Atmel SAM R21E / SAM R21G
SMART ARM-Based Wireless Microcontroller
PRELIMINARY DATASHEET SUMMARY
Description
The Atmel® | SMART™ SAM R21 is a series of low-power microcontrollers using the 32-bit ARM®
Cortex®-M0+ processor and an integrated ultra-low power 2.4GHz ISM band transceiver. SAM
R21 devices are available in 32- and 48-pin packages with up to 256KB Flash, 32KB of SRAM
and are operating at a maximum frequency of 48MHz and reach 2.14 Coremark/MHz. They are
designed for simple and intuitive migration with identical peripheral modules, hex compatible
code, identical linear address map and pin compatible migration paths between all devices in the
product series. All devices include intelligent and flexible peripherals, Atmel Event System for
inter-peripheral signaling, and support for capacitive touch button, slider and wheel user
interfaces.
The Atmel SAM R21 devices provide the following features: In-system programmable Flash,
12-channel direct memory access (DMA) controller, 12-channel Event System, programmable
interrupt controller, up to 28 programmable I/O pins, ultra-low power 2.4GHz ISM band
transceiver with a data rate of 250kB/s, 32-bit real-time clock and calendar, three 16-bit
Timer/Counters (TC) and three 16-bit Timer/Counters for Control (TCC), where each TC can be
configured to perform frequency and waveform generation, accurate program execution timing or
input capture with time and frequency measurement of digital signals. The TCs can operate in 8or 16-bit mode, selected TCs can be cascaded to form a 32-bit TC, and the three Timer/Counters
for Control have extended functions optimized for motor, lighting and other control applications.
The series provide one full-speed USB 2.0 embedded host and device interface; up to five Serial
Communication Modules (SERCOM) that each can be configured to act as an USART, UART,
SPI, I2C up 3.4MHz and LIN slave; up to eight channel 350ksps 12-bit ADC with programmable
gain and optional oversampling and decimation supporting up to 16-bit resolution, two analog
comparators with window mode, Peripheral Touch Controller supporting up to 48 buttons, sliders,
wheels and proximity sensing; programmable Watchdog Timer, brown-out detector and power-on
reset and two-pin Serial Wire Debug (SWD) program and debug interface.
All devices have accurate and low-power external and internal oscillators. All oscillators can be
used as a source for the system clock. Different clock domains can be independently configured
to run at different frequencies, enabling power saving by running each peripheral at its optimal
clock frequency, and thus maintaining a high CPU frequency while reducing power consumption.
The SAM R21 devices have two software-selectable sleep modes, idle and standby. In idle mode
the CPU is stopped while all other functions can be kept running. In standby all clocks and
functions are stopped expect those selected to continue running. The device supports
SleepWalking, which is the module's ability to wake itself up and wake up its own clock, and
hence perform predefined tasks without waking up the CPU. The CPU can then be only woken on
a need basis, e.g. a threshold is crossed or a result is ready. The Event System supports
synchronous and asynchronous events, allowing peripherals to receive, react to and send events
even in standby mode.
The Flash program memory can be reprogrammed in-system through the SWD interface. The
same interface can be used for non-intrusive on-chip debug of application code. A boot loader
running in the device can use any communication interface to download and upgrade the
application program in the Flash memory.
The SAM R21 devices are supported with a full suite of program and system development tools,
including C compilers, macro assemblers, program debugger/simulators, programmers and
evaluation kits.
