0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LMC7101AIM5-TR

LMC7101AIM5-TR

  • 厂商:

    ACTEL(微芯科技)

  • 封装:

    SOT23-5

  • 描述:

    General Purpose Amplifier 1 Circuit Rail-to-Rail SOT-23-5

  • 数据手册
  • 价格&库存
LMC7101AIM5-TR 数据手册
LMC7101 Low-Power Operational Amplifier Features General Description • • • • The LMC7101 is a high-performance, low-power, operational amplifier that is pin-for-pin compatible with the National Semiconductor LMC7101. It features rail-to-rail input and output performance in the IttyBitty SOT-23-5 package. Small Footprint SOT-23-5 Package Guaranteed 2.7V, 3V, 5V, and 12V Performance 500 kHz Gain-Bandwidth 0.01% Total Harmonic Distortion at 10 kHz (5V, 2 kΩ) • 0.5 mA Typical Supply Current at 5V Applications • • • • Mobile Communications, Cellular Phones, Pagers Battery-Powered Instrumentation PCMCIA, USB Portable Computers and PDAs The LMC7101 is a 500 kHz gain–bandwidth amplifier designed to operate from 2.7V to 12V single-ended power supplies with guaranteed performance at supply voltages of 2.7V, 3V, 5V, and 12V. This op amp’s input common-mode range includes ground and extends 300 mV beyond the supply rails. For example, the common-mode range is –0.3V to +5.3V with a 5V supply. Package Type LMC7101 Pin Configuration SOT-23-5 IN+ 3 V+ OUT 2 1 Part Identification LMC7101 Functional Pinout SOT-23-5 IN+ 3 V+ OUT 2 1 A12 4 5 IN– V–  2019 Microchip Technology Inc. 4 5 IN– V– DS20006282A-page 1 LMC7101 1.0 ELECTRICAL CHARACTERISTICS Absolute Maximum Ratings † †† Supply Voltage, (VV+ – VV–) ..................................................................................................................................... +15V Differential Input Voltage, (VIN+ – VIN–) ........................................................................................................ ±(VV+ – VV–) I/O Pin Voltage, (VIN, VOUT) (Note 1) ........................................................................................ VV+ + 0.3V to VV– – 0.3V ESD Protection, (Note 2).................................................................................................................................±2 kV HBM Operating Ratings†† Supply Voltage, VIN – VV– .............................................................................................................................. 2.7V to 12V Max. Power Dissipation........................................................................................................................................(Note 3) † Notice: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability. †† Notice: Absolute maximum ratings indicate limits beyond which damage to the component may occur. Electrical specifications do not apply when operating the device outside its recommended operating ratings. Note 1: I/O pin voltage is any external voltage to which an input or output is referenced. 2: Human body model, 1.5 kΩ in series with 100 pF. 3: The maximum allowable power dissipation is a function of the maximum junction temperature, TJ(max); the junction-to-ambient thermal resistance, θJA; and the ambient temperature, TA. The maximum allowable power dissipation at any ambient temperature is calculated using: PD = (TJ(max) – TA) ÷ θJA. Exceeding the maximum allowable power dissipation will result in excessive die temperature. DS20006282A-page 2  2019 Microchip Technology Inc. LMC7101 LM7101A 2.7V DC ELECTRICAL CHARACTERISTICS Electrical Characteristics: Unless otherwise indicated, V+ = +2.7V, V– = 0V, VCM = VOUT = V+/2; RL = 1 MΩ; TJ = +25°C. Parameters Symbol Min. Typ. Max. Units Input Offset Voltage VOS — 0.11 6 mV — Input Offset Voltage Average Drift TCVOS — 1.0 — μV/°C — IB — 1.0 64 pA Input Offset Current IOS — 0.5 32 Input Resistance RIN — >1 — TΩ — Common-Mode Rejection Ratio CMRR 50 70 — dB 0V ≤ VCM ≤ 2.7V, Note 1 — –0.3 0.0 V Input LOW, CMRR  50 dB 2.7 3.0 — V Input HIGH, CMRR  50 dB PSRR 50 60 — dB V+ = 1.35V to 1.65 V, V– = –1.35 V to –1.65V, VCM = 0V CIN — 3 — pF — 2.64 2.699 — V Output HIGH, RL = 10 k — 0.001 0.06 V Output LOW, RL = 10 k 2.6 2.692 — V Output HIGH, RL = 2 k — 0.008 0.1 V Output LOW, RL = 2 k — 0.5 0.81 mA — — — 0.95 mA –40°C ≤ TJ ≤ +85°C Input Bias Current Input Common Mode Voltage Power Supply Rejection Ratio Common-Mode Input Capacitance Output Swing VCM VO Conditions –40°C ≤ TJ ≤ +85°C –40°C ≤ TJ ≤ +85°C Supply Current IS Slew Rate SR — 0.4 — V/μs — GBW — 0.5 — MHz — Gain–Bandwidth Product Note 1: Common-mode performance tends to follow the typical value. Minimum value limits reflect performance only near the supply rails.  