0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ATWINC1510-MR210PB1961

ATWINC1510-MR210PB1961

  • 厂商:

    ACTEL(微芯科技)

  • 封装:

    SMD28

  • 描述:

    ATWINC1510-MR210PB1961

  • 数据手册
  • 价格&库存
ATWINC1510-MR210PB1961 数据手册
ATWINC15x0 ATWINC15x0-MR210xB IEEE® 802.11 b/g/n SmartConnect IoT Module Introduction The ATWINC15x0-MR210xB is a low power consumption 802.11 b/g/n IoT (Internet of Things) module,specifically optimized for low power IoT applications. The module integrates Power Amplifier (PA), Low-Noise Amplifier (LNA), Switch, Power Management, and a printed antenna or a micro co-ax (u.FL) connector for an external antenna resulting in a small form factor (21.7 x 14.7 x 2.1 mm) design. It is interoperable with various vendors’ 802.11 b/g/n access points. This module provides SPI ports to interface with a host controller. The references to the ATWINC15x0-MR210xB module include the module devices listed in the following: • ATWINC1500-MR210PB • ATWINC1500-MR210UB • ATWINC1510-MR210PB • ATWINC1510-MR210UB Features • • • • • • • • • IEEE® 802.11 b/g/n 20 MHz (1x1) solution Single spatial stream in 2.4 GHz ISM band Integrated Transmit/Receive switch Integrated PCB antenna or u.FL micro co-ax connector for external antenna Superior sensitivity and range via advanced PHY signal processing Advanced equalization and channel estimation Advanced carrier and timing synchronization Wi-Fi® Direct (supported till firmware release 19.5.2) Soft-AP support • • Supports IEEE 802.11 WEP, WPA, WPA2 security Support Enterprise security with WPA/WPA2 (802.1X)(1) – EAP-TLS – EAP-PEAPv0/1 with TLS – EAP-TTLSv0 with MSCHAPv2 – EAP-PEAPv0/1 with MSCHAPv2 Superior MAC throughput via hardware accelerated two-level A-MSDU/A-MPDU frame aggregation and block acknowledgment On-chip memory management engine to reduce host load SPI host interface • • • © 2018 Microchip Technology Inc. Datasheet DS70005304C-page 1 ATWINC15x0 • • • • • • • • • • • Operating temperature range from -40°C to +85°C. RF performance at room temperature of 25oC with a 2-3 db change at boundary conditions I/O operating voltage of 2.7V to 3.6V Built-in 26 MHz crystal Integrated Flash memory for system software Power Save modes – 4 µA Power-Down mode typical at 3.3V I/O – 380 µA Doze mode with chip settings preserved (used for beacon monitoring)(2) – On-chip low power sleep oscillator – Fast host wake-up from Doze mode by a pin or SPI transaction Fast Boot options – On-chip boot ROM (Firmware instant boot) – SPI flash boot – Low-leakage on-chip memory for state variables – Fast AP re-association (150 ms) On-chip Network stack to offload MCU – Integrated Network IP stack to minimize host CPU requirements – Network features TCP, UDP, DHCP, ARP, HTTP, TLS, and DNS – Hardware accelerators for Wi-Fi and TLS security to improve connection time Hardware accelerator for IP checksum Hardware accelerators for OTA security Small footprint host driver Wi-Fi Alliance® certifications for Connectivity and Optimizations – ID: WFA61069 Note:  1. For more information on software feature, refer to Wi-Fi Network Controller Software Design Guide (DS00002389). 2. For information on module power modes, refer to Power Consumption. © 2018 Microchip Technology Inc. Datasheet DS70005304C-page 2 Table of Contents 1. Ordering Information and Module Marking................................................................ 5 2. Block Diagram........................................................................................................... 7 3. Pin Description.......................................................................................................... 8 4. Electrical Specifications...........................................................................................10 4.1. 4.2. Absolute Maximum Ratings........................................................................................................10 Recommended Operating Conditions........................................................................................ 10 5. CPU and Memory Subsystems................................................................................11 5.1. 5.2. 5.3. Processor................................................................................................................................... 