LMC7101
Low-Power Operational Amplifier
Features
General Description
•
•
•
•
The LMC7101 is a high-performance, low-power,
operational amplifier that is pin-for-pin compatible with
the National Semiconductor LMC7101. It features
rail-to-rail input and output performance in the IttyBitty
SOT-23-5 package.
Small Footprint SOT-23-5 Package
Guaranteed 2.7V, 3V, 5V, and 12V Performance
500 kHz Gain-Bandwidth
0.01% Total Harmonic Distortion at 10 kHz (5V,
2 kΩ)
• 0.5 mA Typical Supply Current at 5V
Applications
•
•
•
•
Mobile Communications, Cellular Phones, Pagers
Battery-Powered Instrumentation
PCMCIA, USB
Portable Computers and PDAs
The LMC7101 is a 500 kHz gain–bandwidth amplifier
designed to operate from 2.7V to 12V single-ended
power supplies with guaranteed performance at supply
voltages of 2.7V, 3V, 5V, and 12V.
This op amp’s input common-mode range includes
ground and extends 300 mV beyond the supply rails.
For example, the common-mode range is –0.3V to
+5.3V with a 5V supply.
Package Type
LMC7101 Pin Configuration
SOT-23-5
IN+
3
V+ OUT
2
1
Part
Identification
LMC7101 Functional Pinout
SOT-23-5
IN+
3
V+ OUT
2
1
A12
4
5
IN–
V–
2019 Microchip Technology Inc.
4
5
IN–
V–
DS20006282A-page 1
LMC7101
1.0
ELECTRICAL CHARACTERISTICS
Absolute Maximum Ratings † ††
Supply Voltage, (VV+ – VV–) ..................................................................................................................................... +15V
Differential Input Voltage, (VIN+ – VIN–) ........................................................................................................ ±(VV+ – VV–)
I/O Pin Voltage, (VIN, VOUT) (Note 1) ........................................................................................ VV+ + 0.3V to VV– – 0.3V
ESD Protection, (Note 2).................................................................................................................................±2 kV HBM
Operating Ratings††
Supply Voltage, VIN – VV– .............................................................................................................................. 2.7V to 12V
Max. Power Dissipation........................................................................................................................................(Note 3)
† Notice: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device.
This is a stress rating only and functional operation of the device at those or any other conditions above those indicated
in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended
periods may affect device reliability.
†† Notice: Absolute maximum ratings indicate limits beyond which damage to the component may occur. Electrical
specifications do not apply when operating the device outside its recommended operating ratings.
Note 1: I/O pin voltage is any external voltage to which an input or output is referenced.
2: Human body model, 1.5 kΩ in series with 100 pF.
3: The maximum allowable power dissipation is a function of the maximum junction temperature, TJ(max); the
junction-to-ambient thermal resistance, θJA; and the ambient temperature, TA. The maximum allowable
power dissipation at any ambient temperature is calculated using: PD = (TJ(max) – TA) ÷ θJA. Exceeding the
maximum allowable power dissipation will result in excessive die temperature.
DS20006282A-page 2
2019 Microchip Technology Inc.
LMC7101
LM7101A 2.7V DC ELECTRICAL CHARACTERISTICS
Electrical Characteristics: Unless otherwise indicated, V+ = +2.7V, V– = 0V, VCM = VOUT = V+/2; RL = 1 MΩ;
TJ = +25°C.
Parameters
Symbol
Min.
Typ.
Max.
Units
Input Offset Voltage
VOS
—
0.11
6
mV
—
Input Offset Voltage
Average Drift
TCVOS
—
1.0
—
μV/°C
—
IB
—
1.0
64
pA
Input Offset Current
IOS
—
0.5
32
Input Resistance
RIN
—
>1
—
TΩ
—
Common-Mode
Rejection Ratio
CMRR
50
70
—
dB
0V ≤ VCM ≤ 2.7V, Note 1
—
–0.3
0.0
V
Input LOW, CMRR 50 dB
2.7
3.0
—
V
Input HIGH, CMRR 50 dB
PSRR
50
60
—
dB
V+ = 1.35V to 1.65 V, V– = –1.35
V to –1.65V, VCM = 0V
CIN
—
3
—
pF
—
2.64
2.699
—
V
Output HIGH, RL = 10 k
—
0.001
0.06
V
Output LOW, RL = 10 k
2.6
2.692
—
V
Output HIGH, RL = 2 k
—
0.008
0.1
V
Output LOW, RL = 2 k
—
0.5
0.81
mA
—
—
—
0.95
mA
–40°C ≤ TJ ≤ +85°C
Input Bias Current
Input Common Mode
Voltage
Power Supply
Rejection Ratio
Common-Mode
Input Capacitance
Output Swing
VCM
VO
Conditions
–40°C ≤ TJ ≤ +85°C
–40°C ≤ TJ ≤ +85°C
Supply Current
IS
Slew Rate
SR
—
0.4
—
V/μs
—
GBW
—
0.5
—
MHz
—
Gain–Bandwidth
Product
Note 1: Common-mode performance tends to follow the typical value. Minimum value limits reflect performance
only near the supply rails.
2019 Microchip Technology Inc.
DS20006282A-page 3
LMC7101
LM7101B 2.7V DC ELECTRICAL CHARACTERISTICS
Electrical Characteristics: Unless otherwise indicated, V+ = +2.7V, V– = 0V, VCM = VOUT = V+/2; RL = 1MΩ;
TJ = +25°C. Bold values indicate –40°C ≤ TJ ≤ +85°C.
Parameters
Symbol
Min.
Typ.
Max.
Units
Input Offset Voltage
VOS
—
0.11
9
mV
—
Input Offset Voltage
Average Drift
TCVOS
—
1.0
—
V/C
—
IB
—
1.0
64
pA
–40°C ≤ TJ ≤ +85°C
Input Offset Current
IOS
—
0.5
32
pA
–40°C ≤ TJ ≤ +85°C
Input Resistance
RIN
—
>1
—
T
—
Common-Mode
Rejection Ratio
CMRR
50
70
—
dB
0V ≤ VCM ≤ 2.7V, Note 1
—
–0.3
0.0
V
Input LOW, CMRR 50dB
2.7
3.0
—
V
Input HIGH, CMRR 50dB
PSRR
45
60
—
dB
V+ = 1.35V to 1.65V, V– = –1.35V
to –1.65V, VCM = 0V
CIN
—
3
—
pF
—
2.64
2.699
—
V
Output HIGH, RL = 10 k
—
0.001
0.06
V
Output LOW, RL = 10 k
2.6
2.692
—
V
Output HIGH, RL = 2 k
—
0.008
0.1
V
Output LOW, RL = 2 k
—
0.5
0.81
mA
—
—
—
0.95
mA
–40°C ≤ TJ ≤ +85°C
Input Bias Current
Input Common Mode
Voltage
Power Supply
Rejection Ratio
Common-Mode
Input Capacitance
Output Swing
VCM
VO
Conditions
Supply Current
IS
Slew Rate
SR
—
0.4
—
V/s
—
GBW
—
0.5
—
MHz
—
Gain–Bandwidth
Product
Note 1: Common-mode performance tends to follow the typical value. Minimum value limits reflect performance
only near the supply rails.
