0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ATMEGA8535L-8MU

ATMEGA8535L-8MU

  • 厂商:

    ACTEL(微芯科技)

  • 封装:

    VFQFN44

  • 描述:

    IC MCU 8BIT 8KB FLASH 44VQFN

  • 数据手册
  • 价格&库存
ATMEGA8535L-8MU 数据手册
Features • High-performance, Low-power AVR® 8-bit Microcontroller • Advanced RISC Architecture • • • • • • – 130 Powerful Instructions – Most Single Clock Cycle Execution – 32 x 8 General Purpose Working Registers – Fully Static Operation – Up to 16 MIPS Throughput at 16 MHz – On-chip 2-cycle Multiplier Nonvolatile Program and Data Memories – 8K Bytes of In-System Self-Programmable Flash Endurance: 10,000 Write/Erase Cycles – Optional Boot Code Section with Independent Lock Bits In-System Programming by On-chip Boot Program True Read-While-Write Operation – 512 Bytes EEPROM Endurance: 100,000 Write/Erase Cycles – 512 Bytes Internal SRAM – Programming Lock for Software Security Peripheral Features – Two 8-bit Timer/Counters with Separate Prescalers and Compare Modes – One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture Mode – Real Time Counter with Separate Oscillator – Four PWM Channels – 8-channel, 10-bit ADC 8 Single-ended Channels 7 Differential Channels for TQFP Package Only 2 Differential Channels with Programmable Gain at 1x, 10x, or 200x for TQFP Package Only – Byte-oriented Two-wire Serial Interface – Programmable Serial USART – Master/Slave SPI Serial Interface – Programmable Watchdog Timer with Separate On-chip Oscillator – On-chip Analog Comparator Special Microcontroller Features – Power-on Reset and Programmable Brown-out Detection – Internal Calibrated RC Oscillator – External and Internal Interrupt Sources – Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby and Extended Standby I/O and Packages – 32 Programmable I/O Lines – 40-pin PDIP, 44-lead TQFP, 44-lead PLCC, and 44-pad QFN/MLF Operating Voltages – 2.7 - 5.5V for ATmega8535L – 4.5 - 5.5V for ATmega8535 Speed Grades – 0 - 8 MHz for ATmega8535L – 0 - 16 MHz for ATmega8535 8-bit Microcontroller with 8K Bytes In-System Programmable Flash ATmega8535 ATmega8535L Summary 2502KS–AVR–10/06 Note: This is a summary document. A complete document is available on our Web site at www.atmel.com. Pin Configurations Figure 1. Pinout ATmega8535 (XCK/T0) PB0 (T1) PB1 (INT2/AIN0) PB2 (OC0/AIN1) PB3 (SS) PB4 (MOSI) PB5 (MISO) PB6 (SCK) PB7 RESET VCC GND XTAL2 XTAL1 (RXD) PD0 (TXD) PD1 (INT0) PD2 (INT1) PD3 (OC1B) PD4 (OC1A) PD5 (ICP1) PD6 PA0 (ADC0) PA1 (ADC1) PA2 (ADC2) PA3 (ADC3) PA4 (ADC4) PA5 (ADC5) PA6 (ADC6) PA7 (ADC7) AREF GND AVCC PC7 (TOSC2) PC6 (TOSC1) PC5 PC4 PC3 PC2 PC1 (SDA) PC0 (SCL) PD7 (OC2) PA4 (ADC4) PA5 (ADC5) PA6 (ADC6) PA7 (ADC7) AREF GND AVCC PC7 (TOSC2) PC6 (TOSC1) PC5 PC4 (MOSI) PB5 (MISO) PB6 (SCK) PB7 RESET VCC GND XTAL2 XTAL1 (RXD) PD0 (TXD) PD1 (INT0) PD2 6 5 4 3 2 1 44 43 42 41 40 33 32 31 30 29 28 27 26 25 24 23 1 2 3 4 5 6 7 8 9 10 11 7 8 9 10 11 12 13 14 15 16 17 39 38 37 36 35 34 33 32 31 30 29 PA4 (ADC4) PA5 (ADC5) PA6 (ADC6) PA7 (ADC7) AREF GND AVCC PC7 (TOSC2) PC6 (TOSC1) PC5 PC4 PD3 PD4 PD5 PD6 PD7 VCC GND (SCL) PC0 (SDA) PC1 PC2 PC3 (INT1) (OC1B) (OC1A) (ICP1) (OC2) (INT1) (OC1B) (OC1A) (ICP1) (OC2) PD3 PD4 PD5 PD6 PD7 VCC GND (SCL) PC0 (SDA) PC1 PC2 PC3 12 13 14 15 16 17 18 19 20 21 22 (MOSI) PB5 (MISO) PB6 (SCK) PB7 RESET VCC GND XTAL2 XTAL1 (RXD) PD0 (TXD) PD1 (INT0) PD2 18 19 20 21 22 23 24 25 26 27 28 44 43 42 41 40 39 38 37 36 35 34 PB4 (SS) PB3 (AIN1/OC0) PB2 (AIN0/INT2) PB1 (T1) PB0 (XCK/T0) GND