0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
DSPIC33FJ64GS606-I/PT

DSPIC33FJ64GS606-I/PT

  • 厂商:

    ACTEL(微芯科技)

  • 封装:

    TQFP64

  • 描述:

    IC MCU 16BIT 64KB FLASH 64TQFP

  • 详情介绍
  • 数据手册
  • 价格&库存
DSPIC33FJ64GS606-I/PT 数据手册
dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 16-Bit Digital Signal Controllers with High-Speed PWM, ADC and Comparators Operating Conditions Timers/Output Compare/Input Capture • 3.0V to 3.6V, -40ºC to +85ºC, DC to 50 MIPS • 3.0V to 3.6V, -40ºC to +125ºC, DC to 40 MIPS • Six General Purpose Timers: - Five 16-bit and up to two 32-bit timers/counters • Four Output Compare (OC) modules Configurable as Timers/Counters • Quadrature Encoder Interface (QEI) module Configurable as Timer/Counter • Four Input Capture (IC) modules Core: 16-Bit dsPIC33F • • • • • Code-Efficient (C and Assembly) Architecture Two 40-Bit Wide Accumulators Single-Cycle (MAC/MPY) with Dual Data Fetch Single-Cycle Mixed-Sign MUL plus Hardware Divide 32-Bit Multiply Support Clock Management • • • • • ±1% Internal Oscillator Programmable PLLs and Oscillator Clock Sources Fail-Safe Clock Monitor (FSCM) Independent Watchdog Timer (WDT) Fast Wake-up and Start-up Power Management • • • • Low-Power Management modes (Sleep, Idle, Doze) Integrated Power-on Reset and Brown-out Reset 1.7 mA/MHz Dynamic Current (typical) 50 µA IPD Current (typical) High-Speed PWM • • • • Up to 9 PWM Pairs with Independent Timing Dead Time for Rising and Falling Edges 1.04 ns PWM Resolution PWM Support for: - DC/DC, AC/DC, Inverters, PFC, Lighting - BLDC, PMSM, ACIM, SRM • Programmable Fault Inputs • Flexible Trigger Configurations for ADC Conversions Advanced Analog Features • High-Speed ADC module: - 10-bit resolution with up to two Successive Approximation Register (SAR) converters (up to 4 Msps) - Up to 24 input channels grouped into 12 conversion pairs plus two voltage reference monitoring inputs - Dedicated result buffer for each analog channel • Flexible and Independent ADC Trigger Sources • Up to 4 High-Speed Comparators with Direct Connection to the PWM module: - 10-bit Digital-to-Analog Converter (DAC) for each comparator - DAC reference output - Programmable references with 1024 voltage points  2009-2014 Microchip Technology Inc. Communication Interfaces • Two UART modules (12.5 Mbps): - With support for LIN/J2602 2.0 protocols and IrDA® • Two 4-Wire SPI modules (15 Mbps) • ECAN™ module (1 Mbaud) with ECAN 2.0B Support • Two I2C™ modules (up to 1 Mbaud) with SMBus Support Direct Memory Access (DMA) • 4-Channel DMA with User-Selectable Priority Arbitration • UART, SPI, ECAN, IC, OC and Timers Input/Output • Sink/Source 18 mA on 18 Pins, 10 mA on 1 Pin or 6 mA on 66 Pins • 5V Tolerant Pins • Selectable Open-Drain and Pull-ups • 29 External Interrupts Qualification and Class B Support • AEC-Q100 REVG (Grade 1, -40ºC to +125ºC) • Class B Safety Library, IEC 60730, VDE Certified Debugger Development Support • • • • In-Circuit and In-Application Programming Two Program and Two Complex Data Breakpoints IEEE 1149.2 Compatible (JTAG) Boundary Scan Trace and Run-Time Watch DS7000591F-page 1 dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 PRODUCT FAMILIES The device names, pin counts, memory sizes and peripheral availability of each device are listed in Table 1. The following pages show their pinout diagrams. dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 CONTROLLER FAMILIES Program Flash Memory (Kbytes) RAM (Bytes) 16-Bit Timers Input Capture Output Compare UART Quadrature Encoder Interfaces SPI ECAN™ DMA Channels PWM Analog Comparators External Interrupts DAC Output I2C™ SARs Sample-and-Hold (S&H) Circuits Analog-to-Digital Inputs I/O Pins Packages ADC Pins TABLE 1: dsPIC33FJ32GS406 64 32 4K 5 4 4 2 1 2 0 0 6x2 0 5 0 2 1 5 16 58 PT, MR dsPIC33FJ32GS606 64 32 4K 5 4 4 2 2 2 0 0 6x2 4 5 1 2 2 6 16 58 PT, MR dsPIC33FJ32GS608 80 32 4K 5 4 4 2 2 2 0 0 8x2 4 5 1 2 2 6 18 74 PT dsPIC33FJ32GS610 100 32 4K 5 4 4 2 2 2 0 0 9x2 4 5 1 2 2 6 24 85 PT, PF dsPIC33FJ64GS406 64 64 8K 5 4 4 2 1 2 0 0 6x2 0 5 0 2 1 5 16 58 PT, MR dsPIC33FJ64GS606 64 64 9K(1) 5 4 4 2 2 2 1 4 6x2 4 5 1 2 2 6 16 58 PT, MR dsPIC33FJ64GS608 80 64 9K(1) 5 4 4 2 2 2 1 4 8x2 4 5 1 2 2 6 18 74 PT dsPIC33FJ64GS610 100 64 9K(1) 5 4 4 2 2 2 1 4 9x2 4 5 1 2 2 6 24 85 PT, PF Device Note 1: RAM size is inclusive of 1-Kbyte DMA RAM. DS7000591F-page 2  2009-2014 Microchip Technology Inc. dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 Pin Diagrams 64-Pin TQFP 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 PWM3L/RE4 PWM2H/RE3 PWM2L/RE2 PWM1H/RE1 PWM1L/FLT8/RE0 RF1 SYNCI4/RF0 VDD VCAP PWM5H/UPDN1/CN16/RD7 PWM5L/CN15/RD6 PWM6H/CN14/RD5 PWM6L/CN13/RD4 OC4/SYNCO1/RD3 OC3/FLT7/RD2 OC2/SYNCO2/FLT6/RD1 = Pins are up to 5V tolerant 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 dsPIC33FJ32GS406 dsPIC33FJ64GS406 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 PGEC2/SOSCO/T1CK/CN0/RC14 PGED2/SOSCI/T4CK/CN1/RC13 OC1/QEB1/FLT5/RD0 IC4/QEA1/FLT4/INT4/RD11 IC3/INDX1/FLT3/INT3/RD10 IC2/FLT2/U1CTS/INT2/RD9 IC1/FLT1/SYNCI1/INT1/RD8 VSS OSC2/REFCLKO/CLKO/RC15 OSC1/CLKIN/RC12 VDD SCL1/RG2 SDA1/RG3 U1RTS/SCK1/INT0/RF6 U1RX/SDI1/RF2 U1TX/SDO1/RF3 PGEC1/AN6/OCFA/RB6 PGED1/AN7/RB7 AVDD AVSS AN8/U2CTS/RB8 AN9/RB9 TMS/AN10/RB10 TDO/AN11/RB11 VSS VDD TCK/AN12/RB12 TDI/AN13/RB13 AN14/SS1/U2RTS/RB14 AN15/CN12/RB15 U2RX/SDA2/FLT17/CN17/RF4 U2TX/SCL2/FLT18/CN18/RF5 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 PWM3H/RE5 PWM4L/RE6 PWM4H/RE7 SCK2/FLT12/CN8/RG6 SDI2/FLT11/CN9/RG7 SDO2/FLT10/CN10/RG8 MCLR SS2/FLT9/SYNCI2/CN11/RG9 VSS VDD AN5/AQEB1/CN7/RB5 AN4/AQEA1/CN6/RB4 AN3/AINDX1/CN5/RB3 AN2/ASS1/CN4/RB2 PGEC3/AN1/CN3/RB1 PGED3/AN0/CN2/RB0  2009-2014 Microchip Technology Inc. DS7000591F-page 3 dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 Pin Diagrams (Continued) = Pins are up to 5V tolerant PWM3L/RE4 PWM2H/RE3 PWM2L/RE2 PWM1H/RE1 PWM1L/FLT8/RE0 RF1 SYNCI4/RF0 VDD VCAP PWM5H/UPDN1/CN16/RD7 PWM5L/CN15/RD6 PWM6H/CN14/RD5 PWM6L/CN13/RD4 OC4/SYNCO1/RD3 OC3/FLT7/RD2 OC2/SYNCO2/FLT6/RD1 64-Pin QFN 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 PWM3H/RE5 PWM4L/RE6 PWM4H/RE7 SCK2/FLT12/CN8/RG6 SDI2/FLT11/CN9/RG7 SDO2/FLT10/CN10/RG8 MCLR SS2/FLT9/SYNCI2/CN11/RG9 VSS VDD AN5/AQEB1/CN7/RB5 AN4/AQEA1/CN6/RB4 AN3/AINDX1/CN5/RB3 AN2/ASS1/CN4/RB2 PGEC3/AN1/CN3/RB1 PGED3/AN0/CN2/RB0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 dsPIC33FJ32GS406 dsPIC33FJ64GS406 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 PGEC2/SOSCO/T1CK/CN0/RC14 PGED2/SOSCI/T4CK/CN1/RC13 OC1/QEB1/FLT5/RD0 IC4/QEA1/FLT4/INT4/RD11 IC3/INDX1/FLT3/INT3/RD10 IC2/FLT2/U1CTS/INT2/RD9 IC1/FLT1/SYNCI1/INT1/RD8 VSS OSC2/REFCLKO/CLKO/RC15 OSC1/CLKIN/RC12 VDD SCL1/RG2 SDA1/RG3 U1RTS/SCK1/INT0/RF6 U1RX/SDI1/RF2 U1TX/SDO1/RF3 PGEC1/AN6/OCFA/RB6 PGED1/AN7/RB7 AVDD AVss AN8/U2CTS/RB8 AN9/RB9 TMS/AN10/RB10 TDO/AN11/RB11 VSS VDD TCK/AN12/RB12 TDI/AN13/RB13 AN14/SS1/U2RTS/RB14 AN15/CN12/RB15 U2RX/SDA2/FLT17/CN17/RF4 U2TX/SCL2/FLT18/CN18/RF5 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Note: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to VSS externally. DS7000591F-page 4  2009-2014 Microchip Technology Inc. dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 Pin Diagrams (Continued) 64-Pin TQFP 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 PWM3L/RE4 PWM2H/RE3 PWM2L/RE2 PWM1H/RE1 PWM1L/FLT8/RE0 RF1 SYNCI4/RF0 VDD VCAP PWM5H/UPDN1/CN16/RD7 PWM5L/CN15/RD6 PWM6H/CN14/RD5 PWM6L/CN13/RD4 OC4/SYNCO1/RD3 OC3/FLT7/RD2 OC2/SYNCO2/FLT6/RD1 = Pins are up to 5V tolerant 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 dsPIC33FJ32GS606 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 PGEC2/SOSCO/T1CK/CN0/RC14 PGED2/SOSCI/T4CK/CN1/RC13 OC1/QEB1/FLT5/RD0 IC4/QEA1/FLT4/INT4/RD11 IC3/INDX1/FLT3/INT3/RD10 IC2/FLT2/U1CTS/INT2/RD9 IC1/FLT1/SYNCI1/INT1/RD8 VSS OSC2/REFCLKO/CLKO/RC15 OSC1/CLKIN/RC12 VDD SCL1/RG2 SDA1/RG3 U1RTS/SCK1/INT0/RF6 U1RX/SDI1/RF2 U1TX/SDO1/RF3 PGEC1/AN6/CMP3C/CMP4A/OCFA/RB6 PGED1/AN7/CMP4B/RB7 AVDD AVSS AN8/U2CTS/RB8 AN9/DACOUT/RB9 TMS/AN10/INDX2/RB10 TDO/AN11/EXTREF/RB11 VSS VDD TCK/AN12/CMP1D/RB12 TDI/AN13/CMP2D/RB13 AN14/CMP3D/SS1/U2RTS/RB14 AN15/CMP4D/CN12/RB15 U2RX/SDA2/QEA2/FLT17/CN17/RF4 U2TX/SCL2/QEB2/FLT18/CN18/RF5 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 PWM3H/RE5 PWM4L/RE6 PWM4H/RE7 SCK2/FLT12/CN8/RG6 SDI2/FLT11/CN9/RG7 SDO2/FLT10/CN10/RG8 MCLR SS2/FLT9/SYNCI2/T5CK/CN11/RG9 VSS VDD AN5/CMP3B/AQEB1/CN7/RB5 AN4/CMP2C/CMP3A/AQEA1/CN6/RB4 AN3/CMP2B/AINDX1/CN5/RB3 AN2/CMP1C/CMP2A/ASS1/CN4/RB2 PGEC3/AN1/CMP1B/CN3/RB1 PGED3/AN0/CMP1A/CMP4C/CN2/RB0  2009-2014 Microchip Technology Inc. DS7000591F-page 5 dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 Pin Diagrams (Continued) 64-Pin TQFP 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 PWM3L/RE4 PWM2H/RE3 PWM2L/RE2 PWM1H/RE1 PWM1L/FLT8/RE0 C1TX/RF1 C1RX/SYNCI4/RF0 VDD VCAP PWM5H/UPDN1/CN16/RD7 PWM5L/CN15/RD6 PWM6H/CN14/RD5 PWM6L/CN13/RD4 OC4/SYNCO1/RD3 OC3/FLT7/RD2 OC2/SYNCO2/FLT6/RD1 = Pins are up to 5V tolerant 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 dsPIC33FJ64GS606 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 PGEC2/SOSCO/T1CK/CN0/RC14 PGED2/SOSCI/T4CK/CN1/RC13 OC1/QEB1/FLT5/RD0 IC4/QEA1/FLT4/INT4/RD11 IC3/INDX1/FLT3/INT3/RD10 IC2/FLT2/U1CTS/INT2/RD9 IC1/FLT1/SYNCI1/INT1/RD8 VSS OSC2/REFCLKO/CLKO/RC15 OSC1/CLKIN/RC12 VDD SCL1/RG2 SDA1/RG3 U1RTS/SCK1/INT0/RF6 U1RX/SDI1/RF2 U1TX/SDO1/RF3 PGEC1/AN6/CMP3C/CMP4A/OCFA/RB6 PGED1/AN7/CMP4B/RB7 AVDD AVSS AN8/U2CTS/RB8 AN9/DACOUT/RB9 TMS/AN10/INDX2/RB10 TDO/AN11/EXTREF/RB11 VSS VDD TCK/AN12/CMP1D/RB12 TDI/AN13/CMP2D/RB13 AN14/CMP3D/SS1/U2RTS/RB14 AN15/CMP4D/CN12/RB15 U2RX/SDA2/QEA2/FLT17/CN17/RF4 U2TX/SCL2/QEB2/FLT18/CN18/RF5 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 PWM3H/RE5 PWM4L/RE6 PWM4H/RE7 SCK2/FLT12/CN8/RG6 SDI2/FLT11/CN9/RG7 SDO2/FLT10/CN10/RG8 MCLR SS2/FLT9/SYNCI2/T5CK/CN11/RG9 VSS VDD AN5/CMP3B/AQEB1/CN7/RB5 AN4/CMP2C/CMP3A/AQEA1/CN6/RB4 AN3/CMP2B/AINDX1/CN5/RB3 AN2/CMP1C/CMP2A/ASS1/CN4/RB2 PGEC3/AN1/CMP1B/CN3/RB1 PGED3/AN0/CMP1A/CMP4C/CN2/RB0 DS7000591F-page 6  2009-2014 Microchip Technology Inc. dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 Pin Diagrams (Continued) = Pins are up to 5V tolerant PWM3L/RE4 PWM2H/RE3 PWM2L/RE2 PWM1H/RE1 PWM1L/FLT8/RE0 RF1 SYNCI4/RF0 VDD VCAP PWM5H/UPDN1/CN16/RD7 PWM5L/CN15/RD6 PWM6H/CN14/RD5 PWM6L/CN13/RD4 OC4/SYNCO1/RD3 OC3/FLT7/RD2 OC2/SYNCO2/FLT6/RD1 64-Pin QFN 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 PWM3H/RE5 PWM4L/RE6 PWM4H/RE7 SCK2/FLT12/CN8/RG6 SDI2/FLT11/CN9/RG7 SDO2/FLT10/CN10/RG8 MCLR SS2/FLT9/SYNCI2/T5CK/CN11/RG9 VSS VDD AN5/CMP3B/AQEB1/CN7/RB5 AN4/CMP2C/CMP3A/AQEA1/CN6/RB4 AN3/CMP2B/AINDX1/CN5/RB3 AN2/CMP1C/CMP2A/ASS1/CN4/RB2 PGEC3/AN1/CMP1B/CN3/RB1 PGED3/AN0/CMP1A/CMP4C/CN2/RB0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 dsPIC33FJ32GS606 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 PGEC2/SOSCO/T1CK/CN0/RC14 PGED2/SOSCI/T4CK/CN1/RC13 OC1/QEB1/FLT5/RD0 IC4/QEA1/FLT4/INT4/RD11 IC3/INDX1/FLT3/INT3/RD10 IC2/FLT2/U1CTS/INT2/RD9 IC1/FLT1/SYNCI1/INT1/RD8 VSS OSC2/REFCLKO/CLKO/RC15 OSC1/CLKIN/RC12 VDD SCL1/RG2 SDA1/RG3 U1RTS/SCK1/INT0/RF6 U1RX/SDI1/RF2 U1TX/SDO1/RF3 PGEC1/AN6/CMP3C/CMP4A/OCFA/RB6 PGED1/AN7/CMP4B/RB7 AVDD AVSS AN8/U2CTS/RB8 AN9/DACOUT/RB9 TMS/AN10/INDX2/RB10 TDO/AN11/EXTREF/RB11 VSS VDD TCK/AN12/CMP1D/RB12 TDI/AN13/CMP2D/RB13 AN14/CMP3D/SS1/U2RTS/RB14 AN15/CMP4D/CN12/RB15 U2RX/SDA2/QEA2/FLT17/CN17/RF4 U2TX/SCL2/QEB2/FLT18/CN18/RF5 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Note: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to VSS externally.  2009-2014 Microchip Technology Inc. DS7000591F-page 7 dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 Pin Diagrams (Continued) = Pins are up to 5V tolerant PWM3L/RE4 PWM2H/RE3 PWM2L/RE2 PWM1H/RE1 PWM1L/FLT8/RE0 C1TX/RF1 C1RX/SYNCI4/RF0 VDD VCAP PWM5H/UPDN1/CN16/RD7 PWM5L/CN15/RD6 PWM6H/CN14/RD5 PWM6L/CN13/RD4 OC4/SYNCO1/RD3 OC3/FLT7/RD2 OC2/SYNCO2/FLT6/RD1 64-Pin QFN 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 PWM3H/RE5 PWM4L/RE6 PWM4H/RE7 SCK2/FLT12/CN8/RG6 SDI2/FLT11/CN9/RG7 SDO2/FLT10/CN10/RG8 MCLR SS2/FLT9/SYNCI2/T5CK/CN11/RG9 VSS VDD AN5/CMP3B/AQEB1/CN7/RB5 AN4/CMP2C/CMP3A/AQEA1/CN6/RB4 AN3/CMP2B/AINDX1/CN5/RB3 AN2/CMP1C/CMP2A/ASS1/CN4/RB2 PGEC3/AN1/CMP1B/CN3/RB1 PGED3/AN0/CMP1A/CMP4C/CN2/RB0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 dsPIC33FJ64GS606 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 PGEC2/SOSCO/T1CK/CN0/RC14 PGED2/SOSCI/T4CK/CN1/RC13 OC1/QEB1/FLT5/RD0 IC4/QEA1/FLT4/INT4/RD11 IC3/INDX1/FLT3/INT3/RD10 IC2/FLT2/U1CTS/INT2/RD9 IC1/FLT1/SYNCI1/INT1/RD8 VSS OSC2/REFCLKO/CLKO/RC15 OSC1/CLKIN/RC12 VDD SCL1/RG2 SDA1/RG3 U1RTS/SCK1/INT0/RF6 U1RX/SDI1/RF2 U1TX/SDO1/RF3 PGEC1/AN6/CMP3C/CMP4A/OCFA/RB6 PGED1/AN7/CMP4B/RB7 AVDD AVSS AN8/U2CTS/RB8 AN9/DACOUT/RB9 TMS/AN10/INDX2/RB10 TDO/AN11/EXTREF/RB11 VSS VDD TCK/AN12/CMP1D/RB12 TDI/AN13/CMP2D/RB13 AN14/CMP3D/SS1/U2RTS/RB14 AN15/CMP4D/CN12/RB15 U2RX/SDA2/QEA2/FLT17/CN17/RF4 U2TX/SCL2/QEB2/FLT18/CN18/RF5 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Note: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to VSS externally. DS7000591F-page 8  2009-2014 Microchip Technology Inc. dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 Pin Diagrams (Continued) = Pins are up to 5V tolerant 61 66 65 QEA2/RD12 PWM7H/OC4/SYNCO1/RD3 OC3/FLT7/RD2 OC2/SYNCO2/FLT6/RD1 PWM5L/CN15/RD6 68 67 63 62 PWM5H/UPDN1/CN16/RD7 69 64 C1TX/RF1 C1RX/RF0 VDD VCAP PWM6H/CN14/RD5 PWM6L/CN13/RD4 PWM7L/CN19/RD13 QEB2/RG1 73 72 70 INDX2/SYNCI4/RG0 74 71 PWM1L/FLT8/RE0 75 PWM2L/RE2 PWM1H/RE1 77 76 PWM2H/RE3 78 80 79 PWM3L/RE4 80-Pin TQFP PWM3H/RE5 1 60 PWM4L/RE6 2 59 PWM4H/RE7 AN16/T2CK/RC1 AN17/T3CK/RC2 SCK2/FLT12/CN8/RG6 SDI2/FLT11/CN9/RG7 SDO2/FLT10/CN10/RG8 MCLR 3 58 4 57 5 56 6 55 7 54 8 53 9 52 SS2/FLT9/T5CK/CN11/RG9 VSS VDD TMS/FLT13/INT1/RE8 TDO/FLT14/INT2/RE9 AN5/CMP3B/AQEB1/CN7/RB5 AN4/CMP2C/CMP3A/AQEA1/CN6/RB4 AN3/CMP2B/AINDX1/CN5/RB3 10 51 AN2/CMP1C/CMP2A/ASS1/CN4/RB2 PGEC3/AN1/CMP1B/CN3/RB1 PGED3/AN0/CMP1A/CMP4C/CN2/RB0 dsPIC33FJ32GS608 11 50 PGEC2/SOSCO/T1CK/CN0/RC14 PGED2/SOSCI/T4CK/CN1/RC13 OC1/QEB1/FLT5/RD0 IC4/QEA1/FLT4/RD11 IC3/INDX1/FLT3/RD10 IC2/FLT2/RD9 IC1/FLT1/SYNCI1/RD8 SDA2/INT4/FLT19/RA15 SCL2/INT3/FLT20/RA14 VSS OSC2/REFCLKO/CLKO/RC15 OSC1/CLKIN/RC12  2009-2014 Microchip Technology Inc. 28 29 30 31 32 33 34 35 36 37 38 39 40 AN10/RB10 AN11/EXTREF/RB11 VSS VDD TCK/AN12/CMP1D/RB12 TDI/AN13/CMP2D/RB13 AN14/CMP3D/SS1/U2RTS/RB14 AN15/CMP4D/CN12/RB15 U1CTS/FLT15/SYNCI3/CN20/RD14 U1RTS/FLT16/SYNCI2/CN21/RD15 U2RX/FLT17/CN17/RF4 U2TX/FLT18/CN18/RF5 U1RX/RF2 U1TX/RF3 AN9/DACOUT/RB9 41 27 20 AN8/U2CTS/RB8 SDO1/RF8 42 26 43 19 AVSS 18 25 SCK1/INT0/RF6 SDI1/RF7 AVDD 44 PWM8H/RA10 45 17 24 46 16 23 15 22 47 PWM8L/RA9 48 14 21 13 PGED1/AN7/CMP4B/RB7 49 PGEC1/AN6CMP3C/CMP4A/OCFA/RB6 12 VDD SCL1/RG2 SDA1/RG3 DS7000591F-page 9 dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 Pin Diagrams (Continued) = Pins are up to 5V tolerant 61 66 65 62 PWM5L/CN15/RD6 68 67 QEA2/RD12 PWM7H/OC4/SYNCO1/RD3 OC3/FLT7/RD2 OC2/SYNCO2/FLT6/RD1 PWM5H/UPDN1/CN16/RD7 69 64 63 QEB2/RG1 C1TX/RF1 C1RX/RF0 VDD VCAP 74 PWM6H/CN14/RD5 PWM6L/CN13/RD4 PWM7L/CN19/RD13 INDX2/SYNCI4/RG0 75 70 PWM1L/FLT8/RE0 76 71 PWM2L/RE2 PWM1H/RE1 73 72 PWM2H/RE3 78 77 PWM3L/RE4 80 79 80-Pin TQFP PWM3H/RE5 1 60 PWM4L/RE6 2 59 PWM4H/RE7 AN16/T2CK/RC1 AN17/T3CK/RC2 SCK2/FLT12/CN8/RG6 SDI2/FLT11/CN9/RG7 SDO2/FLT10/CN10/RG8 MCLR 3 58 4 57 5 56 6 55 7 54 8 53 52 9 SS2/FLT9/T5CK/CN11/RG9 VSS VDD TMS/FLT13/INT1/RE8 TDO/FLT14/INT2/RE9 AN5/CMP3B/AQEB1/CN7/RB5 AN4/CMP2C/CMP3A/AQEA1/CN6/RB4 AN3/CMP2B/AINDX1/CN5/RB3 10 51 dsPIC33FJ64GS608 DS7000591F-page 10 29 30 31 32 33 34 35 36 37 38 39 AN11/EXTREF/RB11 VSS VDD TCK/AN12/CMP1D/RB12 TDI/AN13/CMP2D/RB13 AN14/CMP3D/SS1/U2RTS/RB14 AN15/CMP4D/CN12/RB15 U1CTS/FLT15/SYNCI3/CN20/RD14 U1RTS/FLT16/SYNCI2/CN21/RD15 U2RX/FLT17/CN17/RF4 OC1/QEB1/FLT5/RD0 IC4/QEA1/FLT4/RD11 IC3/INDX1/FLT3/RD10 IC2/FLT2/RD9 IC1/FLT1/SYNCI1/RD8 SDA2/INT4/FLT19/RA15 SCL2/INT3/FLT20/RA14 VSS OSC2/REFCLKO/CLKO/RC15 OSC1/CLKIN/RC12 VDD SCL1/RG2 SDA1/RG3 SCK1/INT0/RF6 SDI1/RF7 SDO1/RF8 U1RX/RF2 U1TX/RF3 U2TX/FLT18/CN18/RF5 40 28 41 AN10/RB10 20 AN9/DACOUT/RB9 PGED3/AN0/CMP1A/CMP4C/CN2/RB0 AN8/U2CTS/RB8 42 27 43 19 26 18 25 AN2/CMP1C/CMP2A/ASS1/CN4/RB2 PGEC3/AN1/CMP1B/CN3/RB1 AVSS 44 AVDD 45 17 24 46 16 PWM8H/RA10 15 23 47 22 48 14 PWM8L/RA9 13 21 49 PGED1/AN7/CMP4B/RB7 50 12 PGEC1/AN6CMP3C/CMP4A/OCFA/RB6 11 PGEC2/SOSCO/T1CK/CN0/RC14 PGED2/SOSCI/T4CK/CN1/RC13  2009-2014 Microchip Technology Inc. dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 Pin Diagrams (Continued) = Pins are up to 5V tolerant 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 PWM3L/RE4 PWM2H/RE3 PWM2L/RE2 PWM9H/RG13 PWM9L/RG12 SYNCO1/FLT23/RG14 PWM1H/RE1 PWM1L/FLT8/RE0 AN23/CN23/RA7 AN22/CN22/RA6 INDX2/RG0 QEB2/RG1 C1TX/RF1 C1RX/RF0 VDD VCAP PWM5H/UPDN1/CN16/RD7 PWM5L/CN15/RD6 PWM6H/CN14/RD5 PWM6L/CN13/RD4 PWM7L/CN19/RD13 QEA2/RD12 PWM7H/OC4/RD3 OC3/FLT7/RD2 OC2/SYNCO2/FLT6/RD1 100-Pin TQFP SYNCI1/RG15 VDD PWM3H/RE5 PWM4L/RE6 PWM4H/RE7 AN16/T2CK/RC1 AN17/T3CK/RC2 AN18/T4CK/RC3 AN19/T5CK/RC4 SCK2/FLT12/CN8/RG6 SDI2/FLT11/CN9/RG7 SDO2/FLT10/CN10/RG8 MCLR SS2/FLT9/CN11/RG9 VSS VDD TMS/RA0 2 3 4 5 6 7 8 9 10 11 12 73 72 71 70 69 68 67 66 dsPIC33FJ32GS610 13 14 15 16 17 18 19 20 65 64 63 62 61 60 59 58 57 56 21 22 23 24 25 55 54 53 52 51 Vss PGEC2/SOSCO/T1CK/CN0/RC14 PGED2/SOSCI/CN1/RC13 OC1/QEB1/FLT5/RD0 IC4/QEA1/FLT4/RD11 IC3/INDX1/FLT3/RD10 IC2/FLT2/RD9 IC1/FLT1/RD8 INT4/FLT19/SYNCI4/RA15 INT3/FLT20/RA14 VSS OSC2/REFCLKO/CLKO/RC15 OSC1/CLKIN/RC12 VDD TDO/RA5 TDI/RA4 SDA2/FLT21/RA3 SCL2/FLT22/RA2 SCL1/RG2 SDA1/RG3 SCK1/INT0/RF6 SDI1/RF7 SDO1/RF8 U1RX/RF2 U1TX/RF3 PGEC1/AN6/CMP3C/CMP4A/OCFA/RB6 PGED1/AN7/CMP4B/RB7 PWM8L/RA9 PWM8H/RA10 AVDD AVSS AN8/RB8 AN9/DACOUT/RB9 AN10/RB10 AN11/EXTREF/RB11 VSS VDD TCK/RA1 U2RTS/RF13 U2CTS/RF12 AN12/CMP1D/RB12 AN13/CMP2D/RB13 AN14/CMP3D/SS1/RB14 AN15/CMP4D/CN12/RB15 VSS VDD U1CTS/FLT15/SYNCI3/CN20/RD14 U1RTS/FLT16/SYNCI2/CN21/RD15 U2RX/FLT17/CN17/RF4 U2TX/FLT18/CN18/RF5 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 AN20/FLT13/INT1/RE8 AN21/FLT14/INT2/RE9 AN5/CMP3B/AQEB1/CN7/RB5 AN4/CMP2C/CMP3A/AQEA1/CN6/RB4 AN3/CMP2B/AINDX1/CN5/RB3 AN2/CMP1C/CMP2A/ASS1/CN4/RB2 PGEC3/AN1/CMP1B/CN3/RB1 PGED3/AN0/CMP1A/CMP4C/CN2/RB0 75 74 1  2009-2014 Microchip Technology Inc. DS7000591F-page 11 dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 Pin Diagrams (Continued) = Pins are up to 5V tolerant 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 PWM3L/RE4 PWM2H/RE3 PWM2L/RE2 PWM9H/RG13 PWM9L/RG12 SYNCO1/FLT23/RG14 PWM1H/RE1 PWM1L/FLT8/RE0 AN23/CN23/RA7 AN22/CN22/RA6 INDX2/RG0 QEB2/RG1 C1TX/RF1 C1RX/RF0 VDD VCAP PWM5H/UPDN1/CN16/RD7 PWM5L/CN15/RD6 PWM6H/CN14/RD5 PWM6L/CN13/RD4 PWM7L/CN19/RD13 QEA2/RD12 PWM7H/OC4/RD3 OC3/FLT7/RD2 OC2/SYNCO2/FLT6/RD1 100-Pin TQFP SYNCI1/RG15 VDD PWM3H/RE5 PWM4L/RE6 PWM4H/RE7 AN16/T2CK/RC1 AN17/T3CK/RC2 AN18/T4CK/RC3 AN19/T5CK/RC4 SCK2/FLT12/CN8/RG6 SDI2/FLT11/CN9/RG7 SDO2/FLT10/CN10/RG8 MCLR SS2/FLT9/CN11/RG9 VSS VDD TMS/RA0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 dsPIC33FJ64GS610 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 Vss PGEC2/SOSCO/T1CK/CN0/RC14 PGED2/SOSCI/CN1/RC13 OC1/QEB1/FLT5/RD0 IC4/QEA1/FLT4/RD11 IC3/INDX1/FLT3/RD10 IC2/FLT2/RD9 IC1/FLT1/RD8 INT4/FLT19/SYNCI4/RA15 INT3/FLT20/RA14 VSS OSC2/REFCLKO/CLKO/RC15 OSC1/CLKIN/RC12 VDD TDO/RA5 TDI/RA4 SDA2/FLT21/RA3 SCL2/FLT22/RA2 SCL1/RG2 SDA1/RG3 SCK1/INT0/RF6 SDI1/RF7 SDO1/RF8 U1RX/RF2 U1TX/RF3 PGEC1/AN6/CMP3C/CMP4A/OCFA/RB6 PGED1/AN7/CMP4B/RB7 PWM8L/RA9 PWM8H/RA10 AVDD AVSS AN8/RB8 AN9/DACOUT/RB9 AN10/RB10 AN11/EXTREF/RB11 VSS VDD TCK/RA1 U2RTS/RF13 U2CTS/RF12 AN12/CMP1D/RB12 AN13/CMP2D/RB13 AN14/CMP3D/SS1/RB14 AN15/CMP4D/CN12/RB15 VSS VDD U1CTS/FLT15/SYNCI3/CN20/RD14 U1RTS/FLT16/SYNCI2/CN21/RD15 U2RX/FLT17/CN17/RF4 U2TX/FLT18/CN18/RF5 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 AN20/FLT13/INT1/RE8 AN21/FLT14/INT2/RE9 AN5/CMP3B/AQEB1/CN7/RB5 AN4/CMP2C/CMP3A/AQEA1/CN6/RB4 AN3/CMP2B/AINDX1/CN5/RB3 AN2/CMP1C/CMP2A/ASS1/CN4/RB2 PGEC3/AN1/CMP1B/CN3/RB1 PGED3/AN0/CMP1A/CMP4C/CN2/RB0 1 DS7000591F-page 12  2009-2014 Microchip Technology Inc. dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 Table of Contents dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 Product Families ............................................................... 2 1.0 Device Overview ........................................................................................................................................................................ 17 2.0 Guidelines for Getting Started with 16-Bit Digital Signal Controllers.......................................................................................... 23 3.0 CPU............................................................................................................................................................................................ 33 4.0 Memory Organization ................................................................................................................................................................. 45 5.0 Flash Program Memory............................................................................................................................................................ 109 6.0 Resets ..................................................................................................................................................................................... 115 7.0 Interrupt Controller ................................................................................................................................................................... 123 8.0 Direct Memory Access (DMA) .................................................................................................................................................. 179 9.0 Oscillator Configuration ............................................................................................................................................................ 189 10.0 Power-Saving Features............................................................................................................................................................ 203 11.0 I/O Ports ................................................................................................................................................................................... 213 12.0 Timer1 ...................................................................................................................................................................................... 217 13.0 Timer2/3/4/5 features .............................................................................................................................................................. 219 14.0 Input Capture............................................................................................................................................................................ 225 15.0 Output Compare....................................................................................................................................................................... 227 16.0 High-Speed PWM..................................................................................................................................................................... 231 17.0 Quadrature Encoder Interface (QEI) Module ........................................................................................................................... 261 18.0 Serial Peripheral Interface (SPI)............................................................................................................................................... 265 19.0 Inter-Integrated Circuit (I2C™) ................................................................................................................................................ 271 20.0 Universal Asynchronous Receiver Transmitter (UART) ........................................................................................................... 279 21.0 Enhanced CAN (ECAN™) Module........................................................................................................................................... 285 22.0 High-Speed, 10-Bit Analog-to-Digital Converter (ADC)............................................................................................................ 313 23.0 High-Speed Analog Comparator .............................................................................................................................................. 345 24.0 Special Features ...................................................................................................................................................................... 349 25.0 Instruction Set Summary .......................................................................................................................................................... 357 26.0 Development Support............................................................................................................................................................... 365 27.0 Electrical Characteristics .......................................................................................................................................................... 369 28.0 50 MIPS Electrical Characteristics ........................................................................................................................................... 417 29.0 DC and AC Device Characteristics Graphs.............................................................................................................................. 423 30.0 Packaging Information.............................................................................................................................................................. 427 Appendix A: Migrating from dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 to dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 Devices ................................................................................................................... 441 Appendix B: Revision History............................................................................................................................................................. 