DS20006282A-page 4
2019 Microchip Technology Inc.
LMC7101
LM7101A 3.0V DC ELECTRICAL CHARACTERISTICS
Electrical Characteristics: Unless otherwise indicated, V+ = +3.0V, V– = 0V, VCM = VOUT = V+/2; RL = 1 MΩ;
TJ = +25°C.
Parameters
Symbol
Min.
Typ.
Max.
Units
Input Offset Voltage
VOS
Input Offset Voltage
Average Drift
—
0.11
4
mV
—
—
0.11
6
mV
–40°C ≤ TJ ≤ +85°C
TCVOS
—
1.0
—
V/C
IB
—
1.0
64
pA
–40°C ≤ TJ ≤ +85°C
Input Offset Current
IOS
—
0.5
32
pA
–40°C ≤ TJ ≤ +85°C
Input Resistance
RIN
—
>1
—
T
—
Common-Mode
Rejection Ratio
CMRR
60
74
—
dB
0V ≤ VCM ≤ 3.0V, Note 1
—
–0.3
0.0
V
Input LOW, CMRR 50 dB
3.0
3.3
—
V
Input HIGH, CMRR 50 dB
PSRR
68
80
—
dB
V+ = 1.5V to 6.0V, V– = –1.5V to
–6.0V, VCM = 0V
CIN
—
3
—
pF
—
2.9
2.992
—
V
Output HIGH, RL = 2 k
0.008
0.1
V
Output LOW, RL = 2 k
2.85
2.973
—
V
Output HIGH, RL = 600
—
0.027
0.15
V
Output LOW, RL = 600
—
0.5
0.81
mA
—
—
—
0.95
mA
–40°C ≤ TJ ≤ +85°C
Input Bias Current
Input Common Mode
Voltage
Power Supply
Rejection Ratio
Common-Mode
Input Capacitance
Output Swing
Supply Current
VCM
VOUT
IS
Conditions
—
Note 1: Common-mode performance tends to follow the typical value. Minimum value limits reflect performance
only near the supply rails.
2019 Microchip Technology Inc.
DS20006282A-page 5
LMC7101
LM7101B 3.0V DC ELECTRICAL CHARACTERISTICS
Electrical Characteristics: Unless otherwise indicated, V+ = +3.0V, V– = 0V, VCM = VOUT = V+/2; RL = 1 MΩ; TJ =
+25°C.
Parameters
Symbol
Min.
Typ.
Max.
Units
Input Offset Voltage
VOS
Input Offset Voltage
Average Drift
—
0.11
7
mV
—
—
0.11
9
mV
–40°C ≤ TJ ≤ +85°C
TCVOS
—
1.0
—
V/C
IB
—
1.0
64
pA
–40°C ≤ TJ ≤ +85°C
Input Offset Current
IOS
—
0.5
32
pA
–40°C ≤ TJ ≤ +85°C
Input Resistance
RIN
—
>1
—
T
—
Common-Mode
Rejection Ratio
CMRR
60
74
—
dB
0V ≤ VCM ≤ 3.0V, Note 1
—
–0.3
0.0
V
Input LOW, CMRR 50 dB
3.0
3.3
—
V
Input HIGH, CMRR 50 dB
PSRR
60
80
—
dB
V+ = 1.5V to 6.0V, V– = –1.5V to
–6.0V, VCM = 0
CIN
—
3
—
pF
—
2.9
2.992
—
V
Output HIGH, RL = 2 k
—
0.008
0.1
V
Output LOW, RL = 2 k
2.85
2.973
—
V
Output HIGH, RL = 600
—
0.027
0.15
V
Output LOW, RL = 600
—
0.5
0.81
mA
—
—
—
0.95
mA
–40°C ≤ TJ ≤ +85°C
Input Bias Current
Input Common Mode
Voltage
Power Supply
Rejection Ratio
Common-Mode
Input Capacitance
Output Swing
Supply Current
VCM
VO
IS
Conditions
—
Note 1: Common-mode performance tends to follow the typical value. Minimum value limits reflect performance
only near the supply rails.
DS20006282A-page 6
2019 Microchip Technology Inc.
LMC7101
LM7101A 5.0V DC ELECTRICAL CHARACTERISTICS
Electrical Characteristics: Unless otherwise indicated, V+ = +5.0V, V– = 0V, VCM = 1.5V, VOUT = V+/2; RL = 1 MΩ;
TJ = +25°C.
Parameters
Symbol
Min.
Typ.
Max.
Units
Input Offset Voltage
VOS
Input Offset Voltage
Average Drift
—
0.11
3
mV
—
—
0.11
5
mV
–40°C ≤ TJ ≤ +85°C
TCVOS
—
1.0
—
V/C
IB
—
1.0
64
pA
–40°C ≤ TJ ≤ +85°C
Input Offset Current
IOS
—
0.5
32
pA
–40°C ≤ TJ ≤ +85°C
Input Resistance
RIN
—
>1
—
T
—
Common-Mode
Rejection Ratio
60
82
—
dB
0V ≤ VCM ≤ 5V, Note 1
CMRR
55
—
—
dB
0V ≤ VCM ≤ 5V, Note 1,
–40°C ≤ TJ ≤ +85°C
–0.3
–0.20
V
Input LOW, CMRR 50 dB
—
—
0.00
V
Input LOW, CMRR 50 dB,
–40°C ≤ TJ ≤ +85°C
5.20
5.3
—
V
Input HIGH, CMRR 50 dB
5.0
—
—
V
Input HIGH, CMRR 50 dB,
–40°C ≤ TJ ≤ +85°C
70
82
—
dB
V+ = 5V to 12V, V– = 0V,
VOUT = 1.5V
65
—
—
db
V+ = 5V to 12V, V– = 0V,
VOUT = 1.5V, –40°C ≤ TJ ≤ +85°C
70
82
—
dB
V+ = 0V, V– = –5V to –12V,
VOUT = –1.5V
65
—
—
dB
V+ = 0V, V– = –5V to –12V,
VOUT = –1.5V, –40°C ≤ TJ ≤
+85°C
—
3
—
pF
—
Input Bias Current
Input Common Mode
Voltage
Positive Power
Supply Rejection
Ratio
VCM
+PSRR
Negative Power
Supply Rejection
Ratio
–PSRR
Common-Mode
Input Capacitance
CIN
Conditions
—
Note 1: Common-mode performance tends to follow the typical value. Minimum value limits reflect performance
only near the supply rails.
