 Speed Grades – 0 - 8 MHz for ATmega8515L – 0 - 16 MHz for ATmega8515 8-bit Microcontroller with 8K Bytes In-System Programmable Flash ATmega8515 ATmega8515L Summary 2512JS–AVR–10/06 Note: This is a summary document. A complete document is available on our Web site at www.atmel.com. Pin Configurations Figure 1. Pinout ATmega8515 PDIP (OC0/T0) PB0 (T1) PB1 (AIN0) PB2 (AIN1) PB3 (SS) PB4 (MOSI) PB5 (MISO) PB6 (SCK) PB7 RESET (RXD) PD0 (TDX) PD1 (INT0) PD2 (INT1) PD3 (XCK) PD4 (OC1A) PD5 (WR) PD6 (RD) PD7 XTAL2 XTAL1 GND 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 VCC PA0 (AD0) PA1 (AD1) PA2 (AD2) PA3 (AD3) PA4 (AD4) PA5 (AD5) PA6 (AD6) PA7 (AD7) PE0 (ICP/INT2) PE1 (ALE) PE2 (OC1B) PC7 (A15) PC6 (A14) PC5 (A13) PC4 (A12) PC3 (A11) PC2 (A10) PC1 (A9) PC0 (A8) TQFP/MLF (WR) PD6 (RD) PD7 XTAL2 XTAL1 GND NC* (A8) PC0 (A9) PC1 (A10) PC2 (A11) PC3 (A12) PC4 (MOSI) PB5 (MISO) PB6 (SCK) PB7 RESET (RXD) PD0 NC* (TXD) PD1 (INT0) PD2 (INT1) PD3 (XCK) PD4 (OC1A) PD5 7 8 9 10 11 12 13 14 15 16 17 39 38 37 36 35 34 33 32 31 30 29 18 19 20 21 22 23 24 25 26 27 28 PA4 (AD4) PA5 (AD5) PA6 (AD6) PA7 (AD7) PE0 (ICP/INT2) NC* PE1 (ALE) PE2 (OC1B) PC7 (A15) PC6 (A14) PC5 (A13) PA4 (AD4) PA5 (AD5) PA6 (AD6) PA7 (AD7) PE0 (ICP/INT2) NC* PE1 (ALE) PE2 (OC1B) PC7 (A15) PC6 (A14) PC5 (A13) (WR) PD6 (RD) PD7 XTAL2 XTAL1 GND NC* (A8) PC0 (A9) PC1 (A10) PC2 (A11) PC3 (A12) PC4 33 32 31 30 29 28 27 26 25 24 23 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 (MOSI) PB5 (MISO) PB6 (SCK) PB7 RESET (RXD) PD0 NC* (TXD) PD1 (INT0) PD2 (INT1) PD3 (XCK) PD4 (OC1A) PD5 6 5 4 3 2 1 44 43 42 41 40 44 43 42 41 40 39 38 37 36 35 34 PB4 (SS) PB3 (AIN1) PB2 (AIN0) PB1 (T1) PB0 (OC0/T0) NC* VCC PA0 (AD0) PA1 (AD1) PA2 (AD2) PA3 (AD3) PB4 (SS) PB3 (AIN1) PB2 (AIN0) PB1 (T1) PB0 (OC0/T0) NC* VCC PA0 (AD0) PA1 (AD1) PA2 (AD2) PA3 (AD3) PLCC NOTES: 1. MLF bottom pad should be soldered to ground. 2. * NC = Do not connect (May be used in future devices) 2 ATmega8515(L) 2512JS–AVR–10/06 ATmega8515(L) Overview The ATmega8515 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATmega8515 achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed. Block Diagram Figure 2. Block Diagram PA0 - PA7 PE0 - PE2 PC0 - PC7 PORTA DRIVERS/BUFFERS PORTE DRIVERS/ BUFFERS PORTC DRIVERS/BUFFERS PORTA DIGITAL INTERFACE PORTE DIGITAL INTERFACE PORTC DIGITAL INTERFACE VCC GND PROGRAM COUNTER STACK POINTER PROGRAM FLASH SRAM TIMERS/ COUNTERS INTERNAL OSCILLATOR XTAL1 INSTRUCTION REGISTER GENERAL PURPOSE REGISTERS WATCHDOG TIMER OSCILLATOR XTAL2 X INSTRUCTION DECODER Y MCU CTRL. & TIMING RESET Z CONTROL LINES ALU INTERRUPT UNIT AVR CPU STATUS REGISTER EEPROM PROGRAMMING LOGIC SPI USART + - INTERNAL CALIBRATED OSCILLATOR COMP. INTERFACE PORTB DIGITAL INTERFACE PORTD DIGITAL INTERFACE PORTB DRIVERS/BUFFERS PORTD DRIVERS/BUFFERS PB0 - PB7 PD0 - PD7 3 2512JS–AVR–10/06 The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers. The ATmega8515 provides the following features: 8K bytes of In-System Programmable Flash with Read-While-Write capabilities, 512 bytes EEPROM, 512 bytes SRAM, an External memory interface, 35 general purpose I/O lines, 32 general purpose working registers, two flexible Timer/Counters with compare modes, Internal and External interrupts, a Serial Programmable USART, a programmable Watchdog Timer with internal Oscillator, a SPI serial port, and three software selectable power saving modes. The Idle mode stops the CPU while allowing the SRAM, Timer/Counters, SPI port, and Interrupt system to continue functioning. The Power-down mode saves the Register contents but freezes the Oscillator, disabling all other chip functions until