ATmega8A
megaAVR® Data Sheet
Introduction
The Microchip AVR® ATmega8A is a low-power CMOS 8-bit microcontroller based on the AVR RISC
architecture. By executing powerful instructions in a single clock cycle, the ATmega8A achieves
throughputs approaching 1 MIPS per MHz, allowing the system designer to optimize power consumption
versus processing speed.
Features
• High-performance, Low-power Microchip AVR® 8-bit Microcontroller
• Advanced RISC Architecture
- 130 Powerful Instructions – Most Single-clock Cycle Execution
- 32 x 8 General Purpose Working Registers
- Fully Static Operation
- Up to 16MIPS Throughput at 16MHz
- On-chip 2-cycle Multiplier
• High Endurance Non-volatile Memory segments
- 8KBytes of In-System Self-programmable Flash program memory
- 512Bytes EEPROM
- 1KByte Internal SRAM
- Write/Erase Cycles: 10,000 Flash/100,000 EEPROM
- Data retention: 20 years at 85°C/100 years at 25°C(1)
- Optional Boot Code Section with Independent Lock Bits
• In-System Programming by On-chip Boot Program
• True Read-While-Write Operation
- Programming Lock for Software Security
• Microchip QTouch® library support
- Capacitive touch buttons, sliders and wheels
- Microchip QTouch and QMatrix™ acquisition
- Up to 64 sense channels
2020 Microchip Technology Inc.
Data Sheet Complete
DS40001974B-page 1
ATmega8A
• Peripheral Features
- Two 8-bit Timer/Counters with Separate Prescaler, one Compare Mode
- One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture Mode
- Real Time Counter with Separate Oscillator
- Three PWM Channels
- 8-channel ADC in TQFP and VQFN package
• Eight Channels 10-bit Accuracy
- 6-channel ADC in PDIP package
• Six Channels 10-bit Accuracy
- Byte-oriented Two-wire Serial Interface
- Programmable Serial USART
- Master/Slave SPI Serial Interface
- Programmable Watchdog Timer with Separate On-chip Oscillator
- On-chip Analog Comparator
• Special Microcontroller Features
- Power-on Reset and Programmable Brown-out Detection
- Internal Calibrated RC Oscillator
- External and Internal Interrupt Sources
- Five Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, and Standby
• I/O and Packages
- 23 Programmable I/O Lines
- 28-lead PDIP, 32-lead TQFP, and 32-pad VQFN
• Operating Voltages
- 2.7 - 5.5V
- 0 - 16MHz
• Power Consumption at 4MHz, 3V, 25°C
- Active: 3.6mA
- Idle Mode: 1.0mA
- Power-down Mode: 0.5µA
2020 Microchip Technology Inc.
Data Sheet Complete
DS40001974B-page 2
ATmega8A
Table of Contents
1
Pin Configurations ................................................................................... 9
2
Overview ................................................................................................. 10
2.1
Block Diagram ................................................................................................. 10
2.2
Pin Descriptions............................................................................................... 11
3
Resources ............................................................................................... 13
4
Data Retention ........................................................................................ 13
5
About Code Examples ........................................................................... 13
6
Capacitive touch sensing ...................................................................... 13
7
AVR CPU Core ........................................................................................ 14
8
9
7.1
Overview.......................................................................................................... 14
7.2
Arithmetic Logic Unit – ALU............................................................................. 15
7.3
Status Register ................................................................................................ 15
7.4
General Purpose Register File ........................................................................ 16
7.5
Stack Pointer ................................................................................................... 17
7.6
Instruction Execution Timing ........................................................................... 18
7.7
Reset and Interrupt Handling........................................................................... 19
AVR Memories ........................................................................................ 22
8.1
Overview.......................................................................................................... 22
8.2
In-System Reprogrammable Flash Program Memory ..................................... 22
8.3
SRAM Data Memory........................................................................................ 23
8.4
EEPROM Data Memory .................................................................................. 24
8.5
I/O Memory...................................................................................................... 24
8.6
Register Description ........................................................................................ 25
System Clock and Clock Options ......................................................... 31
9.1
Clock Systems and their Distribution ............................................................... 31
9.2
Clock Sources ................................................................................................. 32
9.3
Crystal Oscillator ............................................................................................. 32
9.4
Low-frequency Crystal Oscillator ..................................................................... 34
9.5
External RC Oscillator ..................................................................................... 34
9.6
Calibrated Internal RC Oscillator ..................................................................... 36
9.7
External Clock ................................................................................................. 37
9.8
Timer/Counter Oscillator.................................................................................. 37