2: Continuous short circuit may exceed absolute maximum TJ under some conditions.
2019 Microchip Technology Inc.
DS20006282A-page 7
LMC7101
LM7101A 5.0V DC ELECTRICAL CHARACTERISTICS (CONTINUED)
Electrical Characteristics: Unless otherwise indicated, V+ = +5.0V, V– = 0V, VCM = 1.5V, VOUT = V+/2; RL = 1 MΩ;
TJ = +25°C.
Parameters
Output Swing
Symbol
VOUT
Output Short Supply
Current
Note 2
ISC
Supply Current
IS
Min.
Typ.
Max.
Units
Conditions
4.9
4.989
—
V
Output HIGH, RL = 2 k
4.85
—
—
V
Output HIGH, RL = 2 k
–40°C ≤ TJ ≤ +85°C
—
0.011
0.1
V
Output LOW, RL = 2 k
—
—
0.15
V
Output LOW, RL = 2 k
–40°C ≤ TJ ≤ +85°C
4.9
4.963
—
V
Output HIGH, RL = 600
4.8
—
—
V
Output HIGH, RL = 600
–40°C ≤ TJ ≤ +85°C
—
0.037
0.1
V
Output LOW, RL = 600
—
—
0.2
V
Output LOW, RL = 600
–40°C ≤ TJ ≤ +85°C
120
200
—
mA
Sourcing (VOUT = 0V) or
Sinking (VOUT = 5V)
80
—
—
mA
Sourcing (VOUT = 0V) or
Sinking (VOUT = 5V),
–40°C ≤ TJ ≤ +85°C
—
0.5
0.85
mA
—
—
—
1.0
mA
–40°C ≤ TJ ≤ +85°C
Note 1: Common-mode performance tends to follow the typical value. Minimum value limits reflect performance
only near the supply rails.
2: Continuous short circuit may exceed absolute maximum TJ under some conditions.
DS20006282A-page 8
2019 Microchip Technology Inc.
LMC7101
LM7101B 5.0V DC ELECTRICAL CHARACTERISTICS
Electrical Characteristics: Unless otherwise indicated, V+ = +5.0V, V– = 0V, VCM = 1.5V, VOUT = V+/2; RL = 1 MΩ;
TJ = +25°C.
Parameters
Symbol
Min.
Typ.
Max.
Units
Input Offset Voltage
VOS
Input Offset Voltage
Average Drift
—
0.11
7
mV
—
—
0.11
9
mV
–40°C ≤ TJ ≤ +85°C
TCVOS
—
1.0
—
V/C
IB
—
1.0
64
pA
–40°C ≤ TJ ≤ +85°C
Input Offset Current
IOS
—
0.5
32
pA
–40°C ≤ TJ ≤ +85°C
Input Resistance
RIN
—
>1
—
T
—
Common-Mode
Rejection Ratio
60
82
—
dB
0V ≤ VCM ≤ 5V, Note 1
CMRR
55
—
—
dB
0V ≤ VCM ≤ 5V, Note 1,
–40°C ≤ TJ ≤ +85°C
–0.3
–0.20
V
Input LOW, CMRR 50 dB
—
—
0.00
V
Input LOW, CMRR 50 dB,
–40°C ≤ TJ ≤ +85°C
5.20
5.3
—
V
Input HIGH, CMRR 50 dB
5.0
—
—
V
Input HIGH, CMRR 50 dB,
–40°C ≤ TJ ≤ +85°C
65
82
—
dB
V+ = 5V to 12V, V– = 0V,
VOUT = 1.5V
62
—
—
dB
V+ = 5V to 12V, V– = 0V,
VOUT = 1.5V, –40°C ≤ TJ ≤ +85°C
65
82
—
dB
V+ = 0V, V– = –5V to –12V,
VOUT = –1.5V
62
—
—
dB
V+ = 0V, V– = –5V to –12V,
VOUT = –1.5V, –40°C ≤ TJ ≤
+85°C
—
3
—
pF
—
Input Bias Current
Input Common Mode
Voltage
Positive Power
Supply Rejection
Ratio
VCM
+PSRR
Negative Power
Supply Rejection
Ratio
–PSRR
Common-Mode
Input Capacitance
CIN
Conditions
—
Note 1: Common-mode performance tends to follow the typical value. Minimum value limits reflect performance
only near the supply rails.
2: Continuous short circuit may exceed absolute maximum TJ under some conditions.
2019 Microchip Technology Inc.
DS20006282A-page 9
LMC7101
LM7101B 5.0V DC ELECTRICAL CHARACTERISTICS (CONTINUED)
Electrical Characteristics: Unless otherwise indicated, V+ = +5.0V, V– = 0V, VCM = 1.5V, VOUT = V+/2; RL = 1 MΩ;
TJ = +25°C.
Parameters
Output Swing
Symbol
VOUT
Output Short Supply
Current
Note 2
ISC
Supply Current
IS
Min.
Typ.
Max.
Units
Conditions
4.9
4.989
—
V
Output HIGH, RL = 2 k
4.85
—
—
V
Output HIGH, RL = 2 k
–40°C ≤ TJ ≤ +85°C
—
0.011
0.1
V
Output LOW, RL = 2 k
—
—
0.15
V
Output LOW, RL = 2 k
–40°C ≤ TJ ≤ +85°C
4.9
4.963
—
V
Output HIGH, RL = 600
4.8
—
—
V
Output HIGH, RL = 600
–40°C ≤ TJ ≤ +85°C
—
0.037
0.1
V
Output LOW, RL = 600
—
—
0.2
V
Output LOW, RL = 600
–40°C ≤ TJ ≤ +85°C
120
200
—
mA
Sourcing (VOUT = 0V) or
Sinking (VOUT = 5V)
80
—
—
mA
Sourcing (VOUT = 0V) or
Sinking (VOUT = 5V),
–40°C ≤ TJ ≤ +85°C
—
0.5
0.85
mA
—
—
—
1.0
mA
–40°C ≤ TJ ≤ +85°C
Note 1: Common-mode performance tends to follow the typical value. Minimum value limits reflect performance
only near the supply rails.
2: Continuous short circuit may exceed absolute maximum TJ under some conditions.
DS20006282A-page 10
2019 Microchip Technology Inc.
LMC7101
LM7101A 12.0V DC ELECTRICAL CHARACTERISTICS
Electrical Characteristics: Unless otherwise indicated, V+ = +12V, V– = 0V, VCM = 1.5V, VOUT = V+/2; RL = 1 MΩ;
TJ = +25°C.