2019 Microchip Technology Inc. DS20006282A-page 3 LMC7101 LM7101B 2.7V DC ELECTRICAL CHARACTERISTICS Electrical Characteristics: Unless otherwise indicated, V+ = +2.7V, V– = 0V, VCM = VOUT = V+/2; RL = 1MΩ; TJ = +25°C. Bold values indicate –40°C ≤ TJ ≤ +85°C. Parameters Symbol Min. Typ. Max. Units Input Offset Voltage VOS — 0.11 9 mV — Input Offset Voltage Average Drift TCVOS — 1.0 — V/C — IB — 1.0 64 pA –40°C ≤ TJ ≤ +85°C Input Offset Current IOS — 0.5 32 pA –40°C ≤ TJ ≤ +85°C Input Resistance RIN — >1 — T — Common-Mode Rejection Ratio CMRR 50 70 — dB 0V ≤ VCM ≤ 2.7V, Note 1 — –0.3 0.0 V Input LOW, CMRR  50dB 2.7 3.0 — V Input HIGH, CMRR  50dB PSRR 45 60 — dB V+ = 1.35V to 1.65V, V– = –1.35V to –1.65V, VCM = 0V CIN — 3 — pF — 2.64 2.699 — V Output HIGH, RL = 10 k — 0.001 0.06 V Output LOW, RL = 10 k 2.6 2.692 — V Output HIGH, RL = 2 k — 0.008 0.1 V Output LOW, RL = 2 k — 0.5 0.81 mA — — — 0.95 mA –40°C ≤ TJ ≤ +85°C Input Bias Current Input Common Mode Voltage Power Supply Rejection Ratio Common-Mode Input Capacitance Output Swing VCM VO Conditions Supply Current IS Slew Rate SR — 0.4 — V/s — GBW — 0.5 — MHz — Gain–Bandwidth Product Note 1: Common-mode performance tends to follow the typical value. Minimum value limits reflect performance only near the supply rails. DS20006282A-page 4  2019 Microchip Technology Inc. LMC7101 LM7101A 3.0V DC ELECTRICAL CHARACTERISTICS Electrical Characteristics: Unless otherwise indicated, V+ = +3.0V, V– = 0V, VCM = VOUT = V+/2; RL = 1 MΩ; TJ = +25°C. Parameters Symbol Min. Typ. Max. Units Input Offset Voltage VOS Input Offset Voltage Average Drift — 0.11 4 mV — — 0.11 6 mV –40°C ≤ TJ ≤ +85°C TCVOS — 1.0 — V/C IB — 1.0 64 pA –40°C ≤ TJ ≤ +85°C Input Offset Current IOS — 0.5 32 pA –40°C ≤ TJ ≤ +85°C Input Resistance RIN — >1 — T — Common-Mode Rejection Ratio CMRR 60 74 — dB 0V ≤ VCM ≤ 3.0V, Note 1 — –0.3 0.0 V Input LOW, CMRR  50 dB 3.0 3.3 — V Input HIGH, CMRR  50 dB PSRR 68 80 — dB V+ = 1.5V to 6.0V, V– = –1.5V to –6.0V, VCM = 0V CIN — 3 — pF — 2.9 2.992 — V Output HIGH, RL = 2 k 0.008 0.1 V Output LOW, RL = 2 k 2.85 2.973 — V Output HIGH, RL = 600 — 0.027 0.15 V Output LOW, RL = 600 — 0.5 0.81 mA — — — 0.95 mA –40°C ≤ TJ ≤ +85°C Input Bias Current Input Common Mode Voltage Power Supply Rejection Ratio Common-Mode Input Capacitance Output Swing Supply Current VCM VOUT IS Conditions — Note 1: Common-mode performance tends to follow the typical value. Minimum value limits reflect performance only near the supply rails.  2019 Microchip Technology Inc. DS20006282A-page 5 LMC7101 LM7101B 3.0V DC ELECTRICAL CHARACTERISTICS Electrical Characteristics: Unless otherwise indicated, V+ = +3.0V, V– = 0V, VCM = VOUT = V+/2; RL = 1 MΩ; TJ = +25°C. Parameters Symbol Min. Typ. Max. Units Input Offset Voltage VOS Input Offset Voltage Average Drift — 0.11 7 mV — — 0.11 9 mV –40°C ≤ TJ ≤ +85°C TCVOS — 1.0 — V/C IB — 1.0 64 pA –40°C ≤ TJ ≤ +85°C Input Offset Current IOS — 0.5 32 pA –40°C ≤ TJ ≤ +85°C Input Resistance RIN — >1 — T — Common-Mode Rejection Ratio CMRR 60 74 — dB 0V ≤ VCM ≤ 3.0V, Note 1 — –0.3 0.0 V Input LOW, CMRR  50 dB 3.0 3.3 — V Input HIGH, CMRR  50 dB PSRR 60 80 — dB V+ = 1.5V to 6.0V, V– = –1.5V to –6.0V, VCM = 0 CIN — 3 — pF — 2.9 2.992 — V Output HIGH, RL = 2 k — 0.008 0.1 V Output LOW, RL = 2 k 2.85 2.973 — V Output HIGH, RL = 600 — 0.027 0.15 V Output LOW, RL = 600 — 0.5 0.81 mA — — — 0.95 mA –40°C ≤ TJ ≤ +85°C Input Bias Current Input Common Mode Voltage Power Supply Rejection Ratio Common-Mode Input Capacitance Output Swing Supply Current VCM VO IS Conditions — Note 1: Common-mode performance tends to follow the typical value. Minimum value limits reflect performance only near the supply rails. DS20006282A-page 6  2019 Microchip Technology Inc. LMC7101 LM7101A 5.0V DC ELECTRICAL CHARACTERISTICS Electrical Characteristics: Unless otherwise indicated, V+ = +5.0V, V– = 0V, VCM = 1.5V, VOUT = V+/2; RL = 1 MΩ; TJ = +25°C. Parameters Symbol Min. Typ. Max. Units Input Offset Voltage VOS Input Offset Voltage Average Drift — 0.11 3 mV — — 0.11 5 mV –40°C ≤ TJ ≤ +85°C TCVOS — 1.0 — V/C IB — 1.0 64 pA –40°C ≤ TJ ≤ +85°C Input Offset Current IOS — 0.5 32 pA –40°C ≤ TJ ≤ +85°C Input Resistance RIN — >1 — T — Common-Mode Rejection Ratio 60 82 — dB 0V ≤ VCM ≤ 5V, Note 1 CMRR 55 — — dB 0V ≤ VCM ≤ 5V, Note 1, –40°C ≤ TJ ≤ +85°C –0.3 –0.20 V Input LOW, CMRR  50 dB — — 0.00 V Input LOW, CMRR  50 dB, –40°C ≤ TJ ≤ +85°C 5.20 5.3 — V Input HIGH, CMRR  50 dB 5.0 — — V Input HIGH, CMRR  50 dB, –40°C ≤ TJ ≤ +85°C 70 82 — dB V+ = 5V to 12V, V– = 0V, VOUT = 1.5V 65 — — db V+ = 5V to 12V, V– = 0V, VOUT = 1.5V, –40°C ≤ TJ ≤ +85°C 70 82 — dB V+ = 0V, V– = –5V to –12V, VOUT = –1.5V 65 — — dB V+ = 0V, V– = –5V to –12V, VOUT = –1.5V, –40°C ≤ TJ ≤ +85°C — 3 — pF — Input Bias Current Input Common Mode Voltage Positive Power Supply Rejection Ratio VCM +PSRR Negative Power Supply Rejection Ratio –PSRR Common-Mode Input Capacitance CIN Conditions — Note 1: Common-mode performance tends to follow the typical value. Minimum value limits reflect performance only near the supply rails. 