0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
M1AGL250V5-VQG100

M1AGL250V5-VQG100

  • 厂商:

    ACTEL(微芯科技)

  • 封装:

    TQFP100

  • 描述:

    IC FPGA 68 I/O 100VQFP

  • 详情介绍
  • 数据手册
  • 价格&库存
M1AGL250V5-VQG100 数据手册
Revision 27 DS0095 IGLOO Low Power Flash FPGAs with Flash*Freeze Technology Features and Benefits Low Power • • • • • 1.2 V to 1.5 V Core Voltage Support for Low Power Supports Single-Voltage System Operation 5 µW Power Consumption in Flash*Freeze Mode Low Power Active FPGA Operation Flash*Freeze Technology Enables Ultra-Low Power Consumption while Maintaining FPGA Content • Easy Entry to / Exit from Ultra-Low Power Flash*Freeze Mode High Capacity • 15K to 1 Million System Gates • Up to 144 Kbits of True Dual-Port SRAM • Up to 300 User I/Os Reprogrammable Flash Technology • • • • • 130-nm, 7-Layer Metal, Flash-Based CMOS Process Instant On Level 0 Support Single-Chip Solution Retains Programmed Design When Powered Off 250 MHz (1.5 V systems) and 160 MHz (1.2 V systems) System Performance In-System Programming (ISP) and Security • ISP Using On-Chip 128-Bit Advanced Encryption Standard (AES) Decryption (except ARM®-enabled IGLOO® devices) via JTAG (IEEE 1532–compliant)† • FlashLock® Designed to Secure FPGA Contents High-Performance Routing Hierarchy • 700 Mbps DDR, LVDS-Capable I/Os (AGL250 and above) • 1.2 V, 1.5 V, 1.8 V, 2.5 V, and 3.3 V Mixed-Voltage Operation UC/CS QFN VQFP QN68 AGL030 Clock Conditioning Circuit (CCC) and PLL • Six CCC Blocks, One with an Integrated PLL • Configurable Phase Shift, Multiply/Divide, Delay Capabilities, and External Feedback • Wide Input Frequency Range (1.5 MHz up to 250 MHz) Embedded Memory • 1 kbit of FlashROM User Nonvolatile Memory • SRAMs and FIFOs with Variable-Aspect-Ratio 4,608-Bit† RAM Blocks (×1, ×2, ×4, ×9, and ×18 organizations) • True Dual-Port SRAM (except ×18)† ARM Processor Support in IGLOO FPGAs • Segmented, Hierarchical Routing and Clock Structure Advanced I/O IGLOO Devices AGL0151 2 ARM-Enabled IGLOO Devices System Gates 15,000 Typical Equivalent Macrocells 128 VersaTiles (D-flip-flops) 384 Flash*Freeze Mode (typical, µW) 5 RAM kbits (1,024 bits) – 4,608-Bit Blocks – FlashROM Kbits (1,024 bits) 1 AES-Protected ISP 2 – Integrated PLL in CCCs 3 – 6 VersaNet Globals 4 I/O Banks 2 Maximum User I/Os 49 Package Pins • Bank-Selectable I/O Voltages—up to 4 Banks per Chip • Single-Ended I/O Standards: LVTTL, LVCMOS 3.3 V / 2.5 V / 1.8 V / 1.5 V / 1.2 V, 3.3 V PCI / 3.3 V PCI-X†, and LVCMOS 2.5 V / 5.0 V Input† • Differential I/O Standards: LVPECL, LVDS, B-LVDS, and MLVDS (AGL250 and above) • Wide Range Power Supply Voltage Support per JESD8-B, Allowing I/Os to Operate from 2.7 V to 3.6 V • Wide Range Power Supply Voltage Support per JESD8-12, Allowing I/Os to Operate from 1.14 V to 1.575 V • I/O Registers on Input, Output, and Enable Paths • Hot-Swappable and Cold-Sparing I/Os‡ • Programmable Output Slew Rate† and Drive Strength • Weak Pull-Up/-Down • IEEE 1149.1 (JTAG) Boundary Scan Test • Pin-Compatible Packages across the IGLOO Family † • M1 IGLOO Devices—Cortex®-M1 Soft Processor Available with or without Debug AGL400 125,000 1,024 3,072 16 36 8 1 Yes 1 18 2 133 AGL250 M1AGL250 250,000 2,048 6,144 24 36 8 1 Yes 1 18 4 143 UC81, CS81 CS121 3 CS196 CS196 5 QN48, QN68, QN1326 QN1326 VQ100 VQ100 QN1326 QN1326 VQ100 VQ100 FG144 FG144 30,000 256 768 5 – – 1 – – 6 2 81 AGL060 AGL125 60,000 512 1,536 10 18 4 1 Yes 1 18 2 96 FBGA 400,000 – 9,216 32 54 12 1 Yes 1 18 4 194 AGL600 M1AGL600 600,000 – 13,824 36 108 24 1 Yes 1 18 4 235 AGL1000 M1AGL1000 1,000,000 – 24,576 53 144 32 1 Yes 1 18 4 300 CS196 CS281 CS281 FG144, FG256, FG144, FG256, FG144, FG256, FG484 FG484 FG484 Notes: 1. 