0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
DSPIC30F3014-30I/ML

DSPIC30F3014-30I/ML

  • 厂商:

    ACTEL(微芯科技)

  • 封装:

    VQFN44

  • 描述:

    IC MCU 16BIT 24KB FLASH 44QFN

  • 数据手册
  • 价格&库存
DSPIC30F3014-30I/ML 数据手册
dsPIC30F3014/4013 Data Sheet High-Performance, 16-bit Digital Signal Controllers  2010 Microchip Technology Inc. DS70138G Note the following details of the code protection feature on Microchip devices: • Microchip products meet the specification contained in their particular Microchip Data Sheet. • Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions. • There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property. • Microchip is willing to work with the customer who is concerned about the integrity of their code. • Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.” Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act. Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights. Trademarks The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC32 logo, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. SQTP is a service mark of Microchip Technology Incorporated in the U.S.A. All other trademarks mentioned herein are property of their respective companies. © 2010, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved. Printed on recycled paper. ISBN: 978-1-60932-666-1 Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified. DS70138G-page 2  2010 Microchip Technology Inc. dsPIC30F3014/4013 High-Performance, 16-Bit Digital Signal Controllers Note: This data sheet summarizes features of this group of dsPIC30F devices and is not intended to be a complete reference source. For more information on the CPU, peripherals, register descriptions and general device functionality, refer to the “dsPIC30F Family Reference Manual” (DS70046). For more information on the device instruction set and programming, refer to the “16-bit MCU and DSC Programmer’s Reference Manual” (DS70157). High-Performance Modified RISC CPU: • • • • • • • • • • Modified Harvard Architecture C Compiler Optimized Instruction Set Architecture Flexible Addressing modes 83 Base Instructions 24-Bit Wide Instructions, 16-Bit Wide Data Path Up to 48 Kbytes On-Chip Flash Program Space 2 Kbytes of On-Chip Data RAM 1 Kbyte of Nonvolatile Data EEPROM 16 x 16-Bit Working Register Array Up to 30 MIPS Operation: - DC to 40 MHz External Clock Input - 4 MHz-10 MHz Oscillator Input with PLL Active (4x, 8x, 16x) • Up to 33 Interrupt Sources: - 8 user-selectable priority levels - 3 external interrupt sources - 4 processor traps DSP Features: • Dual Data Fetch • Modulo and Bit-Reversed modes • Two 40-Bit Wide Accumulators with Optional saturation Logic • 17-Bit x 17-Bit Single-Cycle Hardware Fractional/Integer Multiplier • All DSP Instructions are Single Cycle - Multiply-Accumulate (MAC) Operation • Single-Cycle ±16 Shift  2010 Microchip Technology Inc. Peripheral Features: • High-Current Sink/Source I/O Pins: 25 mA/25 mA • Up to Five 16-Bit Timers/Counters; Optionally Pair Up 16-Bit Timers into 32-Bit Timer modules • Up to Four 16-Bit Capture Input Functions • Up to Four 16-Bit Compare/PWM Output Functions • Data Converter Interface (DCI) Supports Common Audio Codec Protocols, Including I2S and AC’97 • 3-Wire SPI module (supports 4 Frame modes) • I2C™ module Supports Multi-Master/Slave mode and 7-Bit/10-Bit Addressing • Up to Two Addressable UART modules with FIFO Buffers • CAN bus module Compliant with CAN 2.0B Standard Analog Features: • 12-Bit Analog-to-Digital Converter (ADC) with: - 200 ksps conversion rate - Up to 13 input channels - Conversion available during Sleep and Idle • Programmable Low-Voltage Detection (PLVD) • Programmable Brown-out Reset Special Microcontroller Features: • Enhanced Flash Program Memory: - 10,000 erase/write cycle (min.) for industrial temperature range, 100K (typical) • Data EEPROM Memory: - 100,000 erase/write cycle (min.) for industrial temperature range, 1M (typical) • Self-Reprogrammable under Software Control • Power-on Reset (POR), Power-up Timer (PWRT) and Oscillator Start-up Timer (OST) • Flexible Watchdog Timer (WDT) with On-Chip Low-Power RC Oscillator for Reliable Operation • Fail-Safe Clock Monitor Operation: - Detects clock failure and switches to on-chip low-power RC oscillator • Programmable Code Protection • In-Circuit Serial Programming™ (ICSP™) • Selectable Power Management modes: - Sleep, Idle and Alternate Clock modes DS70138G-page 3 dsPIC30F3014/4013 CMOS Technology: • • • • Low-Power, High-Speed Flash Technology Wide Operating Voltage Range (2.5V to 5.5V) Industrial and Extended Temperature Ranges Low-Power Consumption dsPIC30F3014/4013 Controller Family Program Memory 48K 8K 16K 2048 2048 1024 3 1024 2 5 4 CAN dsPIC30F4013 40/44 24K I2C™ dsPIC30F3014 40/44 SPI Output SRAM EEPROM Timer Input Codec A/D 12-Bit Comp/ Bytes Bytes 16-Bit Cap Interface 200 Ksps Bytes Instructions Std PWM Pins UART Device 2 — 13 ch 2 1 1 0 4 AC’97, I2S 13 ch 2 1 1 1 Pin Diagrams MCLR AN0/VREF+/CN2/RB0 AN1/VREF-/CN3/RB1 AN2/SS1/LVDIN/CN4/RB2 AN3/CN5/RB3 AN4/CN6/RB4 AN5/CN7/RB5 PGC/EMUC/AN6/OCFA/RB6 PGD/EMUD/AN7/RB7 AN8/RB8 VDD Vss OSC1/CLKI OSC2/CLKO/RC15 EMUD1/SOSCI/T2CK/U1ATX/CN1/RC13 EMUC1/SOSCO/T1CK/U1ARX/CN0/RC14 INT0/RA11 IC2/INT2/RD9 RD3 Vss 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 MCLR AN0/VREF+/CN2/RB0 AN1/VREF-/CN3/RB1 AN2/SS1/LVDIN/CN4/RB2 AN3/CN5/RB3 AN4/IC7/CN6/RB4 AN5/IC8/CN7/RB5 PGC/EMUC/AN6/OCFA/RB6 PGD/EMUD/AN7/RB7 AN8/RB8 VDD VSS OSC1/CLKI OSC2/CLKO/RC15 EMUD1/SOSCI/T2CK/U1ATX/CN1/RC13 EMUC1/SOSCO/T1CK/U1ARX/CN0/RC14 INT0/RA11 IC2/INT2/RD9 OC4/RD3 VSS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 dsPIC30F3014 40-Pin PDIP 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 AVDD AVss AN9/RB9 AN10/RB10 AN11/RB11 AN12/RB12 EMUC2/OC1/RD0 EMUD2/OC2/RD1 VDD Vss RF0 RF1 U2RX/CN17/RF4 U2TX/CN18/RF5 U1RX/SDI1/SDA/RF2 EMUD3/U1TX/SDO1/SCL/RF3 EMUC3/SCK1/RF6 IC1/INT1/RD8 RD2 VDD 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 AVDD AVSS AN9/CSCK/RB9 AN10/CSDI/RB10 AN11/CSDO/RB11 AN12/COFS/RB12 EMUC2/OC1/RD0 EMUD2/OC2/RD1 VDD VSS C1RX/RF0 C1TX/RF1 U2RX/CN17/RF4 U2TX/CN18/RF5 U1RX/SDI1/SDA/RF2 EMUD3/U1TX/SDO1/SCL/RF3 EMUC3/SCK1/RF6 IC1/INT1/RD8 OC3/RD2 VDD DS70138G-page 4 dsPIC30F4013 40-Pin PDIP  2010 Microchip Technology Inc. dsPIC30F3014/4013 Pin Diagrams (Continued) 44 43 42 41 40 39 38 37 36 35 34 EMUD3/U1TX/SDO1/SCL/RF3 EMUC3/SCK1/RF6 IC1/NT1/RD8 RD2 VDD VSS RD3 IC2/INT2/RD9 INT0/RA11 EMUC1/SOSCO/T1CK/U1ARX/CN0/RC14 NC 44-Pin TQFP dsPIC30F3014 33 32 31 30 29 28 27 26 25 24 23 12 13 14 15 16 17 18 19 20 21 22 1 2 3 4 5 6 7 8 9 10 11 NC EMUD1/SOSCI/T2CK/U1ATX/CN1/RC13 OSC2/CLKO/RC15 OSC1/CLKI VSS VDD AN8/RB8 PGD/EMUD/AN7/RB7 PGC/EMUC/AN6/OCFA/RB6 AN5/CN7/RB5 AN4/CN6/RB4 NC NC AN10/RB10 AN9/RB9 AVSS AVDD MCLR AN0/VREF+/CN2/RB0 AN1/VREF-/CN3/RB1 AN2/SS1/LVDIN/CN4/RB2 AN3/CN5/RB3 U1RX/SDI1/SDA/RF2 U2TX/CN18/RF5 U2RX/CN17/RF4 RF1 RF0 VSS VDD EMUD2/OC2/RD1 EMUC2/OC1/RD0 AN12/RB12 AN11/RB11  2010 Microchip Technology Inc. DS70138G-page 5 dsPIC30F3014/4013 Pin Diagrams (Continued) 44 43 42 41 40 39 38 37 36 35 34 EMUD3/U1TX/SDO1/SCL/RF3 EMUC3/SCK1/RF6 IC1/INT1/RD8 RD2 VDD VSS RD3 IC2/INT2/RD9 INT0/RA11 EMUC1/SOSCO/T1CK/U1ARX/CN0/RC14 EMUD1/SOSCI/T2CK/U1ATX/CN1/RC13 44-Pin QFN(1) 1 2 3 4 5 6 7 8 9 10 11 dsPIC30F3014 33 32 31 30 29 28 27 26 25 24 23 OSC2/CLKO/RC15 OSC1/CLKI VSS VSS VDD VDD AN8/RB8 PGD/EMUD/AN7/RB7 PGC/EMUC/AN6/OCFA/RB6 AN5/CN7/RB5 AN4/CN6/RB4 AN11/RB11 NC AN10/RB10 AN9/RB9 AVSS AVDD MCLR AN0/VREF+/CN2/RB0 AN1/VREF-/CN3/RB1 AN2/SS1/LVDIN/CN4/RB2 AN3/CN5/RB3 12 13 14 15 16 17 18 19 20 21 22 U1RX/SDI1/SDA/RF2 U2TX/CN18/RF5 U2RX/CN17/RF4 RF1 RF0 VSS VDD VDD EMUD2/OC2/RD1 EMUC2/OC1/RD0 AN12/RB12 Note 1: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to VSS externally. DS70138G-page 6  2010 Microchip Technology Inc. dsPIC30F3014/4013 Pin Diagrams (Continued) 44 43 42 41 40 39 38 37 36 35 34 EMUD3/U1TX/SDO1/SCL/RF3 EMUC3/SCK1/RF6 IC1/INT1/RD8 OC3/RD2 VDD VSS OC4/RD3 IC2/INT2/RD9 INT0/RA11 EMUC1/SOSCO/T1CK/U1ARX/CN0/RC14 NC 44-Pin TQFP dsPIC30F4013 33 32 31 30 29 28 27 26 25 24 23 12 13 14 15 16 17 18 19 20 21 22 1 2 3 4 5 6 7 8 9 10 11 NC EMUD1/SOSCI/T2CK/U1ATX/CN1/RC13 OSC2/CLKO/RC15 OSC1/CLKI VSS VDD AN8/RB8 PGD/EMUD/AN7/RB7 PGC/EMUC/AN6/OCFA/RB6 AN5/IC8/CN7/RB5 AN4/IC7/CN6/RB4 NC NC AN10/CSDI/RB10 AN9/CSCK/RB9 AVSS AVDD MCLR AN0/VREF+/CN2/RB0 AN1/VREF-/CN3/RB1 AN2/SS1/LVDIN/CN4/RB2 AN3/CN5/RB3 U1RX/SDI1/SDA/RF2 U2TX/CN18/RF5 U2RX/CN17/RF4 C1TX/RF1 C1RX/RF0 VSS VDD EMUD2/OC2/RD1 EMUC2/OC1/RD0 AN12/COFS/RB12 AN11/CSDO/RB11  2010 Microchip Technology Inc. DS70138G-page 7 dsPIC30F3014/4013 Pin Diagrams (Continued) 44 43 42 41 40 39 38 37 36 35 34 EMUD3/U1TX/SDO1/SCL/RF3 EMUC3/SCK1/RF6 IC1/NT1/RD8 OC3/RD2 VDD VSS OC4/RD3 IC2/INT2/RD9 INT0/RA11 EMUC1/SOSCO/T1CK/U1ARX/CN0/RC14 EMUD1/SOSCI/T2CK/U1ATX/CN1/RC13 44-Pin QFN(1) 1 2 3 4 5 6 7 8 9 10 11 dsPIC30F4013 33 32 31 30 29 28 27 26 25 24 23 OSC2/CLKO/RC15 OSC1/CLKI VSS VSS VDD VDD AN8/RB8 PGD/EMUD/AN7/RB7 PGC/EMUC/AN6/OCFA/RB6 AN5/IC8/CN7/RB5 AN4/IC7/CN6/RB4 AN11/CSDO/RB11 NC AN10/CSDI/RB10 AN9/CSCK/RB9 AVSS AVDD MCLR AN0/VREF+/CN2/RB0 AN1/VREF-/CN3/RB1 AN2/SS1/LVDIN/CN4/RB2 AN3/CN5/RB3 12 13 14 15 16 17 18 19 20 21 22 U1RX/SDI1/SDA/RF2 U2TX/CN18/RF5 U2RX/CN17/RF4 C1TX/RF1 C1RX/RF0 VSS VDD VDD EMUD2/OC2/RD1 EMUC2/OC1/RD0 AN12/COFS/RB12 Note 1: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to VSS externally. DS70138G-page 8  2010 Microchip Technology Inc. dsPIC30F3014/4013 Table of Contents 1.0 Device Overview ........................................................................................................................................................................ 11 2.0 CPU Architecture Overview........................................................................................................................................................ 15 3.0 Memory Organization ................................................................................................................................................................. 25 4.0 Address Generator Units............................................................................................................................................................ 37 5.0 Flash Program Memory.............................................................................................................................................................. 43 6.0 Data EEPROM Memory ............................................................................................................................................................. 49 7.0 I/O Ports ..................................................................................................................................................................................... 53 8.0 Interrupts .................................................................................................................................................................................... 59 9.0 Timer1 Module ........................................................................................................................................................................... 67 10.0 Timer2/3 Module ........................................................................................................................................................................ 71 11.0 Timer4/5 Module ....................................................................................................................................................................... 77 12.0 Input Capture Module................................................................................................................................................................. 81 13.0 Output Compare Module ............................................................................................................................................................ 85 14.0 I2C™ Module ............................................................................................................................................................................. 91 15.0 SPI Module................................................................................................................................................................................. 99 16.0 Universal Asynchronous Receiver Transmitter (UART) Module .............................................................................................. 103 17.0 CAN Module ............................................................................................................................................................................. 111 18.0 Data Converter Interface (DCI) Module.................................................................................................................................... 121 19.0 12-bit Analog-to-Digital Converter (ADC) Module .................................................................................................................... 131 20.0 System Integration ................................................................................................................................................................... 141 21.0 Instruction Set Summary .......................................................................................................................................................... 159 22.0 Development Support............................................................................................................................................................... 167 23.0 Electrical Characteristics .......................................................................................................................................................... 171 24.0 Packaging Information.............................................................................................................................................................. 211 Index ................................................................................................................................................................................................. 219 The Microchip Web Site ..................................................................................................................................................................... 225 Customer Change Notification Service .............................................................................................................................................. 225 Customer Support .............................................................................................................................................................................. 225 Reader Response .............................................................................................................................................................................. 226 Product Identification System ............................................................................................................................................................ 227 TO OUR VALUED CUSTOMERS It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced. If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at docerrors@microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We welcome your feedback. Most Current Data Sheet To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at: http://www.microchip.com You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000). Errata An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies. To determine if an errata sheet exists for a particular device, please check with one of the following: • Microchip’s Worldwide Web site; http://www.microchip.com • Your local Microchip sales office (see last page) When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using. Customer Notification System Register on our web site at www.microchip.com to receive the most current information on all of our products.  