2020 Microchip Technology Inc.
Data Sheet Complete
DS40001974B-page 3
ATmega8A
9.9
Register Description ........................................................................................ 38
10 Power Management and Sleep Modes ................................................. 39
10.1
Sleep Modes.................................................................................................... 39
10.2
Idle Mode......................................................................................................... 39
10.3
ADC Noise Reduction Mode............................................................................ 40
10.4
Power-down Mode........................................................................................... 40
10.5
Power-save Mode............................................................................................ 40
10.6
Standby Mode ................................................................................................. 41
10.7
Minimizing Power Consumption ...................................................................... 41
10.8
Register Description ........................................................................................ 42
11 System Control and Reset .................................................................... 43
11.1
Resetting the AVR ........................................................................................... 43
11.2
Reset Sources ................................................................................................. 43
11.3
Internal Voltage Reference.............................................................................. 46
11.4
Watchdog Timer .............................................................................................. 47
11.5
Timed Sequences for Changing the Configuration of the Watchdog Timer .... 47
11.6
Register Description ........................................................................................ 49
12 Interrupts ................................................................................................ 51
12.1
Interrupt Vectors in ATmega8A ....................................................................... 51
12.2
Register Description ........................................................................................ 54
13 I/O Ports .................................................................................................. 56
13.1
Overview.......................................................................................................... 56
13.2
Ports as General Digital I/O ............................................................................. 57
13.3
Alternate Port Functions .................................................................................. 61
13.4
Register Description ........................................................................................ 69
14 External Interrupts ................................................................................. 71
14.1
Register Description ........................................................................................ 71
15 8-bit Timer/Counter0 .............................................................................. 73
15.1
Features .......................................................................................................... 73
15.2
Overview.......................................................................................................... 73
15.3
Timer/Counter Clock Sources ......................................................................... 74
15.4
Counter Unit .................................................................................................... 74
15.5
Operation......................................................................................................... 74
15.6
Timer/Counter Timing Diagrams ..................................................................... 75
2020 Microchip Technology Inc.
Data Sheet Complete
DS40001974B-page 4
ATmega8A
15.7
Register Description ........................................................................................ 76
16 Timer/Counter0 and Timer/Counter1 Prescalers ................................ 78
16.1
Overview.......................................................................................................... 78
16.2
Internal Clock Source ...................................................................................... 78
16.3
Prescaler Reset ............................................................................................... 78
16.4
External Clock Source ..................................................................................... 78
16.5
Register Description ........................................................................................ 79
17 16-bit Timer/Counter1 ............................................................................ 80
17.1
Features .......................................................................................................... 80
17.2
Overview.......................................................................................................... 80
17.3
Accessing 16-bit Registers .............................................................................. 82
17.4
Timer/Counter Clock Sources ......................................................................... 85
17.5
Counter Unit .................................................................................................... 85
17.6
Input Capture Unit ........................................................................................... 86
17.7
Output Compare Units..................................................................................... 88
17.8
Compare Match Output Unit ............................................................................ 90
17.9
Modes of Operation ......................................................................................... 91
17.10
Timer/Counter Timing Diagrams ..................................................................... 98
17.11
Register Description ........................................................................................ 99
18 8-bit Timer/Counter2 with PWM and Asynchronous Operation ...... 106
18.1
Features ........................................................................................................ 106
18.2
Overview........................................................................................................ 106
18.3
Timer/Counter Clock Sources ....................................................................... 107
18.4
Counter Unit .................................................................................................. 107
18.5
Output Compare Unit..................................................................................... 108
18.6
Compare Match Output Unit .......................................................................... 110
18.7
Modes of Operation ....................................................................................... 111
18.8
Timer/Counter Timing Diagrams ................................................................... 115
18.9
Asynchronous Operation of the Timer/Counter ............................................. 116
18.10
Timer/Counter Prescaler ............................................................................... 118
18.11
Register Description ...................................................................................... 119
19 Serial Peripheral Interface – SPI ......................................................... 123
19.1
Features ........................................................................................................ 123
19.2
Overview........................................................................................................ 123
19.3
SS Pin Functionality ...................................................................................... 128
2020 Microchip Technology Inc.
Data Sheet Complete
DS40001974B-page 5
ATmega8A
19.4
Data Modes ................................................................................................... 128
19.5
Register Description ...................................................................................... 130
20 USART ................................................................................................... 132
20.1
Features ........................................................................................................ 132
20.2
Overview........................................................................................................ 132
20.3
Clock Generation ........................................................................................... 134
20.4
Frame Formats .............................................................................................. 136
20.5
USART Initialization....................................................................................... 137
20.6
Data Transmission – The USART Transmitter .............................................. 138
20.7
Asynchronous Data Reception ...................................................................... 145
20.8
Multi-processor Communication Mode .......................................................... 148
20.9
Accessing UBRRH/UCSRC Registers .......................................................... 149
20.10
Register Description ...................................................................................... 150
20.11
Examples of Baud Rate Setting..................................................................... 154
21 Two-wire Serial Interface ..................................................................... 159
21.1
Features ........................................................................................................ 159
21.2
Overview........................................................................................................ 159
21.3
Two-wire Serial Interface Bus Definition........................................................ 161
21.4
Data Transfer and Frame Format .................................................................. 162
21.5
Multi-master Bus Systems, Arbitration and Synchronization ......................... 164
21.6
Using the TWI................................................................................................ 166
21.7
Multi-master Systems and Arbitration............................................................ 181
21.8
Register Description ...................................................................................... 183
22 Analog Comparator .............................................................................. 186
22.1
Overview........................................................................................................ 186
22.2
Analog Comparator Multiplexed Input ........................................................... 186
22.3
Register Description ...................................................................................... 187
23 Analog-to-Digital Converter ................................................................ 189
23.1
Features ........................................................................................................ 189
23.2
Overview........................................................................................................ 189
23.3
Starting a Conversion .................................................................................... 191
23.4
Prescaling and Conversion Timing ................................................................ 191
23.5
Changing Channel or Reference Selection ................................................... 193
23.6
ADC Noise Canceler ..................................................................................... 194
23.7
ADC Conversion Result................................................................................. 197