2: Continuous short circuit may exceed absolute maximum TJ under some conditions.  2019 Microchip Technology Inc. DS20006282A-page 7 LMC7101 LM7101A 5.0V DC ELECTRICAL CHARACTERISTICS (CONTINUED) Electrical Characteristics: Unless otherwise indicated, V+ = +5.0V, V– = 0V, VCM = 1.5V, VOUT = V+/2; RL = 1 MΩ; TJ = +25°C. Parameters Output Swing Symbol VOUT Output Short Supply Current Note 2 ISC Supply Current IS Min. Typ. Max. Units Conditions 4.9 4.989 — V Output HIGH, RL = 2 k 4.85 — — V Output HIGH, RL = 2 k –40°C ≤ TJ ≤ +85°C — 0.011 0.1 V Output LOW, RL = 2 k — — 0.15 V Output LOW, RL = 2 k –40°C ≤ TJ ≤ +85°C 4.9 4.963 — V Output HIGH, RL = 600 4.8 — — V Output HIGH, RL = 600 –40°C ≤ TJ ≤ +85°C — 0.037 0.1 V Output LOW, RL = 600 — — 0.2 V Output LOW, RL = 600 –40°C ≤ TJ ≤ +85°C 120 200 — mA Sourcing (VOUT = 0V) or Sinking (VOUT = 5V) 80 — — mA Sourcing (VOUT = 0V) or Sinking (VOUT = 5V), –40°C ≤ TJ ≤ +85°C — 0.5 0.85 mA — — — 1.0 mA –40°C ≤ TJ ≤ +85°C Note 1: Common-mode performance tends to follow the typical value. Minimum value limits reflect performance only near the supply rails. 2: Continuous short circuit may exceed absolute maximum TJ under some conditions. DS20006282A-page 8  2019 Microchip Technology Inc. LMC7101 LM7101B 5.0V DC ELECTRICAL CHARACTERISTICS Electrical Characteristics: Unless otherwise indicated, V+ = +5.0V, V– = 0V, VCM = 1.5V, VOUT = V+/2; RL = 1 MΩ; TJ = +25°C. Parameters Symbol Min. Typ. Max. Units Input Offset Voltage VOS Input Offset Voltage Average Drift — 0.11 7 mV — — 0.11 9 mV –40°C ≤ TJ ≤ +85°C TCVOS — 1.0 — V/C IB — 1.0 64 pA –40°C ≤ TJ ≤ +85°C Input Offset Current IOS — 0.5 32 pA –40°C ≤ TJ ≤ +85°C Input Resistance RIN — >1 — T — Common-Mode Rejection Ratio 60 82 — dB 0V ≤ VCM ≤ 5V, Note 1 CMRR 55 — — dB 0V ≤ VCM ≤ 5V, Note 1, –40°C ≤ TJ ≤ +85°C –0.3 –0.20 V Input LOW, CMRR  50 dB — — 0.00 V Input LOW, CMRR  50 dB, –40°C ≤ TJ ≤ +85°C 5.20 5.3 — V Input HIGH, CMRR  50 dB 5.0 — — V Input HIGH, CMRR  50 dB, –40°C ≤ TJ ≤ +85°C 65 82 — dB V+ = 5V to 12V, V– = 0V, VOUT = 1.5V 62 — — dB V+ = 5V to 12V, V– = 0V, VOUT = 1.5V, –40°C ≤ TJ ≤ +85°C 65 82 — dB V+ = 0V, V– = –5V to –12V, VOUT = –1.5V 62 — — dB V+ = 0V, V– = –5V to –12V, VOUT = –1.5V, –40°C ≤ TJ ≤ +85°C — 3 — pF — Input Bias Current Input Common Mode Voltage Positive Power Supply Rejection Ratio VCM +PSRR Negative Power Supply Rejection Ratio –PSRR Common-Mode Input Capacitance CIN Conditions — Note 1: Common-mode performance tends to follow the typical value. Minimum value limits reflect performance only near the supply rails. 2: Continuous short circuit may exceed absolute maximum TJ under some conditions.  2019 Microchip Technology Inc. DS20006282A-page 9 LMC7101 LM7101B 5.0V DC ELECTRICAL CHARACTERISTICS (CONTINUED) Electrical Characteristics: Unless otherwise indicated, V+ = +5.0V, V– = 0V, VCM = 1.5V, VOUT = V+/2; RL = 1 MΩ; TJ = +25°C. Parameters Output Swing Symbol VOUT Output Short Supply Current Note 2 ISC Supply Current IS Min. Typ. Max. Units Conditions 4.9 4.989 — V Output HIGH, RL = 2 k 4.85 — — V Output HIGH, RL = 2 k –40°C ≤ TJ ≤ +85°C — 0.011 0.1 V Output LOW, RL = 2 k — — 0.15 V Output LOW, RL = 2 k –40°C ≤ TJ ≤ +85°C 4.9 4.963 — V Output HIGH, RL = 600 4.8 — — V Output HIGH, RL = 600 –40°C ≤ TJ ≤ +85°C — 0.037 0.1 V Output LOW, RL = 600 — — 0.2 V Output LOW, RL = 600 –40°C ≤ TJ ≤ +85°C 120 200 — mA Sourcing (VOUT = 0V) or Sinking (VOUT = 5V) 80 — — mA Sourcing (VOUT = 0V) or Sinking (VOUT = 5V), –40°C ≤ TJ ≤ +85°C — 0.5 0.85 mA — — — 1.0 mA –40°C ≤ TJ ≤ +85°C Note 1: Common-mode performance tends to follow the typical value. Minimum value limits reflect performance only near the supply rails. 