0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
EMC1403-1-AIZL-TR

EMC1403-1-AIZL-TR

  • 厂商:

    ACTEL(微芯科技)

  • 封装:

    TFSOP10

  • 描述:

    SENSOR TEMPERATURE SMBUS 10MSOP

  • 数据手册
  • 价格&库存
EMC1403-1-AIZL-TR 数据手册
EMC1403/EMC1404 1°C Temperature Sensor with Beta Compensation PRODUCT FEATURES Data Sheet General Description Applications The EMC1403 and EMC1404 are high accuracy, low cost, System Management Bus (SMBus) temperature sensors. Advanced features such as Resistance Error Correction (REC), Beta Compensation (to support CPU diodes requiring the BJT/transistor model including 45nm, 65nm and 90nm processors) and automatic diode type detection combine to provide a robust solution for complex environmental monitoring applications.  Each device provides ±1° accuracy for external diode temperatures and ±2°C accuracy for the internal diode temperature. The EMC1403 monitors three temperature channels (two external and one internal). The EMC1404 monitors four temperature channels (three external and one internal).   Internal Temperature Monitor Resistance Error Correction automatically eliminates the temperature error caused by series resistance allowing greater flexibility in routing thermal diodes. Beta Compensation eliminates temperature errors caused by low, variable beta transistors common in today's fine geometry processors. The automatic beta detection feature monitors each external diode/transistor and determines the optimum sensor settings for accurate temperature measurements regardless of processor technology. This frees the user from providing unique sensor configurations for each temperature monitoring application. These advanced features plus ±1°C measurement accuracy provide a low-cost, highly flexible and accurate solution for critical temperature monitoring applications.  3.3V Supply Voltage Programmable temperature limits for ALERT and THERM Available in these RoHS Compliant Packages  2014 Microchip Technology Inc.    Notebook Computers Desktop Computers Industrial Embedded applications Features  Support for diodes requiring the BJT/transistor model  Automatically determines external diode type and optimal settings Resistance Error Correction External Temperature Monitors — supports 45nm, 65nm, and 90nm CPU thermal diodes.  — ±1°C Accuracy (60°C < TDIODE < 100°C) — 0.125°C Resolution — Anti-parallel diodes for extra diode support — ±2°C accuracy   — 10-pin 3mm x 3mm DFN — 10-pin MSOP — 14-pin SOIC DS20005272A-page 1 1°C Temperature Sensor with Beta Compensation Data Sheet Ordering Information: EMC1403-1-AIZL-TR for 10-pin, MSOP RoHS Compliant Package EMC1403-2-AIZL-TR for 10-pin, MSOP RoHS Compliant Package EMC1403-3-AIZL-TR for 10-pin, MSOP RoHS Compliant Package EMC1403-4-AIZL-TR for 10-pin, MSOP RoHS Compliant Package EMC1403-1-AIA-TR for 10-pin, DFN RoHS Compliant Package EMC1403-2-AIA-TR for 10-pin, DFN RoHS Compliant Package EMC1403-3-AIA-TR for 10-pin, DFN RoHS Compliant Package EMC1403-4-AIA-TR for 10-pin, DFN RoHS Compliant Package EMC1403-1-YZT-TR for 14-pin, SOIC RoHS Compliant Package EMC1403-2-YZt-TR for 14-pin, SOIC RoHS Compliant Package EMC1403-3-YZt-TR for 14-pin, SOIC RoHS Compliant Package EMC1403-4-YZt-TR for 14-pin, SOIC RoHS Compliant Package EMC1404-1-AIZL-TR for 10-pin, MSOP RoHS Compliant Package EMC1404-2-AIZL-TR for 10-pin, MSOP RoHS Compliant Package EMC1404-3-AIZL-TR for 10-pin, MSOP RoHS Compliant Package EMC1404-4-AIZL-TR for 10-pin, MSOP RoHS Compliant Package Note: See Table 1.1, "Part Selection" for SMBus addressing options. REEL SIZE IS 4,000 PIECES. This product meets the halogen maximum concentration values per IEC61249-2-21 TO OUR VALUED CUSTOMERS It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced. If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at docerrors@microchip.com. We welcome your feedback. Most Current Data Sheet To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at: http://www.microchip.com You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000). Errata An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies. To determine if an errata sheet exists for a particular device, please check with one of the following: • Microchip’s Worldwide Web site; http://www.microchip.com • Your local Microchip sales office (see last page) When contacting a sales office, please specify which device, revision of silicon and data sheet (include -literature number) you are using. Customer Notification System Register on our web site at www.microchip.com to receive the most current information on all of our products. DS20005272A-page 2  2014 Microchip Technology Inc. 1°C Temperature Sensor with Beta Compensation Data Sheet Table of Contents Chapter 1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.1 Part Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Chapter 2 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Chapter 3 Electrical Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.1 3.2 3.3 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 SMBus Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Chapter 4 System Management Bus Interface Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 System Management Bus Interface Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Write Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Read Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Send Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Receive Byte. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alert Response Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SMBus Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SMBus Timeout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 15 15 15 15 16 16 16 Chapter 5 Product Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 5.13 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1.1 Conversion Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1.2 Dynamic Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . THERM Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ALERT Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3.1 ALERT Pin Interrupt Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3.2 ALERT Pin Comparator Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Beta Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Resistance Error Correction (REC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Programmable External Diode Ideality Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Diode Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Consecutive Alerts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Digital Filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Temperature Monitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Temperature Measurement Results and Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Anti-parallel Diode Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . External Diode Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 18 18 20 20 20 20 21 21 21 21 22 22 23 24 25 25 Chapter 6 Register Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 Data Read Interlock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Temperature Data Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Conversion Rate Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Limit Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Scratchpad Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . One Shot Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Therm Limit Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . External Diode Fault Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2014 Microchip Technology Inc. 30 30 31 31 32 33 35 35 35 36 DS20005272A-page 3 1°C Temperature Sensor with Beta Compensation Data Sheet 6.11 6.12 6.13 6.14 6.15 6.16 6.17 6.18 6.19 6.20 6.21 Channel Mask Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Consecutive ALERT Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Beta Configuration Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . External Diode Ideality Factor Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . High Limit Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Low Limit Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . THERM Limit Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Filter Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Product ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Microchip ID Register (FEh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Revision Register (FFh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 37 38 39 41 41 42 42 43 43 44 Chapter 7 Typical Operating Curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Chapter 8 Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 8.1 Package Markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.1.1 EMC1404-X-AIZL (10-pin MSOP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.1.2 EMC1403-X-AIZL (10-pin MSOP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.1.3 EMC1403-1-AIA and EMC1403-2-AIA (10-pin DFN). . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.1.4 EMC1403-YZT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 51 51 51 51 Chapter 9 Data Sheet Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 DS20005272A-page 4  2014 Microchip Technology Inc. 1°C Temperature Sensor with Beta Compensation Data Sheet List of Figures Figure 1.1 Figure 2.1 Figure 2.2 Figure 2.3 Figure 4.1 Figure 5.1 Figure 5.2 Figure 5.3 Figure 5.4 Figure 5.5 Figure 5.6 Figure 8.1 Figure 8.2 Figure 8.3 Figure 8.4 EMC1403/EMC1404 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 EMC1403/EMC1404 Pin Diagram, MSOP-10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 EMC1403/EMC1404 Pin Diagram, DFN-10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 EMC1403/EMC1404 Pin Diagram, SOIC-14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 SMBus Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 System Diagram for EMC1403 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 System Diagram for EMC1404 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Temperature Filter Step Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Temperature Filter Impulse Response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Block Diagram of Temperature Monitoring Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Diode Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 10-Pin MSOP / TSSOP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 10-Pin DFN Package Drawing (1 of 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 10-Pin DFN Package Dimensions (2 of 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Package Drawing and PCB Footprint for SOIC-14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  2014 Microchip Technology Inc. DS20005272A-page 5 1°C Temperature Sensor with Beta Compensation Data Sheet List of Tables Table 1.1 Part Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Table 2.1 EMC1403 and EMC1404 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Table 3.