2010 Microchip Technology Inc. DS70138G-page 9 dsPIC30F3014/4013 NOTES: DS70138G-page 10  2010 Microchip Technology Inc. dsPIC30F3014/4013 1.0 DEVICE OVERVIEW Note: This document contains specific information for the dsPIC30F3014/4013 Digital Signal Controller (DSC) devices. The dsPIC30F3014/4013 devices contain extensive Digital Signal Processor (DSP) functionality within a high-performance, 16-bit microcontroller (MCU) architecture. Figure 1-1 and Figure 1-2 show device block diagrams for dsPIC30F3014 and dsPIC30F4013, respectively. This data sheet summarizes features of this group of dsPIC30F devices and is not intended to be a complete reference source. For more information on the CPU, peripherals, register descriptions and general device functionality, refer to the “dsPIC30F Family Reference Manual” (DS70046). For more information on the device instruction set and programming, refer to the “16-bit MCU and DSC Programmer’s Reference Manual” (DS70157). FIGURE 1-1: dsPIC30F3014 BLOCK DIAGRAM Y Data Bus X Data Bus 16 16 Interrupt Controller PSV & Table Data Access 24 Control Block 8 Data Latch Y Data RAM (1 Kbyte) Address Latch 16 24 Program Memory (24 Kbytes) INT0/RA11 PORTA 16 X RAGU X WAGU Y AGU PCU PCH PCL Program Counter Loop Stack Control Control Logic Logic Data Latch X Data RAM (1 Kbyte) Address Latch 16 16 24 Address Latch 16 16 AN0/VREF+/CN2/RB0 AN1/VREF-/CN3/RB1 AN2/SS1/LVDIN/CN4/RB2 AN3/CN5/RB3 AN4/CN6/RB4 AN5/CN7/RB5 PGC/EMUC/AN6/OCFA/RB6 PGD/EMUD/AN7/RB7 AN8/RB8 AN9/RB9 AN10/RB10 AN11/RB11 AN12/RB12 16 Data EEPROM (1 Kbyte) Effective Address 16 Data Latch ROM Latch 16 24 PORTB IR 16 16 Decode Instruction Decode and Control Control Signals to Various Blocks OSC1/CLKI PORTC DSP Engine VDD, VSS AVDD, AVSS Watchdog Timer Low-Voltage Detect 12-Bit ADC  2010 Microchip Technology Inc. Divide Unit Oscillator Start-up Timer EMUC2/OC1/RD0 EMUD2/OC2/RD1 RD2 RD3 IC1/INT1/RD8 IC2/INT2/RD9 ALU POR/BOR Reset MCLR EMUC1/SOSCO/T1CK/U1ARX/ CN0/RC14 OSC2/CLKO/RC15 16 16 Power-up Timer Timing Generation EMUD1/SOSCI/T2CK/U1ATX/ CN1/RC13 16 x 16 W Reg Array 16 16 PORTD Input Capture Module Output Compare Module I2C™ Timers SPI1 UART1, UART2 RF0 RF1 U1RX/SDI1/SDA/RF2 EMUD3/U1TX/SDO1/SCL/RF3 U2RX/CN17/RF4 U2TX/CN18/RF5 EMUC3/SCK1/RF6 PORTF DS70138G-page 11 dsPIC30F3014/4013 FIGURE 1-2: dsPIC30F4013 BLOCK DIAGRAM Y Data Bus X Data Bus 16 16 Interrupt Controller PSV & Table Data Access 24 Control Block 8 Data Latch Y Data RAM (1 Kbyte) Address Latch 16 24 Program Memory (48 Kbytes) INT0/RA11 PORTA 16 X RAGU X WAGU Y AGU PCU PCH PCL Program Counter Loop Stack Control Control Logic Logic Data Latch X Data RAM (1 Kbyte) Address Latch 16 16 24 Address Latch 16 16 AN0/VREF+/CN2/RB0 AN1/VREF-/CN3/RB1 AN2/SS1/LVDIN/CN4/RB2 AN3/CN5/RB3 AN4/IC7/CN6/RB4 AN5/IC8/CN7/RB5 PGC/EMUC/AN6/OCFA/RB6 PGD/EMUD/AN7/RB7 AN8/RB8 AN9/CSCK/RB9 AN10/CSDI/RB10 AN11/CSDO/RB11 AN12/COFS/RB12 16 Data EEPROM (1 Kbyte) Effective Address 16 Data Latch ROM Latch 16 24 PORTB IR 16 16 Decode Instruction Decode & Control PORTC Power-up Timer DSP Engine EMUC2/OC1/RD0 EMUD2/OC2/RD1 OC3/RD2 OC4/RD3 ALU POR/BOR Reset MCLR VDD, VSS AVDD, AVSS DS70138G-page 12 Divide Unit Oscillator Start-up Timer Timing Generation CAN1 EMUC1/SOSCO/T1CK/U1ARX/ CN0/RC14 OSC2/CLKO/RC15 16 16 Control Signals to Various Blocks OSC1/CLKI EMUD1/SOSCI/T2CK/U1ATX/ CN1/RC13 16 x 16 W Reg Array Watchdog Timer Low-Voltage Detect IC1/INT1/RD8 IC2/INT2/RD9 16 16 PORTD 12-Bit ADC Input Capture Module Output Compare Module I2C™ Timers DCI SPI1 UART1, UART2 C1RX/RF0 C1TX/RF1 U1RX/SDI1/SDA/RF2 EMUD3/U1TX/SDO1/SCL/RF3 U2RX/CN17/RF4 U2TX/CN18/RF5 EMUC3/SCK1/RF6 PORTF  2010 Microchip Technology Inc. dsPIC30F3014/4013 Table 1-1 provides a brief description of device I/O pinouts and the functions that may be multiplexed to a port pin. Multiple functions may exist on one port pin. When multiplexing occurs, the peripheral module’s functional requirements may force an override of the data direction of the port pin. TABLE 1-1: PINOUT I/O DESCRIPTIONS Pin Type Buffer Type AN0-AN12 I Analog Analog input channels. AN6 and AN7 are also used for device programming data and clock inputs, respectively. AVDD P P Positive supply for analog module. This pin must be connected at all times. AVSS P P Ground reference for analog module. This pin must be connected at all times. CLKI I CLKO O CN0-CN7, CN17-CN18 I ST Input change notification inputs. Can be software programmed for internal weak pull-ups on all inputs. COFS CSCK CSDI CSDO I/O I/O I O ST ST ST — Data Converter Interface Frame Synchronization pin. Data Converter Interface Serial Clock input/output pin. Data Converter Interface Serial data input pin. Data Converter Interface Serial data output pin. C1RX C1TX I O ST — CAN1 bus receive pin. CAN1 bus transmit pin. EMUD EMUC EMUD1 EMUC1 EMUD2 EMUC2 EMUD3 EMUC3 I/O I/O I/O I/O I/O I/O I/O I/O ST ST ST ST ST ST ST ST ICD Primary Communication Channel data input/output pin. ICD Primary Communication Channel clock input/output pin. ICD Secondary Communication Channel data input/output pin. ICD Secondary Communication Channel clock input/output pin. ICD Tertiary Communication Channel data input/output pin. ICD Tertiary Communication Channel clock input/output pin. ICD Quaternary Communication Channel data input/output pin. ICD Quaternary Communication Channel clock input/output pin. IC1, IC2, IC7, IC8 I ST Capture inputs 1,2, 7 and 8. INT0 INT1 INT2 I I I ST ST ST External interrupt 0. External interrupt 1. External interrupt 2. LVDIN I Analog MCLR I/P ST Master Clear (Reset) input or programming voltage input. This pin is an active-low Reset to the device. OCFA OC1-OC4 I O ST — Compare Fault A input (for Compare channels 1, 2, 3 and 4). Compare outputs 1 through 4. OSC1 I OSC2 I/O PGD PGC I/O I Pin Name Description ST/CMOS External clock source input. Always associated with OSC1 pin function. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. — Always associated with OSC2 pin function. Low-Voltage Detect Reference Voltage Input pin. ST/CMOS Oscillator crystal input. ST buffer when configured in RC mode; CMOS otherwise. — Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. ST ST In-Circuit Serial Programming data input/output pin. In-Circuit Serial Programming clock input pin. Legend: CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels I = Input  2010 Microchip Technology Inc. Analog = Analog input O = Output P = Power DS70138G-page 13 dsPIC30F3014/4013 TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED) Pin Type Buffer Type RA11 I/O ST PORTA is a bidirectional I/O port. RB0-RB12 I/O ST PORTB is a bidirectional I/O port. RC13-RC15 I/O ST PORTC is a bidirectional I/O port. RD0-RD3, RD8, RD9 I/O ST PORTD is a bidirectional I/O port. Pin Name Description RF0-RF5 I/O ST PORTF is a bidirectional I/O port. SCK1 SDI1 SDO1 SS1 I/O I O I ST ST — ST Synchronous serial clock input/output for SPI1. SPI1 data in. SPI1 data out. SPI1 slave synchronization. SCL SDA I/O I/O ST ST Synchronous serial clock input/output for I2C™. Synchronous serial data input/output for I2C. SOSCO SOSCI O I T1CK T2CK I I ST ST Timer1 external clock input. Timer2 external clock input. U1RX U1TX U1ARX U1ATX I O I O ST — ST — UART1 receive. UART1 transmit. UART1 alternate receive. UART1 alternate transmit. VDD P — Positive supply for logic and I/O pins. VSS P — VREF+ I Analog Analog voltage reference (high) input. VREF- I Analog Analog voltage reference (low) input. — 32 kHz low-power oscillator crystal output. ST/CMOS 32 kHz low-power oscillator crystal input. ST buffer when configured in RC mode; CMOS otherwise. Ground reference for logic and I/O pins. Legend: CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels I = Input DS70138G-page 14 Analog = Analog input O = Output P = Power  2010 Microchip Technology Inc. dsPIC30F3014/4013 2.0 Note: 2.1 CPU ARCHITECTURE OVERVIEW This data sheet summarizes features of this group of dsPIC30F devices and is not intended to be a complete reference source. For more information on the CPU, peripherals, register descriptions and general device functionality, refer to the “dsPIC30F Family Reference Manual” (DS70046). For more information on the device instruction set and programming, refer to the “16-bit MCU and DSC Programmer’s Reference Manual” (DS70157). Core Overview This section contains a brief overview of the CPU architecture of the dsPIC30F. The core has a 24-bit instruction word. The Program Counter (PC) is 23 bits wide with the Least Significant bit (LSb) always clear (refer to Section 3.1 “Program Address Space”), and the Most Significant bit (MSb) is ignored during normal program execution, except for certain specialized instructions. Thus, the PC can address up to 4M instruction words of user program space. An instruction prefetch mechanism is used to help maintain throughput. Program loop constructs, free from loop count management overhead, are supported using the DO and REPEAT instructions, both of which are interruptible at any point. The working register array consists of 16-bit x 16-bit registers, each of which can act as data, address or offset registers. One working register (W15) operates as a Software Stack Pointer for interrupts and calls. The data space is 64 Kbytes (32K words) and is split into two blocks, referred to as X and Y data memory. Each block has its own independent Address Generation Unit (AGU). Most instructions operate solely through the X memory, AGU, which provides the appearance of a single, unified data space. The Multiply-Accumulate (MAC) class of dual source DSP instructions operate through both the X and Y AGUs, splitting the data address space into two parts (see Section 3.2 “Data Address Space”). The X and Y data space boundary is device-specific and cannot be altered by the user. Each data word consists of 2 bytes, and most instructions can address data either as words or bytes.  2010 Microchip Technology Inc. There are two methods of accessing data stored in program memory: • The upper 32 Kbytes of data space memory can be mapped into the lower half (user space) of program space at any 16K program word boundary, defined by the 8-bit Program Space Visibility Page (PSVPAG) register. This lets any instruction access program space as if it were data space, with a limitation that the access requires an additional cycle. Moreover, only the lower 16 bits of each instruction word can be accessed using this method. • Linear indirect access of 32K word pages within program space is also possible using any working register, via table read and write instructions. Table read and write instructions can be used to access all 24 bits of an instruction word. Overhead-free circular buffers (Modulo Addressing) are supported in both X and Y address spaces. This is primarily intended to remove the loop overhead for DSP algorithms. The X AGU also supports Bit-Reversed Addressing on destination effective addresses to greatly simplify input or output data reordering for radix-2 FFT algorithms. Refer to Section 4.0 “Address Generator Units” for details on Modulo and Bit-Reversed Addressing. The core supports Inherent (no operand), Relative, Literal, Memory Direct, Register Direct, Register Indirect, Register Offset and Literal Offset Addressing modes. Instructions are associated with predefined addressing modes, depending upon their functional requirements. For most instructions, the core is capable of executing a data (or program data) memory read, a working register (data) read, a data memory write and a program (instruction) memory read per instruction cycle. As a result, 3-operand instructions are supported, allowing C = A+B operations to be executed in a single cycle. A DSP engine has been included to significantly enhance the core arithmetic capability and throughput. It features a high-speed, 17-bit x 17-bit multiplier, a 40-bit ALU, two 40-bit saturating accumulators and a 40-bit bidirectional barrel shifter. Data in the accumulator, or any working register, can be shifted up to 15 bits right, or 16 bits left in a single cycle. The DSP instructions operate seamlessly with all other instructions and have been designed for optimal real-time performance. The MAC class of instructions can concurrently fetch two data operands from memory while multiplying two W registers. To enable this concurrent fetching of data operands, the data space has been split for these instructions and linear is for all others. This has been achieved in a transparent and flexible manner by dedicating certain working registers to each address space for the MAC class of instructions. DS70138G-page 15 dsPIC30F3014/4013 The core does not support a multi-stage instruction pipeline. However, a single-stage instruction prefetch mechanism is used, which accesses and partially decodes instructions a cycle ahead of execution, in order to maximize available execution time. Most instructions execute in a single cycle with certain exceptions. The core features a vectored exception processing structure for traps and interrupts, with 62 independent vectors. The exceptions consist of up to 8 traps (of which 4 are reserved) and 54 interrupts. Each interrupt is prioritized based on a user-assigned priority between 1 and 7 (1 being the lowest priority and 7 being the highest), in conjunction with a predetermined ‘natural order’. Traps have fixed priorities ranging from 8 to 15. 2.2 Programmer’s Model The programmer’s model is shown in Figure 2-1 and consists of 16 x 16-bit working registers (W0 through W15), 2 x 40-bit accumulators (AccA and AccB), STATUS register (SR), Data Table Page register (TBLPAG), Program Space Visibility Page register (PSVPAG), DO and REPEAT registers (DOSTART, DOEND, DCOUNT and RCOUNT) and Program Counter (PC). The working registers can act as data, address or offset registers. All registers are memory mapped. W0 acts as the W register for file register addressing. Some of these registers have a shadow register associated with each of them, as shown in Figure 2-1. The shadow register is used as a temporary holding register and can transfer its contents to or from its host register upon the occurrence of an event. None of the shadow registers are accessible directly. The following rules apply for transfer of registers into and out of shadows. • PUSH.S and POP.S W0, W1, W2, W3, SR (DC, N, OV, Z and C bits only) are transferred. • DO instruction DOSTART, DOEND, DCOUNT shadows are pushed on loop start and popped on loop end. 2.2.1 SOFTWARE STACK POINTER/ FRAME POINTER The dsPIC® DSC devices contain a software stack. W15 is the dedicated Software Stack Pointer (SP) and is automatically modified by exception processing and subroutine calls and returns. However, W15 can be referenced by any instruction in the same manner as all other W registers. This simplifies the reading, writing and manipulation of the Stack Pointer (e.g., creating Stack Frames). Note: In order to protect against misaligned stack accesses, W15 is always clear. W15 is initialized to 0x0800 during a Reset. The user may reprogram the SP during initialization to any location within data space. W14 has been dedicated as a Stack Frame Pointer, as defined by the LNK and ULNK instructions. However, W14 can be referenced by any instruction in the same manner as all other W registers. 2.2.2 STATUS REGISTER The dsPIC DSC core has a 16-bit STATUS register (SR), the Least Significant Byte (LSB) of which is referred to as the SR Low byte (SRL) and the Most Significant Byte (MSB) as the SR High byte (SRH). See Figure 2-1 for SR layout. SRL contains all the MCU ALU operation status flags (including the Z bit), as well as the CPU Interrupt Priority Level Status bits, IPL and the Repeat Active Status bit, RA. During exception processing, SRL is concatenated with the MSB of the PC to form a complete word value which is then stacked. The upper byte of the STATUS register contains the DSP adder/subtracter Status bits, the DO Loop Active bit (DA) and the Digit Carry (DC) Status bit. 2.2.3 PROGRAM COUNTER The program counter is 23 bits wide; bit 0 is always clear. Therefore, the PC can address up to 4M instruction words. When a byte operation is performed on a working register, only the Least Significant Byte of the target register is affected. However, a benefit of memory mapped working registers is that both the Least and Most Significant Bytes can be manipulated through byte-wide data memory space accesses. DS70138G-page 16  2010 Microchip Technology Inc. dsPIC30F3014/4013 FIGURE 2-1: PROGRAMMER’S MODEL D15 D0 W0/WREG PUSH.S Shadow W1 DO Shadow W2 W3 Legend W4 DSP Operand Registers W5 W6 W7 Working Registers W8 W9 DSP Address Registers W10 W11 W12/DSP Offset W13/DSP Write-Back W14/Frame Pointer W15/Stack Pointer SPLIM AD39 Stack Pointer Limit Register AD15 AD31 AD0 AccA DSP Accumulators AccB PC22 PC0 Program Counter 0 0 7 TABPAG TBLPAG 7 Data Table Page Address 0 PSVPAG Program Space Visibility Page Address 15 0 RCOUNT REPEAT Loop Counter 15 0 DCOUNT DO Loop Counter 22 0 DOSTART DO Loop Start Address DOEND DO Loop End Address 22 15 0 Core Configuration Register CORCON OA OB SA SB OAB SAB DA SRH  2010 Microchip Technology Inc. DC IPL2 IPL1 IPL0 RA N OV Z C STATUS Register SRL DS70138G-page 17 dsPIC30F3014/4013 2.3 Divide Support The dsPIC DSC devices feature a 16/16-bit signed fractional divide operation, as well as 32/16-bit and 16/ 16-bit signed and unsigned integer divide operations, in the form of single instruction iterative divides. The following instructions and data sizes are supported: 1. 2. 3. 4. 5. DIVF – 16/16 signed fractional divide DIV.sd – 32/16 signed divide DIV.ud – 32/16 unsigned divide DIV.s – 16/16 signed divide DIV.u – 16/16 unsigned divide The divide instructions must be executed within a REPEAT loop. Any other form of execution (e.g., a series of discrete divide instructions) will not function correctly because the instruction flow depends on RCOUNT. The divide instruction does not automatically set up the RCOUNT value and it must, therefore, be explicitly and correctly specified in the REPEAT instruction, as shown in Table 2-1 (REPEAT will execute the target instruction {operand value+1} times). The REPEAT loop count must be setup for 18 iterations of the DIV/DIVF instruction. Thus, a complete divide operation requires 19 cycles. The 16/16 divides are similar to the 32/16 (same number of iterations), but the dividend is either zero-extended or sign-extended during the first iteration. TABLE 2-1: Note: The divide flow is interruptible. However, the user needs to save the context as appropriate. DIVIDE INSTRUCTIONS Instruction Function DIVF Signed fractional divide: Wm/Wn W0; Rem W1 DIV.sd Signed divide: (Wm+1:Wm)/Wn W0; Rem W1 DIV.s Signed divide: Wm/Wn W0; Rem W1 DIV.ud Unsigned divide: (Wm+1:Wm)/Wn W0; Rem W1 DIV.u Unsigned divide: Wm/Wn W0; Rem W1 DS70138G-page 18  2010 Microchip Technology Inc. dsPIC30F3014/4013 2.4 DSP Engine The DSP engine consists of a high-speed, 17-bit x 17-bit multiplier, a barrel shifter and a 40-bit adder/ subtracter (with two target accumulators, round and saturation logic). The DSP engine also has the capability to perform inherent accumulator-to-accumulator operations, which require no additional data. These instructions are ADD, SUB and NEG. The dsPIC30F is a single-cycle instruction flow architecture, therefore, concurrent operation of the DSP engine with MCU instruction flow is not possible. However, some MCU ALU and DSP engine resources may be used concurrently by the same instruction (e.g., ED, EDAC). (See Table 2-2 for DSP instructions.) The DSP engine has various options selected through various bits in the CPU Core Configuration register (CORCON), as listed below: 1. 2. 3. 4. 5. 6. Fractional or integer DSP multiply (IF). Signed or unsigned DSP multiply (US). Conventional or convergent rounding (RND). Automatic saturation on/off for AccA (SATA). Automatic saturation on/off for AccB (SATB). Automatic saturation on/off for writes to data memory (SATDW). Accumulator Saturation mode selection (ACCSAT). 