2: Continuous short circuit may exceed absolute maximum TJ under some conditions. DS20006282A-page 10  2019 Microchip Technology Inc. LMC7101 LM7101A 12.0V DC ELECTRICAL CHARACTERISTICS Electrical Characteristics: Unless otherwise indicated, V+ = +12V, V– = 0V, VCM = 1.5V, VOUT = V+/2; RL = 1 MΩ; TJ = +25°C. Parameters Symbol Min. Typ. Max. Units Input Offset Voltage VOS — 0.11 6 mV — Input Offset Voltage Average Drift TCVOS — 1.0 — V/C — IB — 1.0 64 pA –40°C ≤ TJ ≤ +85°C Input Offset Current IOS — 0.5 32 pA –40°C ≤ TJ ≤ +85°C Input Resistance RIN — >1 — T — Common-Mode Rejection Ratio 65 82 — dB 0V ≤ VCM ≤ 12V, Note 1 CMRR 60 — — dB 0V ≤ VCM ≤ 12V, Note 1, –40°C ≤ TJ ≤ +85°C — —0.3 —0.20 V Input LOW, V+ = 12V, CMRR  50 dB — — 0.00 V Input LOW, V+ = 12V, CMRR  50 dB, –40°C ≤ TJ ≤ +85°C 12.2 12.3 — V Input HIGH, V+ = 12V, CMRR  50 dB 12.0 — — V Input HIGH, V+ = 12V, CMRR  50 dB, –40°C ≤ TJ ≤ +85°C 70 82 — dB V+ = 5V to 12V, V– = 0V, VOUT = 1.5V 65 — — dB V+ = 5V to 12V, V– = 0V, VOUT = 1.5V, –40°C ≤ TJ ≤ +85°C 70 82 — dB V+ = 0V, V– = –5V to –12V, VOUT = –1.5V 65 — — dB V+ = 0V, V– = –5V to –12V, VOUT = –1.5V, –40°C ≤ TJ ≤ +85°C 80 340 — V/mV Sourcing or sinking, RL = 2k, Note 4 40 — — V/mV Sourcing or sinking, RL = 2k, Note 4, –40°C ≤ TJ ≤ +85°C 15 300 — V/mV Sourcing or sinking, RL = 600, Note 4 10 — — V/mV Sourcing or sinking, RL = 600, Note 4, –40°C ≤ TJ ≤ +85°C — 3 — pF Input Bias Current Input Common Mode Voltage Positive Power Supply Rejection Ratio Negative Power Supply Rejection Ratio Large Signal Voltage Gain Common-Mode Input Capacitance VCM +PSRR –PSRR AV CIN Conditions — Note 1: Common-mode performance tends to follow the typical value. Minimum value limits reflect performance only near the supply rails. 2: Continuous short circuit may exceed absolute maximum TJ under some conditions. 3: Shorting OUT to V+ when V+ > 12V may damage the device. 4: RL connected to 5.0V. Sourcing: 5V ≤ VOUT ≤ 12V. Sinking: 2.5V ≤ VOUT ≤ 5V.  2019 Microchip Technology Inc. DS20006282A-page 11 LMC7101 LM7101A 12.0V DC ELECTRICAL CHARACTERISTICS (CONTINUED) Electrical Characteristics: Unless otherwise indicated, V+ = +12V, V– = 0V, VCM = 1.5V, VOUT = V+/2; RL = 1 MΩ; TJ = +25°C. Parameters Output Swing Symbol Min. Typ. Max. Units 11.9 11.98 — V Output HIGH, V+ = 12V, RL = 2 k  11.87 — — V Output HIGH, V+ = 12V, RL = 2 k–40°C ≤ TJ ≤ +85°C — 0.02 0.10 V Output LOW, V+ = 12V, RL = 2 k  — — 0.13 V Output LOW, V+ = 12V, RL = 2 k–40°C ≤ TJ ≤ +85°C 11.73 11.93 — V Output HIGH, V+ = 12V, RL = 600 11.65 — — V Output HIGH, V+ = 12V, RL = 600, –40°C ≤ TJ ≤ +85°C — 0.07 0.27 V Output LOW, V+ = 12V, RL = 600 — — 0.35 V Output LOW, V+ = 12V, RL = 600–40°C ≤ TJ ≤ +85°C 200 300 — mA Sourcing (VOUT = 0V) or Sinking (VOUT = 12V), Note 2, 3 120 — — mA Sourcing (VOUT = 0V) or Sinking (VOUT = 12V), Note 2, 3, –40°C ≤ TJ ≤ +85°C — 0.8 1.5 mA — — — 1.71 mA –40°C ≤ TJ ≤ +85°C VOUT Output Short Supply Current Note 2 ISC Supply Current IS Conditions Note 1: Common-mode performance tends to follow the typical value. Minimum value limits reflect performance only near the supply rails. 2: Continuous short circuit may exceed absolute maximum TJ under some conditions. 3: Shorting OUT to V+ when V+ > 12V may damage the device. 4: RL connected to 5.0V. Sourcing: 5V ≤ VOUT ≤ 12V. Sinking: 2.5V ≤ VOUT ≤ 5V. DS20006282A-page 12  2019 Microchip Technology Inc. LMC7101 LM7101B 12.0V DC ELECTRICAL CHARACTERISTICS Electrical Characteristics: Unless otherwise indicated, V+ = +12V, V– = 0V, VCM = 1.5V, VOUT = V+/2; RL = 1 MΩ; TJ = +25°C. Parameters Symbol Min. Typ. Max. Units Input Offset Voltage VOS — 0.11 9 mV — Input Offset Voltage Average Drift TCVOS — 1.0 — V/C — IB — 1.0 64 pA –40°C ≤ TJ ≤ +85°C Input Offset Current IOS — 0.5 32 pA –40°C ≤ TJ ≤ +85°C Input Resistance RIN — >1 — T — Common-Mode Rejection Ratio 65 82 — dB 0V ≤ VCM ≤ 12V, Note 1 CMRR 60 — — dB 0V ≤ VCM ≤ 12V, Note 1, –40°C ≤ TJ ≤ +85°C — —0.3 —0.20 V Input LOW, V+ = 12V, CMRR  50 dB — — 0.00 V Input LOW, V+ = 12V, CMRR  50 dB, –40°C ≤ TJ ≤ +85°C 12.2 12.3 — V Input HIGH, V+ = 12V, CMRR  50 dB 12.0 — — V Input HIGH, V+ = 12V, CMRR  50 dB, –40°C ≤ TJ ≤ +85°C 65 82 — dB V+ = 5V to 12V, V– = 0V, VOUT = 1.5V 62 — — db V+ = 5V to 12V, V– = 0V, VOUT = 1.5V, –40°C ≤ TJ ≤ +85°C 65 82 — dB V+ = 0V, V– = –5V to –12V, VOUT = –1.5V 62 — — dB V+ = 0V, V– = –5V to –12V, VOUT = –1.5V, –40°C ≤ TJ ≤ +85°C 80 340 — V/mV Sourcing or sinking, RL = 2k, Note 4 40 — — V/mV Sourcing or sinking, RL = 2k, Note 4, –40°C ≤ TJ ≤ +85°C 15 300 — V/mV Sourcing or sinking, RL = 600, Note 4 10 — — V/mV Sourcing or sinking, RL = 600, Note 4, –40°C ≤ TJ ≤ +85°C — 3 — pF Input Bias Current Input Common Mode Voltage Positive Power Supply Rejection Ratio Negative Power Supply Rejection Ratio Large Signal Voltage Gain Common-Mode Input Capacitance VCM +PSRR –PSRR AV CIN Conditions — Note 1: Common-mode performance tends to follow the typical value. Minimum value limits reflect performance only near the supply rails. 2: Continuous short circuit may exceed absolute maximum TJ under some conditions. 3: Shorting OUT to V+ when V+ > 12V may damage the device. 