442 Index ................................................................................................................................................................................................. 449 The Microchip Web Site ..................................................................................................................................................................... 457 Customer Change Notification Service .............................................................................................................................................. 457 Customer Support .............................................................................................................................................................................. 457 Product Identification System ............................................................................................................................................................ 459  2009-2014 Microchip Technology Inc. DS7000591F-page 13 dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 TO OUR VALUED CUSTOMERS It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced. If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at docerrors@microchip.com. We welcome your feedback. Most Current Data Sheet To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at: http://www.microchip.com You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000). Errata An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies. To determine if an errata sheet exists for a particular device, please check with one of the following: • Microchip’s Worldwide Web site; http://www.microchip.com • Your local Microchip sales office (see last page) When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using. Customer Notification System Register on our web site at www.microchip.com to receive the most current information on all of our products. DS7000591F-page 14  2009-2014 Microchip Technology Inc. dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 Referenced Sources This device data sheet is based on the following individual chapters of the “dsPIC33/PIC24 Family Reference Manual”. These documents should be considered as the primary reference for the operation of a particular module or device feature. Note 1: To access the documents listed below, browse to the documentation section of the dsPIC33FJ64GS610 product page of the Microchip web site (www.microchip.com) to select a family reference manual section from the following list. In addition to parameters, features and other documentation, the resulting page provides links to the related family reference manual sections. • • • • • • • • • • • • • • • • • • • • • • • • • • “CPU” (DS70204) “Data Memory” (DS70202) “Program Memory” (DS70203) “Flash Programming” (DS70191) “Reset” (DS70192) “Watchdog Timer (WDT) and Power-Saving Modes” (DS70196) “I/O Ports” (DS70193) “Timers” (DS70205) “Input Capture” (DS70198) “Output Compare” (DS70005157) “Quadrature Encoder Interface (QEI)” (DS70208) “Analog-to-Digital Converter (ADC)” (DS70183) “UART” (DS70188) “Serial Peripheral Interface (SPI)” (DS70206) “Inter-Integrated Circuit™ (I2C™)” (DS70000195) “ECAN™” (DS70185) “Direct Memory Access (DMA)” (DS70182) “CodeGuard™ Security” (DS70199) “Programming and Diagnostics” (DS70207) “Device Configuration” (DS70194) “Development Tool Support” (DS70200) “Oscillator (Part IV)” (DS70307) “High-Speed PWM” (DS70000323) “High-Speed 10-Bit ADC” (DS70000321) “High-Speed Analog Comparator” (DS70296) “Interrupts (Part V)” (DS70597)  2009-2014 Microchip Technology Inc. DS7000591F-page 15 dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 NOTES: DS7000591F-page 16  2009-2014 Microchip Technology Inc. dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 1.0 Note: DEVICE OVERVIEW This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the latest sections in the “dsPIC33/PIC24 Family Reference Manual”, which are available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM. The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families of devices contain extensive Digital Signal Processor (DSP) functionality with a high-performance 16-bit microcontroller (MCU) architecture. Figure 1-1 shows a general block diagram of the core and peripheral modules in the dsPIC33FJ32GS406/ 606/608/610 and dsPIC33FJ64GS406/606/608/610 devices. Table 1-1 lists the functions of the various pins shown in the pinout diagrams. This document contains device-specific information for the following dsPIC33F Digital Signal Controller (DSC) devices: • • • • • • • • dsPIC33FJ32GS406 dsPIC33FJ32GS606 dsPIC33FJ32GS608 dsPIC33FJ32GS610 dsPIC33FJ64GS406 dsPIC33FJ64GS606 dsPIC33FJ64GS608 dsPIC33FJ64GS610  2009-2014 Microchip Technology Inc. DS7000591F-page 17 dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 FIGURE 1-1: DEVICE BLOCK DIAGRAM PSV and Table Data Access Control Block Y Data Bus X Data Bus Interrupt Controller 16 8 PORTA DMA RAM 16 16 16 Data Latch Data Latch PCU PCH PCL Program Counter X RAM Y RAM Loop Control Logic Address Latch Address Latch 16 23 23 Stack Control Logic PORTB DMA Controller 16 23 16 16 16 PORTC Address Generator Units Address Latch Program Memory EA MUX Data Latch 24 Instruction Reg Control Signals to Various Blocks FRC/LPRC Oscillators VCAP Note: PORTE 16 Divide Support 16 x 16 W Register Array 16 PORTF Oscillator Start-up Timer Power-on Reset 16-Bit ALU Watchdog Timer Voltage Regulator 16 DSP Engine Power-up Timer Timing Generation Literal Data 16 Instruction Decode and Control OSC2/CLKO OSC1/CLKI PORTD ROM Latch 16 PORTG Brown-out Reset VDD, VSS MCLR Timers 1-5 UART1/2 ECAN1 ADC1 OC1-4 PWM 9x2 Analog Comparator 1-4 IC1-4 QEI1,2 CNx I2C1/2 SPI1,2 Not all pins or features are implemented on all device pinout configurations. See pinout diagrams for the specific pins and features present on each device. DS7000591F-page 18  2009-2014 Microchip Technology Inc. dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 TABLE 1-1: PINOUT I/O DESCRIPTIONS Pin Name Pin Type Buffer Type AN0-AN23 I CLKI CLKO I O ST/CMOS External clock source input. Always associated with OSC1 pin function. — Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with OSC2 pin function. OSC1 I OSC2 I/O ST/CMOS Oscillator crystal input. ST buffer when configured in RC mode; CMOS otherwise. — Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. SOSCI SOSCO I O CN0-CN23 I ST Change Notification inputs. Can be software programmed for internal weak pull-ups on all inputs. C1RX C1TX I O ST — ECAN1 bus receive pin. ECAN1 bus transmit pin. IC1-IC4 I ST Capture Inputs 1 through 4. INDX1, INDX2, AINDX1 QEA1, QEA2, AQEA1 I I ST ST QEB1, QEB2, AQEB1 I ST UPDN1 O CMOS Quadrature Encoder Index Pulse input. Quadrature Encoder Phase A input in QEI mode. Auxiliary Timer External Clock/Gate input in Timer mode. Quadrature Encoder Phase A input in QEI mode. Auxiliary Timer External Clock/Gate input in Timer mode. Position Up/Down Counter Direction State. OCFA OC1-OC4 I O ST — Compare Fault A input. Compare Outputs 1 through 4. INT0 INT1 INT2 INT3 INT4 I I I I I ST ST ST ST ST External Interrupt 0. External Interrupt 1. External Interrupt 2. External Interrupt 3. External Interrupt 4. RA0-RA15 I/O ST PORTA is a bidirectional I/O port. RB0-RB15 I/O ST PORTB is a bidirectional I/O port. RC0-RC15 I/O ST PORTC is a bidirectional I/O port. RD0-RD15 I/O ST PORTD is a bidirectional I/O port. RE0-RE9 I/O ST PORTE is a bidirectional I/O port. RF0-RF13 I/O ST PORTF is a bidirectional I/O port. RG0-RG15 I/O ST PORTG is a bidirectional I/O port. I I I I I ST ST ST ST ST Timer1 external clock input. Timer2 external clock input. Timer3 external clock input. Timer4 external clock input. Timer5 external clock input. T1CK T2CK T3CK T4CK T5CK Analog Description Analog input channels. ST/CMOS 32.768 kHz low-power oscillator crystal input; CMOS otherwise. — 32.768 kHz low-power oscillator crystal output. Legend: CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = Transistor-Transistor Logic  2009-2014 Microchip Technology Inc. Analog = Analog input P = Power I = Input O = Output DS7000591F-page 19 dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED) Pin Type Buffer Type U1CTS U1RTS U1RX U1TX U2CTS U2RTS U2RX U2TX I O I O I O I O ST — ST — ST — ST — UART1 Clear-to-Send. UART1 Request-to-Send. UART1 receive. UART1 transmit. UART2 Clear-to-Send. UART2 Request-to-Send. UART2 receive. UART2 transmit. SCK1 SDI1 SDO1 SS1, ASS1 SCK2 SDI2 SDO2 SS2 I/O I O I/O I/O I O I/O ST ST — ST ST ST — ST Synchronous serial clock input/output for SPI1. SPI1 data in. SPI1 data out. SPI1 slave synchronization or frame pulse I/O. Synchronous serial clock input/output for SPI2. SPI2 data in. SPI2 data out. SPI2 slave synchronization or frame pulse I/O. SCL1 SDA1 SCL2 SDA2 I/O I/O I/O I/O ST ST ST ST Synchronous serial clock input/output for I2C1. Synchronous serial data input/output for I2C1. Synchronous serial clock input/output for I2C2. Synchronous serial data input/output for I2C2. TMS TCK TDI TDO I I I O TTL TTL TTL — JTAG Test mode select pin. JTAG test clock input pin. JTAG test data input pin. JTAG test data output pin. CMP1A CMP1B CMP1C CMP1D CMP2A CMP2B CMP2C CMP2D CMP3A CMP3B CMP3C CMP3D CMP4A CMP4B CMP4C CMP4D I I I I I I I I I I I I I I I I Analog Analog Analog Analog Analog Analog Analog Analog Analog Analog Analog Analog Analog Analog Analog Analog DACOUT O — EXTREF I Analog REFCLK O — Pin Name Description Comparator 1 Channel A. Comparator 1 Channel B. Comparator 1 Channel C. Comparator 1 Channel D. Comparator 2 Channel A Comparator 2 Channel B. Comparator 2 Channel C. Comparator 2 Channel D. Comparator 3 Channel A. Comparator 3 Channel B. Comparator 3 Channel C. Comparator 3 Channel D. Comparator 4 Channel A. Comparator 4 Channel B. Comparator 4 Channel C. Comparator 4 Channel D. DAC output voltage. External voltage reference input for the reference DACs. REFCLK output signal is a postscaled derivative of the system clock. Legend: CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = Transistor-Transistor Logic DS7000591F-page 20 Analog = Analog input P = Power I = Input O = Output  2009-2014 Microchip Technology Inc. dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED) Pin Type Buffer Type FLT1-FLT23 SYNCI1-SYNCI4 SYNCO1-SYNCO2 PWM1L PWM1H PWM2L PWM2H PWM3L PWM3H PWM4L PWM4H PWM5L PWM5H PWM6L PWM6H PWM7L PWM7H PWM8L PWM8H PWM9L PWM9H I I O O O O O O O O O O O O O O O O O O O ST ST — — — — — — — — — — — — — — — — — — — Fault inputs to PWM module. External synchronization signal to PWM master time base. PWM master time base for external device synchronization. PWM1 low output. PWM1 high output. PWM2 low output. PWM2 high output. PWM3 low output. PWM3 high output. PWM4 low output. PWM4 high output. PWM5 low output. PWM5 high output. PWM6 low output. PWM6 high output. PWM7 low output. PWM7 high output. PWM8 low output. PWM8 high output. PWM9 low output. PWM9 high output. PGED1 PGEC1 PGED2 PGEC2 PGED3 PGEC3 I/O I I/O I I/O I ST ST ST ST ST ST Data I/O pin for Programming/Debugging Communication Channel 1. Clock input pin for Programming/Debugging Communication Channel 1. Data I/O pin for Programming/Debugging Communication Channel 2. Clock input pin for Programming/Debugging Communication Channel 2. Data I/O pin for Programming/Debugging Communication Channel 3. Clock input pin for Programming/Debugging Communication Channel 3. MCLR I/P ST Master Clear (Reset) input. This pin is an active-low Reset to the device. AVDD P P Pin Name Description Positive supply for analog modules. AVSS P P Ground reference for analog modules. VDD P — Positive supply for peripheral logic and I/O pins. VCAP P — CPU logic filter capacitor connection. VSS P — Ground reference for logic and I/O pins. Legend: CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = Transistor-Transistor Logic  2009-2014 Microchip Technology Inc. Analog = Analog input P = Power I = Input O = Output DS7000591F-page 21 dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 NOTES: DS7000591F-page 22  2009-2014 Microchip Technology Inc. dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT DIGITAL SIGNAL CONTROLLERS Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the “dsPIC33/ PIC24 Family Reference Manual”. Please see the Microchip web site (www.microchip.com) for the latest dsPIC33/PIC24 Family Reference Manual sections. The information in this data sheet supersedes the information in the FRM. 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. 2.1 Basic Connection Requirements Getting started with the dsPIC33FJ32GS406/606/ 608/610 and dsPIC33FJ64GS406/606/608/610 family of 16-bit Digital Signal Controllers (DSC) requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected: • All VDD and VSS pins (see Section 2.2 “Decoupling Capacitors”) • All AVDD and AVSS pins (regardless if ADC module is not used) (see Section 2.2 “Decoupling Capacitors”) • VCAP (see Section 2.3 “Capacitor on Internal Voltage Regulator (VCAP)”) • MCLR pin (see Section 2.4 “Master Clear (MCLR) Pin”) • PGECx/PGEDx pins used for In-Circuit Serial Programming™ (ICSP™) and debugging purposes (see Section 2.5 “ICSP Pins”) • OSC1 and OSC2 pins when external oscillator source is used (see Section 2.6 “External Oscillator Pins”)  2009-2014 Microchip Technology Inc. 2.2 Decoupling Capacitors The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS, is required. Consider the following criteria when using decoupling capacitors: • Value and type of capacitor: Recommendation of 0.1 µF (100 nF), 10-20V. This capacitor should be a low-ESR and have resonance frequency in the range of 20 MHz and higher. It is recommended that ceramic capacitors be used. • Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length. • Handling high-frequency noise: If the board is experiencing high-frequency noise, upward of tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 µF to 0.001 µF. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 µF in parallel with 0.001 µF. • Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB track inductance. DS7000591F-page 23 dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 FIGURE 2-1: RECOMMENDED MINIMUM CONNECTION 0.1 µF Ceramic R R1 2.4 VSS VCAP VDD 22 µF Tantalum VDD • Device Reset • Device programming and debugging C dsPIC33F VSS VDD VSS VDD AVSS VDD AVDD VSS 0.1 µF Ceramic 0.1 µF Ceramic 0.1 µF Ceramic L1(1) Note 1: As an option, instead of a hard-wired connection, an inductor (L1) can be substituted between VDD and AVDD to improve ADC noise rejection. The inductor impedance should be less than 1 and the inductor capacity greater than 10 mA. Where: F CNV f = -------------2 1 f = ---------------------- 2 LC  Master Clear (MCLR) Pin The MCLR pin provides for two specific device functions: MCLR 0.1 µF Ceramic The placement of this capacitor should be close to the VCAP. It is recommended that the trace length not exceed one-quarter inch (6 mm). Refer to Section 24.2 “On-Chip Voltage Regulator” for details. (i.e., ADC conversion rate/2) During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements. For example, as shown in Figure 2-2, it is recommended that the capacitor C, be isolated from the MCLR pin during programming and debugging operations. Place the components shown in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin. FIGURE 2-2: EXAMPLE OF MCLR PIN CONNECTIONS(1,2) VDD 2 1 L =  ----------------------   2f C  R R1 MCLR 2.2.1 TANK CAPACITORS On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits including DSCs to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 µF to 47 µF. 2.3 Capacitor on Internal Voltage Regulator (VCAP) JP dsPIC33F C Note 1: R  10 k is recommended. A suggested starting value is 10 k. Ensure that the MCLR pin VIH and VIL specifications are met. 2: R1  470 will limit any current flowing into MCLR from the external capacitor C, in the event of MCLR pin breakdown, due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS). Ensure that the MCLR pin VIH and VIL specifications are met. A low-ESR (< 0.5 Ohms) capacitor is required on the VCAP pin, which is used to stabilize the voltage regulator output voltage. The VCAP pin must not be connected to VDD, and must have a minimum capacitor of 22 µF, 16V connected to ground. The type can be ceramic or tantalum. Refer to Section 27.0 “Electrical Characteristics” for additional information. DS7000591F-page 24  2009-2014 Microchip Technology Inc. dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 2.5 ICSP Pins The PGECx and PGEDx pins are used for In-Circuit Serial Programming™ (ICSP™) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms. Pull-up resistors, series diodes, and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements. Ensure that the “Communication Channel Select” (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB® ICD 3 or MPLAB REAL ICE™. For more information on ICD 3 and REAL ICE connection requirements, refer to the following documents that are available on the Microchip web site. • “Using MPLAB® ICD 3” (poster) (DS51765) • “MPLAB® ICD 3 Design Advisory” (DS51764) • “MPLAB® REAL ICE™ In-Circuit Debugger User’s Guide” (DS51616) • “Using MPLAB® REAL ICE™” (poster) (DS51749) 2.6 External Oscillator Pins Many DSCs have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to Section 9.0 “Oscillator Configuration” for details). The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is shown in Figure 2-3. FIGURE 2-3: SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT Main Oscillator 13 Guard Ring 14 15 Guard Trace Secondary Oscillator 16 17 18 19 20  2009-2014 Microchip Technology Inc. DS7000591F-page 25 dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 2.7 Oscillator Value Conditions on Device Start-up If the PLL of the target device is enabled and configured for the device start-up oscillator, the maximum oscillator source frequency must be limited to 4 MHz < FIN < 8 MHz to comply with device PLL start-up conditions. This means that if the external oscillator frequency is outside this range, the application must start-up in the FRC mode first. The default PLL settings after a POR with an oscillator frequency outside this range will violate the device operating speed. Once the device powers up, the application firmware can initialize the PLL SFRs, CLKDIV and PLLDBF to a suitable value, and then perform a clock switch to the Oscillator + PLL clock source. Note that clock switching must be enabled in the device Configuration Word. 2.8 Configuration of Analog and Digital Pins During ICSP Operations If MPLAB ICD 3 or REAL ICE is selected as a debugger, it automatically initializes all of the Analogto-Digital input pins (ANx) as “digital” pins, by setting all bits in the ADPCFG and ADPCFG2 registers. If your application needs to use certain Analog-toDigital pins as analog input pins during the debug session, the user application must clear the corresponding bits in the ADPCFG and ADPCFG2 registers during initialization of the ADC module. When MPLAB ICD 3 or REAL ICE is used as a programmer, the user application firmware must correctly configure the ADPCFG and ADPCFG2 registers. Automatic initialization of these registers is only done during debugger operation. Failure to correctly configure the register(s) will result in all Analog-to-Digital pins being recognized as analog input pins, resulting in the port value being read as a logic ‘0’, which may affect user application functionality. 2.9 Unused I/Os Unused I/O pins should be configured as outputs and driven to a logic low state. Alternatively, connect a 1k to 10k resistor between VSS and unused pins and drive the output to logic low. 2.10 Typical Application Connection Examples Examples of typical application connections are shown in Figure 2-4 through Figure 2-11. The bits in the registers that correspond to the Analog-toDigital pins that are initialized by MPLAB ICD 2, ICD 3, or REAL ICE, must not be cleared by the user application firmware; otherwise, communication errors will result between the debugger and the device. DS7000591F-page 26  2009-2014 Microchip Technology Inc. dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 FIGURE 2-4: DIGITAL PFC IPFC VHV_BUS |VAC| k1 k3 VAC ADC Channel k2 FET Driver ADC Channel PWM Output ADC Channel dsPIC33FJ32GS406 FIGURE 2-5: BOOST CONVERTER IMPLEMENTATION IPFC VINPUT VOUTPUT k1 k3 ADC Channel k2 FET Driver ADC Channel PWM Output ADC Channel dsPIC33FJ32GS406  2009-2014 Microchip Technology Inc. DS7000591F-page 27 dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 FIGURE 2-6: SINGLE-PHASE SYNCHRONOUS BUCK CONVERTER 12V Input 5V Output I5V PWM ADC Channel PWM FET Driver k7 k1 k2 Analog Comp. ADC Channel dsPIC33FJ32GS606 FIGURE 2-7: MULTIPHASE SYNCHRONOUS BUCK CONVERTER 3.3V Output 12V Input PWM dsPIC33FJ32GS608 PWM FET Driver PWM ADC Channel FET Driver PWM k6 k7 PWM PWM Analog Comparator FET Driver k3 Analog Comparator k4 Analog Comparator k5 ADC Channel DS7000591F-page 28  2009-2014 Microchip Technology Inc. dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 FIGURE 2-8: OFF-LINE UPS VDC Push-Pull Converter Full-Bridge Inverter VOUT+ VBAT + VOUTGND GND FET Driver FET Driver PWM PWM k2 k1 ADC ADC or Analog Comp. k3 FET Driver FET Driver FET Driver FET Driver PWM PWM PWM PWM dsPIC33FJ64GS610 ADC k4 k5 ADC ADC ADC PWM FET Driver k6 + Battery Charger  2009-2014 Microchip Technology Inc. DS7000591F-page 29 dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 FIGURE 2-9: INTERLEAVED PFC VOUT+ |VAC| k4 VAC k3 k2 k1 VOUTFET Driver ADC Channel ADC Channel DS7000591F-page 30 PWM FET Driver ADC Channel PWM ADC Channel ADC Channel dsPIC33FJ32GS608  2009-2014 Microchip Technology Inc. dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 FIGURE 2-10: PHASE-SHIFTED FULL-BRIDGE CONVERTER VIN+ Gate 6 Gate 3 Gate 1 VOUT+ S1 S3 VOUT- Gate 2 Gate 4 Gate 5 Gate 6 Gate 5 VIN- FET Driver k2 PWM ADC Channel k1 Analog Ground Gate 1 S1 FET Driver PWM Gate 3 S3 FET Driver ADC Channel dsPIC33FJ32GS606 PWM Gate 2 Gate 4  2009-2014 Microchip Technology Inc. DS7000591F-page 31 AC-TO-DC POWER SUPPLY WITH PFC AND THREE OUTPUTS (12V, 5V AND 3.3V) ZVT with Current Doubler Synchronous Rectifier VHV_BUS Isolation Barrier VOUT IZVT 3.3V Multiphase Buck Stage 3.3V Output 12V Input I3.3V_1 FET Driver FET Driver k4 FET Driver 5V Output 5V Buck Stage I3.3V_2 ADC ADC Channel Channel FET Driver PWM UART RX PWM Output ADC Ch. ADC Channel FET Driver k7 Analog Comp. ADC Channel Secondary Controller dsPIC33FJ64GS610 PFC Stage k2 UART TX FET Driver FET Driver I3.3V_3 k6 PWM PWM ADC Ch. k5 PWM PWM PWM ADC Ch. Primary Controller dsPIC33FJ64GS610 PWM PWM PWM PWM PWM PWM I5V PWM PWM Analog Comparator k8 Analog Comparator k9 Analog Comparator k10 ADC Channel  2009-2014 Microchip Technology Inc. VAC k3 k1 |VAC| VHV_BUS IPFC FET Driver k11 dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 DS7000591F-page 32 FIGURE 2-11: dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 3.0 CPU Note 1: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to “CPU” (DS70204) in the “dsPIC33/PIC24 Family Reference Manual”, which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM. 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 CPU module has a 16-bit (data) modified Harvard architecture with an enhanced instruction set, including significant support for DSP. The CPU has a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M x 24 bits of user program memory space. The actual amount of program memory implemented varies from device to device. A single-cycle instruction prefetch mechanism is used to help maintain throughput and provides predictable execution. All instructions execute in a single cycle, with the exception of instructions that change the program flow, the double-word move (MOV.D) instruction and the table instructions. Overhead-free program loop constructs are supported using the DO and REPEAT instructions, both of which are interruptible at any point. The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices have sixteen, 16-bit Working registers in the programmer’s model. Each of the Working registers can serve as a data, address or address offset register. The sixteenth Working register (W15) operates as a Software Stack Pointer (SSP) for interrupts and calls. There are two classes of instruction in the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices: MCU and DSP. These two instruction classes are seamlessly integrated into a single CPU. The instruction set includes many addressing modes and is designed for optimum C compiler efficiency. For most instructions, the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices are capable of executing a data (or program data) memory read, a Working register (data) read, a data memory write and a program (instruction) memory read per instruction cycle.  2009-2014 Microchip Technology Inc. As a result, three parameter instructions can be supported, allowing A + B = C operations to be executed in a single cycle. A block diagram of the CPU is shown in Figure 3-1, and the programmer’s model for the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 is shown in Figure 3-2. 3.1 Data Addressing Overview The data space can be addressed as 32K words or 64 Kbytes and is split into two blocks, referred to as X and Y data memory. Each memory block has its own independent Address Generation Unit (AGU). The MCU class of instructions operates solely through the X memory AGU, which accesses the entire memory map as one linear data space. Certain DSP instructions operate through the X and Y AGUs to support dual operand reads, which splits the data address space into two parts. The X and Y data space boundary is device-specific. Overhead-free circular buffers (Modulo Addressing mode) are supported in both X and Y address spaces. The Modulo Addressing removes the software boundary checking overhead for DSP algorithms. Furthermore, the X AGU circular addressing can be used with any of the MCU class of instructions. The X AGU also supports Bit-Reversed Addressing to greatly simplify input or output data reordering for radix-2 FFT algorithms. The upper 32 Kbytes of the data space memory map can optionally be mapped into program space at any 16K program word boundary defined by the 8-bit Program Space Visibility Page (PSVPAG) register. The program-to-data space mapping feature lets any instruction access program space as if it were data space. 