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Table 3.2 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Table 3.3 SMBus Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Table 4.1 Protocol Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Table 4.2 Write Byte Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Table 4.3 Read Byte Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Table 4.4 Send Byte Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Table 4.5 Receive Byte Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Table 4.6 Alert Response Address Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Table 5.1 Supply Current vs. Conversion Rate for EMC1403 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Table 5.2 Supply Current vs. Conversion Rate for EMC1404 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Table 5.3 Temperature Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Table 6.1 Register Set in Hexadecimal Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Table 6.2 Temperature Data Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Table 6.3 Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Table 6.4 Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Table 6.5 Conversion Rate Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Table 6.6 Conversion Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Table 6.7 Temperature Limit Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Table 6.8 Scratchpad Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Table 6.9 One Shot Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Table 6.10 Therm Limit Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Table 6.11 External Diode Fault Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Table 6.12 Channel Mask Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Table 6.13 Consecutive ALERT Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Table 6.14 Consecutive Alert / THERM Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Table 6.15 Beta Configuration Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Table 6.16 CPU Beta Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Table 6.17 Ideality Configuration Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Table 6.18 Ideality Factor Look-Up Table (Diode Model) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Table 6.19 Substrate Diode Ideality Factor Look-Up Table (BJT Model) . . . . . . . . . . . . . . . . . . . . . . . . . 40 Table 6.20 High Limit Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Table 6.21 Low Limit Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Table 6.22 THERM Limit Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Table 6.23 Filter Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Table 6.24 Filter Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Table 6.25 Product ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Table 6.26 Manufacturer ID Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Table 6.27 Revision Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Table 9.1 Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 DS20005272A-page 6  2014 Microchip Technology Inc. 1°C Temperature Sensor with Beta Compensation Data Sheet Chapter 1 Block Diagram Figure 1.1 EMC1403/EMC1404 Block Diagram 1.1 Part Selection The EMC1403 and EMC1404 device configuration is highlighted below. Table 1.1 Part Selection FUNCTIONALITY PART NUMBER SMBUS ADDRESS EMC1403 - 1 AIZL 1001_100xb EMC1403 - 2 AIZL 1001_101xb EXTERNAL DIODES 2 EMC1403 - 3 AIZL 0011_000xb EMC1403 - 4 AIZL 0101_001xb  2014 Microchip Technology Inc. DIODE 1 DEFAULT CONFIGURATION Detect Diode w/ REC enabled DIODE 2 DEFAULT CONFIGURATION Detect Diode w/ REC enabled OTHER PRODUCT ID Software programmable and maskable High Limits 21h Software programmable THERM Limits DS20005272A-page 7 1°C Temperature Sensor with Beta Compensation Data Sheet Table 1.1 Part Selection (continued) FUNCTIONALITY PART NUMBER SMBUS ADDRESS EMC1403 - 1 AIA 1001_100xb EMC1403 - 2 AIA 1001_101xb EXTERNAL DIODES 2 EMC1403 - 3 AIA 0011_000xb EMC1403 - 4 AIA 0101_001xb EMC1403 - 1 YZT 1001_100xb EMC1403 - 2 YZT 1001_101xb 2 EMC1403 - 3 YZT 0011_000xb EMC1403 - 4 YZT 0101_001xb EMC1404 - 1 1001_100xb EMC1404 - 2 1001_101xb EMC1404 - 3 0011_000xb EMC1404 - 4 0101_001xb 3 Note 1.1 DS20005272A-page 8 DIODE 1 DEFAULT CONFIGURATION Detect Diode w/ REC enabled DIODE 2 DEFAULT CONFIGURATION Detect Diode w/ REC enabled Detect Diode w/ REC enabled Detect Diode w/ REC enabled Detect Diode w/ REC enabled Fixed 2N3904 in antiparallel diode configuration Note 1.1 OTHER PRODUCT ID Software programmable and maskable High Limits 21h Software programmable THERM Limits Software programmable and maskable High Limits 21h Software programmable THERM Limits Software programmable and maskable High Limits 25h Software programmable THERM Limits External 2 and external 3 channels have beta configuration hard wired to ‘0111b’ and REC enabled.  2014 Microchip Technology Inc. 1°C Temperature Sensor with Beta Compensation Data Sheet Chapter 2 Pin Description Figure 2.1 EMC1403/EMC1404 Pin Diagram, MSOP-10 Figure 2.2 EMC1403/EMC1404 Pin Diagram, DFN-10 Figure 2.3 EMC1403/EMC1404 Pin Diagram, SOIC-14  2014 Microchip Technology Inc. DS20005272A-page 9 1°C Temperature Sensor with Beta Compensation Data Sheet Table 2.1 EMC1403 and EMC1404 Pin Description PIN NUMBER 10-PIN PIN NUMBER 14-PIN n/a 1 n/c Not Internally Connected n/a 1 2 VDD Power supply Power 2 3 DP1 External diode 1 positive (anode) connection AIO 3 4 DN1 External diode 1 negative (cathode) connection AIO DP2 / DN3 External diode 2 positive (anode) connection / External Diode 3 negative (cathode) connection for anti-parallel diodes AIO DN2 / DP3 External diode 2 negative (cathode) connection / External Diode 3 positive (anode) connection for antiparallel diodes AIO NAME FUNCTION TYPE 4 5 5 6 n/a 7 n/c Not Internally Connected n/a n/a 8 n/c Not Internally Connected n/a 6 9 GND Ground Power 7 10 THERM Critical THERM output signal requires pull-up resistor OD (5V) 8 11 ALERT Active low digital ALERT output signal - requires pull-up resistor OD (5V) 9 12 SMDATA SMBus Data input/output - requires pull-up resistor DIOD (5V) 10 13 SMCLK SMBus Clock input - requires pull-up resistor DI (5V) n/a 14 n/c Not Internally Connected n/a DFN Bottom Pad n/a Exposed Pad Not Internally Connected, recommend grounding. n/a APPLICATION NOTE: For the 5V tolerant pins that have a pull-up resistor (SMCLK, SMDATA, THERM, and ALERT), the voltage difference between VDD and the pull-up voltage must never exceed 3.6V. The pin types are described below: Power - these pins are used to supply either VDD or GND to the device. AIO - Analog Input / Output. DI - Digital Input. OD - Open Drain Digital Output. DIOD - Digital Input / Open Drain Output. DS20005272A-page 10  2014 Microchip Technology Inc. 1°C Temperature Sensor with Beta Compensation Data Sheet Chapter 3 Electrical Specifications 3.1 Absolute Maximum Ratings Table 3.1 Absolute Maximum Ratings DESCRIPTION RATING UNIT Supply Voltage (VDD) -0.3 to 4.0 V Voltage on 5V tolerant pins (V5VT_pin) -0.3 to 5.5 V Voltage on 5V tolerant pins (|V5VT_pin - VDD|) (see Note 3.1) -0.3 to 3.6 V -0.3 to VDD +0.3 V Operating Temperature Range -40 to +125 °C Storage Temperature Range -55 to +150 °C Voltage on any other pin to Ground Lead Temperature Range Refer to JEDEC Spec. J-STD-020 Package Thermal Characteristics for MSOP-10 Thermal Resistance (j-a) 132.2 °C/W 77.7 °C/W 77.1 °C/W 2000 V Package Thermal Characteristics for SOIC-14 Thermal Resistance (j-a) Package Thermal Characteristics for DFN-10 Thermal Resistance (j-a) ESD Rating, All pins HBM Note: Stresses at or above those listed could cause permanent damage to the device. This is a stress rating only and functional operation of the device at any other condition above those indicated in the operation sections of this specification is not implied. When powering this device from laboratory or system power supplies, it is important that the Absolute Maximum Ratings not be exceeded or device failure can result. Some power supplies exhibit voltage spikes on their outputs when the AC power is switched on or off. In addition, voltage transients on the AC power line may appear on the DC output. If this possibility exists, it is suggested that a clamp circuit be used. Note 3.1 For the 5V tolerant pins that have a pull-up resistor (SMCLK, SMDATA, THERM, and ALERT), the pull-up voltage must not exceed 3.6V when the device is unpowered.  2014 Microchip Technology Inc. DS20005272A-page 11 1°C Temperature Sensor with Beta Compensation Data Sheet 3.2 Electrical Specifications Table 3.2 Electrical Specifications VDD = 3.0V to 3.6V, TA = -40°C to 125°C, all typical values at TA = 27°C unless otherwise noted. CHARACTERISTIC SYMBOL MIN TYP MAX UNITS CONDITIONS DC Power Supply Voltage VDD Supply Current IDD 3.0 3.3 3.6 V 430 850 uA 1 conversion / sec, dynamic averaging disabled 930 1200 uA 4 conversions / sec, dynamic averaging enabled uA > 16 conversions / sec, dynamic averaging enabled uA Device in Standby mode, no SMBus communications, ALERT and THERM pins not asserted. 1120 Standby Supply Current IDD 170 230 Internal Temperature Monitor Temperature Accuracy ±0.25 Temperature Resolution ±1 °C -5°C < TA < 100°C ±2 °C -40°C < TA < 125°C 0.125 °C External Temperature Monitor Temperature Accuracy Temperature Resolution Capacitive Filter ±0.25 ±1 °C +20°C < TDIODE < +110°C 0°C < TA < 100°C ±0.5 ±2 °C -40°C < TDIODE < 127°C 0.125 °C tCONV 190 ms EMC1403, default settings tCONV 150 ms EMC1404, default settings CFILTER 2.2 nF Connected across external diode 2.5 ALERT and THERM pins Output Low Voltage VOL Leakage Current ILEAK DS20005272A-page 12 0.4 ±5 V ISINK = 8mA uA ALERT and THERM pins Device powered or unpowered TA < 85°C pull-up voltage < 3.6V  2014 Microchip Technology Inc. 1°C Temperature Sensor with Beta Compensation Data Sheet 3.3 SMBus Electrical Characteristics Table 3.3 SMBus Electrical Specifications VDD = 3.0V to 3.6V, TA = -40°C to 125°C, all typical values are at TA = 27°C unless otherwise noted. CHARACTERISTIC SYMBOL MIN TYP MAX UNITS CONDITIONS SMBus Interface Input High Voltage VIH 2.0 VDD V 5V Tolerant Input Low Voltage VIL -0.3 0.8 V 5V Tolerant Input High/Low Current IIH / IIL ±5 uA Powered or unpowered TA < 85°C Hysteresis Input Capacitance CIN Output Low Sink Current IOL 8.2 420 mV 5 pF 15 mA SMDATA = 0.4V SMBus Timing Clock Frequency fSMB Spike Suppression tSP Bus free time Start to Stop tBUF 1.3 us Hold Time: Start tHD:STA 0.6 us Setup Time: Start tSU:STA 0.6 us Setup Time: Stop tSU:STP 0.6 us Data Hold Time tHD:DAT 0 us When transmitting to the master Data Hold Time tHD:DAT 0.3 us When receiving from the master Data Setup Time tSU:DAT 100 ns Clock Low Period tLOW 1.3 us Clock High Period tHIGH 0.6 us Clock/Data Fall time tFALL 300 ns Min = 20+0.1CLOAD ns Clock/Data Rise time tRISE 300 ns Min = 20+0.1CLOAD ns Capacitive Load CLOAD 400 pF per bus line  2014 Microchip Technology Inc. 10 400 kHz 50 ns DS20005272A-page 13 1°C Temperature Sensor with Beta Compensation Data Sheet Chapter 4 System Management Bus Interface Protocol 4.1 System Management Bus Interface Protocol The EMC1403 and EMC1404 communicate with a host controller, such as an SIO, through the SMBus. The SMBus is a two-wire serial communication protocol between a computer host and its peripheral devices. A detailed timing diagram is shown in Figure 4.1. For the first 15ms after power-up the device may not respond to SMBus communications. . Figure 4.1 SMBus Timing Diagram The EMC1403 and