Parameters
Symbol
Min.
Typ.
Max.
Units
Input Offset Voltage
VOS
—
0.11
6
mV
—
Input Offset Voltage
Average Drift
TCVOS
—
1.0
—
V/C
—
IB
—
1.0
64
pA
–40°C ≤ TJ ≤ +85°C
Input Offset Current
IOS
—
0.5
32
pA
–40°C ≤ TJ ≤ +85°C
Input Resistance
RIN
—
>1
—
T
—
Common-Mode
Rejection Ratio
65
82
—
dB
0V ≤ VCM ≤ 12V, Note 1
CMRR
60
—
—
dB
0V ≤ VCM ≤ 12V, Note 1,
–40°C ≤ TJ ≤ +85°C
—
—0.3
—0.20
V
Input LOW, V+ = 12V,
CMRR 50 dB
—
—
0.00
V
Input LOW, V+ = 12V,
CMRR 50 dB,
–40°C ≤ TJ ≤ +85°C
12.2
12.3
—
V
Input HIGH, V+ = 12V,
CMRR 50 dB
12.0
—
—
V
Input HIGH, V+ = 12V,
CMRR 50 dB,
–40°C ≤ TJ ≤ +85°C
70
82
—
dB
V+ = 5V to 12V, V– = 0V,
VOUT = 1.5V
65
—
—
dB
V+ = 5V to 12V, V– = 0V,
VOUT = 1.5V, –40°C ≤ TJ ≤ +85°C
70
82
—
dB
V+ = 0V, V– = –5V to –12V,
VOUT = –1.5V
65
—
—
dB
V+ = 0V, V– = –5V to –12V,
VOUT = –1.5V, –40°C ≤ TJ ≤
+85°C
80
340
—
V/mV
Sourcing or sinking, RL = 2k,
Note 4
40
—
—
V/mV
Sourcing or sinking, RL = 2k,
Note 4, –40°C ≤ TJ ≤ +85°C
15
300
—
V/mV
Sourcing or sinking, RL = 600,
Note 4
10
—
—
V/mV
Sourcing or sinking, RL = 600,
Note 4, –40°C ≤ TJ ≤ +85°C
—
3
—
pF
Input Bias Current
Input Common Mode
Voltage
Positive Power
Supply Rejection
Ratio
Negative Power
Supply Rejection
Ratio
Large Signal Voltage
Gain
Common-Mode
Input Capacitance
VCM
+PSRR
–PSRR
AV
CIN
Conditions
—
Note 1: Common-mode performance tends to follow the typical value. Minimum value limits reflect performance
only near the supply rails.
2: Continuous short circuit may exceed absolute maximum TJ under some conditions.
3: Shorting OUT to V+ when V+ > 12V may damage the device.
4: RL connected to 5.0V. Sourcing: 5V ≤ VOUT ≤ 12V. Sinking: 2.5V ≤ VOUT ≤ 5V.
2019 Microchip Technology Inc.
DS20006282A-page 11
LMC7101
LM7101A 12.0V DC ELECTRICAL CHARACTERISTICS (CONTINUED)
Electrical Characteristics: Unless otherwise indicated, V+ = +12V, V– = 0V, VCM = 1.5V, VOUT = V+/2; RL = 1 MΩ;
TJ = +25°C.
Parameters
Output Swing
Symbol
Min.
Typ.
Max.
Units
11.9
11.98
—
V
Output HIGH, V+ = 12V,
RL = 2 k
11.87
—
—
V
Output HIGH, V+ = 12V,
RL = 2 k–40°C ≤ TJ ≤ +85°C
—
0.02
0.10
V
Output LOW, V+ = 12V,
RL = 2 k
—
—
0.13
V
Output LOW, V+ = 12V,
RL = 2 k–40°C ≤ TJ ≤ +85°C
11.73
11.93
—
V
Output HIGH, V+ = 12V,
RL = 600
11.65
—
—
V
Output HIGH, V+ = 12V,
RL = 600, –40°C ≤ TJ ≤ +85°C
—
0.07
0.27
V
Output LOW, V+ = 12V,
RL = 600
—
—
0.35
V
Output LOW, V+ = 12V,
RL = 600–40°C ≤ TJ ≤ +85°C
200
300
—
mA
Sourcing (VOUT = 0V) or
Sinking (VOUT = 12V), Note 2, 3
120
—
—
mA
Sourcing (VOUT = 0V) or
Sinking (VOUT = 12V), Note 2, 3,
–40°C ≤ TJ ≤ +85°C
—
0.8
1.5
mA
—
—
—
1.71
mA
–40°C ≤ TJ ≤ +85°C
VOUT
Output Short Supply
Current
Note 2
ISC
Supply Current
IS
Conditions
Note 1: Common-mode performance tends to follow the typical value. Minimum value limits reflect performance
only near the supply rails.
2: Continuous short circuit may exceed absolute maximum TJ under some conditions.
3: Shorting OUT to V+ when V+ > 12V may damage the device.
4: RL connected to 5.0V. Sourcing: 5V ≤ VOUT ≤ 12V. Sinking: 2.5V ≤ VOUT ≤ 5V.
DS20006282A-page 12
2019 Microchip Technology Inc.
LMC7101
LM7101B 12.0V DC ELECTRICAL CHARACTERISTICS
Electrical Characteristics: Unless otherwise indicated, V+ = +12V, V– = 0V, VCM = 1.5V, VOUT = V+/2; RL = 1 MΩ;
TJ = +25°C.
Parameters
Symbol
Min.
Typ.
Max.
