0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
DSPIC33FJ64MC506A-I/PT

DSPIC33FJ64MC506A-I/PT

  • 厂商:

    ACTEL(微芯科技)

  • 封装:

    TQFP64

  • 描述:

    IC MCU 16BIT 64KB FLASH 64TQFP

  • 数据手册
  • 价格&库存
DSPIC33FJ64MC506A-I/PT 数据手册
dsPIC33FJXXXMCX06A/X08A/X10A 16-bit Digital Signal Controllers (up to 256 KB Flash and 30 KB SRAM) with Motor Control and Advanced Analog Operating Conditions Timers/Output Compare/Input Capture • 3.0V to 3.6V, -40ºC to +150ºC, DC to 20 MIPS • 3.0V to 3.6V, -40ºC to +125ºC, DC to 40 MIPS • Up to nine 16-bit timers/counters. Can pair up to make four 32-bit timers. • Eight Output Compare modules configurable as timers/counters • Eight Input Capture modules Core: 16-bit dsPIC33F CPU • • • • Code-efficient (C and Assembly) architecture Two 40-bit wide accumulators Single-cycle (MAC/MPY) with dual data fetch Single-cycle mixed-sign MUL plus hardware divide Communication Interfaces • Two UART modules (10 Mbps) - With support for LIN 2.0 protocols and IrDA® • Two 4-wire SPI modules (15 Mbps) • Up to two I2C™ modules (up to 1 Mbaud) with SMBus support • Up to two Enhanced CAN (ECAN) modules (1 Mbaud) with 2.0B support • Quadrature Encoder Interface (QEI) module • Data Converter Interface (DCI) module with I2S codec support Clock Management • • • • • ±2% internal oscillator Programmable PLLs and oscillator clock sources Fail-Safe Clock Monitor (FSCM) Independent Watchdog Timer (WDT) Fast wake-up and start-up Power Management Input/Output • Low-power management modes (Sleep, Idle, Doze) • Integrated Power-on Reset and Brown-out Reset • 1.35 mA/MHz dynamic current (typical) • 55 μA IPD current (typical) • Sink/Source up to 10 mA (pin specific) for standard VOH/VOL, up to 16 mA (pin specific) for nonstandard VOH1 • 5V-tolerant pins • Selectable open drain, pull-ups, and pull-downs • Up to 5 mA overvoltage clamp current • External interrupts on all I/O pins Motor Control PWM • • • • Up to four PWM generators with eight outputs Dead Time for rising and falling edges 12.5 ns PWM resolution PWM support for Motor Control: BLDC, PMSM, ACIM, and SRM • Programmable Fault inputs • Flexible trigger for ADC conversions and configurations Qualification and Class B Support • AEC-Q100 REVG (Grade 1 -40ºC to +125ºC) • AEC-Q100 REVG (Grade 0 -40ºC to +150ºC) • Class B Safety Library, IEC 60730 Debugger Development Support Advanced Analog Features • • • • • Two ADC modules: - Configurable as 10-bit, 1.1 Msps with four S&H or 12-bit, 500 ksps with one S&H - 18 analog inputs on 64-pin devices and up to 32 analog inputs on 100-pin devices • Flexible and independent ADC trigger sources In-circuit and in-application programming Two program and two complex data breakpoints IEEE 1149.2-compatible (JTAG) boundary scan Trace and run-time watch Packages Type QFN Pin Count 64 Contact Lead/Pitch 0.50 I/O Pins 53 Dimensions 9x9x0.9 Note: All dimensions are in millimeters (mm) unless specified.  2009-2012 Microchip Technology Inc. TQFP TQFP TQFP 64 0.50 53 10x10x1 80 0.50 69 12x12x1 100 0.40 85 14x14x1 DS70594D-page 1 dsPIC33FJXXXMCX06A/X08A/X10A The device names, pin counts, memory sizes and peripheral availability of each device are listed below. The following pages show their pinout diagrams. dsPIC33F PRODUCT FAMILIES The dsPIC33FJXXXMCX06A/X08A/X10A family of devices supports a variety of motor control applications, such as brushless DC motors, single and 3-phase induction motors and switched reluctance motors. The dsPIC33F Motor Control products are also well-suited for Uninterrupted Power Supply (UPS), inverters, Switched mode power supplies, power factor correction and also for controlling the power management module in servers, telecommunication equipment and other industrial equipment. Timer 16-bit Input Capture Output Compare Std. PWM Motor Control PWM Quadrature Encoder Interface Codec Interface ADC UART SPI 2 I C™ Enhanced CAN I/O Pins (Max)(2) Packages dsPIC33FJXXXMCX06A/X08A/X10A Controller Families dsPIC33FJ64MC506A 64 64 8 9 8 8 8 ch 1 0 1 ADC, 16 ch 2 2 2 1 53 PT, MR dsPIC33FJ64MC508A 80 64 8 9 8 8 8 ch 1 0 1 ADC, 18 ch 2 2 2 1 69 PT dsPIC33FJ64MC510A 100 64 8 9 8 8 8 ch 1 0 1 ADC, 24 ch 2 2 2 1 85 PF, PT dsPIC33FJ64MC706A 64 64 16 9 8 8 8 ch 1 0 2 ADC, 16 ch 2 2 2 1 53 PT, MR dsPIC33FJ64MC710A 100 64 16 9 8 8 8 ch 1 0 2 ADC, 24 ch 2 2 2 2 85 PF, PT dsPIC33FJ128MC506A 64 128 8 9 8 8 8 ch 1 0 1 ADC, 16 ch 2 2 2 1 53 PT, MR dsPIC33FJ128MC510A 100 128 8 9 8 8 8 ch 1 0 1 ADC, 24 ch 2 2 2 1 85 PF, PT dsPIC33FJ128MC706A 64 128 16 9 8 8 8 ch 1 0 2 ADC, 16 ch 2 2 2 1 53 PT, MR dsPIC33FJ128MC708A 80 128 16 9 8 8 8 ch 1 0 2 ADC, 18 ch 2 2 2 2 69 PT dsPIC33FJ128MC710A 100 128 16 9 8 8 8 ch 1 0 2 ADC, 24 ch 2 2 2 2 85 PF, PT dsPIC33FJ256MC510A 100 256 16 9 8 8 8 ch 1 0 1 ADC, 24 ch 2 2 2 1 85 PF, PT dsPIC33FJ256MC710A 100 256 30 9 8 8 8 ch 1 0 2 ADC, 24 ch 2 2 2 2 85 PF, PT Device Note 1: 2: Program Flash RAM Pins Memory (Kbyte)(1) (Kbyte) RAM size is inclusive of 2 Kbytes DMA RAM. Maximum I/O pin count includes pins shared by the peripheral functions. DS70594D-page 2  2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A Pin Diagrams 64-Pin QFN(1) PWM3L/RE4 PWM2H/RE3 PWM2L/RE2 PWM1H/RE1 PWM1L/RE0 C1TX/RF1 C1RX/RF0 VDD VCAP OC8/UPDN/CN16/RD7 OC7/CN15/RD6 OC6/IC6/CN14/RD5 OC5/IC5/CN13/RD4 OC4/RD3 OC3/RD2 OC2/RD1 = Pins are up to 5V tolerant 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 PWM3H/RE5 PWM4L/RE6 PWM4H/RE7 SCK2/CN8/RG6 SDI2/CN9/RG7 SDO2/CN10/RG8 MCLR SS2/CN11/RG9 VSS VDD AN5/QEB/IC8/CN7/RB5 AN4/QEA/IC7/CN6/RB4 AN3/INDX/CN5/RB3 AN2/SS1/CN4/RB2 PGEC3/AN1/VREF-/CN3/RB1 PGED3/AN0/VREF+/CN2/RB0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 dsPIC33FJ128MC506A dsPIC33FJ64MC506A dsPIC33FJ128MC706A dsPIC33FJ64MC706A 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 PGEC2/SOSCO/T1CK/CN0/RC14 PGED2/SOSCI/T4CK/CN1/RC13 OC1/RD0 IC4/INT4/RD11 IC3/INT3/RD10 IC2/U1CTS/FLTB/INT2/RD9 IC1/FLTA/INT1/RD8 VSS OSC2/CLKO/RC15 OSC1/CLKIN/RC12 VDD SCL1/RG2 SDA1/RG3 U1RTS/SCK1/INT0/RF6 U1RX/SDI1/RF2 U1TX/SDO1/RF3 PGEC1/AN6/OCFA/RB6 PGED1/AN7/RB7 AVDD AVSS U2CTS/AN8/RB8 AN9/RB9 TMS/AN10/RB10 TDO/AN11/RB11 VSS VDD TCK/AN12/RB12 TDI/AN13/RB13 U2RTS/AN14/RB14 AN15/OCFB/CN12/RB15 U2RX/SDA2/CN17/RF4 U2TX/SCL2/CN18/RF5 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Note 1: The metal plane at the bottom of the device is not connected to any pins and should be connected to VSS externally.  2009-2012 Microchip Technology Inc. DS70594D-page 3 dsPIC33FJXXXMCX06A/X08A/X10A Pin Diagrams (Continued) 64-Pin TQFP 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 PWM3L/RE4 PWM2H/RE3 PWM2L/RE2 PWM1H/RE1 PWM1L/RE0 C1TX/RF1 C1RX/RF0 VDD VCAP OC8/UPDN/CN16/RD7 OC7/CN15/RD6 OC6/IC6/CN14/RD5 OC5/IC5/CN13/RD4 OC4/RD3 OC3/RD2 OC2/RD1 = Pins are up to 5V tolerant 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 dsPIC33FJ128MC506A dsPIC33FJ256MC506A dsPIC33FJ128MC706A dsPIC33FJ64MC706A 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 PGEC2/SOSCO/T1CK/CN0/RC14 PGED2/SOSCI/T4CK/CN1/RC13 OC1/RD0 IC4/INT4/RD11 IC3/INT3/RD10 IC2/U1CTS/FLTB/INT2/RD9 IC1/FLTA/INT1/RD8 VSS OSC2/CLKO/RC15 OSC1/CLKIN/RC12 VDD SCL1/RG2 SDA1/RG3 U1RTS/SCK1/INT0/RF6 U1RX/SDI1/RF2 U1TX/SDO1/RF3 PGEC1/AN6/OCFA/RB6 PGED1/AN7/RB7 AVDD AVSS U2CTS/AN8/RB8 AN9/RB9 TMS/AN10/RB10 TDO/AN11/RB11 VSS VDD TCK/AN12/RB12 TDI/AN13/RB13 U2RTS/AN14/RB14 AN15/OCFB/CN12/RB15 U2RX/SDA2/CN17/RF4 U2TX/SCL2/CN18/RF5 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 PWM3H/RE5 PWM4L/RE6 PWM4H/RE7 SCK2/CN8/RG6 SDI2/CN9/RG7 SDO2/CN10/RG8 MCLR SS2/CN11/RG9 VSS VDD AN5/QEB/IC8/CN7/RB5 AN4/QEA/IC7/CN6/RB4 AN3/INDX/CN5/RB3 AN2/SS1/CN4/RB2 PGEC3/AN1/VREF-/CN3/RB1 PGED3/AN0/VREF+/CN2/RB0 DS70594D-page 4  2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A Pin Diagrams (Continued) = Pins are up to 5V tolerant IC5/RD12 OC4/RD3 OC3/RD2 OC2/RD1 63 62 61 OC6/CN14/RD5 OC5/CN13/RD4 IC6/CN19/RD13 OC7/CN15/RD6 C1TX/RF1 C1RX/RF0 VDD VCAP OC8/CN16/UPDN/RD7 75 74 73 72 71 70 69 68 67 66 65 64 PWM2L/RE2 PWM1H/RE1 PWM1L/RE0 RG0 RG1 80 79 78 77 76 PWM3L/RE4 PWM2H/RE3 80-Pin TQFP PWM3H/RE5 1 60 PGEC2/SOSCO/T1CK/CN0/RC14 PWM4L/RE6 2 59 PGED2/SOSCI/CN1/RC13 OC1/RD0 PWM4H/RE7 3 58 AN16/T2CK/T7CK/RC1 4 57 IC4/RD11 AN17/T3CK/T6CK/RC2 5 56 IC3/RD10 SCK2/CN8/RG6 6 55 IC2/RD9 SDI2/CN9/RG7 7 54 IC1/RD8 SDO2/CN10/RG8 8 53 SDA2/INT4/RA3 MCLR 9 52 SS2/CN11/RG9 VSS 10 51 SCL2/INT3/RA2 VSS 50 OSC2/CLKO/RC15 VDD 12 49 OSC1/CLKIN/RC12 TMS/FLTA/INT1/RE8 13 14 48 VDD 47 SCL1/RG2 AN5/QEB/CN7/RB5 AN4/QEA/CN6/RB4 15 46 SDA1/RG3 16 45 SCK1/INT0/RF6 AN3/INDX/CN5/RB3 17 44 SDI1/RF7 AN2/SS1/CN4/RB2 PGEC3/AN1/CN3/RB1 18 43 SDO1/RF8 19 42 U1RX/RF2 PGED3/AN0/CN2/RB0 20 41 U1TX/RF3 30 31 32 33 34 35 36 37 38 39 40 VDD TCK/AN12/RB12 TDI/AN13/RB13 U2RTS/AN14/RB14 AN15/OCFB/CN12/RB15 IC7/U1CTS/CN20/RD14 IC8/U1RTS/CN21/RD15 U2RX/CN17/RF4 U2TX/CN18/RF5 27 U2CTS/AN8/RB8 VSS 26 AVSS AN11/RB11 25 AVDD 29 24 28 23 VREF-/RA9 VREF+/RA10 AN9/RB9 22 PGED1/AN7/RB7  2009-2012 Microchip Technology Inc. AN10/RB10 21 PGEC1/AN6/OCFA/RB6 TDO/FLTB/INT2/RE9 dsPIC33FJ256MC508A 11 DS70594D-page 5 dsPIC33FJXXXMCX06A/X08A/X10A Pin Diagrams (Continued) = Pins are up to 5V tolerant OC2/RD1 IC5/RD12 OC4/RD3 OC3/RD2 OC8/CN16/UPDN/RD7 OC7/CN15/RD6 OC6/CN14/RD5 OC5/CN13/RD4 IC6/CN19/RD13 CRX2/RG0 C2TX/RG1 C1TX/RF1 C1RX/RF0 VDD VCAP PWM2L/RE2 PWM1H/RE1 PWM1L/RE0 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 PWM3L/RE4 PWM2H/RE3 80-Pin TQFP PWM3H/RE5 1 60 PGEC2/SOSCO/T1CK/CN0/RC14 PWM4L/RE6 2 59 PGED2/SOSCI/CN1/RC13 OC1/RD0 PWM4H/RE7 3 58 AN16/T2CK/T7CK/RC1 4 57 AN17/T3CK/T6CK/RC2 SCK2/CN8/RG6 5 56 IC4/RD11 IC3/RD10 6 55 IC2/RD9 SDI2/CN9/RG7 SDO2/CN10/RG8 7 54 IC1/RD8 8 53 SDA2/INT4/RA3 MCLR 9 52 SCL2/INT3/RA2 SS2/CN11/RG9 10 51 VSS VSS 11 50 OSC2/CLKO/RC15 VDD 12 49 OSC1/CLKIN/RC12 TMS/FLTA/INT1/RE8 48 VDD TDO/FLTB/INT2/RE9 13 14 47 SCL1/RG2 AN5/QEB/CN7/RB5 15 46 SDA1/RG3 AN4/QEA/CN6/RB4 16 45 SCK1/INT0/RF6 AN3/INDX/CN5/RB3 17 44 SDI1/RF7 AN2/SS1/CN4/RB2 18 43 SDO1/RF8 PGEC3/AN1/CN3/RB1 PGED3/AN0/CN2/RB0 19 42 U1RX/RF2 20 41 U1TX/RF3 DS70594D-page 6 30 31 32 33 34 35 36 37 38 39 40 VDD TCK/AN12/RB12 TDI/AN13/RB13 U2RTS/AN14/RB14 AN15/OCFB/CN12/RB15 IC7/U1CTS/CN20/RD14 IC8/U1RTS/CN21/RD15 U2RX/CN17/RF4 U2TX/CN18/RF5 27 U2CTS/AN8/RB8 VSS 26 AVSS 29 25 AVDD AN11/RB11 24 28 23 VREF-/RA9 VREF+/RA10 AN9/RB9 22 PGED1/AN7/RB7 AN10/RB10 21 PGEC1/AN6/OCFA/RB6 dsPIC33FJ128MC708A  2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A Pin Diagrams (Continued) 100-Pin TQFP RG15 VDD PWM3H/RE5 PWM4L/RE6 PWM4H/RE7 AN16/T2CK/T7CK/RC1 AN17/T3CK/T6CK/RC2 AN18/T4CK/T9CK/RC3 AN19/T5CK/T8CK/RC4 SCK2/CN8/RG6 SDI2/CN9/RG7 SDO2/CN10/RG8 MCLR SS2/CN11/RG9 VSS VDD TMS/RA0 AN20/FLTA/INT1/RE8 AN21/FLTB/INT2/RE9 AN5/QEB/CN7/RB5 AN4/QEA/CN6/RB4 AN3/INDX/CN5/RB3 AN2/SS1/CN4/RB2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 75 VSS 74 73 PGEC2/SOSCO/T1CK/CN0/RC14 72 OC1/RD0 IC4/RD11 71 70 69 68 67 66 dsPIC33FJ64MC510A PGED2/SOSCI/CN1/RC13 IC3/RD10 IC2/RD9 IC1/RD8 INT4/RA15 65 64 INT3/RA14 VSS OSC2/CLKO/RC15 63 62 61 OSC1/CLKIN/RC12 VDD TDO/RA5 60 59 58 57 56 TDI/RA4 SDA2/RA3 SCL2/RA2 55 54 53 52 51 SCL1/RG2 SDA1/RG3 SCK1/INT0/RF6 SDI1/RF7 SDO1/RF8 U1RX/RF2 U1TX/RF3 PGEC1/AN6/OCFA/RB6 PGED1/AN7/RB7 VREF-/RA9 VREF+/RA10 AVDD AVSS AN8/RB8 AN9/RB9 AN10/RB10 AN11/RB11 VSS VDD TCK/RA1 U2RTS/RF13 U2CTS/RF12 AN12/RB12 AN13/RB13 AN14/RB14 AN15/OCFB/CN12/RB15 VSS VDD IC7/U1CTS/CN20/RD14 IC8/U1RTS/CN21/RD15 U2RX/CN17/RF4 U2TX/CN18/RF5 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 PGEC3/AN1/CN3/RB1 PGED3/AN0/CN2/RB0 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 PWM3L/RE4 PWM2H/RE3 PWM2L/RE2 RG13 RG12 RG14 PWM1H/RE1 PWM1L/RE0 AN23/CN23/RA7 AN22/CN22/RA6 RG0 RG1 C1TX/RF1 C1RX/RF0 VDD VCAP OC8/UPDN//CN16/RD7 OC7/CN15/RD6 OC6/CN14/RD5 OC5/CN13/RD4 IC6/CN19/RD13 IC5/RD12 OC4/RD3 OC3/RD2 OC2/RD1 = Pins are up to 5V tolerant  2009-2012 Microchip Technology Inc. DS70594D-page 7 dsPIC33FJXXXMCX06A/X08A/X10A Pin Diagrams (Continued) 100-Pin TQFP RG15 VDD PWM3H/RE5 PWM4L/RE6 PWM4H/RE7 AN16/T2CK/T7CK/RC1 AN17/T3CK/T6CK/RC2 AN18/T4CK/T9CK/RC3 AN19/T5CK/T8CK/RC4 SCK2/CN8/RG6 SDI2/CN9/RG7 SDO2/CN10/RG8 MCLR SS2/CN11/RG9 VSS VDD TMS/RA0 AN20/FLTA/INT1/RE8 AN21/FLTB/INT2/RE9 AN5/QEB/CN7/RB5 AN4/QEA/CN6/RB4 AN3/INDX/CN5/RB3 AN2/SS1/CN4/RB2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 75 74 VSS 73 72 PGED2/SOSCI/CN1/RC13 OC1/RD0 IC4/RD11 IC3/RD10 IC2/RD9 71 70 69 68 67 66 65 64 dsPIC33FJ128MC510A dsPIC33FJ256MC510A 63 62 61 60 59 58 57 56 55 54 53 52 51 PGEC2/SOSCO/T1CK/CN0/RC14 IC1/RD8 INT4/RA15 INT3/RA14 VSS OSC2/CLKO/RC15 OSC1/CLKIN/RC12 VDD TDO/RA5 TDI/RA4 SDA2/RA3 SCL2/RA2 SCL1/RG2 SDA1/RG3 SCK1/INT0/RF6 SDI1/RF7 SDO1/RF8 U1RX/RF2 U1TX/RF3 PGEC1/AN6/OCFA/RB6 PGED1/AN7/RB7 VREF-/RA9 VREF+/RA10 AVDD AVSS AN8/RB8 AN9/RB9 AN10/RB10 AN11/RB11 VSS VDD TCK/RA1 U2RTS/RF13 U2CTS/RF12 AN12/RB12 AN13/RB13 AN14/RB14 AN15/OCFB/CN12/RB15 VSS VDD IC7/U1CTS/CN20/RD14 IC8/U1RTS/CN21/RD15 U2RX/CN17/RF4 U2TX/CN18/RF5 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 PGEC3/AN1/CN3/RB1 PGED3/AN0/CN2/RB0 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 PWM3L/RE4 PWM2H/RE3 PWM2L/RE2 RG13 RG12 RG14 PWM1H/RE1 PWM1L/RE0 AN23/CN23/RA7 AN22/CN22/RA6 RG0 RG1 C1TX/RF1 C1RX/RF0 VDD VCAP OC8/UPDN//CN16/RD7 OC7/CN15/RD6 OC6/CN14/RD5 OC5/CN13/RD4 IC6/CN19/RD13 IC5/RD12 OC4/RD3 OC3/RD2 OC2/RD1 = Pins are up to 5V tolerant DS70594D-page 8  2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A Pin Diagrams (Continued) 100-Pin TQFP 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 PWM3L/RE4 PWM2H/RE3 PWM2L/RE2 RG13 RG12 RG14 PWM1H/RE1 PWM1L/RE0 AN23/CN23/RA7 AN22/CN22/RA6 C2RX/RG0 C2TX/RG1 C1TX/RF1 C1RX/RF0 VDD VCAP OC8/UPDN//CN16/RD7 OC7/CN15/RD6 OC6/CN14/RD5 OC5/CN13/RD4 IC6/CN19/RD13 IC5/RD12 OC4/RD3 OC3/RD2 OC2/RD1 = Pins are up to 5V tolerant RG15 VDD PWM3H/RE5 PWM4L/RE6 PWM4H/RE7 AN16/T2CK/T7CK/RC1 AN17/T3CK/T6CK/RC2 AN18/T4CK/T9CK/RC3 AN19/T5CK/T8CK/RC4 SCK2/CN8/RG6 SDI2/CN9/RG7 SDO2/CN10/RG8 MCLR SS2/CN11/RG9 VSS VDD TMS/RA0 AN20/FLTA/INT1/RE8 AN21/FLTB/INT2/RE9 AN5/QEB/CN7/RB5 AN4/QEA/CN6/RB4 AN3/INDX/CN5/RB3 AN2/SS1/CN4/RB2 PGEC3/AN1/CN3/RB1 75 2 3 4 5 6 7 8 9 10 11 12 74 73 13 14 15 16 17 18 19 20 21 22 23 24 25 72 71 70 69 68 67 66 dsPIC33FJ64MC710A dsPIC33FJ128MC710A dsPIC33FJ256MC710A 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 VSS PGEC2/SOSCO/T1CK/CN0/RC14 PGED2/SOSCI/CN1/RC13 OC1/RD0 IC4/RD11 IC3/RD10 IC2/RD9 IC1/RD8 INT4/RA15 INT3/RA14 VSS OSC2/CLKO/RC15 OSC1/CLKIN/RC12 VDD TDO/RA5 TDI/RA4 SDA2/RA3 SCL2/RA2 SCL1/RG2 SDA1/RG3 SCK1/INT0/RF6 SDI1/RF7 SDO1/RF8 U1RX/RF2 U1TX/RF3 PGEC1/AN6/OCFA/RB6 PGED1/AN7/RB7 VREF-/RA9 VREF+/RA10 AVDD AVSS AN8/RB8 AN9/RB9 AN10/RB10 AN11/RB11 VSS VDD TCK/RA1 U2RTS/RF13 U2CTS/RF12 AN12/RB12 AN13/RB13 AN14/RB14 AN15/OCFB/CN12/RB15 VSS VDD IC7/U1CTS/CN20/RD14 IC8/U1RTS/CN21/RD15 U2RX/CN17/RF4 U2TX/CN18/RF5 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 PGED3/AN0/CN2/RB0 1  2009-2012 Microchip Technology Inc. DS70594D-page 9 dsPIC33FJXXXMCX06A/X08A/X10A Table of Contents dsPIC33F Product Families ................................................................................................................................................................... 2 1.0 Device Overview ........................................................................................................................................................................ 13 2.0 Guidelines for Getting Started with 16-bit Digital Signal Controllers .......................................................................................... 19 3.0 CPU ............................................................................................................................................................................................ 23 4.0 Memory Organization ................................................................................................................................................................. 35 5.0 Flash Program Memory .............................................................................................................................................................. 73 6.0 Reset ......................................................................................................................................................................................... 79 7.0 Interrupt Controller ..................................................................................................................................................................... 85 8.0 Direct Memory Access (DMA) .................................................................................................................................................. 133 9.0 Oscillator Configuration ............................................................................................................................................................ 143 10.0 Power-Saving Features ............................................................................................................................................................ 153 11.0 I/O Ports ................................................................................................................................................................................... 161 12.0 Timer1 ...................................................................................................................................................................................... 165 13.0 Timer2/3, Timer4/5, Timer6/7 and Timer8/9 ............................................................................................................................ 167 14.0 Input Capture............................................................................................................................................................................ 173 15.0 Output Compare ....................................................................................................................................................................... 175 16.0 Motor Control PWM Module ..................................................................................................................................................... 179 17.0 Quadrature Encoder Interface (QEI) Module ........................................................................................................................... 193 18.0 Serial Peripheral Interface (SPI)............................................................................................................................................... 197 19.0 Inter-Integrated Circuit (I2C™) ................................................................................................................................................. 203 20.0 Universal Asynchronous Receiver Transmitter (UART) ........................................................................................................... 211 21.0 Enhanced CAN Module ............................................................................................................................................................ 217 22.0 10-bit/12-bit Analog-to-Digital Converter (ADC) ....................................................................................................................... 245 23.0 Special Features ...................................................................................................................................................................... 