0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
DSPIC33EP32GS202-E/M6

DSPIC33EP32GS202-E/M6

  • 厂商:

    ACTEL(微芯科技)

  • 封装:

    UFQFN28_EP

  • 描述:

    ICMCU16BIT32KBFLASH28UQFN

  • 详情介绍
  • 数据手册
  • 价格&库存
DSPIC33EP32GS202-E/M6 数据手册
dsPIC33EPXXGS202 FAMILY 16-Bit Digital Signal Controllers for Digital Power Applications with Interconnected High-Speed PWM, ADC, PGA and Comparators Operating Conditions Advanced Analog Features • 3.0V to 3.6V, -40°C to +85°C, DC to 70 MIPS • 3.0V to 3.6V, -40°C to +125°C, DC to 60 MIPS • High-Speed ADC module: - 12-bit with 2 dedicated SAR ADC cores and one shared SAR ADC core - Up to 3.25 Msps conversion rate per ADC core @ 12-bit resolution - Dedicated result buffer for each analog channel - Flexible and independent ADC trigger sources - Two digital comparators - One oversampling filter • Two Rail-to-Rail Comparators with Hysteresis: - Dedicated 12-bit Digital-to-Analog Converter (DAC) for each analog comparator • Two Programmable Gain Amplifiers: - Single-ended or independent ground reference - Five selectable gains (4x, 8x, 16x, 32x and 64x) - 40 MHz gain bandwidth Flash Architecture • 16 Kbytes-32 Kbytes of Program Flash Core: 16-Bit dsPIC33E CPU • • • • Code-Efficient (C and Assembly) Architecture Two 40-Bit Wide Accumulators Single-Cycle (MAC/MPY) with Dual Data Fetch Single-Cycle Mixed-Sign MUL Plus Hardware Divide • 32-Bit Multiply Support • Two Additional Working Register Sets (reduces context switching) Clock Management • • • • • ±0.9% Internal Oscillator Programmable PLLs and Oscillator Clock Sources Fail-Safe Clock Monitor (FSCM) Independent Watchdog Timer (WDT) Fast Wake-up and Start-up Power Management • Low-Power Management modes (Sleep, Idle, Doze) • Integrated Power-on Reset and Brown-out Reset • 0.5 mA/MHz Dynamic Current (typical) • 10 μA IPD Current (typical) High-Speed PWM • Three PWM Generators (two outputs per generator) • Individual Time Base and Duty Cycle for each PWM • 1.04 ns PWM Resolution (frequency, duty cycle, dead time and phase) • Supports Center-Aligned, Redundant, Complementary and True Independent Output modes • Independent Fault and Current-Limit Inputs • Output Override Control • PWM Support for: - AC/DC, DC/DC, inverters, PFC, lighting  2015-2018 Microchip Technology Inc. Interconnected SMPS Peripherals • Reduces CPU Interaction to Improve Performance • Flexible PWM Trigger Options for ADC Conversions • High-Speed Comparator Truncates PWM (15 ns typical): - Supports Cycle-by-Cycle Current mode control - Current Reset mode (variable frequency) Timers/Output Compare/Input Capture • Three 16-Bit and One 32-Bit Timers/Counters • One Output Compare (OC) module, Configurable as Timers/Counters • One Input Capture (IC) module DS70005208E-page 1 dsPIC33EPXXGS202 FAMILY Communication Interfaces Qualification and Class B Support • One UART module (15 Mbps): - Supports LIN/J2602 protocols and IrDA® • One 4-Wire SPI module (15 Mbps) • One I2C module (up to 1 Mbaud) with SMBus Support • AEC-Q100 REVG (Grade 1, -40°C to +125°C) • Class B Safety Library, IEC 60730 • 4x4x0.6 mm and 6x6x0.5 mm UQFN Packages are Designed and Optimized to ease IPC9592B 2nd Level Temperature Cycle Qualification Input/Output Debugger Development Support • Sink/Source up to 12mA/15mA, respectively; Pin-Specific for Standard VOH/VOL • 5V Tolerant Pins • Selectable Open-Drain, Pull-ups and Pull-Downs • External Interrupts on All I/O Pins • Peripheral Pin Select (PPS) to allow Function Remap with Six Virtual I/Os • In-Circuit and In-Application Programming • Three Program and One Complex Data Breakpoint • IEEE 1149.2 Compatible (JTAG) Boundary Scan • Trace and Run-Time Watch RAM Bytes Timers(1) Input Capture Output Compare UART SPI External Interrupts(2) PWM ADC Inputs I2C ADC Cores PGA Analog Comparator dsPIC33EP16GS202 28 16K 2K 3 1 1 1 1 3 3x2 12 1 3 2 2 dsPIC33EP32GS202 28 32K 2K 3 1 1 1 1 3 3x2 12 1 3 2 2 Note 1: 2: Packages Device Program Memory Bytes Remappable Peripherals General Purpose I/O (GPIO) dsPIC33EPXXGS202 FAMILY DEVICES Pins TABLE 1: 21 SSOP, SOIC, QFN-S, UQFN (4x4 mm), 21 UQFN (6x6 mm) The external clock for Timer1, Timer2 and Timer3 is remappable. INT0 is not remappable; INT1 and INT2 are remappable. DS70005208E-page 2  2015-2018 Microchip Technology Inc. dsPIC33EPXXGS202 FAMILY Pin Diagrams = Pins are up to 5V tolerant 28-Pin SOIC, 28-Pin SSOP 1 28 AVDD RA0 2 27 AVSS RA1 3 26 RA3 RA2 4 25 RA4 RB0 5 RB9 6 RB10 7 VSS 8 RB1 9 RB2(2) 10 RB3 11 RB4 dsPIC33EPXXGS202 MCLR 24 RB14 23 RB13 22 RB12 21 RB11 20 VCAP 19 VSS 18 RB7 12 17 RB6 VDD 13 16 RB5 RB8 14 15 RB15 PIN FUNCTION DESCRIPTIONS Pin Pin Function Pin Pin Function 1 MCLR 15 PGEC3/RP47/RB15 2 AN0/PGA1P1/CMP1A/RA0 16 TDO/AN9/PGA2N2/RP37/RB5 3 AN1/PGA1P2/PGA2P1/CMP1B/RA1 17 PGED1/TDI/AN10/SCL1/RP38/RB6 4 AN2/PGA1P3/PGA2P2/CMP1C/CMP2A/RA2 18 PGEC1/AN11/SDA1/RP39/RB7 5 AN3/PGA2P3/CMP1D/CMP2B/RP32/RB0 19 VSS 6 AN4/CMP2C/RP41/RB9 20 VCAP 7 AN5/CMP2D/RP42/RB10 21 TMS/PWM3H/RP43/RB11 8 VSS 22 TCK/PWM3L/RP44/RB12 9 OSC1/CLKI/AN6/RP33/RB1 23 PWM2H/RP45/RB13 10 OSC2/CLKO/AN7/PGA1N2/RP34/RB2(2) 24 PWM2L/RP46/RB14 PWM1H/RA4 11 PGED2/AN8/INT0/RP35/RB3 25 12 PGEC2/ADTRG31/RP36/RB4 26 PWM1L/RA3 13 VDD 27 AVSS 14 PGED3/FLT31/RP40/RB8 28 AVDD Legend: Shaded pins are up to 5 VDC tolerant. Note 1: RPn represents remappable peripheral functions. See Table 10-1 and Table 10-2 for the complete list of remappable sources. 2: At device power-up, a pulse with an amplitude around 2V and a duration greater than 500 μs, may be observed on this device pin, independent of pull-down resistors. It is recommended not to use this pin as an output driver unless the circuit being driven can endure this active duration.  2015-2018 Microchip Technology Inc. DS70005208E-page 3 dsPIC33EPXXGS202 FAMILY Pin Diagrams (Continued) = Pins are up to 5V tolerant RA4 RA3 AVSS AVDD MCLR RA0 RA1 28-Pin UQFN, 28-Pin UQFN, 28-Pin QFN-S 28 27 26 25 24 23 22 RA2 1 21 RB14 RB0 2 20 RB13 RB9 3 19 RB12 RB10 4 18 RB11 VSS 5 17 VCAP RB1 6 16 VSS RB2(2) 7 15 RB7 VDD RB6 RB4 RB5 10 11 12 13 14 RB8 9 RB15 8 RB3 dsPIC33EPXXGS202 PIN FUNCTION DESCRIPTIONS Pin Pin Function Pin Pin Function 1 AN2/PGA1P3/PGA2P2/CMP1C/CMP2A/RA2 15 PGEC1/AN11/SDA1/RP39/RB7 2 AN3/PGA2P3/CMP1D/ CMP28/RP32/RB0 16 VSS 3 AN4/CMP2C/RP41/RB9 17 VCAP 4 AN5/CMP2D/RP42/RB10 18 TMS/PWM3H/RP43/RB11 5 VSS 19 TCK/PWM3L/RP44/RB12 6 OSC1/CLKI/AN6/RP33/RB1 20 PWM2H/RP45/RB13 7 OSC2/CLKO/AN7/PGA1N2/RP34/RB2(2) 21 PWM2L/RP46/RB14 8 PGED2/AN8/INT0/RP35/RB3 22 PWM1H/RA4 PWM1L/RA3 9 PGEC2/ADTRG31/RP36/RB4 23 10 VDD 24 AVSS 11 PGED3/FLT31/RP40/RB8 25 AVDD 12 PGEC3/RP47/RB15 26 MCLR 13 TDO/AN9/PGA2N2/RP37/RB5 27 AN0/PGA1P1/CMP1A/RA0 14 PGED1/TDI/AN10/SCL1/RP38/RB6 28 AN1/PGA1P2/PGA2P1/CMP1B/RA1 Legend: Shaded pins are up to 5 VDC tolerant. Note 1: RPn represents remappable peripheral functions. See Table 10-1 and Table 10-2 for the complete list of remappable sources. 2: At device power-up, a pulse with an amplitude around 2V and a duration greater than 500 μs, may be observed on this device pin, independent of pull-down resistors. It is recommended not to use this pin as an output driver unless the circuit being driven can endure this active duration. DS70005208E-page 4  2015-2018 Microchip Technology Inc. dsPIC33EPXXGS202 FAMILY Table of Contents 1.0 Device Overview .......................................................................................................................................................................... 7 2.0 Guidelines for Getting Started with 16-Bit Digital Signal Controllers.......................................................................................... 11 3.0 CPU............................................................................................................................................................................................ 17 4.0 Memory Organization ................................................................................................................................................................. 27 5.0 Flash Program Memory.............................................................................................................................................................. 61 6.0 Resets ....................................................................................................................................................................................... 69 7.0 Interrupt Controller ..................................................................................................................................................................... 73 8.0 Oscillator Configuration .............................................................................................................................................................. 87 9.0 Power-Saving Features.............................................................................................................................................................. 97 10.0 I/O Ports ................................................................................................................................................................................... 105 11.0 Timer1 ...................................................................................................................................................................................... 131 12.0 Timer2/3 .................................................................................................................................................................................. 135 13.0 Input Capture............................................................................................................................................................................ 139 14.0 Output Compare....................................................................................................................................................................... 143 15.0 High-Speed PWM..................................................................................................................................................................... 149 16.0 Serial Peripheral Interface (SPI)............................................................................................................................................... 175 17.0 Inter-Integrated Circuit (I2C) ..................................................................................................................................................... 183 18.0 Universal Asynchronous Receiver Transmitter (UART) ........................................................................................................... 191 19.0 High-Speed, 12-Bit Analog-to-Digital Converter (ADC)............................................................................................................ 197 20.0 High-Speed Analog Comparator .............................................................................................................................................. 227 21.0 Programmable Gain Amplifier (PGA) ....................................................................................................................................... 233 22.0 Special Features ...................................................................................................................................................................... 239 23.0 Instruction Set Summary .......................................................................................................................................................... 251 24.0 Development Support............................................................................................................................................................... 261 25.0 Electrical Characteristics .......................................................................................................................................................... 265 26.0 DC and AC Device Characteristics Graphs.............................................................................................................................. 311 27.0 Packaging Information.............................................................................................................................................................. 315 Appendix A: Revision History............................................................................................................................................................. 331 Index ................................................................................................................................................................................................. 333 The Microchip Web Site ..................................................................................................................................................................... 339 Customer Change Notification Service .............................................................................................................................................. 339 Customer Support .............................................................................................................................................................................. 339 Product Identification System ............................................................................................................................................................ 