ATtiny87/167
tinyAVR® Data Sheet
Introduction
The ATtiny87/167 is a low power, CMOS 8-bit microcontroller based on the AVR® enhanced RISC architecture. The ATtiny87/167 is a 20/32-pins device with 8/16 KB Flash, 512 bytes SRAM and 512 bytes
EEPROM. By executing instructions in a single clock cycle, the devices achieve CPU throughput approaching one million instructions per second (MIPS) per megahertz, allowing the system designer to optimize
power consumption versus processing speed.
Features
• High Performance, Low Power AVR® 8-bit Microcontroller
• Advanced RISC Architecture
– 123 Powerful Instructions – Most Single Clock Cycle Execution
– 32 x 8 General Purpose Working Registers
– Fully Static Operation
• Non-volatile Program and Data Memories
– 8K/16K Bytes of In-System Programmable Flash Program Memory
• Endurance: 10,000 Write/Erase Cycles
– 512 Bytes of In-System Programmable EEPROM
• Endurance: 100,000 Write/Erase Cycles
– 512 Bytes of Internal SRAM
– Data retention: 20 Years at 85°C / 100 Years at 25°C
– In-System Programmable via SPI Port
– Low size LIN/UART Software In-System Programmable
– Programming Lock for Software Security
• Peripheral Features
– LIN 2.1 and 1.3 Controller or 8-bit UART
– One 8-bit Asynchronous Timer/Counter with Prescaler
• Output Compare or 8-bit PWM Channel
– One 16-bit Synchronous Timer/Counter with Prescaler
• External Event Counter
• 2 Output Compare Units or PWM Channels each Driving up to 4 Output Pins
– Master/Slave SPI Serial Interface
– Universal Serial Interface with Start Condition Detector
– 10-bit ADC
2020 Microchip Technology Inc.
Data Sheet Complete
DS40002167A-page 1
ATtiny87/167
• 11 Single Ended Channels
• 8 Differential ADC Channel Pairs with Programmable Gain (8x or 20x)
– On-chip Analog Comparator with Selectable Voltage Reference
– 100 μA ±10% Current Source for LIN Node Identification
– On-chip Temperature Sensor
– Programmable Watchdog Timer with Separate On-chip Oscillator
• Special Microcontroller Features
– Software Controlled Clock Switching for Power Control, EMC Reduction
– debugWIRE On-chip Debug System
– External and Internal Interrupt Sources
– Low Power Idle, ADC Noise Reduction, and Power-down Modes
– Power-on Reset and Programmable Brown-out Detection
– Internal 8MHz Calibrated Oscillator
– 4-16 MHz and 32 KHz Crystal/Ceramic Resonator Oscillators
• I/O and Packages
– 16 Programmable I/O Lines
– 20-pin SOIC, 32-pad VQFN and 20-pin TSSOP
• Operating Voltage:
– 1.8 – 5.5V for ATtiny87/167
• Speed Grade:
– 0 – 4 MHz @ 1.8 – 5.5V
– 0 – 8 MHz @ 2.7 – 5.5V
– 0 – 16 MHz @ 4.5 – 5.5V
• Industrial Temperature Range
2020 Microchip Technology Inc.
Data Sheet Complete
DS40002167A-page 2
ATtiny87/167
Table of Contents
1
Introduction .............................................................................................. 1
2
Features ..................................................................................................... 1
3
Description ............................................................................................... 9
4
5
6
3.1
Comparison Between ATtiny87 and ATtiny167 ................................................. 9
3.2
Part Description ................................................................................................. 9
3.3
Block Diagram ................................................................................................. 10
3.4
Pin Configuration ............................................................................................. 11
3.5
Pin Description ................................................................................................ 13
3.6
Resources ....................................................................................................... 14
3.7
About Code Examples..................................................................................... 14
3.8
Data Retention................................................................................................. 14
3.9
Disclaimer........................................................................................................ 14
AVR CPU Core ........................................................................................ 15
4.1
Overview.......................................................................................................... 15
4.2
ALU – Arithmetic Logic Unit............................................................................. 16
4.3
Status Register ................................................................................................ 16
4.4
General Purpose Register File ........................................................................ 18
4.5
Stack Pointer ................................................................................................... 19
4.6
Instruction Execution Timing ........................................................................... 20
4.7
Reset and Interrupt Handling........................................................................... 20
AVR Memories ........................................................................................ 23
5.1
In-System Re-programmable Flash Program Memory .................................... 23
5.2
SRAM Data Memory........................................................................................ 24
5.3
EEPROM Data Memory .................................................................................. 25
5.4
I/O Memory...................................................................................................... 29
5.5
Register Description ........................................................................................ 29
System Clock and Clock Options ......................................................... 32
6.1
Clock Systems and their Distribution ............................................................... 32
6.2
Clock Sources ................................................................................................. 33
6.3
Dynamic Clock Switch ..................................................................................... 39
6.4
System Clock Prescaler .................................................................................. 45
6.5
Register Description ........................................................................................ 45