259 24.0 Instruction Set Summary .......................................................................................................................................................... 267 25.0 Development Support............................................................................................................................................................... 275 26.0 Electrical Characteristics .......................................................................................................................................................... 279 27.0 High Temperature Electrical Characteristics ............................................................................................................................ 329 28.0 DC and AC Device Characteristics Graphs.............................................................................................................................. 339 29.0 Packaging Information.............................................................................................................................................................. 343 Appendix A: Migrating from dsPIC33FJXXXMCX06/X08/X10 Devices to dsPIC33FJXXXMCX06A/X08A/X10A Devices ............... 357 Appendix B: Revision History............................................................................................................................................................. 358 Index ................................................................................................................................................................................................. 363 The Microchip Web Site ..................................................................................................................................................................... 369 Customer Change Notification Service .............................................................................................................................................. 369 Customer Support .............................................................................................................................................................................. 369 Reader Response .............................................................................................................................................................................. 370 Product Identification System............................................................................................................................................................. 371 DS70594D-page 10  2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A TO OUR VALUED CUSTOMERS It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced. If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via Email at docerrors@microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We welcome your feedback. Most Current Data Sheet To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at: http://www.microchip.com You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000). Errata An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies. To determine if an errata sheet exists for a particular device, please check with one of the following: • Microchip’s Worldwide Web site; http://www.microchip.com • Your local Microchip sales office (see last page) When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using. Customer Notification System Register on our web site at www.microchip.com to receive the most current information on all of our products.  2009-2012 Microchip Technology Inc. DS70594D-page 11 dsPIC33FJXXXMCX06A/X08A/X10A Referenced Sources This device data sheet is based on the following individual chapters of the “dsPIC33F/PIC24H Family Reference Manual”. These documents should be considered as the general reference for the operation of a particular module or device feature. Note: To access the documents listed below, browse to the documentation section of the dsPIC33FJ256MC710A product page on the Microchip web site (www.microchip.com) or select a family reference manual section from the following list. In addition to parameters, features, and other documentation, the resulting page provides links to the related family reference manual sections. • • • • • • • • • • • • • • • • • • • • • • • • • Section 1. “Introduction” (DS70197) Section 2. “CPU” (DS70204) Section 3. “Data Memory” (DS70202) Section 4. “Program Memory” (DS70203) Section 5. “Flash Programming” (DS70191) Section 6. “Interrupts” (DS70184) Section 7. “Oscillator” (DS70186) Section 8. “Reset” (DS70192) Section 9. “Watchdog Timer and Power-Saving Modes” (DS70196) Section 10. “I/O Ports” (DS70193) Section 11. “Timers” (DS70205) Section 12. “Input Capture” (DS70198) Section 13. “Output Compare” (DS70209) Section 14. “Motor Control PWM” (DS70187) Section 15. “Quadrature Encoder Interface (QEI)” (DS70208) Section 16. “Analog-to-Digital Converter (ADC)” (DS70183) Section 17. “UART” (DS70188) Section 18. “Serial Peripheral Interface (SPI)” (DS70206) Section 19. “Inter-Integrated Circuit™ (I2C™)” (DS70195) Section 20. “Data Converter Interface (DCI)” (DS70288) Section 21. “Enhanced Controller Area Network (ECAN™)” (DS70185) Section 22. “Direct Memory Access (DMA)” (DS70182) Section 23. “CodeGuard™ Security” (DS70199) Section 24. “Programming and Diagnostics” (DS70207) Section 25. “Device Configuration” (DS70194) DS70594D-page 12  2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A 1.0 DEVICE OVERVIEW Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/X08A/ X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the “dsPIC33F/PIC24H Family Reference Manual”. Please see the Microchip web site (www.microchip.com) for the latest dsPIC33F/PIC24H Family Reference Manual sections. 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. This document contains device-specific information for the following devices: • • • • • • • • • • • • dsPIC33FJ64MC506A dsPIC33FJ64MC508A dsPIC33FJ64MC510A dsPIC33FJ64MC706A dsPIC33FJ64MC710A dsPIC33FJ128MC506A dsPIC33FJ128MC510A dsPIC33FJ128MC706A dsPIC33FJ128MC708A dsPIC33FJ128MC710A dsPIC33FJ256MC510A dsPIC33FJ256MC710A These features make this family suitable for a wide variety of high-performance, digital signal control applications. The devices are pin compatible with the PIC24H family of devices, and also share a very high degree of compatibility with the dsPIC30F family devices. This allows easy migration between device families as may be necessitated by the specific functionality, computational resource and system cost requirements of the application. The dsPIC33FJXXXMCX06A/X08A/X10A family of devices employs a powerful 16-bit architecture that seamlessly integrates the control features of a Microcontroller (MCU) with the computational capabilities of a Digital Signal Processor (DSP). The resulting functionality is ideal for applications that rely on high-speed, repetitive computations, as well as control. The DSP engine, dual 40-bit accumulators, hardware support for division operations, barrel shifter, 17 x 17 multiplier, a large array of 16-bit working registers and a wide variety of data addressing modes, together, provide the dsPIC33FJXXXMCX06A/X08A/X10A Central Processing Unit (CPU) with extensive mathematical processing capability. Flexible and deterministic interrupt handling, coupled with a powerful array of peripherals, renders the dsPIC33FJXXXMCX06A/X08A/X10A devices suitable for control applications. Further, Direct Memory Access (DMA) enables overhead-free transfer of data between several peripherals and a dedicated DMA RAM. Reliable, field programmable Flash program memory ensures scalability of applications that use dsPIC33FJXXXMCX06A/X08A/X10A devices. The dsPIC33FJXXXMCX06A/X08A/X10A includes devices with a wide range of pin counts (64, 80 and 100), different program memory sizes (64 Kbytes, 128 Kbytes and 256 Kbytes) and different RAM sizes (8 Kbytes, 16 Kbytes and 30 Kbytes).  2009-2012 Microchip Technology Inc. DS70594D-page 13 dsPIC33FJXXXMCX06A/X08A/X10A FIGURE 1-1: dsPIC33FJXXXMCX06A/X08A/X10A GENERAL BLOCK DIAGRAM PSV and Table Data Access Control Block Y Data Bus X Data Bus Interrupt Controller 16 8 PORTA 16 16 16 Data Latch Data Latch X RAM Y RAM Address Latch Address Latch DMA RAM 23 23 PCU PCH PCL Program Counter Loop Stack Control Control Logic Logic 23 PORTB DMA 16 16 16 Controller PORTC Address Generator Units Address Latch Program Memory EA MUX Data Latch 24 Instruction Reg Control Signals to Various Blocks Timing Generation FRC/LPRC Oscillators Precision Band Gap Reference Voltage Regulator VCAP Note: 16 PORTE 16 DSP Engine Power-up Timer Oscillator Start-up Timer Divide Support 16 x 16 W Register Array PORTF 16 Power-on Reset Watchdog Timer 16-Bit ALU Brown-out Reset VDD, VSS PWM IC1-8 Literal Data 16 Instruction Decode and Control OSC2/CLKO OSC1/CLKI PORTD ROM Latch OC/ PWM1-8 PORTG 16 MCLR QEI Timers 1-9 ADC1,2 ECAN1,2 CN1-23 SPI1,2 I2C1,2 UART1,2 Not all pins or features are implemented on all device pinout configurations. See pinout diagrams for the specific pins and features present on each device. DS70594D-page 14  2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A TABLE 1-1: PINOUT I/O DESCRIPTIONS Pin Type Buffer Type AN0-AN31 I Analog AVDD P P Positive supply for analog modules. This pin must be connected at all times. AVSS P P Ground reference for analog modules. CLKI CLKO I O CN0-CN23 I ST Input change notification inputs. Can be software programmed for internal weak pull-ups on all inputs. C1RX C1TX C2RX C2TX I O I O ST — ST — ECAN1 bus receive pin. ECAN1 bus transmit pin. ECAN2 bus receive pin. ECAN2 bus transmit pin. PGED1 PGEC1 PGED2 PGEC2 PGED3 PGEC3 I/O I I/O I I/O I ST ST ST ST ST ST Data I/O pin for Programming/Debugging Communication Channel 1. Clock input pin for Programming/Debugging Communication Channel 1. Data I/O pin for Programming/Debugging Communication Channel 2. Clock input pin for Programming/Debugging Communication Channel 2. Data I/O pin for Programming/Debugging Communication Channel 3. Clock input pin for Programming/Debugging Communication Channel 3. IC1-IC8 I ST Capture Inputs 1 through 8. INDX QEA I I ST ST QEB I ST Quadrature Encoder Index Pulse input. Quadrature Encoder Phase A input in QEI mode. Auxiliary timer external clock/ gate input in Timer mode. Quadrature Encoder Phase A input in QEI mode. Auxiliary timer external clock/ gate input in Timer mode. Position up/down counter direction state. Pin Name Description Analog input channels. ST/CMOS External clock source input. Always associated with OSC1 pin function. — Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with OSC2 pin function. UPDN O CMOS INT0 INT1 INT2 INT3 INT4 I I I I I ST ST ST ST ST External Interrupt 0. External Interrupt 1. External Interrupt 2. External Interrupt 3. External Interrupt 4. FLTA FLTB PWM1L PWM1H PWM2L PWM2H PWM3L PWM3H PWM4L PWM4H I I O O O O O O O O ST ST — — — — — — — — PWM Fault A input. PWM Fault B input. PWM1 low output. PWM1 high output. PWM2 low output. PWM2 high output. PWM3 low output. PWM3 high output. PWM4 low output. PWM4 high output. MCLR I/P ST Master Clear (Reset) input. This pin is an active-low Reset to the device. OCFA OCFB OC1-OC8 I I O ST ST — Compare Fault A input (for Compare Channels 1, 2, 3 and 4). Compare Fault B input (for Compare Channels 5, 6, 7 and 8). Compare outputs 1 through 8. OSC1 I OSC2 I/O ST/CMOS Oscillator crystal input. ST buffer when configured in RC mode; CMOS otherwise. — Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Legend: CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels  2009-2012 Microchip Technology Inc. Analog = Analog input O = Output P = Power I = Input DS70594D-page 15 dsPIC33FJXXXMCX06A/X08A/X10A TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED) Pin Type Buffer Type RA0-RA7 RA9-RA10 RA12-RA15 I/O I/O I/O ST ST ST PORTA is a bidirectional I/O port. RB0-RB15 I/O ST PORTB is a bidirectional I/O port. RC1-RC4 RC12-RC15 I/O I/O ST ST PORTC is a bidirectional I/O port. Pin Name Description RD0-RD15 I/O ST PORTD is a bidirectional I/O port. RE0-RE9 I/O ST PORTE is a bidirectional I/O port. RF0-RF8 RF12-RF13 I/O ST PORTF is a bidirectional I/O port. RG0-RG3 RG6-RG9 RG12-RG15 I/O I/O I/O ST ST ST PORTG is a bidirectional I/O port. SCK1 SDI1 SDO1 SS1 SCK2 SDI2 SDO2 SS2 I/O I O I/O I/O I O I/O ST ST — ST ST ST — ST Synchronous serial clock input/output for SPI1. SPI1 data in. SPI1 data out. SPI1 slave synchronization or frame pulse I/O. Synchronous serial clock input/output for SPI2. SPI2 data in. SPI2 data out. SPI2 slave synchronization or frame pulse I/O. SCL1 SDA1 SCL2 SDA2 I/O I/O I/O I/O ST ST ST ST Synchronous serial clock input/output for I2C1. Synchronous serial data input/output for I2C1. Synchronous serial clock input/output for I2C2. Synchronous serial data input/output for I2C2. SOSCI SOSCO I O TMS TCK TDI TDO I I I O ST ST ST — JTAG Test mode select pin. JTAG test clock input pin. JTAG test data input pin. JTAG test data output pin. T1CK T2CK T3CK T4CK T5CK T6CK T7CK T8CK T9CK I I I I I I I I I ST ST ST ST ST ST ST ST ST Timer1 external clock input. Timer2 external clock input. Timer3 external clock input. Timer4 external clock input. Timer5 external clock input. Timer6 external clock input. Timer7 external clock input. Timer8 external clock input. Timer9 external clock input. U1CTS U1RTS U1RX U1TX U2CTS U2RTS U2RX U2TX I O I O I O I O ST — ST — ST — ST — UART1 clear to send. UART1 ready to send. UART1 receive. UART1 transmit. UART2 clear to send. UART2 ready to send. UART2 receive. UART2 transmit. VDD P — Positive supply for peripheral logic and I/O pins. VCAP P — CPU logic filter capacitor connection. ST/CMOS 32.768 kHz low-power oscillator crystal input; CMOS otherwise. — 32.768 kHz low-power oscillator crystal output. Legend: CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels DS70594D-page 16 Analog = Analog input O = Output P = Power I = Input  2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED) Pin Type Buffer Type VSS P — VREF+ I Analog Analog voltage reference (high) input. VREF- I Analog Analog voltage reference (low) input. Pin Name Description Ground reference for logic and I/O pins. Legend: CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels  2009-2012 Microchip Technology Inc. Analog = Analog input O = Output P = Power I = Input DS70594D-page 17 dsPIC33FJXXXMCX06A/X08A/X10A NOTES: DS70594D-page 18  2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A 2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT DIGITAL SIGNAL CONTROLLERS Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/X08A/ X10A family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the “dsPIC33F/ PIC24H Family Reference Manual”, which is available from the Microchip web site (www.microchip.com). 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. 2.1 Basic Connection Requirements G ettin g star ted w ith t he dsPIC33FJXXXMCX06A/X08A/X10A family of 16-bit Digital Signal Controllers (DSC) requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected: • All VDD and VSS pins (see Section 2.2 “Decoupling Capacitors”) • All AVDD and AVSS pins (regardless if ADC module is not used) (see Section 2.2 “Decoupling Capacitors”) • VCAP (see Section 2.3 “CPU Logic Filter Capacitor Connection (VCAP)”) • MCLR pin (see Section 2.4 “Master Clear (MCLR) Pin”) • PGECx/PGEDx pins used for In-Circuit Serial Programming™ (ICSP™) and debugging purposes (see Section 2.5 “ICSP Pins”) • OSC1 and OSC2 pins when external oscillator source is used (see Section 2.6 “External Oscillator Pins”) 2.2 Decoupling Capacitors The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS is required. Consider the following criteria when using decoupling capacitors: • Value and type of capacitor: Recommendation of 0.1 F (100 nF), 10-20V. This capacitor should be a low-ESR and have resonance frequency in the range of 20 MHz and higher. It is recommended that ceramic capacitors be used. • Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length. • Handling high-frequency noise: If the board is experiencing high-frequency noise, upward of tens of MHz, add a second ceramic type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 F to 0.001 F. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 F in parallel with 0.001 F. • Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB track inductance. Additionally, the following pins may be required: • VREF+/VREF- pins used when external voltage reference for ADC module is implemented Note: The AVDD and AVSS pins must be connected independent of the ADC voltage reference source.  