4: RL connected to 5.0V. Sourcing: 5V ≤ VOUT ≤ 12V. Sinking: 2.5V ≤ VOUT ≤ 5V.  2019 Microchip Technology Inc. DS20006282A-page 13 LMC7101 LM7101B 12.0V DC ELECTRICAL CHARACTERISTICS (CONTINUED) Electrical Characteristics: Unless otherwise indicated, V+ = +12V, V– = 0V, VCM = 1.5V, VOUT = V+/2; RL = 1 MΩ; TJ = +25°C. Parameters Output Swing Symbol Min. Typ. Max. Units 11.9 11.98 — V Output HIGH, V+ = 12V, R L = 2 k 11.87 — — V Output HIGH, V+ = 12V, RL = 2 k–40°C ≤ TJ ≤ +85°C — 0.02 0.10 V Output LOW, V+ = 12V, RL = 2 k — — 0.13 V Output LOW, V+ = 12V, RL = 2 k–40°C ≤ TJ ≤ +85°C 11.73 11.93 — V Output HIGH, V+ = 12V, RL = 600 11.65 — — V Output HIGH, V+ = 12V, RL = 600, –40°C ≤ TJ ≤ +85°C — 0.07 0.27 V Output LOW, V+ = 12V, RL = 600 — — 0.35 V Output LOW, V+ = 12V, RL = 600–40°C ≤ TJ ≤ +85°C 200 300 — mA Sourcing (VOUT = 0V) or Sinking (VOUT = 12V), Note 2, 3 120 — — mA Sourcing (VOUT = 0V) or Sinking (VOUT = 12V), Note 2, 3, –40°C ≤ TJ ≤ +85°C — 0.8 1.5 mA — — — 1.71 mA –40°C ≤ TJ ≤ +85°C VOUT Output Short Supply Current Note 2 ISC Supply Current IS Conditions Note 1: Common-mode performance tends to follow the typical value. Minimum value limits reflect performance only near the supply rails. 2: Continuous short circuit may exceed absolute maximum TJ under some conditions. 3: Shorting OUT to V+ when V+ > 12V may damage the device. 4: RL connected to 5.0V. Sourcing: 5V ≤ VOUT ≤ 12V. Sinking: 2.5V ≤ VOUT ≤ 5V. LM7101A 5.0V AC ELECTRICAL CHARACTERISTICS Electrical Characteristics: Unless otherwise indicated, V+ = +5V, V– = 0V, VCM = 1.5V, VOUT = V+/2; RL = 1 M; TJ = +25°C. Parameters Total Harmonic Distortion Slew Rate Gain Bandwidth Product DS20006282A-page 14 Symbol Min. Typ. Max. Units Conditions THD — 0.01 — % SR — 0.3 — V/s — GBW — 0.5 — MHz — f = 10 kHz, AV= –2, RL = 2 k VOUT = 4.0 VPP  2019 Microchip Technology Inc. LMC7101 LM7101B 5.0V AC ELECTRICAL CHARACTERISTICS Electrical Characteristics: Unless otherwise indicated, V+ = +5V, V– = 0V, VCM = 1.5V, VOUT = V+/2; RL = 1 M; TJ = +25°C. Parameters Total Harmonic Distortion Slew Rate Gain Bandwidth Product Symbol Min. Typ. Max. Units Conditions THD — 0.01 — % SR — 0.3 — V/s — GBW — 0.5 — MHz — f = 10 kHz, AV= –2, RL = 2 k VOUT = 4.0 VPP LM7101A 12.0V AC ELECTRICAL CHARACTERISTICS Electrical Characteristics: Unless otherwise indicated, V+ = +12V, V– = 0V, VCM = 1.5V, VOUT = V+/2; RL = 1MΩ; TJ = +25°C. Parameters Symbol Min. Typ. Max. Units THD — 0.01 — % 0.19 0.3 — V/s V+ = 12V, Note 1 0.15 — — V/s V+ = 12V, Note 1, –40°C ≤ TJ ≤ +85°C GBW — 0.5 — MHz — Phase Margin m — 45 —  — Gain Margin Gm — 10 — dB — Input-Referred Voltage Noise en — 37 — nV  Hz f = 1 kHz, VCM = 1V Input-Referred Current Noise in — 1.5 — fA  Hz f = 1 kHz Total Harmonic Distortion Slew Rate Gain–Bandwidth Product SR Conditions f = 10 kHz, AV= –2, RL = 2 k VOUT = 8.5 VPP Note 1: Device connected as a voltage follower with a 12V step input. The value is the positive or negative slew rate, whichever is slower.  2019 Microchip Technology Inc. DS20006282A-page 15 LMC7101 LM7101B 12.0V AC ELECTRICAL CHARACTERISTICS Electrical Characteristics: Unless otherwise indicated, V+ = +12V, V– = 0V, VCM = 1.5V, VOUT = V+/2; RL = 1MΩ; TJ = +25°C. Parameters Symbol Min. Typ. Max. Units THD — 0.01 — % 0.19 0.3 — V/s V+ = 12V, Note 1 0.15 — — V/s V+ = 12V, Note 1, –40°C ≤ TJ ≤ +85°C GBW — 0.5 — MHz — Phase Margin m — 45 —  — Gain Margin Gm — 10 — dB — Input-Referred Voltage Noise en — 37 — nV  Hz f = 1 kHz, VCM = 1V Input-Referred Current Noise in — 1.5 — fA  Hz f = 1 kHz Total Harmonic Distortion Slew Rate SR Gain–Bandwidth Product Conditions f = 10 kHz, AV= –2, RL = 2 k VOUT = 8.5 VPP Note 1: Device connected as a voltage follower with a 12V step input. The value is the positive or negative slew rate, whichever is slower. TEMPERATURE SPECIFICATIONS (Note 1) Parameters Sym. Min. Typ. Max. Units Operating Ambient Temperature Range TA –40 Junction Operating Temperature TJ –40 Conditions — +85 °C — — +125 °C — Temperature Ranges Max. Junction Operating Temperature Storage Temperature Range TJ(max) — — +125 °C — TA –65 — +150 °C — JA — 325 — °C/W — Package Thermal Resistances Thermal Resistance Note 1: Absolute maximum ratings indicate limits beyond which damage to the component may occur. Electrical specifications do not apply when operating the device outside its recommended operating ratings. DS20006282A-page 16  2019 Microchip Technology Inc. LMC7101 2.0 TYPICAL PERFORMANCE CURVES Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range. 120 1000 600 +85°C 400 0 2 4 6 8 10 SUPPLY VOLTAGE (V) 40 TA = 25 C 0 1x101 12 Supply Current vs. Supply 1x102 1x103 1x104 FREQUENCY (Hz) FIGURE 2-4: +PSRR vs. Frequency. 