EMC1404 are SMBus 2.0 compatible and support Send Byte, Read Byte, Write Byte, Receive Byte, and the Alert Response Address as valid protocols as shown below. All of the below protocols use the convention in Table 4.1. Table 4.1 Protocol Format DATA SENT TO DEVICE # of bits sent DATA SENT TO THE HOST # of bits sent Attempting to communicate with the EMC1403 and EMC1404 SMBus interface with an invalid slave address or invalid protocol will result in no response from the device and will not affect its register contents. Stretching of the SMCLK signal is supported, provided other devices on the SMBus control the timing. DS20005272A-page 14  2014 Microchip Technology Inc. 1°C Temperature Sensor with Beta Compensation Data Sheet 4.2 Write Byte The Write Byte is used to write one byte of data to the registers as shown below Table 4.2: Table 4.2 Write Byte Protocol START SLAVE ADDRESS WR ACK REGISTER ADDRESS ACK REGISTER DATA ACK STOP 1 -> 0 1001_100 0 0 XXh 0 XXh 0 0 -> 1 4.3 Read Byte The Read Byte protocol is used to read one byte of data from the registers as shown in Table 4.3. Table 4.3 Read Byte Protocol START SLAVE ADDRESS WR ACK REGISTER ADDRESS ACK START SLAVE ADDRESS RD ACK REGISTER DATA NACK STOP 1 -> 0 1001_100 0 1 XXh 0 1 -> 0 1001_100 1 1 XX 1 0 -> 1 4.4 Send Byte The Send Byte protocol is used to set the internal address register pointer to the correct address location. No data is transferred during the Send Byte protocol as shown in Table 4.4. Table 4.4 Send Byte Protocol START SLAVE ADDRESS WR ACK REGISTER ADDRESS ACK STOP 1 -> 0 1001_100 0 0 XXh 0 0 -> 1 4.5 Receive Byte The Receive Byte protocol is used to read data from a register when the internal register address pointer is known to be at the right location (e.g. set via Send Byte). This is used for consecutive reads of the same register as shown in Table 4.5. Table 4.5 Receive Byte Protocol START SLAVE ADDRESS RD ACK REGISTER DATA NACK STOP 1 -> 0 1001_100 1 0 XXh 1 0 -> 1  2014 Microchip Technology Inc. DS20005272A-page 15 1°C Temperature Sensor with Beta Compensation Data Sheet 4.6 Alert Response Address The ALERT output can be used as a processor interrupt or as an SMBus Alert. When it detects that the ALERT pin is asserted, the host will send the Alert Response Address (ARA) to the general address of 0001_100xb. All devices with active interrupts will respond with their client address as shown in Table 4.6. Table 4.6 Alert Response Address Protocol START ALERT RESPONSE ADDRESS RD ACK DEVICE ADDRESS NACK STOP 1 -> 0 0001_100 1 0 1001_1000 1 0 -> 1 The EMC1403 and EMC1404 will respond to the ARA in the following way: 1. Send Slave Address and verify that full slave address was sent (i.e. the SMBus communication from the device was not prematurely stopped due to a bus contention event). 2. Set the MASK bit to clear the ALERT pin. APPLICATION NOTE: The ARA does not clear the Status Register and if the MASK bit is cleared prior to the Status Register being cleared, the ALERT pin will be reasserted. 4.7 SMBus Address The EMC1403 and EMC1404 respond to hard-wired SMBus slave address as shown in Table 1.1. Note: Other addresses are available. Contact Microchip for more information. 4.8 SMBus Timeout The EMC1403 and EMC1404 support SMBus Timeout. If the clock line is held low for longer than 30ms, the device will reset its SMBus protocol. This function can be enabled by setting the TIMEOUT bit in the Consecutive Alert Register (see Section 6.12). DS20005272A-page 16  2014 Microchip Technology Inc. 1°C Temperature Sensor with Beta Compensation Data Sheet Chapter 5 Product Description The EMC1403 and EMC1404 are SMBus temperature sensors. The EMC1403 monitors one internal diode and two externally connected temperature diodes. The EMC1404 monitors one internal diode and three externally connected temperature diodes. Thermal management is performed in cooperation with a host device. This consists of the host reading the temperature data of both the external and internal temperature diodes of the EMC1403 and EMC1404 and using that data to control the speed of one or more fans. The EMC1403 and EMC1404 have two levels of monitoring. The first provides a maskable ALERT signal to the host when the measured temperatures exceeds user programmable limits. This allows the EMC1403 or EMC1404 to be used as an independent thermal watchdog to warn the host of temperature hot spots without direct control by the host. The second level of monitoring provides a non maskable interrupt on the THERM pin if the measured temperatures meet or exceed a second programmable limit. Since the EMC1403 and EMC1404 automatically correct for temperature errors due to series resistance in temperature diode lines, there is greater flexibility in where external diodes are positioned and better measurement accuracy than previously available with non-resistance error correcting devices. The automatic beta detection feature means that there is no need to program the device according to which type of diode is present on the External Diode 1 channel. This also includes CPU diodes that require the transistor or BJT model for monitoring their temperature. Therefore, the EMC1403/EMC1404 can power up ready to operate for any system configuration. For the EMC1404, External Diode channels 2 and 3 are only compatible with general purpose diodes (such as a 2N3904). Figure 5.1 shows a system level block diagram of the EMC1403. Figure 5.2 shows a system level block diagram of the EMC1404. Figure 5.1 System Diagram for EMC1403  2014 Microchip Technology Inc. DS20005272A-page 17 1°C Temperature Sensor with Beta Compensation Data Sheet Figure 5.2 System Diagram for EMC1404 5.1 Modes of Operation The EMC1403 and EMC1404 have two modes of operation. 5.1.1  Active (Run) - In this mode of operation, the ADC is converting on all temperature channels at the programmed conversion rate. The temperature data is updated at the end of every conversion and the limits are checked. In Active mode, writing to the one-shot register will do nothing.  Standby (Stop) - In this mode of operation, the majority of circuitry is powered down to reduce supply current. The temperature data is not updated and the limits are not checked. In this mode of operation, the SMBus is fully active and the part will return requested data. Writing to the oneshot register will enable the device to update all temperature channels. Once all the channels are updated, the device will return to the Standby mode. Conversion Rates The EMC1403 and EMC1404 may be configured for different conversion rates based on the system requirements. The conversion rate is configured as described in Section 6.5. The default conversion rate is 4 conversions per second. Other available conversion rates are shown in Table 6.6. 5.1.2 Dynamic Averaging Dynamic averaging causes the EMC1403 and EMC1404 to measure the external diode channels for an extended time based on the selected conversion rate. This functionality can be disabled for increased power savings at the lower conversion rates (see Section 6.4). When dynamic averaging is enabled, the device will automatically adjust the sampling and measurement time for the external diode channels. This allows the device to average 2x or 16x longer than the normal 11 bit operation (nominally 21ms per channel) while still maintaining the selected conversion rate. The benefits of dynamic averaging are improved noise rejection due to the longer integration time as well as less random variation of the temperature measurement. When enabled, the dynamic averaging applies when a one-shot command is issued. The device will perform the desired averaging during the one-shot operation according to the selected conversion rate. When enabled, the dynamic averaging will affect the average supply current based on the chosen conversion rate as shown in Table 5.1 for EMC1403. DS20005272A-page 18  2014 Microchip Technology Inc. 1°C Temperature Sensor with Beta Compensation Data Sheet Table 5.1 Supply Current vs. Conversion Rate for EMC1403 AVERAGE SUPPLY CURRENT AVERAGING FACTOR (BASED ON 11-BIT OPERATION) CONVERSION RATE ENABLED (DEFAULT) DISABLED ENABLED (DEFAULT) DISABLED 1 / 16 sec 660uA 430uA 16x 1x 1 / 8 sec 660uA 430uA 16x 1x 1 / 4 sec 660uA 430uA 16x 1x 1 / 2 sec 660uA 430uA 16x 1x 1 / sec 660uA 430uA 16x 1x 2 / sec 930uA 475uA 8x 1x 4 / sec (default) 950uA 510uA 4x 1x 8 / sec 1010uA 630uA 2x 1x 16 / sec 1020uA 775uA 1x 1x 32 / sec 1050uA 1050uA 0.5x 0.5x 64 / sec 1100uA 1100uA 0.25x 0.25x When enabled, the dynamic averaging will affect the average supply current based on the chosen conversion rate as shown in Table 5.2 for EMC1404. Table 5.2 Supply Current vs. Conversion Rate for EMC1404 AVERAGE SUPPLY CURRENT AVERAGING FACTOR (BASED ON 11-BIT OPERATION) CONVERSION RATE ENABLED (DEFAULT) DISABLED ENABLED (DEFAULT) DISABLED 1 / 16 sec 660uA 430uA 16x 1x 1 / 8 sec 660uA 430uA 16x 1x 1 / 4 sec 660uA 430uA 16x 1x 1 / 2 sec 660uA 430uA 16x 1x 1 / sec 660uA 430uA 8x 1x 2 / sec 930uA 475uA 4x 1x 4 / sec (default) 950uA 510uA 2x 1x 8 / sec 1010uA 630uA 1x 1x 16 / sec 1020uA 775uA 0.5x 0.5x  2014 Microchip Technology Inc. DS20005272A-page 19 1°C Temperature Sensor with Beta Compensation Data Sheet Table 5.2 Supply Current vs. Conversion Rate for EMC1404 (continued) AVERAGE SUPPLY CURRENT AVERAGING FACTOR (BASED ON 11-BIT OPERATION) CONVERSION RATE ENABLED (DEFAULT) DISABLED ENABLED (DEFAULT) DISABLED 32 / sec 1050uA 1050uA 0.25x 0.25x 64 / sec 1100uA 1100uA 0.125x 0.125x 5.2 THERM Output The THERM output is asserted independently of the ALERT output and cannot be masked. Whenever any of the measured temperatures exceed the user programmed THERM Limit values for the programmed number of consecutive measurements, the THERM output is asserted. Once it has been asserted, it will remain asserted until all measured temperatures drop below the THERM Limit minus the THERM Hysteresis (also programmable). When the THERM pin is asserted, the Therm status bits will likewise be set. Reading these bits will not clear them until the THERM pin is deasserted. Once the THERM pin is deasserted, the THERM status bits will be automatically cleared. 5.3 ALERT Output The ALERT pin is an open drain output and requires a pull-up resistor to VDD and has two modes of operation: interrupt mode and comparator Mode. The mode of the ALERT output is selected via the ALERT / COMP bit in the Configuration Register (see Section 6.4). 5.3.1 ALERT Pin Interrupt Mode When configured to operate in interrupt mode, the ALERT pin asserts low when an out of limit measurement (> high limit or < low limit) is detected on any diode or when a diode fault is detected. The ALERT pin will remain asserted as long as an out-of-limit condition remains. Once the out-of-limit condition has been removed, the ALERT pin will remain asserted until the appropriate status bits are cleared. The ALERT pin can be masked by setting the MASK bit. Once the ALERT pin has been masked, it will be de-asserted and remain de-asserted until the MASK bit is cleared by the user. Any interrupt conditions that occur while the ALERT pin is masked will update the Status Register normally. The ALERT pin is used as an interrupt signal or as an Smbus Alert signal that allows an SMBus slave to communicate an error condition to the master. One or more ALERT outputs can be hard-wired together. 