Atmel-42223AS–SAM-R21_Summary–07/2014
SMART
Features
z Processor
z ARM Cortex-M0+ CPU running at up to 48MHz
z Single-cycle hardware multiplier
z Micro Trace Buffer (MTB)
z Memories
z 256/128/64KB in-system self-programmable Flash
z 32/16/8KB SRAM
z System
z Power-on reset (POR) and brown-out detection (BOD)
z Internal and external clock options with 48MHz Digital Frequency Locked Loop (DFLL48M) and 48MHz to 96MHz Fractional
Digital Phase Locked Loop (FDPLL96M)
z External Interrupt Controller (EIC)
z Up to 15 external interrupts
z One non-maskable interrupt
z Two-pin Serial Wire Debug (SWD) programming, test and debugging interface
z Low Power
z Idle and standby sleep modes
z SleepWalking peripherals
z Peripherals
z 12-channel Direct Memory Access Controller (DMAC)
z 12-channel Event System
z Integrated Ultra Low Power Transceiver for 2.4GHz ISM Band
z 250kB/s data rate
z -99dBm RX Sensitivity; TX Output Power up to +4dBm
z Hardware Assisted MAC (Auto-Acknowledge, Auto-Retry)
z SFD-Detection; Spreading; De-Spreading; Framing; CRC-16 Computation
z Antenna Diversity and TX/RX Control
z 128 Byte TX/RX Frame Buffer
z Integrated 16MHz Crystal Oscillator (external crystal needed)
z PLL synthesizer with 5 MHz and 500 kHz channel spacing for 2.4GHz ISM band
z Hardware Security (AES, True Random Generator)
z Three 16-bit Timer/Counters (TC), configurable as either:
z One 16-bit TC with compare/capture channels
z One 8-bit TC with compare/capture channels
z One 32-bit TC with compare/capture channels, by using two TCs
z Three 16-bit Timer/Counters for Control (TCC), with extended functions:
z Up to four compare channels with optional complementary output
z Generation of synchronized pulse width modulation (PWM) pattern across port pins
z Deterministic fault protection, fast decay and configurable dead-time between complementary output
z Dithering that increase resolution with up to 5 bit and reduce quantization error
z 32-bit Real Time Counter (RTC) with clock/calendar function
z Watchdog Timer (WDT)
z CRC-32 generator
z One full-speed (12Mbps) Universal Serial Bus (USB) 2.0 interface
z Embedded host and device function
z Eight endpoints
z Up to five Serial Communication Interfaces (SERCOM), each configurable to operate as either:
z USART with full-duplex and single-wire half-duplex configuration
z I2C up to 3.4MHz
z SPI
z LIN slave
z One 12-bit, 350ksps Analog-to-Digital Converter (ADC) with up to eight external channels
z Differential and single-ended input
z 1/2x to 16x programmable gain stage
z Automatic offset and gain error compensation
z Oversampling and decimation in hardware to support 13-, 14-, 15- or 16-bit resolution
z Two Analog Comparators (AC) with window compare function
z Peripheral Touch Controller (PTC)
z 48-channel capacitive touch and proximity sensing
z I/O and Package
z 16/28 programmable I/O pins
z 32-pin and 48-pin QFN
Atmel | SMART SAM R21 [PRELIMINARY DATASHEET SUMMARY]
Atmel-42223AS–SAM-R21_Summary–07/2014
2
z Operating Voltage
z 1.8V – 3.6V
z Temperature Range
z -40°C to 85°C Industrial
z -40°C to 125°C Industrial
Atmel | SMART SAM R21 [PRELIMINARY DATASHEET SUMMARY]
Atmel-42223AS–SAM-R21_Summary–07/2014
3
1.
Configuration Summary
SAM R21G
SAM R21E
Pins
48
32
General Purpose I/O-pins (GPIOs)
28
16
Flash
256/128/64KB
256/128/64KB
SRAM
32/16/8KB
32/16/8KB
Timer Counter (TC) instances
3
3
Waveform output channels per TC instance
2
2
Timer Counter for Control (TCC) instances
3
3
4/4/2
4/4/2
DMA channels
12
12
USB interface
1
1
5+1(1)
4+1(1)
No
No
Analog-to-Digital Converter (ADC) channels
8
4
Analog Comparators (AC)
2
2
Digital-to-Analog Converter (DAC)
channels
No
No
Real-Time Counter (RTC)
Yes
Yes
1
1
1 32-bit value or
2 16-bit values
1 32-bit value or
2 16-bit values
External Interrupt lines
15
14
Peripheral Touch Controller (PTC) X and Y lines
8x6
6x2
Waveform output channels per TCC
Serial Communication Interface (SERCOM) instances
Inter-IC Sound (I2S) interface
RTC alarms
RTC compare values
Maximum CPU frequency
48MHz
Packages
QFN
QFN
32.768kHz crystal oscillator (XOSC32K)
Yes
No
Oscillators
16MHz crystal oscillator for 2.4GHz TRX (XOSCRF)
0.4-32MHz crystal oscillator (XOSC)
32.768kHz internal oscillator (OSC32K)
32kHz ultra-low-power internal oscillator (OSCULP32K)
8MHz high-accuracy internal oscillator (OSC8M)
48MHz Digital Frequency Locked Loop (DFLL48M)
96MHz Fractional Digital Phased Locked Loop (FDPLL96M)
Event System channels
12
12
SW Debug Interface
Yes
Yes
Watchdog Timer (WDT)
Yes
Yes
Atmel | SMART SAM R21 [PRELIMINARY DATASHEET SUMMARY]
Atmel-42223AS–SAM-R21_Summary–07/2014
4
Note:
1.
SERCOM4 is internally connected to the AT86RF233.
Atmel | SMART SAM R21 [PRELIMINARY DATASHEET SUMMARY]
Atmel-42223AS–SAM-R21_Summary–07/2014
5
2.