11 Memory Subsystem....................................................................................................................11 Non-volatile Memory (eFuse)..................................................................................................... 11 6. WLAN Subsystem................................................................................................... 13 6.1. 6.2. 6.3. MAC........................................................................................................................................... 13 PHY............................................................................................................................................ 14 Radio.......................................................................................................................................... 14 7. External Interfaces...................................................................................................18 7.1. 7.2. 7.3. Interfacing with the Host Microcontroller.................................................................................... 18 SPI Interface...............................................................................................................................19 UART Interface...........................................................................................................................21 8. Power Consumption................................................................................................ 23 8.1. 8.2. 8.3. 8.4. 8.5. 8.6. Description of Device States...................................................................................................... 23 Current Consumption in Various Device States......................................................................... 23 Restrictions for Power States..................................................................................................... 24 Power-up/down Sequence......................................................................................................... 24 Digital I/O Pin Behavior During Power-up Sequences............................................................... 25 Module Reset............................................................................................................................. 26 9. Notes On Interfacing to the ATWINC15x0-MR210xB.............................................. 27 9.1. Programmable Pull Up Resistors............................................................................................... 27 10. Schematic Design Information.................................................................................28 10.1. Application Schematic................................................................................................................ 28 11. Module Drawing.......................................................................................................29 11.1. Module Footprint........................................................................................................................ 30 12. Design Considerations............................................................................................ 32 12.1. ATWINC15x0-MR210PB Placement and Routing Guidelines....................................................32 12.2. Printed PCB Antenna Performance of ATWINC15x0-MR210PB............................................... 32 © 2018 Microchip Technology Inc. Datasheet DS70005304C-page 3 ATWINC15x0 12.3. ATWINC15x0-MR210UB Placement and Routing Guidelines................................................... 35 12.4. Module Assembly Considerations.............................................................................................. 36 13. Reflow Profile Information....................................................................................... 37 13.1. 13.2. 13.3. 13.4. Storage Condition.......................................................................................................................37 Printing Process......................................................................................................................... 37 Baking Conditions...................................................................................................................... 37 Soldering and Reflow Condition................................................................................................. 