2009-2012 Microchip Technology Inc. DS70594D-page 19 dsPIC33FJXXXMCX06A/X08A/X10A FIGURE 2-1: RECOMMENDED MINIMUM CONNECTION 0.1 µF Ceramic 10 µF Tantalum R R1 VSS VDD 2.4 VCAP VDD • Device Reset • Device Programming and Debugging C dsPIC33F VSS VDD VSS VDD AVSS VDD AVDD VSS 0.1 µF Ceramic 0.1 µF Ceramic 0.1 µF Ceramic L1(1) Note 1: As an option, instead of a hard-wired connection, an inductor (L1) can be substituted between VDD and AVDD to improve ADC noise rejection. The inductor impedance should be less than 1 and the inductor capacity greater than 10 mA. Where: F CNV f = ------------2 1 f = ---------------------- 2 LC  Master Clear (MCLR) Pin The MCLR pin provides for two specific device functions: MCLR 0.1 µF Ceramic The placement of this capacitor should be close to the VCAP. It is recommended that the trace length not exceed one-quarter inch (6 mm). Refer to Section 23.2 “On-Chip Voltage Regulator” for details. (i.e., ADC conversion rate/2) During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements. For example, as shown in Figure 2-2, it is recommended that the capacitor, C, be isolated from the MCLR pin during programming and debugging operations. Place the components shown in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin. FIGURE 2-2: EXAMPLE OF MCLR PIN CONNECTIONS VDD 2 1 L =  ----------------------   2f C  R(1) R1(2) 2.2.1 TANK CAPACITORS On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits including DSCs to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 F to 47 F. 2.3 CPU Logic Filter Capacitor Connection (VCAP) JP MCLR dsPIC33F C Note 1: R  10 k is recommended. A suggested starting value is 10 k. Ensure that the MCLR pin VIH and VIL specifications are met. 2: R1  470 will limit any current flowing into MCLR from the external capacitor, C, in the event of MCLR pin breakdown, due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS). Ensure that the MCLR pin VIH and VIL specifications are met. A low-ESR (< 5 Ohms) capacitor is required on the VCAP pin, which is used to stabilize the voltage regulator output voltage. The VCAP pin must not be connected to VDD and must have a capacitor between 4.7 F and 10 F, 16V connected to ground. The type can be ceramic or tantalum. Refer to Section 26.0 “Electrical Characteristics” for additional information. DS70594D-page 20  2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A 2.5 ICSP Pins The PGECx and PGEDx pins are used for In-Circuit Serial Programming™ (ICSP™) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms. Pull-up resistors, series diodes and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the “dsPIC33F/ PIC24H Flash Programming Specification” (DS70152) for information on capacitive loading limits, and pin input voltage high (VIH) and input low (VIL) requirements. Ensure that the “Communication Channel Select” (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to the MPLAB® ICD 3 or REAL ICE™ in-circuit emulator. For more information on the ICD 3 and REAL ICE in-circuit emulator connection requirements, refer to the following documents that are available on the Microchip web site. • “Using MPLAB® ICD 3” (poster) (DS51765) • “MPLAB® ICD 3 Design Advisory” (DS51764) • “MPLAB® REAL ICE™ In-Circuit Emulator User’s Guide” (DS51616) • “Using MPLAB® REAL ICE™ In-Circuit Emulator” (poster) (DS51749)  2009-2012 Microchip Technology Inc. 2.6 External Oscillator Pins Many DSCs have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to Section 9.0 “Oscillator Configuration” for details). The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is shown in Figure 2-3. FIGURE 2-3: SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT Main Oscillator 13 Guard Ring 14 15 Guard Trace Secondary Oscillator 16 17 18 19 20 DS70594D-page 21 dsPIC33FJXXXMCX06A/X08A/X10A 2.7 Oscillator Value Conditions on Device Start-up If the PLL of the target device is enabled and configured for the device start-up oscillator, the maximum oscillator source frequency must be limited to  8 MHz for start-up with PLL enabled to comply with device PLL start-up conditions. This means that if the external oscillator frequency is outside this range, the application must start-up in the FRC mode first. The default PLL settings after a POR with an oscillator frequency outside this range will violate the device operating speed. Once the device powers up, the application firmware can initialize the PLL SFRs, CLKDIV and PLLDBF to a suitable value, and then perform a clock switch to the oscillator + PLL clock source. Note that clock switching must be enabled in the device Configuration Word. 2.8 Configuration of Analog and Digital Pins During ICSP Operations If the MPLAB ICD 3 or REAL ICE in-circuit emulator is selected as a debugger, it automatically initializes all of the A/D input pins (ANx) as “digital” pins by setting all bits in the AD1PCFGL register. DS70594D-page 22 The bits in this register that correspond to the A/D pins that are initialized by the MPLAB ICD 3 or REAL ICE in-circuit emulator, must not be cleared by the user application firmware; otherwise, communication errors will result between the debugger and the device. If your application needs to use certain A/D pins as analog input pins during the debug session, the user application must clear the corresponding bits in the AD1PCFGL register during initialization of the ADC module. When the MPLAB ICD 3 or REAL ICE in-circuit emulator is used as a programmer, the user application firmware must correctly configure the AD1PCFGL register. Automatic initialization of this register is only done during debugger operation. Failure to correctly configure the register(s) will result in all A/D pins being recognized as analog input pins, resulting in the port value being read as a logic ‘0’, which may affect user application functionality. 2.9 Unused I/Os Unused I/O pins should be configured as outputs and driven to a logic low state. Alternatively, connect a 1k to 10k resistor between VSS and the unused pins.  2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A 3.0 CPU Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/X08A/ X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 2. “CPU” (DS70204) in the “dsPIC33F/ PIC24H Family Reference Manual”, which is available from the Microchip web site (www.microchip.com). 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. The dsPIC33FJXXXMCX06A/X08A/X10A CPU module has a 16-bit (data) modified Harvard architecture with an enhanced instruction set, including significant support for DSP. The CPU has a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M x 24 bits of user program memory space. The actual amount of program memory implemented varies by device. A single-cycle instruction prefetch mechanism is used to help maintain throughput and provides predictable execution. All instructions execute in a single cycle, with the exception of instructions that change the program flow, the double word move (MOV.D) instruction and the table instructions. Overhead-free program loop constructs are supported using the DO and REPEAT instructions, both of which are interruptible at any point. The dsPIC33FJXXXMCX06A/X08A/X10A devices have sixteen, 16-bit working registers in the programmer’s model. Each of the working registers can serve as a data, address or address offset register. The 16th working register (W15) operates as a software Stack Pointer (SP) for interrupts and calls. The dsPIC33FJXXXMCX06A/X08A/X10A instruction set has two classes of instructions: MCU and DSP. These two instruction classes are seamlessly integrated into a single CPU. The instruction set includes many addressing modes and is designed for optimum ‘C’ compiler efficiency. For most instructions, the dsPIC33FJXXXMCX06A/X08A/X10A devices are capable of executing a data (or program data) memory read, a working register (data) read, a data memory write and a program (instruction) memory read per instruction cycle. As a result, three parameter instructions can be supported, allowing A + B = C operations to be executed in a single cycle. 3.1 Data Addressing Overview The data space can be addressed as 32K words or 64 Kbytes, and is split into two blocks referred to as X and Y data memory. Each memory block has its own independent Address Generation Unit (AGU). The MCU class of instructions operates solely through the X memory AGU, which accesses the entire memory map as one linear data space. Certain DSP instructions operate through the X and Y AGUs to support dual operand reads, which splits the data address space into two parts. The X and Y data space boundary is device-specific. Overhead-free circular buffers (Modulo Addressing mode) are supported in both X and Y address spaces. The Modulo Addressing removes the software boundary checking overhead for DSP algorithms. Furthermore, the X AGU circular addressing can be used with any of the MCU class of instructions. The X AGU also supports Bit-Reversed Addressing to greatly simplify input or output data reordering for radix-2 FFT algorithms. The upper 32 Kbytes of the data space memory map can optionally be mapped into program space at any 16K program word boundary defined by the 8-bit Program Space Visibility Page register (PSVPAG). The program to data space mapping feature lets any instruction access program space as if it were data space. The data space also includes 2 Kbytes of DMA RAM, which is primarily used for DMA data transfers but may be used as general purpose RAM. 3.2 DSP Engine Overview The DSP engine features a high-speed, 17-bit by 17-bit multiplier, a 40-bit ALU, two 40-bit saturating accumulators and a 40-bit bidirectional barrel shifter. The barrel shifter is capable of shifting a 40-bit value up to 16 bits right or left in a single cycle. The DSP instructions operate seamlessly with all other instructions and have been designed for optimal real-time performance. The MAC instruction and other associated instructions can concurrently fetch two data operands from memory while multiplying two W registers, and accumulating and optionally saturating the result in the same cycle. This instruction functionality requires that the RAM memory data space be split for these instructions and linear for all others. Data space partitioning is achieved in a transparent and flexible manner through dedicating certain working registers to each address space. A block diagram of the CPU is shown in Figure 3-1 and the programmer’s model for the dsPIC33FJXXXMCX06A/X08A/X10A is shown in Figure 3-2.  2009-2012 Microchip Technology Inc. DS70594D-page 23 dsPIC33FJXXXMCX06A/X08A/X10A 3.3 The dsPIC33FJXXXMCX06A/X08A/X10A devices support 16/16 and 32/16 divide operations, both fractional and integer. All divide instructions are iterative operations. They must be executed within a REPEAT loop, resulting in a total execution time of 19 instruction cycles. The divide operation can be interrupted during any of those 19 cycles without a loss of data. Special MCU Features The dsPIC33FJXXXMCX06A/X08A/X10A devices feature a 17-bit by 17-bit, single-cycle multiplier that is shared by both the MCU ALU and DSP engine. The multiplier can perform signed, unsigned and mixed sign multiplication. Using a 17-bit by 17-bit multiplier for 16-bit by 16-bit multiplication not only allows you to perform mixed sign multiplication, it also achieves accurate results for special operations, such as (-1.0) x (-1.0). FIGURE 3-1: A 40-bit barrel shifter is used to perform up to a 16-bit left or right shift in a single cycle. The barrel shifter can be used by both MCU and DSP instructions. dsPIC33FJXXXMCX06A/X08A/X10A CPU CORE BLOCK DIAGRAM PSV and Table Data Access Control Block Y Data Bus X Data Bus Interrupt Controller 8 16 23 23 PCU PCH PCL Program Counter Loop Stack Control Control Logic Logic 16 16 16 Data Latch Data Latch X RAM Y RAM Address Latch Address Latch 23 16 DMA RAM 16 DMA Controller Address Generator Units Address Latch 16 Program Memory EA MUX Data Latch ROM Latch 24 Control Signals to Various Blocks Instruction Reg Literal Data Instruction Decode and Control 16 16 16 DSP Engine Divide Support 16 x 16 W Register Array 16 16-Bit ALU 16 To Peripheral Modules DS70594D-page 24  2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A FIGURE 3-2: dsPIC33FJXXXMCX06A/X08A/X10A PROGRAMMER’S MODEL D15 D0 W0/WREG PUSH.S Shadow W1 DO Shadow W2 W3 Legend W4 DSP Operand Registers W5 W6 W7 Working Registers W8 W9 DSP Address Registers W10 W11 W12/DSP Offset W13/DSP Write Back W14/Frame Pointer W15/Stack Pointer Stack Pointer Limit Register SPLIM AD39 DSP Accumulators AD15 AD31 AD0 AccA AccB PC22 PC0 Program Counter 0 0 7 TBLPAG Data Table Page Address 7 0 PSVPAG Program Space Visibility Page Address 15 0 RCOUNT REPEAT Loop Counter 15 0 DCOUNT DO Loop Counter 22 0 DOSTART DO Loop Start Address DOEND DO Loop End Address 22 15 0 Core Configuration Register CORCON OA OB SA SB OAB SAB DA SRH  2009-2012 Microchip Technology Inc. DC IPL2 IPL1 IPL0 RA N OV Z C STATUS Register SRL DS70594D-page 25 dsPIC33FJXXXMCX06A/X08A/X10A 3.4 CPU Control Registers REGISTER 3-1: R-0 OA SR: CPU STATUS REGISTER R-0 R/C-0 R/C-0 OB SA(1) (1) SB R-0 OAB R/C-0 (4) SAB R -0 R/W-0 DA DC bit 15 bit 8 R/W-0(3) R/W-0(3) R/W-0(3) (2) IPL R-0 R/W-0 R/W-0 R/W-0 R/W-0 RA N OV Z C bit 7 bit 0 Legend: C = Clearable bit R = Readable bit U = Unimplemented bit, read as ‘0’ S = Settable bit W = Writable bit -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 OA: Accumulator A Overflow Status bit 1 = Accumulator A overflowed 0 = Accumulator A has not overflowed bit 14 OB: Accumulator B Overflow Status bit 1 = Accumulator B overflowed 0 = Accumulator B has not overflowed bit 13 SA: Accumulator A Saturation ‘Sticky’ Status bit(1) 1 = Accumulator A is saturated or has been saturated at some time 0 = Accumulator A is not saturated bit 12 SB: Accumulator B Saturation ‘Sticky’ Status bit(1) 1 = Accumulator B is saturated or has been saturated at some time 0 = Accumulator B is not saturated bit 11 OAB: OA || OB Combined Accumulator Overflow Status bit 1 = Accumulators A or B have overflowed 0 = Neither Accumulators A or B have overflowed bit 10 SAB: SA || SB Combined Accumulator ‘Sticky’ Status bit(4) 1 = Accumulators A or B are saturated or have been saturated at some time in the past 0 = Neither Accumulator A or B are saturated bit 9 DA: DO Loop Active bit 1 = DO loop in progress 0 = DO loop not in progress bit 8 DC: MCU ALU Half Carry/Borrow bit 1 = A carry-out from the 4th low-order bit (for byte-sized data) or 8th low-order bit (for word-sized data) of the result occurred 0 = No carry-out from the 4th low-order bit (for byte-sized data) or 8th low-order bit (for word-sized data) of the result occurred Note 1: 2: 3: 4: This bit may be read or cleared (not set). The IPL bits are concatenated with the IPL bit (CORCON) to form the CPU interrupt priority level. The value in parentheses indicates the IPL if IPL = 1. User interrupts are disabled when IPL = 1. The IPL Status bits are read only when NSTDIS = 1 (INTCON1). This bit may be read or cleared (not set). Clearing this bit will clear SA and SB. DS70594D-page 26  2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 3-1: SR: CPU STATUS REGISTER (CONTINUED) bit 7-5 IPL: CPU Interrupt Priority Level Status bits(2) 111 = CPU interrupt priority level is 7 (15), user interrupts disabled 110 = CPU interrupt priority level is 6 (14) 101 = CPU interrupt priority level is 5 (13) 100 = CPU interrupt priority level is 4 (12) 011 = CPU interrupt priority level is 3 (11) 010 = CPU interrupt priority level is 2 (10) 001 = CPU interrupt priority level is 1 (9) 000 = CPU interrupt priority level is 0 (8) bit 4 RA: REPEAT Loop Active bit 1 = REPEAT loop in progress 0 = REPEAT loop not in progress bit 3 N: MCU ALU Negative bit 1 = Result was negative 0 = Result was non-negative (zero or positive) bit 2 OV: MCU ALU Overflow bit This bit is used for signed arithmetic (2’s complement). It indicates an overflow of the magnitude that causes the sign bit to change state. 1 = Overflow occurred for signed arithmetic (in this arithmetic operation) 0 = No overflow occurred bit 1 Z: MCU ALU Zero bit 1 = An operation which affects the Z bit has set it at some time in the past 0 = The most recent operation which affects the Z bit has cleared it (i.e., a non-zero result) bit 0 C: MCU ALU Carry/Borrow bit 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred Note 1: 2: 3: 4: This bit may be read or cleared (not set). The IPL bits are concatenated with the IPL bit (CORCON) to form the CPU interrupt priority level. The value in parentheses indicates the IPL if IPL = 1. User interrupts are disabled when IPL = 1. The IPL Status bits are read only when NSTDIS = 1 (INTCON1). This bit may be read or cleared (not set). Clearing this bit will clear SA and SB.  2009-2012 Microchip Technology Inc. DS70594D-page 27 dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 3-2: CORCON: CORE CONTROL REGISTER U-0 — bit 15 U-0 — R/W-0 SATA bit 7 R/W-0 SATB bit 11 bit 10-8 R/W-0 US R/W-0 EDT(1) R-0 R-0 DL R-0 bit 8 Legend: R = Readable bit 0’ = Bit is cleared bit 15-13 bit 12 U-0 — R/W-1 SATDW R/W-0 ACCSAT C = Clearable bit W = Writable bit ‘x = Bit is unknown R/C-0 IPL3(2) R/W-0 PSV R/W-0 RND R/W-0 IF bit 0 -n = Value at POR ‘1’ = Bit is set U = Unimplemented bit, read as ‘0’ Unimplemented: Read as ‘0’ US: DSP Multiply Unsigned/Signed Control bit 1 = DSP engine multiplies are unsigned 0 = DSP engine multiplies are signed EDT: Early DO Loop Termination Control bit(1) 1 = Terminate executing DO loop at end of current loop iteration 0 = No effect DL: DO Loop Nesting Level Status bits 111 = 7 DO loops active • • • bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 Note 1: 2: 001 = 1 DO loop active 000 = 0 DO loops active SATA: AccA Saturation Enable bit 1 = Accumulator A saturation enabled 0 = Accumulator A saturation disabled SATB: AccB Saturation Enable bit 1 = Accumulator B saturation enabled 0 = Accumulator B saturation disabled SATDW: Data Space Write from DSP Engine Saturation Enable bit 1 = Data space write saturation enabled 0 = Data space write saturation disabled ACCSAT: Accumulator Saturation Mode Select bit 1 = 9.31 saturation (super saturation) 0 = 1.31 saturation (normal saturation) IPL3: CPU Interrupt Priority Level Status bit 3(2) 1 = CPU interrupt priority level is greater than 7 0 = CPU interrupt priority level is 7 or less PSV: Program Space Visibility in Data Space Enable bit 1 = Program space visible in data space 0 = Program space not visible in data space RND: Rounding Mode Select bit 1 = Biased (conventional) rounding enabled 0 = Unbiased (convergent) rounding enabled IF: Integer or Fractional Multiplier Mode Select bit 1 = Integer mode enabled for DSP multiply ops 0 = Fractional mode enabled for DSP multiply ops This bit will always read as ‘0’. The IPL3 bit is concatenated with the IPL bits (SR) to form the CPU interrupt priority level. DS70594D-page 28  2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A 3.5 Arithmetic Logic Unit (ALU) 3.6 DSP Engine The dsPIC33FJXXXMCX06A/X08A/X10A ALU is 16 bits wide and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are 2’s complement in nature. Depending on the operation, the ALU may affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the SR register. The C and DC Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations. The DSP engine consists of a high-speed, 17-bit x 17-bit multiplier, a barrel shifter and a 40-bit adder/ subtracter (with two target accumulators, round and saturation logic). The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location. The DSP engine also has the capability to perform inherent accumulator-to-accumulator operations which require no additional data. These instructions are ADD, SUB and NEG. Refer to the “16-bit MCU and DSC Programmer’s Reference Manual” (DS70157) for information on the SR bits affected by each instruction. The dsPIC33FJXXXMCX06A/X08A/X10A CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit-divisor division. 3.5.1 MULTIPLIER Using the high-speed, 17-bit x 17-bit multiplier of the DSP engine, the ALU supports unsigned, signed or mixed sign operation in several MCU multiplication modes: 1. 2. 3. 4. 5. 6. 7. 16-bit x 16-bit signed 16-bit x 16-bit unsigned 16-bit signed x 5-bit (literal) unsigned 16-bit unsigned x 16-bit unsigned 16-bit unsigned x 5-bit (literal) unsigned 16-bit unsigned x 16-bit signed 8-bit unsigned x 8-bit unsigned 3.5.2 DIVIDER The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes: 1. 2. 3. 4. 32-bit signed/16-bit signed divide 32-bit unsigned/16-bit unsigned divide 16-bit signed/16-bit signed divide 16-bit unsigned/16-bit unsigned divide The dsPIC33FJXXXMCX06A/X08A/X10A devices are a single-cycle, instruction flow architecture; therefore, concurrent operation of the DSP engine with MCU instruction flow is not possible. However, some MCU ALU and DSP engine resources may be used concurrently by the same instruction (e.g., ED, EDAC). The DSP engine has various options selected through various bits in the CPU Core Control register (CORCON), as listed below: 1. 2. 3. 4. 5. 6. 7. Fractional or integer DSP multiply (IF) Signed or unsigned DSP multiply (US) Conventional or convergent rounding (RND) Automatic saturation on/off for AccA (SATA) Automatic saturation on/off for AccB (SATB) Automatic saturation on/off for writes to data memory (SATDW) Accumulator Saturation mode selection (ACCSAT) Table 2-1 provides a summary of DSP instructions. A block diagram of the DSP engine is shown in Figure 3-3. TABLE 3-1: Instruction CLR ED EDAC MAC MAC MOVSAC MPY MPY MPY.N MSC DSP INSTRUCTIONS SUMMARY Algebraic Operation ACC Write Back A=0 A = (x – y)2 A = A + (x – y)2 A = A + (x • y) A = A + x2 No change in A A=x•y A = x2 A=–x•y A=A–x•y Yes No No Yes No Yes No No No Yes The quotient for all divide instructions ends up in W0 and the remainder in W1. 16-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn) and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/ 16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.  