2020 Microchip Technology Inc.
Data Sheet Complete
DS40002167A-page 3
ATtiny87/167
7
8
9
Power Management and Sleep Modes ................................................. 50
7.1
Sleep Modes.................................................................................................... 50
7.2
BOD Disable.................................................................................................... 51
7.3
Idle Mode......................................................................................................... 51
7.4
ADC Noise Reduction Mode............................................................................ 51
7.5
Power-down Mode........................................................................................... 52
7.6
Power-save Mode............................................................................................ 52
7.7
Power Reduction Register ............................................................................... 52
7.8
Minimizing Power Consumption ...................................................................... 53
7.9
Register Description ........................................................................................ 54
System Control and Reset .................................................................... 57
8.1
Reset ............................................................................................................... 57
8.2
Internal Voltage Reference.............................................................................. 61
8.3
Watchdog Timer .............................................................................................. 61
Interrupts ................................................................................................ 67
9.1
Interrupt Vectors in ATtiny87/167 .................................................................... 67
9.2
Program Setup in ATtiny87 ............................................................................. 68
9.3
Program Setup in ATtiny167 ........................................................................... 69
10 External Interrupts ................................................................................. 70
10.1
Overview.......................................................................................................... 70
10.2
Pin Change Interrupt Timing............................................................................ 70
10.3
Register Description ........................................................................................ 71
11 I/O-Ports .................................................................................................. 75
11.1
Introduction...................................................................................................... 75
11.2
Ports as General Digital I/O ............................................................................. 76
11.3
Alternate Port Functions .................................................................................. 80
11.4
Register Description ........................................................................................ 93
12 8-bit Timer/Counter0 and Asynchronous Operation .......................... 94
12.1
Features .......................................................................................................... 94
12.2
Overview.......................................................................................................... 94
12.3
Timer/Counter Clock Sources ......................................................................... 96
12.4
Counter Unit .................................................................................................... 96
12.5
Output Compare Unit....................................................................................... 97
12.6
Compare Match Output Unit ............................................................................ 98
2020 Microchip Technology Inc.
Data Sheet Complete
DS40002167A-page 4
ATtiny87/167
12.7
Modes of Operation ......................................................................................... 99
12.8
Timer/Counter Timing Diagrams ................................................................... 104
12.9
Asynchronous Operation of Timer/Counter0 ................................................. 105
12.10
Timer/Counter0 Prescaler ............................................................................. 107
12.11
Register Description ...................................................................................... 107
13 Timer/Counter1 Prescaler ................................................................... 114
13.1
Overview........................................................................................................ 114
13.2
Register Description ...................................................................................... 116
14 16-bit Timer/Counter1 .......................................................................... 117
14.1
Features ........................................................................................................ 117
14.2
Overview........................................................................................................ 117
14.3
Accessing 16-bit Registers ............................................................................ 119
14.4
Timer/Counter Clock Sources ....................................................................... 122
14.5
Counter Unit .................................................................................................. 123
14.6
Input Capture Unit ......................................................................................... 124
14.7
Output Compare Units................................................................................... 126
14.8
Compare Match Output Unit .......................................................................... 127
14.9
Modes of Operation ....................................................................................... 129
14.10
Timer/Counter Timing Diagrams ................................................................... 137
14.11
Register Description ...................................................................................... 139
15 SPI - Serial Peripheral Interface .......................................................... 147
15.1
Features ........................................................................................................ 147
15.2
SS Pin Functionality ...................................................................................... 152
15.3
Data Modes ................................................................................................... 155
16 USI – Universal Serial Interface .......................................................... 156
16.1
Features ........................................................................................................ 156
16.2
Overview........................................................................................................ 156
16.3
Functional Descriptions ................................................................................. 157
16.4
Alternative USI Usage ................................................................................... 163
16.5
Register Description ...................................................................................... 163
17 LIN / UART - Local Interconnect Network Controller or UART ........ 169
17.1
LIN Features.................................................................................................. 169
17.2
UART Features.............................................................................................. 169
17.3
LIN Protocol................................................................................................... 170