37 14. Regulatory Approval................................................................................................ 40 14.1. 14.2. 14.3. 14.4. 14.5. 14.6. 14.7. 14.8. United States..............................................................................................................................41 Canada.......................................................................................................................................43 Europe........................................................................................................................................45 Japan..........................................................................................................................................47 Korea..........................................................................................................................................48 Taiwan........................................................................................................................................ 48 China.......................................................................................................................................... 49 Other Regulatory Information..................................................................................................... 50 15. Reference Documentation and Support.................................................................. 51 15.1. Reference Documents................................................................................................................51 16. Document Revision History..................................................................................... 52 The Microchip Web Site................................................................................................ 56 Customer Change Notification Service..........................................................................56 Customer Support......................................................................................................... 56 Microchip Devices Code Protection Feature................................................................. 56 Legal Notice...................................................................................................................57 Trademarks................................................................................................................... 57 Quality Management System Certified by DNV.............................................................58 Worldwide Sales and Service........................................................................................59 © 2018 Microchip Technology Inc. Datasheet DS70005304C-page 4 ATWINC15x0 Ordering Information and Module Marking 1. Ordering Information and Module Marking Following table describes the ordering details for the ATWINC15x0-MR210xB modules. Table 1-1. Ordering Details Model Number Ordering Code1 Package Dimension No. Description of Pins Regulatory Certification ATWINC1500MR210PB ATWINC1500MR210PBXXXX 21.7 x 14.7 x 2.1 mm 28 Certified Module with ATWINC1500B chip (4Mb Flash) and PCB printed antenna FCC, ISED, CE, MIC, KCC, NCC, SRRC ATWINC1500MR210UB ATWINC1500MR210UBXXXX 21.7 x 14.7 x 2.1 mm 28 Certified Module with ATWINC1500B chip (4Mb Flash) and u.FL connector FCC, ISED, CE ATWINC1510MR210PB ATWINC1510MR210PBXXXX 21.7 x 14.7 x 2.1 mm 28 Certified Module with ATWINC1510B chip (8Mb Flash) and PCB printed antenna FCC, ISED, CE, MIC, KCC, NCC, SRRC ATWINC1510MR210UB ATWINC1510MR210UBXXXX 21.7 x 14.7 x 2.1 mm 28 Certified Module with ATWINC1510B chip (8Mb Flash) and u.FL connector FCC, ISED, CE Note:  1. XXXX in the Ordering code represents the Firmware version of the product. For more details, refer to the Software Release Notes available on the Microchip web page. Following figure illustrates the ATWINC15x0-MR210xB modules’ marking information. © 2018 Microchip Technology Inc. Datasheet DS70005304C-page 5 ATWINC15x0 Ordering Information and Module Marking Figure 1-1. Marking Information ATWINC15x0 - MR ATWINC1500: 4Mb Flash ATWINC1510: 8Mb Flash 2 1 0 Software Version Reserved 1 0 MR Industrial Module Revision Letter P: PCB Antenna U: uFL Connector 1: No OTA / with shield 2: OTA with shield © 2018 Microchip Technology Inc. P Datasheet DS70005304C-page 6 ATWINC15x0 Block Diagram 2. Block Diagram Figure 2-1. ATWINC15x0-MR210xB Module Block Diagram Printed 2.4 GHz Antenna or