3.2 DSP Engine Overview The DSP engine features a high-speed, 17-bit by 17-bit multiplier, a 40-bit ALU, two 40-bit saturating accumulators and a 40-bit bidirectional barrel shifter. The barrel shifter is capable of shifting a 40-bit value up to 16 bits, right or left, in a single cycle. The DSP instructions operate seamlessly with all other instructions and have been designed for optimal realtime performance. The MAC instruction and other associated instructions can concurrently fetch two data operands from memory while multiplying two W registers and accumulating and optionally saturating the result in the same cycle. This instruction functionality requires that the RAM data space be split for these instructions and linear for all others. Data space partitioning is achieved in a transparent and flexible manner through dedicating certain Working registers to each address space. DS7000591F-page 33 dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 3.3 Special MCU Features The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 supports 16/16 and 32/16 divide operations, both fractional and integer. All divide instructions are iterative operations. They must be executed within a REPEAT loop, resulting in a total execution time of 19 instruction cycles. The divide operation can be interrupted during any of those 19 cycles without loss of data. The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 features a 17-bit by 17-bit single-cycle multiplier that is shared by both the MCU ALU and DSP engine. The multiplier can perform signed, unsigned and mixed sign multiplication. Using a 17-bit by 17-bit multiplier for 16-bit by 16-bit multiplication not only allows you to perform mixed sign multiplication, it also achieves accurate results for special operations, such as (-1.0) x (-1.0). FIGURE 3-1: A 40-bit barrel shifter is used to perform up to a 16-bit left or right shift in a single cycle. The barrel shifter can be used by both MCU and DSP instructions. dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 CPU CORE BLOCK DIAGRAM PSV and Table Data Access Control Block Y Data Bus X Data Bus Interrupt Controller 8 16 16 16 16 Data Latch Data Latch X RAM Y RAM Address Latch Address Latch 23 23 PCU PCH PCL Program Counter Loop Stack Control Control Logic Logic 16 23 16 16 Address Generator Units Address Latch Program Memory EA MUX Data Latch ROM Latch 24 Instruction Reg 16 Literal Data Instruction Decode and Control 16 16 Control Signals to Various Blocks DSP Engine Divide Support 16 x 16 W Register Array 16 16-Bit ALU 16 To Peripheral Modules DS7000591F-page 34  2009-2014 Microchip Technology Inc. dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 FIGURE 3-2: PROGRAMMER’S MODEL D15 D0 W0/WREG PUSH.S Shadow W1 DO Shadow W2 W3 Legend W4 W5 DSP Operand Registers W6 W7 Working Registers W8 W9 DSP Address Registers W10 W11 W12/DSP Offset W13/DSP Write-Back W14/Frame Pointer W15/Stack Pointer Stack Pointer Limit Register SPLIM AD39 DSP Accumulators AD15 AD31 AD0 ACCA ACCB PC22 PC0 0 Program Counter 0 7 TBLPAG Data Table Page Address 7 0 PSVPAG Program Space Visibility Page Address 15 0 RCOUNT REPEAT Loop Counter 15 0 DCOUNT DO Loop Counter 22 0 DOSTART DO Loop Start Address DOEND DO Loop End Address 22 15 0 Core Configuration Register CORCON OA OB SA SB OAB SAB DA SRH  2009-2014 Microchip Technology Inc. DC IPL2 IPL1 IPL0 RA N OV Z C STATUS Register SRL DS7000591F-page 35 dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 3.4 CPU Control Registers REGISTER 3-1: SR: CPU STATUS REGISTER R-0 OA R-0 R/C-0 R/C-0 OB SA(1) (1) SB R-0 OAB R/C-0 (1,4) SAB R-0 R/W-0 DA DC bit 15 bit 8 R/W-0(3) IPL2 R/W-0(3) (2) IPL1 (2) R/W-0(3) IPL0 (2) R-0 R/W-0 R/W-0 R/W-0 R/W-0 RA N OV Z C bit 7 bit 0 Legend: C = Clearable bit R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 OA: Accumulator A Overflow Status bit 1 = Accumulator A has overflowed 0 = Accumulator A has not overflowed bit 14 OB: Accumulator B Overflow Status bit 1 = Accumulator B has overflowed 0 = Accumulator B has not overflowed bit 13 SA: Accumulator A Saturation ‘Sticky’ Status bit(1) 1 = Accumulator A is saturated or has been saturated at some time 0 = Accumulator A is not saturated bit 12 SB: Accumulator B Saturation ‘Sticky’ Status bit(1) 1 = Accumulator B is saturated or has been saturated at some time 0 = Accumulator B is not saturated bit 11 OAB: OA || OB Combined Accumulator Overflow Status bit 1 = Accumulator A or B has overflowed 0 = Neither Accumulator A or B has overflowed bit 10 SAB: SA || SB Combined Accumulator ‘Sticky’ Status bit(1,4) 1 = Accumulator A or B is saturated or has been saturated at some time in the past 0 = Neither Accumulator A or B is saturated bit 9 DA: DO Loop Active bit 1 = DO loop in progress 0 = DO loop not in progress bit 8 DC: MCU ALU Half Carry/Borrow bit 1 = A carry-out from the 4th low-order bit (for byte-sized data) or 8th low-order bit (for word-sized data) of the result occurred 0 = No carry-out from the 4th low-order bit (for byte-sized data) or 8th low-order bit (for word-sized data) of the result occurred Note 1: 2: 3: 4: This bit can be read or cleared (not set). The IPL bits are concatenated with the IPL bit (CORCON) to form the CPU Interrupt Priority Level (IPL). The value in parentheses indicates the IPL if IPL = 1. User interrupts are disabled when IPL = 1. The IPL Status bits are read-only when NSTDIS = 1 (INTCON1). Clearing this bit will clear SA and SB. DS7000591F-page 36  2009-2014 Microchip Technology Inc. dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 REGISTER 3-1: SR: CPU STATUS REGISTER (CONTINUED) bit 7-5 IPL: CPU Interrupt Priority Level Status bits(2,3) 111 = CPU Interrupt Priority Level is 7 (15), user interrupts disabled 110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9) 000 = CPU Interrupt Priority Level is 0 (8) bit 4 RA: REPEAT Loop Active bit 1 = REPEAT loop is in progress 0 = REPEAT loop is not in progress bit 3 N: MCU ALU Negative bit 1 = Result was negative 0 = Result was non-negative (zero or positive) bit 2 OV: MCU ALU Overflow bit This bit is used for signed arithmetic (2’s complement). It indicates an overflow of a magnitude that causes the sign bit to change state. 1 = Overflow occurred for signed arithmetic (in this arithmetic operation) 0 = No overflow occurred bit 1 Z: MCU ALU Zero bit 1 = An operation that affects the Z bit has set it at some time in the past 0 = The most recent operation that affects the Z bit has cleared it (i.e., a non-zero result) bit 0 C: MCU ALU Carry/Borrow bit 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred Note 1: 2: 3: 4: This bit can be read or cleared (not set). The IPL bits are concatenated with the IPL bit (CORCON) to form the CPU Interrupt Priority Level (IPL). The value in parentheses indicates the IPL if IPL = 1. User interrupts are disabled when IPL = 1. The IPL Status bits are read-only when NSTDIS = 1 (INTCON1). Clearing this bit will clear SA and SB.  2009-2014 Microchip Technology Inc. DS7000591F-page 37 dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 REGISTER 3-2: CORCON: CORE CONTROL REGISTER U-0 — bit 15 U-0 — R/W-0 SATA bit 7 R/W-0 SATB bit 11 bit 10-8 bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 Note 1: 2: R/W-0 US R/W-0 EDT(1) R-0 DL2 R-0 DL1 R-0 DL0 bit 8 Legend: R = Readable bit -n = Value at POR bit 15-13 bit 12 U-0 — R/W-1 SATDW R/W-0 ACCSAT C = Clearable bit W = Writable bit ‘1’ = Bit is set R/C-0 IPL3(2) R/W-0 PSV R/W-0 RND R/W-0 IF bit 0 U = Unimplemented bit, read as ‘0’ ‘0’ = Bit is cleared x = Bit is unknown Unimplemented: Read as ‘0’ US: DSP Multiply Unsigned/Signed Control bit 1 = DSP engine multiplies are unsigned 0 = DSP engine multiplies are signed EDT: Early DO Loop Termination Control bit(1) 1 = Terminates executing DO loop at the end of the current loop iteration 0 = No effect DL: DO Loop Nesting Level Status bits 111 = 7 DO loops are active • • • 001 = 1 DO loop is active 000 = 0 DO loops are active SATA: ACCA Saturation Enable bit 1 = Accumulator A saturation is enabled 0 = Accumulator A saturation is disabled SATB: ACCB Saturation Enable bit 1 = Accumulator B saturation is enabled 0 = Accumulator B saturation is disabled SATDW: Data Space Write from DSP Engine Saturation Enable bit 1 = Data space write saturation is enabled 0 = Data space write saturation is disabled ACCSAT: Accumulator Saturation Mode Select bit 1 = 9.31 saturation (super saturation) 0 = 1.31 saturation (normal saturation) IPL3: CPU Interrupt Priority Level Status bit 3(2) 1 = CPU Interrupt Priority Level is greater than 7 0 = CPU Interrupt Priority Level is 7 or less PSV: Program Space Visibility in Data Space Enable bit 1 = Program space is visible in data space 0 = Program space is not visible in data space RND: Rounding Mode Select bit 1 = Biased (conventional) rounding is enabled 0 = Unbiased (convergent) rounding is enabled IF: Integer or Fractional Multiplier Mode Select bit 1 = Integer mode is enabled for DSP multiply operations 0 = Fractional mode is enabled for DSP multiply operations This bit will always read as ‘0’. The IPL3 bit is concatenated with the IPL bits (SR) to form the CPU Interrupt Priority Level. DS7000591F-page 38  2009-2014 Microchip Technology Inc. dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 3.5 Arithmetic Logic Unit (ALU) 3.6 DSP Engine The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 ALU is 16 bits wide and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are 2’s complement in nature. Depending on the operation, the ALU can affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the SR register. The C and DC Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations. The DSP engine consists of a high-speed, 17-bit x 17-bit multiplier, a barrel shifter and a 40-bit adder/subtracter (with two target accumulators, round and saturation logic). The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location. The DSP engine can also perform inherent accumulator-to-accumulator operations that require no additional data. These instructions are ADD, SUB and NEG. Refer to the “16-bit MCU and DSC Programmer’s Reference Manual” (DS70157) for information on the SR bits affected by each instruction. The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit divisor division. 3.5.1 MULTIPLIER Using the high-speed, 17-bit x 17-bit multiplier of the DSP engine, the ALU supports unsigned, signed or mixed sign operation in several MCU multiplication modes: • • • • • • • 16-bit x 16-bit signed 16-bit x 16-bit unsigned 16-bit signed x 5-bit (literal) unsigned 16-bit unsigned x 16-bit unsigned 16-bit unsigned x 5-bit (literal) unsigned 16-bit unsigned x 16-bit signed 8-bit unsigned x 8-bit unsigned The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 is a single-cycle instruction flow architecture; therefore, concurrent operation of the DSP engine with MCU instruction flow is not possible. However, some MCU ALU and DSP engine resources can be used concurrently by the same instruction (for example, ED, EDAC). The DSP engine has options selected through bits in the CPU Core Control register (CORCON), as listed below: • • • • • • Fractional or integer DSP multiply (IF) Signed or unsigned DSP multiply (US) Conventional or convergent rounding (RND) Automatic saturation on/off for ACCA (SATA) Automatic saturation on/off for ACCB (SATB) Automatic saturation on/off for writes to data memory (SATDW) • Accumulator Saturation mode selection (ACCSAT) A block diagram of the DSP engine is shown in Figure 3-3. TABLE 3-1: Instruction DSP INSTRUCTIONS SUMMARY Algebraic Operation ACC Write-Back Yes CLR A=0 ED A = (x – y)2 No 2 EDAC A = A + (x – y) No The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes: MAC A = A + (x * y) Yes • • • • 3.5.2 DIVIDER 32-bit signed/16-bit signed divide 32-bit unsigned/16-bit unsigned divide 16-bit signed/16-bit signed divide 16-bit unsigned/16-bit unsigned divide The quotient for all divide instructions ends up in W0 and the remainder in W1. 16-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn) and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/ 16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.  2009-2014 Microchip Technology Inc. x2 No MAC A=A+ MOVSAC No change in A Yes MPY A=x*y No MPY A = x2 No MPY.N A=–x*y No MSC A=A–x*y Yes DS7000591F-page 39 dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 FIGURE 3-3: DSP ENGINE BLOCK DIAGRAM 40 S a 40 Round t 16 u Logic r a t e 40-Bit Accumulator A 40-Bit Accumulator B Carry/Borrow Out Saturate Carry/Borrow In Adder Negate 40 40 40 16 X Data Bus Barrel Shifter 40 Y Data Bus Sign-Extend 32 16 Zero Backfill 32 33 17-Bit Multiplier/Scaler 16 16 To/From W Array DS7000591F-page 40  2009-2014 Microchip Technology Inc. dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 3.6.1 MULTIPLIER The 17-bit x 17-bit multiplier is capable of signed or unsigned operation and can multiplex its output using a scaler to support either 1.31 fractional (Q31) or 32-bit integer results. Unsigned operands are zero-extended into the 17th bit of the multiplier input value. Signed operands are sign-extended into the 17th bit of the multiplier input value. The output of the 17-bit x 17-bit multiplier/scaler is a 33-bit value that is sign-extended to 40 bits. Integer data is inherently represented as a signed 2’s complement value, where the Most Significant bit (MSb) is defined as a sign bit. The range of an N-bit 2’s complement integer is -2N-1 to 2N-1 – 1. • For a 16-bit integer, the data range is -32768 (0x8000) to 32767 (0x7FFF) including 0. • For a 32-bit integer, the data range is -2,147,483,648 (0x8000 0000) to 2,147,483,647 (0x7FFF FFFF). When the multiplier is configured for fractional multiplication, the data is represented as a 2’s complement fraction, where the MSb is defined as a sign bit and the radix point is implied to lie just after the sign bit (QX format). The range of an N-bit 2’s complement fraction with this implied radix point is -1.0 to (1 – 21-N). For a 16-bit fraction, the Q15 data range is -1.0 (0x8000) to 0.999969482 (0x7FFF) including 0 and has a precision of 3.01518x10-5. In Fractional mode, the 16 x 16 multiply operation generates a 1.31 product that has a precision of 4.65661 x 10-10. The same multiplier is used to support the MCU multiply instructions, which include integer 16-bit signed, unsigned and mixed sign multiply operations. The MUL instruction can be directed to use byte or word-sized operands. Byte operands will direct a 16-bit result and word operands will direct a 32-bit result to the specified register(s) in the W array. 3.6.2 DATA ACCUMULATORS AND ADDER/SUBTRACTER The data accumulator consists of a 40-bit adder/ subtracter with automatic sign extension logic. It can select one of two accumulators (A or B) as its preaccumulation source and post-accumulation destination. For the ADD and LAC instructions, the data to be accumulated or loaded can be optionally scaled using the barrel shifter prior to accumulation.  2009-2014 Microchip Technology Inc. 3.6.2.1 Adder/Subtracter, Overflow and Saturation The adder/subtracter is a 40-bit adder with an optional zero input into one side and either true or complement data into the other input. • In the case of addition, the Carry/Borrow input is active-high and the other input is true data (not complemented). • In the case of subtraction, the Carry/Borrow input is active-low and the other input is complemented. The adder/subtracter generates Overflow Status bits, SA/SB and OA/OB, which are latched and reflected in the STATUS Register (SR): • Overflow from bit 39: this is a catastrophic overflow in which the sign of the accumulator is destroyed. • Overflow into guard bits, 32 through 39: this is a recoverable overflow. This bit is set whenever all the guard bits are not identical to each other. The adder has an additional saturation block that controls accumulator data saturation, if selected. It uses the result of the adder, the Overflow Status bits described previously and the SAT (CORCON) and ACCSAT (CORCON) mode control bits to determine when and to what value to saturate. Six STATUS Register bits support saturation and overflow: • OA: ACCA overflowed into guard bits • OB: ACCB overflowed into guard bits • SA: ACCA saturated (bit 31 overflow and saturation) or ACCA overflowed into guard bits and saturated (bit 39 overflow and saturation) • SB: ACCB saturated (bit 31 overflow and saturation) or ACCB overflowed into guard bits and saturated (bit 39 overflow and saturation) • OAB: Logical OR of OA and OB • SAB: Logical OR of SA and SB The OA and OB bits are modified each time data passes through the adder/subtracter. When set, they indicate that the most recent operation has overflowed into the accumulator guard bits (bits 32 through 39). The OA and OB bits can also optionally generate an arithmetic warning trap when set and the corresponding Overflow Trap Flag Enable bits (OVATE, OVBTE) in the INTCON1 register are set (refer to Section 7.0 “Interrupt Controller”). This allows the user application to take immediate action, for example, to correct system gain. DS7000591F-page 41 dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 The SA and SB bits are modified each time data passes through the adder/subtracter, but can only be cleared by the user application. When set, they indicate that the accumulator has overflowed its maximum range (bit 31 for 32-bit saturation or bit 39 for 40-bit saturation) and will be saturated (if saturation is enabled). When saturation is not enabled, SA and SB default to bit 39 overflow and thus, indicate that a catastrophic overflow has occurred. If the COVTE bit in the INTCON1 register is set, SA and SB bits will generate an arithmetic warning trap when saturation is disabled. The Overflow and Saturation Status bits can optionally be viewed in the STATUS Register (SR) as the logical OR of OA and OB (in bit OAB) and the logical OR of SA and SB (in bit SAB). Programmers can check one bit in the STATUS Register to determine if either accumulator has overflowed, or one bit to determine if either accumulator has saturated. This is useful for complex number arithmetic, which typically uses both accumulators. The device supports three Saturation and Overflow modes: • Bit 39 Overflow and Saturation: When bit 39 overflow and saturation occurs, the saturation logic loads the maximally positive 9.31 (0x7FFFFFFFFF) or maximally negative 9.31 value (0x8000000000) into the target accumulator. The SA or SB bit is set and remains set until cleared by the user application. This condition is referred to as ‘super saturation’ and provides protection against erroneous data or unexpected algorithm problems (such as gain calculations). • Bit 31 Overflow and Saturation: When bit 31 overflow and saturation occurs, the saturation logic then loads the maximally positive 1.31 value (0x007FFFFFFF) or maximally negative 1.31 value (0x0080000000) into the target accumulator. The SA or SB bit is set and remains set until cleared by the user application. When this Saturation mode is in effect, the guard bits are not used, so the OA, OB or OAB bits are never set. • Bit 39 Catastrophic Overflow: The bit 39 Overflow Status bit from the adder is used to set the SA or SB bit, which remains set until cleared by the user application. No saturation operation is performed, and the accumulator is allowed to overflow, destroying its sign. If the COVTE bit in the INTCON1 register is set, a catastrophic overflow can initiate a trap exception. DS7000591F-page 42 3.6.3 ACCUMULATOR ‘WRITE-BACK’ The MAC class of instructions (with the exception of MPY, MPY.N, ED and EDAC) can optionally write a rounded version of the high word (bits 31 through 16) of the accumulator that is not targeted by the instruction into data space memory. The write is performed across the X bus into combined X and Y address space. The following addressing modes are supported: • W13, Register Direct: The rounded contents of the non-target accumulator are written into W13 as a 1.15 fraction. • [W13] + = 2, Register Indirect with Post-Increment: The rounded contents of the non-target accumulator are written into the address pointed to by W13 as a 1.15 fraction. W13 is then incremented by 2 (for a word write). 3.6.3.1 Round Logic The round logic is a combinational block that performs a conventional (biased) or convergent (unbiased) round function during an accumulator write (store). The Round mode is determined by the state of the RND bit in the CORCON register. It generates a 16-bit, 1.15 data value that is passed to the data space write saturation logic. If rounding is not indicated by the instruction, a truncated 1.15 data value is stored and the least significant word is simply discarded. Conventional rounding zero-extends bit 15 of the accumulator and adds it to the ACCxH word (bits 16 through 31 of the accumulator). • If the ACCxL word (bits 0 through 15 of the accumulator) is between 0x8000 and 0xFFFF (0x8000 included), ACCxH is incremented. • If ACCxL is between 0x0000 and 0x7FFF, ACCxH is left unchanged. A consequence of this algorithm is that over a succession of random rounding operations, the value tends to be biased slightly positive. Convergent (or unbiased) rounding operates in the same manner as conventional rounding, except when ACCxL equals 0x8000. In this case, the Least Significant bit (bit 16 of the accumulator) of ACCxH is examined: • If it is ‘1’, ACCxH is incremented. • If it is ‘0’, ACCxH is not modified. Assuming that bit 16 is effectively random in nature, this scheme removes any rounding bias that may accumulate. The SAC and SAC.R instructions store either a truncated (SAC), or rounded (SAC.R) version of the contents of the target accumulator to data memory via the X bus, subject to data saturation (see Section 3.6.3.2 “Data Space Write Saturation”). For the MAC class of instructions, the accumulator write-back operation functions in the same manner, addressing combined MCU (X and Y) data space though the X bus. For this class of instructions, the data is always subject to rounding.  2009-2014 Microchip Technology Inc. dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 3.6.3.2 Data Space Write Saturation 3.6.4 BARREL SHIFTER In addition to adder/subtracter saturation, writes to data space can also be saturated, but without affecting the contents of the source accumulator. The data space write saturation logic block accepts a 16-bit, 1.15 fractional value from the round logic block as its input, together with overflow status from the original source (accumulator) and the 16-bit round adder. These inputs are combined and used to select the appropriate 1.15 fractional value as output to write to data space memory. The barrel shifter can perform up to 16-bit arithmetic or logic right shifts, or up to 16-bit left shifts in a single cycle. The source can be either of the two DSP accumulators or the X bus (to support multi-bit shifts of register or memory data). If the SATDW bit in the CORCON register is set, data (after rounding or truncation) is tested for overflow and adjusted accordingly: The barrel shifter is 40 bits wide, thereby obtaining a 40-bit result for DSP shift operations and a 16-bit result for MCU shift operations. Data from the X bus is presented to the barrel shifter between bit positions 16 and 31 for right shifts, and between bit positions 0 and 16 for left shifts. • For input data greater than 0x007FFF, data written to memory is forced to the maximum positive 1.15 value, 0x7FFF. • For input data less than 0xFF8000, data written to memory is forced to the maximum negative 1.15 value, 0x8000. The shifter requires a signed binary value to determine both the magnitude (number of bits) and direction of the shift operation. A positive value shifts the operand right. A negative value shifts the operand left. A value of ‘0’ does not modify the operand. The Most Significant bit of the source (bit 39) is used to determine the sign of the operand being tested. If the SATDW bit in the CORCON register is not set, the input data is always passed through unmodified under all conditions.  