7. Note: For CORCON layout, see Table 3-3. A block diagram of the DSP engine is shown in Figure 2-2. TABLE 2-2: Instruction CLR Algebraic Operation ACC WB? A=0 Yes 2 A = (x – y) No EDAC A = A + (x – y)2 No MAC A = A + (x * y) Yes MAC A = A + x2 No No change in A Yes A=x*y No ED MOVSAC MPY MPY.N MSC  2010 Microchip Technology Inc. DSP INSTRUCTION SUMMARY A=–x*y No A=A–x*y Yes DS70138G-page 19 dsPIC30F3014/4013 FIGURE 2-2: DSP ENGINE BLOCK DIAGRAM 40 S a 40 Round t 16 u Logic r a t e 40-Bit Accumulator A 40-Bit Accumulator B Carry/Borrow Out Carry/Borrow In Saturate Adder Negate 40 40 40 16 X Data Bus Barrel Shifter 40 Y Data Bus Sign-Extend 32 16 Zero Backfill 32 33 17-Bit Multiplier/Scaler 16 16 To/From W Array DS70138G-page 20  2010 Microchip Technology Inc. dsPIC30F3014/4013 2.4.1 MULTIPLIER The 17-bit x 17-bit multiplier is capable of signed or unsigned operation and can multiplex its output using a scaler to support either 1.31 fractional (Q31) or 32-bit integer results. Unsigned operands are zero-extended into the 17th bit of the multiplier input value. Signed operands are sign-extended into the 17th bit of the multiplier input value. The output of the 17-bit x 17-bit multiplier/scaler is a 33-bit value, which is signextended to 40 bits. Integer data is inherently represented as a signed two’s complement value, where the MSB is defined as a sign bit. Generally speaking, the range of an N-bit two’s complement integer is -2N-1 to 2N-1 – 1. For a 16-bit integer, the data range is -32768 (0x8000) to 32767 (0x7FFF) including ‘0’. For a 32-bit integer, the data range is 2,147,483,648 (0x8000 0000) to 2,147,483,645 (0x7FFF FFFF). When the multiplier is configured for fractional multiplication, the data is represented as a two’s complement fraction, where the MSB is defined as a sign bit and the radix point is implied to lie just after the sign bit (QX format). The range of an N-bit two’s complement fraction with this implied radix point is -1.0 to (1 – 21-N). For a 16-bit fraction, the Q15 data range is -1.0 (0x8000) to 0.999969482 (0x7FFF) including ‘0’ and has a precision of 3.01518x10-5. In Fractional mode, the 16x16 multiply operation generates a 1.31 product, which has a precision of 4.65661 x 10-10. The same multiplier is used to support the MCU multiply instructions, which includes integer 16-bit signed, unsigned and mixed sign multiplies. The MUL instruction can be directed to use byte or word-sized operands. Byte operands direct a 16-bit result, and word operands direct a 32-bit result to the specified register(s) in the W array. 2.4.2 2.4.2.1 The adder/subtracter is a 40-bit adder with an optional zero input into one side and either true or complement data into the other input. In the case of addition, the carry/borrow input is active-high and the other input is true data (not complemented), whereas in the case of subtraction, the carry/borrow input is active-low and the other input is complemented. The adder/subtracter generates overflow Status bits, SA/SB and OA/OB, which are latched and reflected in the STATUS register: • Overflow from bit 39: this is a catastrophic overflow in which the sign of the accumulator is destroyed. • Overflow into guard bits 32 through 39: this is a recoverable overflow. This bit is set whenever all the guard bits are not identical to each other. The adder has an additional saturation block which controls accumulator data saturation if selected. It uses the result of the adder, the overflow Status bits described above, and the SATA/B (CORCON) and ACCSAT (CORCON) mode control bits to determine when and to what value to saturate. Six STATUS register bits have been provided to support saturation and overflow. They are: 1. 2. 3. 4. DATA ACCUMULATORS AND ADDER/SUBTRACTER The data accumulator consists of a 40-bit adder/ subtracter with automatic sign extension logic. It can select one of two accumulators (A or B) as its preaccumulation source and post-accumulation destination. For the ADD and LAC instructions, the data to be accumulated or loaded can be optionally scaled via the barrel shifter prior to accumulation.  2010 Microchip Technology Inc. Adder/Subtracter, Overflow and Saturation 5. 6. OA: AccA overflowed into guard bits OB: AccB overflowed into guard bits SA: AccA saturated (bit 31 overflow and saturation) or AccA overflowed into guard bits and saturated (bit 39 overflow and saturation) SB: AccB saturated (bit 31 overflow and saturation) or AccB overflowed into guard bits and saturated (bit 39 overflow and saturation) OAB: Logical OR of OA and OB SAB: Logical OR of SA and SB The OA and OB bits are modified each time data passes through the adder/subtracter. When set, they indicate that the most recent operation has overflowed into the accumulator guard bits (bits 32 through 39). The OA and OB bits can also optionally generate an arithmetic warning trap when set and the corresponding overflow trap flag enable bit (OVATE, OVBTE) in the INTCON1 register (refer to Section 8.0 “Interrupts”) is set. This allows the user to take immediate action, for example, to correct system gain. DS70138G-page 21 dsPIC30F3014/4013 The SA and SB bits are modified each time data passes through the adder/subtracter but can only be cleared by the user. When set, they indicate that the accumulator has overflowed its maximum range (bit 31 for 32-bit saturation or bit 39 for 40-bit saturation) and will be saturated if saturation is enabled. When saturation is not enabled, SA and SB default to bit 39 overflow and, thus, indicate that a catastrophic overflow has occurred. If the COVTE bit in the INTCON1 register is set, SA and SB bits generate an arithmetic warning trap when saturation is disabled. The overflow and saturation Status bits can optionally be viewed in the STATUS register (SR) as the logical OR of OA and OB (in bit OAB) and the logical OR of SA and SB (in bit SAB). This allows programmers to check one bit in the STATUS register to determine if either accumulator has overflowed, or one bit to determine if either accumulator has saturated. This would be useful for complex number arithmetic which typically uses both the accumulators. The device supports three saturation and overflow modes: 1. 2. 3. Bit 39 Overflow and Saturation: When bit 39 overflow and saturation occurs, the saturation logic loads the maximally positive 9.31 (0x7FFFFFFFFF), or maximally negative 9.31 value (0x8000000000) into the target accumulator. The SA or SB bit is set and remains set until cleared by the user. This is referred to as ‘super saturation’ and provides protection against erroneous data or unexpected algorithm problems (e.g., gain calculations). Bit 31 Overflow and Saturation: When bit 31 overflow and saturation occurs, the saturation logic then loads the maximally positive 1.31 value (0x007FFFFFFF), or maximally negative 1.31 value (0x0080000000) into the target accumulator. The SA or SB bit is set and remains set until cleared by the user. When this Saturation mode is in effect, the guard bits are not used, so the OA, OB or OAB bits are never set. Bit 39 Catastrophic Overflow: The bit 39 overflow Status bit from the adder is used to set the SA or SB bit which remain set until cleared by the user. No saturation operation is performed and the accumulator is allowed to overflow (destroying its sign). If the COVTE bit in the INTCON1 register is set, a catastrophic overflow can initiate a trap exception. DS70138G-page 22 2.4.2.2 Accumulator ‘Write-Back’ The MAC class of instructions (with the exception of MPY, MPY.N, ED and EDAC) can optionally write a rounded version of the high word (bits 31 through 16) of the accumulator that is not targeted by the instruction into data space memory. The write is performed across the X bus into combined X and Y address space. The following addressing modes are supported: 1. 2. W13, Register Direct: The rounded contents of the non-target accumulator are written into W13 as a 1.15 fraction. [W13]+=2, Register Indirect with Post-Increment: The rounded contents of the non-target accumulator are written into the address pointed to by W13 as a 1.15 fraction. W13 is then incremented by 2 (for a word write). 2.4.2.3 Round Logic The round logic is a combinational block which performs a conventional (biased) or convergent (unbiased) round function during an accumulator write (store). The Round mode is determined by the state of the RND bit in the CORCON register. It generates a 16-bit, 1.15 data value, which is passed to the data space write saturation logic. If rounding is not indicated by the instruction, a truncated 1.15 data value is stored and the least significant word (lsw) is simply discarded. Conventional rounding takes bit 15 of the accumulator, zero-extends it and adds it to the ACCxH word (bits 16 through 31 of the accumulator). If the ACCxL word (bits 0 through 15 of the accumulator) is between 0x8000 and 0xFFFF (0x8000 included), ACCxH is incremented. If ACCxL is between 0x0000 and 0x7FFF, ACCxH is left unchanged. A consequence of this algorithm is that over a succession of random rounding operations, the value tends to be biased slightly positive. Convergent (or unbiased) rounding operates in the same manner as conventional rounding, except when ACCxL equals 0x8000. If this is the case, the Least Significant bit (LSb) (bit 16 of the accumulator) of ACCxH is examined. If it is ‘1’, ACCxH is incremented. If it is ‘0’, ACCxH is not modified. Assuming that bit 16 is effectively random in nature, this scheme removes any rounding bias that may accumulate. The SAC and SAC.R instructions store either a truncated (SAC) or rounded (SAC.R) version of the contents of the target accumulator to data memory via the X bus (subject to data saturation, see Section 2.4.2.4 “Data Space Write Saturation”). Note that for the MAC class of instructions, the accumulator write-back operation functions in the same manner, addressing combined MCU (X and Y) data space though the X bus. For this class of instructions, the data is always subject to rounding.  2010 Microchip Technology Inc. dsPIC30F3014/4013 2.4.2.4 Data Space Write Saturation 2.4.3 BARREL SHIFTER In addition to adder/subtracter saturation, writes to data space may also be saturated but without affecting the contents of the source accumulator. The data space write saturation logic block accepts a 16-bit, 1.15 fractional value from the round logic block as its input, together with overflow status from the original source (accumulator) and the 16-bit round adder. These are combined and used to select the appropriate 1.15 fractional value as output to write to data space memory. The barrel shifter is capable of performing up to 16-bit arithmetic or logic right shifts, or up to 16-bit left shifts in a single cycle. The source can be either of the two DSP accumulators, or the X bus (to support multi-bit shifts of register or memory data). If the SATDW bit in the CORCON register is set, data (after rounding or truncation) is tested for overflow and adjusted accordingly. For input data greater than 0x007FFF, data written to memory is forced to the maximum positive 1.15 value, 0x7FFF. For input data less than 0xFF8000, data written to memory is forced to the maximum negative 1.15 value, 0x8000. The Most Significant bit (MSb) of the source (bit 39) is used to determine the sign of the operand being tested. The barrel shifter is 40 bits wide, thereby obtaining a 40-bit result for DSP shift operations and a 16-bit result for MCU shift operations. Data from the X bus is presented to the barrel shifter between bit positions 16 to 31 for right shifts, and bit positions 0 to 16 for left shifts. The shifter requires a signed binary value to determine both the magnitude (number of bits) and direction of the shift operation. A positive value shifts the operand right. A negative value shifts the operand left. A value of ‘0’ does not modify the operand. If the SATDW bit in the CORCON register is not set, the input data is always passed through unmodified under all conditions.  2010 Microchip Technology Inc. DS70138G-page 23 dsPIC30F3014/4013 NOTES: DS70138G-page 24  2010 Microchip Technology Inc. dsPIC30F3014/4013 Note: MEMORY ORGANIZATION This data sheet summarizes features of this group of dsPIC30F devices and is not intended to be a complete reference source. For more information on the CPU, peripherals, register descriptions and general device functionality, refer to the “dsPIC30F Family Reference Manual” (DS70046). For more information on the device instruction set and programming, refer to the “16-bit MCU and DSC Programmer’s Reference Manual” (DS70157). User program space access is restricted to the lower 4M instruction word address range (0x000000 to 0x7FFFFE) for all accesses other than TBLRD/TBLWT, which use TBLPAG to determine user or configuration space access. In Table 3-1, bit 23 allows access to the Device ID, the User ID and the Configuration bits; otherwise, bit 23 is always clear. FIGURE 3-2: dsPIC30F4013 PROGRAM SPACE MEMORY MAP Reset – GOTO Instruction Reset – Target Address 000000 000002 000004 Interrupt Vector Table Program Address Space Reset – GOTO Instruction Reset – Target Address Interrupt Vector Table Reserved 00007E 000080 User Memory Space 000084 Alternate Vector Table 0000FE 000100 User Flash Program Memory (8K instructions) Reserved (Read ‘0’s) Data EEPROM (1 Kbyte) 003FFE 004000 000084 0000FE 000100 User Flash Program Memory (16K instructions) Data EEPROM (1 Kbyte) 000000 000002 000004 00007E 000080 Alternate Vector Table Reserved (Read ‘0’s) dsPIC30F3014 PROGRAM SPACE MEMORY MAP Vector Tables FIGURE 3-1: Reserved User Memory Space The program address space is 4M instruction words. It is addressable by a 24-bit value from either the 23-bit PC, table instruction Effective Address (EA) or data space EA, when program space is mapped into data space as defined by Table 3-1. Note that the program space address is incremented by two between successive program words in order to provide compatibility with data space addressing. 007FFE 008000 7FFBFE 7FFC00 7FFFFE 800000 Reserved 8005BE 8005C0 Configuration Memory Space 3.1 Vector Tables 3.0 UNITID (32 instr.) 8005FE 800600 Reserved Device Configuration Registers 7FFBFE 7FFC00 F7FFFE F80000 F8000E F80010 Reserved 7FFFFE 800000 Reserved DEVID (2) FEFFFE FF0000 FF0002 Configuration Memory Space 8005BE 8005C0 UNITID (32 instr.) 8005FE 800600 Reserved Device Configuration Registers F7FFFE F80000 F8000E F80010 Reserved DEVID (2)  2010 Microchip Technology Inc. FEFFFE FF0000 FF0002 DS70138G-page 25 dsPIC30F3014/4013 TABLE 3-1: PROGRAM SPACE ADDRESS CONSTRUCTION Program Space Address Access Space Access Type Instruction Access User TBLRD/TBLWT User (TBLPAG = 0) TBLPAG Data EA TBLRD/TBLWT Configuration (TBLPAG = 1) TBLPAG Data EA Program Space Visibility User FIGURE 3-3: PC 0 0 PSVPAG 0 Data EA DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION 23 bits Using Program Counter Program Counter 0 Select Using Program Space Visibility 0 1 0 EA PSVPAG Reg 8 bits 15 bits EA Using Table Instruction 1/0 TBLPAG Reg User/ Configuration Space Select Note: DS70138G-page 26 8 bits 16 bits 24-bit EA Byte Select Program space visibility cannot be used to access bits of a word in program memory.  2010 Microchip Technology Inc. dsPIC30F3014/4013 3.1.1 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS A set of table instructions are provided to move byte or word-sized data to and from program space. (See Figure 3-4 and Figure 3-5.) 1. This architecture fetches 24-bit wide program memory. Consequently, instructions are always aligned. However, as the architecture is modified Harvard, data can also be present in program space. There are two methods by which program space can be accessed: via special table instructions, or through the remapping of a 16K word program space page into the upper half of data space (see Section 3.1.2 “Data Access from Program Memory Using Program Space Visibility”). The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lsw of any address within program space, without going through data space. The TBLRDH and TBLWTH instructions are the only method whereby the upper 8 bits of a program space word can be accessed as data. 2. 