VCC PA0 (ADC0) PA1 (ADC1) PA2 (ADC2) PA3 (ADC3) PB4 (SS) PB3 (AIN1/OC0) PB2 (AIN0/INT2) PB1 (T1) PB0 (XCK/T0) GND VCC PA0 (ADC0) PA1 (ADC1) PA2 (ADC2) PA3 (ADC3) PLCC NOTE: MLF Bottom pad should be soldered to ground. Disclaimer 2 Typical values contained in this data sheet are based on simulations and characterization of other AVR microcontrollers manufactured on the same process technology. Min and Max values will be available after the device is characterized. ATmega8535(L) 2502KS–AVR–10/06 ATmega8535(L) Overview The ATmega8535 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing instructions in a single clock cycle, the ATmega8535 achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed. Block Diagram Figure 2. Block Diagram PA0 - PA7 PC0 - PC7 PORTA DRIVERS/BUFFERS PORTC DRIVERS/BUFFERS PORTA DIGITAL INTERFACE PORTC DIGITAL INTERFACE VCC GND AVCC ADC INTERFACE MUX & ADC TWI AREF PROGRAM COUNTER STACK POINTER PROGRAM FLASH SRAM TIMERS/ COUNTERS OSCILLATOR INTERNAL OSCILLATOR XTAL1 INSTRUCTION REGISTER GENERAL PURPOSE REGISTERS WATCHDOG TIMER OSCILLATOR XTAL2 X INSTRUCTION DECODER Y MCU CTRL. & TIMING RESET Z CONTROL LINES ALU INTERRUPT UNIT AVR CPU STATUS REGISTER EEPROM PROGRAMMING LOGIC SPI USART + - INTERNAL CALIBRATED OSCILLATOR COMP. INTERFACE PORTB DIGITAL INTERFACE PORTD DIGITAL INTERFACE PORTB DRIVERS/BUFFERS PORTD DRIVERS/BUFFERS PB0 - PB7 PD0 - PD7 3 2502KS–AVR–10/06 The AVR core combines a rich instruction set with 32 general purpose working registers. All 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers. The ATmega8535 provides the following features: 8K bytes of In-System Programmable Flash with Read-While-Write capabilities, 512 bytes EEPROM, 512 bytes SRAM, 32 general purpose I/O lines, 32 general purpose working registers, three flexible Timer/Counters with compare modes, internal and external interrupts, a serial programmable USART, a byte oriented Two-wire Serial Interface, an 8-channel, 10-bit ADC with optional differential input stage with programmable gain in TQFP package, a programmable Watchdog Timer with Internal Oscillator, an SPI serial port, and six software selectable power saving modes. The Idle mode stops the CPU while allowing the SRAM, Timer/Counters, SPI port, and interrupt system to continue functioning. The Power-down mode saves the register contents but freezes the Oscillator, disabling all other chip functions until the next interrupt or Hardware Reset. In Power-save mode, the asynchronous timer continues to run, allowing the user to maintain a timer base while the rest of the device is sleeping. The ADC Noise Reduction mode stops the CPU and all I/O modules except asynchronous timer and ADC, to minimize switching noise during ADC conversions. In Standby mode, the crystal/resonator Oscillator is running while the rest of the device is sleeping. This allows very fast start-up combined with low-power consumption. In Extended Standby mode, both the main Oscillator and the asynchronous timer continue to run. The device is manufactured using Atmel’s high density nonvolatile memory technology. The On-chip ISP Flash allows the program memory to be reprogrammed In-System through an SPI serial interface, by a conventional nonvolatile memory programmer, or by an On-chip Boot program running on the AVR core. The boot program can use any interface to download the application program in the Application Flash memory. Software in the Boot Flash section will continue