Units
Input Offset Voltage
VOS
—
0.11
9
mV
—
Input Offset Voltage
Average Drift
TCVOS
—
1.0
—
V/C
—
IB
—
1.0
64
pA
–40°C ≤ TJ ≤ +85°C
Input Offset Current
IOS
—
0.5
32
pA
–40°C ≤ TJ ≤ +85°C
Input Resistance
RIN
—
>1
—
T
—
Common-Mode
Rejection Ratio
65
82
—
dB
0V ≤ VCM ≤ 12V, Note 1
CMRR
60
—
—
dB
0V ≤ VCM ≤ 12V, Note 1,
–40°C ≤ TJ ≤ +85°C
—
—0.3
—0.20
V
Input LOW, V+ = 12V,
CMRR 50 dB
—
—
0.00
V
Input LOW, V+ = 12V,
CMRR 50 dB,
–40°C ≤ TJ ≤ +85°C
12.2
12.3
—
V
Input HIGH, V+ = 12V,
CMRR 50 dB
12.0
—
—
V
Input HIGH, V+ = 12V,
CMRR 50 dB,
–40°C ≤ TJ ≤ +85°C
65
82
—
dB
V+ = 5V to 12V, V– = 0V,
VOUT = 1.5V
62
—
—
db
V+ = 5V to 12V, V– = 0V,
VOUT = 1.5V, –40°C ≤ TJ ≤ +85°C
65
82
—
dB
V+ = 0V, V– = –5V to –12V,
VOUT = –1.5V
62
—
—
dB
V+ = 0V, V– = –5V to –12V,
VOUT = –1.5V, –40°C ≤ TJ ≤
+85°C
80
340
—
V/mV
Sourcing or sinking, RL = 2k,
Note 4
40
—
—
V/mV
Sourcing or sinking, RL = 2k,
Note 4, –40°C ≤ TJ ≤ +85°C
15
300
—
V/mV
Sourcing or sinking, RL = 600,
Note 4
10
—
—
V/mV
Sourcing or sinking, RL = 600,
Note 4, –40°C ≤ TJ ≤ +85°C
—
3
—
pF
Input Bias Current
Input Common Mode
Voltage
Positive Power
Supply Rejection
Ratio
Negative Power
Supply Rejection
Ratio
Large Signal Voltage
Gain
Common-Mode
Input Capacitance
VCM
+PSRR
–PSRR
AV
CIN
Conditions
—
Note 1: Common-mode performance tends to follow the typical value. Minimum value limits reflect performance
only near the supply rails.
2: Continuous short circuit may exceed absolute maximum TJ under some conditions.
3: Shorting OUT to V+ when V+ > 12V may damage the device.
4: RL connected to 5.0V. Sourcing: 5V ≤ VOUT ≤ 12V. Sinking: 2.5V ≤ VOUT ≤ 5V.
2019 Microchip Technology Inc.
DS20006282A-page 13
LMC7101
LM7101B 12.0V DC ELECTRICAL CHARACTERISTICS (CONTINUED)
Electrical Characteristics: Unless otherwise indicated, V+ = +12V, V– = 0V, VCM = 1.5V, VOUT = V+/2; RL = 1 MΩ;
TJ = +25°C.
Parameters
Output Swing
Symbol
Min.
Typ.
Max.
Units
11.9
11.98
—
V
Output HIGH, V+ = 12V,
R L = 2 k
11.87
—
—
V
Output HIGH, V+ = 12V,
RL = 2 k–40°C ≤ TJ ≤ +85°C
—
0.02
0.10
V
Output LOW, V+ = 12V,
RL = 2 k
—
—
0.13
V
Output LOW, V+ = 12V,
RL = 2 k–40°C ≤ TJ ≤ +85°C
11.73
11.93
—
V
Output HIGH, V+ = 12V,
RL = 600
11.65
—
—
V
Output HIGH, V+ = 12V,
RL = 600, –40°C ≤ TJ ≤ +85°C
—
0.07
0.27
V
Output LOW, V+ = 12V,
RL = 600
—
—
0.35
V
Output LOW, V+ = 12V,
RL = 600–40°C ≤ TJ ≤ +85°C
200
300
—
mA
Sourcing (VOUT = 0V) or
Sinking (VOUT = 12V), Note 2, 3
120
—
—
mA
Sourcing (VOUT = 0V) or
Sinking (VOUT = 12V), Note 2, 3,
–40°C ≤ TJ ≤ +85°C
—
0.8
1.5
mA
—
—
—
1.71
mA
–40°C ≤ TJ ≤ +85°C
VOUT
Output Short Supply
Current
Note 2
ISC
Supply Current
IS
Conditions
Note 1: Common-mode performance tends to follow the typical value. Minimum value limits reflect performance
only near the supply rails.
2: Continuous short circuit may exceed absolute maximum TJ under some conditions.
3: Shorting OUT to V+ when V+ > 12V may damage the device.
4: RL connected to 5.0V. Sourcing: 5V ≤ VOUT ≤ 12V. Sinking: 2.5V ≤ VOUT ≤ 5V.
LM7101A 5.0V AC ELECTRICAL CHARACTERISTICS
Electrical Characteristics: Unless otherwise indicated, V+ = +5V, V– = 0V, VCM = 1.5V, VOUT = V+/2; RL = 1 M;
TJ = +25°C.
Parameters
Total Harmonic
Distortion
Slew Rate
Gain Bandwidth
Product
DS20006282A-page 14
Symbol
Min.
Typ.
Max.
Units
Conditions
THD
—
0.01
—
%
SR
—
0.3
—
V/s
—
GBW
—
0.5
—
MHz
—
f = 10 kHz, AV= –2, RL = 2 k
VOUT = 4.0 VPP
2019 Microchip Technology Inc.
LMC7101
LM7101B 5.0V AC ELECTRICAL CHARACTERISTICS
Electrical Characteristics: Unless otherwise indicated, V+ = +5V, V– = 0V, VCM = 1.5V, VOUT = V+/2; RL = 1 M;
TJ = +25°C.
Parameters
Total Harmonic
Distortion
Slew Rate
Gain Bandwidth
Product
Symbol
Min.
Typ.
Max.
Units
Conditions
THD
—
0.01
—
%
SR
—
0.3
—
V/s
—
GBW
—
0.5
—
MHz
—
f = 10 kHz, AV= –2, RL = 2 k
VOUT = 4.0 VPP
LM7101A 12.0V AC ELECTRICAL CHARACTERISTICS
Electrical Characteristics: Unless otherwise indicated, V+ = +12V, V– = 0V, VCM = 1.5V, VOUT = V+/2; RL = 1MΩ;
TJ = +25°C.
Parameters
Symbol
Min.
Typ.
Max.
Units
THD
—
0.01
—
%
0.19
0.3
—
V/s
V+ = 12V, Note 1
0.15
—
—
V/s
V+ = 12V, Note 1,
–40°C ≤ TJ ≤ +85°C
GBW
—
0.5
—
MHz
—
Phase Margin
m
—
45
—
—
Gain Margin
Gm
—
10
—
dB
—
Input-Referred
Voltage Noise
en
—
37
—
nV Hz f = 1 kHz, VCM = 1V
Input-Referred
Current Noise
in
—
1.5
—
fA Hz f = 1 kHz
Total Harmonic
Distortion
Slew Rate
Gain–Bandwidth
Product
SR
Conditions
f = 10 kHz, AV= –2, RL = 2 k
VOUT = 8.5 VPP
Note 1: Device connected as a voltage follower with a 12V step input. The value is the positive or negative slew
rate, whichever is slower.
2019 Microchip Technology Inc.
DS20006282A-page 15
LMC7101
LM7101B 12.0V AC ELECTRICAL CHARACTERISTICS
Electrical Characteristics: Unless otherwise indicated, V+ = +12V, V– = 0V, VCM = 1.5V, VOUT = V+/2; RL = 1MΩ;
TJ = +25°C.