3. The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to data space addresses. Program memory can thus be regarded as two 16-bit word-wide address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space which contains the least significant data word, and TBLRDH and TBLWTH access the space which contains the MS Data Byte. 4. TBLRDL: Table Read Low Word: Read the lsw of the program address; P maps to D. Byte: Read one of the LSBs of the program address; P maps to the destination byte when byte select = 0; P maps to the destination byte when byte select = 1. TBLWTL: Table Write Low (refer to Section 5.0 “Flash Program Memory” for details on Flash programming) TBLRDH: Table Read High Word: Read the most significant word (msw) of the program address; P maps to D; D will always be = 0. Byte: Read one of the MSBs of the program address; P maps to the destination byte when byte select = 0; The destination byte will always be = 0 when byte select = 1. TBLWTH: Table Write High (refer to Section 5.0 “Flash Program Memory” for details on Flash Programming) Figure 3-3 shows how the EA is created for table operations and data space accesses (PSV = 1). Here, P refers to a program space word, whereas D refers to a data space word. FIGURE 3-4: PROGRAM DATA TABLE ACCESS (LEAST SIGNIFICANT WORD) PC Address 0x000000 0x000002 0x000004 0x000006 Program Memory ‘Phantom’ Byte (read as ‘0’)  2010 Microchip Technology Inc. 23 16 8 0 00000000 00000000 00000000 00000000 TBLRDL.W TBLRDL.B (Wn = 0) TBLRDL.B (Wn = 1) DS70138G-page 27 dsPIC30F3014/4013 FIGURE 3-5: PROGRAM DATA TABLE ACCESS (MSB) TBLRDH.W PC Address 0x000000 0x000002 0x000004 0x000006 23 16 8 0 00000000 00000000 00000000 00000000 TBLRDH.B (Wn = 0) Program Memory ‘Phantom’ Byte (read as ‘0’) 3.1.2 TBLRDH.B (Wn = 1) DATA ACCESS FROM PROGRAM MEMORY USING PROGRAM SPACE VISIBILITY The upper 32 Kbytes of data space may optionally be mapped into any 16K word program space page. This provides transparent access of stored constant data from X data space without the need to use special instructions (i.e., TBLRDL/H, TBLWTL/H instructions). Program space access through the data space occurs if the MSb of the data space, EA, is set and program space visibility is enabled by setting the PSV bit in the Core Control register (CORCON). The functions of CORCON are discussed in Section 2.4 “DSP Engine”. Data accesses to this area add an additional cycle to the instruction being executed, since two program memory fetches are required. Note that the upper half of addressable data space is always part of the X data space. Therefore, when a DSP operation uses program space mapping to access this memory region, Y data space should typically contain state (variable) data for DSP operations, whereas X data space should typically contain coefficient (constant) data. Although each data space address, 0x8000 and higher, maps directly into a corresponding program memory address (see Figure 3-6), only the lower 16 bits of the 24-bit program word are used to contain the data. The upper 8 bits should be programmed to force an illegal instruction to maintain machine robustness. Refer to the “16-bit MCU and DSC Programmer’s Reference Manual” (DS70157) for details on instruction encoding. DS70138G-page 28 Note that by incrementing the PC by 2 for each program memory word, the 15 LSbs of data space addresses directly map to the 15 LSbs in the corresponding program space addresses. The remaining bits are provided by the Program Space Visibility Page register, PSVPAG, as shown in Figure 3-6. Note: PSV access is temporarily disabled during table reads/writes. For instructions that use PSV which are executed outside a REPEAT loop: • The following instructions require one instruction cycle in addition to the specified execution time: - MAC class of instructions with data operand prefetch - MOV instructions - MOV.D instructions • All other instructions require two instruction cycles in addition to the specified execution time of the instruction. For instructions that use PSV which are executed inside a REPEAT loop: • The following instances require two instruction cycles in addition to the specified execution time of the instruction: - Execution in the first iteration - Execution in the last iteration - Execution prior to exiting the loop due to an interrupt - Execution upon re-entering the loop after an interrupt is serviced • Any other iteration of the REPEAT loop allows the instruction accessing data, using PSV, to execute in a single cycle.  2010 Microchip Technology Inc. dsPIC30F3014/4013 FIGURE 3-6: DATA SPACE WINDOW INTO PROGRAM SPACE OPERATION Data Space Program Space 0x0000 0x000100 PSVPAG(1) 0x00 8 15 EA = 0 Data 16 Space 15 EA EA = 1 0x8000 15 Address Concatenation 23 23 15 0 0x000200 Upper Half of Data Space is Mapped into Program Space 0x007FFF 0xFFFF BSET MOV MOV MOV CORCON,#2 #0x00, W0 W0, PSVPAG 0x8200, W0 ; PSV bit set ; Set PSVPAG register ; Access program memory location ; using a data space access Data Read Note: PSVPAG is an 8-bit register, containing bits of the program space address (i.e., it defines the page in program space to which the upper half of data space is being mapped). The memory map shown here is for a dsPIC30F4013 device.  2010 Microchip Technology Inc. DS70138G-page 29 dsPIC30F3014/4013 3.2 Data Address Space The core has two data spaces. The data spaces can be considered either separate (for some DSP instructions), or as one unified linear address range (for MCU instructions). The data spaces are accessed using two Address Generation Units (AGUs) and separate data paths. 3.2.1 DATA SPACE MEMORY MAP The data space memory is split into two blocks, X and Y data space. A key element of this architecture is that Y space is a subset of X space, and is fully contained within X space. In order to provide an apparent Linear Addressing space, X and Y spaces have contiguous addresses. FIGURE 3-7: When executing any instruction other than one of the MAC class of instructions, the X block consists of the 64-Kbyte data address space (including all Y addresses). When executing one of the MAC class of instructions, the X block consists of the 64-Kbyte data address space excluding the Y address block (for data reads only). In other words, all other instructions regard the entire data memory as one composite address space. The MAC class instructions extract the Y address space from data space and address it using EAs sourced from W10 and W11. The remaining X data space is addressed using W8 and W9. Both address spaces are concurrently accessed only with the MAC class instructions. The data space memory map is shown in Figure 3-7. dsPIC30F3014/dsPIC30F4013 DATA SPACE MEMORY MAP MSB Address MSB 2 Kbyte SFR Space LSB Address 16 bits LSB 0x0000 0x0001 SFR Space 0x07FE 0x0800 0x07FF 0x0801 X Data RAM (X) 2 Kbyte SRAM Space Y Data RAM (Y) 0x0FFF 0x1001 0x0FFE 0x1000 0x1FFF 0x1FFE 0x8001 0x8000 X Data Unimplemented (X) Optionally Mapped into Program Memory 0xFFFF DS70138G-page 30 0x0BFE 0x0C00 0x0BFF 0x0C01 8 Kbyte Near Data Space 0xFFFE  2010 Microchip Technology Inc. dsPIC30F3014/4013 DATA SPACE FOR MCU AND DSP (MAC CLASS) INSTRUCTIONS EXAMPLE SFR SPACE SFR SPACE X SPACE FIGURE 3-8: Y SPACE UNUSED X SPACE (Y SPACE) X SPACE UNUSED UNUSED Non-MAC Class Ops (Read/Write) MAC Class Ops (Write) Indirect EA using any W  2010 Microchip Technology Inc. MAC Class Ops (Read) Indirect EA using W8, W9 Indirect EA using W10, W11 DS70138G-page 31 dsPIC30F3014/4013 3.2.2 DATA SPACES 3.2.3 The X data space is used by all instructions and supports all addressing modes. There are separate read and write data buses. The X read data bus is the return data path for all instructions that view data space as combined X and Y address space. It is also the X address space data path for the dual operand read instructions (MAC class). The X write data bus is the only write path to data space for all instructions. The X data space also supports Modulo Addressing for all instructions, subject to addressing mode restrictions. Bit-Reversed Addressing is only supported for writes to X data space. The Y data space is used in concert with the X data space by the MAC class of instructions (CLR, ED, EDAC, MAC, MOVSAC, MPY, MPY.N and MSC) to provide two concurrent data read paths. No writes occur across the Y bus. This class of instructions dedicates two W register pointers, W10 and W11, to always address Y data space, independent of X data space, whereas W8 and W9 always address X data space. Note that during accumulator write-back, the data address space is considered a combination of X and Y data spaces, so the write occurs across the X bus. Consequently, the write can be to any address in the entire data space. The Y data space can only be used for the data prefetch operation associated with the MAC class of instructions. It also supports Modulo Addressing for automated circular buffers. Of course, all other instructions can access the Y data address space through the X data path as part of the composite linear space. The boundary between the X and Y data spaces is defined as shown in Figure 3-7 and is not userprogrammable. Should an EA point to data outside its own assigned address space, or to a location outside physical memory, an all zero word/byte is returned. For example, although Y address space is visible by all non-MAC instructions using any addressing mode, an attempt by a MAC instruction to fetch data from that space using W8 or W9 (X Space Pointers) returns 0x0000. TABLE 3-2: EFFECT OF INVALID MEMORY ACCESSES Attempted Operation Data Returned EA = an unimplemented address 0x0000 W8 or W9 used to access Y data space in a MAC instruction 0x0000 W10 or W11 used to access X data space in a MAC instruction 0x0000 DATA SPACE WIDTH The core data width is 16 bits. All internal registers are organized as 16-bit wide words. Data space memory is organized in byte addressable, 16-bit wide blocks. 3.2.4 DATA ALIGNMENT To help maintain backward compatibility with PIC® MCU devices and improve data space memory usage efficiency, the dsPIC30F instruction set supports both word and byte operations. Data is aligned in data memory and registers as words, but all data space EAs resolve to bytes. Data byte reads read the complete word which contains the byte, using the LSb of any EA to determine which byte to select. The selected byte is placed onto the LSB of the X data path (no byte accesses are possible from the Y data path as the MAC class of instruction can only fetch words). That is, data memory and registers are organized as two parallel byte-wide entities with shared (word) address decode but separate write lines. Data byte writes only write to the corresponding side of the array or register which matches the byte address. As a consequence of this byte accessibility, all effective address calculations (including those generated by the DSP operations which are restricted to word-sized data) are internally scaled to step through word-aligned memory. For example, the core would recognize that Post-Modified Register Indirect Addressing mode [Ws++] will result in a value of Ws + 1 for byte operations and Ws + 2 for word operations. All word accesses must be aligned to an even address. Misaligned word data fetches are not supported so care must be taken when mixing byte and word operations, or translating from 8-bit MCU code. Should a misaligned read or write be attempted, an address error trap is generated. If the error occurred on a read, the instruction underway is completed, whereas if it occurred on a write, the instruction is executed but the write does not occur. In either case, a trap is then executed, allowing the system and/or user to examine the machine state prior to execution of the address Fault. FIGURE 3-9: 15 DATA ALIGNMENT MSB 87 LSB 0 0001 Byte 1 Byte 0 0000 0003 Byte 3 Byte 2 0002 0005 Byte 5 Byte 4 0004 All effective addresses are 16 bits wide and point to bytes within the data space. Therefore, the data space address range is 64 Kbytes or 32K words. DS70138G-page 32  2010 Microchip Technology Inc. dsPIC30F3014/4013 All byte loads into any W register are loaded into the LSB. The MSB is not modified. A Sign-Extend (SE) instruction is provided to allow users to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, users can clear the MSB of any W register by executing a Zero-Extend (ZE) instruction on the appropriate address. Although most instructions are capable of operating on word or byte data sizes, it should be noted that some instructions, including the DSP instructions, operate only on words. 3.2.5 NEAR DATA SPACE An 8-Kbyte ‘near’ data space is reserved in X address memory space between 0x0000 and 0x1FFF, which is directly addressable via a 13-bit absolute address field within all memory direct instructions. The remaining X address space and all of the Y address space is addressable indirectly. Additionally, the whole of X data space is addressable using MOV instructions, which support memory direct addressing with a 16-bit address field. There is a Stack Pointer Limit register (SPLIM) associated with the Stack Pointer. SPLIM is uninitialized at Reset. As is the case for the Stack Pointer, SPLIM is forced to ‘0’ because all stack operations must be word-aligned. Whenever an Effective Address (EA) is generated, using W15 as a source or destination pointer, the address thus generated is compared with the value in SPLIM. If the contents of the Stack Pointer (W15) and the SPLIM register are equal and a push operation is performed, a stack error trap does not occur. The stack error trap occurs on a subsequent push operation. Thus, for example, if it is desirable to cause a stack error trap when the stack grows beyond address 0x2000 in RAM, initialize the SPLIM with the value, 0x1FFE. Similarly, a Stack Pointer underflow (stack error) trap is generated when the Stack Pointer address is found to be less than 0x0800, thus preventing the stack from interfering with the Special Function Register (SFR) space. A write to the SPLIM register should not be immediately followed by an indirect read operation using W15. FIGURE 3-10: 3.2.6 SOFTWARE STACK 0x0000 CALL STACK FRAME 15 0 The Stack Pointer always points to the first available free word and grows from lower addresses towards higher addresses. It pre-decrements for stack pops and post-increments for stack pushes as shown in Figure 3-10. Note that for a PC push during any CALL instruction, the MSB of the PC is zero-extended before the push, ensuring that the MSB is always clear. Note: A PC push during exception processing concatenates the SRL register to the MSB of the PC prior to the push.  2010 Microchip Technology Inc. Stack Grows Towards Higher Address The dsPIC DSC devices contain a software stack. W15 is used as the Stack Pointer. PC 000000000 PC W15 (before CALL) W15 (after CALL) POP : [--W15] PUSH : [W15++] DS70138G-page 33 SFR Name CORE REGISTER MAP(1) Address (Home) Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset State  2010 Microchip Technology Inc. W0 0000 W0/WREG 0000 0000 0000 0000 W1 0002 W1 0000 0000 0000 0000 W2 0004 W2 0000 0000 0000 0000 W3 0006 W3 0000 0000 0000 0000 W4 0008 W4 0000 0000 0000 0000 W5 000A W5 0000 0000 0000 0000 W6 000C W6 0000 0000 0000 0000 W7 000E W7 0000 0000 0000 0000 W8 0010 W8 0000 0000 0000 0000 W9 0012 W9 0000 0000 0000 0000 W10 0014 W10 0000 0000 0000 0000 W11 0016 W11 0000 0000 0000 0000 W12 0018 W12 0000 0000 0000 0000 W13 001A W13 0000 0000 0000 0000 W14 001C W14 0000 0000 0000 0000 W15 001E W15 0000 1000 0000 0000 SPLIM 0020 SPLIM 0000 0000 0000 0000 ACCAL 0022 ACCAL 0000 0000 0000 0000 ACCAH 0024 ACCAH ACCAU 0026 ACCBL 0028 ACCBL ACCBH 002A ACCBH ACCBU 002C PCL 002E PCH 0030 — — — — — — — — TBLPAG 0032 — — — — — — — — TBLPAG 0000 0000 0000 0000 PSVPAG 0034 — — — — — — — — PSVPAG 0000 0000 0000 0000 RCOUNT 0036 RCOUNT DCOUNT 0038 DCOUNT DOSTARTL 003A DOSTARTH 003C DOENDL 003E DOENDH SR Legend: 1: 0000 0000 0000 0000 Sign Extension (ACCA) ACCAU 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 Sign Extension (ACCB) ACCBU 0000 0000 0000 0000 PCL 0000 0000 0000 0000 — PCH 0000 0000 0000 0000 uuuu uuuu uuuu uuuu uuuu uuuu uuuu uuuu DOSTARTL — — — — — — — 0040 — — — — — — — 0042 OA OB SA SB OAB SAB DA — 0 — DOSTARTH — — DOENDH DC IPL2 DOENDL 0 u = uninitialized bit; — = unimplemented bit, read as ‘0’ Refer to the “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields. IPL1 IPL0 RA N uuuu uuuu uuuu uuu0 0000 0000 0uuu uuuu uuuu uuuu uuuu uuu0 0000 0000 0uuu uuuu OV Z C 0000 0000 0000 0000 dsPIC30F3014/4013 DS70138G-page 34 TABLE 3-3:  2010 Microchip Technology Inc. TABLE 3-3: SFR Name CORE REGISTER MAP(1) (CONTINUED) Address (Home) Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 EDT DL2 DL1 DL0 SATA SATB Bit 5 Bit 4 Bit 2 Bit 1 Bit 0 Reset State IPL3 PSV RND IF 0000 0000 0010 0000 CORCON 0044 — — — US MODCON 0046 XMODEN YMODEN — — XMODSRT 0048 XS 0 uuuu uuuu uuuu uuu0 XMODEND 004A XE 1 uuuu uuuu uuuu uuu1 YMODSRT 004C YS 0 uuuu uuuu uuuu uuu0 YMODEND 004E YE 1 XBREV 0050 BREN 0052 — DISICNT Legend: 1: BWM YWM XB — SATDW ACCSAT Bit 3 DISICNT XWM 0000 0000 0000 0000 uuuu uuuu uuuu uuu1 uuuu uuuu uuuu uuuu 0000 0000 0000 0000 u = uninitialized bit; — = unimplemented bit, read as ‘0’ Refer to the “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields. dsPIC30F3014/4013 DS70138G-page 35 dsPIC30F3014/4013 NOTES: DS70138G-page 36  2010 Microchip Technology Inc. dsPIC30F3014/4013 4.0 Note: ADDRESS GENERATOR UNITS This data sheet summarizes features of this group of dsPIC30F devices and is not intended to be a complete reference source. For more information on the CPU, peripherals, register descriptions and general device functionality, refer to the “dsPIC30F Family Reference Manual” (DS70046). For more information on the device instruction set and programming, refer to the “16-bit MCU and DSC Programmer’s Reference Manual” (DS70157). The dsPIC DSC core contains two independent address generator units: the X AGU and Y AGU. The Y AGU supports word-sized data reads for the DSP MAC class of instructions only. The dsPIC DSC AGUs support three types of data addressing: • Linear Addressing • Modulo (Circular) Addressing • Bit-Reversed Addressing Linear and Modulo Data Addressing modes can be applied to data space or program space. Bit-Reversed Addressing is only applicable to data space addresses. 4.1 Instruction Addressing Modes The addressing modes in Table 4-1 form the basis of the addressing modes optimized to support the specific features of individual instructions. The addressing modes provided in the MAC class of instructions are somewhat different from those in the other instruction types. TABLE 4-1: 4.1.1 FILE REGISTER INSTRUCTIONS Most file register instructions use a 13-bit address field (f) to directly address data present in the first 8192 bytes of data memory (near data space). Most file register instructions employ a working register, W0, which is denoted as WREG in these instructions. The destination is typically either the same file register or WREG (with the exception of the MUL instruction), which writes the result to a register or register pair. The MOV instruction allows additional flexibility and can access the entire data space during file register operation. 