2009-2012 Microchip Technology Inc. DS70594D-page 29 dsPIC33FJXXXMCX06A/X08A/X10A FIGURE 3-3: DSP ENGINE BLOCK DIAGRAM 40 S a 40 Round t 16 u Logic r a t e 40-Bit Accumulator A 40-Bit Accumulator B Carry/Borrow Out Carry/Borrow In Saturate Adder Negate 40 40 40 16 X Data Bus Barrel Shifter 40 Y Data Bus Sign-Extend 32 Zero Backfill 16 32 33 17-Bit Multiplier/Scaler 16 16 To/From W Array DS70594D-page 30  2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A 3.6.1 MULTIPLIER The 17-bit x 17-bit multiplier is capable of signed or unsigned operation and can multiplex its output using a scaler to support either 1.31 fractional (Q31) or 32-bit integer results. Unsigned operands are zero-extended into the 17th bit of the multiplier input value. Signed operands are sign-extended into the 17th bit of the multiplier input value. The output of the 17-bit x 17-bit multiplier/scaler is a 33-bit value which is sign-extended to 40 bits. Integer data is inherently represented as a signed two’s complement value, where the MSb is defined as a sign bit. Generally speaking, the range of an N-bit two’s complement integer is -2N-1 to 2N-1 – 1. For a 16-bit integer, the data range is -32768 (0x8000) to 32767 (0x7FFF) including 0. For a 32-bit integer, the data range is -2,147,483,648 (0x8000 0000) to 2,147,483,647 (0x7FFF FFFF). When the multiplier is configured for fractional multiplication, the data is represented as a two’s complement fraction, where the MSb is defined as a sign bit and the radix point is implied to lie just after the sign bit (QX format). The range of an N-bit two’s complement fraction with this implied radix point is -1.0 to (1 – 21-N). For a 16-bit fraction, the Q15 data range is -1.0 (0x8000) to 0.999969482 (0x7FFF) including 0 and has a precision of 3.01518 x 10-5. In Fractional mode, the 16 x 16 multiply operation generates a 1.31 product which has a precision of 4.65661 x 10-10. The same multiplier is used to support the MCU multiply instructions which include integer 16-bit signed, unsigned and mixed sign multiplies. 3.6.2.1 The adder/subtracter is a 40-bit adder with an optional zero input into one side, and either true, or complement data into the other input. In the case of addition, the Carry/Borrow input is active-high and the other input is true data (not complemented); whereas in the case of subtraction, the Carry/Borrow input is active-low and the other input is complemented. The adder/subtracter generates Overflow Status bits, SA/SB and OA/OB, which are latched and reflected in the STATUS register: • Overflow from bit 39: this is a catastrophic overflow in which the sign of the accumulator is destroyed. • Overflow into guard bits 32 through 39: this is a recoverable overflow. This bit is set whenever all the guard bits are not identical to each other. The adder has an additional saturation block which controls accumulator data saturation, if selected. It uses the result of the adder, the Overflow Status bits described above and the SAT (CORCON) and ACCSAT (CORCON) mode control bits to determine when and to what value to saturate. Six STATUS register bits have been provided to support saturation and overflow; they are: 1. 2. 3. The MUL instruction may be directed to use byte or word-sized operands. Byte operands will direct a 16-bit result, and word operands will direct a 32-bit result to the specified register(s) in the W array. 3.6.2 DATA ACCUMULATORS AND ADDER/SUBTRACTER The data accumulator consists of a 40-bit adder/ subtracter with automatic sign extension logic. It can select one of two accumulators (A or B) as its pre-accumulation source and post-accumulation destination. For the ADD and LAC instructions, the data to be accumulated or loaded can be optionally scaled via the barrel shifter prior to accumulation.  2009-2012 Microchip Technology Inc. Adder/Subtracter, Overflow and Saturation 4. 5. 6. OA: AccA overflowed into guard bits OB: AccB overflowed into guard bits SA: AccA saturated (bit 31 overflow and saturation) or AccA overflowed into guard bits and saturated (bit 39 overflow and saturation) SB: AccB saturated (bit 31 overflow and saturation) or AccB overflowed into guard bits and saturated (bit 39 overflow and saturation) OAB: Logical OR of OA and OB SAB: Logical OR of SA and SB The OA and OB bits are modified each time data passes through the adder/subtracter. When set, they indicate that the most recent operation has overflowed into the accumulator guard bits (bits 32 through 39). The OA and OB bits can also optionally generate an arithmetic warning trap when they and the corresponding Overflow Trap Flag Enable bits (OVATE, OVBTE) in the INTCON1 register (refer to Section 7.0 “Interrupt Controller”) are set. This allows the user to take immediate action, for example, to correct system gain. DS70594D-page 31 dsPIC33FJXXXMCX06A/X08A/X10A The SA and SB bits are modified each time data passes through the adder/subtracter, but can only be cleared by the user. When set, they indicate that the accumulator has overflowed its maximum range (bit 31 for 32-bit saturation or bit 39 for 40-bit saturation) and will be saturated (if saturation is enabled). When saturation is not enabled, SA and SB default to bit 39 overflow, and thus, indicate that a catastrophic overflow has occurred. If the COVTE bit in the INTCON1 register is set, SA and SB bits will generate an arithmetic warning trap when saturation is disabled. The Overflow and Saturation Status bits can optionally be viewed in the STATUS Register (SR) as the logical OR of OA and OB (in bit OAB), and the logical OR of SA and SB (in bit SAB). This allows programmers to check one bit in the STATUS register to determine if either accumulator has overflowed or one bit to determine if either accumulator has saturated. This would be useful for complex number arithmetic, which typically uses both the accumulators. The device supports three Saturation and Overflow modes: 1. 2. 3. Bit 39 Overflow and Saturation: When bit 39 overflow and saturation occurs, the saturation logic loads the maximally positive 9.31 (0x7FFFFFFFFF) or maximally negative 9.31 value (0x8000000000) into the target accumulator. The SA or SB bit is set and remains set until cleared by the user. This is referred to as ‘super saturation’ and provides protection against erroneous data or unexpected algorithm problems (e.g., gain calculations). Bit 31 Overflow and Saturation: When bit 31 overflow and saturation occurs, the saturation logic then loads the maximally positive 1.31 value (0x007FFFFFFF) or maximally negative 1.31 value (0x0080000000) into the target accumulator. The SA or SB bit is set and remains set until cleared by the user. When this Saturation mode is in effect, the guard bits are not used (so the OA, OB or OAB bits are never set). Bit 39 Catastrophic Overflow: The bit 39 Overflow Status bit from the adder is used to set the SA or SB bit, which remains set until cleared by the user. No saturation operation is performed and the accumulator is allowed to overflow (destroying its sign). If the COVTE bit in the INTCON1 register is set, a catastrophic overflow can initiate a trap exception. DS70594D-page 32 3.6.2.2 Accumulator ‘Write Back’ The MAC class of instructions (with the exception of MPY, MPY.N, ED and EDAC) can optionally write a rounded version of the high word (bits 31 through 16) of the accumulator that is not targeted by the instruction into data space memory. The write is performed across the X bus into combined X and Y address space. The following addressing modes are supported: 1. 2. W13, Register Direct: The rounded contents of the non-target accumulator are written into W13 as a 1.15 fraction. [W13]+ = 2, Register Indirect with Post-Increment: The rounded contents of the non-target accumulator are written into the address pointed to by W13 as a 1.15 fraction. W13 is then incremented by 2 (for a word write). 3.6.2.3 Round Logic The round logic is a combinational block which performs a conventional (biased) or convergent (unbiased) round function during an accumulator write (store). The Round mode is determined by the state of the RND bit in the CORCON register. It generates a 16-bit, 1.15 data value which is passed to the data space write saturation logic. If rounding is not indicated by the instruction, a truncated 1.15 data value is stored and the least significant word is simply discarded. Conventional rounding zero-extends bit 15 of the accumulator and adds it to the ACCxH word (bits 16 through 31 of the accumulator). If the ACCxL word (bits 0 through 15 of the accumulator) is between 0x8000 and 0xFFFF (0x8000 included), ACCxH is incremented. If ACCxL is between 0x0000 and 0x7FFF, ACCxH is left unchanged. A consequence of this algorithm is that over a succession of random rounding operations, the value tends to be biased slightly positive. Convergent (or unbiased) rounding operates in the same manner as conventional rounding, except when ACCxL equals 0x8000. In this case, the Least Significant bit (bit 16 of the accumulator) of ACCxH is examined. If it is ‘1’, ACCxH is incremented. If it is ‘0’, ACCxH is not modified. Assuming that bit 16 is effectively random in nature, this scheme removes any rounding bias that may accumulate. The SAC and SAC.R instructions store either a truncated (SAC) or rounded (SAC.R) version of the contents of the target accumulator to data memory via the X bus, subject to data saturation (see Section 3.6.2.4 “Data Space Write Saturation”). For the MAC class of instructions, the accumulator write-back operation will function in the same manner, addressing combined MCU (X and Y) data space though the X bus. For this class of instructions, the data is always subject to rounding.  2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A 3.6.2.4 Data Space Write Saturation 3.6.3 BARREL SHIFTER In addition to adder/subtracter saturation, writes to data space can also be saturated – but without affecting the contents of the source accumulator. The data space write saturation logic block accepts a 16-bit, 1.15 fractional value from the round logic block as its input, together with overflow status from the original source (accumulator) and the 16-bit round adder. These inputs are combined and used to select the appropriate 1.15 fractional value as output to write to data space memory. The barrel shifter is capable of performing up to 16-bit arithmetic or logic right shifts, or up to 16-bit left shifts in a single cycle. The source can be either of the two DSP accumulators or the X bus (to support multi-bit shifts of register or memory data). If the SATDW bit in the CORCON register is set, data (after rounding or truncation) is tested for overflow and adjusted accordingly. For input data greater than 0x007FFF, data written to memory is forced to the maximum positive 1.15 value, 0x7FFF. For input data less than 0xFF8000, data written to memory is forced to the maximum negative 1.15 value, 0x8000. The Most Significant bit of the source (bit 39) is used to determine the sign of the operand being tested. The barrel shifter is 40 bits wide, thereby obtaining a 40-bit result for DSP shift operations and a 16-bit result for MCU shift operations. Data from the X bus is presented to the barrel shifter between bit positions 16 to 31 for right shifts and between bit positions 0 to 16 for left shifts. The shifter requires a signed binary value to determine both the magnitude (number of bits) and direction of the shift operation. A positive value shifts the operand right. A negative value shifts the operand left. A value of ‘0’ does not modify the operand. If the SATDW bit in the CORCON register is not set, the input data is always passed through unmodified under all conditions.  2009-2012 Microchip Technology Inc. DS70594D-page 33 dsPIC33FJXXXMCX06A/X08A/X10A NOTES: DS70594D-page 34  2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A 4.0 MEMORY ORGANIZATION 4.1 Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/ X08A/X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 3. “Data Memory” (DS70202) and Section 4. “Program Memory” (DS70203) in the “dsPIC33F/PIC24H Family Reference Manual”, which is available from the Microchip web site (www.microchip.com). The dsPIC33FJXXXMCX06A/X08A/X10A architecture features separate program and data memory spaces, and buses. This architecture also allows the direct access of program memory from the data space during code execution. FIGURE 4-1: The program address memory space of the dsPIC33FJXXXMCX06A/X08A/X10A devices is 4M instructions. The space is addressable by a 24-bit value derived from either the 23-bit Program Counter (PC) during program execution, or from table operation or data space remapping as described in Section 4.6 “Interfacing Program and Data Memory Spaces”. User access to the program memory space is restricted to the lower half of the address range (0x000000 to 0x7FFFFF). The exception is the use of TBLRD/TBLWT operations, which use TBLPAG to permit access to the Configuration bits and Device ID sections of the configuration memory space. Memory usage for the dsPIC33FJXXXMCX06A/X08A/X10A family of devices is shown in Figure 4-1. PROGRAM MEMORY MAP FOR dsPIC33FJXXXMCX06A/X08A/X10A DEVICES dsPIC33FJ64MCXXXA GOTO Instruction Reset Address Interrupt Vector Table Reserved Alternate Vector Table User Memory Space Program Address Space User Program Flash Memory (22K instructions) dsPIC33FJ128MCXXXA GOTO Instruction Reset Address Interrupt Vector Table Reserved Alternate Vector Table dsPIC33FJ256MCXXXA GOTO Instruction Reset Address Interrupt Vector Table Reserved Alternate Vector Table User Program Flash Memory (44K instructions) User Program Flash Memory (88K instructions) 0x000000 0x000002 0x000004 0x0000FE 0x000100 0x000104 0x0001FE 0x000200 0x00ABFE 0x00AC00 0x0157FE 0x015800 Unimplemented (Read ‘0’s) 0x02ABFE 0x02AC00 Unimplemented (Read ‘0’s) Unimplemented (Read ‘0’s) Configuration Memory Space 0x7FFFFE 0x800000 Note: Reserved Reserved Reserved Device Configuration Registers Device Configuration Registers Device Configuration Registers Reserved Reserved Reserved DEVID (2) DEVID (2) DEVID (2) 0xF7FFFE 0xF80000 0xF80017 0xF80010 0xFEFFFE 0xFF0000 0xFFFFFE Memory areas are not shown to scale.  2009-2012 Microchip Technology Inc. DS70594D-page 35 dsPIC33FJXXXMCX06A/X08A/X10A 4.1.1 PROGRAM MEMORY ORGANIZATION 4.1.2 All dsPIC33FJXXXMCX06A/X08A/X10A devices reserve the addresses between 0x00000 and 0x000200 for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user at 0x000000, with the actual address for the start of code at 0x000002. The program memory space is organized in word-addressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-2). dsPIC33FJXXXMCX06A/X08A/X10A devices also have two interrupt vector tables located from 0x000004 to 0x0000FF and 0x000100 to 0x0001FF. These vector tables allow each of the many device interrupt sources to be handled by separate Interrupt Service Routines (ISRs). A more detailed discussion of the interrupt vector tables is provided in Section 7.1 “Interrupt Vector Table”. Program memory addresses are always word-aligned on the lower word, and addresses are incremented or decremented by two during code execution. This arrangement also provides compatibility with data memory space addressing and makes it possible to access data in the program memory space. FIGURE 4-2: msw Address PROGRAM MEMORY ORGANIZATION 16 8 PC Address (lsw Address) 0 0x000000 0x000002 0x000004 0x000006 00000000 00000000 00000000 00000000 Program Memory ‘Phantom’ Byte (read as ‘0’) DS70594D-page 36 least significant word most significant word 23 0x000001 0x000003 0x000005 0x000007 INTERRUPT AND TRAP VECTORS Instruction Width  2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A 4.2 Data Address Space The dsPIC33FJXXXMCX06A/X08A/X10A CPU has a separate 16-bit wide data memory space. The data space is accessed using separate Address Generation Units (AGUs) for read and write operations. Data memory maps of devices with different RAM sizes are shown in Figure 4-3 through Figure 4-5. All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the data space. This arrangement gives a data space address range of 64 Kbytes or 32K words. The lower half of the data memory space (that is, when EA = 0) is used for implemented memory addresses, while the upper half (EA = 1) is reserved for the Program Space Visibility area (see Section 4.6.3 “Reading Data from Program Memory Using Program Space Visibility”). dsPIC33FJXXXMCX06A/X08A/X10A devices implement a total of up to 30 Kbytes of data memory. Should an EA point to a location outside of this area, an all-zero word or byte will be returned. 4.2.1 DATA SPACE WIDTH The data memory space is organized in byte addressable, 16-bit wide blocks. Data is aligned in data memory and registers as 16-bit words, but all data space EAs resolve to bytes. The Least Significant Bytes of each word have even addresses, while the Most Significant Bytes have odd addresses. 4.2.2 DATA MEMORY ORGANIZATION AND ALIGNMENT To maintain backward compatibility with PIC® microcontrollers and improve data space memory usage efficiency, the dsPIC33FJXXXMCX06A/X08A/X10A instruction set supports both word and byte operations. As a consequence of byte accessibility, all Effective Address calculations are internally scaled to step through word-aligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] will result in a value of Ws + 1 for byte operations and Ws + 2 for word operations. Data byte reads will read the complete word that contains the byte, using the LSb of any EA to determine which byte to select. The selected byte is placed onto the LSb of the data path. That is, data memory and registers are organized as two parallel, byte-wide entities with shared (word) address decode but separate write lines. Data byte writes only write to the corresponding side of the array or register which matches the byte address.  2009-2012 Microchip Technology Inc. All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap is generated. If the error occurred on a read, the instruction underway is completed; if it occurred on a write, the instruction will be executed but the write does not occur. In either case, a trap is then executed, allowing the system and/or user to examine the machine state prior to execution of the address Fault. All byte loads into any W register are loaded into the Least Significant Byte. The Most Significant Byte is not modified. A sign-extend instruction (SE) is provided to allow users to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, users can clear the MSb of any W register by executing a zero-extend (ZE) instruction on the appropriate address. 