Parameters
Symbol
Min.
Typ.
Max.
Units
THD
—
0.01
—
%
0.19
0.3
—
V/s
V+ = 12V, Note 1
0.15
—
—
V/s
V+ = 12V, Note 1,
–40°C ≤ TJ ≤ +85°C
GBW
—
0.5
—
MHz
—
Phase Margin
m
—
45
—
—
Gain Margin
Gm
—
10
—
dB
—
Input-Referred
Voltage Noise
en
—
37
—
nV Hz f = 1 kHz, VCM = 1V
Input-Referred
Current Noise
in
—
1.5
—
fA Hz f = 1 kHz
Total Harmonic
Distortion
Slew Rate
SR
Gain–Bandwidth
Product
Conditions
f = 10 kHz, AV= –2, RL = 2 k
VOUT = 8.5 VPP
Note 1: Device connected as a voltage follower with a 12V step input. The value is the positive or negative slew
rate, whichever is slower.
TEMPERATURE SPECIFICATIONS (Note 1)
Parameters
Sym.
Min.
Typ.
Max.
Units
Operating Ambient Temperature Range
TA
–40
Junction Operating Temperature
TJ
–40
Conditions
—
+85
°C
—
—
+125
°C
—
Temperature Ranges
Max. Junction Operating Temperature
Storage Temperature Range
TJ(max)
—
—
+125
°C
—
TA
–65
—
+150
°C
—
JA
—
325
—
°C/W
—
Package Thermal Resistances
Thermal Resistance
Note 1:
Absolute maximum ratings indicate limits beyond which damage to the component may occur. Electrical
specifications do not apply when operating the device outside its recommended operating ratings.
DS20006282A-page 16
2019 Microchip Technology Inc.
LMC7101
2.0
TYPICAL PERFORMANCE CURVES
Note:
The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.
120
1000
600
+85°C
400
0
2
4
6
8
10
SUPPLY VOLTAGE (V)
40
TA = 25 C
0
1x101
12
Supply Current vs. Supply
1x102 1x103 1x104
FREQUENCY (Hz)
FIGURE 2-4:
+PSRR vs. Frequency.
12V
120
1000
2.7V
CMRR (dB)
100
100
5V
80
60
40
10
TA = 25°C
20
0
1x101
1
-40
0
40
80
120 160
JUNCTION TEMPERATURE (°C)
FIGURE 2-2:
Temperature.
Input Current vs. Junction
80
12V
2.7V
5V
40
20
0
-20
1x101
FIGURE 2-3:
TA = 25°C
1x102 1x103 1x104
FREQUENCY (Hz)
1x105
–PSRR vs. Frequency.
2019 Microchip Technology Inc.
1x102 1x103 1x104
FREQUENCY (Hz)
FIGURE 2-5:
CURRENT SINK / SOURCE (mA)
100
60
1x105
140
10000
INPUT CURRENT (pA)
2.7V
60
20
FIGURE 2-1:
Voltage.
-PSRR (dB)
12V
80
200
0
5V
100
+25°C
+PSRR (dB)
SUPPLY CURRENT (μA)
–40°C
800
1x105
CMRR vs. Frequency.
1000
TA = 25°C
100
10
1
0.1
0.01
0.001
FIGURE 2-6:
Output Voltage.
0.01
0.1
1
OUTPUT VOLTAGE (V)
10
Sink/Source Current vs.
DS20006282A-page 17
LMC7101
.
0.8
100
0.5
-40°C
0.4
+25°C
0.3
0.2
+85°C
0.1
0
5V
60
3V
40
2.7V
20
TA = 25°C
AV = 1
0
2
4
6
8
10
SUPPLY VOLTAGE (V)
FIGURE 2-7:
Voltage.
0
100
12
Falling Slew Rate vs. Supply
1000
200 300
500
LOAD CAPACITANCE (pF)
FIGURE 2-10:
Phase Margin vs.
Capacitance Load.
100
0.8
0.7
80
0.6
GAIN (dB)
SLEW RATE (V/μs)
12V
80
0.6
PHASE MARGIN (°)
SLEW RATE (V/μs)
0.7
–40°C
0.5
0.4
+25°C
0.3
0.2
+85°C
RL = 1M
60
40
RL = 2k
20
TA = 25°C
0.1
0
0
2
4
6
8
10
SUPPLY VOLTAGE (V)
FIGURE 2-8:
Voltage.
0
1x102
12
Rising Slew Rate vs. Supply
FIGURE 2-11:
Response.
2.7V Open-Loop Frequency
60
600
85°C
GAIN (dB)
Δ OFFSET VOLTAGE (μV)
1x105
80
800
400
1x103
1x104
FREQUENCY (Hz)
25°C
–40°C
40
1MΩ
2k
20
200
600W
TA = 25°C
0
0
FIGURE 2-9:
Voltage.
DS20006282A-page 18
2
4
6
8
10
SUPPLY VOLTAGE (V)
12
Offset Voltage vs. Supply
0
1x102
FIGURE 2-12:
Response.
1x103
1x104
FREQUENCY (Hz)
1x105
5V Open-Loop Frequency
2019 Microchip Technology Inc.
LMC7101
120
100
90
60
40
60
1000pF(°)
FIGURE 2-13:
Response.
600Ω
0
1x103
1x104
FREQUENCY (Hz)
-20
1x102
1x105
12V Open-Loop Frequency
100
FIGURE 2-16:
Phase.
30
0
20
TA = 25°C
0
1x102
100pF (dB )
500pF (dB )
1000pF(dB )
-30
1x103 1x104 1x105
FREQUENCY (Hz)
-60
1x106
12V Open-Loop Gain and
135
500pF (°)
50
-25
1x102
1x103
45
500pF
(dB ) 0
TA = 25°C
RL = 1MΩ
90
INPUT
100pF (°)
-45
100pF (dB )
1x104
-90
1x106
1x105
OUTPUT
75
GAIN (dB)
GAIN (dB)
1M
2k
20
0
120
80
40
25
100pF(°)
500pF(°)
PHASE (°)
GAIN (dB)
60
150
TA = 25°C
RL = 1MΩ
PHASE (°)
80
FREQUENCY (Hz)
FIGURE 2-14:
Phase.
2.7V Open-Loop Gain and
100
FIGURE 2-17:
Response.
Inverting Small-Signal Pulse
120
90
1000pF(°)
40
20
60
500pF (°)
TA = 25°C
RL = 1MΩ
0
-20
1x102
FIGURE 2-15:
Phase.