Ordering Information
ATSAMR 21 E 16 A - M U T
Product Family
Package Carrier
SAMR = SoC Microcontroller with RF
No character = Tray (Default)
T = Tape and Reel
Product Series
21 = Cortex M0+ CPU, USB
Package Grade
U = -40 - 85°C Matte Sn Plating
F = -40 - 125°C Matte Sn Plating
Pin Count
E = 32 Pins
G = 48 Pins
Package Type
Flash Memory
M = QFN
18 = 256KB
17 = 128KB
16 = 64KB
Device Variant
A = Default Variant
2.1
SAM R21E
Ordering Code
FLASH (bytes)
SRAM (bytes)
Package
ATSAMR21E16A-MF
ATSAMR21E16A-MFT
ATSAMR21E16A-MU
Tray
64K
8K
QFN32
ATSAMR21E16A-MUT
ATSAMR21E17A-MU
128K
16K
QFN32
ATSAMR21E18A-MUT
Tape & Reel
Tray
Tape & Reel
ATSAMR21E18A-MF
ATSAMR21E18A-MU
Tray
Tray
ATSAMR21E17A-MUT
ATSAMR21E18A-MFT
Tape & Reel
Tape & Reel
ATSAMR21E17A-MF
ATSAMR21E17A-MFT
Carrier Type
Tray
256K
32K
QFN32
Tape & Reel
Tray
Tape & Reel
Atmel | SMART SAM R21 [PRELIMINARY DATASHEET SUMMARY]
Atmel-42223AS–SAM-R21_Summary–07/2014
6
2.2
SAM R21G
Ordering Code
FLASH (bytes)
SRAM (bytes)
Package
ATSAMR21G16A-MF
ATSAMR21G16A-MFT
ATSAMR21G16A-MU
Tray
64K
8K
QFN48
ATSAMR21G16A-MUT
ATSAMR21G17A-MU
128K
16K
QFN48
ATSAMR21G18A-MUT
Tape & Reel
Tray
Tape & Reel
ATSAMR21G18A-MF
ATSAMR21G18A-MU
Tray
Tray
ATSAMR21G17A-MUT
ATSAMR21G18A-MFT
Tape & Reel
Tape & Reel
ATSAMR21G17A-MF
ATSAMR21G17A-MFT
Carrier Type
Tray
256K
32K
QFN48
Tape & Reel
Tray
Tape & Reel
Atmel | SMART SAM R21 [PRELIMINARY DATASHEET SUMMARY]
Atmel-42223AS–SAM-R21_Summary–07/2014
7
Block Diagrams
3.1
MCU Block Diagram
SWCLK
CORTEX-M0+
PROCESSOR
Fmax 48 MHz
SERIAL
WIRE
SWDIO
MEMORY
TRACE BUFFER
IOBUS
DEVICE
SERVICE
UNIT
M
256/128/64KB
NVM
32/16/8KB
RAM
NVM
CONTROLLER
Cache
SRAM
CONTROLLER
M
M
S
S
AHB-APB
BRIDGE B
S
AHB-APB
BRIDGE A
DMA
5x
6 SERCOM
x SERCOM
OSCULP32K
OSC32K
XOSC32K
3 x TIMER / COUNTER
8 x Timer Counter
FDPLL96M
POWER MANAGER
CLOCK
CONTROLLER
RESETN
RESET
CONTROLLER
SLEEP
CONTROLLER
GENERIC CLOCK
CONTROLLER
(3)
GCLK_IO[n]
REAL TIME
COUNTER
WATCHDOG
TIMER
EXTINT[15..1]
NMI
DMA
EVENT SYSTEM
XOSC
PAD0
PAD1
PAD2
PAD3
DMA
OSC8M
DFLL48M
XIN
XOUT
DM
SOF 1KHZ
PERIPHERAL
ACCESS CONTROLLER
VREF
(4)
XIN32
XOUT32
DP
AHB-APB
BRIDGE C
SYSTEM CONTROLLER
PORT
USB FS
DEVICE
MINI-HOST
S
PERIPHERAL
ACCESS CONTROLLER
BOD33
DMA
M
HIGH SPEED
BUS MATRIX
PERIPHERAL
ACCESS CONTROLLER
S
3x TIMER / COUNTER
FOR CONTROL
DMA
8-CHANNEL
12-bit ADC 350KSPS
2 ANALOG
COMPARATORS
PERIPHERAL
TOUCH
CONTROLLER
WO0
WO1
PORT
3.
WO0
WO1
(2)
WOn
AIN[n]
(3)
VREFB
AIN[3..0]
X[7..0]
Y[5..0]
EXTERNAL INTERRUPT
CONTROLLER
Notes: 1. Some products have different number of SERCOM instances, Timer/Counter instances, PTC signals and ADC signals. Refer to “Ordering Information” on page 6 for details.