12V 120 1000 2.7V CMRR (dB) 100 100 5V 80 60 40 10 TA = 25°C 20 0 1x101 1 -40 0 40 80 120 160 JUNCTION TEMPERATURE (°C) FIGURE 2-2: Temperature. Input Current vs. Junction 80 12V 2.7V 5V 40 20 0 -20 1x101 FIGURE 2-3: TA = 25°C 1x102 1x103 1x104 FREQUENCY (Hz) 1x105 –PSRR vs. Frequency.  2019 Microchip Technology Inc. 1x102 1x103 1x104 FREQUENCY (Hz) FIGURE 2-5: CURRENT SINK / SOURCE (mA) 100 60 1x105 140 10000 INPUT CURRENT (pA) 2.7V 60 20 FIGURE 2-1: Voltage. -PSRR (dB) 12V 80 200 0 5V 100 +25°C +PSRR (dB) SUPPLY CURRENT (μA) –40°C 800 1x105 CMRR vs. Frequency. 1000 TA = 25°C 100 10 1 0.1 0.01 0.001 FIGURE 2-6: Output Voltage. 0.01 0.1 1 OUTPUT VOLTAGE (V) 10 Sink/Source Current vs. DS20006282A-page 17 LMC7101 . 0.8 100 0.5 -40°C 0.4 +25°C 0.3 0.2 +85°C 0.1 0 5V 60 3V 40 2.7V 20 TA = 25°C AV = 1 0 2 4 6 8 10 SUPPLY VOLTAGE (V) FIGURE 2-7: Voltage. 0 100 12 Falling Slew Rate vs. Supply 1000 200 300 500 LOAD CAPACITANCE (pF) FIGURE 2-10: Phase Margin vs. Capacitance Load. 100 0.8 0.7 80 0.6 GAIN (dB) SLEW RATE (V/μs) 12V 80 0.6 PHASE MARGIN (°) SLEW RATE (V/μs) 0.7 –40°C 0.5 0.4 +25°C 0.3 0.2 +85°C RL = 1M 60 40 RL = 2k 20 TA = 25°C 0.1 0 0 2 4 6 8 10 SUPPLY VOLTAGE (V) FIGURE 2-8: Voltage. 0 1x102 12 Rising Slew Rate vs. Supply FIGURE 2-11: Response. 2.7V Open-Loop Frequency 60 600 85°C GAIN (dB) Δ OFFSET VOLTAGE (μV) 1x105 80 800 400 1x103 1x104 FREQUENCY (Hz) 25°C –40°C 40 1MΩ 2k 20 200 600W TA = 25°C 0 0 FIGURE 2-9: Voltage. DS20006282A-page 18 2 4 6 8 10 SUPPLY VOLTAGE (V) 12 Offset Voltage vs. Supply 0 1x102 FIGURE 2-12: Response. 1x103 1x104 FREQUENCY (Hz) 1x105 5V Open-Loop Frequency  2019 Microchip Technology Inc. LMC7101 120 100 90 60 40 60 1000pF(°) FIGURE 2-13: Response. 600Ω 0 1x103 1x104 FREQUENCY (Hz) -20 1x102 1x105 12V Open-Loop Frequency 100 FIGURE 2-16: Phase. 30 0 20 TA = 25°C 0 1x102 100pF (dB ) 500pF (dB ) 1000pF(dB ) -30 1x103 1x104 1x105 FREQUENCY (Hz) -60 1x106 12V Open-Loop Gain and 135 500pF (°) 50 -25 1x102 1x103 45 500pF (dB ) 0 TA = 25°C RL = 1MΩ 90 INPUT 100pF (°) -45 100pF (dB ) 1x104 -90 1x106 1x105 OUTPUT 75 GAIN (dB) GAIN (dB) 1M 2k 20 0 120 80 40 25 100pF(°) 500pF(°) PHASE (°) GAIN (dB) 60 150 TA = 25°C RL = 1MΩ PHASE (°) 80 FREQUENCY (Hz) FIGURE 2-14: Phase. 2.7V Open-Loop Gain and 100 FIGURE 2-17: Response. Inverting Small-Signal Pulse 120 90 1000pF(°) 40 20 60 500pF (°) TA = 25°C RL = 1MΩ 0 -20 1x102 FIGURE 2-15: Phase. 100pF (dB) 500pF (dB) 1000pF(dB) 1x103 1x104 1x105 FREQUENCY (Hz) 30 0 -30 -60 1x106 5V Open-Loop Gain and  2019 Microchip Technology Inc. OUTPUT 60 PHASE (°) GAIN (dB) 80 INPUT 100pF (°) FIGURE 2-18: Response. Inverting Large-Signal Pulse DS20006282A-page 19 OUTPUT INPUT LMC7101 Non-Inverting Small-Signal OUTPUT INPUT FIGURE 2-19: Pulse Response. FIGURE 2-20: Pulse Response. Non-Inverting Large-Signal FIGURE 2-21: Frequency. Input Voltage Noise vs. DS20006282A-page 20  2019 Microchip Technology Inc. LMC7101 3.0 PIN DESCRIPTIONS The descriptions of the pins are listed in Table 3-1. TABLE 3-1: PIN FUNCTION TABLE Pin Number Symbol 1 OUT Amplifier Output 2 V+ Positive Supply 3 IN+ Non-Inverting Input 4 IN– Inverting Input 5 V– Negative Supply: Negative supply for split–supply application or ground for single– supply application.  2019 Microchip Technology Inc. Description DS20006282A-page 21 LMC7101 4.0 APPLICATION INFORMATION 4.1 Input Common-Mode Voltage Some amplifiers exhibit undesirable or unpredictable performance when the inputs are driven beyond the common-mode voltage range; for example, phase inversion of the output signal. The LMC7101 tolerates input overdrive by at least 200 mV beyond either rail without producing phase inversion. If the absolute maximum input voltage (700 mV beyond either rail) is exceeded, the input current should be limited to ±5 mA maximum to prevent reducing reliability. A 10 kΩ series input resistor, used as a current limiter, will protect the input structure from voltages as large as 50V above the supply or below ground. See Figure 4-1. VDROP = 5.0V – 4.989V VDROP = 0.011V Because of output stage symmetry, the corresponding typical output low voltage (0.011V) also equals VDROP. EQUATION 4-3: 0.011V R OUT = -------------------------- = 8.8  9 0.001245 A 4.3 Driving Capacitive Loads Driving a capacitive load introduces phase-lag into the output signal, and this in turn reduces op-amp system phase margin. The application that is least forgiving of reduced phase margin is a unity gain amplifier. The LMC7101 can typically drive a 100 pF capacitive load connected directly to the output when configured as a unity-gain amplifier. 