to run while the Application Flash section is updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip, the Atmel ATmega8535 is a powerful microcontroller that provides a highly flexible and cost effective solution to many embedded control applications. The ATmega8535 AVR is supported with a full suite of program and system development tools including: C compilers, macro assemblers, program debugger/simulators, InCircuit Emulators, and evaluation kits. AT90S8535 Compatibility The ATmega8535 provides all the features of the AT90S8535. In addition, several new features are added. The ATmega8535 is backward compatible with AT90S8535 in most cases. However, some incompatibilities between the two microcontrollers exist. To solve this problem, an AT90S8535 compatibility mode can be selected by programming the S8535C fuse. ATmega8535 is pin compatible with AT90S8535, and can replace the AT90S8535 on current Printed Circuit Boards. However, the location of fuse bits and the electrical characteristics differs between the two devices. AT90S8535 Compatibility Mode 4 Programming the S8535C fuse will change the following functionality: • The timed sequence for changing the Watchdog Time-out period is disabled. See “Timed Sequences for Changing the Configuration of the Watchdog Timer” on page 45 for details. • The double buffering of the USART Receive Register is disabled. See “AVR USART vs. AVR UART – Compatibility” on page 146 for details. ATmega8535(L) 2502KS–AVR–10/06 ATmega8535(L) Pin Descriptions VCC Digital supply voltage. GND Ground. Port A (PA7..PA0) Port A serves as the analog inputs to the A/D Converter. Port A also serves as an 8-bit bi-directional I/O port, if the A/D Converter is not used. Port pins can provide internal pull-up resistors (selected for each bit). The Port A output buffers have symmetrical drive characteristics with both high sink and source capability. When pins PA0 to PA7 are used as inputs and are externally pulled low, they will source current if the internal pull-up resistors are activated. The Port A pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port B (PB7..PB0) Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port B also serves the functions of various special features of the ATmega8535 as listed on page 60. Port C (PC7..PC0) Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port C output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port D (PD7..PD0) Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port D output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port D also serves the functions of various special features of the ATmega8535 as listed on page 64. RESET Reset input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the clock is not running. The minimum pulse length is given in Table 15 on page 37. Shorter pulses are not guaranteed to generate a reset. XTAL1 Input to the inverting Oscillator amplifier and input to the internal clock operating circuit. XTAL2 Output from the inverting Oscillator amplifier. AVCC AVCC is the supply voltage pin for Port A and the A/D Converter. It should be externally connected to VCC, even if the ADC is not used. If the ADC is used, it should be connected to VCC through a low-pass filter. AREF AREF is the analog reference pin for the A/D Converter. 