100pF (dB)
500pF (dB)
1000pF(dB)
1x103 1x104 1x105
FREQUENCY (Hz)
30
0
-30
-60
1x106
5V Open-Loop Gain and
2019 Microchip Technology Inc.
OUTPUT
60
PHASE (°)
GAIN (dB)
80
INPUT
100pF (°)
FIGURE 2-18:
Response.
Inverting Large-Signal Pulse
DS20006282A-page 19
OUTPUT
INPUT
LMC7101
Non-Inverting Small-Signal
OUTPUT
INPUT
FIGURE 2-19:
Pulse Response.
FIGURE 2-20:
Pulse Response.
Non-Inverting Large-Signal
FIGURE 2-21:
Frequency.
Input Voltage Noise vs.
DS20006282A-page 20
2019 Microchip Technology Inc.
LMC7101
3.0
PIN DESCRIPTIONS
The descriptions of the pins are listed in Table 3-1.
TABLE 3-1:
PIN FUNCTION TABLE
Pin Number
Symbol
1
OUT
Amplifier Output
2
V+
Positive Supply
3
IN+
Non-Inverting Input
4
IN–
Inverting Input
5
V–
Negative Supply: Negative supply for split–supply application or ground for single–
supply application.
2019 Microchip Technology Inc.
Description
DS20006282A-page 21
LMC7101
4.0
APPLICATION INFORMATION
4.1
Input Common-Mode Voltage
Some amplifiers exhibit undesirable or unpredictable
performance when the inputs are driven beyond the
common-mode voltage range; for example, phase
inversion of the output signal. The LMC7101 tolerates
input overdrive by at least 200 mV beyond either rail
without producing phase inversion.
If the absolute maximum input voltage (700 mV beyond
either rail) is exceeded, the input current should be
limited to ±5 mA maximum to prevent reducing
reliability. A 10 kΩ series input resistor, used as a
current limiter, will protect the input structure from
voltages as large as 50V above the supply or below
ground. See Figure 4-1.
VDROP = 5.0V – 4.989V
VDROP = 0.011V
Because of output stage symmetry, the corresponding
typical output low voltage (0.011V) also equals VDROP.
EQUATION 4-3:
0.011V
R OUT = -------------------------- = 8.8 9
0.001245 A
4.3
Driving Capacitive Loads
Driving a capacitive load introduces phase-lag into the
output signal, and this in turn reduces op-amp system
phase margin. The application that is least forgiving of
reduced phase margin is a unity gain amplifier. The
LMC7101 can typically drive a 100 pF capacitive load
connected directly to the output when configured as a
unity-gain amplifier.
4.4
VIN
FIGURE 4-1:
4.2
VOUT
RIN
Input Current-Limit Protection.
Output Voltage Swing
Sink and source output resistances of the LMC7101
are equal. Maximum output voltage swing is
determined by the load and the approximate output
resistance. To calculate the output resistance, use
Equation 4-1:
EQUATION 4-1:
V DROP
R OUT = ----------------I LOAD
VDROP is the voltage dropped within the amplifier
output stage. VDROP and ILOAD can be determined from
the VO (output swing) portion of the appropriate
Electrical Characteristics table. ILOAD is equal to the
typical output high voltage minus V+/2 and divided by
RLOAD. For example, using the LM7101A 5.0V DC
Electrical Characteristics table, the typical output high
voltage using a 2 kΩ load (connected to V+/2) is
4.989V, which produces an ILOAD of:
EQUATION 4-2:
4.989V – 2.5V
1.245mA ------------------------------------ = 1.245mA
2k
Using Large-Value Feedback
Resistors
A large-value feedback resistor (> 500 kΩ) can reduce
the phase margin of a system. This occurs when the
feedback resistor acts in conjunction with input
capacitance to create phase lag in the feedback signal.
Input capacitance is usually a combination of input
circuit components and other parasitic capacitance,
such as amplifier input capacitance and stray printed
circuit board capacitance.
Figure 4-2 illustrates a method of compensating phase
lag caused by using a large-value feedback resistor.
Feedback capacitor CFB introduces sufficient phase
lead to overcome the phase lag caused by feedback
resistor RFB and input capacitance CIN. The value of
CFB is determined by first estimating CIN and then
applying the following formula from Equation 4-4:
EQUATION 4-4:
R IN C IN R FB C FB
CF B
RF B
VIN
RIN
VOUT
CIN
FIGURE 4-2:
Lag.
Canceling Feedback Phase
Voltage drop in the amplifier output stage is:
DS20006282A-page 22
2019 Microchip Technology Inc.
LMC7101
Since a significant percentage of CIN may be caused by
board layout, it is important to note that the correct
value of CFB may change when changing from a
breadboard to the final circuit layout.
V+
Typical Circuits
Some suitable LMC7101 single-supply, rail-to-rail
applications are shown in the following circuit
diagrams.
V+
0V to
LMC7101
Q1
= 40V
V
2N3904 C E O
IC(max) = 200mA
{
5
IOUT =
VOUT
0V to V+
4
5
RS
10ȍ
1»2 ȍ
VIN
= 100mA/V as shown
RS
FIGURE 4-6:
Voltage-Controlled Current Sink.
R2
R4
900k
R1
100k
100k
V+
C1
0.001μF
4
FIGURE 4-3:
IOUT
1
4
LMC7101
1
V+
AV
2
Change Q1 and RS
for higher current
and/or different gain.
2
3
VIN
3
VIN
0V to 2V
VOUT
0V to V+
LOAD
4.5
VS
0.5V to Q1 VCEO(sus)
LMC7101
2
1
Non-Inverting Amplifier.
VOUT
3
V+
0V
5
V+
VOUT (V)
100
V+
R4
100k
FIGURE 4-7:
R3
100k
Square Wave Oscillator.
R2
AV = 1 +
» 10
R1
CIN
0
R2
100k
R1
R2
33k
330k
V+
4
0
FIGURE 4-4:
Behavior.
2
VIN (V)
LMC7101 C
OUT
1
100
3
RL
5
Non-Inverting Amplifier
V+
R3
R4
330k
330k
C1
1μF
AV = -
VOUT
0V
R2 330k
=
= - 10
R1 33k
V+
VIN
0V to V+
3
2
LMC7101
1
4
FIGURE 4-8:
AC-Coupled Inverting Amplifier.
VOUT
0V to V+
5
VOUT = VIN
FIGURE 4-5:
Voltage Follower.
2019 Microchip Technology Inc.
DS20006282A-page 23
LMC7101
5.0
PACKAGING INFORMATION
5.1
Package Marking Information
5-Lead SOT-23*
XXXX
NNN
TABLE 5-1:
Example
A12A
971
MARKING CODES
Device
Marking Code
LMC7101A
A12A
LMC7101B
A12
Legend: XX...X
Y
YY
WW
NNN
e3
*
Product code or customer-specific information
Year code (last digit of calendar year)
Year code (last 2 digits of calendar year)
Week code (week of January 1 is week ‘01’)
Alphanumeric traceability code
Pb-free JEDEC® designator for Matte Tin (Sn)
This package is Pb-free. The Pb-free JEDEC designator ( e3 )
can be found on the outer packaging for this package.