2. 3. 4. 5. 6. 7. AGL015 is not recommended for new designs AES is not available for ARM-enabled IGLOO devices. AGL060 in CS121 does not support the PLL. Six chip (main) and twelve quadrant global networks are available for AGL060 and above. The M1AGL250 device does not support this package. Package not available. The IGLOOe datasheet and IGLOOe FPGA Fabric User Guide provide information on higher densities and additional features. † AGL015 and AGL030 devices do not support this feature. May 2016 © 2016 Microsemi Corporation ‡ Supported only by AGL015 and AGL030 devices. I IGLOO Low Power Flash FPGAs I/Os Per Package1 IGLOO Devices AGL0152 AGL030 AGL060 AGL125 ARM-Enabled IGLOO Devices AGL250 AGL400 M1AGL250 AGL600 AGL1000 M1AGL600 M1AGL1000 Package Single-Ended I/O Single-Ended I/O Single-Ended I/O Single-Ended I/O Single-Ended I/O 4 Differential I/O Pairs Single-Ended I/O 4 Differential I/O Pairs Single-Ended I/O 4 Differential I/O Pairs Single-Ended I/O 4 Differential I/O Pairs I/O Type3 QN48 – 34 – – – – – – – – – – QN68 49 49 – – – – – – – – – – UC81 – 66 – – – – – – – – – – CS81 – 66 – – – – – – – – – – CS121 – – 96 96 – – – – – – – – – 77 71 71 68 13 – – – – – – VQ100 6 QN132 – 81 80 84 – – – – – – – – CS196 – – – 133 143 5 35 5 143 35 – – – – FG144 – – – 97 97 24 97 25 97 25 97 25 FG256 – – – – – – 178 38 177 43 177 44 CS281 – – – – – – – – 215 53 215 53 FG4847 – – – – – – 194 38 235 60 300 74 7 Notes: 1. When considering migrating your design to a lower- or higher-density device, refer to the IGLOO FPGA Fabric User Guide to ensure compliance with design and board migration requirements. 2. AGL015 is not recommended for new designs. 3. When the Flash*Freeze pin is used to directly enable Flash*Freeze mode and not used as a regular I/O, the number of singleended user I/Os available is reduced by one. 4. Each used differential I/O pair reduces the number of single-ended I/Os available by two. 5. The M1AGL250 device does not support QN132 or CS196 packages. 6. Package not available. 7. FG256 and FG484 are footprint-compatible packages. Table 1 • IGLOO FPGAs Package Sizes Dimensions QN132* CS196 Package UC81 CS81 CS121 QN48 QN68 Length × Width (mm\mm) 4×4 5×5 6×6 6×6 8×8 8×8 8×8 Nominal Area (mm2) 16 25 36 36 64 64 64 100 169 196 289 529 Pitch (mm) 0.4 0.5 0.5 0.4 0.4 0.5 0.5 0.5 1.0 0.5 1.0 1.0 Height (mm) 0.80 0.80 0.99 0.90 0.90 0.75 1.20 1.05 1.45 1.00 1.60 2.23 Note: II * Package not available. R evis i o n 27 CS281 FG144 VQ100 10 × 10 13 × 13 14 × 14 FG256 FG484 17 × 17 23 × 23 IGLOO Low Power Flash FPGAs IGLOO Ordering Information AGL1000 V2 _ G FG 144 Y I Application (Temperature Range) Blank = Commercial (0°C to +85°C Junction Temperature) I = Industrial (–40°C to +100°C Junction Temperature) PP = Pre-Production ES = Engineering Sample (Room Temperature Only) Security Feature Y = Device Includes License to Implement IP Based on the Cryptography Research, Inc. (CRI) Patent Portfolio Blank = Device Does Not Include License to Implement IP Based on the Cryptography Research, Inc. (CRI) Patent Portfolio Package Lead Count Lead-Free Packaging Blank = Standard Packaging G= RoHS-Compliant Packaging (some packages also halogen-free) Package Type UC = Micro Chip Scale Package (0.4 mm pitch) CS = Chip Scale Package (0.4 mm and 0.5 mm pitches) QN = Quad Flat Pack No Leads (0.4 mm and 0.5 mm pitch) VQ = Very Thin Quad Flat