2009-2014 Microchip Technology Inc. DS7000591F-page 43 dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 NOTES: DS7000591F-page 44  2009-2014 Microchip Technology Inc. dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 MEMORY ORGANIZATION Note: This data sheet summarizes the features of the dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the dsPIC33/PIC24 Family Reference Manual, Program Memory” (DS70203), which is available from the Microchip web site (www.microchip.com). The information in this data sheet supersedes the information in the FRM. The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 architecture features separate program and data memory spaces and buses. This architecture also allows the direct access to program memory from the data space during code execution. User Memory Space FIGURE 4-1: 4.1 Program Address Space The program address memory space is 4M instructions. The space is addressable by a 24-bit value derived either from the 23-bit Program Counter (PC) during program execution, or from table operation or data space remapping as described in Section 4.6 “Interfacing Program and Data Memory Spaces”. User application access to the program memory space is restricted to the lower half of the address range (0x000000 to 0x7FFFFF). The exception is the use of TBLRD/TBLWT operations, which use TBLPAG to permit access to the Configuration bits and Device ID sections of the configuration memory space. The memory maps are shown in Figure 4-1. PROGRAM MEMORY MAPS FOR dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 DEVICES dsPIC33FJ32GS406/606/608/610 0x000000 GOTO Instruction 0x000002 Reset Address 0x000004 Interrupt Vector Table 0x0000FE 0x000100 Reserved 0x000104 Alternate Vector Table 0x0001FE 0x000200 User Program Flash Memory (11008 instructions) 0x0057FE 0x005800 User Memory Space 4.0 dsPIC33FJ64GS406/606/608/610 0x000000 GOTO Instruction 0x000002 Reset Address 0x000004 Interrupt Vector Table 0x0000FE 0x000100 Reserved 0x000104 Alternate Vector Table 0x0001FE 0x000200 User Program Flash Memory (21760 instructions) 0x00ABFE 0x00AC00 Unimplemented Unimplemented (Read ‘0’s) (Read ‘0’s) 0x7FFFFE 0x800000 0x7FFFFE 0x800000 Reserved Device Configuration Registers 0xF7FFFE 0xF80000 0xF80017 0xF80018 Reserved DEVID (2) Reserved  2009-2014 Microchip Technology Inc. 0xFEFFFE 0xFF0000 0xFF0002 0xFFFFFE Configuration Memory Space Configuration Memory Space Reserved Device Configuration Registers 0xF7FFFE 0xF80000 0xF80017 0xF80018 Reserved 0xFEFFFE DEVID (2) Reserved 0xFF0000 0xFF0002 0xFFFFFE DS7000591F-page 45 dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 4.1.1 PROGRAM MEMORY ORGANIZATION 4.1.2 All dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices reserve the addresses between 0x00000 and 0x000200 for hardcoded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user application at 0x000000, with the actual address for the start of code at 0x000002. The program memory space is organized in wordaddressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (see Figure 4-2). Program memory addresses are always word-aligned on the lower word and addresses are incremented or decremented by two during the code execution. This arrangement provides compatibility with data memory space addressing and makes data in the program memory space accessible. FIGURE 4-2: msw Address least significant word most significant word 16 8 PC Address (lsw Address) 0 0x000000 0x000002 0x000004 0x000006 00000000 00000000 00000000 00000000 Program Memory ‘Phantom’ Byte (read as ‘0’) DS7000591F-page 46 The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices also have two Interrupt Vector Tables (IVT), located from 0x000004 to 0x0000FF and 0x000100 to 0x0001FF. These vector tables allow each of the device interrupt sources to be handled by separate Interrupt Service Routines (ISRs). A more detailed discussion of the Interrupt Vector Tables is provided in Section 7.1 “Interrupt Vector Table”. PROGRAM MEMORY ORGANIZATION 23 0x000001 0x000003 0x000005 0x000007 INTERRUPT AND TRAP VECTORS Instruction Width  2009-2014 Microchip Technology Inc. dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 4.2 Data Address Space The CPU has a separate 16-bit-wide data memory space. The data space is accessed using separate Address Generation Units (AGUs) for read and write operations. The data memory maps is shown in Figure 4-3. All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the data space. This arrangement gives a data space address range of 64 Kbytes or 32K words. The lower half of the data memory space (that is, when EA = 0) is used for implemented memory addresses, while the upper half (EA = 1) is reserved for the Program Space Visibility area (see Section 4.6.3 “Reading Data from Program Memory Using Program Space Visibility”). The dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices implement up to 9 Kbytes of data memory. Should an EA point to a location outside of this area, an all-zero word or byte will be returned. 4.2.1 DATA SPACE WIDTH The data memory space is organized in byte addressable, 16-bit wide blocks. Data is aligned in data memory and registers as 16-bit words, but all data space EAs resolve to bytes. The Least Significant Bytes (LSBs) of each word have even addresses, while the Most Significant Bytes (MSBs) have odd addresses. 4.2.2 DATA MEMORY ORGANIZATION AND ALIGNMENT To maintain backward compatibility with PIC® MCU devices and improve data space memory usage efficiency, the instruction set supports both word and byte operations. As a consequence of byte accessibility, all Effective Address calculations are internally scaled to step through word-aligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] that results in a value of Ws + 1 for byte operations and Ws + 2 for word operations. Data byte reads will read the complete word that contains the byte, using the LSB of any EA to determine which byte to select. The selected byte is placed onto the LSB of the data path. That is, data memory and registers are organized as two parallel byte-wide entities with shared (word) address decode but separate write lines. Data byte writes only write to the corresponding side of the array or register that matches the byte address.  2009-2014 Microchip Technology Inc. All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations, or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap is generated. If the error occurred on a read, the instruction underway is completed. If the error occurred on a write, the instruction is executed but the write does not occur. In either case, a trap is then executed, allowing the system and/or user application to examine the machine state prior to execution of the address Fault. All byte loads into any W register are loaded into the Least Significant Byte. The Most Significant Byte is not modified. A Sign-Extend (SE) instruction is provided to allow user applications to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, user applications can clear the MSB of any W register by executing a Zero-Extend (ZE) instruction on the appropriate address. 4.2.3 SFR SPACE The first 2 Kbytes of the Near Data Space, from 0x0000 to 0x07FF, is primarily occupied by Special Function Registers (SFRs). These are used by the core and peripheral modules for controlling the operation of the device. SFRs are distributed among the modules that they control and are generally grouped together by module. Much of the SFR space contains unused addresses; these are read as ‘0’. Note: 4.2.4 The actual set of peripheral features and interrupts varies by the device. Refer to the corresponding device tables and pinout diagrams for device-specific information. NEAR DATA SPACE The 8-Kbyte area between 0x0000 and 0x1FFF is referred to as the Near Data Space. Locations in this space are directly addressable via a 13-bit absolute address field within all memory direct instructions. Additionally, the whole data space is addressable using MOV instructions, which support Memory Direct Addressing mode with a 16-bit address field, or by using Indirect Addressing mode using a Working register as an Address Pointer. DS7000591F-page 47 dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 FIGURE 4-3: DATA MEMORY MAP FOR DEVICES WITH 4-KBYTE RAM MSB Address MSb 2-Kbyte SFR Space LSb 0x0000 0x0001 SFR Space 0x07FF 0x0801 0x0FFF 0x1001 0x07FE 0x0800 X Data RAM (X) Y Data RAM (Y) 0x0FFE 0x1000 0x17FF 0x1801 0x17FE 0x1800 0x8001 0x8000 6-Kbyte Near Data Space X Data Unimplemented (X) Optionally Mapped into Program Memory 0xFFFF DS7000591F-page 48 LSB Address 16 Bits 0xFFFE  2009-2014 Microchip Technology Inc. dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 FIGURE 4-4: DATA MEMORY MAP FOR DEVICES WITH 8-KBYTE RAM MSB Address MSb 2-Kbyte SFR Space LSB Address 16 Bits LSb 0x0000 0x0001 SFR Space 0x07FF 0x0801 0x07FE 0x0800 X Data RAM (X) 0x17FF 0x1801 0x17FE 0x1800 8-Kbyte Near Data Space Y Data RAM (Y) 0x1FFF 0x2001 0x1FFE 0x27FF 0x2801 0x27FE 0x2800 0x8001 0x8000 0x2000 X Data Unimplemented (X) Optionally Mapped into Program Memory 0xFFFF  2009-2014 Microchip Technology Inc. 0xFFFE DS7000591F-page 49 dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 FIGURE 4-5: DATA MEMORY MAP FOR DEVICES WITH 9-KBYTE RAM MSB Address MSb 2-Kbyte SFR Space LSB Address 16 Bits LSb 0x0000 0x0001 SFR Space 0x07FF 0x0801 0x07FE 0x0800 X Data RAM (X) 0x17FF 0x1801 0x17FE 0x1800 8-Kbyte Near Data Space Y Data RAM (Y) 0x1FFF 0x2001 0x1FFE 0x27FF 0x2801 0x27FE 0x2800 0x2000 DMA RAM 0x2BFF 0x2C01 0x2BFE 0x2C00 0x8001 0x8000 X Data Unimplemented (X) Optionally Mapped into Program Memory 0xFFFF DS7000591F-page 50 0xFFFE  2009-2014 Microchip Technology Inc. dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 4.2.5 X AND Y DATA SPACES The core has two data spaces, X and Y. These data spaces can be considered either separate (for some DSP instructions), or as one unified linear address range (for MCU instructions). The data spaces are accessed using two Address Generation Units (AGUs) and separate data paths. This feature allows certain instructions to concurrently fetch two words from RAM, thereby enabling efficient execution of DSP algorithms such as Finite Impulse Response (FIR) filtering and Fast Fourier Transform (FFT). The X data space is used by all instructions and supports all addressing modes. X data space has separate read and write data buses. The X read data bus is the read data path for all instructions that view data space as combined X and Y address space. It is also the X data prefetch path for the dual operand DSP instructions (MAC class). The Y data space is used in concert with the X data space by the MAC class of instructions (CLR, ED, EDAC, MAC, MOVSAC, MPY, MPY.N and MSC) to provide two concurrent data read paths. Both the X and Y data spaces support Modulo Addressing mode for all instructions, subject to addressing mode restrictions. Bit-Reversed Addressing mode is only supported for writes to X data space.  2009-2014 Microchip Technology Inc. All data memory writes, including in DSP instructions, view data space as combined X and Y address space. The boundary between the X and Y data spaces is device-dependent and is not user-programmable. All Effective Addresses (EAs) are 16 bits wide and point to bytes within the data space. Therefore, the data space address range is 64 Kbytes, or 32K words, though the implemented memory locations vary by device. 4.2.6 DMA RAM Some devices contain 1 Kbyte of dual ported DMA RAM, which is located at the end of Y data space. Memory locations that are part of Y data RAM and are in the DMA RAM space are accessible simultaneously by the CPU and the DMA Controller module. DMA RAM is utilized by the DMA Controller to store data to be transferred to various peripherals using DMA, as well as data transferred from various peripherals using DMA. The DMA RAM can be accessed by the DMA Controller without having to steal cycles from the CPU. When the CPU and the DMA Controller attempt to concurrently write to the same DMA RAM location, the hardware ensures that the CPU is given precedence in accessing the DMA RAM location. Therefore, the DMA RAM provides a reliable means of transferring DMA data without ever having to stall the CPU. DS7000591F-page 51 File Name SFR Addr CPU CORE REGISTER MAP Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets WREG0 0000 Working Register 0 0000 WREG1 0002 Working Register 1 0000 WREG2 0004 Working Register 2 0000 WREG3 0006 Working Register 3 0000 WREG4 0008 Working Register 4 0000 WREG5 000A Working Register 5 0000 WREG6 000C Working Register 6 0000 WREG7 000E Working Register 7 0000 WREG8 0010 Working Register 8 0000 WREG9 0012 Working Register 9 0000 WREG10 0014 Working Register 10 0000 WREG11 0016 Working Register 11 0000  2009-2014 Microchip Technology Inc. WREG12 0018 Working Register 12 0000 WREG13 001A Working Register 13 0000 WREG14 001C Working Register 14 0000 WREG15 001E Working Register 15 0800 SPLIM 0020 Stack Pointer Limit Register xxxx ACCAL 0022 ACCAL xxxx ACCAH 0024 ACCAH ACCAU 0026 ACCBL 0028 ACCBL ACCBH 002A ACCBH ACCBU 002C PCL 002E PCH 0030 — — — — — — — — TBLPAG 0032 — — — — — — — PSVPAG 0034 — — — — — — — RCOUNT 0036 REPEAT Loop Counter Register DCOUNT 0038 DCOUNT DOSTARTL 003A ACCA ACCB ACCA ACCB ACCA ACCB ACCA ACCB ACCA ACCB ACCA ACCB xxxx ACCA ACCA ACCAU xxxx xxxx ACCB ACCB ACCBU xxxx Program Counter High Byte Register 0000 — Table Page Address Pointer Register 0000 — Program Memory Visibility Page Address Pointer Register 0000 Program Counter Low Byte Register 0000 xxxx xxxx DOSTARTL DOSTARTH 003C DOENDL 003E DOENDH 0040 — — — — — — — — — — SR 0042 OA OB SA SB OAB SAB DA DC IPL2 IPL1 Legend: xxxx — — — — — — — — — — xxxx 0 xxxx DOSTARTH 00xx DOENDL x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. 0 DOENDH IPL0 RA N 00xx OV Z C 0000 dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 DS7000591F-page 52 TABLE 4-1: File Name SFR Addr CORCON 0044 MODCON 0046 CPU CORE REGISTER MAP (CONTINUED) Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 — — — US EDT DL2 DL1 DL0 XMODEN YMODEN — — BWM3 BWM2 BWM1 BWM0 Bit 7 Bit 6 Bit 5 Bit 4 SATA SATB SATDW ACCSAT YWM3 YWM2 YWM1 YWM0 Bit 3 Bit 2 Bit 1 Bit 0 IPL3 PSV RND IF XWM3 XWM2 XWM1 XWM0 All Resets 0000 0000 XMODSRT 0048 XS 0 xxxx XMODEND 004A XE 1 xxxx YMODSRT 004C YS 0 xxxx YMODEND 004E YE 1 xxxx XBREV 0050 BREN XB14 DISICNT 0052 — — Legend: XB13 XB12 XB11 XB10 XB9 XB8 XB7 XB6 Disable Interrupts Counter Register x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. XB5 XB4 XB3 XB2 XB1 XB0 xxxx xxxx DS7000591F-page 53 dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  2009-2014 Microchip Technology Inc. TABLE 4-1: CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJ32GS608/610 AND dsPIC33FJ64GS608/610 DEVICES File Name SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 CNEN1 0060 CN15IE CN14IE CN13IE CN12IE CN11IE CN10IE CN9IE CN8IE CN7IE CN6IE CN5IE CN4IE CN3IE CN2IE CNEN2 0062 — — — — — — — — CN23IE CN22IE CN21IE CN20IE CN19IE CN18IE CNPU1 0068 CN8PUE CN7PUE CN6PUE CN5PUE CN4PUE CN3PUE CN2PUE CN1PUE CNPU2 006A Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. TABLE 4-3: CN15PUE CN14PUE CN13PUE CN12PUE CN11PUE CN10PUE CN9PUE — — — — — — — — Bit 0 All Resets CN1IE CN0IE 0000 CN17IE CN16IE 0000 CN0PUE 0000 CN23PUE CN22PUE CN21PUE CN20PUE CN19PUE CN18PUE CN17PUE CN16PUE 0000 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJ32GS406/606 AND dsPIC33FJ64GS406/606 DEVICES File Name SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 CNEN1 0060 CN15IE CN14IE CN13IE CN12IE CN11IE CN10IE CN9IE CN8IE CNEN2 0062 — — — — — — — — CNPU1 0068 CN8PUE CN7PUE CNPU2 006A Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. CN15PUE CN14PUE CN13PUE CN12PUE CN11PUE CN10PUE CN9PUE — — — — — — — — Bit 7 Bit 0 All Resets CN1IE CN0IE 0000 CN17IE CN16IE 0000 CN0PUE 0000 CN18PUE CN17PUE CN16PUE 0000 Bit 6 Bit 5 Bit 4 Bit 3 CN7IE CN6IE CN5IE CN4IE CN3IE CN2IE CN23IE CN22IE — — — CN18IE CN6PUE CN5PUE CN4PUE CN3PUE CN2PUE CN1PUE — — — CN23PUE CN22PUE Bit 2 Bit 1  2009-2014 Microchip Technology Inc. dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 DS7000591F-page 54 TABLE 4-2: File Name SFR Addr INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ64GS610 DEVICES Bit 15 Bit 14 Bit 13 INTCON1 0080 NSTDIS OVAERR OVBERR INTCON2 0082 ALTIVT DISI — — — DMA1IF ADIF U1TXIF U2RXIF INT2IF — Bit 12 Bit 11 Bit 6 Bit 4 OSCFAIL — 0000 INT1EP INT0EP 0000 OC1IF IC1IF INT0IF 0000 CNIF AC1IF MI2C1IF SI2C1IF 0000 Bit 8 OVATE OVBTE COVTE — — — — — — INT4EP INT3EP U1RXIF SPI1IF SPI1EIF T3IF T2IF OC2IF IC2IF DMA0IF T5IF T4IF OC4IF OC3IF DMA2IF — — — SFTACERR DIV0ERR Bit 5 All Resets Bit 9 COVAERR COVBERR Bit 7 Bit 0 Bit 10 Bit 3 Bit 2 Bit 1 STKERR INT2EP T1IF INT1IF DMACERR MATHERR ADDRERR DS7000591F-page 55 IFS0 0084 IFS1 0086 U2TXIF IFS2 0088 — — — — — — — — — IC4IF IC3IF DMA3IF C1IF C1RXIF SPI2IF SPI2EIF 0000 IFS3 008A — — — — — QEI1IF PSEMIF — — INT4IF INT3IF — — MI2C2IF SI2C2IF — 0000 IFS4 008C — — — — QEI2IF — PSESMIF — — C1TXIF — — — U2EIF U1EIF — 0000 IFS5 008E PWM2IF PWM1IF ADCP12IF — — — — — — — — ADCP11IF ADCP10IF ADCP9IF ADCP8IF — 0000 IFS6 0090 ADCP1IF ADCP0IF — — — — AC4IF AC3IF AC2IF PWM9IF PWM8IF PWM7IF PWM6IF PWM5IF PWM4IF PWM3IF 0000 IFS7 0092 — — — — — — — — — — ADCP7IF ADCP6IF ADCP5IF ADCP4IF ADCP3IF ADCP2IF 0000 IEC0 0094 — DMA1IE ADIE U1TXIE U1RXIE SPI1IE SPI1EIE T3IE T2IE OC2IE IC2IE DMA0IE T1IE OC1IE IC1IE INT0IE 0000 IEC1 0096 U2TXIE U2RXIE INT2IE T5IE T4IE OC4IE OC3IE DMA2IE — — — INT1IE CNIE AC1IE MI2C1IE SI2C1IE 0000 IEC2 0098 — — — — — — — — — IC4IE IC3IE DMA3IE C1IE C1RXIE SPI2IE SPI2EIE 0000 IEC3 009A — — — — — QEI1IE PSEMIE — — INT4IE INT3IE — — MI2C2IE SI2C2IE — 0000 IEC4 009C — — — — QEI2IE — PSESMIE — — C1TXIE — — — U2EIE U1EIE — 0000 IEC5 009E PWM2IE PWM1IE ADCP12IE — — — — — — — — ADCP11IE ADCP10IE ADCP9IE ADCP8IE — 0000 IEC6 00A0 ADCP1IE ADCP0IE — — — — AC4IE AC3IE AC2IE PWM9IE PWM8IE PWM7IE PWM6IE PWM5IE PWM4IE PWM3IE 0000 IEC7 00A2 — — — — — — — — — — ADCP7IE ADCP6IE ADCP5IE ADCP4IE ADCP3IE ADCP2IE 0000 IPC0 00A4 — T1IP2 T1IP1 T1IP0 — OC1IP2 OC1IP1 OC1IP0 — IC1IP2 IC1IP1 IC1IP0 — INT0IP2 INT0IP1 INT0IP0 4444 IPC1 00A6 — T2IP2 T2IP1 T2IP0 — OC2IP2 OC2IP1 OC2IP0 — IC2IP2 IC2IP1 IC2IP0 — DMA0IP2 DMA0IP1 DMA0IP0 4444 IPC2 00A8 — U1RXIP2 U1RXIP1 U1RXIP0 — SPI1IP2 SPI1IP1 SPI1IP0 — SPI1EIP2 SPI1EIP1 SPI1EIP0 — T3IP2 T3IP1 T3IP0 0444 IPC3 00AA — — — — — DMA1IP2 DMA1IP1 DMA1IP0 — ADIP2 ADIP1 ADIP0 — U1TXIP2 U1TXIP1 U1TXIP0 0044 IPC4 00AC — CNIP2 CNIP1 CNIP0 — AC1IP2 AC1IP1 AC1IP0 — MI2C1IP2 MI2C1IP1 MI2C1IP0 — SI2C1IP2 SI2C1IP1 SI2C1IP0 4444 IPC5 00AE — — — — — — — — — — — — — INT1IP2 INT1IP1 INT1IP0 0004 IPC6 00B0 — T4IP2 T4IP1 T4IP0 — OC4IP2 OC4IP1 OC4IP0 — OC3IP2 OC3IP1 OC3IP0 — DMA2IP2 DMA2IP1 DMA2IP0 4444 IPC7 00B2 — U2TXIP2 U2TXIP1 U2TXIP0 — U2RXIP2 U2RXIP1 U2RXIP0 — INT2IP2 INT2IP1 INT2IP0 — T5IP2 T5IP1 T5IP0 4444 IPC8 00B4 — C1IP2 C1IP1 C1IP0 — C1RXIP2 C1RXIP1 C1RXIP0 — SPI2IP2 SPI2IP1 SPI2IP0 — SPI2EIP2 SPI2EIP1 SPI2EIP0 4444 IPC9 00B6 — — — — — IC4IP2 IC4IP1 IC4IP0 — IC3IP2 IC3IP1 IC3IP0 — DMA3IP2 DMA3IP1 DMA3IP0 0444 IPC12 00BC — — — — — — SI2C2IP2 SI2C2IP1 SI2C2IP0 — — — — 0440 IPC13 00BE — — — — — — INT3IP2 INT3IP1 INT3IP0 — — — — 0440 Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. MI2C2IP2 MI2C2IP1 MI2C2IP0 INT4IP2 INT4IP1 INT4IP0 dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  2009-2014 Microchip Technology Inc. TABLE 4-4: File Name INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ64GS610 DEVICES (CONTINUED) SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets IPC14 00C0 — — — — — QEI1IP2 QEI1IP1 QEI1IP0 — PSEMIP2 PSEMIP1 PSEMIP0 — — — — 0440 IPC16 00C4 — — — — — U2EIP2 U2EIP1 U2EIP0 — U1EIP2 U1EIP1 U1EIP0 — — — — 0440 IPC17 00C6 — — — — — C1TXIP2 C1TXIP1 C1TXIP0 — — — — — — — — 0400 IPC18 00C8 — QEI2IP2 QEI2IP1 QEI2IP0 — — — — — PSESMIP2 PSESMIP1 PSESMIP0 — — — — 4040 IPC20 00CC — — ADCP8IP2 ADCP8IP1 ADCP8IP0 — — — — 4440 IPC21 00CE — — — — — — ADCP12IP2 ADCP12IP1 ADCP12IP0 — IPC23 00D2 — PWM2IP2 PWM2IP1 PWM2IP0 — PWM1IP2 PWM1IP1 PWM1IP0 — — — — — — — — 4400 IPC24 00D4 — PWM6IP2 PWM6IP1 PWM6IP0 — PWM5IP2 PWM5IP1 PWM5IP0 — PWM4IP2 PWM4IP1 PWM4IP0 — PWM3IP2 PWM3IP1 PWM3IP0 4444 IPC25 00D6 — AC2IP2 AC2IP1 AC2IP0 — PWM9IP2 PWM9IP1 PWM9IP0 — PWM8IP2 PWM8IP1 PWM8IP0 — PWM7IP2 PWM7IP1 PWM7IP0 4444 IPC26 00D8 — — — — — — AC4IP2 AC4IP1 AC4IP0 — AC3IP2 AC3IP1 AC3IP0 0044 IPC27 00DA — ADCP1IP2 ADCP1IP1 ADCP1IP0 — ADCP0IP2 ADCP0IP1 ADCP0IP0 — — — — — — — — 4400 IPC28 00DC — ADCP5IP2 ADCP5IP1 ADCP5IP0 — ADCP4IP2 ADCP4IP1 ADCP4IP0 — ADCP3IP2 ADCP3IP1 ADCP3IP0 — ADCP2IP2 ADCP2IP1 ADCP2IP0 4444 IPC29 00DE — — — — — — — — — ADCP7IP2 ADCP7IP1 ADCP7IP0 — ADCP6IP2 ADCP6IP1 ADCP6IP0 0044 INTTREG 00E0 — — — — ILR3 ILR2 ILR1 ILR0 — VECNUM6 VECNUM5 VECNUM4 VECNUM3 VECNUM2 VECNUM1 VECNUM0 0000 Legend: ADCP10IP2 ADCP10IP1 ADCP10IP0 — ADCP9IP2 ADCP9IP1 ADCP9IP0 — — — — — — x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. ADCP11IP2 ADCP11IP1 ADCP11IP0 0044  2009-2014 Microchip Technology Inc. dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 DS7000591F-page 56 TABLE 4-4: File Name SFR Addr INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ64GS608 DEVICES Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 INTCON1 0080 NSTDIS OVAERR OVBERR INTCON2 0082 ALTIVT DISI — — — COVAERR COVBERR Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 OVATE OVBTE COVTE — — — — — — INT4EP INT3EP INT2EP SFTACERR DIV0ERR DMACERR MATHERR ADDRERR STKERR Bit 0 All Resets OSCFAIL — 0000 INT1EP INT0EP 0000 Bit 1 DS7000591F-page 57 IFS0 0084 — DMA1IF ADIF U1TXIF U1RXIF SPI1IF SPI1EIF T3IF T2IF OC2IF IC2IF DMA0IF T1IF OC1IF IC1IF INT0IF 0000 IFS1 0086 U2TXIF U2RXIF INT2IF T5IF T4IF OC4IF OC3IF DMA2IF — — — INT1IF CNIF AC1IF MI2C1IF SI2C1IF 0000 IFS2 0088 — — — — — — — — — IC4IF IC3IF DMA3IF C1IF C1RXIF SPI2IF SPI2EIF 0000 IFS3 008A — — — — — QEI1IF PSEMIF — — INT4IF INT3IF — — MI2C2IF SI2C2IF — 0000 IFS4 008C — — — — QEI2IF — PSESMIF — — C1TXIF — — — U2EIF U1EIF — 0000 IFS5 008E PWM2IF PWM1IF ADCP12IF — — — — — — — — — — — ADCP8IF — 0000 IFS6 0090 ADCP1IF ADCP0IF — — — — AC4IF AC3IF AC2IF — PWM8IF PWM7IF PWM6IF PWM5IF PWM4IF PWM3IF 0000 IFS7 0092 — — — — — — — — — — ADCP7IF ADCP6IF ADCP5IF ADCP4IF ADCP3IF ADCP2IF 0000 IEC0 0094 — DMA1IE ADIE U1TXIE U1RXIE SPI1IE SPI1EIE T3IE T2IE OC2IE IC2IE DMA0IE T1IE OC1IE IC1IE INT0IE 0000 IEC1 0096 U2TXIE U2RXIE INT2IE T5IE T4IE OC4IE OC3IE DMA2IE — — — INT1IE CNIE AC1IE MI2C1IE SI2C1IE 0000 IEC2 0098 — — — — — — — — — IC4IE IC3IE DMA3IE C1IE C1RXIE SPI2IE SPI2EIE 0000 IEC3 009A — — — — — QEI1IE PSEMIE — — INT4IE INT3IE — — MI2C2IE SI2C2IE — 0000 IEC4 009C — — — — QEI2IE — PSESMIE — — C1TXIE — — — U2EIE U1EIE — 0000 IEC5 009E PWM2IE PWM1IE ADCP12IE — — — — — — — — — — — ADCP8IE — 0000 IEC6 00A0 ADCP1IE ADCP0IE — — — — AC4IE AC3IE AC2IE — PWM8IE PWM7IE PWM6IE PWM5IE PWM4IE PWM3IE 0000 IEC7 00A2 — — — — — — — — — — ADCP7IE ADCP6IE ADCP5IE ADCP4IE ADCP3IE ADCP2IE 0000 IPC0 00A4 — T1IP2 T1IP1 T1IP0 — OC1IP2 OC1IP1 OC1IP0 — IC1IP2 IC1IP1 IC1IP0 — INT0IP2 INT0IP0 4444 IPC1 00A6 — T2IP2 T2IP1 T2IP0 — OC2IP2 OC2IP1 OC2IP0 — IC2IP2 IC2IP1 IC2IP0 — DMA0IP2 DMA0IP1 DMA0IP0 4444 IPC2 00A8 — U1RXIP2 U1RXIP1 U1RXIP0 — SPI1IP2 SPI1IP1 SPI1IP0 — SPI1EIP2 SPI1EIP1 SPI1EIP0 — T3IP2 T3IP1 T3IP0 4444 IPC3 00AA — — — — — DMA1IP2 DMA1IP1 DMA1IP0 — ADIP2 ADIP1 ADIP0 — U1TXIP2 U1TXIP1 U1TXIP0 4444 IPC4 00AC — CNIP2 CNIP1 CNIP0 — AC1IP2 AC1IP1 AC1IP0 — MI2C1IP2 MI2C1IP1 MI2C1IP0 — SI2C1IP2 SI2C1IP1 SI2C1IP0 4444 IPC5 00AE — — — — — — — — — — — — — INT1IP2 INT1IP0 0004 IPC6 00B0 — T4IP2 T4IP1 T4IP0 — OC4IP2 OC4IP1 OC4IP0 — OC3IP2 OC3IP1 OC3IP0 — DMA2IP2 DMA2IP1 DMA2IP0 4444 IPC7 00B2 — U2TXIP2 U2TXIP1 U2TXIP0 — U2RXIP2 U2RXIP1 U2RXIP0 — INT2IP2 INT2IP1 INT2IP0 — IPC8 00B4 — C1IP2 C1IP1 C1IP0 — C1RXIP2 C1RXIP1 C1RXIP0 — SPI2IP2 SPI2IP1 SPI2IP0 — SPI2EIP2 SPI2EIP1 SPI2EIP0 4444 IPC9 00B6 — — — — — IC4IP2 IC4IP1 IC4IP0 — IC3IP2 IC3IP1 IC3IP0 — DMA3IP2 DMA3IP1 DMA3IP0 0444 IPC12 00BC — — — — — — SI2C2IP2 SI2C2IP1 SI2C2IP0 — — — — 0440 IPC13 00BE — — — — — INT4IP2 INT4IP1 INT4IP0 — INT3IP2 INT3IP1 INT3IP0 — — — — 0440 IPC14 00C0 — — — — — QEI1IP2 QEI1IP0 QEI1IP0 — PSEMIP2 PSEMIP1 PSEMIP0 — — — — 0440 IPC16 00C4 — — — — — U2EIP2 U2EIP1 U2EIP0 — U1EIP2 U1EIP1 U1EIP0 — — — — 0440 IPC17 00C6 — — — — — C1TXIP2 C1TXIP1 C1TXIP0 — — — — — — — — 0400 IPC18 00C8 — QEI2IP2 QEI2IP1 QEI2IP0 — — — — — — — — — 4040 Legend: MI2C2IP2 MI2C2IP1 MI2C2IP0 x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. PSESMIP2 PSESMIP1 PSESMIP0 T5IP2 INT0IP1 INT1IP1 T5IP1 T5IP0 4444 dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  2009-2014 Microchip Technology Inc. TABLE 4-5: File Name INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ64GS608 DEVICES (CONTINUED) SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 IPC20 00CC — — — — — — — — — IPC21 00CE — — — — — — — — — IPC23 00D2 — PWM2IP2 PWM2IP1 PWM2IP0 — PWM1IP2 PWM1IP1 PWM1IP0 — — — IPC24 00D4 — PWM6IP2 PWM6IP2 PWM6IP2 — PWM5IP2 PWM5IP1 PWM5IP0 — PWM4IP2 IPC25 00D6 — AC2IP2 AC2IP1 AC2IP0 — — — — — IPC26 00D8 — — — — — — — — IPC27 00DA — ADCP1IP2 ADCP1IP1 ADCP1IP0 — IPC28 00DC — ADCP5IP2 ADCP5IP1 ADCP5IP0 — IPC29 00DE — — — — — — — — INTTREG 00E0 — — — — ILR3 ILR2 ILR1 ILR0 Legend: Bit 3 Bit 2 Bit 1 Bit 0 All Resets ADCP8IP2 ADCP8IP1 ADCP8IP0 — — — — 0040 ADCP12IP2 ADCP12IP1 ADCP12IP0 — — — — 0040 — — — — — 4400 PWM4IP1 PWM4IP0 — PWM3IP2 PWM3IP1 PWM3IP0 4444 PWM8IP2 PWM8IP1 PWM8IP0 — PWM7IP2 PWM7IP1 PWM7IP0 4044 — AC4IP2 AC4IP1 AC4IP0 — AC3IP2 AC3IP1 AC3IP0 0044 ADCP0IP2 ADCP0IP1 ADCP0IP0 — — — — — — — — 4400 ADCP4IP2 ADCP4IP1 ADCP4IP0 — x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Bit 6 Bit 5 Bit 4 ADCP3IP2 ADCP3IP1 ADCP3IP0 — ADCP2IP2 ADCP2IP1 ADCP2IP0 4444 — ADCP7IP2 ADCP7IP1 ADCP7IP0 — ADCP6IP2 ADCP6IP1 ADCP6IP0 0044 — VECNUM6 VECNUM5 VECNUM4 VECNUM3 VECNUM2 VECNUM1 VECNUM0 0000  2009-2014 Microchip Technology Inc. dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 DS7000591F-page 58 TABLE 4-5: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ64GS606 DEVICES File Name SFR Addr Bit 15 Bit 14 DS7000591F-page 59 Bit 0 All Resets INTCON1 0080 NSTDIS OVAERR INTCON2 0082 ALTIVT DISI — — — OSCFAIL — 0000 INT1EP INT0EP IFS0 0084 — DMA1IF ADIF U1TXIF 0000 OC1IF IC1IF INT0IF IFS1 0086 U2TXIF U2RXIF INT2IF 0000 CNIF AC1IF MI2C1IF SI2C1IF IFS2 0088 — — 0000 DMA3IF C1IF C1RXIF SPI2IF SPI2EIF IFS3 008A — 0000 INT3IF — — MI2C2IF SI2C2IF — IFS4 008C — 0000 C1TXIF — — — U2EIF U1EIF — IFS5 008E PWM2IF 0000 — — — — — — — — IFS6 0090 ADCP1IF ADCP0IF 0000 AC3IF AC2IF PWM9IF PWM8IF PWM7IF PWM6IF PWM5IF PWM4IF PWM3IF IFS7 0092 — 0000 — — — — ADCP7IF ADCP6IF ADCP5IF ADCP4IF ADCP3IF ADCP2IF IEC0 0094 0000 SPI1IE SPI1EIE T3IE T2IE OC2IE IC2IE DMA0IE T1IE OC1IE IC1IE INT0IE IEC1 0000 T4IE OC4IE OC3IE DMA2IE — — — INT1IE CNIE AC1IE MI2C1IE SI2C1IE 0000 — — — — — — IC4IE IC3IE DMA3IE C1IE C1RXIE SPI2IE SPI2EIE 0000 — — — QEI1IE PSEMIE — — INT4IE INT3IE — — MI2C2IE SI2C2IE — 0000 — — QEI2IE — PSESMIE — — C1TXIE — — — U2EIE U1EIE — 0000 — — — — — — — — — — — — — 0000 — — — — AC4IE AC3IE AC2IE — — — PWM6IE PWM5IE PWM4IE PWM3IE 0000 — — — — — — — — — ADCP7IE ADCP6IE ADCP5IE ADCP4IE ADCP3IE ADCP2IE 0000 — T1IP2 T1IP1 T1IP0 — OC1IP2 OC1IP1 OC1IP0 — IC1IP2 IC1IP1 IC1IP0 — INT0IP2 INT0IP0 4444 00A6 — T2IP2 T2IP1 T2IP0 — OC2IP2 OC2IP1 OC2IP0 — IC2IP2 IC2IP1 IC2IP0 — DMA0IP2 DMA0IP1 DMA0IP0 4444 IPC2 00A8 — U1RXIP2 U1RXIP1 U1RXIP0 — SPI1IP2 SPI1IP1 SPI1IP0 — SPI1EIP2 SPI1EIP1 SPI1EIP0 — T3IP2 T3IP1 T3IP0 4444 IPC3 00AA — — — — — DMA1IP2 DMA1IP1 DMA1IP0 — ADIP2 ADIP1 ADIP0 — U1TXIP2 U1TXIP1 U1TXIP0 4444 IPC4 00AC — CNIP2 CNIP1 CNIP0 — AC1IP2 AC1IP1 AC1IP0 — MI2C1IP2 MI2C1IP2 MI2C1IP2 — SI2C1IP2 SI2C1IP1 SI2C1IP0 4444 IPC5 00AE — — — — — — — — — — — — — INT1IP2 INT1IP0 0004 IPC6 00B0 — T4IP2 T4IP1 T4IP0 — OC4IP2 OC4IP1 OC4IP0 — OC3IP2 OC3IP1 OC3IP0 — DMA2IP2 DMA2IP1 DMA2IP0 4444 IPC7 00B2 — U2TXIP2 U2TXIP1 U2TXIP0 — U2RXIP2 U2RXIP1 U2RXIP0 — INT2IP2 INT2IP1 INT2IP0 — IPC8 00B4 — C1IP2 C1IP1 C1IP0 — C1RXIP2 C1RXIP1 C1RXIP0 — SPI2IP2 SPI2IP1 SPI2IP0 — SPI2EIP2 SPI2EIP1 SPI2EIP0 4444 IPC9 00B6 — — — — — IC4IP2 IC4IP1 IC4IP0 — IC3IP2 IC3IP1 IC3IP0 — DMA3IP2 DMA3IP1 DMA3IP0 0444 IPC12 00BC — — — — — — SI2C2IP2 SI2C2IP1 SI2C2IP0 — — — — 0440 IPC13 00BE — — — — — INT4IP2 INT4IP1 INT4IP0 — INT3IP2 INT3IP1 INT3IP0 — — — — 0440 IPC14 00C0 — — — — — QEI1IP2 QEI1IP1 QEI1IP0 — PSEMIP2 PSEMIP1 PSEMIP0 — — — — 0440 IPC16 00C4 — — — — — U2EIP2 U2EIP1 U2EIP0 — U1EIP2 U1EIP1 U1EIP0 — — — — 0440 IPC17 00C6 — — — — — C1TXIP2 C1TXIP1 C1TXIP0 — — — — — — — — 0400 IPC18 00C8 — QEI2IP2 QEI2IP1 QEI2IP0 — — — — — — — — — 4040 Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 OVATE OVBTE COVTE SFTACERR DIV0ERR DMACERR — — — — — — INT4EP INT3EP INT2EP U1RXIF SPI1IF SPI1EIF T3IF T2IF OC2IF IC2IF DMA0IF T1IF T5IF T4IF OC4IF OC3IF DMA2IF — — — INT1IF — — — — — — — IC4IF IC3IF — — — — QEI1IF PSEMIF — — INT4IF — — — QEI2IF — PSESMIF — — — — — — — — — — — AC4IF — — — — — — DMA1IE ADIE U1TXIE U1RXIE 0096 U2TXIE U2RXIE INT2IE T5IE IEC2 0098 — — — IEC3 009A — — IEC4 009C — — IEC5 009E PWM2IE IEC6 00A0 ADCP1IE ADCP0IE IEC7 00A2 — IPC0 00A4 IPC1 OVBERR COVAERR COVBERR PWM1IF ADCP12IF PWM1IE ADCP12IE MI2C2IP2 MI2C2IP1 MI2C2IP0 Bit 4 Bit 3 Bit 2 MATHERR ADDRERR STKERR PSESMIP2 PSESMIP1 PSESMIP0 T5IP2 Bit 1 INT0IP1 INT1IP1 T5IP1 T5IP0 4444 dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  2009-2014 Microchip Technology Inc. TABLE 4-6: File Name INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ64GS606 DEVICES (CONTINUED) SFR Addr Bit 15 IPC21 00CE — IPC23 00D2 — PWM2IP2 PWM2IP1 PWM2IP0 — PWM1IP2 PWM1IP1 PWM1IP0 — — — — IPC24 00D4 — PWM6IP2 PWM6IP1 PWM6IP0 — PWM5IP2 PWM5IP1 PWM5IP0 — PWM4IP2 PWM4IP1 PWM4IP0 — PWM3IP2 PWM3IP1 PWM3IP0 4444 IPC25 00D6 — AC2IP2 AC2IP1 AC2IP0 — PWM9IP2 PWM9IP1 PWM9IP0 — PWM8IP2 PWM8IP1 PWM8IP0 — PWM7IP2 PWM7IP1 PWM7IP0 4000 IPC26 00D8 — — — — — — AC4IP2 AC4IP1 AC4IP0 — AC3IP2 AC3IP1 AC3IP0 0044 IPC27 00DA — ADCP1IP2 ADCP1IP1 ADCP1IP0 — ADCP0IP2 ADCP0IP1 ADCP0IP0 — — — — — — — — 4400 IPC28 00DC — ADCP5IP2 ADCP5IP1 ADCP5IP0 — ADCP4IP2 ADCP4IP1 ADCP4IP0 — ADCP3IP2 ADCP3IP1 ADCP3IP0 — ADCP2IP2 ADCP2IP1 ADCP2IP0 4444 IPC29 00DE — — — — — — — — — ADCP7IP2 ADCP7IP1 ADCP7IP0 — ADCP6IP2 ADCP6IP1 ADCP6IP0 0004 INTTREG 00E0 — — — — ILR3 ILR2 ILR1 ILR0 — VECNUM6 VECNUM5 VECNUM4 VECNUM3 VECNUM2 VECNUM1 VECNUM0 0000 Legend: Bit 14 Bit 13 Bit 12 Bit 11 — — — — Bit 10 Bit 9 Bit 8 Bit 7 — — — — — — — x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Bit 6 Bit 5 Bit 4 ADCP12IP2 ADCP12IP1 ADCP12IP0 Bit 3 Bit 2 Bit 1 Bit 0 All Resets — — — — 0040 — — — — 4400  2009-2014 Microchip Technology Inc. dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 DS7000591F-page 60 TABLE 4-6: File Name SFR Addr INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ32GS406 AND dsPIC33FJ64GS406 DEVICES Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 INTCON1 0080 NSTDIS OVAERR INTCON2 0082 ALTIVT DISI — — — OVBERR COVAERR COVBERR Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 OVATE OVBTE COVTE — — — — — — INT4EP INT3EP INT2EP SFTACERR DIV0ERR Bit 5 — Bit 4 Bit 3 Bit 2 MATHERR ADDRERR STKERR Bit 0 All Resets OSCFAIL — 0000 INT1EP INT0EP 0000 Bit 1 DS7000591F-page 61 IFS0 0084 — — ADIF U1TXIF U1RXIF SPI1IF SPI1EIF T3IF T2IF OC2IF IC2IF — T1IF OC1IF IC1IF INT0IF 0000 IFS1 0086 U2TXIF U2RXIF INT2IF T5IF T4IF OC4IF OC3IF — — — — INT1IF CNIF — MI2C1IF SI2C1IF 0000 IFS2 0088 — — — — — — — — — IC4IF IC3IF — — — SPI2IF SPI2EIF 0000 IFS3 008A — — — — — QEI1IF PSEMIF — — INT4IF INT3IF — — MI2C2IF SI2C2IF — 0000 IFS4 008C — — — — — — PSESMIF — — — — — — U2EIF U1EIF — 0000 IFS5 008E PWM2IF PWM1IF ADCP12IF — — — — — — — — — — — — — 0000 IFS6 0090 ADCP1IF ADCP0IF — — — — — — — — — — PWM6IF PWM5IF PWM4IF PWM3IF 0000 IFS7 0092 — — — — — — — — — — ADCP7IF ADCP6IF ADCP5IF ADCP4IF ADCP3IF ADCP2IF 0000 IEC0 0094 — — ADIE U1TXIE U1RXIE SPI1IE SPI1EIE T3IE T2IE OC2IE IC2IE — T1IE OC1IE IC1IE INT0IE 0000 IEC1 0096 U2TXIE U2RXIE INT2IE T5IE T4IE OC4IE OC3IE — — — — INT1IE CNIE — MI2C1IE SI2C1IE 0000 IEC2 0098 — — — — — — — — — IC4IE IC3IE — — — SPI2IE SPI2EIE 0000 IEC3 009A — — — — — QEI1IE PSEMIE — — INT4IE INT3IE — — MI2C2IE SI2C2IE — 0000 IEC4 009C — — — — — — PSESMIE — — — — — — U2EIE U1EIE — 0000 IEC5 009E PWM2IE PWM1IE ADCP12IE — — — — — — — — — — — — — 0000 IEC6 00A0 — ADCP0IE — — — — — — — — — — PWM6IE PWM5IE PWM4IE PWM3IE 0000 IEC7 00A2 — — — — — — — — — ADCP7IE ADCP6IE ADCP5IE ADCP4IE ADCP3IE ADCP2IE 0000 IPC0 00A4 T1IP2 T1IP1 T1IP0 — OC1IP2 OC1IP1 OC1IP0 — IC1IP2 IC1IP1 IC1IP0 — INT0IP2 INT0IP1 INT0IP0 4444 IPC1 00A6 T2IP2 T2IP1 T2IP0 — OC2IP2 OC2IP1 OC2IP0 — IC2IP2 IC2IP1 IC2IP0 — — — — 4440 IPC2 00A8 U1RXIP2 U1RXIP1 U1RXIP0 — SPI1IP2 SPI1IP1 SPI1IP0 — SPI1EIP2 SPI1EIP1 SPI1EIP0 — T3IP2 T3IP1 T3IP0 4444 IPC3 00AA — — — — — — — — ADIP2 ADIP1 ADIP0 — U1TXIP2 U1TXIP1 U1TXIP0 0044 IPC4 00AC — CNIP2 CNIP1 CNIP0 — — — — — — SI2C1IP2 SI2C1IP1 SI2C1IP0 4444 IPC5 00AE — — — — — — — — — — — — — INT1IP2 INT1IP1 INT1IP0 0004 IPC6 00B0 — T4IP2 T4IP1 T4IP0 — OC4IP2 OC4IP1 OC4IP0 — OC3IP2 OC3IP1 OC3IP0 — — — — 4440 IPC7 00B2 — U2TXIP2 U2TXIP1 U2TXIP0 — U2RXIP2 U2RXIP1 U2RXIP0 — INT2IP2 INT2IP1 INT2IP0 — T5IP2 T5IP1 T5IP0 4444 IPC8 00B4 — — — — — — — — — SPI2IP2 SPI2IP1 SPI2IP0 — SPI2EIP0 0044 IPC9 00B6 — — — — — IC4IP2 IC4IP1 IC4IP0 — IC3IP2 IC3IP1 IC3IP0 — — — — 0440 IPC12 00BC — — — — — MI2C2IP2 — SI2C2IP2 SI2C2IP1 SI2C2IP0 — — — — 0440 IPC13 00BE — — — — — INT4IP2 INT4IP1 INT4IP0 — INT3IP2 INT3IP1 INT3IP0 — — — — 0440 IPC14 00C0 — — — — — QEI1IP2 QEI1IP1 QEI1IP0 — PSEMIP2 PSEMIP1 PSEMIP0 — — — — 0440 IPC16 00C4 — — — — — U2EIP2 U2EIP1 U2EIP0 — U1EIP2 U1EIP1 U1EIP0 — — — — 0440 IPC18 00C8 — — — — — — — — — — — — — 0040 IPC23 00D2 — — PWM1IP2 — — — — 4400 Legend: PWM2IP2 PWM2IP1 PWM2IP0 MI2C2IP1 MI2C2IP0 PWM1IP1 PWM1IP0 x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. — MI2C1IP2 MI2C1IP1 MI2C1IP0 PSESMIP2 PSESMIP1 PSESMIP0 — — — SPI2EIP2 SPI2EIP1 dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  2009-2014 Microchip Technology Inc. TABLE 4-7: File Name INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ32GS406 AND dsPIC33FJ64GS406 DEVICES (CONTINUED) All Resets SFR Addr Bit 15 IPC24 00D4 — PWM6IP2 PWM6IP1 PWM6IP0 — PWM5IP2 PWM5IP1 PWM5IP0 — IPC27 00DA — ADCP1IP2 ADCP1IP1 ADCP1IP0 — ADCP0IP2 ADCP0IP1 ADCP0IP0 — IPC28 00DC — ADCP5IP2 ADCP5IP1 ADCP5IP0 — ADCP4IP2 ADCP4IP1 ADCP4IP0 — ADCP3IP2 ADCP3IP1 ADCP3IP0 — ADCP2IP2 ADCP2IP1 ADCP2IP0 4444 IPC29 00DE — — — — — — — — — ADCP7IP2 ADCP7IP1 ADCP7IP0 — ADCP6IP2 ADCP6IP1 ADCP6IP0 0004 INTTREG 00E0 — — — — ILR3 ILR2 ILR1 ILR0 — VECNUM6 VECNUM5 VECNUM4 VECNUM3 VECNUM2 VECNUM1 VECNUM0 0000 Legend: Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Bit 7 Bit 6 Bit 5 Bit 4 PWM4IP2 PWM4IP1 PWM4IP0 — — — Bit 3 — — Bit 2 Bit 1 Bit 0 PWM3IP2 PWM3IP1 PWM3IP0 — — — 4444 4400  2009-2014 Microchip Technology Inc. dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 DS7000591F-page 62 TABLE 4-7: File Name SFR Addr INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ32GS610 DEVICES Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 INTCON1 0080 NSTDIS OVAERR OVBERR INTCON2 0082 ALTIVT DISI — — — COVAERR COVBERR Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 OVATE OVBTE COVTE — — — — — — INT4EP INT3EP SFTACERR DIV0ERR Bit 5 — Bit 4 Bit 3 MATHERR ADDRERR Bit 0 All Resets OSCFAIL — 0000 INT1EP INT0EP 0000 Bit 2 Bit 1 STKERR INT2EP DS7000591F-page 63 IFS0 0084 — — ADIF U1TXIF U1RXIF SPI1IF SPI1EIF T3IF T2IF OC2IF IC2IF — T1IF OC1IF IC1IF INT0IF 0000 IFS1 0086 U2TXIF U2RXIF INT2IF T5IF T4IF OC4IF OC3IF — — — — INT1IF CNIF AC1IF MI2C1IF SI2C1IF 0000 IFS2 0088 — — — — — — — — — IC4IF IC3IF — — — SPI2IF SPI2EIF 0000 IFS3 008A — — — — — QEI1IF PSEMIF — — INT4IF INT3IF — — MI2C2IF SI2C2IF — 0000 IFS4 008C — — — — QEI2IF — PSESMIF — — — — — — U2EIF U1EIF — 0000 IFS5 008E PWM2IF PWM1IF ADCP12IF — — — — — — — — ADCP9IF ADCP8IF — 0000 IFS6 0090 ADCP1IF ADCP0IF — — — — AC4IF AC3IF AC2IF PWM9IF PWM8IF PWM7IF PWM6IF PWM5IF PWM4IF PWM3IF 0000 IFS7 0092 — — — — — — — — — — ADCP7IF ADCP6IF ADCP5IF ADCP4IF ADCP3IF ADCP2IF 0000 IEC0 0094 — — ADIE U1TXIE U1RXIE SPI1IE SPI1EIE T3IE T2IE OC2IE IC2IE — T1IE OC1IE IC1IE INT0IE 0000 IEC1 0096 U2TXIE U2RXIE INT2IE T5IE T4IE OC4IE OC3IE — — — — INT1IE CNIE AC1IE MI2C1IE SI2C1IE 0000 IEC2 0098 — — — — — — — — — IC4IE IC3IE — — — SPI2IE SPI2EIE 0000 IEC3 009A — — — — — QEI1IE PSEMIE — — INT4IE INT3IE — — MI2C2IE SI2C2IE — 0000 IEC4 009C — — — — QEI2IE — PSESMIE — — — — — — U2EIE U1EIE — 0000 IEC5 009E PWM2IE PWM1IE ADCP12IE — — — — — — — — ADCP8IE — 0000 IEC6 00A0 ADCP1IE ADCP0IE — — — — AC4IE AC3IE AC2IE PWM9IE PWM8IE PWM7IE PWM6IE PWM5IE PWM4IE PWM3IE 0000 IEC7 00A2 — — — — — — — — — — ADCP7IE ADCP6IE ADCP5IE ADCP4IE ADCP3IE ADCP2IE 0000 IPC0 00A4 — T1IP2 T1IP1 T1IP0 — OC1IP2 OC1IP1 OC1IP0 — IC1IP2 IC1IP1 IC1IP0 — INT0IP2 INT0IP1 INT0IP0 4444 IPC1 00A6 — T2IP2 T2IP1 T2IP0 — OC2IP2 OC2IP1 OC2IP0 — IC2IP2 IC2IP1 IC2IP0 — — — — 4440 IPC2 00A8 — U1RXIP2 U1RXIP1 U1RXIP0 — SPI1IP2 SPI1IP1 SPI1IP0 — SPI1EIP2 SPI1EIP1 SPI1EIP0 — T3IP2 T3IP1 T3IP0 4444 IPC3 00AA — — — — — — — — — ADIP2 ADIP1 ADIP0 — U1TXIP2 U1TXIP1 U1TXIP0 0044 IPC4 00AC — CNIP2 CNIP1 CNIP0 — AC1IP2 AC1IP1 AC1IP0 — MI2C1IP2 MI2C1IP1 MI2C1IP0 — SI2C1IP2 SI2C1IP1 SI2C1IP0 4444 IPC5 00AE — — — — — — — — — — — — — INT1IP2 INT1IP1 INT1IP0 0004 IPC6 00B0 — T4IP2 T4IP1 T4IP0 — OC4IP2 OC4IP1 OC4IP0 — OC3IP2 OC3IP1 OC3IP0 — — — — 4440 IPC7 00B2 — U2TXIP2 U2TXIP1 U2TXIP0 — U2RXIP2 U2RXIP1 U2RXIP0 — INT2IP2 INT2IP1 INT2IP0 — T5IP2 T5IP1 T5IP0 4444 IPC8 00B4 — — — — — — — — — SPI2IP2 SPI2IP1 SPI2IP0 — SPI2EIP2 SPI2EIP1 SPI2EIP0 0044 IPC9 00B6 — — — — — IC4IP2 IC4IP1 IC4IP0 — IC3IP2 IC3IP1 IC3IP0 — — — — 0440 IPC12 00BC — — — — — — SI2C2IP2 SI2C2IP1 SI2C2IP0 — — — — 0440 IPC13 00BE — — — — — INT4IP2 INT4IP1 INT4IP0 — INT3IP2 INT3IP1 INT3IP0 — — — — 0440 IPC14 00C0 — — — — — QEI1IP2 QEI1IP1 QEI1IP0 — PSEMIP2 PSEMIP1 PSEMIP0 — — — — 0440 IPC16 00C4 — — — — — U2EIP2 U2EIP1 U2EIP0 — U1EIP2 U1EIP1 U1EIP0 — — — — 0440 IPC18 00C8 — QEI2IP2 QEI2IP1 QEI2IP0 — — — — — PSESMIP2 PSESMIP1 PSESMIP0 — — — — 4040 IPC20 00CC — — ADCP8IP2 ADCP8IP1 ADCP8IP0 — — — — 4440 Legend: ADCP10IP2 ADCP10IP1 ADCP10IP0 — MI2C2IP2 MI2C2IP1 MI2C2IP0 ADCP9IP2 ADCP9IP1 ADCP9IP0 x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. ADCP11IF ADCP10IF ADCP11IE ADCP10IE ADCP9IE dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  2009-2014 Microchip Technology Inc. TABLE 4-8: File Name INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ32GS610 DEVICES (CONTINUED) SFR Addr Bit 15 IPC21 00CE — — IPC23 00D2 — PWM2IP2 IPC24 00D4 — PWM6IP2 IPC25 00D6 — IPC26 00D8 — IPC27 00DA — ADCP1IP2 ADCP1IP1 ADCP1IP0 — IPC28 00DC — ADCP5IP2 ADCP5IP1 ADCP5IP0 — IPC29 00DE — — — — — — — INTTREG 00E0 — — — — ILR3 ILR2 ILR1 Legend: Bit 14 Bit 13 Bit 10 Bit 9 Bit 8 Bit 7 — — — — Bit 11 — — — PWM2IP1 PWM2IP0 — PWM1IP2 PWM1IP1 PWM1IP0 — — — — — — — — 4400 PWM6IP1 PWM6IP0 — PWM5IP2 PWM5IP1 PWM5IP0 — PWM4IP2 PWM4IP1 PWM4IP0 — PWM3IP2 PWM3IP1 PWM3IP0 4444 AC2IP2 AC2IP1 AC2IP0 — PWM9IP2 PWM9IP1 PWM9IP0 — PWM8IP2 PWM8IP1 PWM8IP0 — PWM7IP2 PWM7IP1 PWM7IP0 4444 — — — — — AC4IP2 AC4IP1 AC4IP0 — AC3IP2 AC3IP1 AC3IP0 0044 ADCP0IP2 ADCP0IP1 ADCP0IP0 — — — — — — — — 4400 ADCP4IP2 ADCP4IP1 ADCP4IP0 — ADCP3IP2 ADCP3IP1 ADCP3IP0 — ADCP2IP2 ADCP2IP1 ADCP2IP0 4444 — — ADCP7IP2 ADCP7IP1 ADCP7IP0 — ADCP6IP2 ADCP6IP1 ADCP6IP0 0044 ILR0 — VECNUM6 VECNUM5 VECNUM4 VECNUM3 VECNUM2 VECNUM1 VECNUM0 0000 — — — x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Bit 6 Bit 5 Bit 4 ADCP12IP2 ADCP12IP1 ADCP12IP0 Bit 3 — Bit 2 Bit 1 Bit 0 All Resets Bit 12 ADCP11IP2 ADCP11IP1 ADCP11IP0 0044  2009-2014 Microchip Technology Inc. dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 DS7000591F-page 64 TABLE 4-8: File Name SFR Addr INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ32GS608 Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 INTCON1 0080 NSTDIS OVAERR INTCON2 0082 ALTIVT DISI — — — OVBERR COVAERR COVBERR Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 OVATE OVBTE COVTE — — — — — — INT4EP INT3EP INT2EP SFTACERR DIV0ERR Bit 5 — Bit 4 Bit 3 Bit 2 MATHERR ADDRERR STKERR Bit 0 All Resets OSCFAIL — 0000 INT1EP INT0EP 0000 Bit 1 DS7000591F-page 65 IFS0 0084 — — ADIF U1TXIF U1RXIF SPI1IF SPI1EIF T3IF T2IF OC2IF IC2IF — T1IF OC1IF IC1IF INT0IF 0000 IFS1 0086 U2TXIF U2RXIF INT2IF T5IF T4IF OC4IF OC3IF — — — — INT1IF CNIF AC1IF MI2C1IF SI2C1IF 0000 IFS2 0088 — — — — — — — — — IC4IF IC3IF — — — SPI2IF SPI2EIF 0000 IFS3 008A — — — — — QEI1IF PSEMIF — — INT4IF INT3IF — — MI2C2IF SI2C2IF — 0000 IFS4 008C — — — — QEI2IF — PSESMIF — — — — — — U2EIF U1EIF — 0000 IFS5 008E PWM2IF PWM1IF ADCP12IF — — — — — — — — — — — ADCP8IF — 0000 IFS6 0090 ADCP1IF ADCP0IF — — — — AC4IF AC3IF AC2IF — PWM8IF PWM7IF PWM6IF PWM5IF PWM4IF PWM3IF 0000 IFS7 0092 — — — — — — — — — — ADCP7IF ADCP6IF ADCP5IF ADCP4IF ADCP3IF ADCP2IF 0000 IEC0 0094 — — ADIE U1TXIE U1RXIE SPI1IE SPI1EIE T3IE T2IE OC2IE IC2IE — T1IE OC1IE IC1IE INT0IE 0000 IEC1 0096 U2TXIE U2RXIE INT2IE T5IE T4IE OC4IE OC3IE — — — — INT1IE CNIE — MI2C1IE SI2C1IE 0000 IEC2 0098 — — — — — — — — — IC4IE IC3IE — — — SPI2IE SPI2EIE 0000 IEC3 009A — — — — — QEI1IE PSEMIE — — INT4IE INT3IE — — MI2C2IE SI2C2IE — 0000 IEC4 009C — — — — QEI2IE — PSESMIE — — — — — — U2EIE U1EIE — 0000 IEC5 009E PWM2IE — — — — — — — — — — — ADCP8IE — 0000 IEC6 00A0 ADCP1IE ADCP0IE — — — — AC4IE AC3IE AC2IE — PWM8IE PWM7IE PWM6IE PWM5IE PWM4IE PWM3IE 0000 IEC7 00A2 — — — — — — — — — — ADCP7IE ADCP6IE ADCP5IE ADCP4IE ADCP3IE ADCP2IE 0000 IPC0 00A4 — T1IP2 T1IP1 T1IP0 — OC1IP2 OC1IP1 OC1IP0 — IC1IP2 IC1IP1 IC1IP0 — INT0IP2 INT0IP1 INT0IP0 4444 IPC1 00A6 — T2IP2 T2IP1 T2IP0 — OC2IP2 OC2IP1 OC2IP0 — IC2IP2 IC2IP1 IC2IP0 — — — — 4440 IPC2 00A8 — U1RXIP2 U1RXIP1 U1RXIP0 — SPI1IP2 SPI1IP1 SPI1IP0 — SPI1EIP2 SPI1EIP1 SPI1EIP0 — T3IP2 T3IP1 T3IP0 4444 IPC3 00AA — — — — — — — — — ADIP2 ADIP1 ADIP0 — U1TXIP2 U1TXIP1 U1TXIP0 0044 IPC4 00AC — CNIP2 CNIP1 CNIP0 — AC1IP2 AC1IP1 AC1IP0 — MI2C1IP2 MI2C1IP1 MI2C1IP0 — SI2C1IP2 SI2C1IP1 SI2C1IP0 4444 IPC5 00AE — — — — — — — — — — — — — INT1IP2 INT1IP1 INT1IP0 0004 IPC6 00B0 — T4IP2 T4IP1 T4IP0 — OC4IP2 OC4IP1 OC4IP0 — OC3IP2 OC3IP1 OC3IP0 — — — — 4440 IPC7 00B2 — U2TXIP2 U2TXIP1 U2TXIP0 — U2RXIP2 U2RXIP1 U2RXIP0 — INT2IP2 INT2IP1 INT2IP0 — T5IP2 T5IP1 T5IP0 4444 IPC8 00B4 — — — — — — — — — SPI2IP2 SPI2IP1 SPI2IP0 — IPC9 00B6 — — — — — IC4IP2 IC4IP1 IC4IP0 — IC3IP2 IC3IP1 IC3IP0 — — — — 0440 IPC12 00BC — — — — — MI2C2IP0 — SI2C2IP2 SI2C2IP1 SI2C2IP0 — — — — 0440 IPC13 00BE — — — — — INT4IP2 INT4IP1 INT4IP0 — INT3IP2 INT3IP1 INT3IP0 — — — — 0440 IPC14 00C0 — — — — — QEI1IP2 QEI1IP1 QEI1IP0 — PSEMIP2 PSEMIP1 PSEMIP0 — — — — 0440 IPC16 00C4 — — — — — U2EIP2 U2EIP1 U2EIP0 — U1EIP2 U1EIP1 U1EIP0 — — — — 0440 IPC18 00C8 — QEI2IP2 QEI2IP1 QEI2IP0 — — — — — PSESMIP2 PSESMIP1 PSESMIP0 — — — — 4040 IPC20 00CC — — — — — — — — — ADCP8IP2 ADCP8IP1 ADCP8IP0 — — — — 0040 Legend: PWM1IE ADCP12IE MI2C2IP2 MI2C2IP1 x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. SPI2EIP2 SPI2EIP1 SPI2EIP0 0044 dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  2009-2014 Microchip Technology Inc. TABLE 4-9: File Name INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ32GS608 (CONTINUED) SFR Addr Bit 15 IPC21 00CE — IPC23 00D2 — PWM2IP2 PWM2IP1 IPC24 00D4 — PWM6IP2 PWM6IP1 IPC25 00D6 — AC2IP2 IPC26 00D8 — — IPC27 00DA — ADCP1IP2 ADCP1IP1 ADCP1IP0 — IPC28 00DC — ADCP5IP2 ADCP5IP1 ADCP5IP0 — IPC29 00DE — — — — — — — INTTREG 00E0 — — — — ILR3 ILR2 ILR1 Legend: Bit 14 Bit 13 Bit 12 Bit 11 — — Bit 10 Bit 9 — — PWM2IP0 — PWM1IP2 PWM1IP1 — — PWM6IP0 — PWM5IP2 PWM5IP1 AC2IP1 AC2IP0 — — — — — — Bit 5 Bit 4 Bit 2 Bit 1 Bit 0 All Resets — — — — 0040 — — — — 4400 Bit 7 — — PWM1IP0 — — — — PWM5IP0 — PWM4IP2 PWM4IP1 PWM4IP0 — PWM3IP2 PWM3IP1 PWM3IP0 4444 — — — PWM8IP2 PWM8IP1 PWM8IP0 — PWM7IP2 PWM7IP1 PWM7IP0 4044 — — — AC4IP2 AC4IP1 AC4IP0 — AC3IP2 AC3IP1 AC3IP0 0044 ADCP0IP2 ADCP0IP1 ADCP0IP0 — — — — — — — — 4400 ADCP4IP2 ADCP4IP1 ADCP4IP0 — ADCP3IP2 ADCP3IP1 ADCP3IP0 — ADCP2IP2 ADCP2IP1 ADCP2IP0 4444 — — ADCP7IP2 ADCP7IP1 ADCP7IP0 — ADCP6IP2 ADCP6IP1 ADCP6IP0 0044 ILR0 — VECNUM6 VECNUM5 VECNUM4 VECNUM3 VECNUM2 VECNUM1 VECNUM0 0000 x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Bit 6 Bit 3 Bit 8 ADCP12IP2 ADCP12IP1 ADCP12IP1  2009-2014 Microchip Technology Inc. dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 DS7000591F-page 66 TABLE 4-9: File Name SFR Addr INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ32GS606 DEVICES Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 OVAERR OVBERR COVAERR COVBERR Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 SFTACERR DIV0ERR Bit 5 — Bit 4 Bit 3 MATHERR ADDRERR Bit 2 Bit 1 Bit 0 All Resets INTCON1 0080 NSTDIS OVATE OVBTE COVTE STKERR OSCFAIL — 0000 INTCON2 0082 ALTIVT DISI — — — — — — — — — INT4EP INT3EP INT2EP INT1EP INT0EP 0000 DS7000591F-page 67 IFS0 0084 — — ADIF U1TXIF U1RXIF SPI1IF SPI1EIF T3IF T2IF OC2IF IC2IF — T1IF OC1IF IC1IF INT0IF 0000 IFS1 0086 U2TXIF U2RXIF INT2IF T5IF T4IF OC4IF OC3IF — — — — INT1IF CNIF AC1IF MI2C1IF SI2C1IF 0000 IFS2 0088 — — — — — — — — — IC4IF IC3IF — — — SPI2IF SPI2EIF 0000 IFS3 008A — — — — — QEI1IF PSEMIF — — INT4IF INT3IF — — MI2C2IF SI2C2IF — 0000 IFS4 008C — — — — QEI2IF — PSESMIF — — — — — — U2EIF U1EIF — 0000 IFS5 008E PWM2IF — — — — — — — — — — — — — 0000 IFS6 0090 ADCP1IF ADCP0IF — — — — AC4IF AC3IF AC2IF — — — PWM6IF PWM5IF PWM4IF PWM3IF 0000 IFS7 0092 — — — — — — — — — — ADCP7IF ADCP6IF ADCP5IF ADCP4IF ADCP3IF ADCP2IF 0000 IEC0 0094 — — ADIE U1TXIE U1RXIE SPI1IE SPI1EIE T3IE T2IE OC2IE IC2IE — T1IE OC1IE IC1IE INT0IE 0000 IEC1 0096 U2TXIE U2RXIE INT2IE T5IE T4IE OC4IE OC3IE — — — — INT1IE CNIE AC1IE MI2C1IE SI2C1IE 0000 IEC2 0098 — — — — — — — — — IC4IE IC3IE — — — SPI2IE SPI2EIE 0000 IEC3 009A — — — — — QEI1IE PSEMIE — — INT4IE INT3IE — — MI2C2IE SI2C2IE — 0000 IEC4 009C — — — — QEI2IE — PSESMIE — — — — — — U2EIE U1EIE — 0000 IEC5 009E PWM2IE PWM1IE ADCP12IE — — — — — — — — — — — — — 0000 IEC6 00A0 ADCP1IE ADCP0IE — — — — AC4IE AC3IE AC2IE — — — PWM6IE PWM5IE PWM4IE PWM3IE 0000 IEC7 00A2 — — — — — — — — — — ADCP7IE ADCP6IE ADCP5IE ADCP4IE ADCP3IE ADCP2IE 0000 IPC0 00A4 — T1IP2 T1IP1 T1IP0 — OC1IP2 OC1IP1 OC1IP0 — IC1IP2 IC1IP1 IC1IP0 — INT0IP2 INT0IP1 INT0IP0 4444 IPC1 00A6 — T2IP2 T2IP1 T2IP0 — OC2IP2 OC2IP1 OC2IP0 — IC2IP2 IC2IP1 IC2IP0 — — — — 4440 IPC2 00A8 — U1RXIP0 — SPI1IP2 SPI1IP1 SPI1IP0 — SPI1EIP2 SPI1EIP1 SPI1EIP0 — T3IP2 T3IP1 T3IP0 4444 IPC3 00AA — — — — — — — — — ADIP2 ADIP1 ADIP0 — U1TXIP2 U1TXIP1 U1TXIP0 0044 IPC4 00AC — CNIP2 CNIP1 CNIP0 — AC1IP2 AC1IP1 AC1IP0 — MI2C1IP2 MI2C1IP1 MI2C1IP0 — SI2C1IP2 SI2C1IP1 SI2C1IP0 4444 IPC5 00AE — — — — — — — — — — — — — INT1IP2 INT1IP1 INT1IP0 0004 IPC6 00B0 — T4IP2 T4IP1 T4IP0 — OC4IP2 OC4IP1 OC4IP0 — OC3IP2 OC3IP1 OC3IP0 — — — — 4440 IPC7 00B2 — U2TXIP2 U2TXIP1 U2TXIP0 — U2RXIP2 U2RXIP1 U2RXIP0 — INT2IP2 INT2IP1 INT2IP0 — T5IP2 T5IP1 T5IP0 4444 IPC8 00B4 — — — — — — — — — SPI2IP2 SPI2IP1 SPI2IP0 — IPC9 00B6 — — — — — IC4IP2 IC4IP1 IC4IP0 — IC3IP2 IC3IP1 IC3IP0 — — — — 0440 IPC12 00BC — — — — — MI2C2IP2 MI2C2IP1 MI2C2IP0 — SI2C2IP2 SI2C2IP1 SI2C2IP0 — — — — 0440 IPC13 00BE — — — — — INT4IP2 INT4IP1 INT4IP0 — INT3IP2 INT3IP1 INT3IP0 — — — — 0440 IPC14 00C0 — — — — — QEI1IP2 QEI1IP1 QEI1IP0 — PSEMIP2 PSEMIP1 PSEMIP0 — — — — 0440 IPC16 00C4 — — — — — U2EIP2 U2EIP1 U2EIP0 — U1EIP2 U1EIP1 U1EIP0 — — — — 0440 IPC18 00C8 — QEI2IP2 QEI2IP1 QEI2IP0 — — — — — PSESMIP2 PSESMIP1 PSESMIP0 — — — — 4040 IPC21 00CE — — — — — — — — — ADCP12IP2 ADCP12IP1 ADCP12IP0 — — — — 0040 Legend: PWM1IF ADCP12IF U1RXIP2 U1RXIP1 x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. SPI2EIP2 SPI2EIP1 SPI2EIP0 0044 dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  2009-2014 Microchip Technology Inc. TABLE 4-10: File Name INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33FJ32GS606 DEVICES (CONTINUED) SFR Addr Bit 15 IPC23 00D2 — IPC24 00D4 — IPC25 00D6 — AC2IP2 AC2IP1 IPC26 00D8 — — — IPC27 00DA — ADCP1IP2 ADCP1IP1 ADCP1IP0 — IPC28 00DC — ADCP5IP2 ADCP5IP1 ADCP5IP0 — IPC29 00DE — — — — — — — INTTREG 00E0 — — — — ILR3 ILR2 ILR1 Legend: Bit 14 Bit 13 Bit 12 Bit 9 Bit 8 Bit 6 Bit 5 Bit 1 Bit 0 All Resets — — — 4400 Bit 10 PWM2IP2 PWM2IP1 PWM2IP0 — PWM1IP2 PWM1IP1 PWM1IP0 — — PWM6IP2 PWM6IP1 PWM6IP0 — PWM5IP2 PWM5IP1 PWM5IP0 — PWM4IP2 AC2IP0 — — — — — — — — — — — — ADCP0IP2 ADCP0IP1 ADCP0IP0 — ADCP4IP2 ADCP4IP1 ADCP4IP0 — ADCP3IP2 ADCP3IP1 ADCP3IP0 — ADCP2IP2 ADCP2IP1 ADCP2IP0 4444 — — ADCP7IP2 ADCP7IP1 ADCP7IP0 — ADCP6IP2 ADCP6IP1 ADCP6IP0 0004 ILR0 — VECNUM6 VECNUM5 VECNUM4 VECNUM3 VECNUM2 VECNUM1 VECNUM0 0000 x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Bit 7 Bit 2 Bit 11 Bit 4 Bit 3 — — — PWM4IP1 PWM4IP0 — — — — — — — 4000 AC4IP2 AC4IP1 AC4IP0 — AC3IP2 AC3IP1 AC3IP0 0044 — — — — — — — 4400 PWM3IP2 PWM3IP1 PWM3IP0 4444  2009-2014 Microchip Technology Inc. dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 DS7000591F-page 68 TABLE 4-10: File Name SFR Addr TIMERS REGISTER MAP Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets TMR1 0100 Timer1 Register PR1 0102 Period Register 1 T1CON 0104 TMR2 0106 Timer2 Register TMR3HLD 0108 Timer3 Holding Register (for 32-bit timer operations only) xxxx TMR3 010A Timer3 Register 0000 PR2 010C Period Register 2 FFFF PR3 010E Period Register 3 T2CON 0110 TON — TSIDL — — — — — — TGATE TCKPS1 TCKPS0 T32 — TCS — T3CON 0112 TON — TSIDL — — — — — — TGATE TCKPS1 TCKPS0 — — TCS — TMR4 0114 Timer4 Register TMR5HLD 0116 Timer5 Holding Register (for 32-bit timer operations only) xxxx TMR5 0118 Timer5 Register 0000 PR4 011A Period Register 4 FFFF PR5 011C Period Register 5 T4CON 011E TON — TSIDL — — — — — — TGATE TCKPS1 TCKPS0 T32 — TCS — 0000 T5CON 0120 TON — TSIDL — — — — — — TGATE TCKPS1 TCKPS0 — — TCS — 0000 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets ICI1 ICI0 ICOV ICBNE ICM2 ICM1 ICM0 0000 ICI1 ICI0 ICOV ICBNE ICM2 ICM1 ICM0 0000 ICI1 ICI0 ICOV ICBNE ICM2 ICM1 ICM0 0000 ICI1 ICI0 ICOV ICBNE ICM2 ICM1 ICM0 0000 Legend: — TSIDL — — — — — — FFFF TGATE TCKPS1 TCKPS0 — TSYNC TCS — 0000 0000 FFFF 0000 0000 0000 FFFF x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. TABLE 4-12: File Name TON 0000 SFR Addr IC1BUF 0140 IC1CON 0142 IC2BUF 0144 IC2CON 0146 INPUT CAPTURE REGISTER MAP Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 — — ICSIDL — — — — Bit 8 Input 1 Capture Register — ICTMR xxxx Input 2 Capture Register DS7000591F-page 69 — — ICSIDL — — — — — — ICSIDL — — — — — — ICSIDL — — — — — ICTMR IC3BUF 0148 IC3CON 014A IC4BUF 014C IC4CON 014E Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. xxxx Input 3 Capture Register — ICTMR xxxx Input 4 Capture Register — ICTMR xxxx dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  2009-2014 Microchip Technology Inc. TABLE 4-11: File Name SFR Addr OUTPUT COMPARE REGISTER MAP Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 OC1RS 0180 Output Compare 1 Secondary Register OC1R 0182 Output Compare 1 Register OC1CON 0184 OC2RS 0186 Output Compare 2 Secondary Register OC2R 0188 Output Compare 2 Register OC2CON 018A OC3RS 018C Output Compare 3 Secondary Register OC3R 018E Output Compare 3 Register OC3CON 0190 — — — OCSIDL — — OCSIDL — OCSIDL — — — — — — — — — — — — — — — — — — OC4CON 0196 Legend: — — — All Resets — OCFLT OCTSEL OCM2 OCM1 OCM0 0000 — OCFLT OCTSEL OCM2 OCM1 OCM0 0000 xxxx Output Compare 4 Register — Bit 0 xxxx — Output Compare 4 Secondary Register — Bit 1 xxxx 0192 — Bit 2 xxxx — 0194 OCSIDL Bit 3 xxxx OC4R — Bit 4 xxxx — OC4RS — Bit 5 — OCFLT OCTSEL OCM2 OCM1 OCM0 0000 xxxx xxxx — — OCFLT OCTSEL OCM2 OCM1 OCM0 0000 x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. TABLE 4-14: File Name QEI1 REGISTER MAP SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 QEI1CON 01E0 CNTERR — QEISIDL INDX UPDN QEIM2 QEIM1 QEIM0 DFLT1CON 01E2 — — — — — IMV1 Bit 9 IMV0 Bit 8 CEID All Resets Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 SWPAB PCDOUT TQGATE TQCKPS1 TQCKPS0 POSRES TQCS UPDN_SRC 0000 QEOUT QECK2 QECK1 QECK0 — — — — 0000 POS1CNT 01E4 Position Counter 0000 MAX1CNT 01E6 Maximum Count FFFF Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  2009-2014 Microchip Technology Inc. TABLE 4-15: File Name QEI2CON QEI2 REGISTER MAP SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 01F0 CNTERR — QEISIDL INDX UPDN QEIM2 QEIM1 QEIM0 — — — — — DFLT2CON 01F2 IMV1 Bit 9 IMV0 Bit 8 CEID All Resets Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 SWPAB PCDOUT TQGATE TQCKPS1 TQCKPS0 POSRES TQCS UPDN_SRC 0000 QEOUT QECK2 QECK1 QECK0 — — — — 0000 POS2CNT 01F4 Position Counter 0000 MAX2CNT 01F6 Maximum Count FFFF Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 DS7000591F-page 70 TABLE 4-13: File Name HIGH-SPEED PWM REGISTER MAP SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 PTCON 0400 PTEN — PTSIDL SESTAT SEIEN EIPU SYNCPOL SYNCOEN SYNCEN PTCON2 0402 — — — — — — — — — PTPER 0404 SEVTCMP 0406 MDC 040A STCON 040E — — — SESTAT SEIEN EIPU SYNCPOL SYNCOEN SYNCEN STCON2 0410 — — — — — — — — — STPER 0412 Legend: Bit 4 SYNCSRC2 SYNCSRC1 SYNCSRC0 — — — Bit 3 SEVTPS3 Bit 2 Bit 0 All Resets SEVTPS0 0000 Bit 1 SEVTPS2 SEVTPS1 — PCLKDIV 0000 FFF8 SEVTCMP — — — MDC — — — SEVTPS3 SEVTPS2 SEVTPS1 SEVTPS0 0000 — PCLKDIV 0000 FFF8 SSEVTCMP — — — — — 0000 0000 SYNCSRC2 SYNCSRC1 SYNCSRC0 STPER 041A CHPCLKEN CHOPCLK6 CHOPCLK5 CHOPCLK4 CHOPCLK3 CHOPCLK2 CHOPCLK1 CHOPCLK0 — — — 0000 — — — 0000 Bit 0 All Resets x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. TABLE 4-17: File Name Bit 5 PTPER SSEVTCMP 0414 CHOP Bit 6 SFR Addr HIGH-SPEED PWM GENERATOR 1 REGISTER MAP Bit 11 Bit 10 PWMCON1 0420 FLTSTAT CLSTAT TRGSTAT FLTIEN CLIEN TRGIEN ITB MDCS — IOCON1 PMOD1 PMOD0 OVRENH OVRENL OVRDAT1 OVRDAT0 FLTDAT1 FLTDAT0 CLSRC1 CLSRC0 CLPOL CLMOD FLTSRC4 FLTSRC3 FLTSRC1 FLTSRC0 0422 Bit 15 PENH Bit 14 PENL Bit 13 POLH Bit 12 POLL FCLCON1 0424 IFLTMOD CLSRC4 CLSRC3 CLSRC2 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 DTC1 DTC0 DTCP FLTSRC2 Bit 4 Bit 3 Bit 2 Bit 1 MTBS CAM XPRES IUE 0000 CLDAT1 CLDAT0 SWAP OSYNC 0000 FLTPOL FLTMOD1 FLTMOD0 0000 PDC1 0426 PDC1 0000 PHASE1 0428 PHASE1 0000 DTR1 042A — — DTR1 0000 ALTDTR1 042C — — ALTDTR1 0000 SDC1 042E SDC1 SPHASE1 0430 TRIG1 0432 0000 TRGCMP TRGCON1 0434 TRGDIV3 TRGDIV2 TRGDIV1 TRGDIV0 STRIG1 0000 SPHASE1 — — — — — DTM — — — 0000 TRGSTRT5 TRGSTRT4 TRGSTRT3 TRGSTRT2 TRGSTRT1 TRGSTRT0 0000 DS7000591F-page 71 0436 STRGCMP — — — 0000 PWMCAP1 0438 PWMCAP — — — 0000 BPHL BPLH BPLL 0000 — — — 0000 CHOPLEN 0000 LEBCON1 043A LEBDLY1 043C PHR PHF PLR PLF — — — — — — AUXCON1 043E HRPDIS HRDDIS Legend: FLTLEBEN CLLEBEN — — — — LEB BLANKSEL3 BLANKSEL2 BLANKSEL1 BLANKSEL0 