5.3.2 ALERT Pin Comparator Mode When the ALERT pin is configured to operate in comparator mode it will be asserted if any of the measured temperatures exceeds the respective high limit. The ALERT pin will remain asserted until all temperatures drop below the corresponding high limit minus the THERM Hysteresis value. When the ALERT pin is asserted in comparator mode, the corresponding high limit status bits will be set. Reading these bits will not clear them until the ALERT pin is deasserted. Once the ALERT pin is deasserted, the status bits will be automatically cleared. The MASK bit will not block the ALERT pin in this mode, however the individual channel masks (see Section 6.11) will prevent the respective channel from asserting the ALERT pin. DS20005272A-page 20  2014 Microchip Technology Inc. 1°C Temperature Sensor with Beta Compensation Data Sheet 5.4 Beta Compensation The EMC1403 and EMC1404 are configured to monitor the temperature of basic diodes (e.g. 2N3904), or CPU thermal diodes. It automatically detects the type of external diode (CPU diode or diode connected transistor) and determines the optimal setting to reduce temperature errors introduced by beta variation for the External Diode 1 channel only. Compensating for this error is also known as implementing the transistor or BJT model for temperature measurement. For discrete transistors configured with the collector and base shorted together, the beta is generally sufficiently high such that the percent change in beta variation is very small. For example, a 10% variation in beta for two forced emitter currents with a transistor whose ideal beta is 50 would contribute approximately 0.25°C error at 100°C. However for substrate transistors where the base-emitter junction is used for temperature measurement and the collector is tied to the substrate, the proportional beta variation will cause large error. For example, a 10% variation in beta for two forced emitter currents with a transistor whose ideal beta is 0.5 would contribute approximately 8.25°C error at 100°C. The External Diode 2 and External Diode 3 channels do not support Beta Compensation. 5.5 Resistance Error Correction (REC) Parasitic resistance in series with the external diodes will limit the accuracy obtainable from temperature measurement devices. The voltage developed across this resistance by the switching diode currents cause the temperature measurement to read higher than the true temperature. Contributors to series resistance are PCB trace resistance, on die (i.e. on the processor) metal resistance, bulk resistance in the base and emitter of the temperature transistor. Typically, the error caused by series resistance is +0.7°C per ohm. The EMC1403 and EMC1404 automatically correct up to 100 ohms of series resistance. 5.6 Programmable External Diode Ideality Factor The EMC1403 and EMC1404 is designed for external diodes with an ideality factor of 1.008. Not all external diodes, processor or discrete, will have this exact value. This variation of the ideality factor introduces error in the temperature measurement which must be corrected for. This correction is typically done using programmable offset registers. Since an ideality factor mismatch introduces an error that is a function of temperature, this correction is only accurate within a small range of temperatures. To provide maximum flexibility to the user, the EMC1403 and EMC1404 provides a 6bit register for each external diode where the ideality factor of the diode used is programmed to eliminate errors across all temperatures. APPLICATION NOTE: When monitoring a substrate transistor or CPU diode and beta compensation is enabled, the Ideality Factor should not be adjusted. Beta Compensation automatically corrects for most ideality errors. 5.7 Diode Faults The EMC1403 and EMC1404 detect an open on the DP and DN pins, and a short across the DP and DN pins. For each temperature measurement made, the device checks for a diode fault on the external diode channel(s). When a diode fault is detected, the ALERT pin asserts (unless masked, see Section 5.8) and the temperature data reads 00h in the MSB and LSB registers (note: the low limit will not be checked). A diode fault is defined as one of the following: an open between DP and DN, a short from VDD to DP, or a short from VDD to DN. If a short occurs across DP and DN or a short occurs from DP to GND, the low limit status bit is set and the ALERT pin asserts (unless masked). This condition is indistinguishable from a temperature measurement of 0.000degC (-64°C in extended range) resulting in temperature data of 00h in the MSB and LSB registers. If a short from DN to GND occurs (with a diode connected), temperature measurements will continue as normal with no alerts.  2014 Microchip Technology Inc. DS20005272A-page 21 1°C Temperature Sensor with Beta Compensation Data Sheet 5.8 Consecutive Alerts The EMC1403 and EMC1404 contain multiple consecutive alert counters. One set of counters applies to the ALERT pin and the second set of counters applies to the THERM pin. Each temperature measurement channel has a separate consecutive alert counter for each of the ALERT and THERM pins. All counters are user programmable and determine the number of consecutive measurements that a temperature channel(s) must be out-of-limit or reporting a diode fault before the corresponding pin is asserted. See Section 6.12 for more details on the consecutive alert function. 5.9 Digital Filter To reduce the effect of noise and temperature spikes on the reported temperature, the External Diode 1 channel uses a programmable digital filter. This filter can be configured as Level 1, Level 2, or Disabled. The typical filter performance is shown in Figure 5.3 and Figure 5.4. Figure 5.3 Temperature Filter Step Response DS20005272A-page 22  2014 Microchip Technology Inc. 1°C Temperature Sensor with Beta Compensation Data Sheet Figure 5.4 Temperature Filter Impulse Response 5.10 Temperature Monitors In general, thermal diode temperature measurements are based on the change in forward bias voltage of a diode when operated at two different currents. This VBE is proportional to absolute temperature as shown in the following equation: where: k = Boltzmann’s constant T = absolute temperature in Kelvin [1] q = electron charge  = diode ideality factor Figure 5.5 shows a block diagram of the temperature measurement circuit. The negative terminal for the remote temperature diode, DN, is internally biased with a forward diode voltage referenced to ground.  2014 Microchip Technology Inc. DS20005272A-page 23 1°C Temperature Sensor with Beta Compensation Data Sheet Figure 5.5 Block Diagram of Temperature Monitoring Circuit 5.11 Temperature Measurement Results and Data The temperature measurement results are stored in the internal and external temperature registers. These are then compared with the values stored in the high and low limit registers. Both external and internal temperature measurements are stored in 11-bit format with the eight (8) most significant bits stored in a high byte register and the three (3) least significant bits stored in the three (3) MSB positions of the low byte register. All other bits of the low byte register are set to zero. The EMC1403 and EMC1404 have two selectable temperature ranges. The default range is from 0°C to +127°C and the temperature is represented as binary number able to report a temperature from 0°C to +127.875°C in 0.125°C steps. The extended range is an extended temperature range from -64°C to +191°C. The data format is a binary number offset by 64°C. The extended range is used to measure temperature diodes with a large known offset (such as AMD processor diodes) where the diode temperature plus the offset would be equivalent to a temperature higher than +127°C. Table 5.3 shows the default and extended range formats. Table 5.3 Temperature Data Format TEMPERATURE (°C) DEFAULT RANGE 0°C TO 127°C EXTENDED RANGE -64°C TO 191°C Diode Fault 000 0000 0000 000 0000 0000 -64 000 0000 0000 000 0000 0000 Note 5.2 -1 000 0000 0000 001 1111 1000 0 000 0000 0000 Note 5.1 010 0000 0000 0.125 000 0000 0001 010 0000 0001 1 000 0000 1000 010 0000 1000 DS20005272A-page 24  2014 Microchip Technology Inc. 1°C Temperature Sensor with Beta Compensation Data Sheet Table 5.3 Temperature Data Format (continued) TEMPERATURE (°C) DEFAULT RANGE 0°C TO 127°C EXTENDED RANGE -64°C TO 191°C 64 010 0000 0000 100 0000 0000 65 010 0000 1000 100 0000 1000 127 011 1111 1000 101 1111 1000 127.875 011 1111 1111 101 1111 1111 128 011 1111 1111 Note 5.3 110 0000 0000 190 011 1111 1111 111 1111 0000 191 011 1111 1111 111 1111 1000 >= 191.875 011 1111 1111 111 1111 1111 Note 5.4 5.12 Note 5.1 In default mode, all temperatures < 0°C will be reported as 0°C. Note 5.2 In the extended range, all temperatures < -64°C will be reported as -64°C. Note 5.3 For the default range, all temperatures > +127.875°C will be reported as +127.875°C. Note 5.4 For the extended range, all temperatures > +191.875°C will be reported as +191.875°C. Anti-parallel Diode Connections The EMC1404 supports reading two external diodes on the same set of pins (DP2, DN2). These diodes are connected as shown in Figure 5.2. Due to the anti-parallel connection of these diodes, both diodes will be reverse biased by a VBE voltage (approximately 0.7V). Because of this reverse bias, only discrete thermal diodes (such as a 2N3904) are recommended to be placed on these pins. 5.13 External Diode Connections The EMC1403 can be configured to measure a CPU substrate transistor, a discrete 2N3904 thermal diode, or an AMD processor diode. The diodes can be connected in a variety of ways as indicated in Figure 5.6. The EMC1404 can be configured to measure a CPU substrate transistor, a discrete 2N3904 thermal diode, or an AMD processor diode on the External Diode 1 channel only. The External Diode 2 and External Diode 3 channels are configured to measure a pair of discrete anti-parallel diodes (shared on pins DP2 and DN2). The supported configurations for the external diode channels are shown in Figure 5.6.  