u.FL 2.4 GHz External Antenna Connector VBAT VDDIO SPI_CFG SPI RX/TX BAL UN Wi-Fi ® ATWINC15x0 SoC GPIO 3 GPIO 4 GPIO 5 GPIO 6 IRQN Chip_EN WAKE 26 MHz crystal RESET GN D © 2018 Microchip Technology Inc. Datasheet DS70005304C-page 7 ATWINC15x0 Pin Description Pin Description Figure 3-1. Pin Diagram ATWINC15x0-MR210 9 8 GND_2 IRQN 12 UART_TXD 14 15 7 NC NC 6 NC 5 NC 4 RESET_N 3 2 1 I2C_SCL I2C_SDA GPIO_6 GND_3 27 GND_1 28 23 VDDIO 1P3V_TP GPIO_5 22 CHIP_EN UART_RXD 18 19 21 SPI_SCK 16 17 GPIO_1 SPI_SSN SPI_MISO 13 20 SPI_MOSI 29 PADDLE GND (Bottom) GPIO_3 GPIO_4 WAKE 10 11 24 25 26 SPI_CFG VBAT 3. Table 3-1. ATWINC15x0-MR210xB Pin Description Pin # Name Type Description 1 GPIO_6 I/O General purpose I/O. Yes 2 I2C_SCL I/O I2C Slave Clock. Currently used only for development debug. Leave unconnected. Yes 3 I2C_SDA I/O I2C Slave Data. Currently used only for development debug. Leave unconnected. Yes 4 RESET_N I Active-Low Hard Reset. When this pin is asserted low, the module will be placed in the reset state. When this pin is asserted high, the module will be out of reset and will function normally. Connect to a host output that defaults low at power up. If the host output is tri-stated, add a 1 MΩ pull down resistor to ensure a low level at power-up. No 5 NC - No connect. © 2018 Microchip Technology Inc. Programmable Pull Up Resistor - Datasheet DS70005304C-page 8 ATWINC15x0 Pin Description Pin # Name Type Description Programmable Pull Up Resistor 6 NC - No connect. - 7 NC - No connect. - 8 NC - No connect. - 9 GND_1 - GND. - 10 SPI_CFG I Tie to VDDIO through a 1 MΩ resistor to enable the SPI interface. No 11 WAKE I Host Wake control. Can be used to wake-up the module from Doze mode. Connect to a host GPIO. Yes 12 GND_2 - GND. 13 IRQN O ATWINC15x0-MR210xB Device Interrupt output. Connect to host interrupt input pin. Yes 14 UART_TXD O UART Transmit Output from ATWINC15x0-MR210xB Added debug. Yes 15 SPI_RXD I SPI MOSI (Master Out, Slave In) pin. Yes 16 SPI_SSN I SPI Slave Select. Active-low. Yes 17 SPI_TXD O SPI MISO (Master In, Slave Out) pin. Yes 18 SPI_SCK I SPI Clock. Yes 19 UART_RXD I UART Receive input to ATWINC15x0-MR210xB. Added debug. Yes 20 VBATT - Battery power supply. 21 GPIO_1/RTC I General Purpose I/O / RTC. Yes 22 CHIP_EN I Module enable. High level enables the module; low level places module in Power-Down mode. Connect to a host output that defaults low at power-up. If the host output is tri-stated, add a 1 MΩ pull down resistor to ensure a low level at power-up. No 23 VDDIO - I/O Power Supply. Must match host I/O voltage. - 24 1P3V_TP - 1.3V VDD Core Test Point. Decouple with 10 µF, and 0.01 µF to GND. - 25 GPIO_3 I/O General purpose I/O. Yes 26 GPIO_4 I/O General purpose I/O. Yes 27 GPIO_5 I/O General purpose I/O. Yes 28 GND_3 - GND. - 29 PADDLE GND - GND. - © 2018 Microchip Technology Inc. - Datasheet - DS70005304C-page 9 ATWINC15x0 Electrical Specifications 4. Electrical Specifications 4.1 Absolute Maximum Ratings Absolute maximum ratings for the ATWINC15x0-MR210xB modules are listed below. Table 4-1. Conditions Symbol Description Min. Max. Unit VBATT Input supply voltage -0.3 5.0 V VDDIO I/O voltage -0.3 4.2 V -40 +85 oC Operating Temperature CAUTION 4.2 Stresses listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only. The functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect the device reliability. Recommended Operating Conditions Table 4-2. Recommended Operating Conditions Symbol Min. Typ. Max. Unit VBATT 3.0 3.3 4.2 V VDDIO 2.7 3.3 3.6 V Note:  1. Test Conditions: -40oC - +85oC © 2018 Microchip Technology Inc. Datasheet DS70005304C-page 10 ATWINC15x0 CPU and Memory Subsystems 5. CPU and Memory Subsystems 5.1 Processor The ATWINC15x0-MR210xB modules have a Cortus APS3 32-bit processor. This processor performs many of the MAC functions, including but not limited to the association, authentication, power management, security key management, and MSDU aggregation/de-aggregation. In addition, the processor provides flexibility for various modes of operation, such as STA and AP modes. 5.2 Memory Subsystem The APS3 core uses a 128KB instruction/boot ROM along with a 160KB instruction RAM and a 64KB data RAM. The ATWINC15x0-MR210xB modules come populated with either 4Mb or 8Mb of Flash memory depending on the module model that is ordered. This memory can be used for system software. See Table 1-1 for more information. In addition, the device uses a 128KB shared RAM, accessible by the processor and MAC, which allows the APS3 core to perform various data management tasks on the TX and RX data packets. 