x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. — — BCH BCL BPHH CHOPSEL3 CHOPSEL2 CHOPSEL1 CHOPSEL0 CHOPHEN dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  2009-2014 Microchip Technology Inc. TABLE 4-16: File Name SFR Addr HIGH-SPEED PWM GENERATOR 2 REGISTER MAP Bit 15 Bit 14 Bit 13 PWMCON2 0440 FLTSTAT CLSTAT TRGSTAT PENH PENL POLH Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 DTC1 DTC0 Bit 5 Bit 4 Bit 3 FLTIEN CLIEN TRGIEN ITB MDCS DTCP — POLL PMOD1 PMOD0 OVRENH OVRENL OVRDAT1 OVRDAT0 FLTDAT1 FLTDAT0 CLSRC1 CLSRC0 CLPOL CLMOD FLTSRC4 FLTSRC3 FLTSRC2 FLTSRC1 FLTSRC0 Bit 0 All Resets XPRES IUE 0000 SWAP OSYNC 0000 FLTMOD1 FLTMOD0 0000 Bit 2 Bit 1 MTBS CAM CLDAT1 CLDAT0 FLTPOL IOCON2 0442 FCLCON2 0444 IFLTMOD CLSRC4 CLSRC3 CLSRC2 PDC2 0446 PDC2 0000 PHASE2 0448 PHASE2 0000 DTR2 044A — — DTR2 0000 ALTDTR2 044C — — ALTDTR2 0000 SDC2 044E SDC2 SPHASE2 0450 SPHASE2 TRIG2 0452 TRGCON2 0454 TRGDIV3 TRGDIV2 TRGDIV1 TRGDIV0 STRIG2 0456 STRGCMP — — — 0000 PWMCAP2 0458 PWMCAP — — — 0000 BPHL BPLH BPLL 0000 — — — 0000 0000 TRGCMP LEBCON2 045A PHR PHF PLR PLF LEBDLY2 045C — — — — AUXCON2 045E HRPDIS HRDDIS — — Legend: 0000 — FLTLEBEN — CLLEBEN — — — — DTM — — — — LEB BLANKSEL3 BLANKSEL2 BLANKSEL1 BLANKSEL0 x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. — — — — TRGSTRT5 TRGSTRT4 TRGSTRT3 TRGSTRT2 TRGSTRT1 TRGSTRT0 BCH BCL BPHH CHOPSEL3 CHOPSEL2 CHOPSEL1 CHOPSEL0 CHOPHEN CHOPLEN 0000 0000 0000  2009-2014 Microchip Technology Inc. dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 DS7000591F-page 72 TABLE 4-18: File Name SFR Addr HIGH-SPEED PWM GENERATOR 3 REGISTER MAP Bit 15 Bit 14 Bit 13 PWMCON3 0460 FLTSTAT CLSTAT TRGSTAT PENL Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 DTC1 DTC0 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets FLTIEN CLIEN TRGIEN ITB MDCS DTCP — MTBS CAM XPRES IUE 0000 POLH POLL PMOD1 PMOD0 OVRENH OVRENL OVRDAT1 OVRDAT0 FLTDAT1 FLTDAT0 CLDAT1 CLDAT0 SWAP OSYNC 0000 CLSRC3 CLSRC2 CLSRC1 CLSRC0 CLPOL CLMOD FLTSRC4 FLTSRC2 FLTSRC1 FLTSRC0 FLTPOL FLTMOD1 FLTMOD0 0000 IOCON3 0462 FCLCON3 0464 IFLTMOD CLSRC4 PDC3 0466 PDC3 0000 PHASE3 0468 PHASE3 0000 DTR3 046C — — DTR3 0000 ALTDTR3 046C — — ALTDTR3 0000 SDC3 046E SDC3 SPHASE3 0470 SPHASE3 TRIG3 0472 TRGCON3 0474 TRGDIV3 TRGDIV2 TRGDIV1 TRGDIV0 STRIG3 0476 STRGCMP — — — 0000 PWMCAP3 0478 PWMCAP — — — 0000 LEBCON3 047A PHR PHF PLR PLF BPHL BPLH BPLL 0000 LEBDLY3 047C — — — — — — — 0000 AUXCON3 047E HRPDIS HRDDIS — — Legend: PENH Bit 12 FLTSRC3 0000 0000 TRGCMP — FLTLEBEN — CLLEBEN — — — — — DTM — — — LEB BLANKSEL3 BLANKSEL2 BLANKSEL1 BLANKSEL0 x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. — — — — 0000 TRGSTRT5 TRGSTRT4 TRGSTRT3 TRGSTRT2 TRGSTRT1 TRGSTRT0 0000 BCH BCL BPHH CHOPSEL3 CHOPSEL2 CHOPSEL1 CHOPSEL0 CHOPHEN CHOPLEN 0000 DS7000591F-page 73 dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  2009-2014 Microchip Technology Inc. TABLE 4-19: File Name SFR Addr HIGH-SPEED PWM GENERATOR 4 REGISTER MAP Bit 15 PWMCON4 0480 FLTSTAT PENH Bit 14 Bit 13 CLSTAT TRGSTAT PENL Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 DTC1 DTC0 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets FLTIEN CLIEN TRGIEN ITB MDCS DTCP — MTBS CAM XPRES IUE 0000 POLH POLL PMOD1 PMOD0 OVRENH OVRENL OVRDAT1 OVRDAT0 FLTDAT1 FLTDAT0 CLDAT1 CLDAT0 SWAP OSYNC 0000 CLSRC3 CLSRC2 CLSRC1 CLSRC0 CLPOL CLMOD FLTSRC4 FLTSRC3 FLTSRC2 FLTSRC1 FLTSRC0 FLTPOL FLTMOD1 FLTMOD0 0000 IOCON4 0482 FCLCON4 0484 IFLTMOD CLSRC4 PDC4 0486 PDC4 0000 PHASE4 0488 PHASE4 0000 DTR4 048A — — DTR4 0000 ALTDTR4 048A — — ALTDTR4 0000 SDC4 048E SDC4 SPHASE4 0490 SPHASE4 TRIG4 0492 TRGCON4 0494 TRGDIV3 TRGDIV2 TRGDIV1 TRGDIV0 STRIG4 0496 STRGCMP — — — 0000 PWMCAP4 0498 PWMCAP — — — 0000 BPHL BPLH BPLL 0000 — — — 0000 0000 0000 TRGCMP — FLTLEBEN — CLLEBEN — — — — LEBCON4 049A PHR PHF PLR PLF LEBDLY4 049C — — — — AUXCON4 049E HRPDIS HRDDIS — — Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. DTM — — — — LEB BLANKSEL3 BLANKSEL2 BLANKSEL1 BLANKSEL0 — — — — TRGSTRT5 TRGSTRT4 TRGSTRT3 TRGSTRT2 TRGSTRT1 TRGSTRT0 BCH BCL BPHH CHOPSEL3 CHOPSEL2 CHOPSEL1 CHOPSEL0 CHOPHEN CHOPLEN 0000 0000 0000  2009-2014 Microchip Technology Inc. dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 DS7000591F-page 74 TABLE 4-20: File Name SFR Addr HIGH-SPEED PWM GENERATOR 5 REGISTER MAP Bit 15 PWMCON5 04A0 FLTSTAT PENH Bit 14 Bit 13 Bit 12 CLSTAT TRGSTAT FLTIEN PENL POLH POLL Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 DTC1 DTC0 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets CLIEN TRGIEN ITB MDCS DTCP — MTBS CAM XPRES IUE 0000 PMOD1 PMOD0 OVRENH OVRENL OVRDAT1 OVRDAT0 FLTDAT1 FLTDAT0 CLDAT1 CLDAT0 SWAP OSYNC 0000 CLSRC1 CLSRC0 CLPOL CLMOD FLTSRC4 FLTSRC3 FLTSRC2 FLTSRC1 FLTSRC0 FLTPOL FLTMOD1 FLTMOD0 0000 IOCON5 04A2 FCLCON5 04A4 IFLTMOD CLSRC4 CLSRC3 CLSRC2 PDC5 04A6 PDC5 0000 PHASE5 04A8 PHASE5 0000 DTR5 04AA — — DTR5 0000 ALTDTR5 04AA — — ALTDTR5 0000 SDC5 04AE SDC5 SPHASE5 04B0 SPHASE5 TRIG5 04B2 0000 TRGCMP TRGCON5 04B4 TRGDIV3 TRGDIV2 TRGDIV1 TRGDIV0 STRIG5 0000 — — — — — DTM — — — TRGSTRT5 TRGSTRT4 TRGSTRT3 TRGSTRT2 TRGSTRT1 TRGSTRT0 0000 0000 04B6 STRGCMP — — — 0000 PWMCAP5 04B8 PWMCAP — — — 0000 BPHL BPLH BPLL 0000 — — — 0000 LEBCON5 04BA PHR PHF PLR PLF LEBDLY5 04BC — — — — HRDDIS — — AUXCON5 04BE HRPDIS Legend: FLTLEBEN CLLEBEN — — — — LEB BLANKSEL3 BLANKSEL2 BLANKSEL1 BLANKSEL0 x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. — — BCH BCL BPHH CHOPSEL3 CHOPSEL2 CHOPSEL1 CHOPSEL0 CHOPHEN CHOPLEN 0000 DS7000591F-page 75 dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  2009-2014 Microchip Technology Inc. TABLE 4-21: File Name SFR Addr HIGH-SPEED PWM GENERATOR 6 REGISTER MAP Bit 15 PWMCON6 04C0 FLTSTAT PENH Bit 14 Bit 13 CLSTAT TRGSTAT PENL Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 DTC1 DTC0 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets FLTIEN CLIEN TRGIEN ITB MDCS DTCP — MTBS CAM XPRES IUE 0000 POLH POLL PMOD1 PMOD0 OVRENH OVRENL OVRDAT1 OVRDAT0 FLTDAT1 FLTDAT0 CLDAT1 CLDAT0 SWAP OSYNC 0000 CLSRC3 CLSRC2 CLSRC1 CLSRC0 CLPOL CLMOD FLTSRC4 FLTSRC3 FLTSRC2 FLTSRC1 FLTSRC0 FLTPOL FLTMOD1 FLTMOD0 0000 IOCON6 04C2 FCLCON6 04C4 IFLTMOD CLSRC4 PDC6 04C6 PDC6 0000 PHASE6 04C8 PHASE6 0000 DTR6 04CA — — DTR6 0000 ALTDTR6 04CA — — ALTDTR6 0000 SDC6 04CE SDC6 SPHASE6 04D0 SPHASE6 TRIG6 04D2 TRGCON6 04D4 TRGDIV3 TRGDIV2 TRGDIV1 TRGDIV0 STRIG6 04D6 STRGCMP — — — 0000 PWMCAP6 04D8 PWMCAP — — — 0000 BPHL BPLH BPLL 0000 — — — 0000 CHOPLEN 0000 0000 0000 TRGCMP — FLTLEBEN — CLLEBEN — — — — LEBCON6 04DA PHR PHF PLR PLF LEBDLY6 04DC — — — — AUXCON6 04DE HRPDIS HRDDIS — — Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. DTM — — — — LEB BLANKSEL3 BLANKSEL2 BLANKSEL1 BLANKSEL0 — — — — TRGSTRT5 TRGSTRT4 TRGSTRT3 TRGSTRT2 TRGSTRT1 TRGSTRT0 BCH BCL BPHH CHOPSEL3 CHOPSEL2 CHOPSEL1 CHOPSEL0 CHOPHEN 0000 0000  2009-2014 Microchip Technology Inc. dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 DS7000591F-page 76 TABLE 4-22: File Name SFR Addr HIGH-SPEED PWM GENERATOR 7 REGISTER MAP (EXCLUDES dsPIC33FJ32GS406 AND dsPIC33FJ64GS406 DEVICES) Bit 15 PWMCON7 04E0 FLTSTAT PENH Bit 14 Bit 13 CLSTAT TRGSTAT PENL POLH Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 DTC1 DTC0 Bit 5 Bit 4 Bit 3 FLTIEN CLIEN TRGIEN ITB MDCS DTCP — POLL PMOD1 PMOD0 OVRENH OVRENL OVRDAT1 OVRDAT0 FLTDAT1 FLTDAT0 CLSRC1 CLSRC0 CLPOL CLMOD FLTSRC4 FLTSRC3 FLTSRC2 FLTSRC1 FLTSRC0 Bit 0 All Resets XPRES IUE 0000 SWAP OSYNC 0000 FLTMOD1 FLTMOD0 0000 Bit 2 Bit 1 MTBS CAM CLDAT1 CLDAT0 FLTPOL IOCON7 04E2 FCLCON7 04E4 IFLTMOD CLSRC4 PDC7 04E6 PDC7 0000 PHASE7 04E8 PHASE7 0000 DTR7 04EA — — DTR7 0000 ALTDTR7 04EA — — ALTDTR7 0000 SDC7 04EE SDC7 SPHASE7 04F0 SPHASE7 TRIG7 04F2 TRGCON7 04F4 TRGDIV3 TRGDIV2 TRGDIV1 TRGDIV0 STRIG7 04F6 STRGCMP — — — 0000 PWMCAP7 04F8 PWMCAP — — — 0000 BPHL BPLH BPLL 0000 — — — 0000 CHOPLEN 0000 CLSRC3 CLSRC2 0000 0000 TRGCMP — FLTLEBEN — CLLEBEN — — — — LEBCON7 04FA PHR PHF PLR PLF LEBDLY7 04FC — — — — AUXCON7 04FE HRPDIS HRDDIS — — Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. DTM — — — — LEB BLANKSEL3 BLANKSEL2 BLANKSEL1 BLANKSEL0 — — — — TRGSTRT5 TRGSTRT4 TRGSTRT3 TRGSTRT2 TRGSTRT1 TRGSTRT0 BCH BCL BPHH CHOPSEL3 CHOPSEL2 CHOPSEL1 CHOPSEL0 CHOPHEN 0000 0000 DS7000591F-page 77 dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  2009-2014 Microchip Technology Inc. TABLE 4-23: File Name SFR Addr HIGH-SPEED PWM GENERATOR 8 REGISTER MAP (EXCLUDES dsPIC33FJ32GS406 AND dsPIC33FJ64GS406 DEVICES) Bit 15 Bit 14 Bit 13 PWMCON8 0500 FLTSTAT CLSTAT TRGSTAT PENH PENL POLH Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 DTC1 DTC0 Bit 5 Bit 4 Bit 3 FLTIEN CLIEN TRGIEN ITB MDCS DTCP — POLL PMOD1 PMOD0 OVRENH OVRENL OVRDAT1 OVRDAT0 FLTDAT1 FLTDAT0 CLSRC2 CLSRC1 CLSRC0 CLPOL CLMOD FLTSRC4 FLTSRC3 FLTSRC2 FLTSRC1 FLTSRC0 Bit 0 All Resets XPRES IUE 0000 SWAP OSYNC 0000 FLTMOD1 FLTMOD0 0000 Bit 2 Bit 1 MTBS CAM CLDAT1 CLDAT0 FLTPOL IOCON8 0502 FCLCON8 0504 IFLTMOD CLSRC4 CLSRC3 PDC8 0506 PDC8 0000 PHASE8 0508 PHASE8 0000 DTR8 050A — — DTR8 0000 ALTDTR8 050A — — ALTDTR8 0000 SDC8 050E SDC8 SPHASE8 0510 SPHASE8 TRIG8 0512 TRGCON8 0514 TRGDIV3 TRGDIV2 TRGDIV1 TRGDIV0 STRIG8 0516 STRGCMP — — — 0000 PWMCAP8 0518 PWMCAP — — — 0000 BPHL BPLH BPLL 0000 — — — 0000 CHOPLEN 0000 0000 0000 TRGCMP — FLTLEBEN — CLLEBEN — — — — LEBCON8 051A PHR PHF PLR PLF LEBDLY8 051C — — — — AUXCON8 051E HRPDIS HRDDIS — — Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. DTM — — — — LEB BLANKSEL3 BLANKSEL2 BLANKSEL1 BLANKSEL0 — — — — TRGSTRT5 TRGSTRT4 TRGSTRT3 TRGSTRT2 TRGSTRT1 TRGSTRT0 BCH BCL BPHH CHOPSEL3 CHOPSEL2 CHOPSEL1 CHOPSEL0 CHOPHEN 0000 0000  2009-2014 Microchip Technology Inc. dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 DS7000591F-page 78 TABLE 4-24: File Name SFR Addr HIGH-SPEED PWM GENERATOR 9 REGISTER MAP FOR dsPIC33FJ32GS610 AND dsPIC33FJ64GS610 DEVICES Bit 15 PWMCON9 0520 FLTSTAT PENH Bit 14 Bit 13 CLSTAT TRGSTAT PENL Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 DTC1 DTC0 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets FLTIEN CLIEN TRGIEN ITB MDCS DTCP — MTBS CAM XPRES IUE 0000 POLH POLL PMOD1 PMOD0 OVRENH OVRENL OVRDAT1 OVRDAT0 FLTDAT1 FLTDAT0 CLDAT1 CLDAT0 SWAP OSYNC 0000 CLSRC3 CLSRC2 CLSRC1 CLSRC0 CLPOL CLMOD FLTSRC4 FLTSRC3 FLTSRC2 FLTSRC1 FLTSRC0 FLTPOL FLTMOD1 FLTMOD0 0000 IOCON9 0522 FCLCON9 0524 IFLTMOD CLSRC4 PDC9 0526 PDC9 0000 PHASE9 0528 PHASE9 0000 DTR9 052A — — DTR9 0000 ALTDTR9 052A — — ALTDTR9 0000 SDC9 052E SDC9 0000 SPHASE9 0530 SPHASE9 0000 TRIG9 0532 TRGCMP TRGCON9 0534 TRGDIV3 TRGDIV2 TRGDIV1 TRGDIV0 STRIG9 0536 — — — — DTM 0000 — TRGSTRT5 TRGSTRT4 TRGSTRT3 TRGSTRT2 TRGSTRT1 TRGSTRT0 STRGCMP PWMCAP9 0538 0000 PWMCAP LEBCON9 053A PHR PHF PLR PLF FLTLEBEN CLLEBEN — — LEBDLY9 053C — — — — AUXCON9 053E HRPDIS HRDDIS — — Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. — — LEB BLANKSEL3 BLANKSEL2 BLANKSEL1 BLANKSEL0 — 0000 — BCH BCL BPHH — — — 0000 BPHL BPLH BPLL 0000 — — — 0000 CHOPSEL3 CHOPSEL2 CHOPSEL1 CHOPSEL0 CHOPHEN CHOPLEN 0000 DS7000591F-page 79 dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  2009-2014 Microchip Technology Inc. TABLE 4-25: I2C1 REGISTER MAP File Name SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 I2C1RCV 0200 — — — — — — — — I2C1 Receive Register 0000 I2C1TRN 0202 — — — — — — — — I2C1 Transmit Register 00FF I2C1BRG 0204 — — — — — — — I2C1CON 0206 I2CEN — I2CSIDL SCLREL IPMIEN A10M DISSLW SMEN GCEN STREN I2C1STAT 0208 ACKSTAT TRSTAT GCSTAT ADD10 IWCOL I2COV I2C1ADD Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Baud Rate Generator Register All Resets 0000 ACKDT ACKEN RCEN PEN RSEN SEN 1000 D_A P S R_W RBF TBF 0000 — — — BCL 020A — — — — — — I2C1 Address Register 0000 I2C1MSK 020C — — — — — — I2C1 Address Mask Register 0000 Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. TABLE 4-27: File Name I2C2 REGISTER MAP SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 I2C2RCV 0210 — — — — — — — — I2C2 Receive Register I2C2TRN 0212 — — — — — — — — I2C2 Transmit Register I2C2BRG 0214 — — — — — — — I2C2CON 0216 I2CEN — Bit 2 Bit 1 Bit 0 All Resets 0000 00FF Baud Rate Generator Register 0000 I2CSIDL SCLREL IPMIEN A10M DISSLW SMEN GCEN STREN ACKDT ACKEN RCEN PEN RSEN SEN I2C2STAT 0218 ACKSTAT TRSTAT — — — BCL GCSTAT ADD10 IWCOL I2COV D_A P S R_W RBF TBF I2C2ADD 1000 0000 021A — — — — — — I2C2 Address Register 0000 I2C2MSK 021C — — — — — — I2C2 Address Mask Register 0000 Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  2009-2014 Microchip Technology Inc. dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 DS7000591F-page 80 TABLE 4-26: File Name SFR Addr. UART1 REGISTER MAP Bit 15 Bit 14 Bit 13 Bit 12 — USIDL IREN Bit 11 Bit 10 RTSMD — Bit 9 Bit 8 UEN1 UEN0 UTXBF TRMT Bit 7 Bit 6 WAKE LPBACK Bit 0 All Resets PDSEL0 STSEL 0000 OERR URXDA 0110 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 ABAUD URXINV BRGH PDSEL1 ADDEN RIDLE PERR FERR U1MODE 0220 UARTEN U1STA 0222 UTXISEL1 UTXINV UTXISEL0 U1TXREG 0224 — — — — — — — UART1 Transmit Register xxxx U1RXREG 0226 — — — — — — — UART1 Receive Register 0000 U1BRG 0228 Legend: UTXBRK UTXEN Baud Rate Generator Prescaler 0000 SFR Addr UART2 REGISTER MAP Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 U2MODE 0230 UARTEN — USIDL IREN RTSMD — UEN1 UEN0 U2STA 0232 UTXISEL1 UTXINV UTXISEL0 — UTXBRK UTXEN UTXBF TRMT U2TXREG 0234 — — — — — — — U2RXREG 0236 — — — — — — — U2BRG 0238 Legend: URXISEL1 URXISEL0 x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. TABLE 4-29: File Name — Bit 7 Bit 6 WAKE LPBACK URXISEL1 URXISEL0 Baud Rate Generator Prescaler x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Bit 0 All Resets PDSEL0 STSEL 0000 OERR URXDA Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 ABAUD URXINV BRGH PDSEL1 ADDEN RIDLE PERR FERR 0110 UART2 Transmit Register xxxx UART2 Receive Register 0000 0000 DS7000591F-page 81 dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  2009-2014 Microchip Technology Inc. TABLE 4-28: File Name SPI1 REGISTER MAP SFR Addr. Bit 15 Bit 14 Bit 13 SPI1STAT 0240 SPIEN — SPISIDL SPI1CON1 0242 — — — SPI1CON2 0244 FRMEN SPIFSD FRMPOL SPI1BUF 0248 Legend: — — — Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets — — — — SPIROV — — — — SPITBF SPIRBF 0000 MODE16 SMP CKE SSEN CKP MSTEN SPRE2 SPRE1 SPRE0 PPRE1 PPRE0 0000 — — — — — — — — FRMDLY — 0000 — 0000 SPI2 REGISTER MAP Bit 15 Bit 14 Bit 13 SPI2STAT 0260 SPIEN — SPISIDL SPI2CON1 0262 — — — SPI2CON2 0264 FRMEN SPIFSD FRMPOL Legend: — DISSCK DISSDO Bit 10 SPI1 Transmit and Receive Buffer Register SFR Addr. SPI2BUF Bit 11 x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. TABLE 4-31: File Name Bit 12 0268 Bit 12 Bit 11 Bit 10 — — — DISSCK DISSDO MODE16 — — — Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets 0000 — — — SPIROV — — — — SPITBF SPIRBF SMP CKE SSEN CKP MSTEN SPRE2 SPRE1 SPRE0 PPRE1 PPRE0 0000 — — — — — — — — FRMDLY — 0000 SPI2 Transmit and Receive Buffer Register x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. 0000  2009-2014 Microchip Technology Inc. dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 DS7000591F-page 82 TABLE 4-30: File Name HIGH-SPEED 10-BIT ADC REGISTER MAP FOR dsPIC33FJ32GS610 AND dsPIC33FJ64GS610 DEVICES ONLY SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 ADCON 0300 ADON — ADSIDL SLOWCLK — GSWTRG — FORM EIE ADPCFG 0302 ADPCFG2 0304 — — — — — — — — ADSTAT 0306 — — — P12RDY P11RDY P10RDY P9RDY P8RDY ADBASE 0308 ADCPC0 030A IRQEN1 PEND1 SWTRG1 TRGSRC14 TRGSRC13 TRGSRC12 TRGSRC11 TRGSRC10 IRQEN0 PEND0 SWTRG0 TRGSRC04 TRGSRC03 TRGSRC02 ADCPC1 030C IRQEN3 PEND3 SWTRG3 TRGSRC34 TRGSRC33 TRGSRC32 TRGSRC31 TRGSRC30 IRQEN2 PEND2 SWTRG2 TRGSRC24 TRGSRC23 ADCPC2 030E IRQEN5 PEND5 SWTRG5 TRGSRC54 TRGSRC53 TRGSRC52 TRGSRC51 TRGSRC50 IRQEN4 PEND4 SWTRG4 TRGSRC44 ADCPC3 0310 IRQEN7 PEND7 SWTRG7 TRGSRC74 TRGSRC73 TRGSRC72 TRGSRC71 TRGSRC70 IRQEN6 PEND6 SWTRG6 ADCPC4 0312 IRQEN9 PEND9 SWTRG9 TRGSRC94 TRGSRC93 TRGSRC92 TRGSRC94 TRGSRC90 IRQEN8 PEND8 SWTRG8 Bit 6 Bit 5 Bit 4 ORDER SEQSAMP ASYNCSAMP Bit 3 Bit 2 Bit 1 Bit 0 All Resets — ADCS2 ADCS1 ADCS0 0003 PCFG 0000 PCFG P6RDY P5RDY P4RDY P3RDY 0000 DS7000591F-page 83 P0RDY 0000 — 0000 TRGSRC01 TRGSRC00 0000 TRGSRC22 TRGSRC21 TRGSRC20 0000 TRGSRC43 TRGSRC42 TRGSRC41 TRGSRC40 0000 TRGSRC64 TRGSRC63 TRGSRC62 TRGSRC61 TRGSRC640 0000 TRGSRC84 TRGSRC83 TRGSRC82 TRGSRC81 TRGSRC80 0000 ADCPC5 0314 IRQEN11 PEND11 SWTRG11 TRGSRC114 TRGSRC113 TRGSRC112 TRGSRC111 TRGSRC110 IRQEN10 PEND10 SWTRG10 TRGSRC104 TRGSRC103 TRGSRC102 TRGSRC101 TRGSRC100 0000 ADCPC6 0316 0000 ADCBUF0 0340 ADC Data Buffer 0 xxxx ADCBUF1 0342 ADC Data Buffer 1 xxxx ADCBUF2 0344 ADC Data Buffer 2 xxxx ADCBUF3 0346 ADC Data Buffer 3 xxxx ADCBUF4 0348 ADC Data Buffer 4 xxxx ADCBUF5 034A ADC Data Buffer 5 xxxx ADCBUF6 034C ADC Data Buffer 6 xxxx ADCBUF7 034E ADC Data Buffer 7 xxxx ADCBUF8 0350 ADC Data Buffer 8 xxxx ADCBUF9 0352 ADC Data Buffer 9 xxxx ADCBUF10 0354 ADC Data Buffer 10 xxxx ADCBUF11 0356 ADC Data Buffer 11 xxxx ADCBUF12 0358 ADC Data Buffer 12 xxxx ADCBUF13 035A ADC Data Buffer 13 xxxx ADCBUF14 035C ADC Data Buffer 14 xxxx ADCBUF15 035E ADC Data Buffer 15 xxxx ADCBUF16 0360 ADC Data Buffer 16 xxxx ADCBUF17 0362 ADC Data Buffer 17 xxxx ADCBUF18 0364 ADC Data Buffer 18 xxxx ADCBUF19 0366 ADC Data Buffer 19 xxxx ADCBUF20 0368 ADC Data Buffer 20 xxxx ADCBUF21 036A ADC Data Buffer 21 xxxx Legend: P7RDY P2RDY P1RDY ADBASE — — — — — — — x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. — IRQEN12 PEND12 SWTRG12 TRGSRC124 TRGSRC123 TRGSRC122 TRGSRC121 TRGSRC120 dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  2009-2014 Microchip Technology Inc. TABLE 4-32: File Name SFR Addr HIGH-SPEED 10-BIT ADC REGISTER MAP FOR dsPIC33FJ32GS610 AND dsPIC33FJ64GS610 DEVICES ONLY (CONTINUED) Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets ADCBUF22 036C ADC Data Buffer 22 xxxx ADCBUF23 036E ADC Data Buffer 23 xxxx ADCBUF24 0370 ADC Data Buffer 24 xxxx ADCBUF25 0372 ADC Data Buffer 25 xxxx Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  2009-2014 Microchip Technology Inc. dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 DS7000591F-page 84 TABLE 4-32: File Name HIGH-SPEED 10-BIT ADC REGISTER MAP FOR dsPIC33FJ32GS608 AND dsPIC33FJ64GS608 DEVICES DS7000591F-page 85 SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 ADCON 0300 ADON — ADSIDL SLOWCLK — GSWTRG — FORM ADPCFG 0302 ADPCFG2 0304 — — — — — — — — — — ADSTAT 0306 — — — P12RDY — — — P8RDY P7RDY P6RDY ADBASE 0308 ADCPC0 030A IRQEN1 PEND1 SWTRG1 TRGSRC14 TRGSRC13 TRGSRC12 TRGSRC11 TRGSRC10 IRQEN0 PEND0 SWTRG0 TRGSRC04 TRGSRC03 TRGSRC02 ADCPC1 030C IRQEN3 PEND3 SWTRG3 TRGSRC34 TRGSRC33 TRGSRC32 TRGSRC31 TRGSRC30 IRQEN2 PEND2 SWTRG2 TRGSRC24 TRGSRC23 ADCPC2 030E IRQEN5 PEND5 SWTRG5 TRGSRC54 TRGSRC53 TRGSRC52 TRGSRC51 TRGSRC50 IRQEN4 PEND4 SWTRG4 TRGSRC44 ADCPC3 0310 IRQEN7 PEND7 SWTRG7 TRGSRC74 TRGSRC73 TRGSRC72 TRGSRC71 TRGSRC70 IRQEN6 PEND6 SWTRG6 ADCPC4 0312 — — — — — — — — IRQEN8 PEND8 ADCPC6 0316 — — — — — — — — ADCBUF0 0340 ADC Data Buffer 0 xxxx ADCBUF1 0342 ADC Data Buffer 1 xxxx ADCBUF2 0344 ADC Data Buffer 2 xxxx ADCBUF3 0346 ADC Data Buffer 3 xxxx ADCBUF4 0348 ADC Data Buffer 4 xxxx ADCBUF5 034A ADC Data Buffer 5 xxxx ADCBUF6 034C ADC Data Buffer 6 xxxx ADCBUF7 034E ADC Data Buffer 7 xxxx ADCBUF8 0350 ADC Data Buffer 8 xxxx ADCBUF9 0352 ADC Data Buffer 9 xxxx ADCBUF10 0354 ADC Data Buffer 10 xxxx ADCBUF11 0356 ADC Data Buffer 11 xxxx ADCBUF12 0358 ADC Data Buffer 12 xxxx ADCBUF13 035A ADC Data Buffer 13 xxxx ADCBUF14 035C ADC Data Buffer 14 xxxx ADCBUF15 035E ADC Data Buffer 15 xxxx ADCBUF16 0360 ADC Data Buffer 16 xxxx ADCBUF17 0362 ADC Data Buffer 17 xxxx ADCBUF24 0370 ADC Data Buffer 24 xxxx ADCBUF25 0372 ADC Data Buffer 25 xxxx Legend: Bit 7 EIE Bit 6 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets ASYNCSAMP — ADCS2 ADCS1 ADCS0 0003 — — — — P5RDY P4RDY P3RDY P2RDY Bit 5 ORDER SEQSAMP PCFG 0000 PCFG P1RDY 0000 — 0000 TRGSRC01 TRGSRC00 0000 TRGSRC22 TRGSRC21 TRGSRC20 0000 TRGSRC43 TRGSRC42 TRGSRC41 TRGSRC40 0000 TRGSRC64 TRGSRC63 TRGSRC62 TRGSRC61 TRGSRC640 0000 SWTRG8 TRGSRC84 TRGSRC83 TRGSRC82 TRGSRC81 TRGSRC80 0000 IRQEN12 PEND12 SWTRG12 TRGSRC124 TRGSRC123 TRGSRC122 TRGSRC121 TRGSRC120 0000 ADBASE x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. 0000 P0RDY dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  2009-2014 Microchip Technology Inc. TABLE 4-33: File Name HIGH-SPEED 10-BIT ADC REGISTER MAP FOR dsPIC33FJ32GS606 AND dsPIC33FJ64GS606 DEVICES  2009-2014 Microchip Technology Inc. SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 ADCON 0300 ADON — ADSIDL SLOWCLK — GSWTRG — FORM ADPCFG 0302 ADSTAT 0306 ADBASE 0308 ADCPC0 030A IRQEN1 PEND1 SWTRG1 TRGSRC14 TRGSRC13 TRGSRC12 TRGSRC11 TRGSRC10 IRQEN0 PEND0 SWTRG0 TRGSRC04 TRGSRC03 TRGSRC02 ADCPC1 030C IRQEN3 PEND3 SWTRG3 TRGSRC34 TRGSRC33 TRGSRC32 TRGSRC31 TRGSRC30 IRQEN2 PEND2 SWTRG2 TRGSRC24 TRGSRC23 ADCPC2 030E IRQEN5 PEND5 SWTRG5 TRGSRC54 TRGSRC53 TRGSRC52 TRGSRC51 TRGSRC50 IRQEN4 PEND4 SWTRG4 TRGSRC44 ADCPC3 0310 IRQEN7 PEND7 SWTRG7 TRGSRC74 TRGSRC73 TRGSRC72 TRGSRC71 TRGSRC70 IRQEN6 PEND6 SWTRG6 TRGSRC64 ADCPC6 0316 — — IRQEN12 PEND12 SWTRG12 ADCBUF0 0340 ADC Data Buffer 0 xxxx ADCBUF1 0342 ADC Data Buffer 1 xxxx ADCBUF2 0344 ADC Data Buffer 2 xxxx ADCBUF3 0346 ADC Data Buffer 3 xxxx ADCBUF4 0348 ADC Data Buffer 4 xxxx ADCBUF5 034A ADC Data Buffer 5 xxxx ADCBUF6 034C ADC Data Buffer 6 xxxx ADCBUF7 034E ADC Data Buffer 7 xxxx ADCBUF8 0350 ADC Data Buffer 8 xxxx ADCBUF9 0352 ADC Data Buffer 9 xxxx ADCBUF10 0354 ADC Data Buffer 10 xxxx ADCBUF11 0356 ADC Data Buffer 11 xxxx ADCBUF12 0358 ADC Data Buffer 12 xxxx ADCBUF13 035A ADC Data Buffer 13 xxxx ADCBUF14 035C ADC Data Buffer 14 xxxx ADCBUF15 035E ADC Data Buffer 15 xxxx ADCBUF24 0370 ADC Data Buffer 24 xxxx ADCBUF25 0372 ADC Data Buffer 25 xxxx Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Bit 7 Bit 6 EIE ORDER Bit 5 Bit 3 Bit 2 Bit 1 Bit 0 All Resets — ADCS2 ADCS1 ADCS0 0003 P3RDY P2RDY P1RDY P0RDY 0000 — 0000 TRGSRC01 TRGSRC00 0000 TRGSRC22 TRGSRC21 TRGSRC20 0000 TRGSRC43 TRGSRC42 TRGSRC41 TRGSRC40 0000 TRGSRC63 TRGSRC62 TRGSRC61 TRGSRC640 0000 TRGSRC124 TRGSRC123 TRGSRC122 TRGSRC121 TRGSRC120 0000 Bit 4 SEQSAMP ASYNCSAMP PCFG — — — P12RDY — — — — P7RDY 0000 P6RDY P5RDY P4RDY ADBASE — — — — — — dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 DS7000591F-page 86 TABLE 4-34: File Name HIGH-SPEED 10-BIT ADC REGISTER MAP FOR dsPIC33FJ32GS406 AND dsPIC33FJ64GS406 DEVICES SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 ADCON 0300 ADON — ADSIDL SLOWCLK — GSWTRG — FORM ADPCFG 0302 ADSTAT 0306 ADBASE 0308 ADCPC0 030A IRQEN1 PEND1 SWTRG1 TRGSRC14 TRGSRC13 TRGSRC12 TRGSRC11 TRGSRC10 IRQEN0 PEND0 SWTRG0 TRGSRC04 TRGSRC03 TRGSRC02 ADCPC1 030C IRQEN3 PEND3 SWTRG3 TRGSRC34 TRGSRC33 TRGSRC32 TRGSRC31 TRGSRC30 IRQEN2 PEND2 SWTRG2 TRGSRC24 ADCPC2 030E IRQEN5 PEND5 SWTRG5 TRGSRC54 TRGSRC53 TRGSRC52 TRGSRC51 TRGSRC50 IRQEN4 PEND4 SWTRG4 ADCPC3 0310 IRQEN7 PEND7 SWTRG7 TRGSRC74 TRGSRC73 TRGSRC72 TRGSRC71 TRGSRC70 IRQEN6 PEND6 SWTRG6 ADCBUF0 0340 ADC Data Buffer 0 xxxx ADCBUF1 0342 ADC Data Buffer 1 xxxx ADCBUF2 0344 ADC Data Buffer 2 xxxx ADCBUF3 0346 ADC Data Buffer 3 xxxx ADCBUF4 0348 ADC Data Buffer 4 xxxx ADCBUF5 034A ADC Data Buffer 5 xxxx ADCBUF6 034C ADC Data Buffer 6 xxxx ADCBUF7 034E ADC Data Buffer 7 xxxx ADCBUF8 0350 ADC Data Buffer 8 xxxx ADCBUF9 0352 ADC Data Buffer 9 xxxx ADCBUF10 0354 ADC Data Buffer 10 xxxx ADCBUF11 0356 ADC Data Buffer 11 xxxx ADCBUF12 0358 ADC Data Buffer 12 xxxx ADCBUF13 035A ADC Data Buffer 13 xxxx ADCBUF14 035C ADC Data Buffer 14 xxxx ADCBUF15 035E ADC Data Buffer 15 xxxx Legend: Bit 7 EIE Bit 6 Bit 5 Bit 3 Bit 2 Bit 1 Bit 0 All Resets — ADCS2 ADCS1 ADCS0 0003 P3RDY P2RDY P1RDY P0RDY 0000 — 0000 TRGSRC01 TRGSRC00 0000 TRGSRC23 TRGSRC22 TRGSRC21 TRGSRC20 0000 TRGSRC44 TRGSRC43 TRGSRC42 TRGSRC41 TRGSRC40 0000 TRGSRC64 TRGSRC63 TRGSRC62 TRGSRC61 TRGSRC640 0000 Bit 4 ORDER SEQSAMP ASYNCSAMP PCFG — — — P12RDY — — — — P7RDY 0000 P6RDY P5RDY P4RDY ADBASE x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. DS7000591F-page 87 dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  2009-2014 Microchip Technology Inc. TABLE 4-35: File Name SFR Addr DMA REGISTER MAP Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 DMA0CON 0380 CHEN SIZE DIR HALF NULLW — — — DMA0REQ 0382 FORCE — — — — — — — Bit 4 Bit 3 Bit 2 — — AMODE1 AMODE0 — — — IRQSEL6 IRQSEL5 IRQSEL4 IRQSEL3 IRQSEL2 Bit 0 All Resets MODE1 MODE0 0000 IRQSEL1 IRQSEL0 007F Bit 1 DMA0STA 0384 STA 0000 DMA0STB 0386 STB 0000 DMA0PAD 0388 PAD 0000 DMA0CNT 038A — — — — — — DMA1CON 038C CHEN SIZE DIR HALF NULLW — — — — — AMODE1 AMODE0 — — MODE1 MODE0 0000 — — — — — — — — IRQSEL6 IRQSEL5 IRQSEL4 IRQSEL3 IRQSEL2 IRQSEL1 IRQSEL0 007F DMA1REQ 038E FORCE CNT 0000 DMA1STA 0390 STA 0000 DMA1STB 0392 STB 0000 DMA1PAD 0394 PAD DMA1CNT 0396 DMA2CON 0398 0000 — — — — — — CHEN SIZE DIR HALF NULLW — — — — — AMODE1 AMODE0 — — MODE1 MODE0 0000 — — — — — — — — IRQSEL6 IRQSEL5 IRQSEL4 IRQSEL3 IRQSEL2 IRQSEL1 IRQSEL0 007F DMA2REQ 039A FORCE CNT 0000 DMA2STA 039C STA 0000 DMA2STB 039E STB 0000 DMA2PAD 03A0 PAD 0000 DMA2CNT 03A2 — — — — — — DMA3CON 03A4 CHEN SIZE DIR HALF NULLW — — — — — AMODE1 AMODE0 — — MODE1 MODE0 0000 — — — — — — — — IRQSEL6 IRQSEL5 IRQSEL4 IRQSEL3 IRQSEL2 IRQSEL1 IRQSEL0 007F DMA3REQ 03A6 FORCE DMA3STA CNT 0000 03A8 STA 0000 DMA3STB 03AA STB 0000 DMA3PAD 03AC PAD  2009-2014 Microchip Technology Inc. — — — — DMACS0 03E0 — — — — PWCOL3 PWCOL2 PWCOL1 PWCOL0 — — — — XWCOL3 XWCOL2 XWCOL1 XWCOL0 0000 DMACS1 03E2 — — — — LSTCH3 — — — — PPST3 PPST2 PPST1 PPST0 0F00 DSADR 03E4 Legend: — 0000 DMA3CNT 03AE — LSTCH2 CNT LSTCH1 LSTCH0 DSADR x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. 