2. The three TCC instances have different configurations, including the number of Waveform Output (WO) lines.
3. Refer to the PORT Function Multiplexing Table 5-1 for details about the available GCLK_IO and ADC signals.
4. Only available for SAM R21G.
Atmel | SMART SAM R21 [PRELIMINARY DATASHEET SUMMARY]
Atmel-42223AS–SAM-R21_Summary–07/2014
8
SAM R21 Interconnection
PA08
PA09
GNDANA
FECTRL0..1
AVSS
RFP
RFP
AVSS
RFN
GNDANA
2.4 GHz RF
front-end circuit
PA12(2)
PA13(2)
PA14
PA15
FECTRL2..5
RFN
3.2
DIG3
2.4GHz TRX (analog)
DIG4
(1)
DVSS
DVDD
DVDD
AVSS
DVREG
AVREG
TRX (digital)
DEVDD
VDDIO
GNDANA
AVDD
AVDD
EVDD
VDDANA
DIG1
AVSS
Control Logic
DIG2
RSTN
XOSC
RF
IRQ
PB00
PAD1
/SEL
PB31
PAD2
MOSI
PB30
PAD0
MISO
SCLK
PC18
GENERIC
CLOCK
PAD3
CLKM
PC16
GCLK_IO1 (4)
PC19
SPI
(Slave)
SLP_TR
SERCOM 4 (3)
EXTINT0
PA20
PB15
GNDANA
XTAL1
XTAL1
XTAL2
XTAL2
AT86RF233
ADC
AC
EXTERNAL
INTERRUPT
CONTROLLER
PORT
PTC
DIG1..4
RFCTRL
VREG
XOSC
32K
SAMD21
VDDIN
VDDCORE
GND
SAMR21
Notes: 1. Paddle connected to digital ground DVSS, GND.
2. Only available for SAM R21G.
3. Dedicated SERCOM4 alternate pin function mapping for internally connected AT86RF233.
4. Die revision A uses GCLK_IO5.
Atmel | SMART SAM R21 [PRELIMINARY DATASHEET SUMMARY]
Atmel-42223AS–SAM-R21_Summary–07/2014
9
Pinout
4.1
SAM R21G - QFN48
48
47
46
45
44
43
42
41
40
39
38
37
PB03
PB02
PA31
PA30
VDDIN
VDDCORE
GND
PA28
RESET
PA27
PB23
PB22
4.
1
2
3
4
5
6
7
8
9
10
11
12
36
35
34
33
32
31
30
29
28
27
26
25
VDDIO
GND
PA25
PA24
PA23
PA22
DVDD
GND
PA19
PA18
PA17
PA16
VDDIO
GND
PA08
PA09
GNDANA
RFP
RFN
GNDANA
PA12
PA13
PA14
PA15
13
14
15
16
17
18
19
20
21
22
23
24
PA00
PA01
XTAL2
XTAL1
GNDANA
VDDANA
AVDD
GNDANA
PA04
PA05
PA06
PA07
OSCILLATOR
GROUND
INPUT SUPPLY
REGULATED OUTPUT SUPPLY
RESET PIN
Note:
RF PIN
DIGITAL PIN
ANALOG PIN
DIGITAL PIN/
OSCILLATOR
The large center pad underneath the QFN package is made of metal and internally connected to GND.
It should be soldered and connected to the digital ground on the board to ensure good mechanical stability.
It is not recommended to use the exposed paddle as a replacement of the regular GND pin.
Atmel | SMART SAM R21 [PRELIMINARY DATASHEET SUMMARY]
Atmel-42223AS–SAM-R21_Summary–07/2014
10
SAM R21E - QFN32
32
31
30
29
28
27
26
25
PA31
PA30
VDDIN
VDDCORE
GND
PA28
RESET
PA27
4.2
1
2
3
4
5
6
7
8
24
23
22
21
20
19
18
17
VDDIO
PA25
PA24
DVDD
PA19
PA18
PA17
PA16
OSCILLATOR
GROUND
PA08
PA09
GNDANA
RFP
RFN
GNDANA
PA14
PA15
9
10
11
12
13
14
15
16
XTAL2
XTAL1
GNDANA
VDDANA
AVDD
GNDANA
PA06
PA07
INPUT SUPPLY
RESET PIN
REGULATED OUTPUT
SUPPLY
Note:
RF PIN
DIGITAL PIN
ANALOG PIN
DIGITAL PIN/
OSCILLATOR
The large center pad underneath the QFN package is made of metal and internally connected to GND.
It should be soldered and connected to the digital ground on the board to ensure good mechanical stability.
It is not recommended to use the exposed paddle as a replacement of the regular GND pin.
Atmel | SMART SAM R21 [PRELIMINARY DATASHEET SUMMARY]
Atmel-42223AS–SAM-R21_Summary–07/2014
11
5.