4.1.2 MCU INSTRUCTIONS The three-operand MCU instructions are of the form: Operand 3 = Operand 1 Operand 2 where Operand 1 is always a working register (i.e., the addressing mode can only be Register Direct), which is referred to as Wb. Operand 2 can be a W register, fetched from data memory or a 5-bit literal. The result location can be either a W register or an address location. The following addressing modes are supported by MCU instructions: • • • • • Register Direct Register Indirect Register Indirect Post-Modified Register Indirect Pre-Modified 5-bit or 10-bit Literal Note: Not all instructions support all the addressing modes given above. Individual instructions may support different subsets of these addressing modes. FUNDAMENTAL ADDRESSING MODES SUPPORTED Addressing Mode File Register Direct Description The address of the File register is specified explicitly. Register Direct The contents of a register are accessed directly. Register Indirect The contents of Wn forms the EA. Register Indirect Post-Modified The contents of Wn forms the EA. Wn is post-modified (incremented or decremented) by a constant value. Register Indirect Pre-Modified Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA. Register Indirect with Register Offset The sum of Wn and Wb forms the EA. Register Indirect with Literal Offset  2010 Microchip Technology Inc. The sum of Wn and a literal forms the EA. DS70138G-page 37 dsPIC30F3014/4013 4.1.3 MOVE AND ACCUMULATOR INSTRUCTIONS Move instructions and the DSP accumulator class of instructions provide a greater degree of addressing flexibility than other instructions. In addition to the addressing modes supported by most MCU instructions, move and accumulator instructions also support Register Indirect with Register Offset Addressing mode, also referred to as Register Indexed mode. Note: For the MOV instructions, the addressing mode specified in the instruction can differ for the source and destination EA. However, the 4-bit Wb (register offset) field is shared between both source and destination (but typically only used by one). In summary, the following addressing modes are supported by move and accumulator instructions: • • • • • • • • Register Direct Register Indirect Register Indirect Post-Modified Register Indirect Pre-Modified Register Indirect with Register Offset (Indexed) Register Indirect with Literal Offset 8-bit Literal 16-bit Literal Note: 4.1.4 Not all instructions support all the addressing modes given above. Individual instructions may support different subsets of these addressing modes. MAC INSTRUCTIONS The dual source operand DSP instructions (CLR, ED, EDAC, MAC, MPY, MPY.N, MOVSAC and MSC), also referred to as MAC instructions, utilize a simplified set of addressing modes to allow the user to effectively manipulate the Data Pointers through register indirect tables. The two source operand prefetch registers must be a member of the set {W8, W9, W10, W11}. For data reads, W8 and W9 is always directed to the X RAGU, and W10 and W11 are always directed to the Y AGU. The Effective Addresses generated (before and after modification) must, therefore, be valid addresses within X data space for W8 and W9 and Y data space for W10 and W11. Note: In summary, the following addressing modes are supported by the MAC class of instructions: • • • • • Register Indirect Register Indirect Post-Modified by 2 Register Indirect Post-Modified by 4 Register Indirect Post-Modified by 6 Register Indirect with Register Offset (Indexed) 4.1.5 OTHER INSTRUCTIONS Besides the various addressing modes outlined above, some instructions use literal constants of various sizes. For example, BRA (branch) instructions use 16-bit signed literals to specify the branch destination directly, whereas the DISI instruction uses a 14-bit unsigned literal field. In some instructions, such as ADD Acc, the source of an operand or result is implied by the opcode itself. Certain operations, such as NOP, do not have any operands. 4.2 Modulo Addressing Modulo Addressing is a method of providing an automated means to support circular data buffers using hardware. The objective is to remove the need for software to perform data address boundary checks when executing tightly looped code, as is typical in many DSP algorithms. Modulo Addressing can operate in either data or program space (since the data pointer mechanism is essentially the same for both). One circular buffer can be supported in each of the X (which also provides the pointers into program space) and Y data spaces. Modulo Addressing can operate on any W register pointer. However, it is not advisable to use W14 or W15 for Modulo Addressing since these two registers are used as the Stack Frame Pointer and Stack Pointer, respectively. In general, any particular circular buffer can only be configured to operate in one direction, as there are certain restrictions on the buffer start address (for incrementing buffers), or end address (for decrementing buffers) based upon the direction of the buffer. The only exception to the usage restrictions is for buffers that have a power-of-2 length. As these buffers satisfy the start and end address criteria, they may operate in a Bidirectional mode (i.e., address boundary checks are performed on both the lower and upper address boundaries). Register Indirect with Register Offset addressing is only available for W9 (in X space) and W11 (in Y space). DS70138G-page 38  2010 Microchip Technology Inc. dsPIC30F3014/4013 4.2.1 START AND END ADDRESS 4.2.2 The Modulo Addressing scheme requires that a starting and an ending address be specified and loaded into the 16-bit Modulo Buffer Address registers: XMODSRT, XMODEND, YMODSRT and YMODEND (see Table 3-3). Note: Y space Modulo Addressing EA calculations assume word-sized data (LSb of every EA is always clear). The length of a circular buffer is not directly specified. It is determined by the difference between the corresponding start and end addresses. The maximum possible length of the circular buffer is 32K words (64 Kbytes). W ADDRESS REGISTER SELECTION The Modulo and Bit-Reversed Addressing Control register MODCON contains enable flags as well as a W register field to specify the W address registers. The XWM and YWM fields select which registers operate with Modulo Addressing. If XWM = 15, X RAGU and X WAGU Modulo Addressing is disabled. Similarly, if YWM = 15, Y AGU Modulo Addressing is disabled. The X Address Space Pointer W register (XWM), to which Modulo Addressing is to be applied, is stored in MODCON (see Table 3-3). Modulo Addressing is enabled for X data space when XWM is set to any value other than ‘15’ and the XMODEN bit is set at MODCON. The Y Address Space Pointer W register (YWM), to which Modulo Addressing is to be applied, is stored in MODCON. Modulo Addressing is enabled for Y data space when YWM is set to any value other than ‘15’ and the YMODEN bit is set at MODCON. FIGURE 4-1: MODULO ADDRESSING OPERATION EXAMPLE Byte Address 0x0800 MOV MOV MOV MOV MOV MOV #0x800,W0 W0,XMODSRT #0x863,W0 W0,MODEND #0x8001,W0 W0,MODCON MOV MOV #0x0000,W0 #0x800,W1 DO AGAIN,#0x31 MOV W0,[W1++] AGAIN: INC W0,W0 ;set modulo start address ;set modulo end address ;enable W1, X AGU for modulo ;W0 holds buffer fill value ;point W1 to buffer ;fill the 50 buffer locations ;fill the next location ;increment the fill value 0x0863 Start Addr = 0x0800 End Addr = 0x0863 Length = 0x0032 words  2010 Microchip Technology Inc. DS70138G-page 39 dsPIC30F3014/4013 4.2.3 MODULO ADDRESSING APPLICABILITY Modulo Addressing can be applied to the Effective Address (EA) calculation associated with any W register. It is important to realize that the address boundaries check for addresses less than or greater than the upper (for incrementing buffers) and lower (for decrementing buffers) boundary addresses (not just equal to). Address changes may, therefore, jump beyond boundaries and still be adjusted correctly. Note: 4.3 The modulo corrected effective address is written back to the register only when PreModify or Post-Modify Addressing mode is used to compute the effective address. When an address offset (e.g., [W7+W2]) is used, Modulo Addressing correction is performed but the contents of the register remain unchanged. Bit-Reversed Addressing Bit-Reversed Addressing is intended to simplify data re-ordering for radix-2 FFT algorithms. It is supported by the X AGU for data writes only. The modifier, which may be a constant value or register contents, is regarded as having its bit order reversed. The address source and destination are kept in normal order. Thus, the only operand requiring reversal is the modifier. 4.3.1 2. 3. XB is the bit-reversed address modifier or ‘pivot point’ which is typically a constant. In the case of an FFT computation, its value is equal to half of the FFT data buffer size. Note: BWM (W register selection) in the MODCON register is any value other than ‘15’ (the stack cannot be accessed using Bit-Reversed Addressing) and the BREN bit is set in the XBREV register and the addressing mode used is Register Indirect with Pre-Increment or Post-Increment. FIGURE 4-2: All bit-reversed EA calculations assume word-sized data (LSb of every EA is always clear). The XB value is scaled accordingly to generate compatible (byte) addresses. When enabled, Bit-Reversed Addressing is only executed for Register Indirect with Pre-Increment or Post-Increment Addressing and word-sized data writes. It does not function for any other addressing mode or for byte sized data. Normal addresses are generated instead. When Bit-Reversed Addressing is active, the W Address Pointer is always added to the address modifier (XB) and the offset associated with the Register Indirect Addressing mode is ignored. In addition, as word-sized data is a requirement, the LSb of the EA is ignored (and always clear). Note: BIT-REVERSED ADDRESSING IMPLEMENTATION Bit-Reversed Addressing is enabled when: 1. If the length of a bit-reversed buffer is M = 2N bytes, then the last ‘N’ bits of the data buffer start address must be zeros. Modulo Addressing and Bit-Reversed Addressing should not be enabled together. In the event that the user attempts to do this, Bit-Reversed Addressing assumes priority when active for the X WAGU, and X WAGU Modulo Addressing is disabled. However, Modulo Addressing continues to function in the X RAGU. If Bit-Reversed Addressing has already been enabled by setting the BREN (XBREV) bit, then a write to the XBREV register should not be immediately followed by an indirect read operation using the W register that has been designated as the Bit-Reversed Pointer. BIT-REVERSED ADDRESS EXAMPLE Sequential Address b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 0 Bit Locations Swapped Left-to-Right Around Center of Binary Value b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b1 b2 b3 b4 0 Bit-Reversed Address Pivot Point XB = 0x0008 for a 16-word Bit-Reversed Buffer DS70138G-page 40  2010 Microchip Technology Inc. dsPIC30F3014/4013 TABLE 4-2: BIT-REVERSED ADDRESS SEQUENCE (16-ENTRY) Normal Address Bit-Reversed Address A3 A2 A1 A0 Decimal A3 A2 A1 A0 Decimal 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 8 0 0 1 0 2 0 1 0 0 4 0 0 1 1 3 1 1 0 0 12 0 1 0 0 4 0 0 1 0 2 0 1 0 1 5 1 0 1 0 10 0 1 1 0 6 0 1 1 0 6 0 1 1 1 7 1 1 1 0 14 1 0 0 0 8 0 0 0 1 1 1 0 0 1 9 1 0 0 1 9 1 0 1 0 10 0 1 0 1 5 1 0 1 1 11 1 1 0 1 13 1 1 0 0 12 0 0 1 1 3 1 1 0 1 13 1 0 1 1 11 1 1 1 0 14 0 1 1 1 7 1 1 1 1 15 1 1 1 1 15 TABLE 4-3: BIT-REVERSED ADDRESS MODIFIER VALUES FOR XBREV REGISTER Buffer Size (Words) XB Bit-Reversed Address Modifier Value 1024 0x0200 512 0x0100 256 0x0080 128 0x0040 64 0x0020 32 0x0010 16 0x0008 8 0x0004 4 0x0002 2 0x0001  2010 Microchip Technology Inc. DS70138G-page 41 dsPIC30F3014/4013 NOTES: DS70138G-page 42  2010 Microchip Technology Inc. dsPIC30F3014/4013 5.0 FLASH PROGRAM MEMORY Note: 5.2 This data sheet summarizes features of this group of dsPIC30F devices and is not intended to be a complete reference source. For more information on the CPU, peripherals, register descriptions and general device functionality, refer to the “dsPIC30F Family Reference Manual” (DS70046). For more information on the device instruction set and programming, refer to the “16-bit MCU and DSC Programmer’s Reference Manual” (DS70157). RTSP is accomplished using TBLRD (table read) and TBLWT (table write) instructions. With RTSP, the user may erase program memory, 32 instructions (96 bytes) at a time and can write program memory data, 32 instructions (96 bytes) at a time. 5.3 5.1 The TBLRDH and TBLWTH instructions are used to read or write to bits of program memory. TBLRDH and TBLWTH can access program memory in Word or Byte mode. Run-Time Self-Programming (RTSP) In-Circuit Serial Programming™ (ICSP™) A 24-bit program memory address is formed using bits of the TBLPAG register and the Effective Address (EA) from a W register specified in the table instruction, as shown in Figure 5-1. In-Circuit Serial Programming (ICSP) dsPIC30F devices can be serially programmed while in the end application circuit. This is simply done with two lines for Programming Clock and Programming Data (which are named PGC and PGD, respectively), and three other lines for Power (VDD), Ground (VSS) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed. FIGURE 5-1: Table Instruction Operation Summary The TBLRDL and the TBLWTL instructions are used to read or write to bits of program memory. TBLRDL and TBLWTL can access program memory in Word or Byte mode. The dsPIC30F family of devices contains internal program Flash memory for executing user code. There are two methods by which the user can program this memory: 1. 2. Run-Time Self-Programming (RTSP) ADDRESSING FOR TABLE AND NVM REGISTERS 24 bits Using Program Counter Program Counter 0 0 NVMADR Reg EA Using NVMADR Addressing 1/0 NVMADRU Reg 8 bits 16 bits Working Reg EA Using Table Instruction User/Configuration Space Select  2010 Microchip Technology Inc. 1/0 TBLPAG Reg 8 bits 16 bits 24-bit EA Byte Select DS70138G-page 43 dsPIC30F3014/4013 5.4 RTSP Operation The dsPIC30F Flash program memory is organized into rows and panels. Each row consists of 32 instructions or 96 bytes. Each panel consists of 128 rows or 4K x 24 instructions. RTSP allows the user to erase one row (32 instructions) at a time and to program four instructions at one time. RTSP may be used to program multiple program memory panels, but the Table Pointer must be changed at each panel boundary. Each panel of program memory contains write latches that hold 32 instructions of programming data. Prior to the actual programming operation, the write data must be loaded into the panel write latches. The data to be programmed into the panel is loaded in sequential order into the write latches; instruction 0, instruction 1, etc. The instruction words loaded must always be from a 32 address boundary. The basic sequence for RTSP programming is to set up a Table Pointer, then do a series of TBLWT instructions to load the write latches. Programming is performed by setting the special bits in the NVMCON register. 32 TBLWTL and four TBLWTH instructions are required to load the 32 instructions. If multiple panel programming is required, the Table Pointer needs to be changed and the next set of multiple write latches written. All of the table write operations are single-word writes (2 instruction cycles), because only the table latches are written. A programming cycle is required for programming each row. The Flash program memory is readable, writable and erasable during normal operation over the entire VDD range. DS70138G-page 44 5.5 Control Registers The four SFRs used to read and write the program Flash memory are: • • • • NVMCON NVMADR NVMADRU NVMKEY 5.5.1 NVMCON REGISTER The NVMCON register controls which blocks are to be erased, which memory type is to be programmed and the start of the programming cycle. 5.5.2 NVMADR REGISTER The NVMADR register is used to hold the lower two bytes of the Effective Address. The NVMADR register captures the EA of the last table instruction that has been executed and selects the row to write. 5.5.3 NVMADRU REGISTER The NVMADRU register is used to hold the upper byte of the Effective Address. The NVMADRU register captures the EA of the last table instruction that has been executed. 5.5.4 NVMKEY REGISTER NVMKEY is a write-only register that is used for write protection. To start a programming or erase sequence, the user must consecutively write 0x55 and 0xAA to the NVMKEY register. Refer to Section 5.6 “Programming Operations” for further details. Note: The user can also directly write to the NVMADR and NVMADRU registers to specify a program memory address for erasing or programming.  2010 Microchip Technology Inc. dsPIC30F3014/4013 5.6 Programming Operations A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. A programming operation is nominally 2 msec in duration and the processor stalls (waits) until the operation is finished. Setting the WR bit (NVMCON) starts the operation and the WR bit is automatically cleared when the operation is finished. 5.6.1 4. 5. PROGRAMMING ALGORITHM FOR PROGRAM FLASH The user can erase or program one row of program Flash memory at a time. The general process is: 1. 2. 3. Read one row of program Flash (32 instruction words) and store into data RAM as a data “image”. Update the data image with the desired new data. Erase program Flash row. a) Set up NVMCON register for multi-word, program Flash, erase, and set WREN bit. b) Write address of row to be erased into NVMADRU/NVMDR. c) Write 0x55 to NVMKEY. d) Write 0xAA to NVMKEY. e) Set the WR bit. This begins erase cycle. f) CPU stalls for the duration of the erase cycle. g) The WR bit is cleared when erase cycle ends. EXAMPLE 5-1: 6. Write 32 instruction words of data from data RAM “image” into the program Flash write latches. Program 32 instruction words into program Flash. a) Set up NVMCON register for multi-word, program Flash, program, and set WREN bit. b) Write 0x55 to NVMKEY. c) Write 0xAA to NVMKEY. d) Set the WR bit. This begins program cycle. e) CPU stalls for duration of the program cycle. f) The WR bit is cleared by the hardware when program cycle ends. Repeat steps 1 through 5 as needed to program desired amount of program Flash memory. 