the next interrupt or hardware reset. In Standby mode, the crystal/resonator Oscillator is running while the rest of the device is sleeping. This allows very fast start-up combined with low-power consumption. The device is manufactured using Atmel’s high density nonvolatile memory technology. The On-chip ISP Flash allows the Program memory to be reprogrammed In-System through an SPI serial interface, by a conventional nonvolatile memory programmer, or by an On-chip Boot program running on the AVR core. The boot program can use any interface to download the application program in the Application Flash memory. Software in the Boot Flash section will continue to run while the Application Flash section is updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU with In-System Self-programmable Flash on a monolithic chip, the Atmel ATmega8515 is a powerful microcontroller that provides a highly flexible and cost effective solution to many embedded control applications. The ATmega8515 is supported with a full suite of program and system development tools including: C Compilers, Macro assemblers, Program debugger/simulators, In-circuit Emulators, and Evaluation kits. Disclaimer Typical values contained in this datasheet are based on simulations and characterization of other AVR microcontrollers manufactured on the same process technology. Min and Max values will be available after the device is characterized. AT90S4414/8515 and ATmega8515 Compatibility The ATmega8515 provides all the features of the AT90S4414/8515. In addition, several n e w f e a t u r e s a r e a d d e d . T h e A T m e g a 8 5 1 5 i s b a c k w a r d c o m p a t i b l e w i th AT90S4414/8515 in most cases. However, some incompatibilities between the two microcontrollers exist. To solve this problem, an AT90S4414/8515 compatibility mode can be selected by programming the S8515C Fuse. ATmega8515 is 100% pin compatible with AT90S4414/8515, and can replace the AT90S4414/8515 on current printed circuit boards. However, the location of Fuse bits and the electrical characteristics differs between the two devices. AT90S4414/8515 Compatibility Mode Programming the S8515C Fuse will change the following functionality: 4 • The timed sequence for changing the Watchdog Time-out period is disabled. See “Timed Sequences for Changing the Configuration of the Watchdog Timer” on page 53 for details. • The double buffering of the USART Receive Registers is disabled. See “AVR USART vs. AVR UART – Compatibility” on page 137 for details. • PORTE(2:1) will be set as output, and PORTE0 will be set as input. ATmega8515(L) 2512JS–AVR–10/06 ATmega8515(L) Pin Descriptions VCC Digital supply voltage. GND Ground. Port A (PA7..PA0) Port A is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port A output buffers have symmetrical drive characteristics with both high sink and source capability. When pins PA0 to PA7 are used as inputs and are externally pulled low, they will source current if the internal pull-up resistors are activated. The Port A pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port A also serves the functions of various special features of the ATmega8515 as listed on page 67. Port B (PB7..PB0) Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port B also serves the functions of various special features of the ATmega8515 as listed on page 67. Port C (PC7..PC0) Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port C output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port D (PD7..PD0) Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port D output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port D also