5.3 Non-volatile Memory (eFuse) The ATWINC15x0-MR210xB modules have 768 bits of non-volatile eFuse memory that can be read by the CPU after device reset. This non-volatile one-time-programmable (OTP) memory can be used to store customer-specific parameters, such as MAC address; various calibration information, such as TX power, crystal frequency offset, etc.; and other software-specific configuration parameters. The eFuse is partitioned into six 128-bit banks. Each bank has the same bitmap (see following figure). The purpose of the first 80 bits in each bank is fixed, and the remaining 48 bits are general-purpose software dependent bits, or reserved for future use. Since each bank can be programmed independently, this allows for several updates of the device parameters following the initial programming; for example, if the MAC address has to be changed, Bank 1 has to be programmed with the new MAC address along with the values of TX gain correction and frequency offset if they are used and programmed in Bank 0. The contents of Bank 0 have to be invalidated in this case by programming the invalid bit in the Bank 0. This will allow the firmware to use the MAC address. By default, all the ATWINC15x0-MR210xB modules are programmed with the MAC address and the frequency offset bits of Bank 0. © 2018 Microchip Technology Inc. Datasheet DS70005304C-page 11 ATWINC15x0 CPU and Memory Subsystems Figure 5-1. eFuse Bitmap Flags 8 Bank 0 F 48 MAC ADDR TX Gain Correc tion 8 G 1 15 Freq. Offset 7 Used 1 Used 1 MAC ADDR Used 4 Reserved 3 Version 1 Invalid Used 1 16 FO Bank 1 Bank 2 Bank 3 Bank 4 Bank 5 128 Bits © 2018 Microchip Technology Inc. Datasheet DS70005304C-page 12 ATWINC15x0 WLAN Subsystem 6. WLAN Subsystem The WLAN subsystem is composed of the Media Access Controller (MAC) and the Physical Layer (PHY). The following two subsections describe the MAC and PHY in detail. 6.1 MAC 6.1.1 Description The ATWINC15x0-MR210xB MAC is designed to operate at low power while providing high data throughput. The IEEE 802.11 MAC functions are implemented with a combination of dedicated datapath engines, hardwired control logic, and a low-power, high-efficiency microprocessor. The combination of dedicated logic with a programmable processor provides optimal power efficiency and real-time response while providing the flexibility to accommodate evolving standards and future feature enhancements. Dedicated datapath engines are used to implement datapath functions with heavy computational requirements. For example, an FCS engine checks the CRC of the transmitting and receiving packets, and a cipher engine performs all the required encryption and decryption operations for the WEP, WPATKIP, and WPA2 CCMP-AES. Control functions which have real-time requirements are implemented using hardwired control logic modules. These logic modules offer real-time response while maintaining configurability via the processor. Examples of hardwired control logic modules are the channel access control module (implements EDCA/HCCA, Beacon TX control, interframe spacing, etc.), protocol timer module (responsible for the Network Access Vector, back-off timing, timing synchronization function, and slot management), MPDU handling module, aggregation/de-aggregation module, block ACK controller (implements the protocol requirements for burst block communication), and TX/RX control FSMs (coordinate data movement between PHY-MAC interface, cipher engine, and the DMA interface to the TX/RX FIFOs). The MAC functions implemented solely in software on the microprocessor have the following characteristics: • • • 6.1.2 Functions with high memory requirements or complex data structures. Examples are association table management and power save queuing. Functions with low computational load or without critical real-time requirements. Examples are authentication and association. Functions which need flexibility and upgradeability. Examples are beacon frame processing and QoS scheduling. Features The ATWINC15x0-MR210xB IEEE802.11 MAC supports the following functions: • • • IEEE 802.11b/g/n IEEE 802.11e WMM QoS EDCA/PCF multiple access categories traffic scheduling Advanced IEEE 