5.6.2 ERASING A ROW OF PROGRAM MEMORY Example 5-1 shows a code sequence that can be used to erase a row (32 instructions) of program memory. ERASING A ROW OF PROGRAM MEMORY ; Setup NVMCON for erase operation, multi word ; program memory selected, and writes enabled MOV #0x4041,W0 ; ; MOV W0,NVMCON ; Init pointer to row to be ERASED MOV #tblpage(PROG_ADDR),W0 ; ; MOV W0,NVMADRU MOV #tbloffset(PROG_ADDR),W0 ; MOV W0, NVMADR ; DISI #5 ; ; MOV #0x55,W0 ; MOV W0,NVMKEY MOV #0xAA,W1 ; MOV W1,NVMKEY ; BSET NVMCON,#WR ; NOP ; NOP ;  2010 Microchip Technology Inc. write Init NVMCON SFR Initialize PM Page Boundary SFR Intialize in-page EA[15:0] pointer Initialize NVMADR SFR Block all interrupts with priority 3',3@ 1RWH )RUWKHPRVWFXUUHQWSDFNDJHGUDZLQJVSOHDVHVHHWKH0LFURFKLS3DFNDJLQJ6SHFLILFDWLRQORFDWHGDW KWWSZZZPLFURFKLSFRPSDFNDJLQJ N NOTE 1 E1 1 2 3 D E A2 A L c b1 A1 b e eB 8QLWV 'LPHQVLRQ/LPLWV 1XPEHURI3LQV ,1&+(6 0,1 1 120 0$;  3LWFK H 7RSWR6HDWLQJ3ODQH $ ± ±  0ROGHG3DFNDJH7KLFNQHVV $  ±  %DVHWR6HDWLQJ3ODQH $  ± ± 6KRXOGHUWR6KRXOGHU:LGWK (  ±  0ROGHG3DFNDJH:LGWK (  ±  2YHUDOO/HQJWK '  ±  7LSWR6HDWLQJ3ODQH /  ±  /HDG7KLFNQHVV F  ±  E  ±  E  ±  H% ± ± 8SSHU/HDG:LGWK /RZHU/HDG:LGWK 2YHUDOO5RZ6SDFLQJ† %6&  1RWHV  3LQYLVXDOLQGH[IHDWXUHPD\YDU\EXWPXVWEHORFDWHGZLWKLQWKHKDWFKHGDUHD  †6LJQLILFDQW&KDUDFWHULVWLF  'LPHQVLRQV'DQG(GRQRWLQFOXGHPROGIODVKRUSURWUXVLRQV0ROGIODVKRUSURWUXVLRQVVKDOOQRWH[FHHGSHUVLGH  'LPHQVLRQLQJDQGWROHUDQFLQJSHU$60(74)3@ 1RWH )RUWKHPRVWFXUUHQWSDFNDJHGUDZLQJVSOHDVHVHHWKH0LFURFKLS3DFNDJLQJ6SHFLILFDWLRQORFDWHGDW KWWSZZZPLFURFKLSFRPSDFNDJLQJ D D1 E e E1 N b NOTE 1 1 2 3 NOTE 2 α A c φ β L A1 8QLWV 'LPHQVLRQ/LPLWV 1XPEHURI/HDGV A2 L1 0,//,0(7(56 0,1 1 120 0$;  /HDG3LWFK H 2YHUDOO+HLJKW $ ± %6& ± 0ROGHG3DFNDJH7KLFNQHVV $    6WDQGRII $  ±  )RRW/HQJWK /    )RRWSULQW /  5() )RRW$QJOH  2YHUDOO:LGWK ( ƒ %6& ƒ 2YHUDOO/HQJWK ' %6& 0ROGHG3DFNDJH:LGWK ( %6& 0ROGHG3DFNDJH/HQJWK ' %6& ƒ /HDG7KLFNQHVV F  ±  /HDG:LGWK E    0ROG'UDIW$QJOH7RS  ƒ ƒ ƒ 0ROG'UDIW$QJOH%RWWRP  ƒ ƒ ƒ 1RWHV  3LQYLVXDOLQGH[IHDWXUHPD\YDU\EXWPXVWEHORFDWHGZLWKLQWKHKDWFKHGDUHD  &KDPIHUVDWFRUQHUVDUHRSWLRQDOVL]HPD\YDU\  'LPHQVLRQV'DQG(GRQRWLQFOXGHPROGIODVKRUSURWUXVLRQV0ROGIODVKRUSURWUXVLRQVVKDOOQRWH[FHHGPPSHUVLGH  'LPHQVLRQLQJDQGWROHUDQFLQJSHU$60(4)1@ 1RWH )RUWKHPRVWFXUUHQWSDFNDJHGUDZLQJVSOHDVHVHHWKH0LFURFKLS3DFNDJLQJ6SHFLILFDWLRQORFDWHGDW KWWSZZZPLFURFKLSFRPSDFNDJLQJ DS70138G-page 216  2010 Microchip Technology Inc. dsPIC30F3014/4013 APPENDIX A: REVISION HISTORY Revision D (June 2006) Previous versions of this data sheet contained Advance or Preliminary Information. They were distributed with incomplete characterization data. This revision reflects these changes: • Revised I2C Slave Addresses (see Table 14-1) • Updated example for ADC Conversion Clock selection (see Section 19.0 “12-bit Analog-toDigital Converter (ADC) Module”) • Base instruction CP1 eliminated from instruction set (seeTable 21-2) • Revised electrical characteristics: - Operating Current (IDD) Specifications (see Table 23-5) - Idle Current (IIDLE) Specifications (see Table 23-6) - Power-down Current (IPD) Specifications (see Table 23-7) - I/O pin Input Specifications (see Table 23-8) - Brown Out Reset (BOR) Specifications (see Table 23-11) - Watchdog Timer time-out limits (see Table 23-20) Revision E (January 2007) This revision includes updates to the packaging diagrams. Revision F (April 2008) This revision reflects these updates: • Added FUSE Configuration Register (FICD) details (see Section 20.8 “Device Configuration Registers” and Table 20-8) • Added Note 2 in Device Configuration Registers table (Table 20-8) • Removed erroneous statement regarding generation of CAN receive errors (see Section 17.4.5 “Receive Errors”) • Updated ADC Conversion Clock and Sampling Rate Calculation (see Example 19-1). Minimum TAD is 334 nsec. • Updated details related to the Input Change Notification module: - Updated last sentence in the first paragraph of Section 7.3 “Input Change Notification Module” - Updated Table 7-2 - Removed Table 7-3, Table 7-4, and Table 7-5  2010 Microchip Technology Inc. • Electrical Specifications: - Resolved TBD values for parameters DO10, DO16, DO20, and DO26 (see Table 23-9) - 10-bit High-Speed ADC tPDU timing parameter (time to stabilize) has been updated from 20 µs typical to 20 µs maximum (see Table 23-38) - Parameter OS65 (Internal RC Accuracy) has been expanded to reflect multiple Min and Max values for different temperatures (see Table 23-18) - Parameter DC12 (RAM Data Retention Voltage) has been updated to include a Min value (see Table 23-4) - Parameter D134 (Erase/Write Cycle Time) has been updated to include Min and Max values and the Typ value has been removed (see Table 23-12) - Removed parameters OS62 (Internal FRC Jitter) and OS64 (Internal FRC Drift) and Note 2 from AC Characteristics (see Table 23-17) - Parameter OS63 (Internal FRC Accuracy) has been expanded to reflect multiple Min and Max values for different temperatures (see Table 23-17) - Removed parameters DC27a, DC27b, DC47a, and DC47b (references to IDD, 20 MIPs @ 3.3V) in Table 23-5 and Table 23-6 - Removed parameters CS77 and CS78 (references to TRACL and TFACL @ 3.3V) in Table 23-29 - Updated Min and Max values and Conditions for parameter SY11 and updated Min, Typ, and Max values and Conditions for parameter SY20 (see Table 23-20) • Additional minor corrections throughout the document DS70138G-page 217 dsPIC30F3014/4013 Revision G (November 2010) This revision includes minor typographical and formatting changes throughout the data sheet text. The major changes are referenced by their respective section in Table A-1. TABLE A-1: MAJOR SECTION UPDATES Section Name Update Description “High-Performance, 16-Bit Digital Signal Controllers” Added Note 1 to all QFN pin diagrams (see “Pin Diagrams”). Section 1.0 “Device Overview” Removed the “DCI” peripheral block from the dsPIC30F3014 Block Diagram (see Figure 1-1). Section 20.0 “System Integration” Added a note on OSCTUN functionality in Section 20.2.5 “Fast RC Oscillator (FRC)”. Updated the Pinout I/O Descriptions for AVDD and AVSS (see Table 1-1). Updated the operating frequencies for the following Oscillator Operating Modes (see Table 20-1): • • • • • Section 23.0 “Electrical Characteristics” XTL XT w/PLL 16x HS/2 w/PLL 4x, 8x, and 16x HS/3 w/PLL 4x, 8x, and 16x EC w/PLL 4x, 8x, and 16x Updated the maximum value for parameter DI19 and the minimum value for parameter DI29 in the I/O Pin Input Specifications (see Table 23-8). Removed parameter D136 and updated the minimum, typical, maximum, and conditions for parameters D122 and D134 in the Program and EEPROM specifications (see Table 23-12). DS70138G-page 218  2010 Microchip Technology Inc. dsPIC30F3014/4013 INDEX Numerics 12-Bit Analog-to-Digital Converter (A/D) Module .............. 131 A A/D .................................................................................... 131 Aborting a Conversion .............................................. 133 ADCHS Register ....................................................... 131 ADCON1 Register..................................................... 131 ADCON2 Register..................................................... 131 ADCON3 Register..................................................... 131 ADCSSL Register ..................................................... 131 ADPCFG Register..................................................... 131 Configuring Analog Port Pins.............................. 54, 138 Connection Considerations....................................... 138 Conversion Operation ............................................... 132 Effects of a Reset...................................................... 137 Operation During CPU Idle Mode ............................. 137 Operation During CPU Sleep Mode.......................... 137 Output Formats ......................................................... 137 Power-Down Modes.................................................. 137 Programming the Sample Trigger............................. 133 Register Map............................................................. 139 Result Buffer ............................................................. 132 Sampling Requirements............................................ 136 Selecting the Conversion Sequence......................... 132 AC Characteristics ............................................................ 180 Load Conditions ........................................................ 181 AC Temperature and Voltage Specifications .................... 181 AC-Link Mode Operation .................................................. 128 16-Bit Mode............................................................... 128 20-Bit Mode............................................................... 129 ADC Selecting the Conversion Clock ................................ 133 ADC Conversion Speeds .................................................. 134 Address Generator Units .................................................... 37 Alternate Vector Table ........................................................ 64 Analog-to-Digital Converter. See A/D. Assembler MPASM Assembler................................................... 168 Automatic Clock Stretch...................................................... 94 During 10-Bit Addressing (STREN = 1) ...................... 94 During 7-Bit Addressing (STREN = 1) ........................ 94 Receive Mode ............................................................. 94 Transmit Mode ............................................................ 94 B Band Gap Start-up Time Requirements............................................................ 187 Barrel Shifter ....................................................................... 23 Bit-Reversed Addressing .................................................... 40 Example ...................................................................... 40 Implementation ........................................................... 40 Modifier Values Table ................................................. 41 Sequence Table (16-Entry)......................................... 41 Block Diagrams 12-Bit A/D Functional ................................................ 131 16-Bit Timer1 Module.................................................. 67 16-Bit Timer2 .............................................................. 73 16-Bit Timer3 .............................................................. 73 16-Bit Timer4 .............................................................. 78 16-Bit Timer5 .............................................................. 78 32-Bit Timer2/3 ........................................................... 72 32-Bit Timer4/5 ........................................................... 77  2010 Microchip Technology Inc. CAN Buffers and Protocol Engine ............................ 112 DCI Module............................................................... 122 Dedicated Port Structure ............................................ 53 DSP Engine ................................................................ 20 dsPIC30F3014............................................................ 11 dsPIC30F4013............................................................ 12 External Power-on Reset Circuit .............................. 153 I2C .............................................................................. 92 Input Capture Mode.................................................... 81 Oscillator System...................................................... 143 Output Compare Mode ............................................... 85 Reset System ........................................................... 151 Shared Port Structure................................................. 54 SPI............................................................................ 100 SPI Master/Slave Connection................................... 100 UART Receiver......................................................... 104 UART Transmitter..................................................... 103 BOR Characteristics ......................................................... 180 BOR. See Brown-out Reset. Brown-out Reset Timing Requirements ............................................... 187 C C Compilers MPLAB C18.............................................................. 168 CAN Module ..................................................................... 111 Baud Rate Setting .................................................... 116 CAN1 Register Map.................................................. 118 Frame Types ............................................................ 111 I/O Timing Requirements.......................................... 205 Message Reception.................................................. 114 Message Transmission............................................. 115 Modes of Operation .................................................. 113 Overview................................................................... 111 CLKOUT and I/O Timing Requirements ........................................................... 185 Code Examples Data EEPROM Block Erase ....................................... 50 Data EEPROM Block Write ........................................ 52 Data EEPROM Read.................................................. 49 Data EEPROM Word Erase ....................................... 50 Data EEPROM Word Write ........................................ 51 Erasing a Row of Program Memory ........................... 45 Initiating a Programming Sequence ........................... 46 Loading Write Latches ................................................ 46 Port Write/Read .......................................................... 54 Code Protection ................................................................ 141 Control Registers ................................................................ 44 NVMADR .................................................................... 44 NVMADRU ................................................................. 44 NVMCON.................................................................... 44 NVMKEY .................................................................... 44 Core Architecture Overview..................................................................... 15 CPU Architecture Overview ................................................ 15 Customer Change Notification Service............................. 225 Customer Notification Service .......................................... 225 Customer Support............................................................. 225 D Data Accumulators and Adder/Subtracter .......................... 21 Data Accumulators and Adder/Subtractor Data Space Write Saturation ...................................... 23 Overflow and Saturation ............................................. 21 DS70138G-page 219 dsPIC30F3014/4013 Round Logic ................................................................ 22 Write-Back .................................................................. 22 Data Address Space ........................................................... 30 Alignment .................................................................... 32 Alignment (Figure) ...................................................... 32 Effect of Invalid Memory Accesses (Table)................. 32 MCU and DSP (MAC Class) Instructions Example..... 31 Memory Map ............................................................... 30 Near Data Space ........................................................ 33 Software Stack ............................................................ 33 Spaces ........................................................................ 32 Width ........................................................................... 32 Data Converter Interface (DCI) Module ............................ 121 Data EEPROM Memory ...................................................... 49 Erasing ........................................................................ 50 Erasing, Block ............................................................. 50 Erasing, Word ............................................................. 50 Protection Against Spurious Write .............................. 52 Reading....................................................................... 49 Write Verify ................................................................. 52 Writing ......................................................................... 51 Writing, Block .............................................................. 51 Writing, Word .............................................................. 51 DC Characteristics ............................................................ 172 BOR .......................................................................... 180 I/O Pin Input Specifications ....................................... 178 I/O Pin Output Specifications .................................... 178 Idle Current (IIDLE) .................................................... 175 LVDL ......................................................................... 179 Operating Current (IDD)............................................. 174 Power-Down Current (IPD) ........................................ 176 Program and EEPROM............................................. 180 Temperature and Voltage Specifications .................. 172 DCI Module Bit Clock Generator................................................... 125 Buffer Alignment with Data Frames .......................... 127 Buffer Control ............................................................ 121 Buffer Data Alignment ............................................... 121 Buffer Length Control ................................................ 127 COFS Pin .................................................................. 121 CSCK Pin .................................................................. 121 CSDI Pin ................................................................... 121 CSDO Mode Bit ........................................................ 