2020 Microchip Technology Inc.
Data Sheet Complete
DS40001974B-page 6
ATmega8A
23.8
Register Description ...................................................................................... 197
24 Boot Loader Support – Read-While-Write Self-Programming ......... 201
24.1
Features ........................................................................................................ 201
24.2
Overview........................................................................................................ 201
24.3
Application and Boot Loader Flash Sections ................................................. 201
24.4
Read-While-Write and No Read-While-Write Flash Sections........................ 201
24.5
Boot Loader Lock Bits ................................................................................... 204
24.6
Entering the Boot Loader Program ................................................................ 205
24.7
Addressing the Flash During Self-Programming ........................................... 205
24.8
Self-Programming the Flash .......................................................................... 206
24.9
Register Description ...................................................................................... 212
25 Memory Programming ......................................................................... 214
25.1
Program And Data Memory Lock Bits ........................................................... 214
25.2
Fuse Bits........................................................................................................ 215
25.3
Signature Bytes ............................................................................................. 216
25.4
Calibration Byte ............................................................................................. 216
25.5
Page Size ...................................................................................................... 217
25.6
Parallel Programming Parameters, Pin Mapping, and Commands ............... 217
25.7
Parallel Programming .................................................................................... 219
25.8
Serial Downloading........................................................................................ 227
25.9
Serial Programming Pin Mapping .................................................................. 227
26 Electrical Characteristics – TA = -40°C to 85°C ................................. 232
26.1
Absolute Maximum Ratings* ......................................................................... 232
26.2
DC Characteristics......................................................................................... 232
26.3
Speed Grades ............................................................................................... 234
26.4
Clock Characteristics..................................................................................... 234
26.5
System and Reset Characteristics ................................................................ 235
26.6
Two-wire Serial Interface Characteristics ...................................................... 236
26.7
SPI Timing Characteristics ............................................................................ 237
26.8
ADC Characteristics ...................................................................................... 239
27 Electrical Characteristics – TA = -40°C to 105°C ............................... 240
27.1
DC Characteristics......................................................................................... 240
28 Typical Characteristics – TA = -40°C to 85°C .................................... 242
28.1
Active Supply Current .................................................................................... 242
28.2
Idle Supply Current........................................................................................ 246
2020 Microchip Technology Inc.
Data Sheet Complete
DS40001974B-page 7
ATmega8A
28.3
Power-down Supply Current.......................................................................... 249
28.4
Power-save Supply Current........................................................................... 250
28.5
Standby Supply Current ................................................................................ 251
28.6
Pin Pull-up ..................................................................................................... 254
28.7
Pin Driver Strength ........................................................................................ 256
28.8
Pin Thresholds and Hysteresis ...................................................................... 260
28.9
Bod Thresholds and Analog Comparator Offset............................................ 265
28.10
Internal Oscillator Speed ............................................................................... 267
28.11
Current Consumption of Peripheral Units ...................................................... 274
28.12
Current Consumption in Reset and Reset Pulsewidth .................................. 277
29 Typical Characteristics – TA = -40°C to 105°C .................................. 279
29.1
ATmega8A Typical Characteristics ............................................................... 279
30 Register Summary ............................................................................... 308
31 Instruction Set Summary ..................................................................... 310
32 Ordering Information ........................................................................... 313
33 Packaging Information ........................................................................ 314
33.1
32A ................................................................................................................ 314
33.2
28P3 .............................................................................................................. 315
34 Errata ..................................................................................................... 317
34.1
ATmega8A, rev. L.......................................................................................... 317
35 Datasheet Revision History ................................................................. 319
35.1
Rev. B – 03/2020.............................................................................................321
35.2
Rev. A – 12/2017.............................................................................................321
35.3
Rev.8159F – 07/2015 .................................................................................... 321
35.4
Rev.8159E – 02/2013.................................................................................... 319
35.5
Rev.8159D – 02/11........................................................................................ 322
35.6
Rev.8159C – 07/09........................................................................................ 322
35.7
Rev.8159B – 05/09........................................................................................ 322
35.8
Rev.8159A – 08/08........................................................................................ 323
2020 Microchip Technology Inc.
Data Sheet Complete
DS40001974B-page 8
ATmega8A
1. Pin Configurations
Figure 1-1.