2020 Microchip Technology Inc.
Data Sheet Complete
DS40002167A-page 5
ATtiny87/167
17.4
LIN / UART Controller.................................................................................... 171
17.5
LIN / UART Description ................................................................................. 177
17.6
Register Description ..................................................................................... 187
18 ISRC – Current Source ........................................................................ 195
18.1
Features ........................................................................................................ 195
18.2
Typical applications ....................................................................................... 195
18.3
Control Register............................................................................................. 197
19 ADC – Analog to Digital Converter ..................................................... 198
19.1
Features ........................................................................................................ 198
19.2
Overview........................................................................................................ 198
19.3
Operation....................................................................................................... 200
19.4
Starting a Conversion .................................................................................... 201
19.5
Prescaling and Conversion Timing ................................................................ 202
19.6
Changing Channel or Reference Selection ................................................... 204
19.7
ADC Noise Canceler ..................................................................................... 205
19.8
ADC Conversion Result................................................................................. 209
19.9
Temperature Measurement ........................................................................... 210
19.10
Internal Voltage Reference Output ................................................................ 210
19.11
Register Description ...................................................................................... 212
20 AnaComp - Analog Comparator ......................................................... 218
20.1
Analog Comparator Inputs............................................................................. 218
20.2
Register Description ...................................................................................... 220
21 DebugWIRE On-chip Debug System .................................................. 222
21.1
Features ........................................................................................................ 222
21.2
Overview........................................................................................................ 222
21.3
Physical Interface .......................................................................................... 222
21.4
Software Break Points ................................................................................... 223
21.5
Limitations of DebugWIRE ............................................................................ 223
21.6
DebugWIRE Related Register in I/O Memory ............................................... 223
22 Flash Programming ............................................................................. 224
22.1
Self-Programming the Flash .......................................................................... 224
22.2
Addressing the Flash During Self-Programming ........................................... 225
23 Memory Programming ......................................................................... 232
23.1
Program and Data Memory Lock Bits............................................................ 232
2020 Microchip Technology Inc.
Data Sheet Complete
DS40002167A-page 6
ATtiny87/167
23.2
Fuse Bits........................................................................................................ 232
23.3
Signature Bytes ............................................................................................. 234
23.4
Calibration Byte ............................................................................................. 235
23.5
Page Size ...................................................................................................... 235
23.6
Parallel Programming Parameters, Pin Mapping, and Commands ............... 235
23.7
Parallel Programming .................................................................................... 238
23.8
Serial Downloading........................................................................................ 245
23.9
Serial Programming Characteristics .............................................................. 249
24 Electrical Characteristics .................................................................... 250
24.1
Absolute Maximum Ratings* ........................................................................ 250
24.2
DC Characteristics......................................................................................... 250
24.3
Speed ............................................................................................................ 252
24.4
Clock Characteristics..................................................................................... 252
24.5
RESET Characteristics.................................................................................. 253
24.6
Internal Voltage Characteristics..................................................................... 254
24.7
Current Source Characteristics ..................................................................... 255
24.8
ADC Characteristics ...................................................................................... 255
24.9
Parallel Programming Characteristics ........................................................... 257
24.10
SPI Timing Characteristics ............................................................................ 260
25 Typical Characteristics ........................................................................ 262
25.1
Current Consumption in Active Mode ............................................................ 262
25.2
Current Consumption in Idle Mode ................................................................ 264
25.3
Supply Current of I/O modules ...................................................................... 266
25.4
Current Consumption in Power-down Mode.................................................. 266
25.5
Current Consumption in Reset ...................................................................... 267
25.6
Pull-up Resistors ........................................................................................... 268
25.7
Output Driver Strength................................................................................... 270
25.8
Input Thresholds and Hysteresis (for I/O Ports) ............................................ 272
25.9
BOD, Bandgap and Reset ............................................................................. 273
25.10
Internal Oscillator Speed ............................................................................... 276
26 Register Summary ............................................................................... 278
27 Instruction Set Summary .................................................................... 282
28 Ordering Information ........................................................................... 284
28.1
ATtiny87 ........................................................................................................ 284
2020 Microchip Technology Inc.
Data Sheet Complete
DS40002167A-page 7
ATtiny87/167
28.2
ATtiny167 ...................................................................................................... 285
29 Packaging Information ........................................................................ 286
29.1
32PN.............................................................................................................. 286
29.2
20S2 .............................................................................................................. 289
29.3
20X ................................................................................................................ 292
29.4
TSB................................................................................................................ 295
30 Errata ..................................................................................................... 298
31 Datasheet Revision History ................................................................. 299
31.1
Rev. A – 01/2020 ........................................................................................... 299
31.2
Rev. 8265D – 01/2014................................................................................... 299
31.3
Rev. 8265C – 03/12....................................................................................... 299
31.4
Rev. 8265B – 09/10....................................................................................... 299
31.5
Rev. 8265A – 08/10....................................................................................... 299
2020 Microchip Technology Inc.
Data Sheet Complete
DS40002167A-page 8
ATtiny87/167
1. Description
1.1
Comparison Between ATtiny87 and ATtiny167
ATtiny87 and ATtiny167 are hardware and software compatible. They differ only in memory
sizes as shown in Table 1-1.
Table 1-1.