128 CSDO Pin ................................................................. 121 Data Justification Control Bit ..................................... 126 Device Frequencies for Common Codec CSCK Frequencies (Table) ....................................................... 125 Digital Loopback Mode ............................................. 128 Enable ....................................................................... 123 Frame Sync Generator ............................................. 123 Frame Sync Mode Control Bits ................................. 123 I/O Pins ..................................................................... 121 Interrupts ................................................................... 128 Introduction ............................................................... 121 Master Frame Sync Operation .................................. 123 Operation .................................................................. 123 Operation During CPU Idle Mode ............................. 128 Operation During CPU Sleep Mode .......................... 128 Receive Slot Enable Bits........................................... 126 Receive Status Bits ................................................... 127 Register Map............................................................. 130 Sample Clock Edge Control Bit................................. 126 Slave Frame Sync Operation .................................... 124 Slot Enable Bits Operation with Frame Sync ............ 126 Slot Status Bits.......................................................... 128 DS70138G-page 220 Synchronous Data Transfers .................................... 126 Timing Requirements AC-Link Mode................................................... 195 Multichannel, I2S Modes................................... 193 Transmit Slot Enable Bits ......................................... 126 Transmit Status Bits.................................................. 127 Transmit/Receive Shift Register ............................... 121 Underflow Mode Control Bit...................................... 128 Word-Size Selection Bits .......................................... 123 Development Support ....................................................... 167 Device Configuration Register Map ............................................................ 158 Device Configuration Registers FBORPOR ................................................................ 156 FGS .......................................................................... 156 FOSC........................................................................ 156 FWDT ....................................................................... 156 Device Overview................................................................. 11 Disabling the UART .......................................................... 105 Divide Support .................................................................... 18 Instructions (Table) ..................................................... 18 DSP Engine ........................................................................ 19 Multiplier ..................................................................... 21 Dual Output Compare Match Mode .................................... 86 Continuous Pulse Mode.............................................. 86 Single Pulse Mode...................................................... 86 E Electrical Characteristics .................................................. 171 AC............................................................................. 180 DC ............................................................................ 172 Enabling and Setting Up UART Alternate I/O ............................................................. 105 Enabling and Setting up UART Setting up Data, Parity and Stop Bit Selections........ 105 Enabling the UART ........................................................... 105 Equations ADC Conversion Clock ............................................. 133 Baud Rate................................................................. 107 Bit Clock Frequency.................................................. 125 COFSG Period.......................................................... 123 Serial Clock Rate ........................................................ 96 Time Quantum for Clock Generation ........................ 117 Errata .................................................................................... 9 Exception Sequence Trap Sources .............................................................. 62 External Clock Timing Requirements ............................... 182 Type A Timer ............................................................ 188 Type B Timer ............................................................ 189 Type C Timer ............................................................ 189 External Interrupt Requests ................................................ 64 F Fast Context Saving ........................................................... 64 Flash Program Memory ...................................................... 43 I I/0 Ports Register Map .............................................................. 55 I/O Pin Specifications Input.......................................................................... 178 Output ....................................................................... 178 I/O Ports.............................................................................. 53 Parallel (PIO) .............................................................. 53 I2C 10-Bit Slave Mode Operation ....................................... 93 Reception ................................................................... 94  2010 Microchip Technology Inc. dsPIC30F3014/4013 Transmission............................................................... 93 I2C 7-Bit Slave Mode Operation.......................................... 93 Reception.................................................................... 93 Transmission............................................................... 93 I2C Master Mode Operation ................................................ 95 Baud Rate Generator.................................................. 96 Clock Arbitration.......................................................... 96 Multi-Master Communication, Bus Collision and Bus Arbitration ....................... 96 Reception.................................................................... 96 Transmission............................................................... 95 I2C Master Mode Support ................................................... 95 I2C Module .......................................................................... 91 Addresses ................................................................... 93 Bus Data Timing Requirements Master Mode ..................................................... 201 Slave Mode ....................................................... 204 General Call Address Support .................................... 95 Interrupts..................................................................... 95 IPMI Support ............................................................... 95 Operating Function Description .................................. 91 Operation During CPU Sleep and Idle Modes ............ 96 Pin Configuration ........................................................ 91 Programmer’s Model................................................... 91 Register Map............................................................... 97 Registers..................................................................... 91 Slope Control .............................................................. 95 Software Controlled Clock Stretching (STREN = 1).... 94 Various Modes ............................................................ 91 I2S Mode Operation .......................................................... 129 Data Justification....................................................... 129 Frame and Data Word Length Selection................... 129 Idle Current (IIDLE) ............................................................ 175 In-Circuit Serial Programming (ICSP) ......................... 43, 141 Input Capture Module ......................................................... 81 Interrupts..................................................................... 82 Register Map............................................................... 83 Input Capture Operation During Sleep and Idle Modes ...... 82 CPU Idle Mode............................................................ 82 CPU Sleep Mode ........................................................ 82 Input Capture Timing Requirements ................................. 190 Input Change Notification Module ....................................... 56 Register Map............................................................... 57 Instruction Addressing Modes............................................. 37 File Register Instructions ............................................ 37 Fundamental Modes Supported.................................. 37 MAC Instructions......................................................... 38 MCU Instructions ........................................................ 37 Move and Accumulator Instructions............................ 38 Other Instructions........................................................ 38 Instruction Set Overview ................................................................... 162 Summary................................................................... 159 Internal Clock Timing Examples ....................................... 183 Internet Address................................................................ 225 Interrupt Controller Register Map............................................................... 66 Interrupt Priority .................................................................. 60 Traps........................................................................... 62 Interrupt Sequence ............................................................. 63 Interrupt Stack Frame ................................................. 63 Interrupts ............................................................................. 59 L Load Conditions ................................................................ 181 Low-Voltage Detect (LVD) ................................................ 155  2010 Microchip Technology Inc. LVDL Characteristics ........................................................ 179 M Memory Organization ......................................................... 25 Core Register Map ..................................................... 33 Microchip Internet Web Site.............................................. 225 Modes of Operation Disable...................................................................... 113 Initialization............................................................... 113 Listen All Messages.................................................. 113 Listen Only................................................................ 113 Loopback .................................................................. 113 Normal Operation ..................................................... 113 Modulo Addressing ............................................................. 38 Applicability................................................................. 40 Incrementing Buffer Operation Example .................... 39 Start and End Address ............................................... 39 W Address Register Selection.................................... 39 MPLAB ASM30 Assembler, Linker, Librarian ................... 168 MPLAB Integrated Development Environment Software.. 167 MPLAB PM3 Device Programmer .................................... 170 MPLAB REAL ICE In-Circuit Emulator System ................ 169 MPLINK Object Linker/MPLIB Object Librarian ................ 168 N NVM Register Map .............................................................. 47 O Operating Current (IDD) .................................................... 174 Operating Frequency vs Voltage dsPIC30FXXXX-20 (Extended) ................................ 172 Oscillator Configurations .......................................................... 144 Fail-Safe Clock Monitor .................................... 146 Fast RC (FRC).................................................. 145 Initial Clock Source Selection ........................... 144 Low-Power RC (LPRC) .................................... 145 LP Oscillator Control......................................... 145 Phase Locked Loop (PLL) ................................ 145 Start-up Timer (OST)........................................ 144 Control Registers...................................................... 147 Operating Modes (Table).......................................... 142 System Overview...................................................... 141 Oscillator Selection ........................................................... 141 Oscillator Start-up Timer Timing Requirements ............................................... 187 Output Compare Interrupts ................................................. 88 Output Compare Module .................................................... 85 Register Map dsPIC30F3014 ..................................... 89 Register Map dsPIC30F4013 ..................................... 89 Timing Requirements ............................................... 190 Output Compare Operation During CPU Idle Mode ........... 88 Output Compare Sleep Mode Operation ............................ 88 P Packaging Information ...................................................... 211 Marking..................................................................... 211 Peripheral Module Disable (PMD) Registers .................... 157 Pinout Descriptions............................................................. 13 POR. See Power-on Reset. Power Saving Modes Sleep and Idle........................................................... 141 Power-Down Current (IPD)................................................ 176 Power-Saving Modes........................................................ 155 Idle............................................................................ 156 DS70138G-page 221 dsPIC30F3014/4013 Sleep ......................................................................... 155 Power-up Timer Timing Requirements ................................................ 187 Program Address Space ..................................................... 25 Construction ................................................................ 26 Data Access from Program Memory Using Program Space Visibility........................... 28 Data Access From Program Memory Using Table Instructions ..................................... 27 Data Access from, Address Generation...................... 26 Data Space Window into Operation ............................ 29 Data Table Access (lsw) ............................................. 27 Data Table Access (MSB)........................................... 28 dsPIC30F3014 Memory Map ...................................... 25 dsPIC30F4013 Memory Map ...................................... 25 Table Instructions TBLRDH.............................................................. 27 TBLRDL .............................................................. 27 TBLWTH ............................................................. 27 TBLWTL.............................................................. 27 Program and EEPROM Characteristics ............................ 180 Program Counter................................................................. 16 Programmable................................................................... 141 Programmer’s Model........................................................... 16 Diagram ...................................................................... 17 Programming Operations .................................................... 45 Algorithm for Program Flash ....................................... 45 Erasing a Row of Program Memory ............................ 45 Initiating the Programming Sequence ......................... 46 Loading Write Latches ................................................ 46 Protection Against Accidental Writes to OSCCON ........... 146 R Reader Response ............................................................. 226 Registers OSCCON (Oscillator Control) ................................... 147 OSCTUN (Oscillator Tuning) .................................... 149 Reset......................................................................... 141, 151 BOR, Programmable................................................. 153 Brown-out Reset (BOR) ............................................ 141 Oscillator Start-up Timer (OST) ................................ 141 POR Operating without FSCM and PWRT ................ 153 With Long Crystal Start-up Time....................... 153 POR (Power-on Reset) ............................................. 151 Power-on Reset (POR) ............................................. 141 Power-up Timer (PWRT) .......................................... 141 Reset Sequence.................................................................. 61 Reset Sources ............................................................ 61 Reset Sources Brown-out Reset (BOR) .............................................. 61 Illegal Instruction Trap................................................. 61 Trap Lockout ............................................................... 61 Uninitialized W Register Trap ..................................... 61 Watchdog Time-out..................................................... 61 Reset Timing Requirements.............................................. 187 Revision History ................................................................ 