4.2.3 SFR SPACE The first 2 Kbytes of the Near Data Space, from 0x0000 to 0x07FF, is primarily occupied by Special Function Registers (SFRs). These are used by the dsPIC33FJXXXMCX06A/X08A/X10A core and peripheral modules for controlling the operation of the device. SFRs are distributed among the modules that they control and are generally grouped together by module. Much of the SFR space contains unused addresses; these are read as ‘0’. Note: 4.2.4 The actual set of peripheral features and interrupts varies by the device. Please refer to the corresponding device tables and pinout diagrams for device-specific information. NEAR DATA SPACE The 8-Kbyte area between 0x0000 and 0x1FFF is referred to as the Near Data Space. Locations in this space are directly addressable via a 13-bit absolute address field within all memory direct instructions. Additionally, the whole data space is addressable using MOV instructions, which support Memory Direct Addressing mode with a 16-bit address field, or by using Indirect Addressing mode using a working register as an Address Pointer. DS70594D-page 37 dsPIC33FJXXXMCX06A/X08A/X10A FIGURE 4-3: DATA MEMORY MAP FOR dsPIC33FJXXXMCX06A/X08A/X10A DEVICES WITH 8-Kbyte RAM MSb Address MSb 2-Kbyte SFR Space LSb Address 16 Bits LSb 0x0000 0x0001 SFR Space 0x07FE 0x0800 0x07FF 0x0801 8-Kbyte Near Data Space X Data RAM (X) 8-Kbyte SRAM Space 0x17FF 0x1801 0x1FFF 0x2001 0x27FF 0x2801 0x17FE 0x1800 Y Data RAM (Y) 0x1FFE 0x2000 DMA RAM 0x8001 0x8000 X Data Unimplemented (X) Optionally Mapped into Program Memory 0xFFFF DS70594D-page 38 0x27FE 0x2800 0xFFFE  2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A FIGURE 4-4: DATA MEMORY MAP FOR dsPIC33FJXXXMCX06A/X08A/X10A DEVICES WITH 16-Kbyte RAM MSb Address 16 Bits MSb 2-Kbyte SFR Space LSb 0x0000 0x0001 SFR Space 0x07FF 0x0801 0x1FFF 16-Kbyte SRAM Space LSb Address X Data RAM (X) 0x27FF 0x2801 0x3FFF 0x4001 0x47FF 0x4801 0x07FE 0x0800 8-Kbyte Near Data Space 0x1FFE 0x27FE 0x2800 Y Data RAM (Y) 0x3FFE 0x4000 DMA RAM 0x8001 0x47FE 0x4800 0x8000 X Data Unimplemented (X) Optionally Mapped into Program Memory 0xFFFF  2009-2012 Microchip Technology Inc. 0xFFFE DS70594D-page 39 dsPIC33FJXXXMCX06A/X08A/X10A FIGURE 4-5: DATA MEMORY MAP FOR dsPIC33FJXXXMCX06A/X08A/X10A DEVICES WITH 30-Kbyte RAM MSb Address MSb 2-Kbyte SFR Space 0x0001 LSb Address 16 Bits LSb 0x0000 SFR Space 0x07FE 0x0800 0x07FF 0x0801 8-Kbyte Near Data Space X Data RAM (X) 30-Kbyte SRAM Space 0x47FF 0x4801 0x47FE 0x4800 Y Data RAM (Y) 0x77FF 0x7800 0x7FFF 0x8001 Optionally Mapped into Program Memory X Data Unimplemented (X) 0xFFFF DS70594D-page 40 DMA RAM 0x77FE 0x7800 0x7FFE 0x8000 0xFFFE  2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A 4.2.5 X AND Y DATA SPACES The core has two data spaces: X and Y. These data spaces can be considered either separate (for some DSP instructions) or as one unified, linear address range (for MCU instructions). The data spaces are accessed using two Address Generation Units (AGUs) and separate data paths. This feature allows certain instructions to concurrently fetch two words from RAM, thereby enabling efficient execution of DSP algorithms, such as Finite Impulse Response (FIR) filtering and Fast Fourier Transform (FFT). The X data space is used by all instructions and supports all addressing modes. There are separate read and write data buses for X data space. The X read data bus is the read data path for all instructions that view data space as combined X and Y address space. It is also the X data prefetch path for the dual operand DSP instructions (MAC class). 4.2.6 DMA RAM Every dsPIC33FJXXXMCX06A/X08A/X10A device contains 2 Kbytes of dual ported DMA RAM located at the end of Y data space. Memory location is part of Y data RAM and is in the DMA RAM space, and is accessible simultaneously by the CPU and the DMA controller module. DMA RAM is utilized by the DMA controller to store data to be transferred to various peripherals using DMA, as well as data transferred from various peripherals using DMA. The DMA RAM can be accessed by the DMA controller without having to steal cycles from the CPU. When the CPU and the DMA controller attempt to concurrently write to the same DMA RAM location, the hardware ensures that the CPU is given precedence in accessing the DMA RAM location. Therefore, the DMA RAM provides a reliable means of transferring DMA data without ever having to stall the CPU. The Y data space is used in concert with the X data space by the MAC class of instructions (CLR, ED, EDAC, MAC, MOVSAC, MPY, MPY.N and MSC) to provide two concurrent data read paths. Both the X and Y data spaces support Modulo Addressing mode for all instructions, subject to addressing mode restrictions. Bit-Reversed Addressing mode is only supported for writes to X data space. All data memory writes, including in DSP instructions, view data space as combined X and Y address space. The boundary between the X and Y data spaces is device-dependent and is not user-programmable. All Effective Addresses are 16 bits wide and point to bytes within the data space. Therefore, the data space address range is 64 Kbytes, or 32K words, though the implemented memory locations vary by device.  2009-2012 Microchip Technology Inc. DS70594D-page 41 CPU CORE REGISTERS MAP  2009-2012 Microchip Technology Inc. SFR Name SFR Addr WREG0 0000 Working Register 0 xxxx WREG1 0002 Working Register 1 xxxx WREG2 0004 Working Register 2 xxxx WREG3 0006 Working Register 3 xxxx WREG4 0008 Working Register 4 xxxx WREG5 000A Working Register 5 xxxx WREG6 000C Working Register 6 xxxx WREG7 000E Working Register 7 xxxx WREG8 0010 Working Register 8 xxxx WREG9 0012 Working Register 9 xxxx WREG10 0014 Working Register 10 xxxx WREG11 0016 Working Register 11 xxxx WREG12 0018 Working Register 12 xxxx WREG13 001A Working Register 13 xxxx WREG14 001C Working Register 14 xxxx WREG15 001E Working Register 15 0800 SPLIM 0020 Stack Pointer Limit Register xxxx ACCAL 0022 Accumulator A Low Word Register 0000 ACCAH 0024 Accumulator A High Word Register 0000 ACCAU 0026 Accumulator A Upper Word Register 0000 ACCBL 0028 Accumulator B Low Word Register 0000 ACCBH 002A Accumulator B High Word Register 0000 ACCBU 002C Accumulator B Upper Word Register 0000 PCL 002E Program Counter Low Word Register PCH 0030 — — — — — — — — TBLPAG 0032 — — — — — — — PSVPAG 0034 — — — — — — — RCOUNT 0036 Repeat Loop Counter Register xxxx DCOUNT 0038 DCOUNT xxxx DOSTARTL 003A DOSTARTH 003C DOENDL 003E DOENDH Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets 0000 Program Counter High Byte Register 0000 — Table Page Address Pointer Register 0000 — Program Memory Visibility Page Address Pointer Register 0000 DOSTARTL 0 — — — — — — 0040 — — — — — — — — SR 0042 OA OB SA SB OAB SAB DA DC CORCON 0044 — — — US EDT MODCON 0046 XMODEN YMODEN — — XMODSRT 0048 XS 0 xxxx XMODEND 004A XE 1 xxxx Legend: — — — DOSTARTH — — DOENDH xxxx — 00xx DOENDL DL 0 xxxx 00xx IPL2 IPL1 IPL0 RA N OV Z C 0000 SATA SATB SATDW ACCSAT IPL3 PSV RND IF 0020 BWM YWM x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. XWM 0000 dsPIC33FJXXXMCX06A/X08A/X10A DS70594D-page 42 TABLE 4-1: CPU CORE REGISTERS MAP (CONTINUED) SFR Name SFR Addr YMODSRT 004C YMODEND 004E XBREV 0050 BREN DISICNT 0052 — — BSRAM 0750 — — — — — — — — — — — — — IW_BSR IR_BSR RL_BSR 0000 0752 — — — — — — — — — — — — — IW_SSR IR_SSR RL_SSR 0000 SSRAM Legend: Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 0 All Resets YS 0 xxxx YE 1 xxxx Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 XB xxxx Disable Interrupts Counter Register x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. xxxx DS70594D-page 43 dsPIC33FJXXXMCX06A/X08A/X10A  2009-2012 Microchip Technology Inc. TABLE 4-1: CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJXXXMCX10A DEVICES SFR Name SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 CNEN1 0060 CN15IE CN14IE CN13IE CN12IE CN11IE CN10IE CN9IE CN8IE CN7IE CN6IE CN5IE CN4IE CN3IE CN2IE CN1IE CN0IE 0000 CNEN2 0062 — — — — — — — — CN23IE CN22IE CN21IE CN20IE CN19IE CN18IE CN17IE CN16IE 0000 CN7PUE CN6PUE CN5PUE CN4PUE CN3PUE CN2PUE CN1PUE CN0PUE 0000 CN23PUE CN22PUE CN21PUE CN20PUE CN19PUE CN18PUE CN17PUE CN16PUE 0000 CNPU1 0068 CNPU2 006A Legend: CN15PUE CN14PUE CN13PUE CN12PUE CN11PUE CN10PUE CN9PUE — — — — — — — CN8PUE — Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. TABLE 4-3: CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJXXXMCX08A DEVICES SFR Name SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 CNEN1 0060 CN15IE CN14IE CN13IE CN12IE CN11IE CN10IE CN9IE CN8IE CN7IE CN6IE CN5IE CN4IE CN3IE CN2IE CN1IE CN0IE 0000 CNEN2 0062 — — — — — — — — — — CN21IE CN20IE CN19IE CN18IE CN17IE CN16IE 0000 CN8PUE CN7PUE CN6PUE CN5PUE CN4PUE CN3PUE CN2PUE CN1PUE CN0PUE 0000 — — — CN21PUE CN20PUE CN19PUE CN18PUE CN17PUE CN16PUE 0000 CNPU1 0068 CNPU2 006A Legend: CN15PUE CN14PUE CN13PUE CN12PUE CN11PUE CN10PUE CN9PUE — — — — — — — Bit 5 Bit 3 Bit 2 Bit 1 Bit 0 All Resets x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. TABLE 4-4: CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJXXXMCX06A DEVICES SFR Name SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 CNEN1 0060 CN15IE CN14IE CN13IE CN12IE CN11IE CN10IE CN9IE CN8IE CN7IE CN6IE CNEN2 0062 — — — — — — — — — — CNPU1 0068 CN8PUE CN7PUE CN6PUE CN5PUE CNPU2 006A — — —  2009-2012 Microchip Technology Inc. Legend: Bit 4 CN15PUE CN14PUE CN13PUE CN12PUE CN11PUE CN10PUE CN9PUE — — — — — — — x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Bit 5 All Resets CN1IE CN0IE 0000 CN17IE CN16IE 0000 Bit 3 CN5IE CN4IE CN3IE CN2IE CN21IE CN20IE — CN18IE CN4PUE CN3PUE CN2PUE CN1PUE CN0PUE 0000 CN18PUE CN17PUE CN16PUE 0000 CN21PUE CN20PUE — Bit 2 Bit 0 Bit 4 Bit 1 dsPIC33FJXXXMCX06A/X08A/X10A DS70594D-page 44 TABLE 4-2: SFR Name SFR Addr INTERRUPT CONTROLLER REGISTER MAP Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 INTCON1 0080 NSTDIS OVAERR OVBERR COVAERR COVBERR OVATE INTCON2 0082 ALTIVT DISI — — — IFS0 0084 — DMA1IF AD1IF U1TXIF U1RXIF IFS1 0086 U2TXIF U2RXIF INT2IF T5IF T4IF OC4IF Bit 5 Bit 4 Bit 3 OSCFAIL — 0000 INT1EP INT0EP 0000 OC1IF IC1IF INT0IF 0000 — MI2C1IF SI2C1IF 0000 OVBTE COVTE — — — — — INT4EP INT3EP INT2EP T3IF T2IF OC2IF IC2IF DMA0IF T1IF OC3IF DMA2IF IC8IF IC7IF AD2IF INT1IF CNIF SPI1IF SPI1EIF Bit 6 All Resets Bit 8 — Bit 7 Bit 0 Bit 9 Bit 2 Bit 1 SFTACERR DIV0ERR DMACERR MATHERR ADDRERR STKERR IFS2 0088 T6IF DMA4IF — OC8IF OC7IF OC6IF OC5IF IC6IF IC5IF IC4IF IC3IF DMA3IF C1IF C1RXIF SPI2IF SPI2EIF 0000 IFS3 008A FLTAIF — DMA5IF — — QEIIF PWMIF C2IF C2RXIF INT4IF INT3IF T9IF T8IF MI2C2IF SI2C2IF T7IF 0000 — — 0000 IFS4 008C — — — — — IEC0 0094 — DMA1IE AD1IE U1TXIE U1RXIE IEC1 0096 U2TXIE U2RXIE INT2IE T5IE T4IE OC4IE — C2TXIF C1TXIF DMA7IF DMA6IF — U2EIF U1EIF FLTBIF T3IE T2IE OC2IE IC2IE DMA0IE T1IE OC1IE IC1IE INT0IE OC3IE DMA2IE IC8IE IC7IE AD2IE INT1IE CNIE — SPI1IE SPI1EIE MI2C1IE SI2C1IE 0000 0000 IEC2 0098 T6IE DMA4IE — OC8IE OC7IE OC6IE OC5IE IC6IE IC5IE IC4IE IC3IE DMA3IE C1IE C1RXIE SPI2IE SPI2EIE 0000 IEC3 009A FLTAIE — DMA5IE — — QEIIE PWMIE C2IE C2RXIE INT4IE INT3IE T9IE T8IE MI2C2IE SI2C2IE T7IE 0000 — — — — — — — C2TXIE C1TXIE DMA7IE DMA6IE — U2EIE U1EIE FLTBIE 0000 DS70594D-page 45 IEC4 009C — IPC0 00A4 — T1IP — OC1IP — IC1IP — INT0IP 4444 IPC1 00A6 — T2IP — OC2IP — IC2IP — DMA0IP 4444 IPC2 00A8 — U1RXIP — SPI1IP — SPI1EIP — T3IP 4444 IPC3 00AA — — DMA1IP — AD1IP — U1TXIP 0444 IPC4 00AC — CNIP — — MI2C1IP — SI2C1IP 4044 IPC5 00AE — IC8IP — IC7IP — AD2IP — INT1IP 4444 IPC6 00B0 — T4IP — OC4IP — OC3IP — DMA2IP 4444 IPC7 00B2 — U2TXIP — U2RXIP — INT2IP — T5IP 4444 IPC8 00B4 — C1IP — C1RXIP — SPI2IP — SPI2EIP 4444 IPC9 00B6 — IC5IP — IC4IP — IC3IP — DMA3IP 4444 IPC10 00B8 — OC7IP — OC6IP — OC5IP — IC6IP 4444 IPC11 00BA — T6IP — DMA4IP — — OC8IP 4404 IPC12 00BC — T8IP — MI2C2IP — SI2C2IP — T7IP 4444 IPC13 00BE — — INT4IP — INT3IP — T9IP 4444 IPC14 00C0 — — QEIIP — PWMIP — C2IP IPC15 00C2 — — DMA5IP — IPC16 00C4 — U2EIP — U1EIP — FLTBIP 0444 IPC17 00C6 — C1TXIP — DMA7IP — DMA6IP 4444 INTTREG 00E0 — Legend: — — — C2RXIP — — — FLTAIP — — — — C2TXIP — — — — — — — — — ILR — — — x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. — — — VECNUM — — 0444 — 4040 0000 dsPIC33FJXXXMCX06A/X08A/X10A  2009-2012 Microchip Technology Inc. TABLE 4-5: SFR Name SFR Addr TIMER REGISTER MAP Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 TMR1 0100 Timer1 Register PR1 0102 Period Register 1 T1CON 0104 TMR2 0106 TON — TSIDL — — — TMR3HLD 0108 — — — Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets 0000 FFFF TGATE TCKPS — TSYNC TCS — 0000 Timer2 Register 0000 Timer3 Holding Register (for 32-bit timer operations only) xxxx TMR3 010A Timer3 Register 0000 PR2 010C Period Register 2 FFFF PR3 010E Period Register 3 T2CON 0110 TON — TSIDL — — — — T3CON 0112 TON — TSIDL — — — — TMR4 0114 TMR5HLD 0116 FFFF — — TGATE TCKPS T32 — TCS — 0000 — — TGATE TCKPS — — TCS — 0000 Timer4 Register 0000 Timer5 Holding Register (for 32-bit operations only) xxxx TMR5 0118 Timer5 Register 0000 PR4 011A Period Register 4 FFFF PR5 011C Period Register 5 T4CON 011E TON — TSIDL — — — — T5CON 0120 TON — TSIDL — — — — TMR6 0122 TMR7HLD 0124 FFFF — — TGATE TCKPS T32 — TCS — 0000 — — TGATE TCKPS — — TCS — 0000 Timer6 Register 0000 Timer7 Holding Register (for 32-bit operations only) xxxx  2009-2012 Microchip Technology Inc. TMR7 0126 Timer7 Register 0000 PR6 0128 Period Register 6 FFFF PR7 012A Period Register 7 T6CON 012C TON — TSIDL — — — — T7CON 012E TON — TSIDL — — — — TMR8 0130 TMR9HLD 0132 FFFF — — TGATE TCKPS T32 — TCS — 0000 — — TGATE TCKPS — — TCS — 0000 Timer8 Register 0000 Timer9 Holding Register (for 32-bit operations only) xxxx TMR9 0134 Timer9 Register 0000 PR8 0136 Period Register 8 FFFF PR9 0138 Period Register 9 T8CON 013A TON — TSIDL — — — — — — TGATE TCKPS T32 — TCS — 0000 T9CON 013C TON — TSIDL — — — — — — TGATE TCKPS — — TCS — 0000 Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. FFFF dsPIC33FJXXXMCX06A/X08A/X10A DS70594D-page 46 TABLE 4-6: SFR Name SFR Addr IC1BUF 0140 IC1CON 0142 IC2BUF 0144 IC2CON 0146 IC3BUF 0148 IC3CON 014A IC4BUF 014C IC4CON 014E IC5BUF 0150 IC5CON 0152 IC6BUF 0154 IC6CON 0156 IC7BUF 0158 IC7CON 015A IC8BUF 015C IC8CON 015E Legend: INPUT CAPTURE REGISTER MAP Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 — — ICSIDL — — — — — — ICSIDL — — — — Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 ICI ICOV ICBNE ICM ICI ICOV ICBNE ICM ICI ICOV ICBNE ICM ICI ICOV ICBNE ICM ICI ICOV ICBNE ICM ICI ICOV ICBNE ICM ICI ICOV ICBNE ICM ICI ICOV ICBNE ICM Input 1 Capture Register — ICTMR ICTMR — ICSIDL — — — — — ICTMR — ICSIDL — — — — — ICTMR — ICSIDL — — — — — ICTMR — ICSIDL — — — — — ICTMR — ICSIDL — — — — — ICTMR — ICSIDL — — — — — ICTMR x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. 0000 xxxx Input 8 Capture Register — 0000 xxxx Input 7 Capture Register — 0000 xxxx Input 6 Capture Register — 0000 xxxx Input 5 Capture Register — 0000 xxxx Input 4 Capture Register — 0000 xxxx Input 3 Capture Register — All Resets xxxx Input 2 Capture Register — Bit 0 0000 xxxx 0000 DS70594D-page 47 dsPIC33FJXXXMCX06A/X08A/X10A  2009-2012 Microchip Technology Inc. TABLE 4-7: SFR Name OUTPUT COMPARE REGISTER MAP SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 OC1RS 0180 Output Compare 1 Secondary Register OC1R 0182 Output Compare 1 Register OC1CON 0184 OC2RS 0186 Output Compare 2 Secondary Register OC2R 0188 Output Compare 2 Register OC2CON 018A OC3RS 018C Output Compare 3 Secondary Register OC3R 018E Output Compare 3 Register OC3CON 0190 OC4RS 0192 Output Compare 4 Secondary Register OC4R 0194 Output Compare 4 Register OC4CON 0196 — — — — — — — — OCSIDL OCSIDL OCSIDL OCSIDL — — — — — — — — — — — — — — — — — — — — — — — — — — — — OC5RS 0198 Output Compare 5 Secondary Register OC5R 019A Output Compare 5 Register OC5CON 019C OC6RS 019E Output Compare 6 Secondary Register OC6R 01A0 Output Compare 6 Register OC6CON 01A2 OC7RS 01A4 Output Compare 7 Secondary Register OC7R 01A6 Output Compare 7 Register OC7CON 01A8 — — — — — — OCSIDL OCSIDL OCSIDL — — — — — — — — — — — — — — — — — — — — —  2009-2012 Microchip Technology Inc. OC8RS 01AA Output Compare 8 Secondary Register OC8R 01AC Output Compare 8 Register OC8CON 01AE Legend: — — OCSIDL — — — — — — x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. — Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets xxxx xxxx — OCFLT OCTSEL OCM 0000 xxxx xxxx — OCFLT OCTSEL OCM 0000 xxxx xxxx — OCFLT OCTSEL OCM 0000 xxxx xxxx — OCFLT OCTSEL OCM 0000 xxxx xxxx — OCFLT OCTSEL OCM 0000 xxxx xxxx — OCFLT OCTSEL OCM 0000 xxxx xxxx — OCFLT OCTSEL OCM 0000 xxxx xxxx — OCFLT OCTSEL OCM 0000 dsPIC33FJXXXMCX06A/X08A/X10A DS70594D-page 48 TABLE 4-8: SFR Name Addr. 8-OUTPUT PWM REGISTER MAP Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 — PTSIDL — — — — Bit 8 Bit 7 Bit 6 — Bit 5 Bit 4 PTOPS Bit 3 Bit 2 PTCKPS Bit 1 Bit 0 PTMOD Reset State P1TCON 01C0 PTEN P1TMR 01C2 PTDIR PWM Timer Count Value Register 0000 0000 0000 0000 P1TPER 01C4 — PWM Time Base Period Register 0000 0000 0000 0000 P1SECMP 01C6 SEVTDIR PWM Special Event Compare Register PWM1CON1 01C8 — — — — PWM1CON2 01CA — — — — P1DTCON1 01CC DTBPS P1DTCON2 — — — 01CE — PMOD4 PMOD3 PMOD2 PMOD1 SEVOPS DTB — — 0000 0000 0000 0000 PEN4H PEN3H PEN2H PEN1H PEN4L PEN3L PEN2L PEN1L 0000 0000 1111 1111 — — — — — IUE OSYNC UDIS 0000 0000 0000 0000 DTAPS — — 0000 0000 0000 0000 DTA 0000 0000 0000 0000 DTS4A DTS4I DTS3A DTS3I DTS2A DTS2I DTS1A DTS1I 0000 0000 0000 0000 P1FLTACON 01D0 FAOV4H FAOV4L FAOV3H FAOV3L FAOV2H FAOV2L FAOV1H FAOV1L FLTAM — — — FAEN4 FAEN3 FAEN2 FAEN1 0000 0000 0000 0000 P1FLTBCON 01D2 FBOV4H FBOV4L FBOV3H FBOV3L FBOV2H FBOV2L FBOV1H FBOV1L FLTBM — — — FBEN4 FBEN3 FBEN2 FBEN1 0000 0000 0000 0000 P1OVDCON 01D4 POVD4H POVD4L POVD3H POVD3L POVD2H POVD2L POVD1H POVD1L POUT4H POUT4L POUT3H POUT3L POUT2H POUT2L POUT1H POUT1L 1111 1111 0000 0000 P1DC1 01D6 PWM Duty Cycle #1 Register 0000 0000 0000 0000 P1DC2 01D8 PWM Duty Cycle #2 Register 0000 0000 0000 0000 P1DC3 01DA PWM Duty Cycle #3 Register 0000 0000 0000 0000 P1DC4 01DC PWM Duty Cycle #4 Register 0000 0000 0000 0000 Legend: u = uninitialized bit, — = unimplemented, read as ‘0’ DS70594D-page 49 dsPIC33FJXXXMCX06A/X08A/X10A  2009-2012 Microchip Technology Inc. TABLE 4-9: SFR Name Addr . QEI REGISTER MAP Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 SWPAB PCDOUT CEID QEOUT Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset State QEI1CON 01E0 CNTERR — QEISIDL INDX UPDN DFLT1CON 01E2 — — — — POS1CNT 01E4 Position Counter 0000 0000 0000 0000 MAX1CNT 01E6 Maximum Count 1111 1111 1111 1111 Legend: — QEIM IMV TQGATE TQCKPS QECK POSRES TQCS UPDN_SRC 0000 0000 0000 0000 — — — — 0000 0000 0000 0000 u = uninitialized bit, — = unimplemented, read as ‘0’ TABLE 4-11: I2C1 REGISTER MAP SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 I2C1RCV 0200 — — — — — — — — I2C1 Receive Register 0000 I2C1TRN 0202 — — — — — — — — I2C1 Transmit Register 00FF I2C1BRG 0204 — — — — — — — I2C1CON 0206 I2CEN — I2CSIDL SCLREL IPMIEN A10M DISSLW SMEN GCEN STREN ACKDT ACKEN RCEN PEN RSEN SEN 1000 I2C1STAT 0208 ACKSTAT TRSTAT — — — BCL GCSTAT ADD10 IWCOL I2COV D_A P S R_W RBF TBF 0000 I2C1ADD 020A — — — — — — I2C1 Address Register 0000 I2C1MSK 020C — — — — — — I2C1 Address Mask Register 0000 SFR Name Legend: Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Baud Rate Generator Register All Resets 0000 x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. TABLE 4-12: SFR Name Bit 7 I2C2 REGISTER MAP SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3  2009-2012 Microchip Technology Inc. I2C2RCV 0210 — — — — — — — — I2C2 Receive Register I2C2TRN 0212 — — — — — — — — I2C2 Transmit Register I2C2BRG 0214 — — — — — — — Bit 2 Bit 1 Bit 0 All Resets 0000 00FF Baud Rate Generator Register 0000 I2C2CON 0216 I2CEN — I2CSIDL SCLREL IPMIEN A10M DISSLW SMEN GCEN STREN ACKDT ACKEN RCEN PEN RSEN SEN I2C2STAT 0218 ACKSTAT TRSTAT — — — BCL GCSTAT ADD10 IWCOL I2COV D_A P S R_W RBF TBF I2C2ADD 021A — — — — — — I2C2 Address Register 0000 021C — — — — — — I2C2 Address Mask Register 0000 I2C2MSK Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. 