Pinout
PDIP
(RESET) PC6
(RXD) PD0
(TXD) PD1
(INT0) PD2
(INT1) PD3
(XCK/T0) PD4
VCC
GND
(XTAL1/TOSC1) PB6
(XTAL2/TOSC2) PB7
(T1) PD5
(AIN0) PD6
(AIN1) PD7
(ICP1) PB0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
28
27
26
25
24
23
22
21
20
19
18
17
16
15
PC5 (ADC5/SCL)
PC4 (ADC4/SDA)
PC3 (ADC3)
PC2 (ADC2)
PC1 (ADC1)
PC0 (ADC0)
GND
AREF
AVCC
PB5 (SCK)
PB4 (MISO)
PB3 (MOSI/OC2)
PB2 (SS/OC1B)
PB1 (OC1A)
32
31
30
29
28
27
26
25
PD2 (INT0)
PD1 (TXD)
PD0 (RXD)
PC6 (RESET)
PC5 (ADC5/SCL)
PC4 (ADC4/SDA)
PC3 (ADC3)
PC2 (ADC2)
TQFP Top View
1
2
3
4
5
6
7
8
24
23
22
21
20
19
18
17
PC1 (ADC1)
PC0 (ADC0)
ADC7
GND
AREF
ADC6
AVCC
PB5 (SCK)
24
23
22
21
20
19
18
17
PC1 (ADC1)
PC0 (ADC0)
ADC7
GND
AREF
ADC6
AVCC
PB5 (SCK)
(T1) PD5
(AIN0) PD6
(AIN1) PD7
(ICP1) PB0
(OC1A) PB1
(SS/OC1B) PB2
(MOSI/OC2) PB3
(MISO) PB4
9
10
11
12
13
14
15
16
(INT1) PD3
(XCK/T0) PD4
GND
VCC
GND
VCC
(XTAL1/TOSC1) PB6
(XTAL2/TOSC2) PB7
32
31
30
29
28
27
26
25
PD2 (INT0)
PD1 (TXD)
PD0 (RXD)
PC6 (RESET)
PC5 (ADC5/SCL)
PC4 (ADC4/SDA)
PC3 (ADC3)
PC2 (ADC2)
VQFN Top View
1
2
3
4
5
6
7
8
(T1) PD5
(AIN0) PD6
(AIN1) PD7
(ICP1) PB0
(OC1A) PB1
(SS/OC1B) PB2
(MOSI/OC2) PB3
(MISO) PB4
9
10
11
12
13
14
15
16
(INT1) PD3
(XCK/T0) PD4
GND
VCC
GND
VCC
(XTAL1/TOSC1) PB6
(XTAL2/TOSC2) PB7
2020 Microchip Technology Inc.
NOTE:
The large center pad underneath the
VQFN packages is made of metal and
internally connected to GND. It should be
soldered or glued to the PCB to ensure
good mechanical stability. If the center
pad is left unconneted, the package might
loosen from the PCB.
Data Sheet Complete
DS40001974B-page 9
ATmega8A
2. Overview
The Microchip AVR® ATmega8A is a low-power CMOS 8-bit microcontroller based on the AVR RISC architecture.
By executing powerful instructions in a single clock cycle, the ATmega8A achieves throughputs approaching 1
MIPS per MHz, allowing the system designer to optimize power consumption versus processing speed.
2.1
Block Diagram
Figure 2-1.
Block Diagram
XTAL1
RESET
PC0 - PC6
PB0 - PB7
VCC
XTAL2
GND
PORTC DRIVERS/BUFFERS
PORTB DRIVERS/BUFFERS
PORTC DIGITAL INTERFACE
PORTB DIGITAL INTERFACE
MUX &
ADC
ADC
INTERFACE
PROGRAM
COUNTER
STACK
POINTER
PROGRAM
FLASH
SRAM
TWI
AGND
AREF
INSTRUCTION
REGISTER
GENERAL
PURPOSE
REGISTERS
TIMERS/
COUNTERS
OSCILLATOR
INTERNAL
OSCILLATOR
WATCHDOG
TIMER
OSCILLATOR
X
INSTRUCTION
DECODER
Y
MCU CTRL.
& TIMING
Z
CONTROL
LINES
ALU
INTERRUPT
UNIT
AVR CPU
STATUS
REGISTER
EEPROM
PROGRAMMING
LOGIC
SPI
USART
+
-
COMP.
INTERFACE
PORTD DIGITAL INTERFACE
PORTD DRIVERS/BUFFERS
PD0 - PD7
2020 Microchip Technology Inc.
Data Sheet Complete
DS40001974B-page 10
ATmega8A
The Microchip AVR® core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed
in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.
The ATmega8A provides the following features: 8K bytes of In-System Programmable Flash with Read-WhileWrite capabilities, 512 bytes of EEPROM, 1K byte of SRAM, 23 general purpose I/O lines, 32 general purpose
working registers, three flexible Timer/Counters with compare modes, internal and external interrupts, a serial programmable USART, a byte oriented Two-wire Serial Interface, a 6-channel ADC (eight channels in TQFP and
VQFN packages) with 10-bit accuracy, a programmable Watchdog Timer with Internal Oscillator, an SPI serial
port, and five software selectable power saving modes. The Idle mode stops the CPU while allowing the SRAM,
Timer/Counters, SPI port, and interrupt system to continue functioning. The Power-down mode saves the register
contents but freezes the Oscillator, disabling all other chip functions until the next Interrupt or Hardware Reset. In
Power-save mode, the asynchronous timer continues to run, allowing the user to maintain a timer base while the
rest of the device is sleeping. The ADC Noise Reduction mode stops the CPU and all I/O modules except asynchronous timer and ADC, to minimize switching noise during ADC conversions. In Standby mode, the
crystal/resonator Oscillator is running while the rest of the device is sleeping. This allows very fast start-up combined with low-power consumption.