0000 0000 dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 DS7000591F-page 88 TABLE 4-36: ECAN1 REGISTER MAP WHEN WIN (C1CTRL1) = 0 OR 1 Bit 2 Bit 1 Bit 0 All Resets — — WIN 0480 ICODE2 ICODE1 ICODE0 0000 FSA3 FSA2 FSA1 FSA0 0000 FNRB4 FNRB3 FNRB2 FNRB1 FNRB0 0000 ERRIF — FIFOIF RBOVIF RBIF TBIF 0000 ERRIE — FIFOIE RBOVIE RBIE TBIE 0000 File Name SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 C1CTRL1 0600 — — CSIDL ABAT — REQOP2 REQOP1 REQOP0 C1CTRL2 0602 — — — — — — — — — — — C1VEC 0604 — — — FILHIT4 FILHIT3 FILHIT2 FILHIT1 FILHIT0 — ICODE6 ICODE5 ICODE4 ICODE3 C1FCTRL 0606 DMABS2 DMABS1 DMABS0 — — — — — — — — FSA4 C1FIFO 0608 — — FBP5 FBP4 FBP3 FBP2 FBP1 FBP0 — — FNRB5 C1INTF 060A — — TXBO TXBP RXBP TXWAR RXWAR EWARN IVRIF WAKIF C1INTE 060C — — — — — — — — IVRIE WAKIE C1EC 060E TERRCNT7 TERRCNT6 TERRCNT5 TERRCNT4 TERRCNT3 TERRCNT2 TERRCNT1 TERRCNT0 RERRCNT7 RERRCNT6 RERRCNT5 RERRCNT4 RERRCNT3 RERRCNT2 RERRCNT1 RERRCNT0 0000 C1CFG1 0610 — — — — — — — C1CFG2 0612 — WAKFIL — — — SEG2PH2 SEG2PH1 C1FEN1 0614 — Bit 7 Bit 6 Bit 5 OPMODE2 OPMODE1 OPMODE0 SJW1 SEG2PH0 SEG2PHTS Bit 4 Bit 3 — CANCAP DNCNT 0000 SJW0 BRP5 BRP4 BRP3 BRP2 BRP1 BRP0 0000 SAM SEG1PH2 SEG1PH1 SEG1PH0 PRSEG2 PRSEG1 PRSEG0 0000 FLTEN FFFF C1FMSKSEL1 0618 F7MSK1 F7MSK0 F6MSK1 F6MSK0 F5MSK1 F5MSK0 F4MSK1 F4MSK0 F3MSK1 F3MSK0 F2MSK1 F2MSK0 F1MSK1 F1MSK0 F0MSK1 F0MSK0 0000 C1FMSKSEL2 061A F15MSK1 F15MSK0 F14MSK1 F14MSK0 F13MSK1 F13MSK0 F12MSK1 F12MSK1 F11MSK1 F11MSK0 F10MSK1 F10MSK0 F9MSK1 F9MSK0 F8MSK1 F8MSK0 0000 Bit 7 Bit 6 Bit 5 Bit 2 Bit 1 Bit 0 All Resets Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. TABLE 4-38: File Name SFR Addr ECAN1 REGISTER MAP WHEN WIN (C1CTRL1) = 0 Bit 15 0600061E Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 4 Bit 3 See definition when WIN = x C1RXFUL1 0620 RXFUL 0000 C1RXFUL2 0622 RXFUL 0000 C1RXOVF1 0628 RXOVF 0000 C1RXOVF2 062A RXOVF 0000 C1TR01CON 0630 TXEN1 TXABT1 TXLARB1 TXERR1 TXREQ1 RTREN1 TX1PRI1 TX1PRI0 TXEN0 TXABT0 TXLARB0 TXERR0 TXREQ0 RTREN0 TX0PRI1 TX0PRI0 0000 C1TR23CON 0632 TXEN3 TXABT3 TXLARB3 TXERR3 TXREQ3 RTREN3 TX3PRI1 TX3PRI0 TXEN2 TXABT2 TXLARB2 TXERR2 TXREQ2 RTREN2 TX2PRI1 TX2PRI0 0000 C1TR45CON 0634 TXEN5 TXABT5 TXLARB5 TXERR5 TXREQ5 RTREN5 TX5PRI1 TX5PRI0 TXEN4 TXABT4 TXLARB4 TXERR4 TXREQ4 RTREN4 TX4PRI1 TX4PRI0 0000 C1TR67CON 0636 TXEN7 TXABT7 TXLARB7 TXERR7 TXREQ7 RTREN7 TX7PRI1 TX7PRI0 TXEN6 TXABT6 TXLARB6 TXERR6 TXREQ6 RTREN6 TX6PRI1 TX6PRI0 0000 DS7000591F-page 89 C1RXD 0640 ECAN1 Received Data Word Register xxxx C1TXD 0642 ECAN1 Transmit Data Word Register xxxx Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  2009-2014 Microchip Technology Inc. TABLE 4-37: File Name SFR Addr ECAN1 REGISTER MAP WHEN WIN (C1CTRL1) = 1 Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 0600061E Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets See definition when WIN = x C1BUFPNT1 0620 F3BP3 F3BP2 F3BP1 F3BP0 F2BP3 F2BP2 F2BP1 F2BP0 F1BP3 F1BP2 F1BP1 F1BP0 F0BP3 F0BP2 F0BP1 F0BP0 0000 C1BUFPNT2 0622 F7BP3 F7BP2 F7BP1 F7BP0 F6BP3 F6BP2 F6BP1 F6BP0 F5BP3 F5BP2 F5BP1 F5BP0 F4BP3 F4BP2 F4BP1 F4BP0 0000  2009-2014 Microchip Technology Inc. C1BUFPNT3 0624 F11BP3 F11BP2 F11BP1 F11BP0 F10BP3 F10BP2 F10BP1 F10BP0 F9BP3 F9BP2 F9BP1 F9BP0 F8BP3 F8BP2 F8BP1 F8BP0 0000 C1BUFPNT4 0626 F15BP3 F15BP2 F15BP1 F15BP0 F14BP3 F14BP2 F14BP1 F14BP0 F13BP3 F13BP2 F13BP1 F13BP0 F12BP3 F12BP2 F12BP1 F12BP0 0000 C1RXM0SID 0630 SID10 SID9 SID8 SID7 SID6 SID5 SID4 SID3 SID2 SID1 SID0 — MIDE — EID17 EID16 xxxx C1RXM0EID 0632 C1RXM1SID 0634 SID1 SID0 — MIDE — EID17 EID16 xxxx C1RXM1EID 0636 C1RXM2SID 0638 SID1 SID0 — MIDE — EID17 EID16 xxxx C1RXM2EID 063A C1RXF0SID 0640 SID1 SID0 — EXIDE — EID17 EID16 xxxx C1RXF0EID 0642 C1RXF1SID 0644 SID1 SID0 — EXIDE — EID17 EID16 xxxx C1RXF1EID 0646 C1RXF2SID 0648 SID1 SID0 — EXIDE — EID17 EID16 xxxx SID1 SID0 — EXIDE — EID17 EID16 xxxx SID1 SID0 — EXIDE — EID17 EID16 xxxx SID1 SID0 — EXIDE — EID17 EID16 xxxx SID1 SID0 — EXIDE — EID17 EID16 xxxx SID1 SID0 — EXIDE — EID17 EID16 xxxx SID1 SID0 — EXIDE — EID17 EID16 xxxx SID1 SID0 — EXIDE — EID17 EID16 xxxx SID1 SID0 — EXIDE — EID17 EID16 xxxx SID1 SID0 — EXIDE — EID17 EID16 xxxx C1RXF2EID 064A C1RXF3SID 064C C1RXF3EID 064E C1RXF4SID 0650 C1RXF4EID 0652 C1RXF5SID 0654 C1RXF5EID 0656 C1RXF6SID 0658 C1RXF6EID 065A C1RXF7SID 065C C1RXF7EID 065E C1RXF8SID 0660 C1RXF8EID 0662 C1RXF9SID 0664 C1RXF9EID 0666 C1RXF10SID 0668 C1RXF10EID 066A C1RXF11SID 066C Legend: EID SID10 SID9 SID8 SID7 SID6 SID5 SID4 SID3 SID10 SID9 SID8 SID7 SID6 SID5 SID4 SID3 SID10 SID9 SID8 SID7 SID6 SID5 SID4 SID3 SID10 SID9 SID8 SID7 SID6 SID5 SID4 SID3 SID10 SID9 SID8 SID7 SID6 SID5 SID4 SID3 SID10 SID9 SID8 SID7 SID6 SID5 SID4 SID3 SID10 SID9 SID8 SID7 SID6 SID5 SID4 SID3 SID10 SID9 SID8 SID7 SID6 SID5 SID4 SID3 SID10 SID9 SID8 SID7 SID6 SID5 SID4 SID3 SID10 SID9 SID8 SID7 SID6 SID5 SID4 SID3 SID10 SID9 SID8 SID7 SID6 SID5 SID4 SID3 SID10 SID9 SID8 SID7 SID6 SID5 SID4 SID3 SID10 SID9 SID8 SID7 SID6 SID5 SID4 SID3 SID10 SID9 SID8 SID7 SID6 SID5 SID4 SID3 SID2 xxxx EID SID2 xxxx EID SID2 xxxx EID SID2 xxxx EID SID2 xxxx EID SID2 xxxx EID SID2 xxxx EID SID2 xxxx EID SID2 xxxx EID SID2 xxxx EID SID2 xxxx EID SID2 xxxx EID SID2 xxxx EID SID2 x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. xxxx dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 DS7000591F-page 90 TABLE 4-39: File Name SFR Addr C1RXF11EID 066E C1RXF12SID 0670 C1RXF12EID 0672 C1RXF13SID 0674 C1RXF13EID 0676 C1RXF14SID 0678 C1RXF14EID 067A C1RXF15SID 067C C1RXF15EID 067E Legend: ECAN1 REGISTER MAP WHEN WIN (C1CTRL1) = 1 (CONTINUED) Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 SID10 SID9 SID8 SID7 SID6 SID5 SID4 SID3 SID10 SID9 SID8 SID7 SID6 SID5 SID4 SID3 SID10 SID9 SID8 SID7 SID6 SID5 SID4 SID3 SID10 SID9 SID8 SID7 SID6 SID5 SID4 SID3 Bit 7 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets SID1 SID0 — EXIDE — EID17 EID16 xxxx SID1 SID0 — EXIDE — EID17 EID16 xxxx SID1 SID0 — EXIDE — EID17 EID16 xxxx SID1 SID0 — EXIDE — EID17 EID16 xxxx EID SID2 xxxx EID SID2 xxxx EID SID2 xxxx EID SID2 xxxx EID xxxx ANALOG COMPARATOR CONTROL REGISTER MAP File Name SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 — DACOE CMPCON1 0540 CMPON — CMPSIDL — — — CMPDAC1 0542 — — - — — — CMPCON2 0544 CMPON — CMPSIDL — — — CMPDAC2 0546 — — - — — — CMPCON3 0548 CMPON — CMPSIDL — — — CMPDAC3 054A — — - — — — CMPCON4 054C CMPON — CMPSIDL — — — 054E — — — — — — Legend: Bit 5 x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. TABLE 4-40: CMPDAC4 Bit 6 Bit 7 Bit 6 INSEL1 INSEL0 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets EXTREF — CMPSTAT — CMPPOL RANGE 0000 CMPSTAT — CMPPOL RANGE 0000 CMPSTAT — CMPPOL RANGE 0000 CMPSTAT — CMPPOL RANGE 0000 CMREF — DACOE INSEL1 INSEL0 EXTREF — DACOE INSEL1 INSEL0 EXTREF — DACOE INSEL1 INSEL0 EXTREF — 0000 CMREF — 0000 CMREF x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. — CMREF 0000 0000 DS7000591F-page 91 dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  2009-2014 Microchip Technology Inc. TABLE 4-39: File Name SFR Addr TRISA 02C0 PORTA 02C2 LATA ODCA Legend: Bit 15 Bit 14 Bit 10 Bit 9 Bit 8 Bit 7 Bit 12 Bit 11 TRISA — — — TRISA — TRISA C6FF RA — — — RA — RA xxxx 02C4 LATA — — — LATA — LATA 02C6 ODCA — — — ODCA — — Bit 6 — Bit 5 Bit 4 ODCA Bit 3 Bit 2 Bit 1 Bit 0 All Resets Bit 13 0000 — — ODCA 0000 x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. TABLE 4-42: File Name PORTA REGISTER MAP FOR dsPIC33FJ32GS610 AND dsPIC33FJ64GS610 DEVICES SFR Addr PORTA REGISTER MAP FOR dsPIC33FJ32GS608 AND dsPIC33FJ64GS608 DEVICES Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets TRISA 02C0 TRISA — — — TRISA — — — — — — — — — C600 PORTA 02C2 RA — — — RA — — — — — — — — — xxxx LATA 02C4 LATA — — — LATA — — — — — — — — — 0000 ODCA 02C6 ODCA — — — ODCA — — — — — — — — — 0000 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. TABLE 4-43: File Name SFR Addr PORTB REGISTER MAP Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 TRISB 02C8 TRISB PORTB 02CA RB xxxx LATB 02CC LATB 0000 Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  2009-2014 Microchip Technology Inc. TABLE 4-44: File Name SFR Addr FFFF PORTC REGISTER MAP FOR dsPIC33FJ32GS610 AND dsPIC33FJ64GS610 DEVICES Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets TRISC 02D0 TRISC — — — — — — — TRISC — F01E PORTC 02D2 RC — — — — — — — RC — xxxx LATC 02D4 LATC — — — — — — — LATC — 0000 Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 DS7000591F-page 92 TABLE 4-41: File Name SFR Addr PORTC REGISTER MAP FOR dsPIC33FJ32GS608 AND dsPIC33FJ64GS608 DEVICES Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets TRISC 02D0 TRISC — — — — — — — — — TRISC — F006 PORTC 02D2 RC — — — — — — — — — RC — xxxx LATC 02D4 LATC — — — — — — — — — LATC — 0000 Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. TABLE 4-46: File Name SFR Addr PORTC REGISTER MAP FOR dsPIC33FJ32GS406/606 AND dsPIC33FJ64GS406/606 DEVICES Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets TRISC 02D0 TRISC — — — — — — — — — — — — F000 PORTC 02D2 RC — — — — — — — — — — — — xxxx LATC 02D4 LATC — — — — — — — — — — — — 0000 Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Bit 2 Bit 1 Bit 0 All Resets TABLE 4-47: File Name SFR Addr PORTD REGISTER MAP FOR dsPIC33FJ32GS608/610 AND dsPIC33FJ64GS608/610 DEVICES Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 TRISD 02D8 TRISD FFFF PORTD 02DA RD xxxx LATD 02DC LATD 0000 ODCD 02DE ODCD 0000 Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. TABLE 4-48: File Name PORTD REGISTER MAP FOR dsPIC33FJ32GS406/606 AND dsPIC33FJ64GS406/606 DEVICES DS7000591F-page 93 SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 TRISD 02D8 — — — — TRISD 0FFF PORTD 02DA — — — — RD xxxx LATD 02DC — — — — LATD 0000 ODCD 02DE — — — — ODCD 0000 Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610  2009-2014 Microchip Technology Inc. TABLE 4-45: File Name PORTE REGISTER MAP FOR dsPIC33FJ32GS608/610 AND dsPIC33FJ64GS608/610 DEVICES SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 TRISE 02E0 — — — — — — TRISE 03FF PORTE 02E2 — — — — — — RE xxxx LATE 02E4 — — — — — — LATE ODCE 02E6 — — — — — — Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. TABLE 4-50: File Name Bit 9 — Bit 8 Bit 7 Bit 6 Bit 5 — Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets 0000 ODCE 0000 PORTE REGISTER MAP FOR dsPIC33FJ32GS406/606 AND dsPIC33FJ64GS406/606 DEVICES SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 TRISE 02E0 — — — — — — — — TRISE 00FF PORTE 02E2 — — — — — — — — RE xxxx LATE 02E4 — — — — — — — — LATE 0000 ODCE 02E6 — — — — — — — — ODCE 0000 Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. TABLE 4-51: File Name Bit 7  2009-2014 Microchip Technology Inc. Bit 15 Bit 14 TRISF 02E8 — — PORTF 02EA — — LATF 02EC — ODCF 02EE — Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. File Name Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets PORTF REGISTER MAP FOR dsPIC33FJ32GS610 AND dsPIC33FJ64GS610 DEVICES SFR Addr TABLE 4-52: Bit 6 Bit 13 Bit 12 Bit 8 Bit 7 Bit 6 Bit 10 Bit 9 TRISF — — — TRISF 30FF RF — — — RF xxxx — LATF — — — LATF — ODCF — — — ODCF Bit 5 — Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets Bit 11 0000 — ODCF — 0000 Bit 0 All Resets PORTF REGISTER MAP FOR dsPIC33FJ32GS608 AND dsPIC33FJ64GS608 DEVICES SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 TRISF 02E8 — — — — — — — TRISF 01FF PORTF 02EA — — — — — — — RF xxxx LATF 02EC — — — — — — — LATF ODCF 02EE — — — — — — — Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Bit 8 Bit 7 ODCF Bit 6 Bit 5 — Bit 4 — Bit 3 Bit 2 Bit 1 0000 ODCF — 0000 dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 DS7000591F-page 94 TABLE 4-49: File Name PORTF REGISTER MAP FOR dsPIC33FJ32GS406/606 AND dsPIC33FJ64GS406/606 DEVICES SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 TRISF 02E8 — — — — — — — — — TRISF 007F PORTF 02EA — — — — — — — — — RF xxxx LATF 02EC — — — — — — — — — LATF ODCF 02EE — — — — — — — — — Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. TABLE 4-54: File Name SFR Addr Bit 6 ODCF6 Bit 5 Bit 4 — Bit 3 Bit 2 — Bit 1 Bit 0 All Resets 0000 ODCF — 0000 Bit 0 All Resets PORTG REGISTER MAP FOR dsPIC33FJ32GS610 AND dsPIC33FJ64GS610 DEVICES Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 TRISG 02F0 TRISG (VDD + 0.3) for non-5V tolerant pins only. 7: Digital 5V tolerant pins do not have an internal high side diode to VDD, and therefore, cannot tolerate any “positive” input injection current. 8: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts. 9: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted, provided the mathematical “absolute instantaneous” sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested. 10: RB11 has also been tested up to ±8 µA test limits. DS70000591F-page 378  2009-2014 Microchip Technology Inc. dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 TABLE 27-10: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended DC CHARACTERISTICS Param. Symbol VOL DO10 Characteristic Output Low Voltage I/O Pins: 4x Sink Driver Pins – RA0-RA7, RA14, RA15, RB0-RB15, RC1-RC4, RC12-RC14, RD0-RD2, RD8-RD12, RD14, RD15, RE8, RE9, RF0-RF8, RF12, RF13, RG0-RG3, RG6-RG9, RG14, RG15 Output Low Voltage I/O Pins: 8x Sink Driver Pin – RC15 Output Low Voltage I/O Pins: 16x Sink Driver Pins – RA9, RA10, RD3-RD7, RD13, RE0-RE7, RG12, RG13 VOH DO20 Output High Voltage I/O Pins: 4x Sink Driver Pins – RA0-RA7, RA14, RA15, RB0-RB15, RC1-RC4, RC12-RC14, RD0-RD2, RD8-RD12, RD14, RD15, RE8, RE9, RF0-RF8, RF12, RF13, RG0-RG3, RG6-RG9, RG14, RG15 Output High Voltage I/O Pins: 8x Sink Driver Pin – RC15 Output High Voltage I/O Pins: 16x Sink Driver Pins – RA9, RA10, RD3-RD7, RD13, RE0-RE7, RG12, RG13 Note 1: Min. Typ. Max. Units Conditions — — 0.4 V IOL  6 mA, VDD = 3.3V (See Note 1) — — 0.4 V IOL  10 mA, VDD = 3.3V (See Note 1) — — 0.4 V IOL  18 mA, VDD = 3.3V (See Note 1) 2.4 — — V IOH  -6 mA, VDD = 3.3V (See Note 1) 2.4 — — V IOH  -10 mA, VDD = 3.3V (See Note 1) 2.4 — — V IOH  -18 mA, VDD = 3.3V (See Note 1) Parameters are characterized, but not tested.  2009-2014 Microchip Technology Inc. DS70000591F-page 379 dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 TABLE 27-10: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS (CONTINUED) Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended DC CHARACTERISTICS Param. Symbol VOH1 DO20A Characteristic Output High Voltage I/O Pins: 4x Sink Driver Pins – RA0-RA7, RA14, RA15, RB0-RB15, RC1-RC4, RC12-RC14, RD0-RD2, RD8-RD12, RD14, RD15, RE8, RE9, RF0-RF8, RF12, RF13, RG0-RG3, RG6-RG9, RG14, RG15 Output High Voltage I/O Pins: 8x Sink Driver Pin – RC15 Output High Voltage I/O Pins: 16x Sink Driver Pins – RA9, RA10, RD3-RD7, RD13, RE0-RE7, RG12, RG13 Note 1: Min. Typ. Max. Units Conditions 1.5 — — V IOH  -12 mA, VDD = 3.3V (See Note 1) 2.0 — — V IOH  -11 mA, VDD = 3.3V (See Note 1) 3.0 — — V IOH  -3 mA, VDD = 3.3V (See Note 1) 1.5 — — V IOH  -16 mA, VDD = 3.3V (See Note 1) 2.0 — — V IOH  -12 mA, VDD = 3.3V (See Note 1) 3.0 — — V IOH  -4 mA, VDD = 3.3V (See Note 1) 1.5 — — V IOH  -30 mA, VDD = 3.3V (See Note 1) 2.0 — — V IOH  -25 mA, VDD = 3.3V (See Note 1) 3.0 — — V IOH  -8 mA, VDD = 3.3V (See Note 1) Parameters are characterized, but not tested. TABLE 27-11: ELECTRICAL CHARACTERISTICS: BROWN-OUT RESET (BOR) DC CHARACTERISTICS Param No. Symbol Standard Operating Conditions: 3.0V to 3.6V(3) (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended Characteristic BOR Event on VDD Transition High-to-Low Min(1) Typ Max Units 2.6 — 2.95 V Conditions See Note 2 BO10 VBOR Note 1: 2: 3: Parameters are for design guidance only and are not tested in manufacturing. The device will operate as normal until the VDDMIN threshold is reached. Overall functional device operation at VBORMIN < VDD < VDDMIN is tested but not characterized. All device analog modules, such as the ADC, etc., will function but with degraded performance below VDDMIN. DS70000591F-page 380  2009-2014 Microchip Technology Inc. dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 TABLE 27-12: DC CHARACTERISTICS: PROGRAM MEMORY Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended DC CHARACTERISTICS Param Symbol No. Characteristic Min Typ(1) Max Units Conditions Program Flash Memory D130 EP Cell Endurance 10,000 — — E/W D131 VPR VDD for Read VMIN — 3.6 V VMIN = Minimum operating voltage D132B VPEW VDD for Self-Timed Write VMIN — 3.6 V VMIN = Minimum operating voltage D134 TRETD Characteristic Retention 20 — — Year D135 IDDP Supply Current during Programming — 10 — mA D136a TRW Row Write Time 1.488 — 1.518 ms TRW = 11064 FRC cycles, TA = +85°C (See Note 2) D136b TRW Row Write Time 1.473 — 1.533 ms TRW = 11064 FRC cycles, TA = +125°C (See Note 2) D137a TPE Page Erase Time 22.7 — 23.1 ms TPE = 168517 FRC cycles, TA = +85°C (See Note 2) D137b TPE Page Erase Time 22.4 — 23.3 ms TPE = 168517 FRC cycles, TA = +125°C (See Note 2) D138a TWW Word Write Cycle Time 47.7 — 48.7 µs TWW = 355 FRC cycles, TA = +85°C (See Note 2) D138b TWW Word Write Cycle Time 47.3 — 49.2 µs TWW = 355 FRC cycles, TA = +125°C (See Note 2) Note 1: 2: -40C to +125C Provided no other specifications are violated, -40C to +125C Data in “Typ” column is at 3.3V, +25°C unless otherwise stated. Other conditions: FRC = 7.37 MHz, TUN = b'011111 (for Min.), TUN = b'100000 (for Max.). This parameter depends on the FRC accuracy (see Table 27-20) and the value of the FRC Oscillator Tuning register (see Register 9-4). For complete details on calculating the minimum and maximum time, see Section 5.3 “Programming Operations”. TABLE 27-13: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS Operating Conditions: Param No. — Note 1: Symbol CEFC -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended Characteristics External Filter Capacitor Value(1) Min Typ Max Units 22 — — µF Comments Capacitor must be low series resistance (< 0.5 Ohms) Typical VCAP voltage = 2.5 volts when VDD  VDDMIN.  2009-2014 Microchip Technology Inc. DS70000591F-page 381 dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 27.2 AC Characteristics and Timing Parameters This section defines dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 AC characteristics and timing parameters. TABLE 27-14: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended Operating voltage VDD range as described in Section 27.0 “Electrical Characteristics”. AC CHARACTERISTICS FIGURE 27-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS Load Condition 1 – for all pins except OSC2 Load Condition 2 – for OSC2 VDD/2 CL Pin RL VSS CL Pin RL = 464 CL = 50 pF for all pins except OSC2 15 pF for OSC2 output VSS TABLE 27-15: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS Param Symbol No. Characteristic Min Typ Max Units Conditions DO50 COSCO OSC2 Pin — — 15 pF In XT and HS modes, when external clock is used to drive OSC1 DO56 CIO All I/O Pins and OSC2 — — 50 pF EC mode DO58 CB SCLx, SDAx — — 400 pF In I2C™ mode DS70000591F-page 382  2009-2014 Microchip Technology Inc. dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 FIGURE 27-2: EXTERNAL CLOCK TIMING Q1 Q2 Q3 Q4 Q1 Q2 OS30 OS30 Q3 Q4 OSC1 OS20 OS31 OS31 OS25 CLKO OS41 OS40 TABLE 27-16: EXTERNAL CLOCK TIMING REQUIREMENTS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended AC CHARACTERISTICS Param No. OS10 Symb FIN OS20 TOSC Min Typ(1) Max Units External CLKI Frequency (external clocks allowed only in EC and ECPLL modes) DC — 40 MHz EC Oscillator Crystal Frequency 3.5 — 10 — — — 10 33 40 MHz kHz MHz XT SOSC HS TOSC = 1/FOSC 12.5 — DC ns Characteristic Time(2) Conditions OS25 TCY Instruction Cycle 25 — DC ns OS30 TosL, TosH External Clock in (OSC1) High or Low Time 0.375 x TOSC — 0.625 x TOSC ns EC OS31 TosR, TosF External Clock in (OSC1) Rise or Fall Time — — 20 ns EC OS40 TckR CLKO Rise Time(3) — 5.2 — ns OS41 TckF CLKO Fall Time(3) — 5.2 — ns OS41 GM External Oscillator Transconductance 14 16 18 mA/V Note 1: 2: 3: VDD = 3.3V, TA = +25ºC Data in “Typ” column is at 3.3V, +25°C unless otherwise stated. Instruction cycle period (TCY) equals two times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type, under standard operating conditions, with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at “Min.” values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the “Max.” cycle time limit is “DC” (no clock) for all devices. Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin.  2009-2014 Microchip Technology Inc. DS70000591F-page 383 dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 TABLE 27-17: PLL CLOCK TIMING SPECIFICATIONS (VDD = 3.0V TO 3.6V) Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended AC CHARACTERISTICS Param No. Symbol OS50 Characteristic Min Typ(1) Max Units FPLLI PLL Voltage Controlled Oscillator (VCO) Input Frequency Range 0.8 — 8 MHz OS51 FSYS On-Chip VCO System Frequency 100 — 200 MHz OS52 TLOCK PLL Start-up Time (Lock Time) 0.9 1.5 3.1 mS -3 0.5 3 % OS53 DCLK Note 1: 2: CLKO Stability (Jitter) (2) Conditions ECPLL, XTPLL modes Measured over a 100 ms period Data in “Typ” column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested in manufacturing. These parameters are characterized by similarity, but are not tested in manufacturing. This specification is based on clock cycle by clock cycle measurements. To calculate the effective jitter for individual time bases or communication clocks, use this formula: D CLK Peripheral Clock Jitter = -----------------------------------------------------------------------F OSC  -------------------------------------------------------------  Peripheral Bit Rate Clock For example: FOSC = 32 MHz, DCLK = 3%, SPI bit rate clock (i.e., SCK) is 2 MHz. D CLK 3% 3% SPI SCK Jitter = ------------------------------ = ---------- = -------- = 0.75% 4 16 32 MHz  --------------------  2 MHz  TABLE 27-18: AUXILIARY PLL CLOCK TIMING SPECIFICATIONS (VDD = 3.0V TO 3.6V) Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended AC CHARACTERISTICS Param No. Symbol Characteristic Min Typ(1) Max Units OS56 FHPOUT On-Chip, 16x PLL CCO Frequency 112 118 120 MHz OS57 FHPIN On-Chip, 16x PLL Phase Detector Input Frequency 7.0 7.37 7.5 MHz OS58 TSU Frequency Generator Lock Time — — 10 µs Note 1: Conditions Data in “Typ” column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested in manufacturing. DS70000591F-page 384  2009-2014 Microchip Technology Inc. dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 TABLE 27-19: AC CHARACTERISTICS: INTERNAL FRC ACCURACY AC CHARACTERISTICS Param No. Characteristic Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C  TA +85°C for industrial -40°C  TA  +125°C for Extended Min Typ Max Units Conditions Internal FRC Accuracy @ FRC Frequency = 7.37 MHz(1) F20a FRC -1 — +1 % -40°C  TA +85°C VDD = 3.0-3.6V F20b FRC -2 — +2 % -40°C  TA +125°C VDD = 3.0-3.6V Note 1: Frequency calibrated at +25°C and 3.3V. The TUN bits can be used to compensate for temperature drift. TABLE 27-20: AC CHARACTERISTICS: INTERNAL LPRC ACCURACY AC CHARACTERISTICS Param No. Characteristic Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended Min Typ Max Units Conditions LPRC @ 32.768 kHz(1) F21a LPRC -40 — +40 % -40°C  TA +85°C F21b LPRC -50 — +50 % -40°C  TA +125°C Note 1: Change of LPRC frequency as VDD changes.  2009-2014 Microchip Technology Inc. DS70000591F-page 385 dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 FIGURE 27-3: I/O TIMING CHARACTERISTICS I/O Pin (Input) DI35 DI40 I/O Pin (Output) Old Value New Value DO31 DO32 Note: Refer to Figure 27-1 for load conditions. TABLE 27-21: I/O TIMING REQUIREMENTS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended AC CHARACTERISTICS Param No. Min Typ(1) Max Units 4x Source Driver Pins – RA0-RA7, RA14, RA15, RB0-RB15, RC1-RC4, RC12-RC14, RD0-RD2, RD8-RD12, RD14, RD15, RE8, RE9, RF0-RF8, RF12, RF13, RG0-RG3, RG6-RG9, RG14, RG15 — 10 25 ns 8x Source Driver Pins – RC15 — 8 20 ns 16x Source Driver Pins – RE0-RE7, RG12, RG13 — 6 15 ns 4x Source Driver Pins – RA0-RA7, RA14, RA15, RB0-RB15, RC1-RC4, RC12-RC14, RD0-RD2, RD8-RD12, RD14, RD15, RE8, RE9, RF0-RF8, RF12, RF13, RG0-RG3, RG6-RG9, RG14, RG15 — 10 25 ns 8x Source Driver Pins – RC15 — 8 20 ns 16x Source Driver Pins – RE0-RE7, RG12, RG13 — 6 15 ns TINP INTx Pin High or Low Time (input) 20 — — ns DI40 TRBP CNx High or Low Time (input) 2 — — TCY Note 1: Data in “Typ” column is at 3.3V, +25°C unless otherwise stated. DO31 DO32 DI35 Symbol TIOR TIOF DS70000591F-page 386 Characteristic Conditions Port Output Rise Time Refer to Figure 27-1 for test conditions Port Output Fall Time Refer to Figure 27-1 for test conditions  2009-2014 Microchip Technology Inc. dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 FIGURE 27-4: VDD RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING CHARACTERISTICS SY12 MCLR SY10 Internal POR SY11 PWRT Time-out OSC Time-out SY30 Internal Reset Watchdog Timer Reset SY13 SY20 SY13 I/O Pins FSCM Delay SY35 Note: Refer to Figure 27-1 for load conditions.  