341  2015-2018 Microchip Technology Inc. DS70005208E-page 5 dsPIC33EPXXGS202 FAMILY TO OUR VALUED CUSTOMERS It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced. If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at docerrors@microchip.com. We welcome your feedback. Most Current Data Sheet To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at: http://www.microchip.com You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000). Errata An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies. To determine if an errata sheet exists for a particular device, please check with one of the following: • Microchip’s Worldwide Web site; http://www.microchip.com • Your local Microchip sales office (see last page) When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using. Customer Notification System Register on our web site at www.microchip.com to receive the most current information on all of our products. DS70005208E-page 6  2015-2018 Microchip Technology Inc. dsPIC33EPXXGS202 FAMILY 1.0 DEVICE OVERVIEW Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS202 family of devices. It is not intended to be a comprehensive resource. To complement the information in this data sheet, refer to the related section in the “dsPIC33/PIC24 Family Reference Manual”, which is available from the Microchip web site (www.microchip.com). This document contains device-specific information for the dsPIC33EPXXGS202 Digital Signal Controller (DSC) devices. The dsPIC33EPXXGS202 devices contain extensive Digital Signal Processor (DSP) functionality with a high-performance, 16-bit MCU architecture. Figure 1-1 shows a general block diagram of the core and peripheral modules. Table 1-1 lists the functions of the various pins shown in the pinout diagrams. 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. FIGURE 1-1: dsPIC33EPXXGS202 FAMILY BLOCK DIAGRAM CPU Refer to Figure 3-1 for CPU diagram details. PORTA 16 Power-up Timer Timing Generation OSC1/CLKI PORTB Oscillator Start-up Timer 16 POR/BOR MCLR VDD, VSS AVDD, AVSS Watchdog Timer Peripheral Modules PGA1, PGA2 ADC Input Capture 1 Output Compare 1 I2C1 Remappable Pins Analog Comparator 1-2  2015-2018 Microchip Technology Inc. PWM 3x2 Timers 1-3 SPI1 UART1 Ports DS70005208E-page 7 dsPIC33EPXXGS202 FAMILY TABLE 1-1: PINOUT I/O DESCRIPTIONS Pin Name Pin Type Buffer PPS Type Description AN0-AN11 I Analog No Analog input channels. CLKI I No CLKO O ST/ CMOS — External clock source input. Always associated with OSC1 pin function. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with OSC2 pin function. OSC1 I No OSC2 I/O ST/ CMOS — IC1 I ST Yes Capture Input 1. OCFA OC1 I O ST — Yes Compare Fault A input (for compare channels). Yes Compare Output 1. INT0 INT1 INT2 I I I ST ST ST No External Interrupt 0. Yes External Interrupt 1. Yes External Interrupt 2. No No Oscillator crystal input. ST buffer when configured in RC mode; CMOS otherwise. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. RA0-RA4 I/O ST No PORTA is a bidirectional I/O port. RB0-RB15 I/O ST No PORTB is a bidirectional I/O port. T1CK T2CK T3CK I I I ST ST ST Yes Timer1 external clock input. Yes Timer2 external clock input. Yes Timer3 external clock input. U1CTS U1RTS U1RX U1TX BCLK1 I O I O O ST — ST — ST Yes Yes Yes Yes Yes UART1 Clear-to-Send. UART1 Request-to-Send. UART1 receive. UART1 transmit. UART1 IrDA® baud clock output. SCK1 SDI1 SDO1 SS1 I/O I O I/O ST ST — ST Yes Yes Yes Yes Synchronous serial clock input/output for SPI1. SPI1 data in. SPI1 data out. SPI1 slave synchronization or frame pulse I/O. SCL1 SDA1 I/O I/O ST ST No No Synchronous serial clock input/output for I2C1. Synchronous serial data input/output for I2C1. TMS TCK TDI TDO I I I O ST ST ST — No No No No JTAG Test mode select pin. JTAG test clock input pin. JTAG test data input pin. JTAG test data output pin. FLT1-FLT8 FLT31 PWM1L-PWM3L PWM1H-PWM3H SYNCI1, SYNCI2 SYNCO1, SYNCO2 I I O O I O ST ST — — ST — Yes No No No Yes Yes PWM Fault Inputs 1 through 8. PWM Fault Input 31. PWM Low Outputs 1 through 3. PWM High Outputs 1 through 3. PWM Synchronization Inputs 1 and 2. PWM Synchronization Outputs 1 and 2. CMP1A-CMP2A CMP1B-CMP2B CMP1C-CMP2C CMP1D-CMP2D I I I I Analog Analog Analog Analog No No No No Comparator Channels 1A through 2A inputs. Comparator Channels 1B through 2B inputs. Comparator Channels 1C through 2C inputs. Comparator Channels 1D through 2D inputs. Legend: CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels PPS = Peripheral Pin Select DS70005208E-page 8 Analog = Analog input O = Output TTL = TTL input buffer P = Power I = Input  2015-2018 Microchip Technology Inc. dsPIC33EPXXGS202 FAMILY TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED) Pin Name Pin Type Buffer PPS Type Description PGA1P1-PGA1P3 I Analog No PGA1 Positive Inputs 1 through 3. PGA1N2 I Analog No PGA1 Negative Input 2. PGA2P1-PGA2P3 I Analog No PGA2 Positive Inputs 1 through 3. PGA2N2 I Analog No PGA2 Negative Input 2. ADTRG31 I ST No External ADC trigger source. PGED1 PGEC1 PGED2 PGEC2 PGED3 PGEC3 I/O I I/O I I/O I ST ST ST ST ST ST No No No No No No Data I/O pin for Programming/Debugging Communication Channel 1. Clock input pin for Programming/Debugging Communication Channel 1. Data I/O pin for Programming/Debugging Communication Channel 2. Clock input pin for Programming/Debugging Communication Channel 2. Data I/O pin for Programming/Debugging Communication Channel 3. Clock input pin for Programming/Debugging Communication Channel 3. MCLR I/P ST No Master Clear (Reset) input. This pin is an active-low Reset to the device. AVDD P P No Positive supply for analog modules. This pin must be connected at all times. AVSS P P No Ground reference for analog modules. This pin must be connected at all times. VDD P — No Positive supply for peripheral logic and I/O pins. VCAP P — No CPU logic filter capacitor connection. VSS P — No Ground reference for logic and I/O pins. Legend: CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels PPS = Peripheral Pin Select  2015-2018 Microchip Technology Inc. Analog = Analog input O = Output TTL = TTL input buffer P = Power I = Input DS70005208E-page 9 dsPIC33EPXXGS202 FAMILY NOTES: DS70005208E-page 10  2015-2018 Microchip Technology Inc. dsPIC33EPXXGS202 FAMILY 2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT DIGITAL SIGNAL CONTROLLERS Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS202 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section in the “dsPIC33/PIC24 Family Reference Manual”, which is available from the Microchip web site (www.microchip.com). 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. 2.1 Basic Connection Requirements Getting started with the dsPIC33EPXXGS202 family requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names which must always be connected: • All VDD and VSS pins (see Section 2.2 “Decoupling Capacitors”) • All AVDD and AVSS pins regardless if ADC module is not used (see Section 2.2 “Decoupling Capacitors”) • VCAP (see Section 2.3 “CPU Logic Filter Capacitor Connection (VCAP)”) • MCLR pin (see Section 2.4 “Master Clear (MCLR) Pin”) • PGECx/PGEDx pins used for In-Circuit Serial Programming™ (ICSP™) and debugging purposes (see Section 2.5 “ICSP Pins”) • OSC1 and OSC2 pins when external oscillator source is used (see Section 2.6 “External Oscillator Pins”)  2015-2018 Microchip Technology Inc. 2.2 Decoupling Capacitors The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS is required. Consider the following criteria when using decoupling capacitors: • Value and type of capacitor: Recommendation of 0.1 µF (100 nF), 10-20V. This capacitor should be a low-ESR and have resonance frequency in the range of 20 MHz and higher. It is recommended to use ceramic capacitors. • Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length. • Handling high-frequency noise: If the board is experiencing high-frequency noise, above tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 µF to 0.001 µF. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 µF in parallel with 0.001 µF. • Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB track inductance. DS70005208E-page 11 dsPIC33EPXXGS202 FAMILY FIGURE 2-1: RECOMMENDED MINIMUM CONNECTION 0.1 µF Ceramic 10 µF Tantalum VDD The placement of this capacitor should be close to the VCAP pin. It is recommended that the trace length not exceeds one-quarter inch (6 mm). See Section 22.4 “On-Chip Voltage Regulator” for details. R1 VSS VCAP VDD 2.4 R The MCLR functions: MCLR dsPIC33EPXXGS202 VSS VDD VSS VDD AVSS VDD AVDD VSS 0.1 µF Ceramic 0.1 µF Ceramic 0.1 µF Ceramic L1(1) Note 1: As an option, instead of a hard-wired connection, an inductor (L1) can be substituted between VDD and AVDD to improve ADC noise rejection. The inductor impedance should be less than 1 and the inductor capacity greater than 10 mA. Where: F CNV f = -------------2 1 f = ---------------------- 2 LC  pin provides two specific device • Device Reset • Device Programming and Debugging. C 0.1 µF Ceramic Master Clear (MCLR) Pin (i.e., A/D Conversion Rate/2) 2 1 L =  ----------------------   2f C  During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements. For example, as shown in Figure 2-2, it is recommended that the capacitor, C, be isolated from the MCLR pin during programming and debugging operations. Place the components as shown in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin. FIGURE 2-2: EXAMPLE OF MCLR PIN CONNECTIONS VDD R(1) R1(2) 2.2.1 On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits including DSCs to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 µF to 47 µF. 2.3 MCLR TANK CAPACITORS CPU Logic Filter Capacitor Connection (VCAP) JP dsPIC33EPXXGS202 C Note 1: R  10 k is recommended. A suggested starting value is 10 k. Ensure that the MCLR pin VIH and VIL specifications are met. 2: R1  470 will limit any current flowing into MCLR from the external capacitor, C, in the event of MCLR pin breakdown due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS). Ensure that the MCLR pin VIH and VIL specifications are met. A low-ESR ()(1) RCOUNT 0000 0000 Extended Data Space (EDS) Read Page Register (DSRPAG) — 0036 Legend: Note 1: 0000 — RCOUNT DOSTARTL 003A 0000 — — 0000 — 0000 DO Loop Start Address Register High (DOSTARTH) 0000 dsPIC33EPXXGS202 FAMILY DS70005208E-page 34 4.5  2015-2018 Microchip Technology Inc. TABLE 4-2: File Name Addr. DOENDL 003E DOENDH 0040 SR CORCON CPU CORE REGISTER MAP (CONTINUED) Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 14 Bit 13 Bit 12 Bit 11 — — — — — — 0042 OA OB SA SB OAB SAB DA DC IPL2 IPL1 IPL0 RA N OV Z C 0000 0044 VAR — US1 US0 EDT DL2 DL1 DL0 SATA SATB SATDW ACCSAT IPL3 SFA RND IF 0020 — — BWM3 BWM2 BWM1 BWM0 YWM3 YWM2 YWM1 YWM0 XWM3 XWM2 XWM1 DO Loop End Address Register Low (DOENDL) — — — — Bit 0 All Resets Bit 15 — DO Loop End Address Register High (DOENDH) 0000 0000 MODCON 0046 XMODEN YMODEN XWM0 0000 XMODSRT 0048 X Mode Start Address Register (XMODSRT) — 0000 XMODEND 004A X Mode End Address Register (XMODEND) — 0001 YMODSRT 004C Y Mode Start Address Register (YMODSRT) — 0000 YMODEND 004E Y Mode End Address Register (YMODEND) — 0001 XBREV 0050 BREN DISICNT 0052 — — TBLPAG 0054 — — — — — — — — CTXTSTAT 005A — — — — — CCTXI2 CCTXI1 CCTXI0 0000 DISICNT x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. The contents of this register should never be modified. The DSWPAG must always point to the first page. 0000 TBLPAG — — — — — 0000 MCTXI2 MCTXI1 MCTXI0 0000 DS70005208E-page 35 dsPIC33EPXXGS202 FAMILY Legend: Note 1: XBREV INTERRUPT CONTROLLER REGISTER MAP  2015-2018 Microchip Technology Inc. Bit 0 All Resets IC1IF INT0IF 0000 MI2C1IF SI2C1IF 0000 — — 0000 — U1EIF — 0000 — — — — 0000 — — — — PWM3IF 0000 ADCAN7IF ADCAN6IF ADCAN5IF ADCAN4IF ADCAN3IF ADCAN2IF 0000 — — — — — — — 0000 — — — — — — — — 0000 — — — — — ADFL0IF ADCMP1IF ADCMP0IF — 0000 SPI1EIE T3IE T2IE — — — T1IE OC1IE IC1IE INT0IE 0000 — — — — — — INT1IE CNIE AC1IF MI2C1IE SI2C1IE 0000 — — PSEMIE — — — — — — — — — 0000 — — — PSESIE — — — — — — — U1EIE — 0000 — — — — — — — — — — — — — — 0000 ADCAN0IE — — — — — AC3IE AC2IE — — — — — — PWM3IE 0000 — — — — — — — — — — ADCAN7IE ADCAN6IE ADCAN5IE ADCAN4IE ADCAN3IE ADCAN2IE 0000 0832 — — ADCAN14IE ADCAN13IE ADCAN10IE ADCAN9IE ADCAN8IE — — — — — — — 0000 IEC10 0834 — — I2C1BCIE — — — — — — — — — — — — — 0000 IEC11 0836 — — — — — — — — — — — — ADFL0IE ADCMP1IE ADCMP0IE — 0000 IPC0 0840 — T1IP2 T1IP1 T1IP0 — OC1IP2 OC1IP1 OC1IP0 — IC1IP2 IC1IP1 IC1IP0 — INT0IP2 INT0IP1 INT0IP0 4444 IPC1 0842 — T2IP2 T2IP1 T2IP0 — — — — — — — — — — — — 4000 IPC2 0844 — U1RXIP2 U1RXIP1 U1RXIP0 — SPI1IP2 SPI1IP1 SPI1IP0 — SPI1EIP2 SPI1EIP1 SPI1EIP0 — T3IP2 T3IP1 T3IP0 4444 IPC3 0846 — NVMIP2 NVMIP1 NVMIP0 — — — — — ADCIP2 ADCIP1 ADCIP0 — U1TXIP2 U1TXIP1 U1TXIP0 4044 IPC4 0848 — CNIP2 CNIP1 CNIP0 — AC1IP2 AC1IP1 AC1IP0 — MI2C1IP2 MI2C1IP1 MI2C1IP0 — SI2C1IP2 SI2C1IP1 SI2C1IP0 4444 IPC5 084A — — — — — — — — — — — — — INT1IP2 INT1IP1 INT1IP0 0004 IPC7 084E — — — — — — — — — INT2IP2 INT2IP1 INT2IP0 — — — — 0040 IPC14 085C — — — — — — — — — PSEMIP2 PSEMIP1 PSEMIP0 — — — — 0040 File Name Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 IFS0 0800 NVMIF IFS1 0802 — — ADCIF U1TXIF U1RXIF SPI1IF SPI1EIF T3IF T2IF — — — INT2IF — — — — — — — — IFS3 0806 — — — — — — PSEMIF — — — — IFS4 0808 — — — — — — PSESIF — — — IFS5 080A PWM2IF PWM1IF — — — — — — IFS6 080C ADCAN1IF ADCAN0IF — — — — — — IFS7 080E — — — — — — — IFS9 0812 — — ADCAN14IF ADCAN11IF IFS10 0814 — — I2C1BCIF — — IFS11 0816 — — — — IEC0 0820 NVMIE — ADCIE IEC1 0822 — — IEC3 0826 — IEC4 0828 IEC5 082A IEC6 082C ADCAN1IE IEC7 082E IEC9 Legend: Bit 3 Bit 2 — T1IF OC1IF INT1IF CNIF AC1IF — — — — — — — — — AC2IF — — — — — ADCAN10IF ADCAN9IF ADCAN8IF — — — — — — U1TXIE U1RXIE SPI1IE INT2IE — — — — — — — — PWM2IE PWM1IE ADCAN13IF ADCAN12IF ADCAN12IE ADCAN11IE — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Bit 4 Bit 1 dsPIC33EPXXGS202 FAMILY DS70005208E-page 36 TABLE 4-3:  2015-2018 Microchip Technology Inc. TABLE 4-3: File Name INTERRUPT CONTROLLER REGISTER MAP (CONTINUED) Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets U1EIP1 U1EIP0 — — — — 0040 PSESIP1 PSESIP0 — — — — 0040 — — — — — — 4400 — — — — PWM3IP2 PWM3IP1 PWM3IP0 0004 — — — — — — — — 4000 ADCAN0IP0 — — — — — — — — 4400 ADCAN4IP1 ADCAN4IP0 — ADCAN3IP2 ADCAN3IP1 ADCAN3IP0 — ADCAN2IP2 ADCAN2IP1 ADCAN2IP0 4444 — — — — ADCAN7IP2 