I/O Multiplexing and Considerations
5.1
Multiplexed Signals
Each pin is by default controlled by the PORT as a general purpose I/O and alternatively it can be assigned to one of the
peripheral functions A, B, C, D, E, F, G or H. To enable a peripheral function on a pin, the Peripheral Multiplexer Enable
bit in the Pin Configuration register corresponding to that pin (PINCFGn.PMUXEN, n = 0..31) in the PORT must be
written to one. The selection of peripheral function A to H is done by writing to the Peripheral Multiplexing Odd and Even
bits in the Peripheral Multiplexing register (PMUXn.PMUXE/O) in the PORT.
Table 5-1 describes the peripheral signals multiplexed to the PORT I/O pins.
Table 5-1.
PORT Function Multiplexing
Pin
A
SAMR21 SAMR21
E
G
I/O Pin Supply Type
EIC
B(1)(2)
REF
ADC
C
AC
PTC
D
E
SERCOM SERCOM(1)(2)
ALT
TC
TCC
F
G
H
FECTRL
TCC
SERCOM COM
AC/
GCLK
SERCOM1/
TCC2/WO[0]
PAD[0]
1
PA00 VDDANA
2
PA01 VDDANA
EXTINT[1]
9
PA04 VDDANA
EXTINT[4]
10
PA05 VDDANA
7
11
8
SERCOM1/
TCC2/WO[1]
PAD[1]
ADC/
VREFB
AIN[4]
AIN[0]
Y[2]
SERCOM0/
TCC0/WO[0]
PAD[0]
EXTINT[5]
AIN[5]
AIN[1]
Y[3]
SERCOM0/
TCC0/WO[1]
PAD[1]
PA06 VDDANA
EXTINT[6]
AIN[6]
AIN[2]
Y[4]
SERCOM0/
TCC1/WO[0]
PAD[2]
12
PA07 VDDANA
EXTINT[7]
AIN[7]
AIN[3]
Y[5]
SERCOM0/
TCC1/WO[1]
PAD[3]
9
15
PA08
VDDIO
I2C
NMI
AIN[16]
X[0]
SERCOM0/ SERCOM2/
TCC0/WO[0] FECTRL[0]
PAD[0]
PAD[0]
10
16
PA09
VDDIO
I2C
EXTINT[9]
AIN[17]
X[1]
SERCOM0/ SERCOM2/
TCC0/WO[1] FECTRL[1]
PAD[1]
PAD[1]
21
PA12
VDDIO
I2C
EXTINT[12]
SERCOM2/
PAD[0]
TCC2/WO[0] FECTRL[2]
AC/
CMP[0]
22
PA13
VDDIO
I2C
EXTINT[13]
SERCOM2/
PAD[1]
TCC2/WO[1] FECTRL[3]
AC/
CMP[1]
15
23
PA14
VDDIO
EXTINT[14]
SERCOM2/
PAD[2]
TC3/WO[0] FECTRL[4]
GCLK_IO[0]
16
24
PA15
VDDIO
EXTINT[15]
SERCOM2/
PAD[3]
TC3/WO[1] FECTRL[5]
GCLK_IO[1]
17
25
PA16
VDDIO
I2C
18
26
PA17
VDDIO
I2C
19
27
PA18
20
28
X[4]
SERCOM1/ SERCOM3/
TCC2/WO[0]
PAD[0]
PAD[0]
TCC0/
WO[0]
GCLK_IO[2]
EXTINT[1]
X[5]
SERCOM1/ SERCOM3/
TCC2/WO[1]
PAD[1]
PAD[1]
TCC0/
WO[1]
GCLK_IO[3]
VDDIO
EXTINT[2]
X[6]
SERCOM1/ SERCOM3/
PAD[2]
PAD[2]
TC3/WO[0]
TCC0/
WO[2]
AC/
CMP[0]
PA19
VDDIO
EXTINT[3]
X[7]
SERCOM1/ SERCOM3/
PAD[3]
PAD[3]
TC3/WO[1]
TCC0/
WO[3]
AC/
CMP[1]
31
PA22
VDDIO
I2C
EXTINT[6]
X[10]
SERCOM3/ SERCOM5/
PAD[0]
PAD[0]
TC4/WO[0]
TCC0/
WO[4]
GCLK_IO[6]
32
PA23
VDDIO
I2C
EXTINT[7]
X[11]
SERCOM3/ SERCOM5/
PAD[1]
PAD[1]
TC4/WO[1]
TCC0/
WO[5]
GCLK_IO[7]
22
33
PA24
VDDIO
EXTINT[12]
SERCOM3/ SERCOM5/
PAD[2]
PAD[2]
TC5/WO[0]
TCC1/
WO[2]
USB_DM
23
34
PA25
VDDIO
EXTINT[13]
SERCOM3/ SERCOM5/
PAD[3]
PAD[3]
TC5/WO[1]
TCC1/
WO[3]
USB_DP
Atmel | SMART SAM R21 [PRELIMINARY DATASHEET SUMMARY]
Atmel-42223AS–SAM-R21_Summary–07/2014
12
Table 5-1.