2014 Microchip Technology Inc. DS20005272A-page 25 1°C Temperature Sensor with Beta Compensation Data Sheet Figure 5.6 Diode Configurations DS20005272A-page 26  2014 Microchip Technology Inc. 1°C Temperature Sensor with Beta Compensation Data Sheet Chapter 6 Register Description The registers shown in Table 6.1 are accessible through the SMBus. An entry of ‘-’ indicates that the bit is not used and will always read ‘0’. Table 6.1 Register Set in Hexadecimal Order REGISTER ADDRESS R/W REGISTER NAME FUNCTION DEFAULT VALUE 00h R Internal Diode Data High Byte Stores the integer data for the Internal Diode 00h 01h R External Diode 1 Data High Byte Stores the integer data for External Diode 1 00h 02h R Status Stores the status bits for the Internal Diode and External Diodes 00h Page 31 03h R/W Configuration Controls the general operation of the device (mirrored at address 09h) 00h Page 31 04h R/W Conversion Rate Controls the conversion rate for updating temperature data (mirrored at address 0Ah) 06h (4/sec) Page 32 05h R/W Internal Diode High Limit Stores the 8-bit high limit for the Internal Diode (mirrored at address 0Bh) 55h (85°C) 06h R/W Internal Diode Low Limit Stores the 8-bit low limit for the Internal Diode (mirrored at address 0Ch) 00h (0°C) 55h (85°C) PAGE Page 30 Page 33 07h R/W External Diode 1 High Limit High Byte Stores the integer portion of the high limit for External Diode 1 (mirrored at register 0Dh) 08h R/W External Diode 1 Low Limit High Byte Stores the integer portion of the low limit for External Diode 1 (mirrored at register 0Eh) 00h (0°C) 09h R/W Configuration Controls the general operation of the device (mirrored at address 03h) 00h Page 31 0Ah R/W Conversion Rate Controls the conversion rate for updating temperature data (mirrored at address 04h) 06h (4/sec) Page 32  2014 Microchip Technology Inc. DS20005272A-page 27 1°C Temperature Sensor with Beta Compensation Data Sheet Table 6.1 Register Set in Hexadecimal Order (continued) REGISTER ADDRESS R/W REGISTER NAME FUNCTION DEFAULT VALUE 0Bh R/W Internal Diode High Limit Stores the 8-bit high limit for the Internal Diode (mirrored at address 05h) 55h (85°C) 0Ch R/W Internal Diode Low Limit Stores the 8-bit low limit for the Internal Diode (mirrored at address 06h) 00h (0°C) 55h (85°C) PAGE Page 33 0Dh R/W External Diode 1 High Limit High Byte Stores the integer portion of the high limit for External Diode 1 (mirrored at register 07h) 0Eh R/W External Diode 1 Low Limit High Byte Stores the integer portion of the low limit for External Diode 1 (mirrored at register 08h) 00h (0°C) 0Fh W One shot A write to this register initiates a one shot update. 00h Page 35 10h R External Diode 1 Data Low Byte Stores the fractional data for External Diode 1 00h Page 30 11h R/W Scratchpad Scratchpad register for software compatibility 00h Page 35 12h R/W Scratchpad Scratchpad register for software compatibility 00h Page 35 13h R/W External Diode 1 High Limit Low Byte Stores the fractional portion of the high limit for External Diode 1 00h 14h R/W External Diode 1 Low Limit Low Byte Stores the fractional portion of the low limit for External Diode 1 00h 15h R/W External Diode 2 High Limit High Byte Stores the integer portion of the high limit for External Diode 2 55h (85°C) 16h R/W External DIode 2 Low Limit High Byte Stores the integer portion of the low limit for External Diode 2 00h (0°C) 17h R/W External Diode 2 High Limit Low Byte Stores the fractional portion of the high limit External Diode 2 00h 18h R/W External Diode 2 Low Limit Low Byte Stores the fractional portion of the low limit for External Diode 2 00h 19h R/W External Diode 1 THERM Limit Stores the 8-bit critical temperature limit for External Diode 1 55h (85°C) Page 35 1Ah R/W External Diode 2 THERM Limit Stores the 8-bit critical temperature limit for External Diode 2 55h (85°C) Page 35 1Bh R-C External Diode Fault Stores status bits indicating which external diode detected a diode fault 00h Page 36 1Fh R/W Channel Mask Register Controls the masking of individual channels 00h Page 36 DS20005272A-page 28 Page 33 Page 33 Page 33  2014 Microchip Technology Inc. 1°C Temperature Sensor with Beta Compensation Data Sheet Table 6.1 Register Set in Hexadecimal Order (continued) REGISTER ADDRESS R/W REGISTER NAME FUNCTION DEFAULT VALUE 20h R/W Internal Diode THERM Limit Stores the 8-bit critical temperature limit for the Internal Diode 55h (85°C) 21h R/W THERM Hysteresis Stores the 8-bit hysteresis value that applies to all THERM limits 0Ah (10°C) 22h R/W Consecutive ALERT Controls the number of out-of-limit conditions that must occur before an interrupt is asserted 70h 23h R External Diode 2 Data High Byte Stores the integer data for External Diode 2 00h 24h R External Diode 2 Data Low Byte Stores the fractional data for External Diode 2 00h 25h R/W External Diode 1 Beta Configuration Stores the Beta Compensation circuitry settings for External Diode 1 08h Page 38 26h R/W External Diode 2 Beta Configuration Stores the Beta Compensation circuitry settings for External Diode 2 08h or 07h Page 38 27h R/W External Diode 1 Ideality Factor Stores the ideality factor for External Diode 1 12h (1.008) Page 39 28h R/W External Diode 2 Ideality Factor Stores the ideality factor for External Diode 2 12h (1.008) Page 39 29h R Internal Diode Data Low Byte Stores the fractional data for the Internal Diode 00h Page 30 2Ah R External Diode 3 High Byte Stores the integer data for External Diode 3 00h 2Bh R External Diode 3 Low Byte Stores the fractional data for External Diode 3 00h 2Ch R/W External Diode 3 High Limit High Byte Stores the integer portion of the high limit for External Diode 3 55h (85°C) 2Dh R/W External Diode 3 Low Limit High Byte Stores the integer portion of the low limit for External Diode 3 00h (0°C) 2Eh R/W External Diode 3 High Limit Low Byte Stores the fractional portion of the high limit for External Diode 3 00h 2Fh R/W External Diode 3 Low Limit Low Byte Stores the fractional portion of the low limit for External Diode 3 00h 30h R/W External Diode 3 THERM Limit Stores the 8-bit critical temperature limit for External Diode 3 55h (85°C) Page 35 31h R/W External Diode 3 Ideality Factor Stores the ideality factor for External Diode 3 12h (1.008) Page 39 35h R-C High Limit Status Status bits for the High Limits 00h Page 41 36h R-C Low Limit Status Status bits for the Low Limits 00h Page 41  2014 Microchip Technology Inc. PAGE Page 35 Page 37 Page 30 Page 30 Page 33 DS20005272A-page 29 1°C Temperature Sensor with Beta Compensation Data Sheet Table 6.1 Register Set in Hexadecimal Order (continued) REGISTER ADDRESS R/W REGISTER NAME FUNCTION DEFAULT VALUE PAGE 37h R THERM Limit Status Status bits for the THERM Limits 00h Page 42 40h R/W Filter Control Controls the digital filter setting for the External Diode 1 channel 00h Page 42 FDh R Product ID Stores a fixed value that identifies each product Table 6.25 Page 43 FEh R Microchip ID Stores a fixed value that represents Microchip 5Dh Page 43 FFh R Revision Stores a fixed value that represents the revision number 01h or 04h Page 44 6.1 Data Read Interlock When any temperature channel high byte register is read, the corresponding low byte is copied into an internal ‘shadow’ register. The user is free to read the low byte at any time and be guaranteed that it will correspond to the previously read high byte. Regardless if the low byte is read or not, reading from the same high byte register again will automatically refresh this stored low byte data. 6.2 Temperature Data Registers Table 6.2 Temperature Data Registers ADDR R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT 00h R Internal Diode High Byte 128 64 32 16 8 4 2 1 00h 29h R Internal Diode Low Byte 0.5 0.25 0.125 - - - - - 00h 01h R External Diode 1 High Byte 128 64 32 16 8 4 2 1 00h 10h R External Diode 1 Low Byte 0.5 0.25 0.125 - - - - - 00h 23h R External Diode 2 High Byte 128 64 32 16 8 4 2 1 00h 24h R External Diode 2 Low Byte 0.5 0.25 0.125 - - - - - 00h 2Ah R External Diode 3 High Byte 128 64 32 16 8 4 2 1 00h 2Bh R External Diode 3 Low Byte 0.5 0.25 0.125 - - - - - 00h As shown in Table 6.2, all temperatures are stored as an 11-bit value with the high byte representing the integer value and the low byte representing the fractional value left justified to occupy the MSBits. DS20005272A-page 30  2014 Microchip Technology Inc. 1°C Temperature Sensor with Beta Compensation Data Sheet 6.3 Status Register Table 6.3 Status Register ADDR R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT 02h R Status BUSY - - HIGH LOW FAULT THERM - 00h The Status Register reports general error conditions. To identify specific channels, refer to Section 6.10, Section 6.15, Section 6.16, and Section 6.17. The individual Status Register bits are cleared when the appropriate High Limit, Low Limit, or THERM Limit register has been read or cleared. Bit 7 - BUSY - This bit indicates that the ADC is currently converting. This bit does not cause either the ALERT or THERM pins to be asserted. Bit 4 - HIGH - This bit is set when any of the temperature channels exceeds its programmed high limit. See the High Limit Status Register for specific channel information (Section 6.15). When set, this bit will assert the ALERT pin. Bit 3 - LOW - This bit is set when any of the temperature channels drops below its programmed low limit. See the Low Limit Status Register for specific channel information (Section 6.16). When set, this bit will assert the ALERT pin. Bit 2 - FAULT - This bit is asserted when a diode fault is detected on any of the external diode channels. See the External Diode Fault Register for specific channel information (Section 6.10). When set, this bit will assert the ALERT pin. Bit 1 - THERM - This bit is set when the any of the temperature channels exceeds its programmed THERM limit. See the THERM Limit Status Register for specific channel information (Section 6.17). When set, this bit will assert the THERM pin. 6.4 Configuration Register Table 6.4 Configuration Register ADDR 03h 09h R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT R/W Configuration MASK_ ALL RUN/ STOP ALERT/ COMP RECD1 RECD2 RANGE DAVG_ DIS APDD 00h The Configuration Register controls the basic operation of the device. This register is fully accessible at either address. Bit 7 - MASK_ALL - Masks the ALERT pin from asserting.  ‘0’ (default) - The ALERT pin is not masked. If any of the appropriate status bits are set the ALERT pin will be asserted.  ‘1’ - The ALERT pin is masked. It will not be asserted for any interrupt condition unless it is configured as a secondary THERM pin. The Status Registers will be updated normally. Bit 6 - RUN / STOP - Controls Active/Standby modes.  ‘0’ (default) - The device is in Active mode and converting on all channels.  ‘1’ -The device is in Standby mode and not converting.  2014 Microchip Technology Inc. DS20005272A-page 31 1°C Temperature Sensor with Beta Compensation Data Sheet Bit 5 - ALERT/COMP - Controls the operation of the ALERT pin.  ‘0’ (default) - The ALERT pin acts as described in Section 5.3.  ‘1’ - The ALERT pin acts in comparator mode as described in Section 5.3.2. In this mode the MASK_ALL bit is ignored. Bit 4 - RECD1 - Disables the Resistance Error Correction (REC) for External Diode 1.  ‘0’ (default)- REC is enabled for External Diode 1.  ‘1’ - REC is disabled for External Diode 1. Bit 3 - RECD2 - Disables the Resistance Error Correction (REC) for External Diode 2 and External Diode 3.  ‘0’ (default) - REC is enabled for External Diode 2 and External Diode 3.  ‘1’ - REC is disabled for External Diode 2 and External Diode 3. Bit 2 - RANGE - Configures the measurement range and data format of the temperature channels.  ‘0’ (default) - The temperature measurement range is 0°C to +127.875°C and the data format is binary.  ‘1’ -The temperature measurement range is -64°C to +191.875°C and the data format is offset binary (see Table 5.3). Bit 1 - DAVG_DIS - Disables the dynamic averaging feature on all temperature channels.  ‘0’ (default) - The dynamic averaging feature is enabled. All temperature channels will be converted with an averaging factor that is based on the conversion rate as shown in Table 5.1 and Table 5.2.  ‘1’ - The dynamic averaging feature is disabled. All temperature channels will be converted with a maximum averaging factor of 1x (equivalent to 11-bit conversion). For higher conversion rates, this averaging factor will be reduced as shown in Table 5.1 and Table 5.2. Bit 0 - APDD (EMC1404 only) - Disables the anti-parallel diode operation. Beta Compensation is disabled on External Diode 2 and 3 regardless of APDD setting. In addition, External Diode 2 Beta Configuration register will be ignored. 6.5  ‘0’ (default) - Anti-parallel diode mode is enabled. Two external diodes will be measured on the DP2 and DN2 pins.  ‘1’ - Anti-parallel diode mode is disabled. Only one external diode will be measured on the DP2 and DN2 pins. Conversion Rate Register Table 6.5 Conversion Rate Register ADDR 04h 0Ah R/W REGISTER B7 B6 B5 B4 R/W Conversion Rate - - - - B3 B2 B1 CONV[3:0] B0 DEFAULT 06h (4/sec) The Conversion Rate Register controls how often the temperature measurement channels are updated and compared against the limits. This register is fully accessible at either address. Bits 3-0 - CONV[3:0] - Determines the conversion rate as shown in Table 6.6. DS20005272A-page 32  2014 Microchip Technology Inc. 1°C Temperature Sensor with Beta Compensation Data Sheet Table 6.6 Conversion Rate CONV[3:0] HEX 3 2 1 0 CONVERSIONS / SECOND 0h 0 0 0 0 1 / 16 1h 0 0 0 1 1/8 2h 0 0 1 0 1/4 3h 0 0 1 1 1/2 4h 0 1 0 0 1 5h 0 1 0 1 2 6h 0 1 1 0 4 (default) 7h 0 1 1 1 8 8h 1 0 0 0 16 9h 1 0 0 1 32 Ah 1 0 1 0 64 Bh - Fh 6.6 All others 1 Limit Registers Table 6.7 Temperature Limit Registers ADDR. 05h 0Bh 06h 0Ch R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT R/W Internal Diode High Limit 128 64 32 16 8 4 2 1 55h (85°C) R/W Internal Diode Low Limit 128 64 32 16 8 4 2 1 00h (0°C) R/W External Diode 1 High Limit High Byte 128 64 32 16 8 4 2 1 55h (85°C) R/W External Diode 1 High Limit Low Byte 0.5 0.25 0.125 - - - - - 00h R/W External Diode 1 Low Limit High Byte 128 64 32 16 8 4 2 1 00h (0°C) 07h 0Dh 13h 08h 0Eh  2014 Microchip Technology Inc. DS20005272A-page 33 1°C Temperature Sensor with Beta Compensation Data Sheet Table 6.7 Temperature Limit Registers (continued) ADDR. R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT R/W External Diode 1 Low Limit Low Byte 0.5 0.25 0.125 - - - - - 00h 15h R/W External Diode 2 High Limit High Byte 128 64 32 16 8 4 2 1 55h (85°C) 16h R/W External Diode 2 Low Limit High Byte 128 64 32 16 8 4 2 1 00h (0°C) R/W External Diode 2 High Limit Low Byte 0.5 0.25 0.125 - - - - - 00h R/W External Diode 2 Low Limit Low Byte 0.5 0.25 0.125 - - - - - 00h 2Ch R/W External Diode 3 High Limit High Byte 128 64 32 16 8 4 2 1 55h (85°C) 2Dh R/W External Diode 3 Low Limit High Byte 128 64 32 16 8 4 2 1 00h (0°C) R/W External Diode 3 High Limit Low Byte 0.5 0.25 0.125 - - - - - 00h R/W External Diode 3 Low Limit Low Byte 0.5 0.25 0.125 - - - - - 00h 14h 17h 18h 2Eh 2Fh The device contains both high and low limits for all temperature channels. If the measured temperature exceeds the high limit, then the corresponding status bit is set and the ALERT pin is asserted. Likewise, if the measured temperature is less than or equal to the low limit, the corresponding status bit is set and the ALERT pin is asserted. The data format for the limits must match the selected data format for the temperature so that if the extended temperature range is used, the limits must be programmed in the extended data format. The limit registers with multiple addresses are fully accessible at either address. When the device is in standby mode, updating the limit registers will have no affect until the next conversion cycle occurs. This can be initiated via a write to the One Shot Register or by clearing the RUN / STOP bit in the Configuration Register (see Section 6.4). DS20005272A-page 34  2014 Microchip Technology Inc. 1°C Temperature Sensor with Beta Compensation Data Sheet 6.7 Scratchpad Registers Table 6.8 Scratchpad Register ADDR R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT 11h R/W Scratchpad 7 6 5 4 3 2 1 0 00h 12h R/W Scratchpad 7 6 5 4 3 2 1 0 00h The Scratchpad Registers are Read Write registers that are used for place holders to be software compatible with legacy programs. Reading from the registers will return what is written to them. 6.8 One Shot Register Table 6.9 One Shot Register ADDR. R/W REGISTER 0Fh W One Shot B7 B6 B5 B4 B3 B2 B1 B0 Writing to this register initiates a single conversion cycle. Data is not stored and always reads 00h DEFAULT 00h The One Shot Register is used to initiate a one shot command. Writing to the one shot register, when the device is in standby mode and BUSY bit (in Status Register) is ‘0’, will immediately cause the ADC to update all temperature measurements. Writing to the One Shot Register while the device is in active mode will have no affect. 6.9 Therm Limit Registers Table 6.10 Therm Limit Registers ADDR. R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT 19h R/W External Diode 1 THERM Limit 128 64 32 16 8 4 2 1 55h (85°C) 1Ah R/W External Diode 2 THERM Limit 128 64 32 16 8 4 2 1 55h (85°C) 20h R/W Internal Diode THERM Limit 128 64 32 16 8 4 2 1 55h (85°C) 21h R/W THERM Hysteresis 128 64 32 16 8 4 2 1 0Ah (10°C) 30h R/W External Diode 3 THERM Limit 128 64 32 16 8 4 2 1 55h (85°C) The THERM Limit Registers are used to determine whether a critical thermal event has occurred. If the measured temperature exceeds the THERM Limit, then the THERM pin is asserted. The limit setting must match the chosen data format of the temperature reading registers.  2014 Microchip Technology Inc. DS20005272A-page 35 1°C Temperature Sensor with Beta Compensation Data Sheet Unlike the ALERT pin, the THERM pin cannot be masked. Additionally, the THERM pin will be released once the temperature drops below the corresponding threshold minus the THERM Hysteresis. 6.10 External Diode Fault Register Table 6.11 External Diode Fault Register ADDR. R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT 1Bh R-C External Diode Fault - - - - E3FLT E2FLT E1FLT - 00h The External Diode Fault Register indicates which of the external diodes caused the FAULT bit in the Status Register to be set. This register is cleared when it is read. Bit 3 - E3FLT - This bit is set if the External Diode 3 channel reported a diode fault. Bit 2 - E2FLT - This bit is set if the External Diode 2 channel reported a diode fault. Bit 1 - E1FLT - This bit is set if the External Diode 1 channel reported a diode fault. 6.11 Channel Mask Register Table 6.12 Channel Mask Register ADDR. R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT 1Fh R/W Channel Mask - - - - E3 MASK E2 MASK E1 MASK INT MASK 00h The Channel Mask Register controls individual channel masking. When a channel is masked, the ALERT pin will not be asserted when the masked channel reads a diode fault or out of limit error. The channel mask does not mask the THERM pin. Bit 3 - E3MASK - Masks the ALERT pin from asserting when the External Diode 3 channel is out of limit or reports a diode fault.  ‘0’ (default) - The External Diode 3 channel will cause the ALERT pin to be asserted if it is out of limit or reports a diode fault.  ‘1’ - The External Diode 3 channel will not cause the ALERT pin to be asserted if it is out of limit or reports a diode fault. Bit 2 - E2MASK - Masks the ALERT pin from asserting when the External Diode 2 channel is out of limit or reports a diode fault.  ‘0’ (default) - The External Diode 2 channel will cause the ALERT pin to be asserted if it is out of limit or reports a diode fault.  ‘1’ - The External Diode 2 channel will not cause the ALERT pin to be asserted if it is out of limit or reports a diode fault. Bit 1 - E1MASK - Masks the ALERT pin from asserting when the External Diode 1 channel is out of limit or reports a diode fault.  ‘0’ (default) - The External Diode 1 channel will cause the ALERT pin to be asserted if it is out of limit or reports a diode fault.  ‘1’ - The External Diode 1 channel will not cause the ALERT pin to be asserted if it is out of limit or reports a diode fault. DS20005272A-page 36  2014 Microchip Technology Inc. 1°C Temperature Sensor with Beta Compensation Data Sheet Bit 0 - INTMASK - Masks the ALERT pin from asserting when the Internal Diode temperature is out of limit. 6.12  ‘0’ (default) - The Internal Diode channel will cause the ALERT pin to be asserted if it is out of limit.  ‘1’ - The Internal Diode channel will not cause the ALERT pin to be asserted if it is out of limit. Consecutive ALERT Register Table 6.13 Consecutive ALERT Register ADDR. R/W REGISTER B7 22h R/W Consecutive ALERT TIME OUT B6 B5 CTHRM[2:0] B4 B3 B2 B1 CALRT[2:0] B0 DEFAULT - 70h The Consecutive ALERT Register determines how many times an out-of-limit error or diode fault must be detected in consecutive measurements before the ALERT or THERM pin is asserted. Additionally, the Consecutive ALERT Register controls the SMBus Timeout functionality. An out-of-limit condition (i.e. HIGH, LOW, or FAULT) occurring on the same temperature channel in consecutive measurements will increment the consecutive alert counter. The counters will also be reset if no out-of-limit condition or diode fault condition occurs in a consecutive reading. When the ALERT pin is configured as an interrupt, when the consecutive alert counter reaches its programmed value, the following will occur: the STATUS bit(s) for that channel and the last error condition(s) (i.e. E1HIGH, or E2LOW and/or E2FAULT) will be set to ‘1’, the ALERT pin will be asserted, the consecutive alert counter will be cleared, and measurements will continue. When the ALERT pin is configured as a comparator, the consecutive alert counter will ignore diode fault and low limit errors and only increment if the measured temperature exceeds the High Limit. Additionally, once the consecutive alert counter reaches the programmed limit, the ALERT pin will be asserted, but the counter will not be reset. It will remain set until the temperature drops below the High Limit minus the THERM Hysteresis value. For example, if the CALRT[2:0] bits are set for 4 consecutive alerts on an EMC1403 device, the high limits are set at 70°C, and none of the channels are masked, then the ALERT pin will be asserted after the following four measurements: 1. Internal Diode reads 71°C and both external diodes read 69°C. Consecutive alert counter for INT is incremented to 1. 2. Both Internal Diode and External Diode 1 read 71°C and External Diode 2 reads 68°C. Consecutive alert counter for INT is incremented to 2 and for EXT1 is set to 1. 3. The External Diode 1 reads 71°C and both the Internal Diode and External Diode 2 read 69°C. Consecutive alert counter for INT and EXT2 are cleared and EXT1 is incremented to 2. 4. The Internal Diode reads 71°C and both external diodes read 71°C. Consecutive alert counter for INT is set to 1, EXT2 is set to 1, and EXT1 is incremented to 3. 5. The Internal Diode reads 71°C and both the external diodes read 71°C. Consecutive alert counter for INT is incremented to 2, EXT2 is set to 2, and EXT1 is incremented to 4. The appropriate status bits are set for EXT1 and the ALERT pin is asserted. EXT1 counter is reset to 0 and all other counters hold the last value until the next temperature measurement. Bit 7 - TIMEOUT - Determines whether the SMBus Timeout function is enabled.  ‘0’ (default) - The SMBus Timeout feature is disabled. The SMCLK line can be held low indefinitely without the device resetting its SMBus protocol.  ‘1’ - The SMBus Timeout feature is enabled. If the SMCLK line is held low for more than 30ms, then the device will reset the SMBus protocol.  2014 Microchip Technology Inc. DS20005272A-page 37 1°C Temperature Sensor with Beta Compensation Data Sheet Bits 6-4 - CTHRM[2:0] - Determines the number of consecutive measurements that must exceed the corresponding THERM Limit before the THERM pin is asserted. All temperature channels use this value to set the respective counters. The consecutive THERM counter is incremented whenever any measurement exceed the corresponding THERM Limit. If the temperature drops below the THERM limit, then the counter is reset. If a number of consecutive measurements above the THERM limit occurs, then the THERM pin is asserted low. Once the THERM pin has been asserted, the consecutive therm counter will not reset until the corresponding temperature drops below the THERM Limit minus the THERM Hysteresis value. The bits are decoded as shown in Table 6.14. The default setting is 4 consecutive out of limit conversions. Bits 3-1 - CALRT[2:0] - Determine the number of consecutive measurements that must have an out of limit condition or diode fault before the ALERT pin is asserted. All temperature channels use this value to set the respective counters. The bits are decoded as shown in Table 6.14. The default setting is 1 consecutive out of limit conversion. Table 6.14 Consecutive Alert / THERM Settings 6.13 NUMBER OF CONSECUTIVE OUT OF LIMIT MEASUREMENTS 2 1 0 0 0 0 1 (default for CALRT[2:0]) 0 0 1 2 0 1 1 3 1 1 1 4 (default for CTHRM[2:0]) Beta Configuration Registers Table 6.15 Beta Configuration Registers ADDR. R/W REGISTER B7 B6 B5 B4 B3 25h R/W External Diode 1 Beta Configuration - - - - ENABLE1 R/W External Diode 2 Beta Configuration 26h - - - - ENABLE2 B2 B1 B0 DEFAULT BETA1[2:0] 08h BETA2[2:0] 08h for EMC1403 or 07h for EMC1404 This register is used to set the Beta Compensation factor that is used for the external diode channels. Bit 3 - ENABLEx - Enables the Beta Compensation factor autodetection function. This function shall be disabled for External Diode 2.  ‘0’ - The Beta Compensation Factor autodetection circuitry is disabled. The External Diode will always use the Beta Compensation factor set by the BETAx[2:0] bits.  ‘1’ (default) - The Beta Compensation factor autodetection circuitry is enabled. At the beginning of every conversion, the optimal Beta Compensation factor setting will be determined and applied. The BETAx[2:0] bits will be automatically updated to indicate the current setting. DS20005272A-page 38  2014 Microchip Technology Inc. 1°C Temperature Sensor with Beta Compensation Data Sheet Bit 2-0 - BETAx[2:0] - These bits always reflect the current beta configuration settings. If autodetection circuitry is enabled, then these bits will be updated automatically and writing to these bits will have no effect. If the autodetection circuitry is disabled, then these bits will determine the beta configuration setting that is used for their respective channels. Care should be taken when setting the BETAx[2:0] bits when the autodetection circuitry is disabled. If the Beta Compensation factor is set at a beta value that is higher than the transistor beta, then the circuit may introduce measurement errors. When measuring a discrete thermal diode (such as 2N3904) or a CPU diode that functions like a discrete thermal diode (such as an AMD processor diode), then the BETAx[2:0] bits should be set to ‘111b’. Table 6.16 CPU Beta Values BETAX[2:0] HEX ENABLEX 2 1 0 0h 0 0 0 0 0.11 1h 0 0 0 1 0.18 2h 0 0 1 0 0.25 3h 0 0 1 1 0.33 4h 0 1 0 0 0.43 5h 0 1 0 1 1.00 6h 0 1 1 0 2.33 7h 0 1 1 1 Disabled 8h - Fh 1 X X X Autodetection 6.14 MINIMUM BETA External Diode Ideality Factor Registers Table 6.17 Ideality Configuration Registers ADDR. 27h 28h 31h R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT R/W External Diode 1 Ideality Factor - - IDEALITY1[5:0] 12h R/W External Diode 2 Ideality Factor - - IDEALITY2[5:0] 12h R/W External Diode 3 Ideality Factor - - IDEALITY3[5:0] 12h These registers store the ideality factors that are applied to the external diodes. Table 6.18 defines each setting and the corresponding ideality factor. Beta Compensation and Resistance Error Correction  2014 Microchip Technology Inc. DS20005272A-page 39 1°C Temperature Sensor with Beta Compensation Data Sheet automatically correct for most diode ideality errors, therefore it is not recommended that these settings be updated without consulting Microchip. Table 6.18 Ideality Factor Look-Up Table (Diode Model) SETTING FACTOR SETTING FACTOR SETTING FACTOR 08h 0.9949 18h 1.0159 28h 1.0371 09h 0.9962 19h 1.0172 29h 1.0384 0Ah 0.9975 1Ah 1.0185 2Ah 1.0397 0Bh 0.9988 1Bh 1.0200 2Bh 1.0410 0Ch 1.0001 1Ch 1.0212 2Ch 1.0423 0Dh 1.0014 1Dh 1.0226 2Dh 1.0436 0Eh 1.0027 1Eh 1.0239 2Eh 1.0449 0Fh 1.0040 1Fh 1.0253 2Fh 1.0462 10h 1.0053 20h 1.0267 30h 1.0475 11h 1.0066 21h 1.0280 31h 1.0488 12h 1.0080 22h 1.0293 32h 1.0501 13h 1.0093 23h 1.0306 33h 1.0514 14h 1.0106 24h 1.0319 34h 1.0527 15h 1.0119 25h 1.0332 35h 1.0540 16h 1.0133 26h 1.0345 36h 1.0553 17h 1.0146 27h 1.0358 37h 1.0566 For CPU substrate transistors that require the BJT transistor model, the ideality factor behaves slightly differently than for discrete diode-connected transistors. Refer to Table 6.19 when using a CPU substrate transistor. Table 6.19 Substrate Diode Ideality Factor Look-Up Table (BJT Model) SETTING FACTOR SETTING FACTOR SETTING FACTOR 08h 0.9869 18h 1.0079 28h 1.0291 09h 0.9882 19h 1.0092 29h 1.0304 0Ah 0.9895 1Ah 1.0105 2Ah 1.0317 0Bh 0.9908 1Bh 1.0120 2Bh 1.0330 0Ch 0.9921 1Ch 1.0132 2Ch 1.0343 0Dh 0.9934 1Dh 1.0146 2Dh 1.0356 0Eh 0.9947 1Eh 1.0159 2Eh 1.0369 0Fh 0.9960 1Fh 1.0173 2Fh 1.0382 10h 0.9973 20h 1.0187 30h 1.0395 DS20005272A-page 40  2014 Microchip Technology Inc. 1°C Temperature Sensor with Beta Compensation Data Sheet Table 6.19 Substrate Diode Ideality Factor Look-Up Table (BJT Model) (continued) SETTING FACTOR SETTING FACTOR SETTING FACTOR 11h 0.9986 21h 1.0200 31h 1.0408 12h 1.0000 22h 1.0213 32h 1.0421 13h 1.0013 23h 1.0226 33h 1.0434 14h 1.0026 24h 1.0239 34h 1.0447 15h 1.0039 25h 1.0252 35h 1.0460 16h 1.0053 26h 1.0265 36h 1.0473 17h 1.0066 27h 1.0278 37h 1.0486 APPLICATION NOTE: When measuring a 65nm Intel CPUs, the Ideality Setting should be the default 12h. When measuring 45nm Intel CPUs, the Ideality Setting should be 15h. 6.15 High Limit Status Register Table 6.20 High Limit Status Register ADDR. R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT 35h R-C High Limit Status - - - - E3HIGH E2HIGH E1HIGH IHIGH 00h The High Limit Status Register contains the status bits that are set when a temperature channel high limit is exceeded. If any of these bits are set, then the HIGH status bit in the Status Register is set. Reading from the High Limit Status Register will clear all bits if. Reading from the register will also clear the HIGH status bit in the Status Register. The ALERT pin will be set if the programmed number of consecutive alert counts have been met and any of these status bits are set. The status bits will remain set until read unless the ALERT pin is configured as a comparator output (see Section 5.3.2). Bit 3 - E3HIGH - This bit is set when the External Diode 3 channel exceeds its programmed high limit. Bit 2 - E2HIGH - This bit is set when the External Diode 2 channel exceeds its programmed high limit. Bit 1 - E1HIGH - This bit is set when the External Diode 1 channel exceeds its programmed high limit. Bit 0 - IHIGH - This bit is set when the Internal Diode channel exceeds its programmed high limit. 6.16 Low Limit Status Register Table 6.21 Low Limit Status Register ADDR. R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT 36h R-C Low Limit Status - - - - E3LOW E2LOW E1LOW ILOW 00h The Low Limit Status Register contains the status bits that are set when a temperature channel drops below the low limit. If any of these bits are set, then the LOW status bit in the Status Register is set.  2014 Microchip Technology Inc. DS20005272A-page 41 1°C Temperature Sensor with Beta Compensation Data Sheet Reading from the Low Limit Status Register will clear all bits. Reading from the register will also clear the LOW status bit in the Status Register. The ALERT pin will be set if the programmed number of consecutive alert counts have been met and any of these status bits are set. The status bits will remain set until read unless the ALERT pin is configured as a comparator output (see Section 5.3.2). Bit 3 - E3LOW - This bit is set when the External Diode 3 channel drops below its programmed low limit. Bit 2 - E2LOW - This bit is set when the External Diode 2 channel drops below its programmed low limit. Bit 1 - E1LOW - This bit is set when the External Diode 1 channel drops below its programmed low limit. Bit 0 - ILOW - This bit is set when the Internal Diode channel drops below its programmed low limit. 6.17 THERM Limit Status Register Table 6.22 THERM Limit Status Register ADDR. R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT 37h R-C THERM Limit Status - - - - E3 THERM E2 THERM E1 THERM ITHERM 00h The THERM Limit Status Register contains the status bits that are set when a temperature channel THERM Limit is exceeded. If any of these bits are set, then the THERM status bit in the Status Register is set. Reading from the THERM Limit Status Register will not clear the status bits. Once the temperature drops below the THERM Limit minus the THERM Hysteresis, the corresponding status bits will be automatically cleared. The THERM bit in the Status Register will be cleared when all individual channel THERM bits are cleared. Bit 3 - E3THERM - This bit is set when the External Diode 3 channel exceeds its programmed THERM Limit. When set, this bit will assert the THERM pin. Bit 2 - E2THERM - This bit is set when the External Diode 2 channel exceeds its programmed THERM Limit. When set, this bit will assert the THERM pin. Bit 1 - E1THERM - This bit is set when the External Diode 1 channel exceeds its programmed THERM limit. When set, this bit will assert the THERM pin. Bit 0- ITHERM - This bit is set when the Internal Diode channel exceeds its programmed THERM limit. When set, this bit will assert the THERM pin. 6.18 Filter Control Register Table 6.23 Filter Configuration Register ADDR. R/W REGISTER B7 B6 B5 B4 B3 B2 40h R/W Filter Control - - - - - - B1 B0 DEFAULT FILTER[1:0] 00h The Filter Configuration Register controls the digital filter on the External Diode 1 channel. DS20005272A-page 42  2014 Microchip Technology Inc. 1°C Temperature Sensor with Beta Compensation Data Sheet Bits 1-0 - FILTER[1:0] - Control the level of digital filtering that is applied to the External Diode temperature measurements as shown in Table 6.24. See Figure 5.3and Figure 5.4 for examples on the filter behavior. Table 6.24 Filter Settings FILTER[1:0] 6.19 1 0 AVERAGING 0 0 Disabled (default) 0 1 Level 1 1 0 Level 1 1 1 Level 2 Product ID Register Table 6.25 Product ID Register ADDR R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT FDh R Product ID 0 0 1 0 0 0 0 1 21h EMC1403 FDh R Product ID 0 0 1 0 0 1 0 1 25h EMC1404 The Product ID Register holds a unique value that identifies the device. 