The device is manufactured using Microchip’s high density non-volatile memory technology. The Flash Program
memory can be reprogrammed In-System through an SPI serial interface, by a conventional non-volatile memory
programmer, or by an On-chip boot program running on the AVR core. The boot program can use any interface to
download the application program in the Application Flash memory. Software in the Boot Flash Section will continue to run while the Application Flash Section is updated, providing true Read-While-Write operation. By
combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip, the Microchip ATmega8A is a powerful microcontroller that provides a highly-flexible and cost-effective solution to many embedded
control applications.
The Microchip AVR ATmega8A is supported with a full suite of program and system development tools, including C
compilers, macro assemblers, program simulators and evaluation kits.
2.2
Pin Descriptions
2.2.1
VCC
Digital supply voltage.
2.2.2
GND
Ground.
2.2.3
Port B (PB7:PB0) – XTAL1/XTAL2/TOSC1/TOSC2
Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are
externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a
reset condition becomes active, even if the clock is not running.
Depending on the clock selection fuse settings, PB6 can be used as input to the inverting Oscillator amplifier and
input to the internal clock operating circuit.
Depending on the clock selection fuse settings, PB7 can be used as output from the inverting Oscillator amplifier.
If the Internal Calibrated RC Oscillator is used as chip clock source, PB7:6 is used as TOSC2:1 input for the Asynchronous Timer/Counter2 if the AS2 bit in ASSR is set.
2020 Microchip Technology Inc.
Data Sheet Complete
DS40001974B-page 11
ATmega8A
The various special features of Port B are elaborated in “Alternate Functions of Port B” on page 63 and “System
Clock and Clock Options” on page 31.
2.2.4
Port C (PC5:PC0)
Port C is an 7-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port C output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port C pins that are
externally pulled low will source current if the pull-up resistors are activated. The Port C pins are tri-stated when a
reset condition becomes active, even if the clock is not running.
2.2.5
PC6/RESET
If the RSTDISBL Fuse is programmed, PC6 is used as an I/O pin. Note that the electrical characteristics of PC6 differ from those of the other pins of Port C.
If the RSTDISBL Fuse is unprogrammed, PC6 is used as a Reset input. A low level on this pin for longer than the
minimum pulse length will generate a Reset, even if the clock is not running. The minimum pulse length is given in
Table 26-3 on page 235. Shorter pulses are not guaranteed to generate a Reset.
The various special features of Port C are elaborated on page 66.
2.2.6
Port D (PD7:PD0)
Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port D output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port D pins that are
externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri-stated when a
reset condition becomes active, even if the clock is not running.
Port D also serves the functions of various special features of the ATmega8A as listed on page 68.
2.2.7
RESET
Reset input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the clock
is not running. The minimum pulse length is given in Table 26-3 on page 235. Shorter pulses are not guaranteed to
generate a reset.
2.2.8
AVCC
AVCC is the supply voltage pin for the A/D Converter, Port C (3:0), and ADC (7:6). It should be externally connected
to VCC, even if the ADC is not used. If the ADC is used, it should be connected to VCC through a low-pass filter.
Note that Port C (5:4) use digital supply voltage, VCC.
2.2.9
AREF
AREF is the analog reference pin for the A/D Converter.
2.2.10
ADC7:6 (TQFP and VQFN Package Only)
In the TQFP and VQFN package, ADC7:6 serve as analog inputs to the A/D converter. These pins are powered
from the analog supply and serve as 10-bit ADC channels.
2020 Microchip Technology Inc.
Data Sheet Complete
DS40001974B-page 12
ATmega8A
3. Resources
A comprehensive set of development tools, application notes and datasheets are available for download on
https://www.microchip.com/.
Note:
1.
4. Data Retention
Reliability Qualification results show that the projected data retention failure rate is much less than 1 PPM over 20
years at 85°C or 100 years at 25°C.
5. About Code Examples
This datasheet contains simple code examples that briefly show how to use various parts of the device. These
code examples assume that the part specific header file is included before compilation. Be aware that not all C
compiler vendors include bit definitions in the header files and interrupt handling in C is compiler dependent.
Please confirm with the C compiler documentation for more details.
6. Capacitive touch sensing
The Microchip QTouch® Library provides a simple to use solution to realize touch sensitive interfaces on most
Microchip AVR® microcontrollers. The QTouch Library includes support for the QTouch and QMatrix™ acquisition
methods.
Touch sensing can be added to any application by linking the appropriate Microchip QTouch Library for the AVR
Microcontroller. This is done by using a simple set of APIs to define the touch channels and sensors, and then calling the touch sensing API’s to retrieve the channel information and determine the touch sensor states.
The QTouch Library is FREE and downloadable from the Microchip website at the following location: www.microchip.com. For implementation details and other information, refer to the Atmel QTouch Library User Guide - also
available for download from the Microchip website.