1.2
Memory Size Summary
Device
Flash
EEPROM
SRAM
Interrupt Vector size
ATtiny167
16K Bytes
512 Bytes
512 Bytes
2-instruction-words / vector
ATtiny87
8K Bytes
512 Bytes
512 Bytes
2-instruction-words / vector
Part Description
The ATtiny87/167 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC
architecture. By executing powerful instructions in a single clock cycle, the ATtiny87/167
achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize
power consumption versus processing speed.
The AVR core combines a rich instruction set with 32 general purpose working registers. All the
32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent
registers to be accessed in one single instruction executed in one clock cycle. The resulting
architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.
The ATtiny87/167 provides the following features: 8K/16K byte of In-System Programmable
Flash, 512 bytes EEPROM, 512 bytes SRAM, 16 general purpose I/O lines, 32 general purpose
working registers, one 8-bit Timer/Counter with compare modes, one 8-bit high speed
Timer/Counter, Universal Serial Interface, a LIN controller, Internal and External Interrupts, a 11channel, 10-bit ADC, a programmable Watchdog Timer with internal Oscillator, and three software selectable power saving modes. The Idle mode stops the CPU while allowing the SRAM,
Timer/Counter, ADC, Analog Comparator, and Interrupt system to continue functioning. The
Power-down mode saves the register contents, disabling all chip functions until the next Interrupt or Hardware Reset. The ADC Noise Reduction mode stops the CPU and all I/O modules
except ADC, to minimize switching noise during ADC conversions.
The device is manufactured using Microchip’s high density non-volatile memory technology. The
On-chip ISP Flash allows the Program memory to be re-programmed In-System through an SPI
serial interface, by a conventional non-volatile memory programmer or by an On-chip boot code
running on the AVR core. The Boot program can use any interface to download the application
program in the Flash memory. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip, the Microchip ATtiny87/167 is a powerful microcontroller that
provides a highly flexible and cost effective solution to many embedded control applications.
The ATtiny87/167 AVR is supported with a full suite of program and system development tools
including: C Compilers, Macro Assemblers, Program Debugger/Simulators, In-Circuit Emulators,
and Evaluation kits.
2020 Microchip Technology Inc.
Data Sheet Complete
DS40002167A-page 9
ATtiny87/167
Block Diagram
Block Diagram
Watchdog
Timer
Watchdog
Oscillator
Oscillator
Circuits /
Clock
Generation
VCC
GND
Figure 1-1.
Power
Supervision
POR / BOD &
RESET
debugWIRE
Flash
SRAM
PROGRAM
LOGIC
CPU
EEPROM
AVCC
AGND
Timer/Counter-1
Timer/Counter-0
DATABUS
1.3
SPI & USI
A/D Conv.
Internal
Voltage
References
Analog Comp.
2
11
PORT B (8)
PORT A (8)
LIN / UART
RESET
XTAL[1:2]
PB[0:7]
2020 Microchip Technology Inc.
PA[0:7]
Data Sheet Complete
DS40002167A-page 10
ATtiny87/167
Pin Configuration
Pinout ATtiny87/167 - SOIC20 & TSSOP20
(RXLIN / RXD / ADC0 / PCINT0) PA0
(TXLIN / TXD / ADC1 / PCINT1) PA1
(MISO / DO / OC0A / ADC2 / PCINT2) PA2
(INT1 / ISRC / ADC3 / PCINT3) PA3
AVCC
AGND
(MOSI / SDA / DI / ICP1 / ADC4 / PCINT4) PA4
(SCK / SCL / USCK / T1 / ADC5 / PCINT5) PA5
(SS / AIN0 / ADC6 / PCINT6) PA6
(AREF / XREF / AIN1 / ADC7 / PCINT7) PA7
Pinout ATtiny87/167 - VQFN32
26
25
27
28
1
24
2
23
3
22
32-lead
4
5
21
20
top view
6
19
18
7
8
2020 Microchip Technology Inc.
nc
nc
nc
GND
VCC
PB4 (PCINT12 / OC1AW / XTAL1 / CLKI)
PB5 (PCINT13 / ADC8 / OC1BW / XTAL2 / CLKO)
nc
16
15
14
13
11
(MOSI / SDA / DI / ICP1 / ADC4 / PCINT4) PA4
(SCK / SCL / USCK / T1 / ADC5 / PCINT5) PA5
(SS / AIN0 / ADC6 / PCINT6) PA6
(AREF / XREF / AIN1 / ADC7 / PCINT7) PA7
nc
(dW / RESET / OC1BX / ADC10 / PCINT15) PB7
(INT0 / OC1AX / ADC9 / PCINT14 ) PB6
nc
12
17
9
nc
nc
(INT1 / ISRC / ADC3 / PCINT3) PA3
AVCC
AGND
nc
nc
nc
29
32
INDEX CORNER
30
nc
PA2 (PCINT2 / ADC2 / OC0A / DO / MISO)
PA1 (PCINT1 / ADC1 / TXD / TXLIN)
PA0 (PCINT0 / ADC0 / RXD / RXLIN)
PB0 (PCINT8 / OC1AU / DI / SDA)
PB1 (PCINT9 / OC1BU / DO)
PB2 (PCINT10 / OC1AV / USCK / SCL)
PB3 (PCINT11 / OC1BV)
Figure 1-3.