802.11n features: – Transmission and reception of aggregated MPDUs (A-MPDU) – Transmission and reception of aggregated MSDUs (A-MSDU) – Immediate Block Acknowledgment – Reduced Interframe Spacing (RIFS) © 2018 Microchip Technology Inc. Datasheet DS70005304C-page 13 ATWINC15x0 WLAN Subsystem • • • • Support for IEEE802.11i and WFA security with key management: – WEP 64/128 – WPA-TKIP – 128-bit WPA2 CCMP (AES) Advanced power management: – Standard 802.11 Power Save Mode RTS-CTS and CTS-self support Supports either STA or AP mode in the infrastructure basic service set mode 6.2 PHY 6.2.1 Description The ATWINC1500B WLAN PHY is designed to achieve reliable and power-efficient physical layer communication specified by IEEE 802.11 b/g/n in single stream mode with 20MHz bandwidth. Advanced algorithms have been employed to achieve maximum throughput in a real world communication environment with impairments and interference. The PHY implements all the required functions that include FFT, filtering, FEC (Viterbi decoder), frequency, timing acquisition and tracking, channel estimation and equalization, carrier sensing, clear channel assessment, and automatic gain control. 6.2.2 Features The ATWINC1500B IEEE802.11 PHY supports the following functions: • • • • • • • 6.3 Single antenna 1x1 stream in 20MHz channels Supports IEEE 802.11b DSSS-CCK modulation: 1, 2, 5.5, 11Mbps Supports IEEE 802.11g OFDM modulation: 6, 9, 12,18, 24, 36, 48, 54Mbps Supports IEEE 802.11n HT modulations MCS0-7, 20MHz, 800 and 400ns guard interval: 6.5, 7.2, 13.0, 14.4, 19.5, 21.7, 26.0, 28.9, 39.0, 43.3, 52.0, 57.8, 58.5, 65.0, 72.2Mbps IEEE 802.11n mixed mode operation Per packet TX power control Advanced channel estimation/equalization, automatic gain control, CCA, carrier/symbol recovery, and frame detection Radio This section presents information describing the properties and characteristics of the ATWINC15x0MR210xB and Wi-Fi radio transmit and receive performance capabilities of the device. The performance measurements are taken at the RF pin assuming 50Ω impedance; the RF performance is guaranteed for room temperature of 25oC with a derating of 2-3dB at boundary conditions. Measurements were taken under typical conditions: VBATT=3.3V; VDDIO=3.3V; temperature: +25ºC Table 6-1. Features and Properties Feature Description Part Number ATWINC15x0-MR210xB WLAN Standard IEEE 802.11 b/g/n, Wi-Fi compliant © 2018 Microchip Technology Inc. Datasheet DS70005304C-page 14 ATWINC15x0 WLAN Subsystem Feature Description Host Interface SPI Dimension 21.7 x 14.7 x 2.1 mm Frequency Range 2.412GHz ~ 2.472GHz (2.4GHz ISM Band) Number of Channels 11 for North America, and 13 for Europe Modulation 802.11b: DQPSK, DBPSK, CCK 802.11g/n: OFDM /64-QAM,16-QAM, QPSK, BPSK Data Rate 802.11b: 1, 2, 5.5, 11Mbps 802.11g: 6, 9, 12, 18, 24, 36, 48, 54Mbps 6.3.1 Data Rate (20MHz, normal GI, 800ns) 802.11n: 6.5, 13, 19.5, 26, 39, 52, 58.5, 65Mbps Data Rate (20MHz, short GI, 400ns) 802.11n: 7.2, 14.4, 21.7, 28.9, 43.3, 57.8, 65,72.2Mbps Operating temperature -40 to +85oC Storage temperature -40 to +125 oC Humidity Operating Humidity 10% to 95% Non-Condensing Storage Humidity 5% to 95% Non-Condensing Receiver Performance Table 6-2. Receiver Performance Parameter Description Minimum Frequency © 2018 Microchip Technology Inc. 2,412 Datasheet Typical Maximum Unit 2,472 MHz DS70005304C-page 15 ATWINC15x0 WLAN Subsystem Parameter Sensitivity 802.11b Sensitivity 802.11g Sensitivity 802.11n (BW=20MHz) Maximum Receive Signal Level Adjacent Channel Rejection Description Minimum Typical 1Mbps DSS -95 2Mbps DSS -90 5.5Mbps DSS -92 11Mbps DSS -86 6Mbps OFDM -90 9Mbps OFDM -89 12Mbps OFDM -88 18Mbps OFDM -85 24Mbps OFDM -83 36Mbps OFDM -80 48Mbps OFDM -76 54Mbps OFDM -74 MCS 0 -89 MCS 1 -87 MCS 2 -85 MCS 3 -82 MCS 4 -77 MCS 5 -74 MCS 6 -72 MCS 7 -70.5 1-11Mbps DSS 0 6-54Mbps OFDM 0 MCS 0 – 7 0 1Mbps DSS (30MHz offset) 50 11Mbps DSS (25MHz offset) 43 6Mbps OFDM (25MHz offset) 40 54Mbps OFDM (25MHz offset) 25 MCS 0 – 20MHz BW (25MHz offset) 40 MCS 7 – 20MHz BW (25MHz offset) 20 © 2018 Microchip Technology Inc. Datasheet Maximum Unit dBm dB DS70005304C-page 16 ATWINC15x0 WLAN Subsystem Parameter Cellular Blocker Immunity 6.3.2 Description Minimum Typical 776-794MHz CDMA -14 824-849MHz GSM -10 880-915MHz GSM -10 1710-1785MHz GSM -15 1850-1910MHz GSM -15 1850-1910MHz WCDMA -24 1920-1980MHz WCDMA -24 Maximum Unit dBm Transmitter Performance Table 6-3. Transmitter Performance Parameter Description Minimum Typical Maximum Unit Frequency — 2,412 — 2,472 MHz 802.11b 1Mbps — 17.5 — 802.11b 11Mbps — 18.5 — 802.11g 6Mbps — 17.5 — 802.11g 54Mbps — 16 — 802.11n MCS 0 — 17.0 — 802.11n MCS 7 — 14.5 — TX Power Accuracy — — ±1.5 2 — dB Carrier Suppression — — 30.0 — dBc 2nd — 3rd — Output Power1-2 ON_Transmit Harmonic Output Power -41 — -41 dBm dBm/MHz Note:  1. Measured at 802.11 spec compliant EVM/Spectral Mask. 2. Measured after RF matching network. 