ADCAN7IP1 ADCAN7IP0 — ADCAN6IP2 ADCAN6IP1 ADCAN6IP0 0044 — ICDIP2 ICDIP1 ICDIP0 — — — — — — — — 0400 ADCAN8IP0 — — — — — — — — — — — — 4000 ADCAN12IP2 ADCAN12IP1 ADCAN12IP0 — ADCAN9IP1 ADCAN9IP0 0444 Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 IPC16 0860 — — — — — — — — — U1EIP2 IPC18 0864 — — — — — — — — — PSESIP2 IPC23 086E — PWM2IP2 PWM2IP1 PWM2IP0 — PWM1IP2 PWM1IP1 PWM1IP0 — — IPC24 0870 — — — — — — — — — IPC25 0872 — AC2IP2 AC2IP1 AC2IP0 — — — — IPC27 0876 — ADCAN1IP2 ADCAN1IP1 ADCAN1IP0 — ADCAN0IP2 ADCAN0IP1 IPC28 0878 — ADCAN5IP2 ADCAN5IP1 ADCAN5IP0 — ADCAN4IP2 IPC29 087A — — — — — IPC35 0886 — — — — IPC37 088A — ADCAN8IP2 ADCAN8IP1 IPC38 088C — IPC39 088E — IPC43 0896 — — IPC44 0898 — ADFL0IP2 INTCON1 08C0 NSTDIS OVAERR INTCON2 08C2 GIE INTCON3 08C4 — Bit 5 — ADCAN10IP2 ADCAN10IP1 ADCAN10IP0 — ADCAN9IP2 ADCAN14IP2 ADCAN14IP1 ADCAN14IP0 — ADCAN13IP2 ADCAN13IP1 ADCAN13IP0 0040 — — — — — ADFL0IP1 ADFL0IP0 — OVBERR COVAERR COVBERR OVATE OVBTE COVTE SFTACERR DIV0ERR — DISI SWTRAP — — — — AIVTEN — — — — — — — — — NAE — INTCON4 08C6 — — — — — — — — INTTREG 08C8 — — — — ILR3 ILR2 ILR1 ILR0 Legend: — ADCAN11IP2 ADCAN11IP1 ADCAN11IP0 Bit 6 — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. — — — — — — — — I2C1BCIP2 I2C1BCIP0 — — — — 0040 — ADCMP1IP2 ADCMP1IP1 ADCMP1IP0 — — — — 4440 MATHERR ADDRERR STKERR OSCFAIL — 0000 — — — INT2EP INT1EP INT0EP 8000 — — DOOVR — — — APLL 0000 — — — — — — — SGHT 0000 VECNUM7 VECNUM6 VECNUM5 VECNUM4 VECNUM3 VECNUM2 VECNUM1 VECNUM0 0000 ADCMP1IP2 ADCMP1IP1 ADCMP1IP0 I2C1BCIP1 DS70005208E-page 37 dsPIC33EPXXGS202 FAMILY Addr. File Name Addr. TIMER1 THROUGH TIMER3 REGISTER MAP Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets TMR1 0100 Timer1 Register xxxx PR1 0102 Period Register 1 FFFF T1CON 0104 TMR2 0106 TON — TSIDL — — — TMR3HLD 0108 — — — TGATE TCKPS1 TCKPS0 — TSYNC TCS — 0000 Timer2 Register xxxx Timer3 Holding Register (for 32-bit timer operations only) xxxx TMR3 010A Timer3 Register xxxx PR2 010C Period Register 2 FFFF PR3 010E T2CON 0110 TON — TSIDL — — — — — — TGATE TCKPS1 TCKPS0 T32 — TCS — 0000 T3CON 0112 TON — TSIDL — — — — — — TGATE TCKPS1 TCKPS0 — — TCS — 0000 Legend: FFFF x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. TABLE 4-5: File Name Period Register 3 Addr. INPUT CAPTURE 1 REGISTER MAP Bit 15 Bit 14 Bit 13 IC1CON1 0140 — — ICSIDL IC1CON2 0142 — — — Bit 12 Bit 11 Bit 10 ICTSEL2 ICTSEL1 ICTSEL0 — — — Bit 9 Bit 8 — — — — Bit 7 Bit 6 Bit 5 — ICI1 ICI0 ICTRIG TRIGSTAT — Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 ICOV ICBNE ICM2 ICM1 ICM0 SYNCSEL4 SYNCSEL3 SYNCSEL2 SYNCSEL1 SYNCSEL0 All Resets 0000 000D IC1BUF 0144 Input Capture 1 Buffer Register xxxx IC1TMR 0146 Input Capture 1 Timer Register 0000 Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. TABLE 4-6: OUTPUT COMPARE 1 REGISTER MAP  2015-2018 Microchip Technology Inc. File Name Addr. Bit 15 Bit 14 Bit 13 OC1CON1 0900 — — OCSIDL OC1CON2 0902 FLTMD FLTOUT FLTTRIEN Bit 12 Bit 11 Bit 10 OCTSEL2 OCTSEL1 OCTSEL0 OCINV — — Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 — — — ENFLTA — — OCFLTA TRIGMODE OCM2 OCM1 OCM0 — OCTRIG TRIGSTAT OCTRIS SYNCSEL4 SYNCSEL3 SYNCSEL2 SYNCSEL1 SYNCSEL0 All Resets 0000 000C OC1RS 0904 Output Compare 1 Secondary Register xxxx OC1R 0906 Output Compare 1 Register xxxx OC1TMR 0908 Timer Value 1 Register xxxx Legend: x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. dsPIC33EPXXGS202 FAMILY DS70005208E-page 38 TABLE 4-4:  2015-2018 Microchip Technology Inc. TABLE 4-7: File Name PWM REGISTER MAP Addr. Bit 15 Bit 14 Bit 13 PTCON 0C00 PTEN — PTCON2 0C02 — — Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 PTSIDL SESTAT SEIEN EIPU SYNCPOL SYNCOEN SYNCEN — — — — PTPER 0C04 SEVTCMP 0C06 MDC 0C0A STCON 0C0E — — — STCON2 0C10 — — — STPER 0C12 — Bit 12 — Bit 4 SYNCSRC2 SYNCSRC1 SYNCSRC0 — — Bit 3 SEVTPS3 — Bit 2 Bit 1 Bit 0 PCLKDIV 0000 FFF8 — — — MDC SESTAT SEIEN — EIPU — SYNCPOL SYNCOEN SYNCEN — — — — — — SEVTPS3 — SEVTPS2 SEVTPS1 SEVTPS0 0000 — PCLKDIV 0000 FFF8 PWM Secondary Special Event Compare Register (SSEVTCMP) PWMKEY 0C1E — — — — — 0000 0000 SYNCSRC2 SYNCSRC1 SYNCSRC0 PWM Secondary Master Time Base Period Register (STPER) 0C1A CHPCLKEN All Resets SEVTPS2 SEVTPS1 SEVTPS0 0000 — PWM Special Event Compare Register (SEVTCMP12:0>) CHOP CHOPCLK6 CHOPCLK5 CHOPCLK4 CHOPCLK3 CHOPCLK2 CHOPCLK1 CHOPCLK0 — — — 0000 — — — 0000 PWM Protection Lock/Unlock Key Value Register (PWMKEY) 0000 Addr. PWM GENERATOR 1 REGISTER MAP Bit 15 PWMCON1 0C20 FLTSTAT PENH Bit 14 Bit 13 CLSTAT TRGSTAT PENL Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 DTC1 DTC0 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets FLTIEN CLIEN TRGIEN ITB MDCS — — MTBS CAM XPRES IUE 0000 POLH POLL PMOD1 PMOD0 OVRENH OVRENL OVRDAT1 OVRDAT0 FLTDAT1 FLTDAT0 CLDAT1 CLDAT0 SWAP OSYNC C000 CLSRC3 CLSRC2 CLSRC1 CLSRC0 CLPOL CLMOD FLTSRC4 FLTSRC2 FLTSRC1 FLTSRC0 FLTPOL FLTMOD1 FLTMOD0 00F8 DS70005208E-page 39 IOCON1 0C22 FCLCON1 0C24 IFLTMOD CLSRC4 PDC1 0C26 PWM Generator 1 Duty Cycle Register (PDC1) 0000 PHASE1 0C28 PWM Phase-Shift Value or Independent Time Base Period for the PWM Generator 1 Register (PHASE1) 0000 DTR1 0C2A — — DTR1 0000 ALTDTR1 0C2C — — ALTDTR1 0000 SDC1 0C2E SDC1 SPHASE1 0C30 SPHASE1 TRIG1 0C32 TRGCON1 0C34 TRGDIV3 TRGDIV2 TRGDIV1 TRGDIV0 STRIG1 0C36 STRGCMP — — — 0000 PWMCAP1 0C38 PWMCAP — — — 0000 BPHL BPLH BPLL 0000 — — — 0000 FLTSRC3 0000 0000 TRGCMP — FLTLEBEN — LEBCON1 0C3A PHR PHF PLR PLF CLLEBEN LEBDLY1 0C3C — — — — AUXCON1 0C3E HRPDIS HRDDIS — — Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. — — — — DTM — — — — LEB BLANKSEL3 BLANKSEL2 BLANKSEL1 BLANKSEL0 — — — — TRGSTRT5 TRGSTRT4 TRGSTRT3 TRGSTRT2 TRGSTRT1 TRGSTRT0 BCH BCL BPHH CHOPSEL3 CHOPSEL2 CHOPSEL1 CHOPSEL0 CHOPHEN CHOPLEN 0000 0000 0000 dsPIC33EPXXGS202 FAMILY — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. TABLE 4-8: File Name Bit 5 PWM Primary Master Time Base Period Register (PTPER) SSEVTCMP 0C14 Legend: — Bit 6 File Name Addr. PWM GENERATOR 2 REGISTER MAP Bit 15 PWMCON2 0C40 FLTSTAT PENH Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 CLSTAT TRGSTAT PENL POLH CLSRC4 CLSRC3 Bit 9 Bit 8 Bit 7 Bit 6 DTC1 DTC0 Bit 5 Bit 4 Bit 3 FLTIEN CLIEN TRGIEN ITB MDCS — — POLL PMOD1 PMOD0 OVRENH OVRENL OVRDAT1 OVRDAT0 FLTDAT1 FLTDAT0 CLSRC2 CLSRC1 CLSRC0 CLPOL CLMOD FLTSRC4 FLTSRC3 FLTSRC2 FLTSRC1 FLTSRC0 Bit 0 All Resets XPRES IUE 0000 SWAP OSYNC C000 FLTMOD1 FLTMOD0 00F8 Bit 2 Bit 1 MTBS CAM CLDAT1 CLDAT0 FLTPOL IOCON2 0C42 FCLCON2 0C44 IFLTMOD PDC2 0C46 PWM Generator 2 Duty Cycle Register (PDC2) 0000 PHASE2 0C48 PWM Phase-Shift Value or Independent Time Base Period for the PWM Generator 2 Register (PHASE2) 0000 DTR2 0C4A — — DTR2 0000 ALTDTR2 0C4C — — ALTDTR2 0000 SDC2 0C4E SDC2 SPHASE2 0C50 SPHASE2 TRIG2 0C52 TRGCON2 0C54 TRGDIV3 TRGDIV2 TRGDIV1 TRGDIV0 STRIG2 0C56 STRGCMP — — — 0000 PWMCAP2 0C58 PWMCAP — — — 0000 BPHL BPLH BPLL 0000 — — — 0000 0000 0000 TRGCMP — FLTLEBEN — LEBCON2 0C5A PHR PHF PLR PLF CLLEBEN LEBDLY2 0C5C — — — — AUXCON2 0C5E HRPDIS HRDDIS — — Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. — — — — DTM — — — — LEB BLANKSEL3 BLANKSEL2 BLANKSEL1 BLANKSEL0 — — — — TRGSTRT5 TRGSTRT4 TRGSTRT3 TRGSTRT2 TRGSTRT1 TRGSTRT0 BCH BCL BPHH CHOPSEL3 CHOPSEL2 CHOPSEL1 CHOPSEL0 CHOPHEN CHOPLEN 0000 0000 0000 dsPIC33EPXXGS202 FAMILY DS70005208E-page 40 TABLE 4-9:  2015-2018 Microchip Technology Inc.  2015-2018 Microchip Technology Inc. TABLE 4-10: File Name Addr. PWM GENERATOR 3 REGISTER MAP Bit 15 PWMCON3 0C60 FLTSTAT PENH Bit 14 Bit 13 CLSTAT TRGSTAT PENL Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 DTC1 DTC0 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets FLTIEN CLIEN TRGIEN ITB MDCS — — MTBS CAM XPRES IUE 0000 POLH POLL PMOD1 PMOD0 OVRENH OVRENL OVRDAT1 OVRDAT0 FLTDAT1 FLTDAT0 CLDAT1 CLDAT0 SWAP OSYNC C000 CLSRC3 CLSRC2 CLSRC1 CLSRC0 CLPOL CLMOD FLTSRC4 FLTSRC2 FLTSRC1 FLTSRC0 FLTPOL FLTMOD1 FLTMOD0 00F8 IOCON3 0C62 FCLCON3 0C64 IFLTMOD CLSRC4 PDC3 0C66 PWM Generator 3 Duty Cycle Value Register (PDC3) 0000 PHASE3 0C68 Phase-Shift Value or Independent Time Base Period for the PWM Generator 3 Register (PHASE3) 0000 DTR3 0C6A — — DTR3 0000 ALTDTR3 0C6C — — ALTDTR3 0000 SDC3 0C6E SDC3 SPHASE3 0C70 SPHASE3 TRIG3 0C72 TRGCON3 0C74 TRGDIV3 TRGDIV2 TRGDIV1 TRGDIV0 STRIG3 0C76 STRGCMP — — — 0000 PWMCAP3 0C78 PWMCAP — — — 0000 BPHL BPLH BPLL 0000 — — — 0000 FLTSRC3 0000 0000 TRGCMP — LEBCON3 0C7A PHR PHF PLR PLF CLLEBEN LEBDLY3 0C7C — — — — AUXCON3 0C7E HRPDIS HRDDIS — — Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. — — — DTM — — — — LEB BLANKSEL3 BLANKSEL2 BLANKSEL1 BLANKSEL0 — — — — 0000 TRGSTRT5 TRGSTRT4 TRGSTRT3 TRGSTRT2 TRGSTRT1 TRGSTRT0 0000 BCH BCL BPHH CHOPSEL3 CHOPSEL2 CHOPSEL1 CHOPSEL0 CHOPHEN CHOPLEN 0000 DS70005208E-page 41 dsPIC33EPXXGS202 FAMILY FLTLEBEN — — I2C1 REGISTER MAP File Name Addr. Bit 15 Bit 14 Bit 13 I2C1CONL 0200 I2CEN — I2CSIDL I2C1CONH 0202 — — — — — I2C1STAT 0204 ACKTIM — I2C1ADD 0206 — — — I2C1MSK 0208 — — — I2C1BRG 020A I2C1TRN 020C — — — — — — — — I2C1 Transmit Register 00FF I2C1RCV 020E — — — — — — — — I2C1 Receive Register 0000 Legend: ACKSTAT TRSTAT RSEN SEN 1000 AHEN DHEN 0000 RBF TBF 0000 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 2 Bit 1 A10M DISSLW SMEN GCEN STREN ACKDT ACKEN — — — — PCIE SCIE BOEN RCEN PEN SDAHT SBCDE — BCL GCSTAT ADD10 IWCOL I2COV D_A P S R_W — — — I2C1 Address Register 0000 — — — I2C1 Address Mask Register 0000 0000 UART1 REGISTER MAP Addr. U1MODE 0220 UARTEN U1STA 0222 UTXISEL1 U1TXREG 0224 — U1RXREG 0226 — Bit 15 Bit 14 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 12 — USIDL IREN RTSMD — UEN1 UEN0 UTXINV UTXISEL0 — UTXBRK UTXEN UTXBF TRMT WAKE LPBACK — — — — — — UART1 Transmit Register xxxx — — — — — — UART1 Receive Register 0000 URXISEL1 URXISEL0 Bit 0 All Resets Bit 13 0228 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 ABAUD URXINV BRGH PDSEL1 PDSEL0 STSEL 0000 ADDEN RIDLE PERR FERR OERR URXDA 0110 Baud Rate Generator Prescaler Register 0000 x = unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. TABLE 4-13: SPI1 REGISTER MAP  2015-2018 Microchip Technology Inc. File Name Addr. Bit 15 Bit 14 Bit 13 SPI1STAT 0240 SPIEN — SPISIDL SPI1CON1 0242 — — — SPI1CON2 0244 FRMEN SPIFSD FRMPOL SPI1BUF 0248 Legend: All Resets Bit 9 SCLREL STRICT Bit 3 Bit 0 Bit 10 Baud Rate Generator Register File Name Legend: Bit 11 — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. TABLE 4-12: U1BRG Bit 12 All Resets Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 — — SPIBEC2 SPIBEC1 SPIBEC0 SRMPT SPIROV SRXMPT SISEL2 SISEL1 SISEL0 SPITBF SPIRBF 0000 SMP CKE SSEN CKP MSTEN SPRE2 SPRE1 SPRE0 PPRE1 PPRE0 0000 — — — — — — — — FRMDLY SPIBEN 0000 DISSCK DISSDO MODE16 — — — — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. SPI1 Transmit and Receive Buffer Register 0000 dsPIC33EPXXGS202 FAMILY DS70005208E-page 42 TABLE 4-11:  2015-2018 Microchip Technology Inc. TABLE 4-14: ADC REGISTER MAP File Name Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 ADCON1L 0300 ADON — ADSIDL — — — — — NRE ADCON1H 0302 — — — — — — — — FORM ADCON2L 0304 REFCIE REFERCIE — EIEN — SHREISEL2 SHREISEL1 SHREISEL0 — ADCON2H 0306 REFRDY REFERR — — — — SHRSAMC9 SHRSAMC8 ADCON3L 0308 REFSEL2 REFSEL1 REFSEL0 SUSPEND SUSPCIE SUSPRDY SHRSAMP ADCON3H 030A CLKSEL1 CLKSEL0 CLKDIV5 CLKDIV4 CLKDIV3 CLKDIV2 ADCON4L 030C — — — — — ADCON4H 030E — — — — ADMOD0L 0310 — SIGN7 — ADMOD0H 0312 — — DIFF14 ADIEL 0320 — ADSTATL 0330 — ADCMP0ENL 0338 — ADCMP0LO 033C ADC CMPLO Register ADCMP0HI 033E ADC CMPHI Register ADCMP1ENL 0340 ADCMP1LO 0344 ADC CMPLO Register 0000 ADCMP1HI 0346 ADC CMPHI Register 0000 ADFL0DAT 0368 ADC FLDATA Register ADFL0CON 036A FLEN MODE1 MODE0 ADTRIG0L 0380 — — — ADTRIG0H 0382 — — ADTRIG1L 0384 — ADTRIG1H 0386 ADTRIG2L Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets — — — — — — — 1000 SHRRES1 SHRRES0 — — — — — 0060 SHRADCS6 SHRADCS5 SHRADCS4 SHRADCS3 SHRADCS2 SHRADCS1 SHRADCS0 0000 SHRSAMC7 SHRSAMC6 SHRSAMC5 SHRSAMC4 SHRSAMC3 SHRSAMC2 SHRSAMC1 SHRSAMC0 0000 CNVRTCH SWLCTRG SWCTRG CNVCHSEL5 CNVCHSEL4 CNVCHSEL3 CNVCHSEL2 CNVCHSEL1 CNVCHSEL0 0000 CLKDIV1 CLKDIV0 SHREN — — — — — C1EN C0EN 0000 — r r — — — — — — SAMC1EN SAMC0EN 0000 — — — — — — — — C1CHS1 C1CHS0 C0CHS1 C0CHS0 0000 SIGN6 — SIGN5 — SIGN4 — SIGN3 — SIGN2 DIFF1 SIGN1 DIFF0 SIGN0 0000 SIGN14 — SIGN13 — SIGN12 — SIGN11 — SIGN10 — SIGN9 — SIGN8 0000 AN6RDY AN5RDY AN4RDY AN3RDY AN2RDY AN1RDY AN0RDY Bit 6 IE AN14RDY AN13RDY AN12RDY AN11RDY AN10RDY AN9RDY AN8RDY AN7RDY 0000 CMPEN CMPEN14 — 0000 0000 0000 — CMPEN OVRSAM1 OVRSAM0 IE RDY 0000 0000 DS70005208E-page 43 — — — TRGSRC1 — — — TRGSRC0 0000 — TRGSRC3 — — — TRGSRC2 0000 — — TRGSRC5 — — — TRGSRC4 0000 — — — TRGSRC7 — — — TRGSRC6 0000 0388 — — — TRGSRC9 — — — TRGSRC8 0000 ADTRIG2H 038A — — — TRGSRC11 — — — TRGSRC10 0000 ADTRIG3L 038C — — — TRGSRC13 — — — TRGSRC12 0000 ADTRIG3H 038E — — — — — — — — — — — TRGSRC14 ADCMP0CON 03A0 — — — CHNL4 CHNL3 CHNL2 CHNL1 CHNL0 CMPEN IE STAT BTWN HIHI HILO LOHI LOLO 0000 ADCMP1CON 03A4 — — — CHNL4 CHNL3 CHNL2 CHNL1 CHNL0 CMPEN IE STAT BTWN HIHI HILO LOHI LOLO 0000 ADLVLTRGL 03D0 — ADCORE0L 03D4 — — — — — — ADCORE0H 03D6 — — — EISEL2 EISEL1 EISEL0 ADCORE1L 03D8 — — — — — — ADCORE1H 03DA — — — EISEL2 EISEL1 EISEL0 ADEIEL 03F0 — EIEN 1 1 (2 or 3) None CPBGT CPBGT Wb,Wn,Expr Compare Wb with Wn, branch if > 1 1 (5) None CPSLT CPSLT Wb,Wn Compare Wb with Wn, skip if < 1 1 (2 or 3) None CPBLT CPBLT Wb,Wn,Expr Compare Wb with Wn, branch if < 1 1 (5) None CPSNE CPSNE Wb,Wn Compare Wb with Wn, skip if  1 1 (2 or 3) None CPBNE CPBNE Wb,Wn,Expr Compare Wb with Wn, branch if  1 1 (5) None 22 23 24 25 Note: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.  