PB0 (PCINT8 / OC1AU / DI / SDA)
PB1 (PCINT9 / OC1BU / DO)
PB2 (PCINT10 / OC1AV / USCK / SCL)
PB3 (PCINT11 / OC1BV)
GND
VCC
PB4 (PCINT12 / OC1AW / XTAL1 / CLKI)
PB5 (PCINT13 / ADC8 / OC1BW / XTAL2 / CLKO)
PB6 (PCINT14 / ADC9 / OC1AX / INT0)
PB7 (PCINT15 / ADC10 / OC1BX / RESET / dW)
1
20
2
19
18
3
4 20-pin 17
5
16
6
top 15
7 view 14
8
13
9
12
10
11
31
Figure 1-2.
10
1.4
Bottom pad should be
soldered to ground
Data Sheet Complete
DS40002167A-page 11
ATtiny87/167
(MISO/DO/OSC0A/ADC2/PCINT2) PA2
1
(INT1/ISRC/ADC3/PCINT3) PA3
2
PA0 (PCINT0/ADC0/RXD/RXLIN)
PB0 (PCINT8/OC1AU/DI/SDA)
PB1 (PCINT9/OC1BU/DO)
PB2 (PCINT10/OC1AV/USCK/SCL)
Index Corner
PA1 (PCINT1/ADC1/TXD/TXLIN)
Pinout ATtiny167 - WQFN20
20
19
18
17
16
20-lead
Top View
15
PB3 (PCINT11/OC1BV)
14
GND
13
VCC
12
PB4 (PCINT12/OC1AW/XTAL1/CLKI)
(MOSI/SDA/DI/ICP1/ADC4/PCINT4) PA4
5
11
PB5 (PCINT13/ADC8/OC1BW/XTAL2/CLKO)
2020 Microchip Technology Inc.
6
7
8
9
10
(INT0/OC1AX/ADC9/PCINT14) PB6
4
(dW/RESET/OC1BX/ADC10/PCINT15) PB7
AGND
(AREF/XREF/AIN1/ADC7/PCINT7) PA7
3
(SS/AIN0/ADC6/PCINT6) PA6
AVCC
(SCK/SCL/USCK/T1/ADC5/PCINT5) PA5
Figure 1-4.
Bottom pad should be
soldered to ground
Data Sheet Complete
DS40002167A-page 12
ATtiny87/167
1.5
1.5.1
Pin Description
VCC
Supply voltage.
1.5.2
GND
Ground.
1.5.3
AVCC
Analog supply voltage.
1.5.4
AGND
Analog ground.
1.5.5
Port A (PA7:PA0)
Port A is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port A output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port A pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port A pins are tri-stated when a reset condition becomes active,
even if the clock is not running.
Port A also serves the functions of various special features of the ATtiny87/167 as listed on Section 9.3.3 “Alternate Functions of Port A” on page 84.
1.5.6
Port B (PB7:PB0)
Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port B output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port B pins are tri-stated when a reset condition becomes active,
even if the clock is not running.
Port B also serves the functions of various special features of the ATtiny87/167 as listed on Section 9.3.4 “Alternate Functions of Port B” on page 89.
2020 Microchip Technology Inc.
Data Sheet Complete
DS40002167A-page 13
ATtiny87/167
1.6
Resources
A comprehensive set of development tools, application notes and datasheets are available for
download on https://www.microchip.com.
1.7
About Code Examples
This documentation contains simple code examples that briefly show how to use various parts of
the device. These code examples assume that the part specific header file is included before
compilation. Be aware that not all C compiler vendors include bit definitions in the header files
and interrupt handling in C is compiler dependent. Please confirm with the C compiler documentation for more details.
1.8
Data Retention
Reliability Qualification results show that the projected data retention failure rate is much less
than 1 PPM over 20 years at 85C or 100 years at 25C.
1.9
Disclaimer
Typical values contained in this datasheet are based on simulations and characterization of
other AVR microcontrollers manufactured on the same process technology. Min and Max values
will be available after the device has been characterized.
2020 Microchip Technology Inc.
Data Sheet Complete
DS40002167A-page 14
ATtiny87/167
2. AVR CPU Core
Overview
This section discusses the AVR core architecture in general. The main function of the CPU core
is to ensure correct program execution. The CPU must therefore be able to access memories,
perform calculations, control peripherals, and handle interrupts.
Figure 2-1.