3. Operating temperature range is -40°C to +85°C. RF performance guaranteed at room temperature of 25°C with a 2-3dB change at boundary conditions. 4. With respect to TX power, different (higher/lower) RF output power settings may be used for specific antennas and/or enclosures, in which case recertification may be required. 5. The availability of some specific channels and/or operational frequency bands are country dependent and should be programmed at the Host product factory to match the intended destination. Regulatory bodies prohibit exposing the settings to the end user. This requirement needs to be taken care of via Host implementation. © 2018 Microchip Technology Inc. Datasheet DS70005304C-page 17 ATWINC15x0 External Interfaces 7. External Interfaces 7.1 Interfacing with the Host Microcontroller This section describes interfacing the ATWINC15x0-MR210xB module with the host microcontroller. The interface is comprised of a slave SPI and additional control signals, as shown in the following figure. For more information on SPI interface specification and timing, refer to the SPI Interface. Additional control signals are connected to the GPIO/IRQ interface of the microcontroller. Figure 7-1. Interfacing with Host Microcontroller CHIP_EN RESET WAKE Host Microcontroller Wi-Fi Controller Module SPI IRQN Table 7-1. Host Microcontroller Interface Pins Pin Number Function 4 RESET_N 11 WAKE 13 IRQ_N 22 CHIP_EN 16 SPI_SSN 15 SPI_MOSI 17 SPI_MISO 18 SPI_SCK Related Links 7.2 SPI Interface © 2018 Microchip Technology Inc. Datasheet DS70005304C-page 18 ATWINC15x0 External Interfaces 7.2 SPI Interface 7.2.1 Overview The ATWINC15x0-MR210xB has a Serial Peripheral Interface (SPI) that operates as an SPI slave. The SPI interface can be used for control and for serial I/O of 802.11 data. The SPI pins are mapped as shown in the following table. The SPI is a full-duplex slave-synchronous serial interface that is available immediately following reset when pin 10 (SPI_CFG) is tied to VDDIO. Table 7-2. SPI Interface Pin Mapping Pin # SPI function 10 CFG: Must be tied to VDDIO 16 SSN: Active-Low Slave Select 15 MOSI(RXD): Serial Data Receive 18 SCK: Serial Clock 17 MISO(TXD): Serial Data Transmit When the SPI is not selected, that is, when SSN is high, the SPI interface will not interfere with data transfers between the serial-master and other serial-slave devices. When the serial slave is not selected, its transmitted data output is buffered, resulting in a high impedance drive onto the MISO line. The SPI interface responds to a protocol that allows an external host to read or write any register in the chip as well as initiate DMA transfers. The SPI SSN, MOSI, MISO, and SCK pins of the ATWINC15x0-MR210xB have internal programmable pull-up resistors. These resistors should be programmed to be disabled; otherwise, if any of the SPI pins are driven to a low level while the ATWINC15x0-MR210xB is in the low power sleep state, the current will flow from the VDDIO supply through the pull-up resistors, increasing the current consumption of the module. Related Links 9.1 Programmable Pull Up Resistors 7.2.2 SPI Timing The SPI Slave interface supports four standard modes as determined by the Clock Polarity (CPOL) and Clock Phase (CPHA) settings. These modes are illustrated in the following table and figure. Table 7-3. SPI Slave Modes Mode CPOL CPHA 0 0 0 1 0 1 2 1 0 3 1 1 Note:  The ATWINC15x0 firmware uses “SPI MODE 0” to communicate with the host. © 2018 Microchip Technology Inc. Datasheet DS70005304C-page 19 ATWINC15x0 External Interfaces The red lines in the following figure correspond to Clock Phase = 0 and the blue lines correspond to Clock Phase = 1. Figure 7-2. SPI Slave Clock Polarity and Clock Phase Timing CPOL = 0 SCK CPOL = 1 SSN RXD/TXD (MOSI/MISO) z CPHA = 0 1 2 z CPHA = 1 1 3 2 4 5 3 4 6 5 7 6 8 7 z 