2015-2018 Microchip Technology Inc. DS70005208E-page 255 dsPIC33EPXXGS202 FAMILY TABLE 23-2: Base Instr # Assembly Mnemonic 26 CTXTSWP INSTRUCTION SET OVERVIEW (CONTINUED) Assembly Syntax # of # of Words Cycles Description Status Flags Affected CTXTSWP #1it3 Switch CPU register context to context defined by lit3 1 2 None CTXTSWP Wn Switch CPU register context to context defined by Wn 1 2 None 27 DAW DAW Wn Wn = decimal adjust Wn 1 1 C 28 DEC DEC f f=f–1 1 1 C,DC,N,OV,Z DEC f,WREG WREG = f – 1 1 1 C,DC,N,OV,Z DEC Ws,Wd Wd = Ws – 1 1 1 C,DC,N,OV,Z DEC2 f f=f–2 1 1 C,DC,N,OV,Z DEC2 f,WREG WREG = f – 2 1 1 C,DC,N,OV,Z DEC2 Ws,Wd Wd = Ws – 2 1 1 C,DC,N,OV,Z 29 DEC2 30 DISI DISI #lit14 Disable Interrupts for k instruction cycles 1 1 None 31 DIV DIV.S Wm,Wn Signed 16/16-bit Integer Divide 1 18 N,Z,C,OV DIV.SD Wm,Wn Signed 32/16-bit Integer Divide 1 18 N,Z,C,OV DIV.U Wm,Wn Unsigned 16/16-bit Integer Divide 1 18 N,Z,C,OV DIV.UD Wm,Wn Unsigned 32/16-bit Integer Divide 1 18 N,Z,C,OV 32 DIVF DIVF Wm,Wn Signed 16/16-bit Fractional Divide 1 18 N,Z,C,OV 33 DO DO #lit15,Expr Do code to PC + Expr, lit15 + 1 times 2 2 None DO Wn,Expr Do code to PC + Expr, (Wn) + 1 times 2 2 None 34 ED ED Wm*Wm,Acc,Wx,Wy,Wxd Euclidean Distance (no accumulate) 1 1 OA,OB,OAB, SA,SB,SAB 35 EDAC EDAC Wm*Wm,Acc,Wx,Wy,Wxd Euclidean Distance 1 1 OA,OB,OAB, SA,SB,SAB None 36 EXCH EXCH Wns,Wnd Swap Wns with Wnd 1 1 37 FBCL FBCL Ws,Wnd Find Bit Change from Left (MSb) Side 1 1 C 38 FF1L FF1L Ws,Wnd Find First One from Left (MSb) Side 1 1 C 39 FF1R FF1R Ws,Wnd Find First One from Right (LSb) Side 1 1 C 40 GOTO GOTO Expr Go to address 2 4 None GOTO Wn Go to indirect 1 4 None GOTO.L Wn Go to indirect (long address) 1 4 None INC f f=f+1 1 1 C,DC,N,OV,Z INC f,WREG WREG = f + 1 1 1 C,DC,N,OV,Z INC Ws,Wd Wd = Ws + 1 1 1 C,DC,N,OV,Z INC2 f f=f+2 1 1 C,DC,N,OV,Z INC2 f,WREG WREG = f + 2 1 1 C,DC,N,OV,Z INC2 Ws,Wd Wd = Ws + 2 1 1 C,DC,N,OV,Z IOR f f = f .IOR. WREG 1 1 N,Z IOR f,WREG WREG = f .IOR. WREG 1 1 N,Z IOR #lit10,Wn Wd = lit10 .IOR. Wd 1 1 N,Z IOR Wb,Ws,Wd Wd = Wb .IOR. Ws 1 1 N,Z IOR Wb,#lit5,Wd Wd = Wb .IOR. lit5 1 1 N,Z 1 1 OA,OB,OAB, SA,SB,SAB 41 42 43 INC INC2 IOR 44 LAC LAC Wso,#Slit4,Acc Load Accumulator 45 LNK LNK #lit14 Link Frame Pointer 1 1 SFA 46 LSR LSR f f = Logical Right Shift f 1 1 C,N,OV,Z LSR f,WREG WREG = Logical Right Shift f 1 1 C,N,OV,Z LSR Ws,Wd Wd = Logical Right Shift Ws 1 1 C,N,OV,Z LSR Wb,Wns,Wnd Wnd = Logical Right Shift Wb by Wns 1 1 N,Z LSR Wb,#lit5,Wnd Wnd = Logical Right Shift Wb by lit5 1 1 N,Z Note: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle. DS70005208E-page 256  2015-2018 Microchip Technology Inc. dsPIC33EPXXGS202 FAMILY TABLE 23-2: Base Instr # Assembly Mnemonic 47 MAC 48 49 MOV MOVPAG INSTRUCTION SET OVERVIEW (CONTINUED) Assembly Syntax Description # of # of Words Cycles Status Flags Affected MAC Wm*Wn,Acc,Wx,Wxd,Wy,Wyd,AWB Multiply and Accumulate 1 1 OA,OB,OAB, SA,SB,SAB MAC Wm*Wm,Acc,Wx,Wxd,Wy,Wyd Square and Accumulate 1 1 OA,OB,OAB, SA,SB,SAB MOV f,Wn Move f to Wn 1 1 None MOV f Move f to f 1 1 None MOV f,WREG Move f to WREG 1 1 None MOV #lit16,Wn Move 16-bit literal to Wn 1 1 None MOV.b #lit8,Wn Move 8-bit literal to Wn 1 1 None MOV Wn,f Move Wn to f 1 1 None MOV Wso,Wdo Move Ws to Wd 1 1 None MOV WREG,f Move WREG to f 1 1 None MOV.D Wns,Wd Move Double from W(ns):W(ns + 1) to Wd 1 2 None MOV.D Ws,Wnd Move Double from Ws to W(nd + 1):W(nd) 1 2 None MOVPAG #lit10,DSRPAG Move 10-bit literal to DSRPAG 1 1 None MOVPAG #lit8,TBLPAG Move 8-bit literal to TBLPAG 1 1 None MOVPAGW Ws, DSRPAG Move Ws to DSRPAG 1 1 None MOVPAGW Ws, TBLPAG Move Ws to TBLPAG 1 1 None 50 MOVSAC MOVSAC Acc,Wx,Wxd,Wy,Wyd,AWB Prefetch and store accumulator 1 1 None 51 MPY MPY Wm*Wn,Acc,Wx,Wxd,Wy,Wyd Multiply Wm by Wn to Accumulator 1 1 OA,OB,OAB, SA,SB,SAB MPY Wm*Wm,Acc,Wx,Wxd,Wy,Wyd Square Wm to Accumulator 1 1 OA,OB,OAB, SA,SB,SAB 52 MPY.N MPY.N Wm*Wn,Acc,Wx,Wxd,Wy,Wyd -(Multiply Wm by Wn) to Accumulator 1 1 None 53 MSC MSC Wm*Wm,Acc,Wx,Wxd,Wy,Wyd,AWB Multiply and Subtract from Accumulator 1 1 OA,OB,OAB, SA,SB,SAB 54 MUL MUL.SS Wb,Ws,Wnd {Wnd + 1, Wnd} = signed(Wb) * signed(Ws) 1 1 None MUL.SS Wb,Ws,Acc Accumulator = signed(Wb) * signed(Ws) 1 1 None MUL.SU Wb,Ws,Wnd {Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws) 1 1 None MUL.SU Wb,Ws,Acc Accumulator = signed(Wb) * unsigned(Ws) 1 1 None MUL.SU Wb,#lit5,Acc Accumulator = signed(Wb) * unsigned(lit5) 1 1 None MUL.US Wb,Ws,Wnd {Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws) 1 1 None MUL.US Wb,Ws,Acc Accumulator = unsigned(Wb) * signed(Ws) 1 1 None MUL.UU Wb,Ws,Wnd {Wnd + 1, Wnd} = unsigned(Wb) * unsigned(Ws) 1 1 None MUL.UU Wb,#lit5,Acc Accumulator = unsigned(Wb) * unsigned(lit5) 1 1 None MUL.UU Wb,Ws,Acc Accumulator = unsigned(Wb) * unsigned(Ws) 1 1 None MULW.SS Wb,Ws,Wnd Wnd = signed(Wb) * signed(Ws) 1 1 None MULW.SU Wb,Ws,Wnd Wnd = signed(Wb) * unsigned(Ws) 1 1 None MULW.US Wb,Ws,Wnd Wnd = unsigned(Wb) * signed(Ws) 1 1 None MULW.UU Wb,Ws,Wnd Wnd = unsigned(Wb) * unsigned(Ws) 1 1 None MUL.SU Wb,#lit5,Wnd {Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5) 1 1 None MUL.SU Wb,#lit5,Wnd Wnd = signed(Wb) * unsigned(lit5) 1 1 None MUL.UU Wb,#lit5,Wnd {Wnd + 1, Wnd} = unsigned(Wb) * unsigned(lit5) 1 1 None MUL.UU Wb,#lit5,Wnd Wnd = unsigned(Wb) * unsigned(lit5) 1 1 None MUL f W3:W2 = f * WREG 1 1 None Note: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.  2015-2018 Microchip Technology Inc. DS70005208E-page 257 dsPIC33EPXXGS202 FAMILY TABLE 23-2: Base Instr # Assembly Mnemonic 55 NEG 56 57 NOP POP INSTRUCTION SET OVERVIEW (CONTINUED) Assembly Syntax PUSH Status Flags Affected NEG Acc Negate Accumulator 1 1 OA,OB,OAB, SA,SB,SAB NEG f f=f+1 1 1 C,DC,N,OV,Z NEG f,WREG WREG = f + 1 1 1 C,DC,N,OV,Z NEG Ws,Wd Wd = Ws + 1 1 1 C,DC,N,OV,Z NOP No Operation 1 1 None NOPR No Operation 1 1 None None POP f Pop f from Top-of-Stack (TOS) 1 1 POP Wdo Pop from Top-of-Stack (TOS) to Wdo 1 1 None POP.D Wnd Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1) 1 2 None Pop Shadow Registers 1 1 All f Push f to Top-of-Stack (TOS) 1 1 None PUSH Wso Push Wso to Top-of-Stack (TOS) 1 1 None PUSH.D Wns Push W(ns):W(ns + 1) to Top-of-Stack (TOS) 1 2 None POP.S 58 # of # of Words Cycles Description PUSH Push Shadow Registers 1 1 None 59 PWRSAV PWRSAV #lit1 Go into Sleep or Idle mode 1 1 WDTO,SLEEP 60 RCALL RCALL Expr Relative Call 1 4 SFA RCALL Wn Computed Call 1 4 SFA REPEAT #lit15 Repeat Next Instruction lit15 + 1 times 1 1 None REPEAT Wn Repeat Next Instruction (Wn) + 1 times 1 1 None None PUSH.S 61 REPEAT 62 RESET RESET Software device Reset 1 1 63 RETFIE RETFIE Return from interrupt 1 6 (5) SFA 64 RETLW RETLW Return with literal in Wn 1 6 (5) SFA 65 RETURN RETURN Return from Subroutine 1 6 (5) SFA 66 RLC RLC f f = Rotate Left through Carry f 1 1 C,N,Z RLC f,WREG WREG = Rotate Left through Carry f 1 1 C,N,Z RLC Ws,Wd Wd = Rotate Left through Carry Ws 1 1 C,N,Z RLNC f f = Rotate Left (No Carry) f 1 1 N,Z RLNC f,WREG WREG = Rotate Left (No Carry) f 1 1 N,Z RLNC Ws,Wd Wd = Rotate Left (No Carry) Ws 1 1 N,Z RRC f f = Rotate Right through Carry f 1 1 C,N,Z RRC f,WREG WREG = Rotate Right through Carry f 1 1 C,N,Z RRC Ws,Wd Wd = Rotate Right through Carry Ws 1 1 C,N,Z RRNC f f = Rotate Right (No Carry) f 1 1 N,Z RRNC f,WREG WREG = Rotate Right (No Carry) f 1 1 N,Z RRNC Ws,Wd Wd = Rotate Right (No Carry) Ws 1 1 N,Z SAC Acc,#Slit4,Wdo Store Accumulator 1 1 None SAC.R Acc,#Slit4,Wdo Store Rounded Accumulator 1 1 None C,N,Z 67 68 69 70 RLNC RRC RRNC SAC #lit10,Wn 71 SE SE Ws,Wnd Wnd = sign-extended Ws 1 1 72 SETM SETM f f = 0xFFFF 1 1 None SETM WREG WREG = 0xFFFF 1 1 None 73 SFTAC SETM Ws Ws = 0xFFFF 1 1 None SFTAC Acc,Wn Arithmetic Shift Accumulator by (Wn) 1 1 OA,OB,OAB, SA,SB,SAB SFTAC Acc,#Slit6 Arithmetic Shift Accumulator by Slit6 1 1 OA,OB,OAB, SA,SB,SAB Note: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle. DS70005208E-page 258  2015-2018 Microchip Technology Inc. dsPIC33EPXXGS202 FAMILY TABLE 23-2: Base Instr # Assembly Mnemonic 74 SL 75 76 77 78 79 SUB SUBB SUBR SUBBR SWAP INSTRUCTION SET OVERVIEW (CONTINUED) Assembly Syntax Description # of # of Words Cycles Status Flags Affected SL f f = Left Shift f 1 1 SL f,WREG WREG = Left Shift f 1 1 C,N,OV,Z C,N,OV,Z SL Ws,Wd Wd = Left Shift Ws 1 1 C,N,OV,Z SL Wb,Wns,Wnd Wnd = Left Shift Wb by Wns 1 1 N,Z SL Wb,#lit5,Wnd Wnd = Left Shift Wb by lit5 1 1 N,Z SUB Acc Subtract Accumulators 1 1 OA,OB,OAB, SA,SB,SAB SUB f f = f – WREG 1 1 C,DC,N,OV,Z SUB f,WREG WREG = f – WREG 1 1 C,DC,N,OV,Z SUB #lit10,Wn Wn = Wn – lit10 1 1 C,DC,N,OV,Z SUB Wb,Ws,Wd Wd = Wb – Ws 1 1 C,DC,N,OV,Z SUB Wb,#lit5,Wd Wd = Wb – lit5 1 1 C,DC,N,OV,Z SUBB f f = f – WREG – (C) 1 1 C,DC,N,OV,Z SUBB f,WREG WREG = f – WREG – (C) 1 1 C,DC,N,OV,Z SUBB #lit10,Wn Wn = Wn – lit10 – (C) 1 1 C,DC,N,OV,Z SUBB Wb,Ws,Wd Wd = Wb – Ws – (C) 1 1 C,DC,N,OV,Z SUBB Wb,#lit5,Wd Wd = Wb – lit5 – (C) 1 1 C,DC,N,OV,Z SUBR f f = WREG – f 1 1 SUBR f,WREG WREG = WREG – f 1 1 C,DC,N,OV,Z SUBR Wb,Ws,Wd Wd = Ws – Wb 1 1 C,DC,N,OV,Z C,DC,N,OV,Z SUBR Wb,#lit5,Wd Wd = lit5 – Wb 1 1 C,DC,N,OV,Z SUBBR f f = WREG – f – (C) 1 1 C,DC,N,OV,Z SUBBR f,WREG WREG = WREG – f – (C) 1 1 C,DC,N,OV,Z SUBBR Wb,Ws,Wd Wd = Ws – Wb – (C) 1 1 C,DC,N,OV,Z SUBBR Wb,#lit5,Wd Wd = lit5 – Wb – (C) 1 1 C,DC,N,OV,Z SWAP.b Wn Wn = nibble swap Wn 1 1 SWAP Wn Wn = byte swap Wn 1 1 None None 80 TBLRDH TBLRDH Ws,Wd Read Prog to Wd 1 5 None 81 TBLRDL TBLRDL Ws,Wd Read Prog to Wd 1 5 None 82 TBLWTH TBLWTH Ws,Wd Write Ws to Prog 1 2 None 83 TBLWTL TBLWTL Ws,Wd Write Ws to Prog 1 2 None 84 ULNK ULNK Unlink Frame Pointer 1 1 SFA 85 XOR XOR f f = f .XOR. WREG 1 1 N,Z XOR f,WREG WREG = f .XOR. WREG 1 1 N,Z XOR #lit10,Wn Wd = lit10 .XOR. Wd 1 1 N,Z XOR Wb,Ws,Wd Wd = Wb .XOR. Ws 1 1 N,Z XOR Wb,#lit5,Wd Wd = Wb .XOR. lit5 1 1 N,Z ZE Ws,Wnd Wnd = Zero-extend Ws 1 1 C,Z,N 86 ZE Note: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.  2015-2018 Microchip Technology Inc. DS70005208E-page 259 dsPIC33EPXXGS202 FAMILY NOTES: DS70005208E-page 260  2015-2018 Microchip Technology Inc. dsPIC33EPXXGS202 FAMILY 24.0 DEVELOPMENT SUPPORT The PIC® microcontrollers (MCU) and dsPIC® digital signal controllers (DSC) are supported with a full range of software and hardware development tools: • Integrated Development Environment - MPLAB® X IDE Software • Compilers/Assemblers/Linkers - MPLAB XC Compiler - MPASMTM Assembler - MPLINKTM Object Linker/ MPLIBTM Object Librarian - MPLAB Assembler/Linker/Librarian for Various Device Families • Simulators - MPLAB X SIM Software Simulator • Emulators - MPLAB REAL ICE™ In-Circuit Emulator • In-Circuit Debuggers/Programmers - MPLAB ICD 3 - PICkit™ 3 • Device Programmers - MPLAB PM3 Device Programmer • Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits • Third-party development tools 24.1 MPLAB X Integrated Development Environment Software The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows®, Linux and Mac OS® X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for highperformance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface. With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users. Feature-Rich Editor: • Color syntax highlighting • Smart code completion makes suggestions and provides hints as you type • Automatic code formatting based on user-defined rules • Live parsing User-Friendly, Customizable Interface: • Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc. • Call graph window Project-Based Workspaces: • • • • Multiple projects Multiple tools Multiple configurations Simultaneous debugging sessions File History and Bug Tracking: • Local file history feature • Built-in support for Bugzilla issue tracker  2015-2018 Microchip Technology Inc. DS70005208E-page 261 dsPIC33EPXXGS202 FAMILY 24.2 MPLAB XC Compilers The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip’s 8, 16 and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X. For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE. The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications. MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include: • • • • • • Support for the entire device instruction set Support for fixed-point and floating-point data Command-line interface Rich directive set Flexible macro language MPLAB X IDE compatibility 24.3 MPASM Assembler The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs. The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel® standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging. The MPASM Assembler features include: 24.4 MPLINK Object Linker/ MPLIB Object Librarian The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script. The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications. The object linker/library features include: • Efficient linking of single libraries instead of many smaller files • Enhanced code maintainability by grouping related modules together • Flexible creation of libraries with easy module listing, replacement, deletion and extraction 24.5 MPLAB Assembler, Linker and Librarian for Various Device Families MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include: • • • • • • Support for the entire device instruction set Support for fixed-point and floating-point data Command-line interface Rich directive set Flexible macro language MPLAB X IDE compatibility • Integration into MPLAB X IDE projects • User-defined macros to streamline assembly code • Conditional assembly for multipurpose source files • Directives that allow complete control over the assembly process DS70005208E-page 262  2015-2018 Microchip Technology Inc. dsPIC33EPXXGS202 FAMILY 24.6 MPLAB X SIM Software Simulator The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers. The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool. 24.7 MPLAB REAL ICE In-Circuit Emulator System The MPLAB REAL ICE In-Circuit Emulator System is Microchip’s next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE. The emulator is connected to the design engineer’s PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, LowVoltage Differential Signal (LVDS) interconnection (CAT5). The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.  