Block Diagram of the AVR Architecture
Data Bus 8-bit
Flash
Program
Memory
Program
Counter
Status
and Control
Interrupt
Unit
32 x 8
General
Purpose
Registrers
Instruction
Register
Instruction
Decoder
Indirect Addressing
Control Lines
Watchdog
Timer
A.D.C.
Direct Addressing
2.1
ALU
Analog
Comparator
I/O Module1
Data
SRAM
I/O Module 2
I/O Module n
EEPROM
I/O Lines
In order to maximize performance and parallelism, the AVR uses a Harvard architecture – with
separate memories and buses for program and data. Instructions in the Program memory are
executed with a single level pipelining. While one instruction is being executed, the next instruction is pre-fetched from the Program memory. This concept enables instructions to be executed
in every clock cycle. The Program memory is In-System Reprogrammable Flash memory. The
fast-access Register File contains 32 x 8-bit general purpose working registers with a single
clock cycle access time. This allows single-cycle Arithmetic Logic Unit (ALU) operation. In a typical ALU operation, two operands are output from the Register File, the operation is executed,
and the result is stored back in the Register File – in one clock cycle.
2020 Microchip Technology Inc.
Data Sheet Complete
DS40002167A-page 15
ATtiny87/167
Six of the 32 registers can be used as three 16-bit indirect address register pointers for Data
Space addressing – enabling efficient address calculations. One of the these address pointers
can also be used as an address pointer for look up tables in Flash Program memory. These
added function registers are the 16-bit X-, Y-, and Z-register, described later in this section.
The ALU supports arithmetic and logic operations between registers or between a constant and
a register. Single register operations can also be executed in the ALU. After an arithmetic operation, the Status Register is updated to reflect information about the result of the operation.
Program flow is provided by conditional and unconditional jump and call instructions, able to
directly address the whole address space. Most AVR instructions have a single 16-bit word format. Every Program memory address contains a 16- or 32-bit instruction.
During interrupts and subroutine calls, the return address Program Counter (PC) is stored on the
Stack. The Stack is effectively allocated in the general data SRAM, and consequently the Stack
size is only limited by the total SRAM size and the usage of the SRAM. All user programs must
initialize the SP in the Reset routine (before subroutines or interrupts are executed). The Stack
Pointer (SP) is read/write accessible in the I/O space. The data SRAM can easily be accessed
through the five different addressing modes supported in the AVR architecture.
The memory spaces in the AVR architecture are all linear and regular memory maps.
A flexible interrupt module has its control registers in the I/O space with an additional Global
Interrupt Enable bit in the Status Register. All interrupts have a separate Interrupt Vector in the
Interrupt Vector table. The interrupts have priority in accordance with their Interrupt Vector position. The lower the Interrupt Vector address, the higher the priority.
The I/O memory space contains 64 addresses for CPU peripheral functions as Control Registers, SPI, and other I/O functions. The I/O memory can be accessed directly, or as the Data
Space locations following those of the Register File, 0x20 - 0x5F.
2.2
ALU – Arithmetic Logic Unit
The high-performance AVR ALU operates in direct connection with all the 32 general purpose
working registers. Within a single clock cycle, arithmetic operations between general purpose
registers or between a register and an immediate are executed. The ALU operations are divided
into three main categories – arithmetic, logical, and bit-functions. Some implementations of the
architecture also provide a powerful multiplier supporting both signed/unsigned multiplication
and fractional format. See the “Instruction Set” section for a detailed description.
2.3
Status Register
The Status Register contains information about the result of the most recently executed arithmetic instruction. This information can be used for altering program flow in order to perform
conditional operations. Note that the Status Register is updated after all ALU operations, as
specified in the Instruction Set Reference. This will in many cases remove the need for using the
dedicated compare instructions, resulting in faster and more compact code.
The Status Register is not automatically stored when entering an interrupt routine and restored
when returning from an interrupt. This must be handled by software.
2020 Microchip Technology Inc.
Data Sheet Complete
DS40002167A-page 16
ATtiny87/167
2.3.1
SREG – AVR Status Register
The AVR Status Register – SREG – is defined as:
Bit
7
6
5
4
3
2
1
0
0x3F (0x5F)
I
T
H
S
V
N
Z
C
Read/Write
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Initial Value
0
0
0
0
0
0
0
0
SREG
• Bit 7 – I: Global Interrupt Enable
The Global Interrupt Enable bit must be set for the interrupts to be enabled. The individual interrupt enable control is then performed in separate control registers. If the Global Interrupt Enable
Register is cleared, none of the interrupts are enabled independent of the individual interrupt
enable settings. The I-bit is cleared by hardware after an interrupt has occurred, and is set by
the RETI instruction to enable subsequent interrupts. The I-bit can also be set and cleared by
the application with the SEI and CLI instructions, as described in the instruction set reference.