4.4 VIN FIGURE 4-1: 4.2 VOUT RIN Input Current-Limit Protection. Output Voltage Swing Sink and source output resistances of the LMC7101 are equal. Maximum output voltage swing is determined by the load and the approximate output resistance. To calculate the output resistance, use Equation 4-1: EQUATION 4-1: V DROP R OUT = ----------------I LOAD VDROP is the voltage dropped within the amplifier output stage. VDROP and ILOAD can be determined from the VO (output swing) portion of the appropriate Electrical Characteristics table. ILOAD is equal to the typical output high voltage minus V+/2 and divided by RLOAD. For example, using the LM7101A 5.0V DC Electrical Characteristics table, the typical output high voltage using a 2 kΩ load (connected to V+/2) is 4.989V, which produces an ILOAD of: EQUATION 4-2: 4.989V – 2.5V 1.245mA   ------------------------------------ = 1.245mA   2k Using Large-Value Feedback Resistors A large-value feedback resistor (> 500 kΩ) can reduce the phase margin of a system. This occurs when the feedback resistor acts in conjunction with input capacitance to create phase lag in the feedback signal. Input capacitance is usually a combination of input circuit components and other parasitic capacitance, such as amplifier input capacitance and stray printed circuit board capacitance. Figure 4-2 illustrates a method of compensating phase lag caused by using a large-value feedback resistor. Feedback capacitor CFB introduces sufficient phase lead to overcome the phase lag caused by feedback resistor RFB and input capacitance CIN. The value of CFB is determined by first estimating CIN and then applying the following formula from Equation 4-4: EQUATION 4-4: R IN  C IN  R FB  C FB CF B RF B VIN RIN VOUT CIN FIGURE 4-2: Lag. Canceling Feedback Phase Voltage drop in the amplifier output stage is: DS20006282A-page 22  2019 Microchip Technology Inc. LMC7101 Since a significant percentage of CIN may be caused by board layout, it is important to note that the correct value of CFB may change when changing from a breadboard to the final circuit layout. V+ Typical Circuits Some suitable LMC7101 single-supply, rail-to-rail applications are shown in the following circuit diagrams. V+ 0V to LMC7101 Q1 = 40V V 2N3904 C E O IC(max) = 200mA { 5 IOUT = VOUT 0V to V+ 4 5 RS 10ȍ 1»2 ȍ VIN = 100mA/V as shown RS FIGURE 4-6: Voltage-Controlled Current Sink. R2 R4 900k R1 100k 100k V+ C1 0.001μF 4 FIGURE 4-3: IOUT 1 4 LMC7101 1 V+ AV 2 Change Q1 and RS for higher current and/or different gain. 2 3 VIN 3 VIN 0V to 2V VOUT 0V to V+ LOAD 4.5 VS 0.5V to Q1 VCEO(sus) LMC7101 2 1 Non-Inverting Amplifier. VOUT 3 V+ 0V 5 V+ VOUT (V) 100 V+ R4 100k FIGURE 4-7: R3 100k Square Wave Oscillator. R2 AV = 1 + » 10 R1 CIN 0 R2 100k R1 R2 33k 330k V+ 4 0 FIGURE 4-4: Behavior. 2 VIN (V) LMC7101 C OUT 1 100 3 RL 5 Non-Inverting Amplifier V+ R3 R4 330k 330k C1 1μF AV = - VOUT 0V R2 330k = = - 10 R1 33k V+ VIN 0V to V+ 3 2 LMC7101 1 4 FIGURE 4-8: AC-Coupled Inverting Amplifier. VOUT 0V to V+ 5 VOUT = VIN FIGURE 4-5: Voltage Follower.  2019 Microchip Technology Inc. DS20006282A-page 23 LMC7101 5.0 PACKAGING INFORMATION 5.1 Package Marking Information 5-Lead SOT-23* XXXX NNN TABLE 5-1: Example A12A 971 MARKING CODES Device Marking Code LMC7101A A12A LMC7101B A12 Legend: XX...X Y YY WW NNN e3 * Product code or customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week ‘01’) Alphanumeric traceability code Pb-free JEDEC® designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ( e3 ) can be found on the outer packaging for this package. ●, ▲, ▼ Pin one index is identified by a dot, delta up, or delta down (triangle mark). Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information. Package may or may not include the corporate logo. Underbar (_) and/or Overbar (‾) symbol may not be to scale. DS20006282A-page 24  2019 Microchip Technology Inc. LMC7101 5-Lead SOT-23 Package Outline and Recommended Land Pattern Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging.  2019 Microchip Technology Inc. DS20006282A-page 25 LMC7101 NOTES: DS20006282A-page 26  2019 Microchip Technology Inc. LMC7101 APPENDIX A: REVISION HISTORY Revision A (December 2019) • Converted Micrel document LMC7101 to Microchip data sheet template DS20006282A. • Minor grammatical text changes throughout.  