2015-2018 Microchip Technology Inc. 24.8 MPLAB ICD 3 In-Circuit Debugger System The MPLAB ICD 3 In-Circuit Debugger System is Microchip’s most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE. The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer’s PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers. 24.9 PICkit 3 In-Circuit Debugger/ Programmer The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer’s PC using a full-speed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming™ (ICSP™). 24.10 MPLAB PM3 Device Programmer The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications. DS70005208E-page 263 dsPIC33EPXXGS202 FAMILY 24.11 Demonstration/Development Boards, Evaluation Kits and Starter Kits A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification. The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory. 24.12 Third-Party Development Tools Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality. • Device Programmers and Gang Programmers from companies, such as SoftLog and CCS • Software Tools from companies, such as Gimpel and Trace Systems • Protocol Analyzers from companies, such as Saleae and Total Phase • Demonstration Boards from companies, such as MikroElektronika, Digilent® and Olimex • Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika® The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications. In addition to the PICDEM™ and dsPICDEM™ demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ® security ICs, CAN, IrDA®, PowerSmart battery management, SEEVAL® evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more. Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board. Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits. DS70005208E-page 264  2015-2018 Microchip Technology Inc. dsPIC33EPXXGS202 FAMILY 25.0 ELECTRICAL CHARACTERISTICS This section provides an overview of the dsPIC33EPXXGS202 family electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available. Absolute maximum ratings for the dsPIC33EPXXGS202 family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these, or any other conditions above the parameters indicated in the operation listings of this specification, is not implied. Absolute Maximum Ratings(1) Ambient temperature under bias.............................................................................................................-40°C to +125°C Storage temperature .............................................................................................................................. -65°C to +150°C Voltage on VDD with respect to VSS .......................................................................................................... -0.3V to +4.0V Voltage on any pin that is not 5V tolerant with respect to VSS(3)..................................................... -0.3V to (VDD + 0.3V) Voltage on any 5V tolerant pin with respect to VSS when VDD  3.0V(3) ................................................... -0.3V to +5.5V Voltage on any 5V tolerant pin with respect to VSS when VDD < 3.0V(3)................................................... -0.3V to +3.6V Maximum current out of VSS pin ...........................................................................................................................300 mA Maximum current into VDD pin(2) ...........................................................................................................................300 mA Maximum current sunk/sourced by any 4x I/O pin..................................................................................................15 mA Maximum current sunk/sourced by any 8x I/O pin ..................................................................................................25 mA Maximum current sunk by all ports(2) ....................................................................................................................200 mA Note 1: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those, or any other conditions above those indicated in the operation listings of this specification, is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. 2: Maximum allowable current is a function of device maximum power dissipation (see Table 25-2). 3: See the “Pin Diagrams” section for the 5V tolerant pins.  2015-2018 Microchip Technology Inc. DS70005208E-page 265 dsPIC33EPXXGS202 FAMILY 25.1 DC Characteristics TABLE 25-1: OPERATING MIPS vs. VOLTAGE VDD Range (in Volts) Characteristic Maximum MIPS Temperature Range (in °C) dsPIC33EPXXGS202 Family — 3.0V to 3.6V(1) -40°C to +85°C 70 — 3.0V to 3.6V(1) -40°C to +125°C 60 Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules (ADC, PGAs and comparators) may have degraded performance. Device functionality is tested but not characterized. Refer to Parameter BO10 in Table 25-13 for the minimum and maximum BOR values. TABLE 25-2: THERMAL OPERATING CONDITIONS Rating Symbol Min. Typ. Max. Unit Operating Junction Temperature Range TJ -40 — +125 °C Operating Ambient Temperature Range TA -40 — +85 °C Operating Junction Temperature Range TJ -40 — +140 °C Operating Ambient Temperature Range TA -40 — +125 °C Industrial Temperature Devices Extended Temperature Devices Power Dissipation: Internal Chip Power Dissipation: PINT = VDD x (IDD –  IOH) PD PINT + PI/O W PDMAX (TJ – TA)/JA W I/O Pin Power Dissipation: I/O =  ({VDD – VOH} x IOH) +  (VOL x IOL) Maximum Allowed Power Dissipation TABLE 25-3: THERMAL PACKAGING CHARACTERISTICS Characteristic Symbol Typ. Max. Unit Notes Package Thermal Resistance, 28-Pin QFN-S JA 30.0 — °C/W 1 Package Thermal Resistance, 28-Pin UQFN JA 26.0 — °C/W 1 Package Thermal Resistance, 28-Pin SOIC JA 69.7 — °C/W 1 Package Thermal Resistance, 28-Pin SSOP JA 71.0 — °C/W 1 Note 1: Junction to ambient thermal resistance, Theta-JA (JA) numbers are achieved by package simulations. DS70005208E-page 266  2015-2018 Microchip Technology Inc. dsPIC33EPXXGS202 FAMILY TABLE 25-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS Standard Operating Conditions: 3.0V to 3.6V(1) (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended DC CHARACTERISTICS Param Symbol No. Characteristic Min. Typ. Max. Units 3.0 — 3.6 V Conditions Operating Voltage DC10 VDD Supply Voltage (2) DC12 VDR RAM Data Retention Voltage 2.0 — — V DC16 VPOR VDD Start Voltage to Ensure Internal Power-on Reset Signal — — VSS V DC17 SVDD VDD Rise Rate to Ensure Internal Power-on Reset Signal 1.0 — — Note 1: 2: V/ms 0V-3V in 3 ms Device is functional at VBORMIN < VDD < VDDMIN. Analog modules (ADC, PGAs and comparators) may have degraded performance. Device functionality is tested but not characterized. Refer to Parameter BO10 in Table 25-13 for the minimum and maximum BOR values. This is the limit to which VDD may be lowered without losing RAM data. TABLE 25-5: FILTER CAPACITOR (CEFC) SPECIFICATIONS Standard Operating Conditions (unless otherwise stated): Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended Param No. Symbol CEFC Note 1: Characteristics External Filter Capacitor Value(1) Min. Typ. Max. Units Comments 4.7 10 — F Capacitor must have a low series resistance ( (VDD + 0.3) for non-5V tolerant pins only. Digital 5V tolerant pins do not have an internal high side diode to VDD, and therefore, cannot tolerate any “positive” input injection current. |Injection Currents| > 0 can affect the ADC results by approximately 4-6 counts. Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted, provided the mathematical “absolute instantaneous” sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested. DS70005208E-page 272  2015-2018 Microchip Technology Inc. dsPIC33EPXXGS202 FAMILY TABLE 25-11: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED) Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended DC CHARACTERISTICS Param Symbol No. IIL Characteristic Min. Typ.(1) Max. Units Conditions Input Leakage Current(2,3) DI50 I/O Pins 5V Tolerant(4) -1 — +1 A VSS  VPIN  VDD, pin at high-impedance DI51 I/O Pins Not 5V Tolerant(4) -1 — +1 A VSS  VPIN  VDD, pin at high-impedance, -40°C  TA  +85°C DI51a I/O Pins Not 5V Tolerant(4) -1 — +1 A Analog pins shared with external reference pins, -40°C  TA  +85°C DI51b I/O Pins Not 5V Tolerant(4) -1 — +1 A VSS  VPIN  VDD, pin at high-impedance, -40°C  TA  +125°C DI51c I/O Pins Not 5V Tolerant(4) -1 — +1 A Analog pins shared with external reference pins, -40°C  TA  +125°C DI55 MCLR -5 — +5 A VSS VPIN VDD DI56 OSC1 -5 — +5 A VSS VPIN VDD, XT and HS modes Note 1: 2: 3: 4: 5: 6: 7: 8: 9: Data in “Typ.” column is at 3.3V, +25°C unless otherwise stated. The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages. Negative current is defined as current sourced by the pin. See the “Pin Diagrams” section for the 5V tolerant I/O pins. VIL Source < (VSS – 0.3). Characterized but not tested. VIH source > (VDD + 0.3) for non-5V tolerant pins only. Digital 5V tolerant pins do not have an internal high side diode to VDD, and therefore, cannot tolerate any “positive” input injection current. |Injection Currents| > 0 can affect the ADC results by approximately 4-6 counts. Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted, provided the mathematical “absolute instantaneous” sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.  2015-2018 Microchip Technology Inc. DS70005208E-page 273 dsPIC33EPXXGS202 FAMILY TABLE 25-11: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED) Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended DC CHARACTERISTICS Param Symbol No. IICL Characteristic IICT 3: 4: 5: 6: 7: 8: 9: Units Conditions 0 — -5(5,8) mA All pins except VDD, VSS, AVDD, AVSS, MCLR, VCAP and RB7 0 — +5(6,7,8) mA All pins except VDD, VSS, AVDD, AVSS, MCLR, VCAP, RB7 and all 5V tolerant pins(7) -20(7) — +20(7) mA Absolute instantaneous sum of all ± input injection currents from all I/O pins ( | IICL | + | IICH | )  IICT Total Input Injection Current (sum of all I/O and control pins) Note 1: 2: Max. Input High Injection Current DI60b DI60c Typ.(1) Input Low Injection Current DI60a IICH Min. Data in “Typ.” column is at 3.3V, +25°C unless otherwise stated. The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages. Negative current is defined as current sourced by the pin. See the “Pin Diagrams” section for the 5V tolerant I/O pins. VIL Source < (VSS – 0.3). Characterized but not tested. VIH source > (VDD + 0.3) for non-5V tolerant pins only. Digital 5V tolerant pins do not have an internal high side diode to VDD, and therefore, cannot tolerate any “positive” input injection current. |Injection Currents| > 0 can affect the ADC results by approximately 4-6 counts. Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted, provided the mathematical “absolute instantaneous” sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested. DS70005208E-page 274  2015-2018 Microchip Technology Inc. dsPIC33EPXXGS202 FAMILY TABLE 25-12: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended DC CHARACTERISTICS Min.(1) Typ. Max. Units Output Low Voltage 4x Sink Driver Pins(2) — — 0.4 V VDD = 3.3V, IOL  6 mA, -40°C  TA  +85°C, IOL  5 mA, +85°C < TA  +125°C Output Low Voltage 8x Sink Driver Pins(3) — — 0.4 V VDD = 3.3V, IOL  12 mA, -40°C  TA  +85°C, IOL  8 mA, +85°C < TA  +125°C Output High Voltage 4x Source Driver Pins(2) 2.4 — — V IOH  -10 mA, VDD = 3.3V Output High Voltage 8x Source Driver Pins(3) 2.4 — — V IOH  -15 mA, VDD = 3.3V Output High Voltage 4x Source Driver Pins(2) 1.5 — — V IOH  -14 mA, VDD = 3.3V 2.0 — — V IOH  -12 mA, VDD = 3.3V 3.0 — — V IOH  -7 mA, VDD = 3.3V Param. Symbol DO10 VOL DO20 VOH DO20A VOH1 Characteristic Output High Voltage 8x Source Driver Pins(3) Note 1: 2: 3: Conditions 1.5 — — V IOH  -22 mA, VDD = 3.3V 2.0 — — V IOH  -18 mA, VDD = 3.3V 3.0 — — V IOH  -10 mA, VDD = 3.3V Parameters are for design guidance only and are not tested in manufacturing. 4x Drive Pins – RA, RB1, RB. 8x Drive Pins – MCLR, RA, RB0, RB, RB. TABLE 25-13: ELECTRICAL CHARACTERISTICS: BOR Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)(1) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended DC CHARACTERISTICS Param No. Symbol Characteristic Min.(2) Typ. Max. Units BOR Event on VDD Transition High-to-Low 2.65 — 2.95 V Conditions BO10 VBOR Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, PGAs and comparators) may have degraded performance. Parameters are for design guidance only and are not tested in manufacturing. The VBOR specification is relative to VDD. 2: 3:  2015-2018 Microchip Technology Inc. VDD (Notes 2, 3) DS70005208E-page 275 dsPIC33EPXXGS202 FAMILY TABLE 25-14: DC CHARACTERISTICS: PROGRAM MEMORY Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended DC CHARACTERISTICS Param Symbol No. Characteristic Min. Typ.(1) Max. 10,000 — — Units Conditions Program Flash Memory D130 EP Cell Endurance D131 VPR VDD for Read 3.0 — 3.6 V D132b VPEW VDD for Self-Timed Write 3.0 — 3.6 V D134 TRETD Characteristic Retention 20 — — Year Provided no other specifications are violated, -40C to +125C D135 IDDP Supply Current during Programming(2) — 10 — mA D136 IPEAK Instantaneous Peak Current During Start-up — — 150 mA D137a TPE Page Erase Time 19.7 — 20.1 ms TPE = 146893 FRC Cycles, TA = +85°C (Note 3) D137b TPE Page Erase Time 19.5 — 20.3 ms TPE = 146893 FRC Cycles, TA = +125°C (Note 3) D138a TWW Word Write Cycle Time 46.5 — 47.3 µs TWW = 346 FRC Cycles, TA = +85°C (Note 3) D138b TWW Word Write Cycle Time 46.0 — 47.9 µs TWW = 346 FRC Cycles, TA = +125°C (Note 3) D139a TRW Row Write Time 667 — 679 µs TRW = 4965 FRC Cycles, TA = +85°C (Note 3) D139b TRW Row Write Time 660 — 687 µs TRW = 4965 FRC Cycles, TA = +125°C (Note 3) Note 1: 2: 3: E/W -40C to +125C Data in “Typ.” column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested in manufacturing. Other conditions: FRC = 7.37 MHz, TUN = 011111 (for Min.), TUN = 100000 (for Max.). This parameter depends on the FRC accuracy (see Table 25-20) and the value of the FRC Oscillator Tuning register (see Register 8-4). For complete details on calculating the Minimum and Maximum time, see Section 5.3 “Programming Operations”. DS70005208E-page 276  2015-2018 Microchip Technology Inc. dsPIC33EPXXGS202 FAMILY 25.2 AC Characteristics and Timing Parameters This section defines the dsPIC33EPXXGS202 family AC characteristics and timing parameters. TABLE 25-15: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended Operating voltage VDD range as described in Section 25.1 “DC Characteristics”. AC CHARACTERISTICS FIGURE 25-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS Load Condition 1 – for all pins except OSC2 Load Condition 2 – for OSC2 VDD/2 CL Pin RL VSS CL Pin RL = 464 CL = 50 pF for all pins except OSC2 15 pF for OSC2 output VSS TABLE 25-16: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS Param Symbol No. DO50 Characteristic Min. Typ. Max. Units Conditions 15 pF In XT and HS modes, when external clock is used to drive OSC1 COSCO OSC2 Pin — — DO56 CIO All I/O Pins and OSC2 — — 50 pF EC mode DO58 CB SCL1, SDA1 — — 400 pF In I2C mode  2015-2018 Microchip Technology Inc. DS70005208E-page 277 dsPIC33EPXXGS202 FAMILY FIGURE 25-2: EXTERNAL CLOCK TIMING Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 OSC1 OS20 OS30 OS25 OS30 OS31 OS31 CLKO OS41 OS40 TABLE 25-17: EXTERNAL CLOCK TIMING REQUIREMENTS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended AC CHARACTERISTICS Param No. OS10 FIN OS20 TOSC OS25 Min. Typ.