• Bit 6 – T: Bit Copy Storage
The Bit Copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source or destination for the operated bit. A bit from a register in the Register File can be copied into T by the
BST instruction, and a bit in T can be copied into a bit in a register in the Register File by the
BLD instruction.
• Bit 5 – H: Half Carry Flag
The Half Carry Flag H indicates a Half Carry in some arithmetic operations. Half Carry is useful
in BCD arithmetic. See the “Instruction Set Description” for detailed information.
• Bit 4 – S: Sign Bit, S = N V
The S-bit is always an exclusive or between the Negative Flag N and the Two’s Complement
Overflow Flag V. See the “Instruction Set Description” for detailed information.
• Bit 3 – V: Two’s Complement Overflow Flag
The Two’s Complement Overflow Flag V supports two’s complement arithmetics. See the
“Instruction Set Description” for detailed information.
• Bit 2 – N: Negative Flag
The Negative Flag N indicates a negative result in an arithmetic or logic operation. See the
“Instruction Set Description” for detailed information.
• Bit 1 – Z: Zero Flag
The Zero Flag Z indicates a zero result in an arithmetic or logic operation. See the “Instruction
Set Description” for detailed information.
• Bit 0 – C: Carry Flag
The Carry Flag C indicates a carry in an arithmetic or logic operation. See the “Instruction Set
Description” for detailed information.
2020 Microchip Technology Inc.
Data Sheet Complete
DS40002167A-page 17
ATtiny87/167
2.4
General Purpose Register File
The Register File is optimized for the AVR Enhanced RISC instruction set. In order to achieve
the required performance and flexibility, the following input/output schemes are supported by the
Register File:
• One 8-bit output operand and one 8-bit result input
• Two 8-bit output operands and one 8-bit result input
• Two 8-bit output operands and one 16-bit result input
• One 16-bit output operand and one 16-bit result input
Figure 2-2 shows the structure of the 32 general purpose working registers in the CPU.
Figure 2-2.
AVR CPU General Purpose Working Registers
7
0
Addr.
R0
0x00
R1
0x01
R2
0x02
…
R13
0x0D
General
R14
0x0E
Purpose
R15
0x0F
Working
R16
0x10
Registers
R17
0x11
…
R26
0x1A
R27
0x1B
X-register Low Byte
X-register High Byte
R28
0x1C
Y-register Low Byte
R29
0x1D
Y-register High Byte
R30
0x1E
Z-register Low Byte
R31
0x1F
Z-register High Byte
Most of the instructions operating on the Register File have direct access to all registers, and
most of them are single cycle instructions.
As shown in Figure 2-2, each register is also assigned a Data memory address, mapping them
directly into the first 32 locations of the user Data Space. Although not being physically implemented as SRAM locations, this memory organization provides great flexibility in access of the
registers, as the X-, Y- and Z-pointer registers can be set to index any register in the file.
2.4.1
The X-register, Y-register, and Z-register
The registers R26:R31 have some added functions to their general purpose usage. These registers are 16-bit address pointers for indirect addressing of the data space. The three indirect
address registers X, Y, and Z are defined as described in Figure 2-3 on page 19.
2020 Microchip Technology Inc.
Data Sheet Complete
DS40002167A-page 18
ATtiny87/167
Figure 2-3.
The X-, Y-, and Z-registers
15
X-register
XH
XL
7
0
R27 (0x1B)
YH
YL
7
0
R29 (0x1D)
Z-register
0
R26 (0x1A)
15
Y-register
0
7
0
7
0
R28 (0x1C)
15
ZH
7
0
ZL
0
7
R31 (0x1F)
0
R30 (0x1E)
In the different addressing modes these address registers have functions as fixed displacement,
automatic increment, and automatic decrement (see the instruction set reference for details).
2.5
Stack Pointer
The Stack is mainly used for storing temporary data, for storing local variables and for storing
return addresses after interrupts and subroutine calls. The Stack Pointer Register always points
to the top of the Stack. Note that the Stack is implemented as growing from higher memory locations to lower memory locations. This implies that a Stack PUSH command decreases the Stack
Pointer.
The Stack Pointer points to the data SRAM Stack area where the Subroutine and Interrupt
Stacks are located. This Stack space in the data SRAM must be defined by the program before
any subroutine calls are executed or interrupts are enabled. The Stack Pointer must be set to
point above 0x60. The Stack Pointer is decremented by one when data is pushed onto the Stack
with the PUSH instruction, and it is decremented by two when the return address is pushed onto
the Stack with subroutine call or interrupt. The Stack Pointer is incremented by one when data is
popped from the Stack with the POP instruction, and it is incremented by two when data is
popped from the Stack with return from subroutine RET or return from interrupt RETI.