1000 0000 dsPIC33FJXXXMCX06A/X08A/X10A DS70594D-page 50 TABLE 4-10: SFR Name SFR Addr UART1 REGISTER MAP Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 — USIDL IREN RTSMD — — UTXBRK UTXEN Bit 9 Bit 8 Bit 7 Bit 6 UEN1 UEN0 WAKE LPBACK UTXBF TRMT Bit 5 Bit 4 Bit 3 ABAUD URXINV BRGH ADDEN RIDLE PERR U1MODE 0220 UARTEN U1STA 0222 UTXISEL1 U1TXREG 0224 — — — — — — — UART1 Transmit Register U1RXREG 0226 — — — — — — — UART1 Receive Register U1BRG 0228 Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. TABLE 4-14: SFR Name SFR Addr UTXINV UTXISEL0 URXISEL Bit 2 Bit 1 PDSEL FERR OERR Bit 0 All Resets STSEL 0000 URXDA 0110 xxxx 0000 Baud Rate Generator Prescaler 0000 UART2 REGISTER MAP Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 WAKE LPBACK U2MODE 0230 UARTEN — USIDL IREN RTSMD — UEN1 UEN0 U2STA 0232 UTXISEL1 UTXINV UTXISEL0 — UTXBRK UTXEN UTXBF TRMT URXISEL Bit 5 Bit 4 Bit 3 ABAUD URXINV BRGH ADDEN RIDLE PERR Bit 2 Bit 1 PDSEL FERR OERR Bit 0 All Resets STSEL 0000 URXDA 0110 U2TXREG 0234 — — — — — — — UART2 Transmit Register xxxx U2RXREG 0236 — — — — — — — UART2 Receive Register 0000 U2BRG 0238 Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. TABLE 4-15: SFR Name Baud Rate Generator Prescaler SPI1 REGISTER MAP SFR Addr Bit 15 Bit 14 Bit 13 SPI1STAT 0240 SPIEN — SPISIDL — — — — SPI1CON1 0242 — — — DISSCK DISSDO MODE16 SMP FRMEN SPIFSD FRMPOL — — — — — Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 — — CKE SSEN — SPI1CON2 0244 SPI1BUF 0248 Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. TABLE 4-16: SFR Name 0000 Bit 5 Bit 4 SPIROV — — CKP MSTEN — — Bit 3 Bit 2 Bit 1 Bit 0 — — SPITBF SPIRBF SPRE — — PPRE — FRMDLY — SPI1 Transmit and Receive Buffer Register All Resets 0000 0000 0000 0000 SPI2 REGISTER MAP SFR Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 — DS70594D-page 51 SPI2STAT 0260 SPIEN — SPISIDL — — — — — — SPIROV — SPI2CON1 0262 — — — DISSCK DISSDO MODE16 SMP CKE SSEN CKP MSTEN SPI2CON2 0264 FRMEN SPIFSD FRMPOL — — — — — — — — SPI2BUF 0268 Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. SPI2 Transmit and Receive Buffer Register Bit 3 Bit 2 Bit 1 Bit 0 All Resets — — SPITBF SPIRBF 0000 SPRE — — PPRE — FRMDLY — 0000 0000 0000 dsPIC33FJXXXMCX06A/X08A/X10A  2009-2012 Microchip Technology Inc. TABLE 4-13: File Name Addr ADC1BUF0 0300 AD1CON1 0320 AD1CON2 0322 ADC1 REGISTER MAP Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 ADON — ADSIDL ADDMABM — AD12B FORM — — CSCNA CHPS — — Bit 7 Bit 6 Bit 5 Bit 3 Bit 2 Bit 1 Bit 0 — SIMSAM ASAM SAMP DONE 0000 BUFM ALTS 0000 CH123SA 0000 ADC1 Data Buffer 0 VCFG AD1CON3 0324 ADRC — — AD1CHS123 0326 — — — AD1CHS0 0328 CH0NB — — xxxx SSRC BUFS — CH123SB — — SMPI SAMC ADCS CH123NB — — — 0000 CH123NA CH0NA — — AD1PCFGH(1) 032A PCFG31 PCFG30 PCFG29 PCFG28 PCFG27 PCFG26 PCFG25 PCFG24 PCFG23 PCFG22 PCFG21 PCFG20 PCFG19 PCFG18 PCFG17 PCFG16 0000 AD1PCFGL 032C PCFG15 PCFG14 PCFG13 PCFG12 PCFG11 PCFG10 PCFG9 PCFG8 PCFG7 PCFG6 PCFG5 PCFG4 PCFG3 PCFG2 PCFG1 PCFG0 0000 AD1CSSH(1) 032E CSS31 CSS30 CSS29 CSS28 CSS27 CSS26 CSS25 CSS24 CSS23 CSS22 CSS21 CSS20 CSS19 CSS18 CSS17 CSS16 0000 AD1CSSL 0330 CSS15 CSS14 CSS13 CSS12 CSS11 CSS10 CSS9 CSS8 CSS7 CSS6 CSS5 CSS4 CSS3 CSS2 CSS1 CSS0 AD1CON4 0332 — — — — — — — — — — — — — Bit 6 Bit 5 Legend: Note 1: Addr ADC2BUF0 0340 AD2CON1 0360 AD2CON2 0362 AD2CON3 0364 0000 DMABL 0000 0000 ADC2 REGISTER MAP Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 ADON — ADSIDL ADDMABM — AD12B FORM — — CSCNA CHPS VCFG ADRC — — Bit 8 Bit 7 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets — SIMSAM ASAM SAMP DONE 0000 BUFM ALTS 0000 xxxx SSRC BUFS — SMPI SAMC — — — — 0368 CH0NB — — — Reserved 036A — — — — AD2PCFGL 036C PCFG15 PCFG14 PCFG13 PCFG12 Reserved 036E — — — — — — AD2CSSL 0370 CSS15 CSS14 CSS13 CSS12 CSS11 AD2CON4 0372 — — — — — AD2CHS123 0366 Bit 9 ADC2 Data Buffer 0 AD2CHS0  2009-2012 Microchip Technology Inc. Legend: CH0SA x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Not all ANx inputs are available on all devices. Refer to the device pin diagrams for available ANx inputs. TABLE 4-18: File Name CH0SB All Resets Bit 4 — ADCS CH123NB CH123SB CH0SB — — — — — — CH0NA — — — — 0000 CH123NA CH123SA 0000 0000 CH0SA 0000 — — — — — — — — — — PCFG9 PCFG8 PCFG7 PCFG6 PCFG5 PCFG4 PCFG3 PCFG2 PCFG1 PCFG0 0000 — — — — — — — — — — 0000 CSS10 CSS9 CSS8 CSS7 CSS6 CSS5 CSS4 CSS3 CSS2 CSS1 CSS0 0000 — — — — — — — — PCFG11 PCFG10 x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. DMABL 0000 dsPIC33FJXXXMCX06A/X08A/X10A DS70594D-page 52 TABLE 4-17: File Name Addr DMA REGISTER MAP Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 DMA0CON 0380 CHEN SIZE DIR HALF NULLW — — — — — DMA0REQ 0382 FORCE — — — — — — — — Bit 5 Bit 4 AMODE Bit 3 Bit 2 — — Bit 1 Bit 0 MODE IRQSEL All Resets 0000 0000 DMA0STA 0384 STA 0000 DMA0STB 0386 STB 0000 DMA0PAD 0388 PAD DMA0CNT 038A — — — — — — DMA1CON 038C CHEN SIZE DIR HALF NULLW — — — — DMA1REQ 038E FORCE — — — — — — — — 0000 CNT — AMODE 0000 — — MODE IRQSEL 0000 0000 DMA1STA 0390 STA 0000 DMA1STB 0392 STB 0000 DMA1PAD 0394 PAD DMA1CNT 0396 — — — — — — DMA2CON 0398 CHEN SIZE DIR HALF NULLW — — — — DMA2REQ 039A FORCE — — — — — — — — 0000 CNT — AMODE 0000 — — MODE IRQSEL 0000 0000 DMA2STA 039C STA 0000 DMA2STB 039E STB 0000 DMA2PAD 03A0 PAD DMA2CNT 03A2 — — — — — — DMA3CON 03A4 CHEN SIZE DIR HALF NULLW — — — — DMA3REQ 03A6 FORCE — — — — — — — — 0000 CNT — AMODE 0000 — — MODE IRQSEL 0000 0000 DMA3STA 03A8 STA 0000 DMA3STB 03AA STB 0000 DMA3PAD 03AC PAD DMA3CNT 03AE — — — — — — DMA4CON 03B0 CHEN SIZE DIR HALF NULLW — — — — DMA4REQ 03B2 FORCE — — — — — — — — 0000 CNT — AMODE 0000 — — MODE IRQSEL 0000 0000 DMA4STA 03B4 STA 0000 DMA4STB 03B6 STB 0000 DMA4PAD 03B8 PAD DS70594D-page 53 DMA4CNT 03BA — — — — — — DMA5CON 03BC CHEN SIZE DIR HALF NULLW — — — — DMA5REQ 03BE FORCE — — — — — — — — 0000 CNT — AMODE 0000 — IRQSEL — MODE 0000 0000 DMA5STA 03C0 STA 0000 DMA5STB 03C2 STB 0000 Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. dsPIC33FJXXXMCX06A/X08A/X10A  2009-2012 Microchip Technology Inc. TABLE 4-19: File Name Addr DMA REGISTER MAP (CONTINUED) Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 DMA5CNT 03C6 — — — — — — DMA6CON 03C8 CHEN SIZE DIR HALF NULLW — — — — — — — — — — — — DMA5PAD Bit 9 Bit 8 03C4 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 PAD DMA6REQ 03CA FORCE All Resets 0000 CNT — AMODE 0000 — — MODE IRQSEL 0000 0000 DMA6STA 03CC STA 0000 DMA6STB 03CE STB 0000 DMA6PAD 03D0 PAD DMA6CNT 03D2 — — — — — — DMA7CON 03D4 CHEN SIZE DIR HALF NULLW — — — — DMA7REQ 03D6 FORCE — — — — — — — — 0000 CNT — AMODE 0000 — — MODE IRQSEL 0000 0000 DMA7STA 03D8 STA 0000 DMA7STB 03DA STB 0000 DMA7PAD 03DC PAD DMA7CNT 03DE — — — — — CNT DMACS0 03E0 PWCOL7 PWCOL6 PWCOL5 PWCOL4 PWCOL3 PWCOL2 PWCOL1 PWCOL0 DMACS1 03E2 DSADR 03E4 Legend: — — — — 0000 — LSTCH — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. XWCOL7 PPST7 DSADR XWCOL6 XWCOL5 PPST6 PPST5 0000 XWCOL4 XWCOL3 XWCOL2 PPST4 PPST3 PPST2 XWCOL1 XWCOL0 PPST1 PPST0 0000 0000 0000  2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A DS70594D-page 54 TABLE 4-19: File Name ECAN1 REGISTER MAP WHEN WIN (C1CTRL) = 0 OR 1 Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 C1CTRL1 0400 — — CSIDL ABAT — C1CTRL2 0402 — — — — — C1VEC 0404 — — — C1FCTRL 0406 — — C1FIFO 0408 — — DMABS Bit 10 Bit 9 Bit 8 Bit 7 — — — — — REQOP — Bit 5 OPMODE FILHIT — Bit 6 — — — — — — — Bit 4 Bit 3 — CANCAP Bit 1 Bit 0 — — WIN DNCNT — FBP Bit 2 All Resets 0480 0000 ICODE 0000 FSA 0000 FNRB 0000 C1INTF 040A — — TXBO TXBP RXBP TXWAR C1INTE 040C — — — — — — C1EC 040E C1CFG1 0410 — — — — — C1CFG2 0412 — WAKFIL — — — C1FEN1 0414 C1FMSKSEL1 0418 F7MSK F6MSK F5MSK F4MSK F3MSK F2MSK F1MSK F0MSK 0000 C1FMSKSEL2 041A F15MSK F14MSK F13MSK F12MSK F11MSK F10MSK F9MSK F8MSK 0000 Legend: — — IVRIF WAKIF ERRIF — FIFOIF RBOVIF RBIF TBIF 0000 IVRIE WAKIE ERRIE — FIFOIE RBOVIE RBIE TBIE 0000 TERRCNT RERRCNT — — — SEG2PH FLTEN15 FLTEN14 FLTEN13 FLTEN12 FLTEN11 FLTEN10 FLTEN9 FLTEN8 SJW 0000 BRP SEG2PHTS SAM SEG1PH FLTEN7 FLTEN6 FLTEN5 FLTEN4 0000 PRSEG FLTEN3 FLTEN2 FLTEN1 0000 FLTEN0 FFFF — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. TABLE 4-21: File Name RXWAR EWARN Addr ECAN1 REGISTER MAP WHEN WIN (C1CTRL) = 0 Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 0400041E Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets RXFUL5 RXFUL4 RXFUL3 RXFUL2 RXFUL1 See definition when WIN = x C1RXFUL1 0420 RXFUL15 RXFUL14 RXFUL13 RXFUL12 RXFUL11 RXFUL10 RXFUL9 RXFUL0 0000 C1RXFUL2 0422 RXFUL31 RXFUL30 RXFUL29 RXFUL28 RXFUL27 RXFUL26 RXFUL25 RXFUL24 RXFUL23 RXFUL22 RXFUL21 RXFUL20 RXFUL19 RXFUL18 RXFUL17 RXFUL16 RXFUL8 0000 C1RXOVF1 0428 RXOVF15 RXOVF14 RXOVF13 RXOVF12 RXOVF11 RXOVF10 RXOVF9 RXOVF0 0000 C1RXOVF2 042A RXOVF31 RXOVF30 RXOVF29 RXOVF28 RXOVF27 RXOVF26 RXOVF25 RXOVF24 RXOVF23 RXOVF22 RXOVF21 RXOVF20 RXOVF19 RXOVF18 RXOVF17 RXOVF16 0000 RXOVF8 RXFUL7 RXOVF7 RXFUL6 RXOVF6 RXOVF5 RXOVF4 RXOVF3 RXOVF2 RXOVF1 C1TR01CON 0430 TXEN1 TXABT1 TXLARB1 TXERR1 TXREQ1 RTREN1 TX1PRI TXEN0 TXABAT0 TXLARB0 TXERR0 TXREQ0 RTREN0 TX0PRI 0000 C1TR23CON 0432 TXEN3 TXABT3 TXLARB3 TXERR3 TXREQ3 RTREN3 TX3PRI TXEN2 TXABAT2 TXLARB2 TXERR2 TXREQ2 RTREN2 TX2PRI 0000 C1TR45CON 0434 TXEN5 TXABT5 TXLARB5 TXERR5 TXREQ5 RTREN5 TX5PRI TXEN4 TXABAT4 TXLARB4 TXERR4 TXREQ4 RTREN4 TX4PRI 0000 C1TR67CON 0436 TXEN7 TXABT7 TXLARB7 TXERR7 TXREQ7 RTREN7 TX7PRI TXEN6 TXABAT6 TXLARB6 TXERR6 TXREQ6 RTREN6 TX6PRI xxxx C1RXD 0440 ECAN1 Received Data Word xxxx C1TXD 0442 ECAN1 Transmit Data Word xxxx DS70594D-page 55 Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. dsPIC33FJXXXMCX06A/X08A/X10A  2009-2012 Microchip Technology Inc. TABLE 4-20: File Name ECAN1 REGISTER MAP WHEN WIN (C1CTRL) = 1 Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 0400041E Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets See definition when WIN = x  2009-2012 Microchip Technology Inc. C1BUFPNT1 0420 F3BP F2BP F1BP F0BP 0000 C1BUFPNT2 0422 F7BP F6BP F5BP F4BP 0000 C1BUFPNT3 0424 F11BP F10BP F9BP F8BP 0000 C1BUFPNT4 0426 F15BP F14BP F13BP F12BP 0000 C1RXM0SID 0430 SID — EID xxxx C1RXM0EID 0432 EID C1RXM1SID 0434 SID — EID C1RXM1EID 0436 EID C1RXM2SID 0438 SID — EID C1RXM2EID 043A EID C1RXF0SID 0440 SID — EID C1RXF0EID 0442 EID C1RXF1SID 0444 SID — EID C1RXF1EID 0446 EID C1RXF2SID 0448 SID — EID C1RXF2EID 044A EID C1RXF3SID 044C SID — EID C1RXF3EID 044E EID C1RXF4SID 0450 SID — EID C1RXF4EID 0452 EID C1RXF5SID 0454 SID — EID C1RXF5EID 0456 EID C1RXF6SID 0458 SID — EID C1RXF6EID 045A EID C1RXF7SID 045C SID — EID C1RXF7EID 045E EID C1RXF8SID 0460 SID — EID C1RXF8EID 0462 EID C1RXF9SID 0464 SID — EID C1RXF9EID 0466 EID C1RXF10SID 0468 SID — EID C1RXF10EID 046A EID Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. SID — MIDE EID SID — MIDE xxxx EID SID — MIDE xxxx EID SID — EXIDE — EXIDE — EXIDE — EXIDE — EXIDE — EXIDE — EXIDE — EXIDE — EXIDE — EXIDE — EXIDE EID xxxx xxxx EID SID xxxx xxxx EID SID xxxx xxxx EID SID xxxx xxxx EID SID xxxx xxxx EID SID xxxx xxxx EID SID xxxx xxxx EID SID xxxx xxxx EID SID xxxx xxxx EID SID xxxx xxxx EID SID xxxx xxxx xxxx xxxx xxxx dsPIC33FJXXXMCX06A/X08A/X10A DS70594D-page 56 TABLE 4-22: File Name ECAN1 REGISTER MAP WHEN WIN (C1CTRL) = 1 (CONTINUED) Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 C1RXF11SID 046C SID C1RXF11EID 046E EID C1RXF12SID 0470 SID C1RXF12EID 0472 EID C1RXF13SID 0474 SID C1RXF13EID 0476 EID C1RXF14SID 0478 SID C1RXF14EID 047A EID C1RXF15SID 047C SID C1RXF15EID 047E EID Legend: Bit 10 Bit 9 Bit 8 Bit 7 x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Bit 6 SID Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 — EXIDE — EID — EID — EID — EID — EID EID SID — EXIDE — EXIDE — EXIDE — EXIDE EID xxxx xxxx EID SID xxxx xxxx EID SID xxxx xxxx EID SID All Resets xxxx xxxx xxxx xxxx DS70594D-page 57 dsPIC33FJXXXMCX06A/X08A/X10A  2009-2012 Microchip Technology Inc. TABLE 4-22: File Name ECAN2 REGISTER MAP WHEN WIN (C1CTRL) = 0 OR 1 FOR dsPIC33FJXXXMC708A/710A DEVICES Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 C2CTRL1 0500 — — CSIDL ABAT — C2CTRL2 0502 — — — — — C2VEC 0504 — — — C2FCTRL 0506 — — TXBP RXBP TXWAR — — — Bit 8 Bit 7 — — — — — REQOP — Bit 5 OPMODE FILHIT DMABS Bit 6 — — — — Bit 4 Bit 3 — CANCAP Bit 1 Bit 0 — — WIN DNCNT — — Bit 2 0480 0000 ICODE — All Resets 0000 FSA 0000 C2FIFO 0508 — — C2INTF 050A — — TXBO C2INTE 050C — — — C2EC 050E C2CFG1 0510 — — — — — C2CFG2 0512 — WAKFIL — — — SEG2PH SEG2PHTS C2FEN1 0514 FLTEN15 FLTEN14 FLTEN13 FLTEN12 FLTEN11 FLTEN10 FLTEN9 FLTEN8 FLTEN7 C2FMSKSEL1 0518 F7MSK F6MSK F5MSK F4MSK F3MSK F2MSK F1MSK F0MSK 0000 C2FMSKSEL2 051A F15MSK F14MSK F13MSK F12MSK F11MSK F10MSK F9MSK F8MSK 0000 Legend: RXWAR EWARN — — — — IVRIF WAKIF ERRIF FNRB IVRIE WAKIE ERRIE TERRCNT 0000 — FIFOIF RBOVIF RBIF TBIF — FIFOIE RBOVIE RBIE TBIE RERRCNT — — — SJW SEG1PH FLTEN6 FLTEN5 FLTEN4 0000 PRSEG FLTEN3 0000 0000 BRP SAM 0000 FLTEN2 FLTEN1 0000 FLTEN0 FFFF — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. TABLE 4-24: File Name FBP Addr ECAN2 REGISTER MAP WHEN WIN (C1CTRL) = 0 FOR dsPIC33FJXXXMC708A/710A DEVICES Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 0500051E Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets RXFUL5 RXFUL4 RXFUL3 RXFUL2 RXFUL1 See definition when WIN = x C2RXFUL1 0520 RXFUL15 RXFUL14 RXFUL13 RXFUL12 RXFUL11 RXFUL10 RXFUL0 0000 C2RXFUL2 0522 RXFUL31 RXFUL30 RXFUL29 RXFUL28 RXFUL27 RXFUL26 RXFUL25 RXFUL24 RXFUL23 RXFUL22 RXFUL21 RXFUL20 RXFUL19 RXFUL18 RXFUL17 RXFUL16 RXFUL9 RXFUL8 RXFUL7 RXFUL6 0000 C2RXOVF1 0528 RXOVF15 RXOVF14 RXOVF13 RXOVF12 RXOVF11 RXOVF10 RXOVF09 RXOVF08 RXOVF7 0000 C2RXOVF2 052A RXOVF31 RXOVF30 RXOVF29 RXOVF28 RXOVF27 RXOVF26 RXOVF25 RXOVF24 RXOVF23 RXOVF22 RXOVF21 RXOVF20 RXOVF19 RXOVF18 RXOVF17 RXOVF16 RXOVF6 RXOVF5 RXOVF4 RXOVF3 RXOVF2 RXOVF1 RXOVF0 0000  2009-2012 Microchip Technology Inc. C2TR01CON 0530 TXEN1 TX ABAT1 TX LARB1 TX ERR1 TX REQ1 RTREN1 TX1PRI TXEN0 TX ABAT0 TX LARB0 TX ERR0 TX REQ0 RTREN0 TX0PRI 0000 C2TR23CON 0532 TXEN3 TX ABAT3 TX LARB3 TX ERR3 TX REQ3 RTREN3 TX3PRI TXEN2 TX ABAT2 TX LARB2 TX ERR2 TX REQ2 RTREN2 TX2PRI 0000 C2TR45CON 0534 TXEN5 TX ABAT5 TX LARB5 TX ERR5 TX REQ5 RTREN5 TX5PRI TXEN4 TX ABAT4 TX LARB4 TX ERR4 TX REQ4 RTREN4 TX4PRI 0000 C2TR67CON 0536 TXEN7 TX ABAT7 TX LARB7 TX ERR7 TX REQ7 RTREN7 TX7PRI TXEN6 TX ABAT6 TX LARB6 TX ERR6 TX REQ6 RTREN6 TX6PRI xxxx C2RXD 0540 ECAN2 Recieved Data Word xxxx C2TXD 0542 ECAN2 Transmit Data Word xxxx Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. dsPIC33FJXXXMCX06A/X08A/X10A DS70594D-page 58 TABLE 4-23: File Name Addr ECAN2 REGISTER MAP WHEN WIN (C1CTRL) = 1 FOR dsPIC33FJXXXMC708A/710A DEVICES Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 0500051E Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets See definition when WIN = x DS70594D-page 59 C2BUFPNT1 0520 F3BP F2BP F1BP F0BP 0000 C2BUFPNT2 0522 F7BP F6BP F5BP F4BP 0000 C2BUFPNT3 0524 F11BP F10BP F9BP F8BP 0000 C2BUFPNT4 0526 F15BP F14BP F13BP F12BP 0000 C2RXM0SID 0530 SID C2RXM0EID 0532 EID C2RXM1SID 0534 SID C2RXM1EID 0536 EID C2RXM2SID 0538 SID C2RXM2EID 053A EID C2RXF0SID 0540 SID C2RXF0EID 0542 EID C2RXF1SID 0544 SID C2RXF1EID 0546 EID C2RXF2SID 0548 SID C2RXF2EID 054A EID C2RXF3SID 054C SID C2RXF3EID 054E EID C2RXF4SID 0550 SID C2RXF4EID 0552 EID C2RXF5SID 0554 SID C2RXF5EID 0556 EID C2RXF6SID 0558 SID C2RXF6EID 055A EID C2RXF7SID 055C SID C2RXF7EID 055E EID C2RXF8SID 0560 SID C2RXF8EID 0562 EID C2RXF9SID 0564 SID C2RXF9EID 0566 EID C2RXF10SID 0568 SID C2RXF10EID 056A EID Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. SID — MIDE — EID EID SID — MIDE — EID EID SID — MIDE — EXIDE — EID — EXIDE — EID — EXIDE — EID — EXIDE — EID — EXIDE — EID — EXIDE — EID — EXIDE — EID — EXIDE — EID — EXIDE — EID — EXIDE — EID — EXIDE EID xxxx xxxx — EID EID SID xxxx xxxx EID SID xxxx xxxx EID SID xxxx xxxx EID SID xxxx xxxx EID SID xxxx xxxx EID SID xxxx xxxx EID SID xxxx xxxx EID SID xxxx xxxx EID SID xxxx xxxx EID SID xxxx xxxx EID SID xxxx xxxx xxxx xxxx — EID xxxx xxxx dsPIC33FJXXXMCX06A/X08A/X10A  2009-2012 Microchip Technology Inc. TABLE 4-25: File Name Addr ECAN2 REGISTER MAP WHEN WIN (C1CTRL) = 1 FOR dsPIC33FJXXXMC708A/710A DEVICES (CONTINUED) Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 C2RXF11SID 056C SID C2RXF11EID 056E EID C2RXF12SID 0570 SID C2RXF12EID 0572 EID C2RXF13SID 0574 SID C2RXF13EID 0576 EID C2RXF14SID 0578 SID C2RXF14EID 057A EID C2RXF15SID 057C SID C2RXF15EID 057E EID Legend: Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 SID Bit 4 Bit 3 Bit 2 — EXIDE — Bit 1 Bit 0 EID EID SID — EXIDE — EXIDE — EID — EXIDE — EID — EXIDE xxxx xxxx — EID EID SID xxxx xxxx EID SID xxxx xxxx EID SID All Resets xxxx xxxx — EID EID xxxx xxxx x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. TABLE 4-26: PORTA REGISTER MAP(1) File Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets TRISA 02C0 TRISA15 TRISA14 — — — TRISA10 TRISA9 — TRISA7 TRISA6 TRISA5 TRISA4 TRISA3 TRISA2 TRISA1 TRISA0 C6FF PORTA 02C2 RA15 RA14 — — — RA10 RA9 — RA7 RA6 RA5 RA4 RA3 RA2 RA1 RA0 xxxx LATA 02C4 LATA15 LATA14 — — — LATA10 LATA9 — LATA7 LATA6 LATA5 LATA4 LATA3 LATA2 LATA1 LATA0 xxxx ODCA(2) 06C0 ODCA15 ODCA14 — — — — — — — — ODCA5 ODCA4 ODCA3 ODCA2 ODCA1 ODCA0 0000 Legend: Note 1: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for high pin count devices. The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams. TABLE 4-27: PORTB REGISTER MAP(1)  2009-2012 Microchip Technology Inc. Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets TRISB 02C6 TRISB15 TRISB14 TRISB13 TRISB12 TRISB11 TRISB10 TRISB9 TRISB8 TRISB7 TRISB6 TRISB5 TRISB4 TRISB3 TRISB2 TRISB1 TRISB0 FFFF PORTB 02C8 RB15 RB14 RB13 RB12 RB11 RB10 RB9 RB8 RB7 RB6 RB5 RB4 RB3 RB2 RB1 RB0 xxxx LATB 02CA LATB15 LATB14 LATB13 LATB12 LATB11 LATB10 LATB9 LATB8 LATB7 LATB6 LATB5 LATB4 LATB3 LATB2 LATB1 LATB0 xxxx Legend: Note 1: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for high pin count devices. The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams. File Name dsPIC33FJXXXMCX06A/X08A/X10A DS70594D-page 60 TABLE 4-25: PORTC REGISTER MAP(1) Bit 13 Bit 12 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets — — — — — — — TRISC4 TRISC3 TRISC2 TRISC1 — F01E — — — — — — — RC4 RC3 RC2 RC1 — xxxx — — — — — — — LATC4 LATC3 LATC2 LATC1 — xxxx TRISC 02CC PORTC 02CE RC15 RC14 RC13 RC12 LATC 02D0 LATC15 LATC14 LATC13 LATC12 Legend: Note 1: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for high pin count devices. The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams. File Name Bit 14 Bit 10 Addr TABLE 4-29: Bit 15 Bit 11 File Name TRISC15 TRISC14 TRISC13 TRISC12 PORTD REGISTER MAP(1) Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets TRISD 02D2 TRISD15 TRISD14 TRISD13 TRISD12 TRISD11 TRISD10 TRISD9 TRISD8 TRISD7 TRISD6 TRISD5 TRISD4 TRISD3 TRISD2 TRISD1 TRISD0 FFFF PORTD 02D4 RD15 RD14 RD13 RD12 RD11 RD10 RD9 RD8 RD7 RD6 RD5 RD4 RD3 RD2 RD1 RD0 xxxx LATD 02D6 LATD15 LATD14 LATD13 LATD12 LATD11 LATD10 LATD9 LATD8 LATD7 LATD6 LATD5 LATD4 LATD3 LATD2 LATD1 LATD0 xxxx ODCD 06D2 ODCD15 ODCD14 ODCD13 ODCD12 ODCD11 ODCD10 ODCD9 ODCD8 ODCD7 ODCD6 ODCD5 ODCD4 ODCD3 ODCD2 ODCD1 ODCD0 0000 Legend: Note 1: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for high pin count devices. The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams. TABLE 4-30: PORTE REGISTER MAP(1) Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets TRISE 02D8 — — — — — — TRISE9 TRISE8 TRISE7 TRISE6 TRISE5 TRISE4 TRISE3 TRISE2 TRISE1 TRISE0 01FF PORTE 02DA — — — — — — RE9 RE8 RE7 RE6 RE5 RE4 RE3 RE2 RE1 RE0 xxxx LATE 02DC — — — — — — LATE9 LATE8 LATE7 LATE6 LATE5 LATE4 LATE3 LATE2 LATE1 LATE0 xxxx Legend: Note 1: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for high pin count devices. The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams. File Name TABLE 4-31: PORTF REGISTER MAP(1) File Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets DS70594D-page 61 TRISF 02DE — — TRISF13 TRISF12 — — — TRISF8 TRISF7 TRISF6 TRISF5 TRISF4 TRISF3 TRISF2 TRISF1 TRISF0 31FF PORTF 02E0 — — RF13 RF12 — — — RF8 RF7 RF6 RF5 RF4 RF3 RF2 RF1 RF0 xxxx LATF 02E2 — — LATF13 LATF12 — — — LATF8 LATF7 LATF6 LATF5 LATF4 LATF3 LATF2 LATF1 LATF0 xxxx ODCF 06DE — — ODCF13 ODCF12 — — — ODCF8 ODCF7 ODCF6 ODCF5 ODCF4 ODCF3 ODCF2 ODCF1 ODCF0 0000 Legend: Note 1: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for high pin count devices. The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams. dsPIC33FJXXXMCX06A/X08A/X10A  2009-2012 Microchip Technology Inc. TABLE 4-28: PORTG REGISTER MAP(1) File Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets TRISG 02E4 TRISG15 TRISG14 TRISG13 TRISG12 — — TRISG9 TRISG8 TRISG7 TRISG6 — — TRISG3 TRISG2 TRISG1 TRISG0 F3CF PORTG 02E6 RG15 RG14 RG13 RG12 — — RG9 RG8 RG7 RG6 — — RG3 RG2 RG1 RG0 xxxx LATG 02E8 LATG15 LATG14 LATG13 LATG12 — — LATG9 LATG8 LATG7 LATG6 — — LATG3 LATG2 LATG1 LATG0 xxxx ODCG 06E4 ODCG15 ODCG14 ODCG13 ODCG12 — — ODCG9 ODCG8 ODCG7 ODCG6 — — ODCG3 ODCG2 ODCG1 ODCG0 0000 Legend: Note 1: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for high pin count devices. The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams. TABLE 4-33: SYSTEM CONTROL REGISTER MAP File Name Addr Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets RCON 0740 TRAPR IOPUWR — — — — — VREGS EXTR SWR SWDTEN WDTO SLEEP IDLE BOR POR xxxx(1) OSCCON 0742 — CLKLOCK — LOCK — CF — LPOSCEN OSWEN 0300(2) COSC — CLKDIV 0744 ROI PLLFBD 0746 — — — — — — — OSCTUN 0748 — — — — — — — Legend: Note 1: 2: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. RCON register Reset values dependent on type of Reset. OSCCON register Reset values dependent on the FOSC Configuration bits and type of Reset. TABLE 4-34: DOZE NOSC DOZEN FRCDIV PLLPOST — PLLPRE — — TUN Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 NVMCON 0760 WR WREN WRERR — — — — — — ERASE — — 0766 — — — — — — — — Bit 3 Bit 2 Bit 1 Bit 0 All Resets 0000(1) NVMOP NVMKEY 0000  2009-2012 Microchip Technology Inc. x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal. Reset value shown is for POR only. Value on other Reset states is dependent on the state of memory write or erase operations at the time of Reset. TABLE 4-35: File Name 0000 NVM REGISTER MAP Addr Legend: Note 1: 0030 — File Name NVMKEY 3040 PLLDIV Addr PMD REGISTER MAP Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets PMD1 0770 T5MD T4MD T3MD T2MD T1MD QEI1MD PWMMD — I2C1MD U2MD U1MD SPI2MD SPI1MD C2MD C1MD AD1MD 0000 PMD2 0772 IC8MD IC7MD IC6MD IC5MD IC4MD IC3MD IC2MD IC1MD OC8MD OC7MD OC6MD OC5MD OC4MD OC3MD OC2MD OC1MD 0000 PMD3 0774 T9MD T8MD T7MD T6MD — — — — — — — — — — I2C2MD AD2MD 0000 Legend: x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for high pin count devices. dsPIC33FJXXXMCX06A/X08A/X10A DS70594D-page 62 TABLE 4-32: dsPIC33FJXXXMCX06A/X08A/X10A 4.2.7 4.2.8 SOFTWARE STACK In addition to its use as a working register, the W15 register in the dsPIC33FJXXXMCX06A/X08A/X10A devices is also used as a software Stack Pointer. The Stack Pointer always points to the first available free word and grows from lower to higher addresses. It pre-decrements for stack pops and post-increments for stack pushes, as shown in Figure 4-6. For a PC push during any CALL instruction, the MSb of the PC is zero-extended before the push, ensuring that the MSb is always clear. Note: A PC push during exception processing concatenates the SRL register to the MSb of the PC prior to the push. The Stack Pointer Limit register (SPLIM) associated with the Stack Pointer sets an upper address boundary for the stack. SPLIM is uninitialized at Reset. As is the case for the Stack Pointer, SPLIM is forced to ‘0’ because all stack operations must be word-aligned. Whenever an EA is generated using W15 as a source or destination pointer, the resulting address is compared with the value in SPLIM. If the contents of the Stack Pointer (W15) and the SPLIM register are equal and a push operation is performed, a stack error trap will not occur. The stack error trap will occur on a subsequent push operation. Thus, for example, if it is desirable to cause a stack error trap when the stack grows beyond address 0x2000 in RAM, initialize the SPLIM with the value 0x1FFE. Similarly, a Stack Pointer underflow (stack error) trap is generated when the Stack Pointer address is found to be less than 0x0800. This prevents the stack from interfering with the Special Function Register (SFR) space. A write to the SPLIM register should not be immediately followed by an indirect read operation using W15. FIGURE 4-6: Stack Grows Towards Higher Address 0x0000 CALL STACK FRAME 15 0 PC 000000000 PC W15 (before CALL) W15 (after CALL) POP : [--W15] PUSH : [W15++]  2009-2012 Microchip Technology Inc. DATA RAM PROTECTION FEATURE The dsPIC33FJXXXMCX06A/X08A/X10A devices support data RAM protection features which enable segments of RAM to be protected when used in conjunction with Boot and Secure Code Segment Security. BSRAM (Secure RAM segment for BS) is accessible only from the Boot Segment Flash code when enabled. SSRAM (Secure RAM segment for RAM) is accessible only from the Secure Segment Flash code when enabled. See Table 4-1 for an overview of the BSRAM and SSRAM SFRs. 4.3 Instruction Addressing Modes The addressing modes in Table 4-36 form the basis of the addressing modes optimized to support the specific features of individual instructions. The addressing modes provided in the MAC class of instructions are somewhat different from those in the other instruction types. 4.3.1 FILE REGISTER INSTRUCTIONS Most file register instructions use a 13-bit address field (f) to directly address data present in the first 8192 bytes of data memory (Near Data Space). Most file register instructions employ a working register, W0, which is denoted as WREG in these instructions. The destination is typically either the same file register or WREG (with the exception of the MUL instruction), which writes the result to a register or register pair. The MOV instruction allows additional flexibility and can access the entire data space. 4.3.2 MCU INSTRUCTIONS The 3-operand MCU instructions are of the following form: Operand 3 = Operand 1 Operand 2 where Operand 1 is always a working register (i.e., the addressing mode can only be Register Direct) which is referred to as Wb. Operand 2 can be a W register fetched from data memory or a 5-bit literal. The result location can be either a W register or a data memory location. The following addressing modes are supported by MCU instructions: • • • • • Register Direct Register Indirect Register Indirect Post-Modified Register Indirect Pre-Modified 5-Bit or 10-Bit Literal Note: Not all instructions support all the addressing modes given above. Individual instructions may support different subsets of these addressing modes. DS70594D-page 63 dsPIC33FJXXXMCX06A/X08A/X10A TABLE 4-36: FUNDAMENTAL ADDRESSING MODES SUPPORTED Addressing Mode Description File Register Direct The address of the file register is specified explicitly. Register Direct The contents of a register are accessed directly. Register Indirect The contents of Wn forms the EA. Register Indirect Post-Modified The contents of Wn forms the EA. Wn is post-modified (incremented or decremented) by a constant value. Register Indirect Pre-Modified Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA. Register Indirect with Register Offset The sum of Wn and Wb forms the EA. Register Indirect with Literal Offset 4.3.3 The sum of Wn and a literal forms the EA. MOVE AND ACCUMULATOR INSTRUCTIONS Move instructions and the DSP accumulator class of instructions provide a greater degree of addressing flexibility than other instructions. In addition to the Addressing modes supported by most MCU instructions, move and accumulator instructions also support Register Indirect with Register Offset Addressing mode, also referred to as Register Indexed mode. Note: For the MOV instructions, the addressing mode specified in the instruction can differ for the source and destination EA. However, the 4-bit Wb (register offset) field is shared between both source and destination (but typically only used by one). In summary, the following addressing modes are supported by move and accumulator instructions: • • • • • • • • Register Direct Register Indirect Register Indirect Post-modified Register Indirect Pre-modified Register Indirect with Register Offset (Indexed) Register Indirect with Literal Offset 8-Bit Literal 16-Bit Literal Note: 4.3.4 Not all instructions support all the addressing modes given above. Individual instructions may support different subsets of these addressing modes. MAC INSTRUCTIONS The dual source operand DSP instructions (CLR, ED, EDAC, MAC, MPY, MPY.N, MOVSAC and MSC), also referred to as MAC instructions, utilize a simplified set of addressing modes to allow the user to effectively manipulate the Data Pointers through register indirect tables. DS70594D-page 64 The 2-source operand prefetch registers must be members of the set {W8, W9, W10, W11}. For data reads, W8 and W9 are always directed to the X RAGU, and W10 and W11 will always be directed to the Y AGU. The Effective Addresses generated (before and after modification) must, therefore, be valid addresses within X data space for W8 and W9, and Y data space for W10 and W11. Note: Register Indirect with Register Offset Addressing mode is only available for W9 (in X space) and W11 (in Y space). In summary, the following addressing modes are supported by the MAC class of instructions: • • • • • Register Indirect Register Indirect Post-Modified by 2 Register Indirect Post-Modified by 4 Register Indirect Post-Modified by 6 Register Indirect with Register Offset (Indexed) 4.3.5 OTHER INSTRUCTIONS Besides the various addressing modes outlined above, some instructions use literal constants of various sizes. For example, BRA (branch) instructions use 16-bit signed literals to specify the branch destination directly, whereas the DISI instruction uses a 14-bit unsigned literal field. In some instructions, such as ADD Acc, the source of an operand or result is implied by the opcode itself. Certain operations, such as NOP, do not have any operands. 4.4 Modulo Addressing Modulo Addressing mode is a method of providing an automated means to support circular data buffers using hardware. The objective is to remove the need for software to perform data address boundary checks when executing tightly looped code, as is typical in many DSP algorithms.  2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A Modulo Addressing can operate in either data or program space (since the Data Pointer mechanism is essentially the same for both). One circular buffer can be supported in each of the X (which also provides the pointers into program space) and Y data spaces. Modulo Addressing can operate on any W register pointer. However, it is not advisable to use W14 or W15 for Modulo Addressing, since these two registers are used as the Stack Frame Pointer and Stack Pointer, respectively. In general, any particular circular buffer can only be configured to operate in one direction, as there are certain restrictions on the buffer start address (for incrementing buffers) or end address (for decrementing buffers), based upon the direction of the buffer. The only exception to the usage restrictions is for buffers which have a power-of-2 length. As these buffers satisfy the start and end address criteria, they may operate in a bidirectional mode (i.e., address boundary checks will be performed on both the lower and upper address boundaries). 4.4.1 START AND END ADDRESS The Modulo Addressing scheme requires that a starting and ending address be specified and loaded into the 16-bit Modulo Buffer Address registers: XMODSRT, XMODEND, YMODSRT and YMODEND (see Table 4-1). Note: The length of a circular buffer is not directly specified. It is determined by the difference between the corresponding start and end addresses. The maximum possible length of the circular buffer is 32K words (64 Kbytes). 4.4.2 W ADDRESS REGISTER SELECTION The Modulo and Bit-Reversed Addressing Control register, MODCON, contains enable flags as well as a W register field to specify the W Address registers. The XWM and YWM fields select which registers will operate with Modulo Addressing. If XWM = 15, X RAGU and X WAGU Modulo Addressing are disabled. Similarly, if YWM = 15, Y AGU Modulo Addressing is disabled. The X Address Space Pointer W register (XWM) to which Modulo Addressing is to be applied is stored in MODCON (see Table 4-1). Modulo Addressing is enabled for X data space when XWM is set to any value other than 15 and the XMODEN bit is set at MODCON. The Y Address Space Pointer W register (YWM) to which Modulo Addressing is to be applied is stored in MODCON. Modulo Addressing is enabled for Y data space when YWM is set to any value other than 15 and the YMODEN bit is set at MODCON. Y space Modulo Addressing EA calculations assume word-sized data (LSb of every EA is always clear). FIGURE 4-7: MODULO ADDRESSING OPERATION EXAMPLE Byte Address 0x1100 MOV MOV MOV MOV MOV MOV #0x1100, W0 W0, XMODSRT #0x1163, W0 W0, MODEND #0x8001, W0 W0, MODCON MOV #0x0000, W0 ;W0 holds buffer fill value MOV #0x1110, W1 ;point W1 to buffer DO AGAIN, #0x31 MOV W0, [W1++] AGAIN: INC W0, W0 ;set modulo start address ;set modulo end address ;enable W1, X AGU for modulo ;fill the 50 buffer locations ;fill the next location ;increment the fill value 0x1163 Start Addr = 0x1100 End Addr = 0x1163 Length = 0x0032 Words  2009-2012 Microchip Technology Inc. DS70594D-page 65 dsPIC33FJXXXMCX06A/X08A/X10A 4.4.3 MODULO ADDRESSING APPLICABILITY Modulo Addressing can be applied to the Effective Address (EA) calculation associated with any W register. It is important to realize that the address boundaries check for addresses less than or greater than the upper (for incrementing buffers) and lower (for decrementing buffers) boundary addresses (not just equal to). Address changes may, therefore, jump beyond boundaries and still be adjusted correctly. Note: 4.5 The modulo corrected Effective Address is written back to the register only when Pre-Modify or Post-Modify Addressing mode is used to compute the Effective Address. When an address offset (e.g., [W7+W2]) is used, Modulo Address correction is performed but the contents of the register remain unchanged. Bit-Reversed Addressing Bit-Reversed Addressing mode is intended to simplify data reordering for radix-2 FFT algorithms. It is supported by the X AGU for data writes only. The modifier, which may be a constant value or register contents, is regarded as having its bit order reversed. The address source and destination are kept in normal order; thus, the only operand requiring reversal is the modifier. 4.5.1 BIT-REVERSED ADDRESSING IMPLEMENTATION Bit-Reversed Addressing mode is enabled when the following conditions exist: 1. 2. 3. The BWM bits (W register selection) in the MODCON register are any value other than 15 (the stack cannot be accessed using Bit-Reversed Addressing). The BREN bit is set in the XBREV register. The addressing mode used is Register Indirect with Pre-Increment or Post-Increment. DS70594D-page 66 If the length of a bit-reversed buffer is M = 2N bytes, the last ‘N’ bits of the data buffer start address must be zeros. XB is the Bit-Reversed Address modifier, or ‘pivot point,’ which is typically a constant. In the case of an FFT computation, its value is equal to half of the FFT data buffer size. Note: All bit-reversed EA calculations assume word-sized data (LSb of every EA is always clear). The XB value is scaled accordingly to generate compatible (byte) addresses. When enabled, Bit-Reversed Addressing is only executed for Register Indirect with Pre-Increment or Post-Increment Addressing and word-sized data writes. It will not function for any other addressing mode or for byte-sized data; normal addresses are generated instead. When Bit-Reversed Addressing is active, the W Address Pointer is always added to the address modifier (XB) and the offset associated with the Register Indirect Addressing mode is ignored. In addition, as word-sized data is a requirement, the LSb of the EA is ignored (and always clear). Note: Modulo Addressing and Bit-Reversed Addressing should not be enabled together. In the event that the user attempts to do so, Bit-Reversed Addressing will assume priority for the X WAGU, and X WAGU Modulo Addressing will be disabled. However, Modulo Addressing will continue to function in the X RAGU. If Bit-Reversed Addressing has already been enabled by setting the BREN bit (XBREV), then a write to the XBREV register should not be immediately followed by an indirect read operation using the W register that has been designated as the Bit-Reversed Pointer.  2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A FIGURE 4-8: BIT-REVERSED ADDRESS EXAMPLE Sequential Address b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 0 Bit Locations Swapped Left-to-Right Around Center of Binary Value b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b1 b2 b3 b4 0 Bit-Reversed Address Pivot Point XB = 0x0008 for a 16-Word Bit-Reversed Buffer TABLE 4-37: BIT-REVERSED ADDRESS SEQUENCE (16-ENTRY) Normal Address Bit-Reversed Address A3 A2 A1 A0 Decimal A3 A2 A1 A0 Decimal 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 8 0 0 1 0 2 0 1 0 0 4 0 0 1 1 3 1 1 0 0 12 0 1 0 0 4 0 0 1 0 2 0 1 0 1 5 1 0 1 0 10 0 1 1 0 6 0 1 1 0 6 0 1 1 1 7 1 1 1 0 14 1 0 0 0 8 0 0 0 1 1 1 0 0 1 9 1 0 0 1 9 1 0 1 0 10 0 1 0 1 5 1 0 1 1 11 1 1 0 1 13 1 1 0 0 12 0 0 1 1 3 1 1 0 1 13 1 0 1 1 11 1 1 1 0 14 0 1 1 1 7 1 1 1 1 15 1 1 1 1 15  2009-2012 Microchip Technology Inc. DS70594D-page 67 dsPIC33FJXXXMCX06A/X08A/X10A 4.6 4.6.1 Interfacing Program and Data Memory Spaces Since the address ranges for the data and program spaces are 16 and 24 bits, respectively, a method is needed to create a 23-bit or 24-bit program address from 16-bit data registers. The solution depends on the interface method to be used. The dsPIC33FJXXXMCX06A/X08A/X10A architecture uses a 24-bit wide program space and a 16-bit wide data space. The architecture is also a modified Harvard scheme, meaning that data can also be present in the program space. To use this data successfully, it must be accessed in a way that preserves the alignment of information in both spaces. For table operations, the 8-bit Table Page register (TBLPAG) is used to define a 32K word region within the program space. This is concatenated with a 16-bit EA to arrive at a full, 24-bit program space address. In this format, the Most Significant bit of TBLPAG is used to determine if the operation occurs in the user memory (TBLPAG = 0) or the configuration memory (TBLPAG = 1). Aside from normal execution, the dsPIC33FJXXXMCX06A/X08A/X10A architecture provides two methods by which program space can be accessed during operation: • Using table instructions to access individual bytes or words anywhere in the program space • Remapping a portion of the program space into the data space (Program Space Visibility) For remapping operations, the 8-bit Program Space Visibility register (PSVPAG) is used to define a 16K word page in the program space. When the Most Significant bit of the EA is ‘1’, PSVPAG is concatenated with the lower 15 bits of the EA to form a 23-bit program space address. Unlike table operations, this limits remapping operations strictly to the user memory area. Table instructions allow an application to read or write to small areas of the program memory. This capability makes the method ideal for accessing data tables that need to be updated from time to time. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for look ups from a large table of static data. It can only access the least significant word of the program word. TABLE 4-38: Table 4-38 and Figure 4-9 show how the program EA is created for table operations and remapping accesses from the data EA. Here, P refers to a program space word, whereas D refers to a data space word. PROGRAM SPACE ADDRESS CONSTRUCTION Access Space Access Type Instruction Access (Code Execution) User TBLRD/TBLWT (Byte/Word Read/Write) User Program Space Address Program Space Visibility (Block Remap/Read) 0xxx xxxx xxxx TBLPAG 0xxx xxxx User PC 0 Configuration Note 1: ADDRESSING PROGRAM SPACE 0 xxxx xxxx xxx0 Data EA xxxx xxxx xxxx xxxx TBLPAG Data EA 1xxx xxxx xxxx xxxx xxxx xxxx 0 PSVPAG 0 xxxx xxxx Data EA(1) xxx xxxx xxxx xxxx Data EA is always ‘1’ in this case, but is not used in calculating the program space address. Bit 15 of the address is PSVPAG. DS70594D-page 68  2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A FIGURE 4-9: DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION Program Counter(1) Program Counter 0 0 23 bits EA Table Operations(2) 1/0 1/0 TBLPAG 8 bits 16 bits 24 bits Select Program Space Visibility(1) (Remapping) 0 EA 1 0 PSVPAG 8 bits 15 bits 23 bits User/Configuration Space Select Byte Select Note 1: The LSb of program space addresses is always fixed as ‘0’ in order to maintain word alignment of data in the program and data spaces. 2: Table operations are not required to be word-aligned. Table read operations are permitted in the configuration memory space.  2009-2012 Microchip Technology Inc. DS70594D-page 69 dsPIC33FJXXXMCX06A/X08A/X10A 4.6.2 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS 2. The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the program space without going through data space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a program space word as data. The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to data space addresses. Program memory can thus be regarded as two 16-bit word wide address spaces residing side by side, each with the same address range. TBLRDL and TBLWTL access the space which contains the least significant data word, and TBLRDH and TBLWTH access the space which contains the upper data byte. Two table instructions are provided to move byte or word-sized (16-bit) data to and from program space. Both function as either byte or word operations. 1. TBLRDL (Table Read Low): In Word mode, it maps the lower word of the program space location (P) to a data address (D). TBLRDH (Table Read High): In Word mode, it maps the entire upper word of a program address (P) to a data address. Note that D, the ‘phantom’ byte, will always be ‘0’. In Byte mode, it maps the upper or lower byte of the program word to D of the data address, as above. Note that the data will always be ‘0’ when the upper ‘phantom’ byte is selected (byte select = 1). In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are explained in Section 5.0 “Flash Program Memory”. For all table operations, the area of program memory space to be accessed is determined by the Table Page register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user and configuration spaces. When TBLPAG = 0, the table page is located in the user memory space. When TBLPAG = 1, the page is located in configuration space. In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when byte select is ‘1’; the lower byte is selected when it is ‘0’. FIGURE 4-10: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS Program Space TBLPAG 02 23 15 0 0x000000 23 16 8 0 00000000 0x020000 0x030000 00000000 00000000 00000000 ‘Phantom’ Byte TBLRDH.B (Wn = 0) TBLRDL.B (Wn = 1) TBLRDL.B (Wn = 0) TBLRDL.W 0x800000 DS70594D-page 70 The address for the table operation is determined by the data EA within the page defined by the TBLPAG register. Only read operations are shown; write operations are also valid in the user memory area.  2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A 4.6.3 READING DATA FROM PROGRAM MEMORY USING PROGRAM SPACE VISIBILITY The upper 32 Kbytes of data space may optionally be mapped into any 16K word page of the program space. This option provides transparent access of stored constant data from the data space without the need to use special instructions (i.e., TBLRDL/H). Program space access through the data space occurs if the Most Significant bit of the data space EA is ‘1’ and program space visibility is enabled by setting the PSV bit in the Core Control register (CORCON). The location of the program memory space to be mapped into the data space is determined by the Program Space Visibility Page register (PSVPAG). This 8-bit register defines any one of 256 possible pages of 16K words in program space. In effect, PSVPAG functions as the upper 8 bits of the program memory address, with the 15 bits of the EA functioning as the lower bits. Note that by incrementing the PC by 2 for each program memory word, the lower 15 bits of data space addresses directly map to the lower 15 bits in the corresponding program space addresses. Data reads to this area add an additional cycle to the instruction being executed, since two program memory fetches are required. Although each data space address, 8000h and higher, maps directly into a corresponding program memory address (see Figure 4-11), only the lower 16 bits of the FIGURE 4-11: 24-bit program word are used to contain the data. The upper 8 bits of any program space location used as data should be programmed with ‘1111 1111’ or ‘0000 0000’ to force a NOP. This prevents possible issues should the area of code ever be accidentally executed. PSV access is temporarily disabled during table reads/writes. Note: For operations that use PSV and are executed outside a REPEAT loop, the MOV and MOV.D instructions require one instruction cycle in addition to the specified execution time. All other instructions require two instruction cycles in addition to the specified execution time. For operations that use PSV and are executed inside a REPEAT loop, there will be some instances that require two instruction cycles in addition to the specified execution time of the instruction: • Execution in the first iteration • Execution in the last iteration • Execution prior to exiting the loop due to an interrupt • Execution upon re-entering the loop after an interrupt is serviced Any other iteration of the REPEAT loop will allow the instruction accessing data using PSV to execute in a single cycle. PROGRAM SPACE VISIBILITY OPERATION When CORCON = 1 and EA = 1: Program Space PSVPAG 02 23 15 Data Space 0 0x000000 0x0000 Data EA 0x010000 0x018000 The data in the page designated by PSVPAG is mapped into the upper half of the data memory space... 0x8000 PSV Area 0x800000  2009-2012 Microchip Technology Inc. ...while the lower 15 bits of the EA specify an exact address within 0xFFFF the PSV area. This corresponds exactly to the same lower 15 bits of the actual program space address. DS70594D-page 71 dsPIC33FJXXXMCX06A/X08A/X10A NOTES: DS70594D-page 72  2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A 5.0 three other lines for power (VDD), ground (VSS) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the digital signal controller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed. FLASH PROGRAM MEMORY Note 1: This data sheet summarizes the features of the dsPIC33FJXXXMCX06A/X08A/ X10A family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 5. “Flash Programming” (DS70191) in the “dsPIC33F/PIC24H Family Reference Manual”, which is available from the Microchip web site (www.microchip.com). RTSP is accomplished using TBLRD (table read) and TBLWT (table write) instructions. With RTSP, the user can write program memory data by blocks (or ‘rows’) of 64 instructions (192 bytes) at a time or by single program memory word; the user can erase program memory in blocks or ‘pages’ of 512 instructions (1536 bytes) at a time. 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 “Memory Organization” in this data sheet for device-specific register and bit information. 5.1 The dsPIC33FJXXXMCX06A/X08A/X10A devices contain internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the entire VDD range. Flash memory can be programmed in two ways: 1. 2. In-Circuit Serial Programming™ (ICSP™) programming capability Run-Time Self-Programming (RTSP) ICSP allows a dsPIC33FJXXXMCX06A/X08A/X10A device to be serially programmed while in the end application circuit. This is simply done with two lines for programming clock and programming data (one of the alternate programming pin pairs: PGECx/PGEDx), and FIGURE 5-1: Table Instructions and Flash Programming Regardless of the method used, all programming of Flash memory is done with the table read and table write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using bits of the TBLPAG register and the Effective Address (EA) from a W register specified in the table instruction, as shown in Figure 5-1. The TBLRDL and TBLWTL instructions are used to read or write to bits of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes. The TBLRDH and TBLWTH instructions are used to read or write to bits of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode. ADDRESSING FOR TABLE REGISTERS 24 bits Using Program Counter Program Counter 0 0 Working Reg EA Using Table Instruction 1/0 TBLPAG Reg 8 bits User/Configuration Space Select  2009-2012 Microchip Technology Inc. 16 bits 24-bit EA Byte Select DS70594D-page 73 dsPIC33FJXXXMCX06A/X08A/X10A 5.2 RTSP Operation The dsPIC33FJXXXMCX06A/X08A/X10A Flash program memory array is organized into rows of 64 instructions or 192 bytes. RTSP allows the user to erase a page of memory at a time, which consists of eight rows (512 instructions), and to program one row or one word at a time. Table 26-12 shows typical erase and programming times. The 8-row erase pages and single row write rows are edge-aligned, from the beginning of program memory, on boundaries of 1536 bytes and 192 bytes, respectively. The program memory implements holding buffers that can contain 64 instructions of programming data. Prior to the actual programming operation, the write data must be loaded into the buffers in sequential order. The instruction words loaded must always be from a group of 64 boundaries. The basic sequence for RTSP programming is to set up a Table Pointer, then do a series of TBLWT instructions to load the buffers. Programming is performed by setting the control bits in the NVMCON register. A total of 64 TBLWTL and TBLWTH instructions are required to load the instructions. All of the table write operations are single-word writes (two instruction cycles), because only the buffers are written. A programming cycle is required for programming each row. 5.3 Programming Operations A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. The processor stalls (waits) until the programming operation is finished. The programming time depends on the FRC accuracy (see Table 26-19) and the value of the FRC Oscillator Tuning register (see Register 9-4). Use the following formula to calculate the minimum and maximum values for the row write time, page erase time and word write cycle time parameters (see Table 26-12). EQUATION 5-1: For example, if the device is operating at +125°C, the FRC accuracy will be ±5%. If the TUN bits (see Register 9-4) are set to ‘b111111, the minimum row write time is equal to Equation 5-2. EQUATION 5-2: MINIMUM ROW WRITE TIME 11064 Cycles T RW = ---------------------------------------------------------------------------------------------- = 1.435ms 7.37 MHz   1 + 0.05    1 – 0.00375  The maximum row write time is equal to Equation 5-3. EQUATION 5-3: MAXIMUM ROW WRITE TIME 11064 Cycles T RW = ---------------------------------------------------------------------------------------------- = 1.586ms 7.37 MHz   1 – 0.05    1 – 0.00375  Setting the WR bit (NVMCON) starts the operation and the WR bit is automatically cleared when the operation is finished. 5.4 Control Registers There are two SFRs used to read and write the program Flash memory: NVMCON and NVMKEY. The NVMCON register (Register 5-1) controls which blocks are to be erased, which memory type is to be programmed and the start of the programming cycle. NVMKEY is a write-only register that is used for write protection. To start a programming or erase sequence, the user must consecutively write 0x55 and 0xAA to the NVMKEY register. Refer to Section 5.3 “Programming Operations” for further details. PROGRAMMING TIME T -------------------------------------------------------------------------------------------------------------------------7.37 MHz   FRC Accuracy %   FRC Tuning % DS70594D-page 74  2009-2012 Microchip Technology Inc. dsPIC33FJXXXMCX06A/X08A/X10A REGISTER 5-1: R/SO-0(1) NVMCON: FLASH MEMORY CONTROL REGISTER R/W-0(1) R/W-0(1) U-0 U-0 U-0 U-0 U-0 WREN WRERR — — — — — WR bit 15 bit 8 R/W-0(1) U-0 — U-0 ERASE — U-0 R/W-0(1) R/W-0(1) R/W-0(1) R/W-0(1) NVMOP(2) — bit 7 bit 0 Legend: R = Readable bit SO = Settable Only bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared bit 15 bit 14 bit 13 bit 12-7 bit 6 bit 5-4 bit 3-0 x = Bit is unknown WR: Write Control bit 1 = Initiates a Flash memory program or erase operation. The operation is self-timed and the bit is cleared by hardware once operation is complete 0 = Program or erase operation is complete and inactive WREN: Write Enable bit 1 = Enable Flash program/erase operations 0 = Inhibit Flash program/erase operations WRERR: Write Sequence Error Flag bit 1 = An improper program or erase sequence attempt, or termination has occurred (bit is set automatically on any set attempt of the WR bit) 0 = The program or erase operation completed normally Unimplemented: Read as ‘0’ ERASE: Erase/Program Enable bit 1 = Perform the erase operation specified by NVMOP on the next WR command 0 = Perform the program operation specified by NVMOP on the next WR command Unimplemented: Read as ‘0’ NVMOP: NVM Operation Select bits(2) If ERASE = 1: 1111 = Memory bulk erase operation 1110 = Reserved 1101 = Erase General Segment 1100 = Erase Secure Segment 1011 = Reserved 0011 = No operation 0010 = Memory page erase operation 0001 = No operation 0000 = Erase a single Configuration register byte If ERASE = 0: 1111 = No operation 1110 = Reserved 1101 = No operation 1100 = No operation 1011 = Reserved 0011 = Memory word program operation 0010 = No operation 0001 = Memory row program operation 0000 = Program a single Configuration register byte Note 1: 2: These bits can only be reset on POR. All other combinations of NVMOP are unimplemented.  2009-2012 Microchip Technology Inc. DS70594D-page 75 dsPIC33FJXXXMCX06A/X08A/X10A 5.4.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY 4. 5. The user can program one row of program Flash memory at a time. To do this, it is necessary to erase the 8-row erase page that contains the desired row. The general process is as follows: 1. 2. 3. Read eight rows of program memory (512 instructions) and store it in data RAM. Update the program data in RAM with the desired new data. Erase the block (see Example 5-1): a) Set the NVMOP bits (NVMCON) to ‘0010’ to configure for block erase. Set the ERASE (NVMCON) and WREN (NVMCON) bits. b) Write the starting address of the page to be erased into the TBLPAG and W registers. c) Write 0x55 to NVMKEY. d) Write 0xAA to NVMKEY. e) Set the WR bit (NVMCON). The erase cycle begins and the CPU stalls for the duration of the erase cycle. When the erase is done, the WR bit is cleared automatically. EXAMPLE 5-1: DS70594D-page 76 For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPs, as shown in Example 5-3. ERASING A PROGRAM MEMORY PAGE ; Set up NVMCON for block erase operation MOV #0x4042, W0 MOV W0, NVMCON ; Init pointer to row to be ERASED MOV #tblpage(PROG_ADDR), W0 MOV W0, TBLPAG MOV #tbloffset(PROG_ADDR), W0 TBLWTL W0, [W0] DISI #5 MOV MOV MOV MOV BSET NOP NOP 6. Write the first 64 instructions from data RAM into the program memory buffers (see Example 5-2). Write the program block to Flash memory: a) Set the NVMOP bits to ‘0001’ to configure for row programming. Clear the ERASE bit and set the WREN bit. b) Write 0x55 to NVMKEY. c) Write 0xAA to NVMKEY. d) Set the WR bit. The programming cycle begins and the CPU stalls for the duration of the write cycle. When the write to Flash memory is done, the WR bit is cleared automatically. Repeat steps 4 and 5 using the next available 64 instructions from the block in data RAM by incrementing the value in TBLPAG until all 512 instructions are written back to Flash memory. #0x55, W0 W0, NVMKEY #0xAA, W1 W1, NVMKEY NVMCON, #WR ; ; Initialize NVMCON ; ; ; ; ; ; ; ; ; ; ; ; Initialize PM Page Boundary SFR Initialize in-page EA[15:0] pointer Set base address of erase block Block all interrupts with priority 74)3@ 1RWH )RUWKHPRVWFXUUHQWSDFNDJHGUDZLQJVSOHDVHVHHWKH0LFURFKLS3DFNDJLQJ6SHFLILFDWLRQORFDWHGDW KWWSZZZPLFURFKLSFRPSDFNDJLQJ D D1 E e E1 N b NOTE 1 12 3 α NOTE 2 A c β φ A2 A1 L1 L 8QLWV 'LPHQVLRQ/LPLWV 1XPEHURI/HDGV 0,//,0(7(56 0,1 1 120 0$;  /HDG3LWFK H 2YHUDOO+HLJKW $ ± %6& ± 0ROGHG3DFNDJH7KLFNQHVV $    6WDQGRII $  ±  )RRW/HQJWK /    )RRWSULQW /  5() )RRW$QJOH  2YHUDOO:LGWK ( ƒ %6& ƒ 2YHUDOO/HQJWK ' %6& 0ROGHG3DFNDJH:LGWK ( %6& 0ROGHG3DFNDJH/HQJWK ' %6& ƒ /HDG7KLFNQHVV F  ±  /HDG:LGWK E    0ROG'UDIW$QJOH7RS  ƒ ƒ ƒ 0ROG'UDIW$QJOH%RWWRP  ƒ ƒ ƒ 1RWHV  3LQYLVXDOLQGH[IHDWXUHPD\YDU\EXWPXVWEHORFDWHGZLWKLQWKHKDWFKHGDUHD  &KDPIHUVDWFRUQHUVDUHRSWLRQDOVL]HPD\YDU\  'LPHQVLRQV'DQG(GRQRWLQFOXGHPROGIODVKRUSURWUXVLRQV0ROGIODVKRUSURWUXVLRQVVKDOOQRWH[FHHGPPSHUVLGH  'LPHQVLRQLQJDQGWROHUDQFLQJSHU$60(74)3@ 1RWH )RUWKHPRVWFXUUHQWSDFNDJHGUDZLQJVSOHDVHVHHWKH0LFURFKLS3DFNDJLQJ6SHFLILFDWLRQORFDWHGDW KWWSZZZPLFURFKLSFRPSDFNDJLQJ D D1 e E1 E b N α NOTE 1 1 23 A NOTE 2 φ c β A2 A1 L L1 8QLWV 'LPHQVLRQ/LPLWV 1XPEHURI/HDGV 0,//,0(7(56 0,1 1 120 0$;  /HDG3LWFK H 2YHUDOO+HLJKW $ ± %6& ± 0ROGHG3DFNDJH7KLFNQHVV $    6WDQGRII $  ±  )RRW/HQJWK /    )RRWSULQW /  5() )RRW$QJOH  2YHUDOO:LGWK ( ƒ %6& ƒ 2YHUDOO/HQJWK ' %6& 0ROGHG3DFNDJH:LGWK ( %6& 0ROGHG3DFNDJH/HQJWK ' %6& ƒ /HDG7KLFNQHVV F  ±  /HDG:LGWK E    0ROG'UDIW$QJOH7RS  ƒ ƒ ƒ 0ROG'UDIW$QJOH%RWWRP  ƒ ƒ ƒ 1RWHV  3LQYLVXDOLQGH[IHDWXUHPD\YDU\EXWPXVWEHORFDWHGZLWKLQWKHKDWFKHGDUHD  &KDPIHUVDWFRUQHUVDUHRSWLRQDOVL]HPD\YDU\  'LPHQVLRQV'DQG(GRQRWLQFOXGHPROGIODVKRUSURWUXVLRQV0ROGIODVKRUSURWUXVLRQVVKDOOQRWH[FHHGPPSHUVLGH  'LPHQVLRQLQJDQGWROHUDQFLQJSHU$60(
DSPIC33FJ64MC506A-I/PT 价格&库存

很抱歉,暂时无法提供与“DSPIC33FJ64MC506A-I/PT”相匹配的价格&库存,您可以联系我们找货

免费人工找货
DSPIC33FJ64MC506A-I/PT
  •  国内价格 香港价格
  • 1+64.195961+7.67759
  • 25+58.8872125+7.04268
  • 100+53.31298100+6.37603

库存:476

DSPIC33FJ64MC506A-I/PT
  •  国内价格
  • 160+59.75675
  • 800+58.56192

库存:1337

DSPIC33FJ64MC506A-I/PT
  •  国内价格 香港价格
  • 160+62.75288160+7.50500

库存:2080

DSPIC33FJ64MC506A-I/PT
  •  国内价格
  • 1+54.83060
  • 40+52.64345
  • 80+51.06384

库存:1337

DSPIC33FJ64MC506A-I/PT
  •  国内价格
  • 40+50.14241
  • 80+49.05896

库存:1337