PORT Function Multiplexing (Continued)
Pin
A
SAMR21 SAMR21
E
G
I/O Pin Supply Type
EIC
B(1)(2)
REF
ADC
C
AC
D
E
SERCOM SERCOM(1)(2)
ALT
PTC
F
G
H
FECTRL
TCC
SERCOM COM
TC
TCC
AC/
GCLK
37
PB22
VDDIO
EXTINT[6]
SERCOM5/
PAD[2]
GCLK_IO[0]
38
PB23
VDDIO
EXTINT[7]
SERCOM5/
PAD[3]
GCLK_IO[1]
25
39
PA27
VDDIO
EXTINT[15]
SERCOM3/
PAD[0]
GCLK_IO[0]
27
41
PA28
VDDIO
EXTINT[8]
SERCOM3/
PAD[1]
GCLK_IO[0]
31
45
PA30
VDDIO
EXTINT[10]
SERCOM1/
TCC1/WO[0]
PAD[2]
32
46
PA31
VDDIO
EXTINT[11]
SERCOM1/
TCC1/WO[1]
PAD[3]
47
PB02 VDDANA
EXTINT[2]
AIN[10]
Y[8]
SERCOM5/
PAD[0]
48
PB03 VDDANA
EXTINT[3]
AIN[11]
Y[9]
SERCOM5/
PAD[1]
Notes:
1.
2.
5.2
Internal Multiplexed Signals
SWCLK GCLK_IO[0]
All analog pin functions are on peripheral function B. Peripheral function B must be selected to disable the digital control of the pin.
Only some pins can be used in SERCOM I2C mode. See the Type column for using a SERCOM pin in I2C mode. Refer to !!!CRs_ElChar_Top!!! for details on
the I2C pin characteristics.
PA20, PB00, PB15, PB30, PB31, PC16, PC18 and PC19 are by default controlled by the PORT as a general purpose I/O
and alternatively it can be assigned to one of the peripheral functions A, B, C, D, E, F, G or H. To enable a peripheral
function on a pin, the Peripheral Multiplexer Enable bit in the Pin Configuration register corresponding to that pin
(PINCFGn.PMUXEN, n = 0-31) in the PORT must be written to one. The selection of peripheral function A to H is done
by writing to the Peripheral Multiplexing Odd and Even bits in the Peripheral Multiplexing register (PMUXn.PMUXE/O) in
the PORT.
PA10, PA11, PB16 and PB17 cannot be configured as output ports. These ports are always connected to the RFCTRL
inputs.
A
B
C
D
SERCOM
SERCOMALT
E
F
G
H
TC
FECTRL
TCC
SERCOM
COM
AC/
GCLK
Internal
Signal
I/O Pin
Supply
Type
EIC
DIG3
PA10
VDDIO
Input
EXTINT[10]
DIG4
PA11
VDDIO
Input
EXTINT[11]
SLP_TR
PA20
VDDIO
I/O
IRQ
PB00
VDDANA
I/O
RSTN
PB15
VDDIO
I/O
DIG1
PB16
VDDIO
Input
EXTINT[0]
DIG2
PB17
VDDIO
Input
EXTINT[1]
MOSI
PB30
VDDIO
I/O
SERCOM4/
PAD[2]
SEL
PB31
VDDIO
I/O
SERCOM4/
PAD[1]
REF
ADC
AC
PTC
EXTINT[0]
Atmel | SMART SAM R21 [PRELIMINARY DATASHEET SUMMARY]
Atmel-42223AS–SAM-R21_Summary–07/2014
13
A
Internal
Signal
B
SERCOM
H
TC
FECTRL
TCC
SERCOM
COM
AC/
GCLK
PC16
VDDIO
I/O
GCLK/
IO[1](1)
SCLK
PC18
VDDIO
I/O
SERCOM4/
PAD[3]
MISO
PC19
VDDIO
I/O
SERCOM4/
PAD[0]
5.3.1
Oscillator Pinout
PTC
G
CLKM
Other Functions
AC
F
I/O Pin
5.3
ADC
SERCOMALT
E
Type
1.
REF
D
Supply
Note:
EIC
C
Die revision A uses GCLK/IO[5].
The oscillators are not mapped to the normal PORT functions and their multiplexing are controlled by registers in the
System Controller (SYSCTRL).
Oscillator
Supply
XOSC
VDDIO
XOSC32K
VDDANA
Signal
I/O Pin
XIN
PA14
XOUT
PA15
XIN32
PA00
XOUT32
PA01
The integrated AT86RF233 16 MHz crystal oscillator is directly connected to pins and has no multiplexing functionality.