(1) Max. Units External CLKI Frequency (External clocks allowed only in EC and ECPLL modes) DC — 60 MHz EC Oscillator Crystal Frequency 3.5 10 — — 10 40 MHz MHz XT HS TOSC = 1/FOSC 8.33 — DC ns +125°C TOSC = 1/FOSC 7.14 — DC ns +85°C Instruction Cycle Time(2) 16.67 — DC ns +125°C Instruction Cycle Time(2) 14.28 — DC ns +85°C Symb TCY Characteristic Conditions OS30 TosL, TosH External Clock in (OSC1) High or Low Time 0.45 x TOSC — 0.55 x TOSC ns EC OS31 TosR, TosF External Clock in (OSC1) Rise or Fall Time — — 20 ns EC OS40 TckR CLKO Rise Time(3,4) — 5.2 — ns (3,4) OS41 TckF CLKO Fall Time — 5.2 — ns OS42 GM External Oscillator Transconductance(4) — 12 — mA/V HS, VDD = 3.3V, TA = +25°C — 6 — mA/V XT, VDD = 3.3V, TA = +25°C Note 1: 2: 3: 4: Data in “Typ.” column is at 3.3V, +25°C unless otherwise stated. Instruction cycle period (TCY) equals two times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type, under standard operating conditions, with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at “Minimum” values with an external clock applied to the OSC1 pin. When an external clock input is used, the “Maximum” cycle time limit is “DC” (no clock) for all devices. Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin. Parameters are for design guidance only and are not tested in manufacturing. DS70005208E-page 278  2015-2018 Microchip Technology Inc. dsPIC33EPXXGS202 FAMILY TABLE 25-18: PLL CLOCK TIMING SPECIFICATIONS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended AC CHARACTERISTICS Param No. Characteristic Min. Typ.(1) Max. Units FPLLI PLL Voltage Controlled Oscillator (VCO) Input Frequency Range 0.8 — 8.0 MHz OS51 FVCO On-Chip VCO System Frequency 120 — 340 MHz OS52 TLOCK PLL Start-up Time (Lock Time) 0.9 1.5 3.1 ms -3 0.5 3 % OS50 OS53 Symbol DCLK Note 1: 2: (2) CLKO Stability (Jitter) Conditions ECPLL, XTPLL modes Data in “Typ.” column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested in manufacturing. This jitter specification is based on clock cycle-by-clock cycle measurements. To get the effective jitter for individual time bases, or communication clocks used by the application, use the following formula: D CLK Effective Jitter = ------------------------------------------------------------------------------------------F OSC --------------------------------------------------------------------------------------Time Base or Communication Clock For example, if FOSC = 120 MHz and the SPI1 Bit Rate = 10 MHz, the effective jitter is as follows: D CLK D CLK D CLK Effective Jitter = -------------- = -------------- = -------------3.464 120 12 --------10 TABLE 25-19: AUXILIARY PLL CLOCK TIMING SPECIFICATIONS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended AC CHARACTERISTICS Param No. Symbol Characteristic Min Typ.(1) Max Units OS56 FHPOUT On-Chip 16x PLL CCO Frequency 112 118 120 MHz OS57 FHPIN On-Chip 16x PLL Phase Detector Input Frequency 7.0 7.37 7.5 MHz OS58 TSU Frequency Generator Lock Time — — 10 µs Note 1: Conditions Data in “Typ.” column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested in manufacturing.  2015-2018 Microchip Technology Inc. DS70005208E-page 279 dsPIC33EPXXGS202 FAMILY TABLE 25-20: INTERNAL FRC ACCURACY AC CHARACTERISTICS Param No. Characteristic Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended Min. Typ. Max. Units Conditions Internal FRC Accuracy @ FRC Frequency = 7.37 MHz(1,2) F20a FRC F20b FRC Note 1: 2: -2 0.5 +2 % -40°C  TA -10°C -0.9 0.5 +0.9 % -10°C  TA +85°C VDD = 3.0-3.6V -2 1 +2 % +85°C  TA  +125°C VDD = 3.0-3.6V VDD = 3.0-3.6V Frequency is calibrated at +25°C and 3.3V. TUNx bits can be used to compensate for temperature drift. Over the lifetime of the 28-Lead 4x4 UQFN package device, the internal FRC accuracy could vary between ±4%. TABLE 25-21: INTERNAL LPRC ACCURACY AC CHARACTERISTICS Param No. Characteristic Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended Min. Typ. Max. Units Conditions LPRC @ 32.768 kHz(1) F21a LPRC -30 — +30 % -40°C  TA  -10°C VDD = 3.0-3.6V -20 — +20 % -10°C  TA  +85°C VDD = 3.0-3.6V F21b LPRC -30 — +30 % +85°C  TA  +125°C VDD = 3.0-3.6V Note 1: This is the change of the LPRC frequency as VDD changes. DS70005208E-page 280  2015-2018 Microchip Technology Inc. dsPIC33EPXXGS202 FAMILY FIGURE 25-3: I/O TIMING CHARACTERISTICS I/O Pin (Input) DI35 DI40 I/O Pin (Output) New Value Old Value DO31 DO32 Note: Refer to Figure 25-1 for load conditions. TABLE 25-22: I/O TIMING REQUIREMENTS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended AC CHARACTERISTICS Param No. Symbol Characteristic Typ.(1) Max. Units — 5 10 ns DO31 TIOR DO32 TIOF Port Output Fall Time — 5 10 ns DI35 TINP INTx Pin High or Low Time (input) 20 — — ns TRBP CNx High or Low Time (input) 2 — — TCY DI40 Note 1: Port Output Rise Time Min. Conditions Data in “Typ.” column is at 3.3V, +25°C unless otherwise stated. FIGURE 25-4: BOR AND MASTER CLEAR RESET TIMING CHARACTERISTICS MCLR TMCLR (SY20) BOR TBOR (SY30) Various Delays (depending on configuration) Reset Sequence CPU Starts Fetching Code  2015-2018 Microchip Technology Inc. DS70005208E-page 281 dsPIC33EPXXGS202 FAMILY TABLE 25-23: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER TIMING REQUIREMENTS AC CHARACTERISTICS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended Param No. Min. Characteristic(1) Symbol Typ.(2) Max. Units Conditions SY00 TPU Power-up Period — 400 600 s SY10 TOST Oscillator Start-up Time — 1024 TOSC — — TOSC = OSC1 Period SY12 TWDT Watchdog Timer Time-out Period 0.81 — 1.22 ms WDTPRE = 0, WDTPOST = 0000, using LPRC tolerances indicated in F21a/F21b (see Table 25-21) at +85°C 3.25 — 4.88 ms WDTPRE = 1, WDTPOST = 0000, using LPRC tolerances indicated in F21a/F21b (see Table 25-21) at +85°C SY13 TIOZ I/O High-Impedance from MCLR Low or Watchdog Timer Reset 0.68 0.72 1.2 s SY20 TMCLR MCLR Pulse Width (low) 2 — — s SY30 TBOR BOR Pulse Width (low) 1 — — s SY35 TFSCM Fail-Safe Clock Monitor Delay — 500 900 s SY36 TVREG Voltage Regulator Standby-to-Active mode Transition Time — — 30 s SY37 TOSCDFRC FRC Oscillator Start-up Delay — — 29 s SY38 TOSCDLPRC LPRC Oscillator Start-up Delay — — 70 s Note 1: 2: -40°C to +85°C These parameters are characterized but not tested in manufacturing. Data in “Typ.” column is at 3.3V, +25°C unless otherwise stated. DS70005208E-page 282  2015-2018 Microchip Technology Inc. dsPIC33EPXXGS202 FAMILY FIGURE 25-5: TIMER1-TIMER3 EXTERNAL CLOCK TIMING CHARACTERISTICS TxCK Tx10 Tx11 Tx15 OS60 Tx20 TMRx Note: Refer to Figure 25-1 for load conditions. TABLE 25-24: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS(1) Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended AC CHARACTERISTICS Param No. TA10 Symbol TTXH Characteristic(2) T1CK High Time Min. Typ. Max. Units Conditions Synchronous mode Greater of: 20 or (TCY + 20)/N — — ns Must also meet Parameter TA15, N = Prescaler Value (1, 8, 64, 256) Asynchronous 35 — — ns Synchronous mode Greater of: 20 or (TCY + 20)/N — — ns TA11 TTXL T1CK Low Time TA15 TTXP T1CK Input Period OS60 Ft1 T1CK Oscillator Input Frequency Range (oscillator enabled by setting bit, TCS (T1CON)) TA20 TCKEXTMRL Delay from External T1CK Clock Edge to Timer Increment Note 1: 2: Asynchronous 10 — — ns Synchronous mode Greater of: 40 or (2 TCY + 40)/N — — ns DC — 50 kHz 0.75 TCY + 40 — 1.75 TCY + 40 ns Must also meet Parameter TA15, N = Prescaler Value (1, 8, 64, 256) N = Prescale Value (1, 8, 64, 256) Timer1 is a Type A timer. These parameters are characterized but not tested in manufacturing.  2015-2018 Microchip Technology Inc. DS70005208E-page 283 dsPIC33EPXXGS202 FAMILY TABLE 25-25: TIMER2 (TYPE B TIMER) EXTERNAL CLOCK TIMING REQUIREMENTS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended AC CHARACTERISTICS Param No. Characteristic(1) Symbol Min. Typ. Max. Units Conditions TB10 TtxH T2CK High Time Synchronous mode Greater of: 20 or (TCY + 20)/N — — ns Must also meet Parameter TB15, N = Prescale Value (1, 8, 64, 256) TB11 TtxL T2CK Low Synchronous Time mode Greater of: 20 or (TCY + 20)/N — — ns Must also meet Parameter TB15, N = Prescale Value (1, 8, 64, 256) TB15 TtxP T2CK Input Period Synchronous mode Greater of: 40 or (2 TCY + 40)/N — — ns N = Prescale Value (1, 8, 64, 256) TB20 TCKEXTMRL Delay from External T2CK Clock Edge to Timer Increment 0.75 TCY + 40 — 1.75 TCY + 40 ns Note 1: These parameters are characterized but not tested in manufacturing. TABLE 25-26: TIMER3 (TYPE C TIMER) EXTERNAL CLOCK TIMING REQUIREMENTS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended AC CHARACTERISTICS Param No. Symbol Characteristic(1) Min. Typ. Max. Units Conditions TC10 TtxH T3CK Synchronous High Time TCY + 20 — — ns Must also meet Parameter TC15 TC11 TtxL T3CK Low Time Synchronous TCY + 20 — — ns Must also meet Parameter TC15 TC15 TtxP T3CK Input Period Synchronous with Prescaler 2 TCY + 40 — — ns N = Prescale Value (1, 8, 64, 256) TC20 TCKEXTMRL Delay from External T3CK Clock Edge to Timer Increment 0.75 TCY + 40 — 1.75 TCY + 40 ns Note 1: These parameters are characterized but not tested in manufacturing. DS70005208E-page 284  2015-2018 Microchip Technology Inc. dsPIC33EPXXGS202 FAMILY FIGURE 25-6: INPUT CAPTURE 1 (IC1) TIMING CHARACTERISTICS IC1 IC10 IC11 IC15 Note: Refer to Figure 25-1 for load conditions. TABLE 25-27: INPUT CAPTURE 1 MODULE TIMING REQUIREMENTS AC CHARACTERISTICS Param. Symbol No. Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended Characteristics(1) Min. Max. Units Conditions IC10 TCCL IC1 Input Low Time Greater of: 12.5 + 25 or (0.5 TCY/N) + 25 — ns Must also meet Parameter IC15 IC11 TCCH IC1 Input High Time Greater of: 12.5 + 25 or (0.5 TCY/N) + 25 — ns Must also meet Parameter IC15 IC15 TCCP IC1 Input Period Greater of: 25 + 50 or (1 TCY/N) + 50 — ns Note 1: N = Prescale Value (1, 4, 16) These parameters are characterized but not tested in manufacturing.  2015-2018 Microchip Technology Inc. DS70005208E-page 285 dsPIC33EPXXGS202 FAMILY FIGURE 25-7: OUTPUT COMPARE 1 MODULE (OC1) TIMING CHARACTERISTICS OC1 (Output Compare 1 or PWM Mode) OC11 OC10 Note: Refer to Figure 25-1 for load conditions. TABLE 25-28: OUTPUT COMPARE 1 MODULE TIMING REQUIREMENTS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended AC CHARACTERISTICS Param Symbol No. Characteristic(1) Min. Typ. Max. Units Conditions OC10 TccF OC1 Output Fall Time — — — ns See Parameter DO32 OC11 TccR OC1 Output Rise Time — — — ns See Parameter DO31 Note 1: These parameters are characterized but not tested in manufacturing. FIGURE 25-8: OC1/PWMx MODULE TIMING CHARACTERISTICS OC20 OCFA OC15 OC1 TABLE 25-29: OC1/PWMx MODULE TIMING REQUIREMENTS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended AC CHARACTERISTICS Param No. Symbol Characteristic(1) Min. Typ. Max. Units OC15 TFD Fault Input to PWMx I/O Change — — TCY + 20 ns OC20 TFLT Fault Input Pulse Width TCY + 20 — — ns Note 1: These parameters are characterized but not tested in manufacturing. DS70005208E-page 286 Conditions  2015-2018 Microchip Technology Inc. dsPIC33EPXXGS202 FAMILY FIGURE 25-9: HIGH-SPEED PWMx MODULE FAULT TIMING CHARACTERISTICS MP30 Fault Input (active-low) MP20 PWMx FIGURE 25-10: HIGH-SPEED PWMx MODULE TIMING CHARACTERISTICS MP11 MP10 PWMx Note: Refer to Figure 25-1 for load conditions. TABLE 25-30: HIGH-SPEED PWMx MODULE TIMING REQUIREMENTS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended AC CHARACTERISTICS Param No. Symbol Characteristic(1) Min. Typ. Max. Units — ns See Parameter DO32 See Parameter DO31 MP10 TFPWM PWMx Output Fall Time — — MP11 TRPWM PWMx Output Rise Time — — — ns MP20 TFD Fault Input  to PWMx I/O Change — — 15 ns MP30 TFH Fault Input Pulse Width 15 — — ns Note 1: Conditions These parameters are characterized but not tested in manufacturing.  2015-2018 Microchip Technology Inc. DS70005208E-page 287 dsPIC33EPXXGS202 FAMILY TABLE 25-31: SPI1 MAXIMUM DATA/CLOCK RATE SUMMARY Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended AC CHARACTERISTICS Maximum Data Rate Master Transmit Only (Half-Duplex) 15 MHz 9 MHz Master Transmit/Receive (Full-Duplex) Slave Transmit/Receive (Full-Duplex) CKE CKP SMP Table 25-31 — — 0,1 0,1 0,1 — Table 25-32 — 1 0,1 1 9 MHz — Table 25-33 — 0 0,1 1 15 MHz — — Table 25-34 1 0 0 11 MHz — — Table 25-35 1 1 0 15 MHz — — Table 25-36 0 1 0 11 MHz — — Table 25-37 0 0 0 FIGURE 25-11: SPI1 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 0) TIMING CHARACTERISTICS SCK1 (CKP = 0) SP10 SP21 SP20 SP20 SP21 SCK1 (CKP = 1) SP35 MSb SDO1 SP30, SP31 Bit 14 - - - - - -1 LSb SP30, SP31 Note: Refer to Figure 25-1 for load conditions. DS70005208E-page 288  2015-2018 Microchip Technology Inc. dsPIC33EPXXGS202 FAMILY FIGURE 25-12: SPI1 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 1) TIMING CHARACTERISTICS SP36 SCK1 (CKP = 0) SP10 SP21 SP20 SP20 SP21 SCK1 (CKP = 1) SP35 MSb SDO1 Bit 14 - - - - - -1 LSb SP30, SP31 Note: Refer to Figure 25-1 for load conditions. TABLE 25-32: SPI1 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended AC CHARACTERISTICS Param No. Symbol Characteristic(1) Min. Typ.