217 Run-Time Self-Programming (RTSP) ................................. 43 S Simple Capture Event Mode ............................................... 81 Buffer Operation.......................................................... 82 Hall Sensor Mode ....................................................... 82 Prescaler ..................................................................... 81 Timer2 and Timer3 Selection Mode ............................ 82 Simple OCx/PWM Mode Timing Requirements ................ 191 DS70138G-page 222 Simple Output Compare Match Mode ................................ 86 Simple PWM Mode ............................................................. 86 Input Pin Fault Protection ........................................... 86 Period ......................................................................... 87 Software Simulator (MPLAB SIM) .................................... 169 Software Stack Pointer, Frame Pointer .............................. 16 CALL Stack Frame ..................................................... 33 SPI Module ......................................................................... 99 Framed SPI Support ................................................. 100 Operating Function Description .................................. 99 Operation During CPU Idle Mode ............................. 101 Operation During CPU Sleep Mode.......................... 101 SDOx Disable ............................................................. 99 Slave Select Synchronization ................................... 101 SPI1 Register Map.................................................... 102 Timing Requirements Master Mode (CKE = 0).................................... 196 Master Mode (CKE = 1).................................... 197 Slave Mode (CKE = 0)...................................... 198 Slave Mode (CKE = 1)...................................... 200 Word and Byte Communication .................................. 99 Status Bits, Their Significance and the Initialization Condition for RCON Register, Case 1 ...................................... 154 Status Bits, Their Significance and the Initialization Condition for RCON Register, Case 2 ...................................... 154 STATUS Register ............................................................... 16 Symbols Used in Opcode Descriptions ............................ 160 System Integration............................................................ 141 Register Map ............................................................ 158 T Table Instruction Operation Summary ................................ 43 Temperature and Voltage Specifications AC............................................................................. 181 DC ............................................................................ 172 Timer1 Module.................................................................... 67 16-Bit Asynchronous Counter Mode........................... 67 16-Bit Synchronous Counter Mode............................. 67 16-Bit Timer Mode ...................................................... 67 Gate Operation ........................................................... 68 Interrupt ...................................................................... 68 Operation During Sleep Mode .................................... 68 Prescaler .................................................................... 68 Real-Time Clock ......................................................... 68 Interrupts ............................................................ 68 Oscillator Operation............................................ 68 Register Map .............................................................. 69 Timer2 and Timer3 Selection Mode.................................... 85 Timer2/3 Module................................................................. 71 16-Bit Timer Mode ...................................................... 71 32-Bit Synchronous Counter Mode............................. 71 32-Bit Timer Mode ...................................................... 71 ADC Event Trigger...................................................... 74 Gate Operation ........................................................... 74 Interrupt ...................................................................... 74 Operation During Sleep Mode .................................... 74 Register Map .............................................................. 75 Timer Prescaler .......................................................... 74 Timer4/5 Module................................................................. 77 Register Map .............................................................. 79 Timing Diagrams A/D Conversion Low-Speed (ASAM = 0, SSRC = 000).............. 208 Band Gap Start-up Time........................................... 187 Brown-out Reset Characteristics .............................. 179 CAN Bit ..................................................................... 116  2010 Microchip Technology Inc. dsPIC30F3014/4013 CAN Module I/O........................................................ 205 CLKOUT and I/O....................................................... 185 DCI Module AC-Link Mode ................................................... 194 Multichannel, I2S Modes ................................... 192 External Clock........................................................... 181 Frame Sync, AC-Link Start-Of-Frame....................... 124 Frame Sync, Multichannel Mode .............................. 124 I2C Bus Data Master Mode ..................................................... 201 Slave Mode ....................................................... 203 I2C Bus Start/Stop Bits Master Mode ..................................................... 201 Slave Mode ....................................................... 203 I2S Interface Frame Sync.......................................... 124 Input Capture (CAPx)................................................ 190 Low-Voltage Detect................................................... 178 OCx/PWM Module .................................................... 191 Oscillator Start-up Timer ........................................... 186 Output Compare Module........................................... 190 Power-up Timer ........................................................ 186 PWM Output ............................................................... 87 Reset......................................................................... 186 SPI Module Master Mode (CKE = 0) .................................... 195 Master Mode (CKE = 1) .................................... 196 Slave Mode (CKE = 0) ...................................... 197 Slave Mode (CKE = 1) ...................................... 199 Time-out Sequence on Power-up (MCLR Not Tied to VDD), Case 1...................... 152 Time-out Sequence on Power-up (MCLR Not Tied to VDD), Case 2...................... 152 Time-out Sequence on Power-up (MCLR Tied to VDD).......................................... 152 Type A, B and C Timer External Clock ..................... 188 Watchdog Timer........................................................ 186 Timing Diagrams and Specifications DC Characteristics - Internal RC Accuracy............... 183 Timing Diagrams.See Timing Characteristics Timing Requirements A/D Conversion Low-Speed........................................................ 209 Band Gap Start-up Time ........................................... 187 Brown-out Reset ....................................................... 187 CAN Module I/O........................................................ 205 CLKOUT and I/O....................................................... 185 DCI Module AC-Link Mode ................................................... 195 Multichannel, I2S Modes ................................... 193 External Clock........................................................... 182 I2C Bus Data (Master Mode)..................................... 201 I2C Bus Data (Slave Mode)....................................... 204 Input Capture ............................................................ 190 Oscillator Start-up Timer ........................................... 187 Output Compare Module........................................... 190 Power-up Timer ........................................................ 187 Reset......................................................................... 187 Simple OCx/PWM Mode ........................................... 191 SPI Module Master Mode (CKE = 0) .................................... 196 Master Mode (CKE = 1) .................................... 197 Slave Mode (CKE = 0) ...................................... 198 Slave Mode (CKE = 1) ...................................... 200 Type A Timer External Clock .................................... 188 Type B Timer External Clock .................................... 189  2010 Microchip Technology Inc. Type C Timer External Clock.................................... 189 Watchdog Timer ....................................................... 187 Trap Vectors ....................................................................... 63 U UART Module Address Detect Mode ............................................... 107 Auto-Baud Support ................................................... 108 Baud Rate Generator ............................................... 107 Enabling and Setting Up........................................... 105 Framing Error (FERR) .............................................. 107 Idle Status................................................................. 107 Loopback Mode ........................................................ 107 Operation During CPU Sleep and Idle Modes.......... 108 Overview................................................................... 103 Parity Error (PERR) .................................................. 107 Receive Break .......................................................... 107 Receive Buffer (UxRXB)........................................... 106 Receive Buffer Overrun Error (OERR Bit) ................ 106 Receive Interrupt ...................................................... 106 Receiving Data ......................................................... 106 Receiving in 8-Bit or 9-Bit Data Mode ...................... 106 Reception Error Handling ......................................... 106 Transmit Break ......................................................... 106 Transmit Buffer (UxTXB) .......................................... 105 Transmit Interrupt ..................................................... 106 Transmitting Data ..................................................... 105 Transmitting in 8-Bit Data Mode ............................... 105 Transmitting in 9-Bit Data Mode ............................... 105 UART1 Register Map ............................................... 109 UART2 Register Map ............................................... 109 UART Operation Idle Mode.................................................................. 108 Sleep Mode .............................................................. 108 Unit ID Locations .............................................................. 141 Universal Asynchronous Receiver Transmitter (UART) Module......................................................... 103 W Wake-up from Sleep ......................................................... 141 Wake-up from Sleep and Idle ............................................. 64 Watchdog Timer Timing Requirements ............................................... 187 Watchdog Timer (WDT)............................................ 141, 155 Enabling and Disabling............................................. 155 Operation.................................................................. 155 WWW Address ................................................................. 225 WWW, On-Line Support ....................................................... 9 DS70138G-page 223 dsPIC30F3014/4013 NOTES: DS70138G-page 224  2010 Microchip Technology Inc. dsPIC30F3014/4013 THE MICROCHIP WEB SITE CUSTOMER SUPPORT Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information: Users of Microchip products can receive assistance through several channels: • Product Support – Data sheets and errata, application notes and sample programs, design resources, user’s guides and hardware support documents, latest software releases and archived software • General Technical Support – Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing • Business of Microchip – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives • • • • • Distributor or Representative Local Sales Office Field Application Engineer (FAE) Technical Support Development Systems Information Line Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document. Technical support is available through the web site at: http://support.microchip.com CUSTOMER CHANGE NOTIFICATION SERVICE Microchip’s customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest. To register, access the Microchip web site at www.microchip.com. Under “Support”, click on “Customer Change Notification” and follow the registration instructions.  2010 Microchip Technology Inc. DS70138G-page 225 dsPIC30F3014/4013 READER RESPONSE It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150. Please list the following information, and use this outline to provide us with your comments about this document. TO: Technical Publications Manager RE: Reader Response Total Pages Sent ________ From: Name Company Address City / State / ZIP / Country Telephone: (_______) _________ - _________ FAX: (______) _________ - _________ Application (optional): Would you like a reply? Y N Device: dsPIC30F3014/4013 Literature Number: DS70138G Questions: 1. What are the best features of this document? 2. How does this document meet your hardware and software development needs? 3. Do you find the organization of this document easy to follow? If not, why? 4. What additions to the document do you think would enhance the structure and subject? 5. What deletions from the document could be made without affecting the overall usefulness? 6. Is there any incorrect or misleading information (what and where)? 7. How would you improve this document? DS70138G-page 226  2010 Microchip Technology Inc. dsPIC30F3014/4013 PRODUCT IDENTIFICATION SYSTEM To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office. d s P I C 3 0 F 4 0 1 3 AT - 3 0 I / P T- E S Custom ID (3 digits) or Engineering Sample (ES) Trademark Architecture Package P = 40-pin PDIP PT = 44-pin TQFP (10x10) ML = 44-pin QFN (8x8) S = Die (Waffle Pack) W = Die (Wafers) Flash Memory Size in Bytes 0 = ROMless 1 = 1K to 6K 2 = 7K to 12K 3 = 13K to 24K 4 = 25K to 48K 5 = 49K to 96K 6 = 97K to 192K 7 = 193K to 384K 8 = 385K to 768K 9 = 769K and Up Temperature I = Industrial -40°C to +85°C E = Extended High Temp -40°C to +125°C Device ID Speed 20 = 20 MIPS 30 = 30 MIPS T = Tape and Reel A,B,C… = Revision Level Example: dsPIC30F4013AT-30I/PT = 30 MIPS, Industrial temp., TQFP package, Rev. A  2010 Microchip Technology Inc. DS70138G-page 227 Worldwide Sales and Service AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.com Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123 India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632 Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829 India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513 France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122 Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44 Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455 Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088 Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075 Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643 Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924 Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260 Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387 Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445 Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509 Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104 China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889 Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302 China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500 Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934 China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431 Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859 China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470 Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205 Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069 China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066 Singapore Tel: 65-6334-8870 Fax: 65-6334-8850 China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393 Taiwan - Hsin Chu Tel: 886-3-6578-300 Fax: 886-3-6578-370 China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760 Taiwan - Kaohsiung Tel: 886-7-213-7830 Fax: 886-7-330-9305 China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118 Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102 China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256 Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350 Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781 Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340 Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91 UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820 China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130 China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049 08/04/10 DS70138G-page 228  2010 Microchip Technology Inc.
DSPIC30F3014-30I/ML 价格&库存

很抱歉,暂时无法提供与“DSPIC30F3014-30I/ML”相匹配的价格&库存,您可以联系我们找货

免费人工找货
DSPIC30F3014-30I/ML
    •  国内价格 香港价格
    • 1+68.162731+8.15000
    • 25+61.7506925+7.38334
    • 100+56.25865100+6.72667

    库存:1485