serves the functions of various special features of the ATmega8515 as listed on page 72. Port E(PE2..PE0) Port E is an 3-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port E output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port E pins that are externally pulled low will source current if the pull-up resistors are activated. The Port E pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port E also serves the functions of various special features of the ATmega8515 as listed on page 74. RESET Reset input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the clock is not running. The minimum pulse length is given in Table 18 on page 46. Shorter pulses are not guaranteed to generate a reset. XTAL1 Input to the inverting Oscillator amplifier and input to the internal clock operating circuit. XTAL2 Output from the inverting Oscillator amplifier. 5 2512JS–AVR–10/06 Resources 6 A comprehensive set of development tools, application notes and datasheets are available for download on http://www.atmel.com/avr. ATmega8515(L) 2512JS–AVR–10/06 ATmega8515(L) About Code Examples This documentation contains simple code examples that briefly show how to use various parts of the device. These code examples assume that the part specific header file is included before compilation. Be aware that not all C Compiler vendors include bit definitions in the header files and interrupt handling in C is compiler dependent. Please confirm with the C Compiler documentation for more details. 7 2512JS–AVR–10/06 Register Summary Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 $3F ($5F) SREG I T H S V N Z C 10 $3E ($5E) SPH SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 12 $3D ($5D) SPL SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 12 $3C ($5C) Reserved $3B ($5B) GICR INT1 INT0 INT2 - - - IVSEL IVCE 57, 78 $3A ($5A) GIFR INTF1 INTF0 INTF2 - - - - - 79 $39 ($59) TIMSK TOIE1 OCIE1A OCIE1B - TICIE1 - TOIE0 OCIE0 93, 124 93, 125 - $38 ($58) TIFR TOV1 OCF1A OCF1B - ICF1 - TOV0 OCF0 $37 ($57) SPMCR SPMIE RWWSB - RWWSRE BLBSET PGWRT PGERS SPMEN 170 $36 ($56) EMCUCR SM0 SRL2 SRL1 SRL0 SRW01 SRW00 SRW11 ISC2 29,42,78 $35 ($55) MCUCR SRE SRW10 SE SM1 ISC11 ISC10 ISC01 ISC00 29,41,77 $34 ($54) MCUCSR - - SM2 - WDRF BORF EXTRF PORF 41,49 $33 ($53) TCCR0 FOC0 WGM00 COM01 COM00 WGM01 CS02 CS01 CS00 $32 ($52) $31 ($51) TCNT0 $30 ($50) SFIOR - XMBK XMM2 XMM1 Timer/Counter0 (8 Bits) OCR0 91 93 Timer/Counter0 Output Compare Register 93 XMM0 PUD - PSR10 31,66,96 $2F ($4F) TCCR1A COM1A1 COM1A0 COM1B1 COM1B0 FOC1A FOC1B WGM11 WGM10 119 $2E ($4E) TCCR1B ICNC1 ICES1 - WGM13 WGM12 CS12 CS11 CS10 122 $2D ($4D) TCNT1H Timer/Counter1 - Counter Register High Byte 123 $2C ($4C) TCNT1L Timer/Counter1 - Counter Register Low Byte 123 $2B ($4B) OCR1AH Timer/Counter1 - Output Compare Register A High Byte 123 $2A ($4A) OCR1AL Timer/Counter1 - Output Compare Register A Low Byte 123 $29 ($49) OCR1BH Timer/Counter1 - Output Compare Register B High Byte 123 $28 ($48) OCR1BL Timer/Counter1 - Output Compare Register B Low Byte 123 $27 ($47) Reserved - - $26 ($46) Reserved - - $25 ($45) ICR1H Timer/Counter1 - Input Capture Register High Byte 124 $24 ($44) ICR1L Timer/Counter1 - Input Capture Register Low Byte 124 $23 ($43) Reserved - - $22 ($42) Reserved - $21 ($41) WDTCR - UBRRH URSEL - - - UCSRC URSEL UMSEL UPM1 $1F ($3F) EEARH - - - $1E ($3E) EEARL EEPROM Address Register Low Byte $1D ($3D) EEDR EEPROM Data Register $1C ($3C) EECR - - - - EERIE EEMWE EEWE EERE $1B ($3B) PORTA PORTA7 PORTA6 PORTA5 PORTA4 PORTA3 PORTA2 PORTA1 PORTA0 75 $1A ($3A) DDRA DDA7 DDA6 DDA5 DDA4 DDA3 DDA2 DDA1 DDA0 75 $20(1) ($40)(1) - - WDCE