2009-2014 Microchip Technology Inc. DS70000591F-page 387 dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 TABLE 27-22: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER TIMING REQUIREMENTS AC CHARACTERISTICS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended Param Symbol No. Characteristic(1) Min Typ(2) Max Units Conditions SY10 TMCL MCLR Pulse Width (low) 2 — — s -40°C to +85°C SY11 TPWRT Power-up Timer Period — 2 4 8 16 32 64 128 — ms -40°C to +85°C, User programmable SY12 TPOR Power-on Reset Delay 3 10 30 s -40°C to +85°C SY13 TIOZ I/O High-Impedance from MCLR Low or Watchdog Timer Reset 0.68 0.72 1.2 s SY20 TWDT1 Watchdog Timer Time-out Period — — — ms See Section 24.4 “Watchdog Timer (WDT)” and LPRC Parameter F21a (Table 27-20) SY30 TOST Oscillator Start-up Time — 1024 TOSC — — TOSC = OSC1 period Note 1: 2: These parameters are characterized but not tested in manufacturing. Data in “Typ” column is at 3.3V, +25°C unless otherwise stated. DS70000591F-page 388  2009-2014 Microchip Technology Inc. dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 FIGURE 27-5: TIMER1/2/3 EXTERNAL CLOCK TIMING CHARACTERISTICS TxCK Tx10 Tx11 Tx15 OS60 Tx20 TMRx Note: Refer to Figure 27-1 for load conditions. TABLE 27-23: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS(1) Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended AC CHARACTERISTICS Param No. TA10 Symbol TTXH Characteristic T1CK High Time Synchronous, no Prescaler Synchronous, with Prescaler Asynchronous TA11 TTXL TTXP T1CK Input Period Typ Max Units Conditions TCY + 20 — — ns (TCY + 20)/N — — ns Must also meet Parameter TA15, N = Prescale value (1, 8, 64, 256) 20 — — ns (TCY + 20) — — ns (TCY + 20)/N — — ns Asynchronous 20 — — ns Synchronous, no Prescaler 2 TCY + 40 — — ns Synchronous, with Prescaler Greater of: 40 ns or (2 TCY + 40)/N — — — 40 — — ns DC — 50 kHz — 1.75 TCY + 40 — T1CK Low Time Synchronous, no Prescaler Synchronous, with Prescaler TA15 Min Asynchronous OS60 Ft1 TA20 TCKEXTMRL Delay from External T1CK Clock 0.75 TCY + 40 Edge to Timer Increment Note 1: SOSCI/T1CK Oscillator Input Frequency Range (oscillator enabled by setting bit, TCS (T1CON)) Must also meet Parameter TA15, N = Prescale value (1, 8, 64, 256) N = Prescale value (1, 8, 64, 256) Timer1 is a Type A.  2009-2014 Microchip Technology Inc. DS70000591F-page 389 dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 TABLE 27-24: TIMER2/4 EXTERNAL CLOCK TIMING REQUIREMENTS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended AC CHARACTERISTICS Param No. Characteristic(1) Symbol Min Typ Max Units Conditions TB10 TtxH TxCK High Synchronous Time mode Greater of: 20 or (TCY + 20)/N — — ns Must also meet Parameter TB15, N = Prescale value (1, 8, 64, 256) TB11 TtxL TxCK Low Time Greater of: 20 or (TCY + 20)/N — — ns Must also meet Parameter TB15, N = Prescale value (1, 8, 64, 256) TB15 TtxP TxCK Input Synchronous Period mode Greater of: 40 or (2 TCY + 40)/N — — ns N = Prescale value (1, 8, 64, 256) TB20 TCKEXTMRL Delay from External TxCK Clock Edge to Timer Increment 0.75 TCY + 40 — 1.75 TCY + 40 ns Note 1: Synchronous mode These parameters are characterized, but are not tested in manufacturing. TABLE 27-25: TIMER3/5 EXTERNAL CLOCK TIMING REQUIREMENTS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended AC CHARACTERISTICS Param No. Symbol Characteristic(1) Min Typ Max Units Conditions TC10 TtxH TxCK High Time Synchronous TCY + 20 — — ns Must also meet Parameter TC15 TC11 TtxL TxCK Low Time Synchronous TCY + 20 — — ns Must also meet Parameter TC15 TC15 TtxP TxCK Input Period Synchronous, with Prescaler 2 TCY + 40 — — ns TC20 TCKEXTMRL Delay from External TxCK Clock Edge to Timer Increment 0.75 TCY + 40 — 1.75 TCY + 40 ns Note 1: These parameters are characterized, but are not tested in manufacturing. DS70000591F-page 390  2009-2014 Microchip Technology Inc. dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 FIGURE 27-6: INPUT CAPTURE x (ICx) TIMING CHARACTERISTICS ICx IC10 IC11 IC15 Note: Refer to Figure 27-1 for load conditions. TABLE 27-26: INPUT CAPTURE x TIMING REQUIREMENTS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended AC CHARACTERISTICS Param Symbol No. IC10 TccL Characteristic(1) ICx Input Low Time No Prescaler With Prescaler IC11 TccH ICx Input High Time No Prescaler With Prescaler IC15 TccP Note 1: ICx Input Period Min Max Units 0.5 TCY + 20 — ns 10 — ns 0.5 TCY + 20 — ns 10 — ns (TCY + 40)/N — ns Conditions N = Prescale value (1, 4, 16) These parameters are characterized but not tested in manufacturing. FIGURE 27-7: OUTPUT COMPARE x (OCx) MODULE TIMING CHARACTERISTICS OCx (Output Compare or PWM Mode) OC11 OC10 Note: Refer to Figure 27-1 for load conditions. TABLE 27-27: OUTPUT COMPARE x MODULE TIMING REQUIREMENTS AC CHARACTERISTICS Param Symbol No. Characteristic(1) Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended Min Typ Max Units Conditions OC10 TccF OCx Output Fall Time — — — ns See Parameter DO32 OC11 TccR OCx Output Rise Time — — — ns See Parameter DO31 Note 1: These parameters are characterized but not tested in manufacturing.  2009-2014 Microchip Technology Inc. DS70000591F-page 391 dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 FIGURE 27-8: OUTPUT COMPARE x/PWMx MODULE TIMING CHARACTERISTICS OC20 OCFA OC15 OCx Active Tri-State TABLE 27-28: SIMPLE OCx/PWMx MODE TIMING REQUIREMENTS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended AC CHARACTERISTICS Param No. Symbol Characteristic(1) Min Typ Max Units OC15 TFD Fault Input to PWM I/O Change — — TCY + 20 ns OC20 TFLT Fault Input Pulse Width TCY + 20 — — ns Note 1: These parameters are characterized but not tested in manufacturing. DS70000591F-page 392 Conditions  2009-2014 Microchip Technology Inc. dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 FIGURE 27-9: HIGH-SPEED PWMx MODULE FAULT TIMING CHARACTERISTICS MP30 FLTx MP20 PWMx FIGURE 27-10: HIGH-SPEED PWMx MODULE TIMING CHARACTERISTICS MP11 MP10 PWMx Note: Refer to Figure 27-1 for load conditions. TABLE 27-29: HIGH-SPEED PWMx MODULE TIMING REQUIREMENTS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended AC CHARACTERISTICS Param No. Symbol Characteristic(1) Min Typ Max Units — ns MP10 TFPWM PWMx Output Fall Time — 2.5 MP11 TRPWM PWMx Output Rise Time — 2.5 — ns MP20 TFD Fault Input  to PWMx I/O Change — — 15 ns MP30 TFH Minimum PWMx Fault Pulse Width 8 — — ns MP31 TPDLY Tap Delay 1.04 — — ns MP32 ACLK PWMx Input Clock — — 120 MHz Note 1: 2: Conditions DTC = 10 ACLK = 120 MHz See Note 2 These parameters are characterized but not tested in manufacturing. This parameter is a maximum allowed input clock for the PWM module.  2009-2014 Microchip Technology Inc. DS70000591F-page 393 dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 TABLE 27-30: SPIx MAXIMUM DATA/CLOCK RATE SUMMARY Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended AC CHARACTERISTICS Maximum Data Rate Master Transmit Only (Half-Duplex) Master Transmit/Receive (Full-Duplex) Slave Transmit/Receive (Full-Duplex) CKE CKP SMP 15 MHz Table 27-31 — — 0,1 0,1 0,1 10 MHz — Table 27-32 — 1 0,1 1 10 MHz — Table 27-33 — 0 0,1 1 15 MHz — — Table 27-34 1 0 0 11 MHz — — Table 27-35 1 1 0 15 MHz — — Table 27-36 0 1 0 11 MHz — — Table 27-37 0 0 0 FIGURE 27-11: SPIx MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 0) TIMING CHARACTERISTICS SCKx (CKP = 0) SP10 SP21 SP20 SP20 SP21 SCKx (CKP = 1) SP35 MSb SDOx Bit 14 - - - - - -1 SP30, SP31 LSb SP30, SP31 Note: Refer to Figure 27-1 for load conditions. FIGURE 27-12: SPIx MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 1) TIMING CHARACTERISTICS SP36 SCKx (CKP = 0) SP10 SP21 SP20 SP20 SP21 SCKx (CKP = 1) SP35 SDOx MSb Bit 14 - - - - - -1 LSb SP30, SP31 Note: Refer to Figure 27-1 for load conditions. DS70000591F-page 394  2009-2014 Microchip Technology Inc. dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 TABLE 27-31: SPIx MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended AC CHARACTERISTICS Param No. Symbol Characteristic(1) Min Typ(2) Max Units Conditions SP10 TscP Maximum SCKx Frequency — — 15 MHz SP20 TscF SCKx Output Fall Time — — — ns See Parameter DO32 and Note 4 SP21 TscR SCKx Output Rise Time — — — ns See Parameter DO31 and Note 4 SP30 TdoF SDOx Data Output Fall Time — — — ns See Parameter DO32 and Note 4 SP31 TdoR SDOx Data Output Rise Time — — — ns See Parameter DO31 and Note 4 SP35 TscH2doV, TscL2doV SDOx Data Output Valid after SCKx Edge — 6 20 ns SP36 TdiV2scH, TdiV2scL SDOx Data Output Setup to First SCKx Edge 30 — — ns Note 1: 2: 3: 4: See Note 3 These parameters are characterized, but are not tested in manufacturing. Data in “Typ” column is at 3.3V, +25°C unless otherwise stated. The minimum clock period for SCKx is 66.7 ns. Therefore, the clock generated in Master mode must not violate this specification. Assumes 50 pF load on all SPIx pins.  2009-2014 Microchip Technology Inc. DS70000591F-page 395 dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 FIGURE 27-13: SPIx MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING CHARACTERISTICS SP36 SCKx (CKP = 0) SP10 SP21 SP20 SP20 SP21 SCKx (CKP = 1) SP35 MSb SDOx LSb SP30, SP31 SP40 SDIx Bit 14 - - - - - -1 MSb In Bit 14 - - - -1 LSb In SP41 Note: Refer to Figure 27-1 for load conditions. TABLE 27-32: SPIx MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING REQUIREMENTS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended AC CHARACTERISTICS Param No. Symbol Characteristic(1) Min Typ(2) Max Units Conditions See Note 3 See Parameter DO32 and Note 4 See Parameter DO31 and Note 4 See Parameter DO32 and Note 4 See Parameter DO31 and Note 4 SP10 SP20 TscP TscF Maximum SCKx Frequency SCKx Output Fall Time — — — — 10 — MHz ns SP21 TscR SCKx Output Rise Time — — — ns SP30 TdoF SDOx Data Output Fall Time — — — ns SP31 TdoR SDOx Data Output Rise Time — — — ns SP35 TscH2doV, SDOx Data Output Valid after — 6 20 ns TscL2doV SCKx Edge TdoV2sc, SDOx Data Output Setup to 30 — — ns TdoV2scL First SCKx Edge TdiV2scH, Setup Time of SDIx Data 30 — — ns TdiV2scL Input to SCKx Edge TscH2diL, Hold Time of SDIx Data Input 30 — — ns TscL2diL to SCKx Edge These parameters are characterized, but are not tested in manufacturing. Data in “Typ” column is at 3.3V, +25°C unless otherwise stated. The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this specification. Assumes 50 pF load on all SPIx pins. SP36 SP40 SP41 Note 1: 2: 3: 4: DS70000591F-page 396  2009-2014 Microchip Technology Inc. dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 FIGURE 27-14: SPIx MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING CHARACTERISTICS SCKx (CKP = 0) SP10 SP21 SP20 SP20 SP21 SCKx (CKP = 1) SP35 SP30, SP31 SDIx MSb In LSb Bit 14 - - - - - -1 MSb SDOx SP30, SP31 LSb In Bit 14 - - - -1 SP40 SP41 Note: Refer to Figure 27-1 for load conditions. TABLE 27-33: SPIx MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING REQUIREMENTS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended AC CHARACTERISTICS Param No. Symbol Characteristic(1) Min Typ(2) Max Units Conditions -40ºC to +125ºC and see Note 3 See Parameter DO32 and Note 4 See Parameter DO31 and Note 4 See Parameter DO32 and Note 4 See Parameter DO31 and Note 4 SP10 TscP Maximum SCKx Frequency — — 10 MHz SP20 TscF SCKx Output Fall Time — — — ns SP21 TscR SCKx Output Rise Time — — — ns SP30 TdoF SDOx Data Output Fall Time — — — ns SP31 TdoR SDOx Data Output Rise Time — — — ns SP35 TscH2doV, SDOx Data Output Valid after — 6 20 ns TscL2doV SCKx Edge TdoV2scH, SDOx Data Output Setup to 30 — — ns TdoV2scL First SCKx Edge TdiV2scH, Setup Time of SDIx Data 30 — — ns TdiV2scL Input to SCKx Edge TscH2diL, Hold Time of SDIx Data Input 30 — — ns TscL2diL to SCKx Edge These parameters are characterized, but are not tested in manufacturing. Data in “Typ” column is at 3.3V, +25°C unless otherwise stated. The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this specification. Assumes 50 pF load on all SPIx pins. SP36 SP40 SP41 Note 1: 2: 3: 4:  2009-2014 Microchip Technology Inc. DS70000591F-page 397 dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 FIGURE 27-15: SPIx SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING CHARACTERISTICS SP60 SSx SP52 SP50 SCKx (CKP = 0) SP70 SP73 SP72 SP72 SP73 SCKx (CKP = 1) SP35 MSb SDOx Bit 14 - - - - - -1 LSb SP30, SP31 SDIx MSb In Bit 14 - - - -1 SP51 LSb In SP41 SP40 Note: Refer to Figure 27-1 for load conditions. DS70000591F-page 398  2009-2014 Microchip Technology Inc. dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 TABLE 27-34: SPIx SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING REQUIREMENTS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended AC CHARACTERISTICS Param No. Symbol Characteristic(1) Min Typ(2) Max Units Conditions SP70 TscP Maximum SCKx Input Frequency — — 15 MHz SP72 TscF SCKx Input Fall Time — — — ns See Parameter DO32 and Note 4 SP73 TscR SCKx Input Rise Time — — — ns See Parameter DO31 and Note 4 SP30 TdoF SDOx Data Output Fall Time — — — ns See Parameter DO32 and Note 4 SP31 TdoR SDOx Data Output Rise Time — — — ns See Parameter DO31 and Note 4 SP35 TscH2doV, SDOx Data Output Valid after TscL2doV SCKx Edge — 6 20 ns SP36 TdoV2scH, SDOx Data Output Setup to TdoV2scL First SCKx Edge 30 — — ns SP40 TdiV2scH, TdiV2scL Setup Time of SDIx Data Input to SCKx Edge 30 — — ns SP41 TscH2diL, TscL2diL Hold Time of SDIx Data Input to SCKx Edge 30 — — ns SP50 TssL2scH, TssL2scL SSx  to SCKx  or SCKx Input 120 — — ns SP51 TssH2doZ SSx  to SDOx Output High-Impedance 10 — 50 ns See Note 4 SP52 TscH2ssH SSx after SCKx Edge TscL2ssH 1.5 TCY + 40 — — ns See Note 4 SP60 TssL2doV SDOx Data Output Valid after SSx Edge — — 50 ns Note 1: 2: 3: 4: See Note 3 These parameters are characterized, but are not tested in manufacturing. Data in “Typ” column is at 3.3V, +25°C unless otherwise stated. The minimum clock period for SCKx is 66.7 ns. Therefore, the SCKx clock, generated by the master, must not violate this specification. Assumes 50 pF load on all SPIx pins.  2009-2014 Microchip Technology Inc. DS70000591F-page 399 dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 FIGURE 27-16: SPIx SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING CHARACTERISTICS SP60 SSx SP52 SP50 SCKx (CKP = 0) SP70 SP73 SP72 SP72 SP73 SCKx (CKP = 1) SP35 SP52 MSb SDOx Bit 14 - - - - - -1 LSb SP51 SP30, SP31 SDIx MSb In Bit 14 - - - -1 LSb In SP41 SP40 Note: Refer to Figure 27-1 for load conditions. DS70000591F-page 400  2009-2014 Microchip Technology Inc. dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 TABLE 27-35: SPIx SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING REQUIREMENTS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended AC CHARACTERISTICS Param No. Symbol Characteristic(1) Min Typ(2) Max Units Conditions SP70 TscP Maximum SCKx Input Frequency — — 11 MHz SP72 TscF SCKx Input Fall Time — — — ns See Parameter DO32 and Note 4 SP73 TscR SCKx Input Rise Time — — — ns See Parameter DO31 and Note 4 SP30 TdoF SDOx Data Output Fall Time — — — ns See Parameter DO32 and Note 4 SP31 TdoR SDOx Data Output Rise Time — — — ns See Parameter DO31 and Note 4 SP35 TscH2doV, SDOx Data Output Valid after TscL2doV SCKx Edge — 6 20 ns SP36 TdoV2scH, SDOx Data Output Setup to TdoV2scL First SCKx Edge 30 — — ns SP40 TdiV2scH, TdiV2scL Setup Time of SDIx Data Input to SCKx Edge 30 — — ns SP41 TscH2diL, TscL2diL Hold Time of SDIx Data Input to SCKx Edge 30 — — ns SP50 TssL2scH, TssL2scL SSx  to SCKx  or SCKx Input 120 — — ns SP51 TssH2doZ SSx  to SDOx Output High-Impedance 10 — 50 ns See Note 4 SP52 TscH2ssH SSx after SCKx Edge TscL2ssH 1.5 TCY + 40 — — ns See Note 4 SP60 TssL2doV SDOx Data Output Valid after SSx Edge — — 50 ns Note 1: 2: 3: 4: See Note 3 These parameters are characterized, but are not tested in manufacturing. Data in “Typ” column is at 3.3V, +25°C unless otherwise stated. The minimum clock period for SCKx is 91 ns. Therefore, the SCKx clock, generated by the master, must not violate this specification. Assumes 50 pF load on all SPIx pins.  2009-2014 Microchip Technology Inc. DS70000591F-page 401 dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 FIGURE 27-17: SPIx SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING CHARACTERISTICS SSX SP52 SP50 SCKX (CKP = 0) SP70 SP73 SP72 SP72 SP73 SCKX (CKP = 1) SP35 SDOX Bit 14 - - - - - -1 MSb LSb SP51 SP30, SP31 SDIX MSb In Bit 14 - - - -1 LSb In SP41 SP40 Note: Refer to Figure 27-1 for load conditions. DS70000591F-page 402  2009-2014 Microchip Technology Inc. dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 TABLE 27-36: SPIx SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING REQUIREMENTS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended AC CHARACTERISTICS Param No. Symbol Characteristic(1) Min Typ(2) Max Units Conditions SP70 TscP Maximum SCKx Input Frequency — — 15 MHz SP72 TscF SCKx Input Fall Time — — — ns See Parameter DO32 and Note 4 SP73 TscR SCKx Input Rise Time — — — ns See Parameter DO31 and Note 4 SP30 TdoF SDOx Data Output Fall Time — — — ns See Parameter DO32 and Note 4 SP31 TdoR SDOx Data Output Rise Time — — — ns See Parameter DO31 and Note 4 SP35 TscH2doV, SDOx Data Output Valid after TscL2doV SCKx Edge — 6 20 ns SP36 TdoV2scH, SDOx Data Output Setup to TdoV2scL First SCKx Edge 30 — — ns SP40 TdiV2scH, TdiV2scL Setup Time of SDIx Data Input to SCKx Edge 30 — — ns SP41 TscH2diL, TscL2diL Hold Time of SDIx Data Input to SCKx Edge 30 — — ns SP50 TssL2scH, TssL2scL SSx  to SCKx  or SCKx Input 120 — — ns SP51 TssH2doZ SSx  to SDOx Output High-Impedance 10 — 50 ns See Note 4 SP52 TscH2ssH SSx after SCKx Edge TscL2ssH 1.5 TCY + 40 — — ns See Note 4 Note 1: 2: 3: 4: See Note 3 These parameters are characterized, but are not tested in manufacturing. Data in “Typ” column is at 3.3V, +25°C unless otherwise stated. The minimum clock period for SCKx is 66.7 ns. Therefore, the SCKx clock, generated by the master, must not violate this specification. Assumes 50 pF load on all SPIx pins.  2009-2014 Microchip Technology Inc. DS70000591F-page 403 dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 FIGURE 27-18: SPIx SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING CHARACTERISTICS SSX SP52 SP50 SCKX (CKP = 0) SP70 SP73 SP72 SP72 SP73 SCKX (CKP = 1) SP35 SDOX MSb Bit 14 - - - - - -1 LSb SP51 SP30, SP31 SDIX MSb In Bit 14 - - - -1 LSb In SP41 SP40 Note: Refer to Figure 27-1 for load conditions. DS70000591F-page 404  2009-2014 Microchip Technology Inc. dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 TABLE 27-37: SPIx SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING REQUIREMENTS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended AC CHARACTERISTICS Param No. Symbol Characteristic(1) Min Typ(2) Max Units Conditions SP70 TscP Maximum SCKx Input Frequency — — 11 MHz SP72 TscF SCKx Input Fall Time — — — ns See Parameter DO32 and Note 4 SP73 TscR SCKx Input Rise Time — — — ns See Parameter DO31 and Note 4 SP30 TdoF SDOx Data Output Fall Time — — — ns See Parameter DO32 and Note 4 SP31 TdoR SDOx Data Output Rise Time — — — ns See Parameter DO31 and Note 4 SP35 TscH2doV, SDOx Data Output Valid after TscL2doV SCKx Edge — 6 20 ns SP36 TdoV2scH, SDOx Data Output Setup to TdoV2scL First SCKx Edge 30 — — ns SP40 TdiV2scH, TdiV2scL Setup Time of SDIx Data Input to SCKx Edge 30 — — ns SP41 TscH2diL, TscL2diL Hold Time of SDIx Data Input to SCKx Edge 30 — — ns SP50 TssL2scH, TssL2scL SSx  to SCKx  or SCKx Input 120 — — ns SP51 TssH2doZ SSx  to SDOx Output High-Impedance 10 — 50 ns See Note 4 SP52 TscH2ssH SSx after SCKx Edge TscL2ssH 1.5 TCY + 40 — — ns See Note 4 Note 1: 2: 3: 4: See Note 3 These parameters are characterized, but are not tested in manufacturing. Data in “Typ” column is at 3.3V, +25°C unless otherwise stated. The minimum clock period for SCKx is 91 ns. Therefore, the SCKx clock, generated by the master, must not violate this specification. Assumes 50 pF load on all SPIx pins.  2009-2014 Microchip Technology Inc. DS70000591F-page 405 dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 FIGURE 27-19: I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (MASTER MODE) SCLx IM31 IM34 IM30 IM33 SDAx Start Condition Stop Condition Note: Refer to Figure 27-1 for load conditions. FIGURE 27-20: I2Cx BUS DATA TIMING CHARACTERISTICS (MASTER MODE) IM20 IM21 IM11 IM10 SCLx IM11 IM26 IM10 IM25 IM33 SDAx In IM40 IM40 IM45 SDAx Out Note: Refer to Figure 27-1 for load conditions. DS70000591F-page 406  2009-2014 Microchip Technology Inc. dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 TABLE 27-38: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE) Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended AC CHARACTERISTICS Param Symbol No. IM10 IM11 IM20 IM21 IM25 IM26 IM30 IM31 IM33 IM34 IM40 IM45 IM50 IM51 Note Characteristic Min(1) Max Units Conditions — s TLO:SCL Clock Low Time 100 kHz mode TCY/2 (BRG + 1) 400 kHz mode TCY/2 (BRG + 1) — s (2) 1 MHz mode TCY/2 (BRG + 1) — s — s THI:SCL Clock High Time 100 kHz mode TCY/2 (BRG + 1) 400 kHz mode TCY/2 (BRG + 1) — s 1 MHz mode(2) TCY/2 (BRG + 1) — s SDAx and SCLx 100 kHz mode — 300 ns CB is specified to be TF:SCL Fall Time from 10 to 400 pF 400 kHz mode 20 + 0.1 CB 300 ns (2) 1 MHz mode — 100 ns TR:SCL SDAx and SCLx 100 kHz mode — 1000 ns CB is specified to be Rise Time from 10 to 400 pF 400 kHz mode 20 + 0.1 CB 300 ns (2) 1 MHz mode — 300 ns TSU:DAT Data Input 100 kHz mode 250 — ns Setup Time 400 kHz mode 100 — ns (2) 1 MHz mode 40 — ns THD:DAT Data Input 100 kHz mode 0 — s Hold Time 400 kHz mode 0 0.9 s 1 MHz mode(2) 0.2 — s TSU:STA Start Condition 100 kHz mode TCY/2 (BRG + 1) — s Only relevant for Setup Time Repeated Start 400 kHz mode TCY/2 (BRG + 1) — s condition (2) 1 MHz mode TCY/2 (BRG + 1) — s THD:STA Start Condition 100 kHz mode TCY/2 (BRG + 1) — s After this period, the Hold Time first clock pulse is 400 kHz mode TCY/2 (BRG + 1) — s generated (2) 1 MHz mode TCY/2 (BRG + 1) — s TSU:STO Stop Condition 100 kHz mode TCY/2 (BRG + 1) — s Setup Time 400 kHz mode TCY/2 (BRG + 1) — s (2) 1 MHz mode TCY/2 (BRG + 1) — s — ns THD:STO Stop Condition 100 kHz mode TCY/2 (BRG + 1) Hold Time 400 kHz mode TCY/2 (BRG + 1) — ns 1 MHz mode(2) TCY/2 (BRG + 1) — ns 100 kHz mode — 3500 ns TAA:SCL Output Valid from Clock 400 kHz mode — 1000 ns 1 MHz mode(2) — 400 ns 4.7 — s Time the bus must be TBF:SDA Bus Free Time 100 kHz mode free before a new 400 kHz mode 1.3 — s transmission can start (2) 1 MHz mode 0.5 — s Bus Capacitive Loading — 400 pF CB TPGD Pulse Gobbler Delay 65 390 ns See Note 3 2 1: BRG is the value of the I C™ Baud Rate Generator. Refer to “Inter-Integrated Circuit™ (I2C™)” (DS70000195) in the “dsPIC33/PIC24 Family Reference Manual”. 2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only). 3: Typical value for this parameter is 130 ns.  2009-2014 Microchip Technology Inc. DS70000591F-page 407 dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 FIGURE 27-21: I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (SLAVE MODE) SCLx IS34 IS31 IS30 IS33 SDAx Stop Condition Start Condition FIGURE 27-22: I2Cx BUS DATA TIMING CHARACTERISTICS (SLAVE MODE) IS20 IS21 IS11 IS10 SCLx IS30 IS26 IS31 IS25 IS33 SDAx In IS40 IS40 IS45 SDAx Out DS70000591F-page 408  2009-2014 Microchip Technology Inc. dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 TABLE 27-39: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE) Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended AC CHARACTERISTICS Param. Symbol IS10 IS11 IS20 IS21 IS25 IS26 TLO:SCL THI:SCL TF:SCL TR:SCL TSU:DAT Characteristic Clock Low Time Clock High Time SDAx and SCLx Fall Time SDAx and SCLx Rise Time Data Input Setup Time THD:DAT Data Input Hold Time Min Max Units 100 kHz mode 4.7 — s Device must operate at a minimum of 1.5 MHz 400 kHz mode 1.3 — s Device must operate at a minimum of 10 MHz 1 MHz mode(1) 0.5 — s 100 kHz mode 4.0 — s Device must operate at a minimum of 1.5 MHz 400 kHz mode 0.6 — s Device must operate at a minimum of 10 MHz 1 MHz mode(1) 0.5 — s 100 kHz mode — 300 ns 400 kHz mode 20 + 0.1 CB 300 ns 1 MHz mode(1) — 100 ns 100 kHz mode — 1000 ns 400 kHz mode 20 + 0.1 CB 300 ns 1 MHz mode(1) — 300 ns 100 kHz mode 250 — ns 400 kHz mode 100 — ns 1 MHz mode(1) 100 — ns 100 kHz mode 0 — s 400 kHz mode 0 0.9 s (1) 1 MHz mode IS30 IS31 IS33 IS34 TSU:STA Start Condition Setup Time THD:STA Start Condition Hold Time TSU:STO Stop Condition Setup Time THD:STO Stop Condition Hold Time 100 kHz mode IS45 IS50 Note 1: TAA:SCL Output Valid From Clock TBF:SDA Bus Free Time CB 0 0.3 s 4.7 — s 400 kHz mode 0.6 — s 1 MHz mode(1) 0.25 — s 100 kHz mode 4.0 — s 400 kHz mode 0.6 — s 1 MHz mode(1) 0.25 — s 100 kHz mode 4.7 — s 400 kHz mode 0.6 — s 1 MHz mode(1) 0.6 — s 100 kHz mode 4000 — ns 400 kHz mode 600 — ns (1) 250 1 MHz mode IS40 Conditions CB is specified to be from 10 to 400 pF Only relevant for Repeated Start condition After this period, the first clock pulse is generated ns 100 kHz mode 0 3500 ns 400 kHz mode 0 1000 ns 1 MHz mode(1) 0 350 ns 100 kHz mode 4.7 — s 400 kHz mode 1.3 — s 1 MHz mode(1) 0.5 — s — 400 pF Bus Capacitive Loading CB is specified to be from 10 to 400 pF Time the bus must be free before a new transmission can start Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).  2009-2014 Microchip Technology Inc. DS70000591F-page 409 dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 TABLE 27-40: 10-BIT, HIGH-SPEED ADC MODULE SPECIFICATIONS Standard Operating Conditions: 3.0V and 3.6V(2) (unless otherwise stated) Operating temperature -40°C  TA  +85°C for Industrial -40°C  TA  +125°C for Extended AC CHARACTERISTICS Param No. Symbol Characteristic Min Typ Max Units Conditions Device Supply AD01 AVDD Module VDD Supply Greater of: VDD – 0.3 or 3.0 — Lesser of VDD + 0.3 or 3.6 V AD02 AVSS Module VSS Supply Vss – 0.3 — VSS + 0.3 V Analog Input AD10 VINH-VINL Full-Scale Input Span AD11 VIN Absolute Input Voltage AD12 IAD AD13 — VSS — VDD V AVSS — AVDD V Operating Current — 8 — mA Leakage Current — ±0.6 — A — — 100  AD17 RIN Recommended Impedance of Analog Voltage Source AD20 Nr Resolution VINL = AVSS = 0V, AVDD = 3.3V, Source Impedance = 100 DC Accuracy 10 data bits bits AD21A INL Integral Nonlinearity > -2 ±0.5 -1 ±0.5 -5 ±2.0 -3 ±0.75 74)3@ 1RWH )RUWKHPRVWFXUUHQWSDFNDJHGUDZLQJVSOHDVHVHHWKH0LFURFKLS3DFNDJLQJ6SHFLILFDWLRQORFDWHGDW KWWSZZZPLFURFKLSFRPSDFNDJLQJ D D1 E e E1 N b NOTE 1 12 3 α NOTE 2 A c β φ A2 A1 L1 L 8QLWV 'LPHQVLRQ/LPLWV 1XPEHURI/HDGV 0,//,0(7(56 0,1 1 120 0$;  /HDG3LWFK H 2YHUDOO+HLJKW $ ± %6& ± 0ROGHG3DFNDJH7KLFNQHVV $    6WDQGRII $  ±  )RRW/HQJWK /    )RRWSULQW /  5() )RRW$QJOH  2YHUDOO:LGWK ( ƒ %6& ƒ 2YHUDOO/HQJWK ' %6& 0ROGHG3DFNDJH:LGWK ( %6& 0ROGHG3DFNDJH/HQJWK ' %6& ƒ /HDG7KLFNQHVV F  ±  /HDG:LGWK E    0ROG'UDIW$QJOH7RS  ƒ ƒ ƒ 0ROG'UDIW$QJOH%RWWRP  ƒ ƒ ƒ 1RWHV  3LQYLVXDOLQGH[IHDWXUHPD\YDU\EXWPXVWEHORFDWHGZLWKLQWKHKDWFKHGDUHD  &KDPIHUVDWFRUQHUVDUHRSWLRQDOVL]HPD\YDU\  'LPHQVLRQV'DQG(GRQRWLQFOXGHPROGIODVKRUSURWUXVLRQV0ROGIODVKRUSURWUXVLRQVVKDOOQRWH[FHHGPPSHUVLGH  'LPHQVLRQLQJDQGWROHUDQFLQJSHU$60(74)3@ 1RWH )RUWKHPRVWFXUUHQWSDFNDJHGUDZLQJVSOHDVHVHHWKH0LFURFKLS3DFNDJLQJ6SHFLILFDWLRQORFDWHGDW KWWSZZZPLFURFKLSFRPSDFNDJLQJ D D1 e E1 E b N α NOTE 1 1 23 A NOTE 2 φ c β A2 A1 L L1 8QLWV 'LPHQVLRQ/LPLWV 1XPEHURI/HDGV 0,//,0(7(56 0,1 1 120 0$;  /HDG3LWFK H 2YHUDOO+HLJKW $ ± %6& ± 0ROGHG3DFNDJH7KLFNQHVV $    6WDQGRII $  ±  )RRW/HQJWK /    )RRWSULQW /  5() )RRW$QJOH  2YHUDOO:LGWK ( ƒ %6& ƒ 2YHUDOO/HQJWK ' %6& 0ROGHG3DFNDJH:LGWK ( %6& 0ROGHG3DFNDJH/HQJWK ' %6& ƒ /HDG7KLFNQHVV F  ±  /HDG:LGWK E    0ROG'UDIW$QJOH7RS  ƒ ƒ ƒ 0ROG'UDIW$QJOH%RWWRP  ƒ ƒ ƒ 1RWHV  3LQYLVXDOLQGH[IHDWXUHPD\YDU\EXWPXVWEHORFDWHGZLWKLQWKHKDWFKHGDUHD  &KDPIHUVDWFRUQHUVDUHRSWLRQDOVL]HPD\YDU\  'LPHQVLRQV'DQG(GRQRWLQFOXGHPROGIODVKRUSURWUXVLRQV0ROGIODVKRUSURWUXVLRQVVKDOOQRWH[FHHGPPSHUVLGH  'LPHQVLRQLQJDQGWROHUDQFLQJSHU$60(
DSPIC33FJ64GS606-I/PT
物料型号: - dsPIC33FJ32GS406/606/608/610 和 dsPIC33FJ64GS406/606/608/610

器件简介: - 这些是Microchip Technology Inc.生产的16位数字信号控制器,具有高速PWM、ADC和比较器等特性。

引脚分配: - 引脚分配在文档中有详细的表格说明,例如64-Lead QFN、64-Lead TQFP、80-Lead TQFP、100-Lead TQFP等不同封装的引脚分配情况。

参数特性: - 文档提供了详细的电气特性表,包括最大功耗、工作电流、空闲电流、掉电电流等参数,以及它们的最小、典型和最大值。

功能详解: - 文档详细介绍了各个功能模块,如PWM模块、ADC模块、比较器模块、I2C模块、SPI模块、UART模块等,以及它们的配置和操作方法。

应用信息: - 这些器件适用于多种应用,如开关模式电源(SMPS)等,具体的应用示例和设计资源可以在Microchip的官网上找到。

封装信息: - 封装信息包括不同的物理尺寸和引脚排列,例如64-Lead QFN、64-Lead TQFP、80-Lead TQFP、100-Lead TQFP等。
DSPIC33FJ64GS606-I/PT 价格&库存

很抱歉,暂时无法提供与“DSPIC33FJ64GS606-I/PT”相匹配的价格&库存,您可以联系我们找货

免费人工找货