6.20 Microchip ID Register (FEh) Table 6.26 Manufacturer ID Register ADDR. R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT FEh R MCHP ID 0 1 0 1 1 1 0 1 5Dh The Manufacturer ID register contains an 8 bit word that identifies the Microchip as the manufacturer of the EMC1403 and EMC1404.  2014 Microchip Technology Inc. DS20005272A-page 43 1°C Temperature Sensor with Beta Compensation Data Sheet 6.21 Revision Register (FFh) Table 6.27 Revision Register ADDR. R/W REGISTER B7 B6 B5 B4 B3 B2 B1 B0 DEFAULT FFh R Revision 0 0 0 0 0 0 0 1 01h FFh R Revision 0 0 0 0 0 1 0 0 04h The Revision register contains an 8-bit word that identifies the die revision. It can be 01h or 04h. DS20005272A-page 44  2014 Microchip Technology Inc. 1°C Temperature Sensor with Beta Compensation Data Sheet Chapter 7 Typical Operating Curves  2014 Microchip Technology Inc. DS20005272A-page 45 1°C Temperature Sensor with Beta Compensation Data Sheet DS20005272A-page 46  2014 Microchip Technology Inc. 1°C Temperature Sensor with Beta Compensation Data Sheet Chapter 8 Package Information Note: For the most current package drawings, see the Microchip Packaging Specification at http://www.microchip.com/packaging. Figure 8.1 10-Pin MSOP / TSSOP Package  2014 Microchip Technology Inc. DS20005272A-page 47 1°C Temperature Sensor with Beta Compensation Note: For the most current package drawings, see the Microchip Packaging Specification at http://www.microchip.com/packaging Data Sheet Figure 8.2 10-Pin DFN Package Drawing (1 of 2) DS20005272A-page 48  2014 Microchip Technology Inc. 1°C Temperature Sensor with Beta Compensation Note: For the most current package drawings, see the Microchip Packaging Specification at http://www.microchip.com/packaging Data Sheet Figure 8.3 10-Pin DFN Package Dimensions (2 of 2)  2014 Microchip Technology Inc. DS20005272A-page 49 1°C Temperature Sensor with Beta Compensation Note: For the most current package drawings, see the Microchip Packaging Specification at http://www.microchip.com/packaging Data Sheet Figure 8.4 Package Drawing and PCB Footprint for SOIC-14 DS20005272A-page 50  2014 Microchip Technology Inc. 1°C Temperature Sensor with Beta Compensation Data Sheet 8.1 Package Markings 8.1.1 EMC1404-X-AIZL (10-pin MSOP) All devices will be marked on the first line of the top side with “1404”. On the second line, they will be marked with the appropriate -X number (-1, -2, etc), the Functional Revision “B” and Country Code (CC). 8.1.2 EMC1403-X-AIZL (10-pin MSOP) All devices will be marked on the first line of the top side with “1403”. On the second line, packages will be marked with the appropriate -X number (-1, -2, etc), the Functional Revision “B” and Country Code (CC). 8.1.3 EMC1403-1-AIA and EMC1403-2-AIA (10-pin DFN) The EMC1403-1-AIA will be marked on the first line of the top side with the code “31” followed by the first two characters of the last 6 characters of the Lot Number. The EMC1403-2-AIA is marked with the code “32” followed by the first two characters of the last 6 characters of the Lot Number. On the second line, packages will be marked with the last 4 characters of the Lot Number. For example: If the Lot Number is “2H123456A”, the first line on the EMC1403-1-AIA will read “3123” and the second line will read “456A”. 8.1.4 EMC1403-YZT All devices will be marked on the first line of the top side with “EMC1403” followed by “-X” where X is the appropriate -X number (-1, -2, etc). On the second line, packages will be marked with Functional Revision “B”, date code and the last 7 characters of Lot Number.  2014 Microchip Technology Inc. DS20005272A-page 51 1°C Temperature Sensor with Beta Compensation Data Sheet Chapter 9 Data Sheet Revision History Table 9.1 Revision History REVISION LEVEL & DATE REV A Rev. 2.0 (08-10-12) Rev. 1.38 (02-28-12) Rev. 1.37 (01-06-10) Rev. 1.36 (07-02-09) SECTION/FIGURE/ENTRY CORRECTION REV A replaces previous SMSC version Rev. 2.0 (08-10-12) Table 3.3, "SMBus Electrical Specifications" Added conditions for tHD:DAT. Data hold time minimum of 0.3μs is required when receiving from the master. Data hold time is 0μs min when transmitting to the master. Section 6.21, "Revision Register (FFh)" Added row to indicate that revision ID can be 04h. Revision ID may be 04h or 01h. Figure 2.2, "EMC1403/EMC1404 Pin Diagram, DFN-10" Added exposed pad and updated so it looks more like a square. Table 2.1, "EMC1403 and EMC1404 Pin Description" Added last row for DFN bottom pad. Recommendation is to connect it to ground. Section 8.1.4, "EMC1403YZT" Added to last sentence: “Revision “B”, date code and the last 7 characters of” before “Lot Number”. Section 8.1.3, "EMC1403-1AIA and EMC1403-2-AIA (10-pin DFN)" Corrected device code. Instead of being “32” for both devices in the 10-pin DFN package, the code is “31” for the EMC1403-1-AIA and “32” for the EMC1403-2-AIA. Table 2.1, "EMC1403 and EMC1404 Pin Description" In pin description table, added to function column: “requires pull-up resistor” for SMDATA and SMCLK pins Table 2.1, "EMC1403 and EMC1404 Pin Description" Identified 5V tolerant pins. Added the following application note below table: “For the 5V tolerant pins that have a pull-up resistor (SMCLK, SMDATA, THERM, and ALERT), the voltage difference between VDD and the pull-up voltage must never exceed 3.6V.” Table 3.1, "Absolute Maximum Ratings" Updated voltage limits for 5V tolerant pins with pull-up resistors. Added the following note below table: “For the 5V tolerant pins that have a pull-up resistor (SMCLK, SMDATA, THERM, and ALERT), the pull-up voltage must not exceed 3.6V when the device is unpowered.” Table 3.2, "Electrical Specifications" DS20005272A-page 52 Added leakage current.  2014 Microchip Technology Inc. 1°C Temperature Sensor with Beta Compensation Data Sheet Table 9.1 Revision History (continued) REVISION LEVEL & DATE Rev. 1.35 (04-14-09) SECTION/FIGURE/ENTRY Figure 8.2, "10-Pin DFN Package Drawing (1 of 2)" CORRECTION Diagrams updated Figure 8.3, "10-Pin DFN Package Dimensions (2 of 2)" Figure 8.4, "10 Pin DFN PCB Footprint" Table 3.1, "Absolute Maximum Ratings" Updated thermal resistance numbers Rev. 1.34 (02-27-09) Table 5.3, "Temperature Data Format" Extended range for -1 updated from 001 1111 1111 to 001 1111 1000 Rev. 1.33 (08-18-08) Ordering Information and Table 1.1, "Part Selection" Added EMC1403-3 and EMC1403-4 for all package options Rev. 1.32 (07-10-08) Ordering Information and Table 1.1, "Part Selection" Added EMC1404-4 Rev. 1.31 (07-01-08) Ordering Information and Table 1.1, "Part Selection" Added EMC1404-2 and EMC1404-3  2014 Microchip Technology Inc. DS20005272A-page 53 1°C Temperature Sensor with Beta Compensation Data Sheet Note the following details of the code protection feature on Microchip devices: • Microchip products meet the specification contained in their particular Microchip Data Sheet. • Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions. • There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property. • Microchip is willing to work with the customer who is concerned about the integrity of their code. • Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.” Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act. Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights. Trademarks The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC32 logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries. Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and ZScale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. SQTP is a service mark of Microchip Technology Incorporated in the U.S.A. GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries. A more complete list of registered trademarks and common law trademarks owned by Standard Microsystems Corporation (“SMSC”) is available at: www.smsc.com. The absence of a trademark (name, logo, etc.) from the list does not constitute a waiver of any intellectual property rights that SMSC has established in any of its trademarks. All other trademarks mentioned herein are property of their respective companies. © 2014, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved. ISBN: 9781620779439 Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified. DS20005272A-page 54  2014 Microchip Technology Inc. Worldwide Sales and Service AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123 Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829 Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455 China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104 Austin, TX Tel: 512-257-3370 China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889 Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088 Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075 Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643 Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924 China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500 China - Hangzhou Tel: 86-571-2819-3187 Fax: 86-571-2819-3189 China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431 China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205 Detroit Novi, MI Tel: 248-848-4000 China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066 Houston, TX Tel: 281-894-5983 China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393 Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 New York, NY Tel: 631-435-6000 San Jose, CA Tel: 408-735-9110 Canada - Toronto Tel: 905-673-0699 Fax: 905-673-6509 DS20005272A-page 55 China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760 China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118 China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256 India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632 India - Pune Tel: 91-20-3019-1500 Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310 France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 Germany - Dusseldorf Tel: 49-2129-3766400 Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771 Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44 Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302 Germany - Pforzheim Tel: 49-7231-424750 Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934 Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781 Italy - Venice Tel: 39-049-7625286 Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859 Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340 Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068 Poland - Warsaw Tel: 48-22-3325737 Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069 Singapore Tel: 65-6334-8870 Fax: 65-6334-8850 Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955 Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91 Sweden - Stockholm Tel: 46-8-5090-4654 UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820 Taiwan - Kaohsiung Tel: 886-7-213-7830 Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102 Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350 China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130 China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049 10/28/13  2014 Microchip Technology Inc.
EMC1403-1-AIZL-TR 价格&库存

很抱歉,暂时无法提供与“EMC1403-1-AIZL-TR”相匹配的价格&库存,您可以联系我们找货

免费人工找货
EMC1403-1-AIZL-TR
    •  国内价格
    • 1+6.63617
    • 10+6.11291
    • 30+5.78664
    • 100+5.20182
    • 500+5.05408
    • 1000+4.98636

    库存:21