WDE WDP2 WDP1 WDP0 UPM0 USBS UCSZ1 UCSZ0 UCPOL 157 - - - - EEAR8 19 UBRR[11:8] 51 159 19 20 20 $19 ($39) PINA PINA7 PINA6 PINA5 PINA4 PINA3 PINA2 PINA1 PINA0 75 $18 ($38) PORTB PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0 75 $17 ($37) DDRB DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 75 $16 ($36) PINB PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0 75 $15 ($35) PORTC PORTC7 PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0 75 $14 ($34) DDRC DDC7 DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0 75 $13 ($33) PINC PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0 76 $12 ($32) PORTD PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0 76 $11 ($31) DDRD DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0 76 $10 ($30) PIND PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0 76 133 $0F ($2F) SPDR $0E ($2E) SPSR SPIF WCOL - - - - - SPI2X $0D ($2D) SPCR SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0 $0C ($2C) UDR $0B ($2B) UCSRA RXC TXC UDRE FE DOR PE U2X MPCM 155 $0A ($2A) UCSRB RXCIE TXCIE UDRIE RXEN TXEN UCSZ2 RXB8 TXB8 156 $09 ($29) UBRRL $08 ($28) ACSR ACD ACBG ACO ACI ACIE ACIC ACIS1 ACIS0 164 $07 ($27) PORTE - - - - - PORTE2 PORTE1 PORTE0 76 $06 ($26) DDRE - - - - - DDE2 DDE1 DDE0 76 $05 ($25) PINE - - - PINE2 PINE1 PINE0 $04 ($24) OSCCAL Notes: 8 Page SPI Data Register 133 USART I/O Data Register USART Baud Rate Register Low Byte Oscillator Calibration Register 131 155 159 76 39 1. Refer to the USART description for details on how to access UBRRH and UCSRC. 2. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written. ATmega8515(L) 2512JS–AVR–10/06 ATmega8515(L) 3. Some of the Status Flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will operate on all bits in the I/O Register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions work with registers $00 to $1F only. 9 2512JS–AVR–10/06 Instruction Set Summary Mnemonics Operands Description Operation Flags #Clocks ARITHMETIC AND LOGIC INSTRUCTIONS ADD Rd, Rr Add two Registers Rd ← Rd + Rr Z,C,N,V,H ADC Rd, Rr Add with Carry two Registers Rd ← Rd + Rr + C Z,C,N,V,H 1 ADIW Rdl,K Add Immediate to Word Rdh:Rdl ← Rdh:Rdl + K Z,C,N,V,S 2 SUB Rd, Rr Subtract two Registers Rd ← Rd - Rr Z,C,N,V,H 1 SUBI Rd, K Subtract Constant from Register Rd ← Rd - K Z,C,N,V,H 1 SBC Rd, Rr Subtract with Carry two Registers Rd ← Rd - Rr - C Z,C,N,V,H 1 SBCI Rd, K Subtract with Carry Constant from Reg. Rd ← Rd - K - C Z,C,N,V,H 1 SBIW Rdl,K Subtract Immediate from Word Rdh:Rdl ← Rdh:Rdl - K Z,C,N,V,S 2 AND Rd, Rr Logical AND Registers Rd ← Rd • Rr Z,N,V 1 ANDI Rd, K Logical AND Register and Constant Rd ← Rd • K Z,N,V 1 OR Rd, Rr Logical OR Registers Rd ← Rd v Rr Z,N,V 1 ORI Rd, K Logical OR Register and Constant Rd ← Rd v K Z,N,V 1 EOR Rd, Rr Exclusive OR Registers Rd ← Rd ⊕ Rr Z,N,V 1 1 COM Rd One’s Complement Rd ← $FF − Rd Z,C,N,V 1 NEG Rd Two’s Complement Rd ← $00 − Rd Z,C,N,V,H 1 SBR Rd,K Set Bit(s) in Register Rd ← Rd v K Z,N,V 1 CBR Rd,K Clear Bit(s) in Register Rd ← Rd • ($FF - K) Z,N,V 1 INC Rd Increment Rd ← Rd + 1 Z,N,V 1 DEC Rd Decrement Rd ← Rd − 1 Z,N,V 1 TST Rd Test for Zero or Minus Rd ← Rd • Rd Z,N,V 1 CLR Rd Clear Register Rd ← Rd ⊕ Rd Z,N,V 1 SER Rd Set Register Rd ← $FF None 1 MUL Rd, Rr Multiply Unsigned R1:R0 ← Rd x Rr Z,C 2 MULS Rd, Rr Multiply Signed R1:R0 ← Rd x Rr Z,C 2 MULSU Rd, Rr Multiply Signed with Unsigned R1:R0 ← Rd x Rr Z,C 2 FMUL Rd, Rr Fractional Multiply Unsigned R1:R0 ← (Rd x Rr)
ATMEGA8515L-8JU 价格&库存

很抱歉,暂时无法提供与“ATMEGA8515L-8JU”相匹配的价格&库存,您可以联系我们找货

免费人工找货
ATMEGA8515L-8JU
    •  国内价格
    • 1+24.51708
    • 10+23.41419
    • 30+22.74351

    库存:33