(2) Max. Units Conditions SP10 FscP Maximum SCK1 Frequency — — 15 MHz SP20 TscF SCK1 Output Fall Time — — — ns See Parameter DO32 (Note 4) SP21 TscR SCK1 Output Rise Time — — — ns See Parameter DO31 (Note 4) SP30 TdoF SDO1 Data Output Fall Time — — — ns See Parameter DO32 (Note 4) SP31 TdoR SDO1 Data Output Rise Time — — — ns See Parameter DO31 (Note 4) SP35 TscH2doV, TscL2doV SDO1 Data Output Valid After SCK1 Edge — 6 20 ns SP36 TdiV2scH, TdiV2scL SDO1 Data Output Setup to First SCK1 Edge 30 — — ns Note 1: 2: 3: 4: (Note 3) These parameters are characterized but not tested in manufacturing. Data in “Typ.” column is at 3.3V, +25°C unless otherwise stated. The minimum clock period for SCK1 is 66.7 ns. Therefore, the clock generated in Master mode must not violate this specification. Assumes 50 pF load on all SPI1 pins.  2015-2018 Microchip Technology Inc. DS70005208E-page 289 dsPIC33EPXXGS202 FAMILY FIGURE 25-13: SPI1 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING CHARACTERISTICS SP36 SCK1 (CKP = 0) SP10 SP21 SP20 SP20 SP21 SCK1 (CKP = 1) SP35 MSb SDO1 LSb SP30, SP31 SP40 SDI1 Bit 14 - - - - - -1 MSb In Bit 14 - - - -1 LSb In SP41 Note: Refer to Figure 25-1 for load conditions. TABLE 25-33: SPI1 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING REQUIREMENTS AC CHARACTERISTICS Param Symbol No. Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended Characteristic(1) Min. Typ.(2) SP10 FscP Maximum SCK1 Frequency — SP20 TscF SCK1 Output Fall Time — SP21 TscR SCK1 Output Rise Time SP30 TdoF SP31 TdoR Max. Units — 9 MHz — — ns See Parameter DO32 (Note 4) — — — ns See Parameter DO31 (Note 4) SDO1 Data Output Fall Time — — — ns See Parameter DO32 (Note 4) SDO1 Data Output Rise Time — — — ns See Parameter DO31 (Note 4) SP35 TscH2doV, SDO1 Data Output Valid TscL2doV After SCK1 Edge — 6 20 ns SP36 TdoV2sc, SDO1 Data Output Setup TdoV2scL to First SCK1 Edge 30 — — ns SP40 TdiV2scH, Setup Time of SDI1 Data TdiV2scL Input to SCK1 Edge 30 — — ns SP41 TscH2diL, Hold Time of SDI1 Data TscL2diL Input to SCK1 Edge 30 — — ns Note 1: 2: 3: 4: Conditions (Note 3) These parameters are characterized but not tested in manufacturing. Data in “Typ.” column is at 3.3V, +25°C unless otherwise stated. The minimum clock period for SCK1 is 111 ns. The clock generated in Master mode must not violate this specification. Assumes 50 pF load on all SPI1 pins. DS70005208E-page 290  2015-2018 Microchip Technology Inc. dsPIC33EPXXGS202 FAMILY FIGURE 25-14: SPI1 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING CHARACTERISTICS SCK1 (CKP = 0) SP10 SP21 SP20 SP20 SP21 SCK1 (CKP = 1) SP35 SP36 MSb SDO1 Bit 14 - - - - - -1 SP30, SP31 SDI1 MSb In LSb SP30, SP31 LSb In Bit 14 - - - -1 SP40 SP41 Note: Refer to Figure 25-1 for load conditions. TABLE 25-34: SPI1 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING REQUIREMENTS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended AC CHARACTERISTICS Param No. Symbol Characteristic(1) Min. Typ.(2) Max. Units Conditions -40°C to +125°C (Note 3) See Parameter DO32 (Note 4) See Parameter DO31 (Note 4) See Parameter DO32 (Note 4) See Parameter DO31 (Note 4) SP10 FscP Maximum SCK1 Frequency — — 9 MHz SP20 TscF SCK1 Output Fall Time — — — ns SP21 TscR SCK1 Output Rise Time — — — ns SP30 TdoF SDO1 Data Output Fall Time — — — ns SP31 TdoR SDO1 Data Output Rise Time — — — ns SP35 TscH2doV, SDO1 Data Output Valid — 6 20 ns TscL2doV After SCK1 Edge TdoV2scH, SDO1 Data Output Setup to 30 — — ns TdoV2scL First SCK1 Edge TdiV2scH, Setup Time of SDI1 Data 30 — — ns TdiV2scL Input to SCK1 Edge TscH2diL, Hold Time of SDI1 Data Input 30 — — ns TscL2diL to SCK1 Edge These parameters are characterized but not tested in manufacturing. Data in “Typ.” column is at 3.3V, +25°C unless otherwise stated. The minimum clock period for SCK1 is 111 ns. The clock generated in Master mode must not violate this specification. Assumes 50 pF load on all SPI1 pins. SP36 SP40 SP41 Note 1: 2: 3: 4:  2015-2018 Microchip Technology Inc. DS70005208E-page 291 dsPIC33EPXXGS202 FAMILY FIGURE 25-15: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING CHARACTERISTICS SP60 SS1 SP52 SP50 SCK1 (CKP = 0) SP70 SP73 SCK1 (CKP = 1) SP72 SP36 SP35 SP72 MSb SDO1 Bit 14 - - - - - -1 LSb SP30, SP31 SDI1 MSb In Bit 14 - - - -1 SP73 SP51 LSb In SP41 SP40 Note: Refer to Figure 25-1 for load conditions. DS70005208E-page 292  2015-2018 Microchip Technology Inc. dsPIC33EPXXGS202 FAMILY TABLE 25-35: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING REQUIREMENTS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended AC CHARACTERISTICS Param No. Symbol Characteristic(1) Min. Typ.(2) Max. Units Conditions SP70 FscP Maximum SCK1 Input Frequency — — Lesser of: FP or 15 MHz SP72 TscF SCK1 Input Fall Time — — — ns See Parameter DO32 (Note 4) SP73 TscR SCK1 Input Rise Time — — — ns See Parameter DO31 (Note 4) SP30 TdoF SDO1 Data Output Fall Time — — — ns See Parameter DO32 (Note 4) SP31 TdoR SDO1 Data Output Rise Time — — — ns See Parameter DO31 (Note 4) SP35 TscH2doV, SDO1 Data Output Valid After TscL2doV SCK1 Edge — 6 20 ns SP36 TdoV2scH, SDO1 Data Output Setup to TdoV2scL First SCK1 Edge 30 — — ns SP40 TdiV2scH, TdiV2scL Setup Time of SDI1 Data Input to SCK1 Edge 30 — — ns SP41 TscH2diL, TscL2diL Hold Time of SDI1 Data Input to SCK1 Edge 30 — — ns SP50 TssL2scH, TssL2scL SS1  to SCK1  or SCK1  Input 120 — — ns SP51 TssH2doZ SS1  to SDO1 Output High-Impedance 10 — 50 ns (Note 4) SP52 TscH2ssH, SS1 after SCK1 Edge TscL2ssH 1.5 TCY + 40 — — ns (Note 4) SP60 TssL2doV — — 50 ns Note 1: 2: 3: 4: SDO1 Data Output Valid After SS1 Edge (Note 3) These parameters are characterized but not tested in manufacturing. Data in “Typ.” column is at 3.3V, +25°C unless otherwise stated. The minimum clock period for SCK1 is 66.7 ns. Therefore, the SCK1 clock generated by the master must not violate this specification. Assumes 50 pF load on all SPI1 pins.  2015-2018 Microchip Technology Inc. DS70005208E-page 293 dsPIC33EPXXGS202 FAMILY FIGURE 25-16: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING CHARACTERISTICS SP60 SS1 SP52 SP50 SCK1 (CKP = 0) SP70 SP73 SCK1 (CKP = 1) SP72 SP36 SP35 SP72 MSb SDO1 Bit 14 - - - - - -1 LSb SP30, SP31 SDI1 MSb In Bit 14 - - - -1 SP73 SP51 LSb In SP41 SP40 Note: Refer to Figure 25-1 for load conditions. DS70005208E-page 294  2015-2018 Microchip Technology Inc. dsPIC33EPXXGS202 FAMILY TABLE 25-36: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING REQUIREMENTS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended AC CHARACTERISTICS Param No. Symbol Characteristic(1) Min. Typ.(2) Max. Units Conditions SP70 FscP Maximum SCK1 Input Frequency — — Lesser of: FP or 11 MHz SP72 TscF SCK1 Input Fall Time — — — ns See Parameter DO32 (Note 4) SP73 TscR SCK1 Input Rise Time — — — ns See Parameter DO31 (Note 4) SP30 TdoF SDO1 Data Output Fall Time — — — ns See Parameter DO32 (Note 4) SP31 TdoR SDO1 Data Output Rise Time — — — ns See Parameter DO31 (Note 4) SP35 TscH2doV, SDO1 Data Output Valid After TscL2doV SCK1 Edge — 6 20 ns SP36 TdoV2scH, SDO1 Data Output Setup to TdoV2scL First SCK1 Edge 30 — — ns SP40 TdiV2scH, TdiV2scL Setup Time of SDI1 Data Input to SCK1 Edge 30 — — ns SP41 TscH2diL, TscL2diL Hold Time of SDI1 Data Input to SCK1 Edge 30 — — ns SP50 TssL2scH, TssL2scL SS1  to SCK1  or SCK1  Input 120 — — ns SP51 TssH2doZ SS1  to SDO1 Output High-Impedance 10 — 50 ns (Note 4) SP52 TscH2ssH, SS1 after SCK1 Edge TscL2ssH 1.5 TCY + 40 — — ns (Note 4) SP60 TssL2doV — — 50 ns Note 1: 2: 3: 4: SDO1 Data Output Valid after SS1 Edge (Note 3) These parameters are characterized but not tested in manufacturing. Data in “Typ.” column is at 3.3V, +25°C unless otherwise stated. The minimum clock period for SCK1 is 91 ns. Therefore, the SCK1 clock generated by the master must not violate this specification. Assumes 50 pF load on all SPI1 pins.  2015-2018 Microchip Technology Inc. DS70005208E-page 295 dsPIC33EPXXGS202 FAMILY FIGURE 25-17: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING CHARACTERISTICS SS1 SP50 SP52 SCK1 (CKP = 0) SP70 SP73 SP72 SP72 SP73 SCK1 (CKP = 1) SP35 SP36 SDO1 MSb Bit 14 - - - - - -1 LSb SP30, SP31 SDI1 MSb In Bit 14 - - - -1 SP51 LSb In SP41 SP40 Note: Refer to Figure 25-1 for load conditions. DS70005208E-page 296  2015-2018 Microchip Technology Inc. dsPIC33EPXXGS202 FAMILY TABLE 25-37: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING REQUIREMENTS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended AC CHARACTERISTICS Param No. Symbol Characteristic(1) Min. Typ.(2) Max. Units Conditions SP70 FscP Maximum SCK1 Input Frequency — — 15 MHz SP72 TscF SCK1 Input Fall Time — — — ns See Parameter DO32 (Note 4) SP73 TscR SCK1 Input Rise Time — — — ns See Parameter DO31 (Note 4) SP30 TdoF SDO1 Data Output Fall Time — — — ns See Parameter DO32 (Note 4) SP31 TdoR SDO1 Data Output Rise Time — — — ns See Parameter DO31 (Note 4) SP35 TscH2doV, SDO1 Data Output Valid After TscL2doV SCK1 Edge — 6 20 ns SP36 TdoV2scH, SDO1 Data Output Setup to TdoV2scL First SCK1 Edge 30 — — ns SP40 TdiV2scH, TdiV2scL Setup Time of SDI1 Data Input to SCK1 Edge 30 — — ns SP41 TscH2diL, TscL2diL Hold Time of SDI1 Data Input to SCK1 Edge 30 — — ns SP50 TssL2scH, TssL2scL SS1  to SCK1  or SCK1  Input 120 — — ns SP51 TssH2doZ SS1  to SDO1 Output High-Impedance 10 — 50 ns (Note 4) SP52 TscH2ssH, SS1 After SCK1 Edge TscL2ssH 1.5 TCY + 40 — — ns (Note 4) Note 1: 2: 3: 4: (Note 3) These parameters are characterized but not tested in manufacturing. Data in “Typ.” column is at 3.3V, +25°C unless otherwise stated. The minimum clock period for SCK1 is 66.7 ns. Therefore, the SCK1 clock generated by the master must not violate this specification. Assumes 50 pF load on all SPI1 pins.  2015-2018 Microchip Technology Inc. DS70005208E-page 297 dsPIC33EPXXGS202 FAMILY FIGURE 25-18: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING CHARACTERISTICS SS1 SP50 SP52 SCK1 (CKP = 0) SP70 SP73 SP72 SP72 SP73 SCK1 (CKP = 1) SP35 SP36 SDO1 MSb Bit 14 - - - - - -1 LSb SP30, SP31 SDI1 MSb In Bit 14 - - - -1 SP51 LSb In SP41 SP40 Note: Refer to Figure 25-1 for load conditions. DS70005208E-page 298  2015-2018 Microchip Technology Inc. dsPIC33EPXXGS202 FAMILY TABLE 25-38: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING REQUIREMENTS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended AC CHARACTERISTICS Param No. Symbol Characteristic(1) Min. Typ.(2) Max. Units Conditions SP70 FscP Maximum SCK1 Input Frequency — — 11 MHz SP72 TscF SCK1 Input Fall Time — — — ns See Parameter DO32 (Note 4) SP73 TscR SCK1 Input Rise Time — — — ns See Parameter DO31 (Note 4) SP30 TdoF SDO1 Data Output Fall Time — — — ns See Parameter DO32 (Note 4) SP31 TdoR SDO1 Data Output Rise Time — — — ns See Parameter DO31 (Note 4) SP35 TscH2doV, SDO1 Data Output Valid After TscL2doV SCK1 Edge — 6 20 ns SP36 TdoV2scH, SDO1 Data Output Setup to TdoV2scL First SCK1 Edge 30 — — ns SP40 TdiV2scH, TdiV2scL Setup Time of SDI1 Data Input to SCK1 Edge 30 — — ns SP41 TscH2diL, TscL2diL Hold Time of SDI1 Data Input to SCK1 Edge 30 — — ns SP50 TssL2scH, TssL2scL SS1  to SCK1  or SCK1  Input 120 — — ns SP51 TssH2doZ SS1  to SDO1 Output High-Impedance 10 — 50 ns (Note 4) SP52 TscH2ssH, SS1 After SCK1 Edge TscL2ssH 1.5 TCY + 40 — — ns (Note 4) Note 1: 2: 3: 4: (Note 3) These parameters are characterized but not tested in manufacturing. Data in “Typ.” column is at 3.3V, +25°C unless otherwise stated. The minimum clock period for SCK1 is 91 ns. Therefore, the SCK1 clock generated by the master must not violate this specification. Assumes 50 pF load on all SPI1 pins.  2015-2018 Microchip Technology Inc. DS70005208E-page 299 dsPIC33EPXXGS202 FAMILY FIGURE 25-19: I2C1 BUS START/STOP BITS TIMING CHARACTERISTICS (MASTER MODE) SCL1 IM31 IM34 IM30 IM33 SDA1 Stop Condition Start Condition Note: Refer to Figure 25-1 for load conditions. FIGURE 25-20: I2C1 BUS DATA TIMING CHARACTERISTICS (MASTER MODE) IM20 IM21 IM11 IM10 SCL1 IM26 IM11 IM25 IM10 IM33 SDA1 In IM40 IM40 IM45 SDA1 Out Note: Refer to Figure 25-1 for load conditions. DS70005208E-page 300  2015-2018 Microchip Technology Inc. dsPIC33EPXXGS202 FAMILY TABLE 25-39: I2C1 BUS DATA TIMING REQUIREMENTS (MASTER MODE) Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended AC CHARACTERISTICS Param Symbol No. IM10 IM11 IM20 IM21 IM25 IM26 IM30 IM31 IM33 IM34 IM40 IM45 IM50 IM51 Note 1: 2: 3: 4: Characteristic(4) Min.(1) Max. Units TLO:SCL Clock Low Time 100 kHz mode TCY (BRG + 1) — s — s 400 kHz mode TCY (BRG + 1) (2) 1 MHz mode TCY (BRG + 1) — s THI:SCL Clock High Time 100 kHz mode TCY (BRG + 1) — s — s 400 kHz mode TCY (BRG + 1) 1 MHz mode(2) TCY (BRG + 1) — s TF:SCL SDA1 and SCL1 100 kHz mode — 300 ns Fall Time 300 ns 400 kHz mode 20 + 0.1 CB 1 MHz mode(2) — 100 ns TR:SCL SDA1 and SCL1 100 kHz mode — 1000 ns Rise Time 400 kHz mode 20 + 0.1 CB 300 ns 1 MHz mode(2) — 300 ns TSU:DAT Data Input 100 kHz mode 250 — ns Setup Time 400 kHz mode 100 — ns (2) 1 MHz mode 40 — ns THD:DAT Data Input 100 kHz mode 0 — s Hold Time 400 kHz mode 0 0.9 s 1 MHz mode(2) 0.2 — s TSU:STA Start Condition 100 kHz mode TCY (BRG + 1) — s Setup Time 400 kHz mode TCY (BRG + 1) — s 1 MHz mode(2) TCY (BRG + 1) — s THD:STA Start Condition 100 kHz mode TCY (BRG + 1) — s Hold Time 400 kHz mode TCY (BRG + 1) — s 1 MHz mode(2) TCY (BRG + 1) — s TSU:STO Stop Condition 100 kHz mode TCY (BRG + 1) — s Setup Time 400 kHz mode TCY (BRG + 1) — s (2) 1 MHz mode TCY (BRG + 1) — s THD:STO Stop Condition 100 kHz mode TCY (BRG + 1) — s Hold Time 400 kHz mode TCY (BRG + 1) — s 1 MHz mode(2) TCY (BRG + 1) — s TAA:SCL Output Valid 100 kHz mode — 3500 ns from Clock 400 kHz mode — 1000 ns 1 MHz mode(2) — 400 ns TBF:SDA Bus Free Time 100 kHz mode 4.7 — s 400 kHz mode 1.3 — s 1 MHz mode(2) 0.5 — s Bus Capacitive Loading — 400 pF CB TPGD Pulse Gobbler Delay 65 390 ns 2 BRG is the value of the I C Baud Rate Generator. Maximum Pin Capacitance = 10 pF for all I2C1 pins (for 1 MHz mode only). Typical value for this parameter is 130 ns. These parameters are characterized but not tested in manufacturing.  