●, ▲, ▼ Pin one index is identified by a dot, delta up, or delta down (triangle
mark).
Note:
In the event the full Microchip part number cannot be marked on one line, it will
be carried over to the next line, thus limiting the number of available
characters for customer-specific information. Package may or may not include
the corporate logo.
Underbar (_) and/or Overbar (‾) symbol may not be to scale.
DS20006282A-page 24
2019 Microchip Technology Inc.
LMC7101
5-Lead SOT-23 Package Outline and Recommended Land Pattern
Note:
For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging.
2019 Microchip Technology Inc.
DS20006282A-page 25
LMC7101
NOTES:
DS20006282A-page 26
2019 Microchip Technology Inc.
LMC7101
APPENDIX A:
REVISION HISTORY
Revision A (December 2019)
• Converted Micrel document LMC7101 to Microchip data sheet template DS20006282A.
• Minor grammatical text changes throughout.
2019 Microchip Technology Inc.
DS20006282A-page 27
MCP1711
NOTES:
DS20006282A-page 28
2019 Microchip Technology Inc.
LMC7101
PRODUCT IDENTIFICATION SYSTEM
To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.
PART NO.
X
Device
Temperature
Range
XX
Package
Device:
LMC7101A:
LMC7101B:
Temperature
Range:
Y
=
–40C to +85C
Packages:
M5
=
5-Lead SOT-23
Media Type:
TR
=
3,000/Reel
-XX
Media Type
Low-Power Operational Amplifier, A Grade
Low-Power Operational Amplifier, B Grade
2019 Microchip Technology Inc.
Examples:
a)
LMC7101AYM5-TR:
b)
LMC7101BYM5-TR:
Note 1:
Low–Power Operational
Amplifier, A Grade,
–40°C to +85°C Temperature Range, 5-Lead SOT23, 3,000/Reel
Low–Power Operational
Amplifier, B Grade,
–40°C to +85°C Temperature Range, 5-Lead SOT23, 3,000/Reel
Tape and Reel identifier only appears in the
catalog part number description. This identifier is
used for ordering purposes and is not printed on
the device package. Check with your Microchip
Sales Office for package availability with the
Tape and Reel option.
DS20006282A-page 29
LMC7101
NOTES:
DS20006282A-page 30
2019 Microchip Technology Inc.
Note the following details of the code protection feature on Microchip devices:
•
Microchip products meet the specification contained in their particular Microchip Data Sheet.
•
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.
•
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
•
Microchip is willing to work with the customer who is concerned about the integrity of their code.
•
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights unless otherwise stated.
Trademarks
The Microchip name and logo, the Microchip logo, Adaptec,
AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT,
chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex,
flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck,
LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi,
Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer,
PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire,
Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST,
SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon,
TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA
are registered trademarks of Microchip Technology Incorporated in
the U.S.A. and other countries.
APT, ClockWorks, The Embedded Control Solutions Company,
EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load,
IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision
Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire,
SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub,
TimePictra, TimeProvider, Vite, WinPath, and ZL are registered
trademarks of Microchip Technology Incorporated in the U.S.A.
Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any
Capacitor, AnyIn, AnyOut, BlueSky, BodyCom, CodeGuard,
CryptoAuthentication, CryptoAutomotive, CryptoCompanion,
CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average
Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial
Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker,
KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM, MPF,
MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach,
Omniscient Code Generation, PICDEM, PICDEM.net, PICkit,
PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple
Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI,
SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC,
USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and
ZENA are trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.
SQTP is a service mark of Microchip Technology Incorporated in
the U.S.A.
The Adaptec logo, Frequency on Demand, Silicon Storage
Technology, and Symmcom are registered trademarks of Microchip
Technology Inc. in other countries.
GestIC is a registered trademark of Microchip Technology Germany
II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in
other countries.
All other trademarks mentioned herein are property of their
respective companies.
© 2019, Microchip Technology Incorporated, All Rights Reserved.
For information regarding Microchip’s Quality Management Systems,
please visit www.microchip.com/quality.
2019 Microchip Technology Inc.
ISBN: 978-1-5224-5370-3
DS20006282A-page 31
Worldwide Sales and Service
AMERICAS
ASIA/PACIFIC
ASIA/PACIFIC
EUROPE
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com
Australia - Sydney
Tel: 61-2-9868-6733
India - Bangalore
Tel: 91-80-3090-4444
China - Beijing
Tel: 86-10-8569-7000
India - New Delhi
Tel: 91-11-4160-8631
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
China - Chengdu
Tel: 86-28-8665-5511
India - Pune
Tel: 91-20-4121-0141
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
China - Chongqing
Tel: 86-23-8980-9588
Japan - Osaka
Tel: 81-6-6152-7160
Finland - Espoo
Tel: 358-9-4520-820
China - Dongguan
Tel: 86-769-8702-9880
Japan - Tokyo
Tel: 81-3-6880- 3770
China - Guangzhou
Tel: 86-20-8755-8029
Korea - Daegu
Tel: 82-53-744-4301
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
China - Hangzhou
Tel: 86-571-8792-8115
Korea - Seoul
Tel: 82-2-554-7200
China - Hong Kong SAR
Tel: 852-2943-5100
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
China - Nanjing
Tel: 86-25-8473-2460
Malaysia - Penang
Tel: 60-4-227-8870
China - Qingdao
Tel: 86-532-8502-7355
Philippines - Manila
Tel: 63-2-634-9065
China - Shanghai
Tel: 86-21-3326-8000
Singapore
Tel: 65-6334-8870
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
China - Shenyang
Tel: 86-24-2334-2829
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Germany - Rosenheim
Tel: 49-8031-354-560
China - Shenzhen
Tel: 86-755-8864-2200
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Israel - Ra’anana
Tel: 972-9-744-7705
China - Suzhou
Tel: 86-186-6233-1526
Taiwan - Taipei
Tel: 886-2-2508-8600
China - Wuhan
Tel: 86-27-5980-5300
Thailand - Bangkok
Tel: 66-2-694-1351
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
China - Xian
Tel: 86-29-8833-7252
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC
Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078
DS20006282A-page 32
China - Xiamen
Tel: 86-592-2388138
China - Zhuhai
Tel: 86-756-3210040
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-72400
Germany - Karlsruhe
Tel: 49-721-625370
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-7288-4388
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820
2019 Microchip Technology Inc.
05/14/19