2020 Microchip Technology Inc.
Data Sheet Complete
DS40001974B-page 13
ATmega8A
7. AVR CPU Core
Overview
This section discusses the Microchip AVR® core architecture in general. The main function of the CPU core is to
ensure correct program execution. The CPU must therefore be able to access memories, perform calculations,
control peripherals, and handle interrupts.
Figure 7-1.
Block Diagram of the AVR MCU Architecture
Data Bus 8-bit
Flash
Program
Memory
Program
Counter
Status
and Control
32 x 8
General
Purpose
Registrers
Instruction
Decoder
Control Lines
Indirect Addressing
Instruction
Register
Direct Addressing
7.1
Interrupt
Unit
SPI
Unit
Watchdog
Timer
ALU
Analog
Comparator
i/O Module1
Data
SRAM
i/O Module 2
i/O Module n
EEPROM
I/O Lines
In order to maximize performance and parallelism, the AVR uses a Harvard architecture – with separate memories
and buses for program and data. Instructions in the Program memory are executed with a single level pipelining.
While one instruction is being executed, the next instruction is pre-fetched from the Program memory. This concept
enables instructions to be executed in every clock cycle. The Program memory is In-System Reprogrammable
Flash memory.
The fast-access Register File contains 32 x 8-bit general purpose working registers with a single clock cycle
access time. This allows single-cycle Arithmetic Logic Unit (ALU) operation. In a typical ALU operation, two operands are output from the Register File, the operation is executed, and the result is stored back in the Register File
– in one clock cycle.
Six of the 32 registers can be used as three 16-bit indirect address register pointers for Data Space addressing –
enabling efficient address calculations. One of the these address pointers can also be used as an address pointer
for look up tables in Flash Program memory. These added function registers are the 16-bit X-, Y-, and Z-register,
described later in this section.
2020 Microchip Technology Inc.
Data Sheet Complete
DS40001974B-page 14
ATmega8A
The ALU supports arithmetic and logic operations between registers or between a constant and a register. Single
register operations can also be executed in the ALU. After an arithmetic operation, the Status Register is updated
to reflect information about the result of the operation.
The Program flow is provided by conditional and unconditional jump and call instructions, able to directly address
the whole address space. Most AVR instructions have a single 16-bit word format. Every Program memory
address contains a 16- or 32-bit instruction.
Program Flash memory space is divided in two sections, the Boot program section and the Application program
section. Both sections have dedicated Lock Bits for write and read/write protection. The SPM instruction that writes
into the Application Flash memory section must reside in the Boot program section.
During interrupts and subroutine calls, the return address Program Counter (PC) is stored on the Stack. The Stack
is effectively allocated in the general data SRAM, and consequently the Stack size is only limited by the total
SRAM size and the usage of the SRAM. All user programs must initialize the SP in the reset routine (before subroutines or interrupts are executed). The Stack Pointer SP is read/write accessible in the I/O space. The data
SRAM can easily be accessed through the five different addressing modes supported in the AVR architecture.
The memory spaces in the AVR architecture are all linear and regular memory maps.
A flexible interrupt module has its control registers in the I/O space with an additional global interrupt enable bit in
the Status Register. All interrupts have a separate Interrupt Vector in the Interrupt Vector table. The interrupts have
priority in accordance with their Interrupt Vector position. The lower the Interrupt Vector address, the higher the
priority.
The I/O memory space contains 64 addresses for CPU peripheral functions as Control Registers, SPI, and other
I/O functions. The I/O Memory can be accessed directly, or as the Data Space locations following those of the Register File, 0x20 - 0x5F.
7.2
Arithmetic Logic Unit – ALU
The high-performance Microchip AVR® ALU operates in direct connection with all the 32 general purpose working
registers. Within a single clock cycle, arithmetic operations between general purpose registers or between a register and an immediate are executed. The ALU operations are divided into three main categories – arithmetic,
logical, and bit-functions. Some implementations of the architecture also provide a powerful multiplier supporting
both signed/unsigned multiplication and fractional format. See the “Instruction Set” section for a detailed
description.
7.3
Status Register
The Status Register contains information about the result of the most recently executed arithmetic instruction. This
information can be used for altering program flow in order to perform conditional operations. Note that the Status
Register is updated after all ALU operations, as specified in the Instruction Set Reference. This will in many cases
remove the need for using the dedicated compare instructions, resulting in faster and more compact code.
The Status Register is not automatically stored when entering an interrupt routine and restored when returning
from an interrupt. This must be handled by software.
7.3.1
SREG – The AVR Status Register
Bit
7
6
5
4
3
2
1
0
I
T
H
S
V
N
Z
C
Read/Write
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Initial Value
0
0
0
0
0
0
0
0
2020 Microchip Technology Inc.
Data Sheet Complete
SREG
DS40001974B-page 15
ATmega8A
• Bit 7 – I: Global Interrupt Enable
The Global Interrupt Enable bit must be set for the interrupts to be enabled. The individual interrupt enable control
is then performed in separate control registers. If the Global Interrupt Enable Register is cleared, none of the interrupts are enabled independent of the individual interrupt enable settings. The I-bit is cleared by hardware after an
interrupt has occurred, and is set by the RETI instruction to enable subsequent interrupts. The I-bit can also be set
and cleared by the application with the SEI and CLI instructions, as described in the Instruction Set Reference.