The AVR Stack Pointer is implemented as two 8-bit registers in the I/O space. The number of
bits actually used is implementation dependent. Note that the data space in some implementations of the AVR architecture is so small that only SPL is needed. In this case, the SPH Register
will not be present
2.5.1
SPH and SPL – Stack Pointer Register
Bit
15
14
13
12
11
10
9
8
0x3E (0x5E)
SP15
SP14
SP13
SP12
SP11
SP10
SP9
SP8
SPH
0x3D (0x5D)
SP7
SP6
SP5
SP4
SP3
SP2
SP1
SP0
SPL
7
6
5
4
3
2
1
0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Read/Write
Initial Value
2020 Microchip Technology Inc.
ISRAM end (See Table 3-1 on page 23)
Data Sheet Complete
DS40002167A-page 19
ATtiny87/167
2.6
Instruction Execution Timing
This section describes the general access timing concepts for instruction execution. The AVR
CPU is driven by the CPU clock clkCPU, directly generated from the selected clock source for the
chip. No internal clock division is used.
Figure 2-4 shows the parallel instruction fetches and instruction executions enabled by the Harvard architecture and the fast access Register File concept. This is the basic pipelining concept
to obtain up to 1 MIPS per MHz with the corresponding unique results for functions per cost,
functions per clocks, and functions per power-unit.
Figure 2-4.
The Parallel Instruction Fetches and Instruction Executions
T1
T2
T3
T4
clkCPU
1st Instruction Fetch
1st Instruction Execute
2nd Instruction Fetch
2nd Instruction Execute
3rd Instruction Fetch
3rd Instruction Execute
4th Instruction Fetch
Figure 2-5 shows the internal timing concept for the Register File. In a single clock cycle an ALU
operation using two register operands is executed, and the result is stored back to the destination register.
Figure 2-5.
Single Cycle ALU Operation
T1
T2
T3
T4
clkCPU
Total Execution Time
Register Operands Fetch
ALU Operation Execute
Result Write Back
2.7
Reset and Interrupt Handling
The AVR provides several different interrupt sources. These interrupts and the separate Reset
Vector each have a separate Program Vector in the Program memory space. All interrupts are
assigned individual enable bits which must be written logic one together with the Global Interrupt
Enable bit in the Status Register in order to enable the interrupt.
The lowest addresses in the Program memory space are by default defined as the Reset and
Interrupt Vectors. The complete list of vectors is shown in Section 7. “Interrupts” on page 67.
The list also determines the priority levels of the different interrupts. The lower the address the
higher is the priority level. RESET has the highest priority, and next is INT0 – the External Interrupt Request 0.
2020 Microchip Technology Inc.
Data Sheet Complete
DS40002167A-page 20
ATtiny87/167
2.7.1
Interrupt behavior
When an interrupt occurs, the Global Interrupt Enable I-bit is cleared and all interrupts are disabled. The user software can write logic one to the I-bit to enable nested interrupts. All enabled
interrupts can then interrupt the current interrupt routine. The I-bit is automatically set when a
Return from Interrupt instruction – RETI – is executed.
There are basically two types of interrupts. The first type is triggered by an event that sets the
Interrupt Flag. For these interrupts, the Program Counter is vectored to the actual Interrupt Vector in order to execute the interrupt handling routine, and hardware clears the corresponding
Interrupt Flag. Interrupt Flags can also be cleared by writing a logic one to the flag bit position(s)
to be cleared. If an interrupt condition occurs while the corresponding interrupt enable bit is
cleared, the Interrupt Flag will be set and remembered until the interrupt is enabled, or the flag is
cleared by software. Similarly, if one or more interrupt conditions occur while the Global Interrupt
Enable bit is cleared, the corresponding Interrupt Flag(s) will be set and remembered until the
Global Interrupt Enable bit is set, and will then be executed by order of priority.
The second type of interrupts will trigger as long as the interrupt condition is present. These
interrupts do not necessarily have Interrupt Flags. If the interrupt condition disappears before the
interrupt is enabled, the interrupt will not be triggered.
When the AVR exits from an interrupt, it will always return to the main program and execute one
more instruction before any pending interrupt is served.
Note that the Status Register is not automatically stored when entering an interrupt routine, nor
restored when returning from an interrupt routine. This must be handled by software.
When using the CLI instruction to disable interrupts, the interrupts will be immediately disabled.
No interrupt will be executed after the CLI instruction, even if it occurs simultaneously with the
CLI instruction. The following example shows how this can be used to avoid interrupts during the
timed EEPROM write sequence.
Assembly Code Example
in
cli
r16, SREG
; store SREG value
; disable interrupts during timed sequence
sbi
EECR, EEMPE
sbi
EECR, EEPE
out
SREG, r16
; start EEPROM write
; restore SREG value (I-bit)
C Code Example
char cSREG;
cSREG = SREG; /* store SREG value */
/* disable interrupts during timed sequence */
_CLI();
EECR |= (1