5 2502KS–AVR–10/06 Resources 6 A comprehensive set of development tools, application notes and datasheets are available for download on http://www.atmel.com/avr. ATmega8535(L) 2502KS–AVR–10/06 ATmega8535(L) About Code Examples This documentation contains simple code examples that briefly show how to use various parts of the device. These code examples assume that the part specific header file is included before compilation. Be aware that not all C compiler vendors include bit definitions in the header files and interrupt handling in C is compiler dependent. Please confirm with the C Compiler documentation for more details. 7 2502KS–AVR–10/06 . Register Summary Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page 0x3F (0x5F) SREG I T H S V N Z C 10 0x3E (0x5E) SPH – – – – – – SP9 SP8 12 0x3D (0x5D) SPL SP7 SP6 SP5 SP1 SP0 0x3C (0x5C) OCR0 0x3B (0x5B) GICR INT1 INT0 INT2 – – – IVSEL IVCE 0x3A (0x5A) GIFR INTF1 INTF0 INTF2 – – – – – 70 0x39 (0x59) TIMSK OCIE2 TOIE2 TICIE1 OCIE1A OCIE1B TOIE1 OCIE0 TOIE0 85, 115, 133 86, 116, 134 12 85 49, 69 0x38 (0x58) TIFR OCF2 TOV2 ICF1 OCF1A OCF1B TOV1 OCF0 TOV0 0x37 (0x57) SPMCR SPMIE RWWSB – RWWSRE BLBSET PGWRT PGERS SPMEN 228 0x36 (0x56) TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE 181 0x35 (0x55) MCUCR SM2 SE SM1 SM0 ISC11 ISC10 ISC01 ISC00 32, 68 0x34 (0x54) MCUCSR – ISC2 – – WDRF BORF EXTRF PORF 40, 69 0x33 (0x53) TCCR0 FOC0 WGM00 COM01 COM00 WGM01 CS02 CS01 CS00 0x32 (0x52) TCNT0 0x31 (0x51) OSCCAL 0x30 (0x50) SFIOR ADTS2 ADTS1 ADTS0 – Timer/Counter0 (8 Bits) 83 85 Oscillator Calibration Register 30 ACME PUD PSR2 PSR10 59,88,135,203,223 0x2F (0x4F) TCCR1A COM1A1 COM1A0 COM1B1 COM1B0 FOC1A FOC1B WGM11 WGM10 110 0x2E (0x4E) TCCR1B ICNC1 ICES1 – WGM13 WGM12 CS12 CS11 CS10 113 0x2D (0x4D) TCNT1H Timer/Counter1 – Counter Register High Byte 114 0x2C (0x4C) TCNT1L 114 0x2B (0x4B) OCR1AH Timer/Counter1 – Counter Register Low Byte Timer/Counter1 – Output Compare Register A High Byte 114 0x2A (0x4A) OCR1AL Timer/Counter1 – Output Compare Register A Low Byte 114 0x29 (0x49) OCR1BH Timer/Counter1 – Output Compare Register B High Byte 114 0x28 (0x48) OCR1BL Timer/Counter1 – Output Compare Register B Low Byte 114 0x27 (0x47) ICR1H Timer/Counter1 – Input Capture Register High Byte 114 0x26 (0x46) ICR1L Timer/Counter1 – Input Capture Register Low Byte 0x25 (0x45) TCCR2 0x24 (0x44) TCNT2 0x23 (0x43) OCR2 0x22 (0x42) ASSR 0x21 (0x41) 0x20(1) (0x40)(1) 8 SP4 SP3 SP2 Timer/Counter0 Output Compare Register FOC2 WGM20 COM21 COM20 WGM21 114 CS22 CS21 CS20 Timer/Counter2 (8 Bits) 128 130 Timer/Counter2 Output Compare Register 131 – – – – AS2 TCN2UB OCR2UB TCR2UB WDTCR – – – WDCE WDE WDP2 WDP1 WDP0 UBRRH URSEL – – – UBRR[11:8] 131 42 169 UCSRC URSEL UMSEL UPM1 UPM0 USBS UCSZ1 UCSZ0 UCPOL 167 0x1F (0x3F) EEARH – – – – – – – EEAR8 19 0x1E (0x3E) EEARL EEPROM Address Register Low Byte 19 0x1D (0x3D) EEDR EEPROM Data Register 19 0x1C (0x3C) EECR – – – – EERIE EEMWE EEWE EERE 0x1B (0x3B) PORTA PORTA7 PORTA6 PORTA5 PORTA4 PORTA3 PORTA2 PORTA1 PORTA0 19 66 0x1A (0x3A) DDRA DDA7 DDA6 DDA5 DDA4 DDA3 DDA2 DDA1 DDA0 66 0x19 (0x39) PINA PINA7 PINA6 PINA5 PINA4 PINA3 PINA2 PINA1 PINA0 66 0x18 (0x38) PORTB PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0 66 0x17 (0x37) DDRB DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 66 0x16 (0x36) PINB PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0 67 0x15 (0x35) PORTC PORTC7 PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0 67 0x14 (0x34) DDRC DDC7 DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0 67 0x13 (0x33) PINC PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0 67 0x12 (0x32) PORTD PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0 67 0x11 (0x31) DDRD DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0 67 0x10 (0x30) PIND PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0 0x0F (0x2F) SPDR SPI Data Register 67 143 0x0E (0x2E) SPSR SPIF WCOL – – – – – SPI2X 0x0D (0x2D) SPCR SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0 0x0C (0x2C) UDR 0x0B (0x2B) UCSRA RXC TXC UDRE FE DOR PE U2X MPCM 165 0x0A (0x2A) UCSRB RXCIE TXCIE UDRIE RXEN TXEN UCSZ2 RXB8 TXB8 166 0x09 (0x29) UBRRL 0x08 (0x28) ACSR ACD ACBG ACO ACI ACIE ACIC ACIS1 ACIS0 203 0x07 (0x27) ADMUX REFS1 REFS0 ADLAR MUX4 MUX3 MUX2 MUX1 MUX0 219 0x06 (0x26) ADCSRA ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0 221 0x05 (0x25) ADCH ADC Data Register High Byte 222 0x04 (0x24) ADCL ADC Data Register Low Byte 222 0x03 (0x23) TWDR 0x02 (0x22) TWAR TWA6 0x01 (0x21) TWSR TWS7 USART I/O Data Register 169 Two-wire Serial Interface Data Register TWA4 TWS5 TWA3 TWS4 TWA2 TWS3 141 164 USART Baud Rate Register Low Byte TWA5 TWS6 143 183 TWA1 TWA0 TWGCE 183 – TWPS1 TWPS0 183 ATmega8535(L) 2502KS–AVR–10/06 ATmega8535(L) Register Summary (Continued) Address Name 0x00 (0x20) TWBR Notes: Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Two-wire Serial Interface Bit Rate Register Bit 2 Bit 1 Bit 0 Page 181 1. Refer to the USART description for details on how to access UBRRH and UCSRC. 2. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written. 3. Some of the status flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will operate on all bits in the I/O Register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions work with registers 0x00 to 0x1F only. 9 2502KS–AVR–10/06 Instruction Set Summary Mnemonics Operands Description Operation Flags #Clocks ARITHMETIC AND LOGIC INSTRUCTIONS ADD Rd, Rr Add two Registers Rd ← Rd + Rr Z,C,N,V,H ADC Rd, Rr Add with Carry two Registers Rd ← Rd + Rr + C Z,C,N,V,H 1 ADIW Rdl,K Add Immediate to Word Rdh:Rdl ← Rdh:Rdl + K Z,C,N,V,S 2 SUB Rd, Rr Subtract two Registers Rd ← Rd - Rr Z,C,N,V,H 1 SUBI Rd, K Subtract Constant from Register Rd ← Rd - K Z,C,N,V,H 1 SBC Rd, Rr Subtract with Carry two Registers Rd ← Rd - Rr - C Z,C,N,V,H 1 SBCI Rd, K Subtract with Carry Constant from Reg. Rd ← Rd - K - C Z,C,N,V,H 1 SBIW Rdl,K Subtract Immediate from Word Rdh:Rdl ← Rdh:Rdl - K Z,C,N,V,S 2 AND Rd, Rr Logical AND Registers Rd ← Rd • Rr Z,N,V 1 ANDI Rd, K Logical AND Register and Constant Rd ← Rd • K Z,N,V 1 OR Rd, Rr Logical OR Registers Rd ← Rd v Rr Z,N,V 1 ORI Rd, K Logical OR Register and Constant Rd ← Rd v K Z,N,V 1 EOR Rd, Rr Exclusive OR Registers Rd ← Rd ⊕ Rr Z,N,V 1 1 COM Rd One’s Complement Rd ← 0xFF − Rd Z,C,N,V 1 NEG Rd Two’s Complement Rd ← 0x00 − Rd Z,C,N,V,H 1 SBR Rd,K Set Bit(s) in Register Rd ← Rd v K Z,N,V 1 CBR Rd,K Clear Bit(s) in Register Rd ← Rd • (0xFF - K) Z,N,V 1 INC Rd Increment Rd ← Rd + 1 Z,N,V 1 DEC Rd Decrement Rd ← Rd − 1 Z,N,V 1 TST Rd Test for Zero or Minus Rd ← Rd • Rd Z,N,V 1 CLR Rd Clear Register Rd ← Rd ⊕ Rd Z,N,V 1 SER Rd Set Register Rd ← 0xFF None 1 MUL Rd, Rr Multiply Unsigned R1:R0 ← Rd x Rr Z,C 2 MULS Rd, Rr Multiply Signed R1:R0 ← Rd x Rr Z,C 2 MULSU Rd, Rr Multiply Signed with Unsigned R1:R0 ← Rd x Rr Z,C 2 FMUL Rd, Rr Fractional Multiply Unsigned R1:R0 ← (Rd x Rr)
ATMEGA8535L-8MU 价格&库存

很抱歉,暂时无法提供与“ATMEGA8535L-8MU”相匹配的价格&库存,您可以联系我们找货

免费人工找货
ATMEGA8535L-8MU
  •  国内价格 香港价格
  • 1+31.504111+3.80605
  • 25+28.8176525+3.48150
  • 100+26.13294100+3.15715

库存:360