8 z The SPI timing is provided in the following figure and table. Figure 7-3. SPI Timing Diagram (SPI Mode CPOL=0, CPHA=0) f SCK t LH t WH SCK t WL t HL TXD t ODLY RXD t ISU t IHD SSN t SUSSN Table 7-4. SPI Slave Timing Parameter Symbol Clock Input Frequency2 fSCK © 2018 Microchip Technology Inc. t HDSSN Parameters1 Min. Max. — Datasheet Units 48 MHz DS70005304C-page 20 ATWINC15x0 External Interfaces Parameter Symbol Min. Max. Units Clock Low Pulse Width tWL 4 — Clock High Pulse Width tWH 5 — Clock Rise Time tLH 0 7 Clock Fall Time tHL 0 7 TXD Output Delay3 tODLY 4 9 from SCK fall 12.5 from SCK rise RXD Input Setup Time tISU 1 — RXD Input Hold Time tIHD 5 — SSN Input Setup Time tSUSSN 3 — SSN Input Hold Time tHDSSN 5.5 — ns Note:  1. Timing is applicable to all SPI modes 2. Maximum clock frequency specified is limited by the SPI Slave interface internal design, actual maximum clock frequency can be lower and depends on the specific PCB layout 3. Timing based on 15pF output loading 7.3 UART Interface The ATWINC15x0-MR210xB supports the Universal Asynchronous Receiver/Transmitter (UART) interface. This interface should be used for debug purposes only. The UART is available on pins 14 and 19. The UART is compatible with the RS-232 standard, and the ATWINC15x0-MR210xB operates as Data Terminal Equipment (DTE). It has a two-pin RXD/TXD interface. The default configuration for accessing the UART interface of ATWINC15x0-MR210xB is mentioned below: • Baud rate: 115200 • Data: 8 bit • Parity: None • Stop bit: 1 bit • Flow control: None It also has RX and TX FIFOs, which ensure reliable high-speed reception and low software overhead transmission. FIFO size is 4 x 8 for both RX and TX direction. The UART also has status registers showing the number of received characters available in the FIFO and various error conditions, as well the ability to generate interrupts based on these status bits. An example of the UART receiving or transmitting a single packet is shown in the following figure. This example shows 7-bit data (0x45), odd parity, and two stop bits. © 2018 Microchip Technology Inc. Datasheet DS70005304C-page 21 ATWINC15x0 External Interfaces Important:  UART2 supports RTS and CTS flow control. The UART RTS and UART CTS MUST be connected to the host MCU UART and enabled for the UART interface to be functional. Figure 7-4. Example of UART RX of TX Packet Previous Packets or Leading Idle Bits © 2018 Microchip Technology Inc. Current Packet Next Packet Data Parity Bit Start Bit Datasheet Stop Bits DS70005304C-page 22 ATWINC15x0 Power Consumption 8. Power Consumption 8.1 Description of Device States The ATWINC15x0-MR210xB has several device states: • • • • • ON_Transmit – Device is actively transmitting an 802.11 signal. Highest output power and nominal current consumption. ON_Receive – Device is actively receiving an 802.11 signal. Lowest sensitivity and nominal current consumption. ON_Doze – Device is ON but is neither transmitting nor receiving Power_Down – Device core supply off (Leakage) IDLE connect – Device is connected with 1 DTIM beacon interval The following pins are used to switch between the ON and Power_Down states: • • 8.2 CHIP_EN – Device pin (pin #22) used to enable DC/DC Converter VDDIO – I/O supply voltage from external supply In the ON states, VDDIO is on and CHIP_EN is high (at VDDIO voltage level). To switch between the ON states and Power_Down state CHIP_EN has to change between high and low (GND) voltage. When VDDIO is off and CHIP_EN is low, the chip is powered off with no leakage (also see Restrictions for Power States). Current Consumption in Various Device States Table 8-1. Current Consumption Device State ON_Transmit ON_Receive © 2018 Microchip Technology Inc. Code Rate Output power, dBm Current Consumption 1 802.11b 1Mbps 17.5 268mA 22mA 802.11b 11Mbps 18.5 264mA 22mA 802.11g 6Mbps 17.5 269mA 22mA 802.11g 54Mbps 16.0 266mA 22mA 802.11n MCS 0 17.0 268mA 22mA 802.11n MCS 7 14.5 265mA 22mA 802.11b 1Mbps N/A 61mA 22mA 802.11b 11Mbps N/A 61mA 22mA 802.11g 6Mbps N/A 61mA 22mA 802.11g 54Mbps N/A 61mA 22mA 802.11n MCS 0 N/A 61mA 22mA 802.11n MCS 7 N/A 61mA 22mA Datasheet IVBATT IVDDIO DS70005304C-page 23 ATWINC15x0 Power Consumption Device State Code Rate Output power, dBm Current Consumption 1 ON_Doze N/A N/A 380µA
ATWINC1510-MR210PB1961 价格&库存

很抱歉,暂时无法提供与“ATWINC1510-MR210PB1961”相匹配的价格&库存,您可以联系我们找货

免费人工找货