• Bit 6 – T: Bit Copy Storage
The Bit Copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source or destination for the operated bit. A bit from a register in the Register File can be copied into T by the BST instruction, and a bit in T can be
copied into a bit in a register in the Register File by the BLD instruction.
• Bit 5 – H: Half Carry Flag
The Half Carry Flag H indicates a Half Carry in some arithmetic operations. Half Carry is useful in BCD arithmetic.
See the “Instruction Set Description” for detailed information.
• Bit 4 – S: Sign Bit, S = N V
The S-bit is always an exclusive or between the Negative Flag N and the Two’s Complement Overflow Flag V. See
the “Instruction Set Description” for detailed information.
• Bit 3 – V: Two’s Complement Overflow Flag
The Two’s Complement Overflow Flag V supports two’s complement arithmetics. See the “Instruction Set Description” for detailed information.
• Bit 2 – N: Negative Flag
The Negative Flag N indicates a negative result in an arithmetic or logic operation. See the “Instruction Set
Description” for detailed information.
• Bit 1 – Z: Zero Flag
The Zero Flag Z indicates a zero result in an arithmetic or logic operation. See the “Instruction Set Description” for
detailed information.
• Bit 0 – C: Carry Flag
The Carry Flag C indicates a Carry in an arithmetic or logic operation. See the “Instruction Set Description” for
detailed information.
7.4
General Purpose Register File
The Register File is optimized for the Microchip AVR® Enhanced RISC instruction set. In order to achieve the
required performance and flexibility, the following input/output schemes are supported by the Register File:
• One 8-bit output operand and one 8-bit result input.
• Two 8-bit output operands and one 8-bit result input.
• Two 8-bit output operands and one 16-bit result input.
• One 16-bit output operand and one 16-bit result input.
Figure 7-2 shows the structure of the 32 general purpose working registers in the CPU.
2020 Microchip Technology Inc.
Data Sheet Complete
DS40001974B-page 16
ATmega8A
Figure 7-2.
AVR CPU General Purpose Working Registers
7
0
Addr.
R0
0x00
R1
0x01
R2
0x02
…
R13
0x0D
General
R14
0x0E
Purpose
R15
0x0F
Working
R16
0x10
Registers
R17
0x11
…
R26
0x1A
X-register Low Byte
R27
0x1B
X-register High Byte
R28
0x1C
Y-register Low Byte
R29
0x1D
Y-register High Byte
R30
0x1E
Z-register Low Byte
R31
0x1F
Z-register High Byte
Most of the instructions operating on the Register File have direct access to all registers, and most of them are single cycle instructions.
As shown in Figure 7-2, each register is also assigned a Data memory address, mapping them directly into the first
32 locations of the user Data Space. Although not being physically implemented as SRAM locations, this memory
organization provides great flexibility in access of the registers, as the X-, Y-, and Z-pointer Registers can be set to
index any register in the file.
7.4.1
The X-register, Y-register and Z-register
The registers R26:R31 have some added functions to their general purpose usage. These registers are 16-bit
address pointers for indirect addressing of the Data Space. The three indirect address registers X, Y and Z are
defined as described in Figure 7-3.
Figure 7-3.
The X-, Y- and Z-Registers
15
X-register
XH
7
XL
0
R27 (0x1B)
15
Y-register
YH
7
YL
0
0
7
0
R28 (0x1C)
15
ZH
7
0
R31 (0x1F)
0
R26 (0x1A)
R29 (0x1D)
Z-register
0
7
ZL
7
0
0
R30 (0x1E)
In the different addressing modes these address registers have functions as fixed displacement, automatic increment, and automatic decrement (see the Instruction Set Reference for details).
7.5
Stack Pointer
The Stack is mainly used for storing temporary data, for storing local variables and for storing return addresses
after interrupts and subroutine calls. Note that the Stack is implemented as growing from higher to lower memory
2020 Microchip Technology Inc.
Data Sheet Complete
DS40001974B-page 17
ATmega8A
locations. The Stack Pointer Register always points to the top of the Stack. The Stack Pointer points to the data
SRAM Stack area where the Subroutine and Interrupt Stacks are located. A Stack PUSH command will decrease
the Stack Pointer.
The Stack in the data SRAM must be defined by the program before any subroutine calls are executed or interrupts
are enabled. Initial Stack Pointer value equals the last address of the internal SRAM and the Stack Pointer must be
set to point above start of the SRAM, see Figure 8-2 on page 23.
See Table 7-1 for Stack Pointer details.
Table 7-1.
Stack Pointer instructions
Instruction
Stack pointer
Description
PUSH
Decremented by 1
Data is pushed onto the stack
CALL
ICALL
RCALL
Decremented by 2
Return address is pushed onto the stack with a subroutine call or
interrupt
POP
Incremented by 1
Data is popped from the stack
RET
RETI
Incremented by 2
Return address is popped from the stack with return from
subroutine or return from interrupt
The Microchip AVR® Stack Pointer is implemented as two 8-bit registers in the I/O space. The number of bits actually used is implementation dependent. Note that the data space in some implementations of the AVR architecture
is so small that only SPL is needed. In this case, the SPH Register will not be present.