Oscillator
XOSCRF
5.3.2
Supply
Signal
EVDD/VDDANA
I/O Pin
XTAL1
XTAL1
XTAL2
XTAL2
Serial Wire Debug Interface Pinout
Only the SWCLK pin is mapped to the normal PORT functions. A debugger cold-plugging or hot-plugging detection will
automatically switch the SWDIO port to the SWDIO function.
Signal
Supply
I/O Pin
SWCLK
VDDIO
PA30
SWDIO
VDDIO
PA31
Atmel | SMART SAM R21 [PRELIMINARY DATASHEET SUMMARY]
Atmel-42223AS–SAM-R21_Summary–07/2014
14
6.
Product Mapping
Figure 6-1. Atmel | SMART SAM R21 Product Mapping
Global Memory Space
0x00000000
Code
0x00000000
Internal Flash
Code
0x20000000
AHB-APB Bridge C
0x00400000
Reserved
SRAM
PAC2
0x42000400
0x1FFFFFFF
0x22008000
0x42000000
EVSYS
Undefined
0x40000000
SRAM
SERCOM0
0x42000C00
0x20000000
Peripherals
0x42000800
SERCOM1
Internal SRAM
0x42001000
SERCOM2
0x20008000
0x43000000
0x42001400
SERCOM3
Reserved
0x60000000
AHB-APB
0x42001800
SERCOM4
0x40000000
AHB-APB
Bridge A
Undefined
0x60000200
0x42001C00
SERCOM5
0x42002000
TCC0
0x41000000
AHB-APB
Bridge B
Reserved
(1)
0x42002400
TCC1
0x42002800
0xFFFFFFFF
0x42000000
TCC2
AHB-APB
Bridge C
0x42FFFFFF
0x42002C00
TC3
0x42003000
TC4
0x42003400
AHB-APB Bridge A
0x41002000
0x41004000
0x41004400
0x41004800
0x41005000
0x41006000
PTC
0x42005000
MTB
EIC
Reserved
Reserved
0x42005400
0x41004700
0x40001C00
Reserved
0x42004C00
USB
RTC
0x40001800
AC
0x42004800
DMAC
WDT
0x40001400
ADC
0x42004400
PORT
GCLK
0x40001000
Reserved
0x42004000
NVMCTRL
SYSCTRL
0x40000C00
Reserved
0x42003C00
DSU
PM
0x40000800
0x40FFFFFF
0x42003800
PAC1
PAC0
0x40000400
TC5
AHB-APB Bridge B
0x41000000
0x40000000
Reserved
0x41FFFFFF
RFCTRL
0x42005800
Reserved
Note 1. SERCOM4 is internally connected to the AT86RF233.
0x40FFFFFF
This figure represents the full configuration of the Atmel | SMART SAM R21 with maximum Flash and SRAM capabilities and a full
set of peripherals. Refer to the “Configuration Summary” on page 4 for details.
Atmel | SMART SAM R21 [PRELIMINARY DATASHEET SUMMARY]
Atmel-42223AS–SAM-R21_Summary–07/2014
15
7.
Processor And Architecture
7.1
Cortex M0+ Processor
The Atmel | SMART SAM R21 implements the ARM® Cortex™-M0+ processor, which is based on the ARMv6
Architecture and Thumb®-2 ISA. The Cortex M0+ is 100% instruction set compatible with its predecessor, the Cortex-M0
processor, and upward compatible to Cortex-M3 and M4 processors.
For more information refer to www.arm.com.
7.1.1
Cortex M0+ Configuration
Features
Configuration option
Atmel | SMART SAM R21
configuration
Interrupts
External interrupts 0-32
32
Data endianness
Little-endian or big-endian
Little-endian
SysTick timer
Present or absent
Present
Number of watchpoint comparators
0, 1, 2
2
Number of breakpoint comparators
0, 1, 2, 3, 4
4
Halting debug support
Present or absent
Present
Multiplier
Fast or small
Fast (single cycle)
Single-cycle I/O port
Present or absent
Present
Wake-up interrupt controller
Supported or not supported
Not supported
Vector Table Offset Register
Present or absent
Present
Unprivileged/Privileged support
Present or absent
Absent(1)
Memory Protection Unit
Not present or 8-region
Not present
Reset all registers
Present or absent
Absent
Instruction fetch width
16-bit only or mostly 32-bit
32-bit
Note:
1.
All software run in privileged mode only
The ARM Cortex-M0+ core has two bus interfaces:
z
Single 32-bit AMBA®-3 AHB-Lite™ system interface that provides connections to peripherals and all system
memory, including flash and RAM
z
Single 32-bit I/O port bus interfacing to the PORT with one-cycle loads and stores
Atmel | SMART SAM R21 [PRELIMINARY DATASHEET SUMMARY]
Atmel-42223AS–SAM-R21_Summary–07/2014
16
8.