2019 Microchip Technology Inc. DS20006282A-page 27 MCP1711 NOTES: DS20006282A-page 28  2019 Microchip Technology Inc. LMC7101 PRODUCT IDENTIFICATION SYSTEM To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office. PART NO. X Device Temperature Range XX Package Device: LMC7101A: LMC7101B: Temperature Range: Y = –40C to +85C Packages: M5 = 5-Lead SOT-23 Media Type: TR = 3,000/Reel -XX Media Type Low-Power Operational Amplifier, A Grade Low-Power Operational Amplifier, B Grade  2019 Microchip Technology Inc. Examples: a) LMC7101AYM5-TR: b) LMC7101BYM5-TR: Note 1: Low–Power Operational Amplifier, A Grade, –40°C to +85°C Temperature Range, 5-Lead SOT23, 3,000/Reel Low–Power Operational Amplifier, B Grade, –40°C to +85°C Temperature Range, 5-Lead SOT23, 3,000/Reel Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option. DS20006282A-page 29 LMC7101 NOTES: DS20006282A-page 30  2019 Microchip Technology Inc. Note the following details of the code protection feature on Microchip devices: • Microchip products meet the specification contained in their particular Microchip Data Sheet. • Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions. • There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property. • Microchip is willing to work with the customer who is concerned about the integrity of their code. • Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.” Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act. Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated. Trademarks The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A. Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. SQTP is a service mark of Microchip Technology Incorporated in the U.S.A. The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries. GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries. All other trademarks mentioned herein are property of their respective companies. © 2019, Microchip Technology Incorporated, All Rights Reserved. For information regarding Microchip’s Quality Management Systems, please visit www.microchip.com/quality.  2019 Microchip Technology Inc. ISBN: 978-1-5224-5370-3 DS20006282A-page 31 Worldwide Sales and Service AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com Australia - Sydney Tel: 61-2-9868-6733 India - Bangalore Tel: 91-80-3090-4444 China - Beijing Tel: 86-10-8569-7000 India - New Delhi Tel: 91-11-4160-8631 Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 China - Chengdu Tel: 86-28-8665-5511 India - Pune Tel: 91-20-4121-0141 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829 China - Chongqing Tel: 86-23-8980-9588 Japan - Osaka Tel: 81-6-6152-7160 Finland - Espoo Tel: 358-9-4520-820 China - Dongguan Tel: 86-769-8702-9880 Japan - Tokyo Tel: 81-3-6880- 3770 China - Guangzhou Tel: 86-20-8755-8029 Korea - Daegu Tel: 82-53-744-4301 France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 China - Hangzhou Tel: 86-571-8792-8115 Korea - Seoul Tel: 82-2-554-7200 China - Hong Kong SAR Tel: 852-2943-5100 Malaysia - Kuala Lumpur Tel: 60-3-7651-7906 China - Nanjing Tel: 86-25-8473-2460 Malaysia - Penang Tel: 60-4-227-8870 China - Qingdao Tel: 86-532-8502-7355 Philippines - Manila Tel: 63-2-634-9065 China - Shanghai Tel: 86-21-3326-8000 Singapore Tel: 65-6334-8870 Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44 China - Shenyang Tel: 86-24-2334-2829 Taiwan - Hsin Chu Tel: 886-3-577-8366 Germany - Rosenheim Tel: 49-8031-354-560 China - Shenzhen Tel: 86-755-8864-2200 Taiwan - Kaohsiung Tel: 886-7-213-7830 Israel - Ra’anana Tel: 972-9-744-7705 China - Suzhou Tel: 86-186-6233-1526 Taiwan - Taipei Tel: 886-2-2508-8600 China - Wuhan Tel: 86-27-5980-5300 Thailand - Bangkok Tel: 66-2-694-1351 Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781 China - Xian Tel: 86-29-8833-7252 Vietnam - Ho Chi Minh Tel: 84-28-5448-2100 Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455 Austin, TX Tel: 512-257-3370 Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088 Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075 Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924 Detroit Novi, MI Tel: 248-848-4000 Houston, TX Tel: 281-894-5983 Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380 Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800 Raleigh, NC Tel: 919-844-7510 New York, NY Tel: 631-435-6000 San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270 Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078 DS20006282A-page 32 China - Xiamen Tel: 86-592-2388138 China - Zhuhai Tel: 86-756-3210040 Germany - Garching Tel: 49-8931-9700 Germany - Haan Tel: 49-2129-3766400 Germany - Heilbronn Tel: 49-7131-72400 Germany - Karlsruhe Tel: 49-721-625370 Italy - Padova Tel: 39-049-7625286 Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340 Norway - Trondheim Tel: 47-7288-4388 Poland - Warsaw Tel: 48-22-3325737 Romania - Bucharest Tel: 40-21-407-87-50 Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91 Sweden - Gothenberg Tel: 46-31-704-60-40 Sweden - Stockholm Tel: 46-8-5090-4654 UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820  2019 Microchip Technology Inc. 05/14/19
LMC7101AIM5-TR 价格&库存

很抱歉,暂时无法提供与“LMC7101AIM5-TR”相匹配的价格&库存,您可以联系我们找货

免费人工找货