2015-2018 Microchip Technology Inc. Conditions CB is specified to be from 10 to 400 pF CB is specified to be from 10 to 400 pF Only relevant for Repeated Start condition After this period, the first clock pulse is generated Time the bus must be free before a new transmission can start (Note 3) DS70005208E-page 301 dsPIC33EPXXGS202 FAMILY FIGURE 25-21: I2C1 BUS START/STOP BITS TIMING CHARACTERISTICS (SLAVE MODE) SCL1 IS31 IS34 IS30 IS33 SDA1 Stop Condition Start Condition FIGURE 25-22: I2C1 BUS DATA TIMING CHARACTERISTICS (SLAVE MODE) IS20 IS21 IS11 IS10 SCL1 IS30 IS26 IS31 IS25 IS33 SDA1 In IS40 IS40 IS45 SDA1 Out DS70005208E-page 302  2015-2018 Microchip Technology Inc. dsPIC33EPXXGS202 FAMILY TABLE 25-40: I2C1 BUS DATA TIMING REQUIREMENTS (SLAVE MODE) Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended AC CHARACTERISTICS Param No. Symbol Characteristic(3) IS10 TLO:SCL Clock Low Time IS11 THI:SCL IS20 IS21 IS25 IS26 IS30 IS31 IS33 IS34 IS40 IS45 IS50 IS51 Note Clock High Time Min. Max. Units 100 kHz mode 400 kHz mode 1 MHz mode(1) 100 kHz mode 4.7 1.3 0.5 4.0 — — — — s s s s 400 kHz mode 0.6 — s 1 MHz mode(1) 0.5 — s TF:SCL SDA1 and SCL1 100 kHz mode — 300 ns Fall Time 400 kHz mode 20 + 0.1 CB 300 ns 1 MHz mode(1) — 100 ns TR:SCL SDA1 and SCL1 100 kHz mode — 1000 ns Rise Time 400 kHz mode 20 + 0.1 CB 300 ns 1 MHz mode(1) — 300 ns TSU:DAT Data Input 100 kHz mode 250 — ns Setup Time 400 kHz mode 100 — ns (1) 1 MHz mode 100 — ns THD:DAT Data Input 100 kHz mode 0 — s Hold Time 400 kHz mode 0 0.9 s 1 MHz mode(1) 0 0.3 s TSU:STA Start Condition 100 kHz mode 4.7 — s Setup Time 400 kHz mode 0.6 — s 0.25 — s 1 MHz mode(1) THD:STA Start Condition 100 kHz mode 4.0 — s Hold Time 400 kHz mode 0.6 — s 0.25 — s 1 MHz mode(1) TSU:STO Stop Condition 100 kHz mode 4 — s Setup Time 400 kHz mode 0.6 — s (1) 1 MHz mode 0.25 — s THD:STO Stop Condition 100 kHz mode 4 — s Hold Time 400 kHz mode 0.6 — s 1 MHz mode(1) 0.25 s TAA:SCL Output Valid from 100 kHz mode 0 3500 ns Clock 400 kHz mode 0 1000 ns 1 MHz mode(1) 0 350 ns TBF:SDA Bus Free Time 100 kHz mode 4.7 — s 400 kHz mode 1.3 — s 0.5 — s 1 MHz mode(1) CB Bus Capacitive Loading — 400 pF TPGD Pulse Gobbler Delay 65 390 ns 1: Maximum Pin Capacitance = 10 pF for all I2C1 pins (for 1 MHz mode only). 2: Typical value for this parameter is 130 ns. 3: These parameters are characterized but not tested in manufacturing.  2015-2018 Microchip Technology Inc. Conditions Device must operate at a minimum of 1.5 MHz Device must operate at a minimum of 10 MHz CB is specified to be from 10 to 400 pF CB is specified to be from 10 to 400 pF Only relevant for Repeated Start condition After this period, the first clock pulse is generated Time the bus must be free before a new transmission can start (Note 2) DS70005208E-page 303 dsPIC33EPXXGS202 FAMILY FIGURE 25-23: UART1 MODULE I/O TIMING CHARACTERISTICS UA20 U1RX U1TX MSb In Bits 6-1 LSb In UA10 TABLE 25-41: UART1 MODULE I/O TIMING REQUIREMENTS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C  TA  +125°C AC CHARACTERISTICS Param No. Characteristic(1) Symbol UA10 TUABAUD UART1 Baud Time UA11 FBAUD UART1 Baud Frequency UA20 TCWF Start Bit Pulse Width to Trigger UART1 Wake-up Note 1: 2: Min. Typ.(2) 66.67 — — ns — — 15 Mbps 500 — — ns Max. Units Conditions These parameters are characterized but not tested in manufacturing. Data in “Typ.” column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested. TABLE 25-42: ANALOG CURRENT SPECIFICATIONS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C  TA  +125°C AC CHARACTERISTICS Param No. AVD01 Note 1: 2: Symbol IDD Characteristic(1) Analog Modules Current Consumption Min. Typ.(2) Max. Units Conditions — 9 — mA Characterized data with the following modules enabled: APLL, 5 ADC Cores, 2 PGAs and 4 Analog Comparators These parameters are characterized but not tested in manufacturing. Data in “Typ.” column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested. DS70005208E-page 304  2015-2018 Microchip Technology Inc. dsPIC33EPXXGS202 FAMILY TABLE 25-43: ADC MODULE SPECIFICATIONS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)(4) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended AC CHARACTERISTICS Param No. Symbol Characteristics(3) Min. Typical Max. Units Conditions The difference between AVDD supply and VDD supply must not exceed ±300 mV at all times, including device power-up Device Supply AD01 AVDD Module VDD Supply Greater of: VDD – 0.3 or 3.0 — Lesser of: VDD + 0.3 or 3.6 V AD02 AVSS Module VSS Supply VSS — VSS + 0.3 V Analog Input AD12 VINH-VINL Full-Scale Input Span AD14 VIN Absolute Input Voltage AVSS — AVDD V AVSS – 0.3 — AVDD + 0.3 V AD15 VIN+ Pseudodifferential Mode 0 — 3.3 V VIN- = (VR+ + VR-)/2 ±150 mV AD16 VIN- Pseudodifferential Mode 0 — 3.3 V VIN+ = (VR+ + VR-)/2 ±150 mV AD17 RIN Recommended Impedance of Analog Voltage Source — 100 —  For minimum sampling time (Note 1) AD66 VREF1 Internal Voltage Reference Source 1.176 1.2 1.224 V ADC Accuracy: Pseudodifferential Input AD20a Nr Resolution 12 bits AD21a INL Integral Nonlinearity > -4 — -1 — -5 — -5 — -4 — -1 — < 1.5 LSb AVSS = 0V, AVDD = 3.3V (Note 5) AD23b GERR Gain Error (Dedicated Core) > -5 — -5 — -6 — 65 dB (Notes 2, 3) 10.3 — — bits (Notes 2, 3) These parameters are not characterized or tested in manufacturing. These parameters are characterized but not tested in manufacturing. Characterized with a 1 kHz sine wave. The ADC module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is ensured, but not characterized. No missing codes, limits are based on the characterization results. DS70005208E-page 306  2015-2018 Microchip Technology Inc. dsPIC33EPXXGS202 FAMILY TABLE 25-44: ANALOG-TO-DIGITAL CONVERSION TIMING REQUIREMENTS AC CHARACTERISTICS(2) Param Symbol No. Characteristics Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)(2) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended Min. Typ.(1) Max. Units Conditions Clock Parameters AD50 TAD ADC Clock Period 14.28 AD51 FTP ADC Core 0, 1, 2 — — — ns Throughput Rate Note 1: 2: — 3.25 Msps 70 MHz ADC clock, 12 bits, no pending conversions at time of trigger These parameters are characterized but not tested in manufacturing. The ADC module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is guaranteed, but not characterized. TABLE 25-45: HIGH-SPEED ANALOG COMPARATOR MODULE SPECIFICATIONS AC/DC CHARACTERISTICS(2) Param Symbol No. Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended Characteristic Min. Typ. Max. Units Comments CM10 VIOFF Input Offset Voltage -35 ±5 +35 mV CM11 VICM Input Common-Mode Voltage Range(1) 0 — AVDD V CM13 CMRR Common-Mode Rejection Ratio 60 — — dB CM14 TRESP Large Signal Response — 15 — ns V+ input step of 100 mV while V- input is held at AVDD/2. Delay measured from analog input pin to PWMx output pin. CM15 VHYST Input Hysteresis 5 10 20 mV Depends on HYSSEL CM16 TON Comparator Enabled to Valid Output — — 1 µs Note 1: 2: These parameters are for design guidance only and are not tested in manufacturing. The comparator module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.  2015-2018 Microchip Technology Inc. DS70005208E-page 307 dsPIC33EPXXGS202 FAMILY TABLE 25-46: DACx MODULE SPECIFICATIONS AC/DC CHARACTERISTICS(2) Param No. Symbol Characteristic Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended Min. Typ. Max. Units — -12 — LSb DA02 CVRES Resolution DA03 INL Integral Nonlinearity Error DA04 DNL Differential Nonlinearity Error -1.8 ±0.5 1.8 LSb DA05 EOFF Offset Error -8 3 15 LSb DA06 EG Gain Error -0.8 -0.4 — % DA07 TSET Settling Time(1) — 700 — ns Note 1: 2: 12 Comments bits Output with 2% of desired output voltage with a 10-90% or 90-10% step Parameters are for design guidance only and are not tested in manufacturing. The DACx module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized. DS70005208E-page 308  2015-2018 Microchip Technology Inc. dsPIC33EPXXGS202 FAMILY TABLE 25-47: PGAx MODULE SPECIFICATIONS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended (1) AC/DC CHARACTERISTICS Param Symbol No. Characteristic Min. Typ. Max. Units PA01 VIN Input Voltage Range AVSS – 0.3 — AVDD + 0.3 V PA02 VCM Common-Mode Input Voltage Range AVSS — AVDD – 1.6 V Comments PA03 VOS Input Offset Voltage -20 — +20 mV PA04 VOS Input Offset Voltage Drift with Temperature — 15 — µV/C PA05 RIN+ Input Impedance of Positive Input — >1M || 7 pf — || pF PA06 RIN- Input Impedance of Negative Input — 10K || 7 pf — || pF PA07 GERR Gain Error -2 — +2 % Gain = 4x and 8x -3 — +3 % Gain = 16x -4 — +4 % Gain = 32x and 64x % of full scale, Gain = 16x PA08 LERR Gain Nonlinearity Error — — 0.5 % PA09 IDD Current Consumption — 2.0 — mA Small Signal G = 4x Bandwidth (-3 dB) G = 8x — 10 — MHz — 5 — MHz PA10a BW PA10b PA10c G = 16x — 2.5 — MHz PA10d G = 32x — 1.25 — MHz G = 64x PA10e — 0.625 — MHz Output Settling Time to 1% of Final Value — 0.4 — µs SR Output Slew Rate — 40 — V/µs TGSEL Gain Selection Time — 1 — µs TON Module Turn On/Setting Time — — 10 µs PA11 OST PA12 PA13 PA14 Note 1: Module is enabled with a 2-volt P-P output voltage swing Gain = 16x, 100 mV input step change Gain = 16x The PGAx module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.  2015-2018 Microchip Technology Inc. DS70005208E-page 309 dsPIC33EPXXGS202 FAMILY NOTES: DS70005208E-page 310  2015-2018 Microchip Technology Inc. DC AND AC DEVICE CHARACTERISTICS GRAPHS Note: The graphs provided following this note are a statistical summary based on a limited number of samples and are provided for design guidance purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range. FIGURE 26-1: FIGURE 26-3: VOH – 4x DRIVER PINS VOL(V) 0.050 3.6V -0.045 3.6V 0.045 -0.040 3.3V 0.035 3V -0.025 -0.020 Absolute Maximum 3V 0.030 0.025 0.020 Absolute Maximum 0.015 -0.010 0.010 -0.005 0.005 0.000 0.000 0.00 0.50 1.50 2.00 2.50 3.00 3.50 0.00 4.00 VOH – 8x DRIVER PINS FIGURE 26-2: -0.080 1.00 FIGURE 26-4: 0.50 1.00 1.50 2.00 3.00 3.6V 0.080 -0.070 0.070 3.3V -0.060 3.3V 0.060 3V DS70005208E-page 311 IOL(A) IOH(A) -0.050 -0.040 0 030 -0.030 3V 0.050 0.040 0.030 Absolute Maximum Absolute Maximum -0.020 0 020 0.020 -0.010 0.010 0.000 0.000 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.00 8X VOL(V) 3.6V 3.50 VOL – 8x DRIVER PINS VOH(V) 0.00 2.50 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 dsPIC33EPXXGS202 FAMILY IOL(A) IOH(A) -0.030 -0.015 3.3V 0.040 -0.035 IOH(A) VOL – 4x DRIVER PINS VOH (V) -0.050 IOH(A)  2015-2018 Microchip Technology Inc. 26.0 TYPICAL IPD CURRENT @ VDD = 3.3V 25 23 250 21 IDOZE Current (mA) IPD Current (μA) 300 200 19 17 150 15 13 100 11 50 0 9 7 -40 -20 0 20 40 60 80 100 5 120 Temperature (Celsius) FIGURE 26-6: TYPICAL IDD CURRENT @ VDD = 3.3V, +25°C IIDLE Current (mA)  2015-2018 Microchip Technology Inc. IDD Current (mA) 25 20 15 10 10 20 30 40 MIPS 50 60 70 1:1 1:2 9 8 7 6 5 4 3 2 1 0 10 Doze Ratio 1:64 1:128 TYPICAL IIDLE CURRENT @ VDD = 3.3V, +25°C FIGURE 26-8: 30 5 TYPICAL IDOZE CURRENT @ VDD = 3.3V, +25°C FIGURE 26-7: 20 30 40 MIPS 50 60 70 dsPIC33EPXXGS202 FAMILY DS70005208E-page 312 FIGURE 26-5: TYPICAL FRC FREQUENCY @ VDD = 3.3V FIGURE 26-10: LPRC Frequency (kHz) 7350 7300 7250 7200 7150 TYPICAL LPRC FREQUENCY @ VDD = 3.3V 34.4 7400 FRC Frequency (kHz)  2015-2018 Microchip Technology Inc. FIGURE 26-9: -40 -20 0 20 40 60 100 120 34 33.8 33.6 33.4 33.2 33 -40 -20 0 20 40 60 Temperature (Celsius) 80 100 120 DS70005208E-page 313 dsPIC33EPXXGS202 FAMILY Temperature (Celsius) 80 34.2 dsPIC33EPXXGS202 FAMILY NOTES: DS70005208E-page 314  2015-2018 Microchip Technology Inc. dsPIC33EPXXGS202 FAMILY 27.0 PACKAGING INFORMATION 27.1 Package Marking Information 28-Lead SSOP Example XXXXXXXXXXXX XXXXXXXXXXXX YYWWNNN dsPIC33EP16 GS202 1610017 28-Lead SOIC (.300”) Example XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX YYWWNNN 28-Lead UQFN (4x4x0.6 mm) XXXXXXXX XXXXXXXX YYWWNNN XXXXXXXX XXXXXXXX YYWWNNN Example Example 33EP32 GS202 1610017 28-Lead QFN-S (6x6x0.9 mm) XXXXXXXX XXXXXXXX YYWWNNN Note: 1610017 33EP32 GS202 1610017 28-Lead UQFN (6x6x0.5 mm) Legend: XX...X Y YY WW NNN dsPIC33EP32GS202 Example 33EP32 GS202 1610017 Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week ‘01’) Alphanumeric traceability code In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.  2015-2018 Microchip Technology Inc. DS70005208E-page 315 dsPIC33EPXXGS202 FAMILY 27.2 Package Details /HDG3ODVWLF6KULQN6PDOO2XWOLQH 66 ±PP%RG\>6623@ 1RWH )RUWKHPRVWFXUUHQWSDFNDJHGUDZLQJVSOHDVHVHHWKH0LFURFKLS3DFNDJLQJ6SHFLILFDWLRQORFDWHGDW KWWSZZZPLFURFKLSFRPSDFNDJLQJ D N E E1 1 2 NOTE 1 b e c A2 A φ A1 L L1 8QLWV 'LPHQVLRQ/LPLWV 1XPEHURI3LQV 0,//,0(7(56 0,1 1 120 0$;  3LWFK H 2YHUDOO+HLJKW $ ± %6& ±  0ROGHG3DFNDJH7KLFNQHVV $    6WDQGRII $  ± ± 2YHUDOO:LGWK (    0ROGHG3DFNDJH:LGWK (    2YHUDOO/HQJWK '    )RRW/HQJWK /    )RRWSULQW / 5() /HDG7KLFNQHVV F  ± )RRW$QJOH  ƒ ƒ  ƒ /HDG:LGWK E  ±  1RWHV  3LQYLVXDOLQGH[IHDWXUHPD\YDU\EXWPXVWEHORFDWHGZLWKLQWKHKDWFKHGDUHD  'LPHQVLRQV'DQG(GRQRWLQFOXGHPROGIODVKRUSURWUXVLRQV0ROGIODVKRUSURWUXVLRQVVKDOOQRWH[FHHGPPSHUVLGH  'LPHQVLRQLQJDQGWROHUDQFLQJSHU$60(
DSPIC33EP32GS202-E/M6
文档中的物料型号是TPS54360,这是一个同步降压开关稳压器。

器件简介指出TPS54360是高度集成的同步降压DC-DC转换器。

引脚分配详细列出了该器件的引脚及其功能,例如:VIN是输入电源,VOUT是输出电压,GND是接地等。

参数特性包括输入电压范围、输出电压范围、最大输出电流等。

功能详解介绍了TPS54360的工作原理和主要功能,包括同步降压转换、内部软启动、可编程输出电流限制等。

应用信息提供了该器件的应用领域,如便携式电源、电池供电设备等。

封装信息描述了TPS54360的物理封装形式,例如QFN或SOIC。
DSPIC33EP32GS202-E/M6 价格&库存

很抱歉,暂时无法提供与“DSPIC33EP32GS202-E/M6”相匹配的价格&库存,您可以联系我们找货

免费人工找货