7.5.1
SPH and SPL – Stack Pointer High and Low Register
Bit
Read/Write
Initial Value
7.6
15
14
13
12
11
10
9
8
SP15
SP14
SP13
SP12
SP11
SP10
SP9
SP8
SPH
SP7
SP6
SP5
SP4
SP3
SP2
SP1
SP0
SPL
7
6
5
4
3
2
1
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Instruction Execution Timing
This section describes the general access timing concepts for instruction execution. The Microchip AVR® CPU is
driven by the CPU clock clkCPU, directly generated from the selected clock source for the chip. No internal clock
division is used.
Figure 7-4 shows the parallel instruction fetches and instruction executions enabled by the Harvard architecture
and the fast-access Register File concept. This is the basic pipelining concept to obtain up to 1 MIPS per MHz with
the corresponding unique results for functions per cost, functions per clocks, and functions per power-unit.
2020 Microchip Technology Inc.
Data Sheet Complete
DS40001974B-page 18
ATmega8A
Figure 7-4.
The Parallel Instruction Fetches and Instruction Executions
T1
T2
T3
T4
clkCPU
1st Instruction Fetch
1st Instruction Execute
2nd Instruction Fetch
2nd Instruction Execute
3rd Instruction Fetch
3rd Instruction Execute
4th Instruction Fetch
Figure 7-5 shows the internal timing concept for the Register File. In a single clock cycle an ALU operation using
two register operands is executed, and the result is stored back to the destination register.
Figure 7-5.
Single Cycle ALU Operation
T1
T2
T3
T4
clkCPU
Total Execution Time
Register Operands Fetch
ALU Operation Execute
Result Write Back
7.7
Reset and Interrupt Handling
The Microchip AVR® provides several different interrupt sources. These interrupts and the separate Reset Vector
each have a separate Program Vector in the Program memory space. All interrupts are assigned individual enable
bits which must be written logic one together with the Global Interrupt Enable bit in the Status Register in order to
enable the interrupt. Depending on the Program Counter value, interrupts may be automatically disabled when
Boot Lock Bits BLB02 or BLB12 are programmed. This feature improves software security. See the section “Memory Programming” on page 214 for details.
The lowest addresses in the Program memory space are by default defined as the Reset and Interrupt Vectors.
The complete list of Vectors is shown in “Interrupts” on page 51. The list also determines the priority levels of the
different interrupts. The lower the address the higher is the priority level. RESET has the highest priority, and next
is INT0 – the External Interrupt Request 0. The Interrupt Vectors can be moved to the start of the boot Flash section by setting the Interrupt Vector Select (IVSEL) bit in the General Interrupt Control Register (GICR). Refer to
“Interrupts” on page 51 for more information. The Reset Vector can also be moved to the start of the boot Flash
section by programming the BOOTRST Fuse, see “Boot Loader Support – Read-While-Write Self-Programming”
on page 201.
When an interrupt occurs, the Global Interrupt Enable I-bit is cleared and all interrupts are disabled. The user software can write logic one to the I-bit to enable nested interrupts. All enabled interrupts can then interrupt the current
interrupt routine. The I-bit is automatically set when a Return from Interrupt instruction – RETI – is executed.
There are basically two types of interrupts. The first type is triggered by an event that sets the Interrupt Flag. For
these interrupts, the Program Counter is vectored to the actual Interrupt Vector in order to execute the interrupt
2020 Microchip Technology Inc.
Data Sheet Complete
DS40001974B-page 19
ATmega8A
handling routine, and hardware clears the corresponding Interrupt Flag. Interrupt Flags can also be cleared by writing a logic one to the flag bit position(s) to be cleared. If an interrupt condition occurs while the corresponding
interrupt enable bit is cleared, the Interrupt Flag will be set and remembered until the interrupt is enabled, or the
flag is cleared by software. Similarly, if one or more interrupt conditions occur while the global interrupt enable bit is
cleared, the corresponding Interrupt Flag(s) will be set and remembered until the global interrupt enable bit is set,
and will then be executed by order of priority.
The second type of interrupts will trigger as long as the interrupt condition is present. These interrupts do not necessarily have Interrupt Flags. If the interrupt condition disappears before the interrupt is enabled, the interrupt will
not be triggered.
When the AVR exits from an interrupt, it will always return to the main program and execute one more instruction
before any pending interrupt is served.
Note that the Status Register is not automatically stored when entering an interrupt routine, nor restored when
returning from an interrupt routine. This must be handled by software.
When using the CLI instruction to disable interrupts, the interrupts will be immediately disabled. No interrupt will be
executed after the CLI instruction, even if it occurs simultaneously with the CLI instruction. The following example
shows how this can be used to avoid interrupts during the timed EEPROM write sequence.
Assembly Code Example
in r16, SREG
cli
; store SREG value
; disable interrupts during timed sequence
sbi EECR, EEMWE
; start EEPROM write
sbi EECR, EEWE
out SREG, r16
; restore SREG value (I-bit)
C Code Example
char cSREG;
cSREG = SREG; /* store SREG value */
/* disable interrupts during timed sequence */
_CLI();
EECR |= (1