Packaging Information
8.1
Thermal Considerations
8.1.1
Thermal Resistance Data
Table 8-1 summarizes the thermal resistance data depending on the package.
Table 8-1.
8.1.2
Thermal Resistance Data
Package Type
θJA
θJC
32-pin QFN
37.2 °C/W
3.1 °C/W
48-pin QFN
33 °C/W
11.4 °C/W
Junction Temperature
The average chip-junction temperature, TJ, in °C can be obtained from the following:
where:
z
θJA = package thermal resistance, Junction-to-ambient (°C/W), provided in Table 8-1.
z
θJC = package thermal resistance, Junction-to-case thermal resistance (°C/W), provided in Table 8-1.
z
θHEATSINK = cooling device thermal resistance (°C/W), provided in the device datasheet.
z
PD = device power consumption (W).
z
TA = ambient temperature (°C).
From the first equation, the user can derive the estimated lifetime of the chip and decide if a cooling device is necessary
or not. If a cooling device is to be fitted on the chip, the second equation should be used to compute the resulting average
chip-junction temperature TJ in °C.
Atmel | SMART SAM R21 [PRELIMINARY DATASHEET SUMMARY]
Atmel-42223AS–SAM-R21_Summary–07/2014
17
8.2
Package Drawings
8.2.1
48-pin QFN
Table 8-2.
Device and Package Maximum Weight
100
Table 8-3.
mg
Package Characteristics
Moisture Sensitivity Level
Table 8-4.
MSL3
Package Reference
JEDEC Drawing Reference
MO-220
JESD97 Classification
E3
Atmel | SMART SAM R21 [PRELIMINARY DATASHEET SUMMARY]
Atmel-42223AS–SAM-R21_Summary–07/2014
18
8.2.2
32-pin QFN
Table 8-5.
Device and Package Maximum Weight
90
Table 8-6.
mg
Package Characteristics
Moisture Sensitivity Level
Table 8-7.
MSL3
Package Reference
JEDEC Drawing Reference
MO-220
JESD97 Classification
E3
Atmel | SMART SAM R21 [PRELIMINARY DATASHEET SUMMARY]
Atmel-42223AS–SAM-R21_Summary–07/2014
19
8.3
Soldering Profile
The following table gives the recommended soldering profile from J-STD-20.
Profile Feature
Green Package
Average Ramp-up Rate (217°C to peak)
3°C/s max
Preheat Temperature 175°C +/-25°C
150-200°C
Time Maintained Above 217°C
60-150s
Time within 5°C of Actual Peak Temperature
Peak Temperature Range
30s
260°C
Ramp-down Rate
6°C/s max
Time 25°C to Peak Temperature
8 minutes max
A maximum of three reflow passes is allowed per component.
SVNREVISION
Atmel | SMART SAM R21 [PRELIMINARY DATASHEET SUMMARY]
Atmel-42223AS–SAM-R21_Summary–07/2014
20
Table of Contents
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1. Configuration Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1
2.2
SAM R21E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
SAM R21G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3. Block Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1
3.2
MCU Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
SAM R21 Interconnection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4. Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.1
4.2
SAM R21G - QFN48 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
SAM R21E - QFN32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5. I/O Multiplexing and Considerations . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.1
5.2
5.3
Multiplexed Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Internal Multiplexed Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Other Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
6. Product Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
7. Processor And Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
7.1
Cortex M0+ Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
8. Packaging Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
8.1
8.2
8.3
Thermal Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Package Drawings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Soldering Profile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Atmel | SMART SAM R21 [PRELIMINARY DATASHEET SUMMARY]
Atmel-42223AS–SAM-R21_Summary–07/2014
21
ARM Connected Logo
Atmel Corporation
1600 Technology Drive, San Jose, CA 95110 USA
T: (+1)(408) 441.0311
F: (+1)(408) 436.4200
|
www.atmel.com
© 2014 Atmel Corporation. / Rev.: Atmel-42223AS-SAM-R21_Summary_07/2014.
Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel Corporation in U.S. and
other countries. ARM®, ARM Connected® logo, and others are the registered trademarks or trademarks of ARM Ltd. Other terms and product names may be
trademarks of others.
DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right
is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE
ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT
SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES
FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information
contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended,
authorized, or warranted for use as components in applications intended to support or sustain life.
SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any applications where
the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without an Atmel officer's specific written
consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons systems.
Atmel products are not designed nor intended for use in military or aerospace applications or environments unless specifically designated by Atmel as military-grade. Atmel products are
not designed nor intended for use in automotive applications unless specifically designated by Atmel as automotive-grade.