Pack (0.5 mm pitch) FG = Fine Pitch Ball Grid Array (1.0 mm pitch) Supply Voltage 2 = 1.2 V to 1.5 V 5 = 1.5 V only Part Number IGLOO Devices AGL015 = 15,000 System Gates AGL030 = 30,000 System Gates AGL060 = 60,000 System Gates AGL125 = 125,000 System Gates AGL250 = 250,000 System Gates AGL400 = 400,000 System Gates AGL600 = 600,000 System Gates AGL1000 = 1,000,000 System Gates IGLOO Devices with Cortex-M1 M1AGL250 = 250,000 System Gates M1AGL600 = 600,000 System Gates M1AGL1000 = 1,000,000 System Gates Note: Marking Information: IGLOO V2 devices do not have V2 marking, but IGLOO V5 devices are marked accordingly. R ev i si o n 2 7 III IGLOO Low Power Flash FPGAs Temperature Grade Offerings AGL015 1 AGL030 AGL060 AGL125 Package AGL250 AGL400 M1AGL250 AGL600 AGL1000 M1AGL600 M1AGL1000 QN48 – C, I – – – – – – QN68 C, I – – – – – – – UC81 – C, I – – – – – – CS81 – C, I – – – – – – CS121 – – C, I C, I – – – – VQ100 – C, I C, I C, I C, I – – – C, I – – – – QN1322 – C, I CS196 – – – C, I C, I C, I – – FG144 – – – C, I C, I C, I C, I C, I FG256 – – – – – C, I C, I C, I CS281 – – – – – – C, I C, I FG484 – – – – – C, I C, I C, I C, I 2 Notes: 1. AGL015 is not recommended for new designs. 2. Package not available. C = Commercial temperature range: 0°C to 85°C junction temperature. I = Industrial temperature range: –40°C to 100°C junction temperature. IGLOO Device Status IGLOO Devices Status M1 IGLOO Devices Status M1AGL250 Production AGL015 Not recommended for new designs. AGL030 Production AGL060 Production AGL125 Production AGL250 Production AGL400 Production AGL600 Production M1AGL600 Production AGL1000 Production M1AGL1000 Production References made to IGLOO devices also apply to ARM-enabled IGLOOe devices. The ARM-enabled part numbers start with M1 (Cortex-M1). Contact your local Microsemi SoC Products Group representative for device availability: www.microsemi.com/soc/contact/default.aspx. AGL015 and AGL030 The AGL015 and AGL030 are architecturally compatible; there are no RAM or PLL features. Devices Not Recommended For New Designs AGL015 is not recommended for new designs. IV R evis i o n 27 IGLOO Low Power Flash FPGAs IGLOO Device Family Overview General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 IGLOO DC and Switching Characteristics General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 Calculating Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7 Power Calculation Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-17 User I/O Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-20 VersaTile Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-100 Global Resource Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-106 Clock Conditioning Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-115 Embedded SRAM and FIFO Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-118 Embedded FlashROM Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-132 JTAG 1532 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-133 Pin Descriptions Supply Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . User Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . JTAG Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Special Function Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Related Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 3-2 3-4 3-5 3-5 3-5 Package Pin Assignments UC81 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1 CS81 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3 CS121 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6 CS196 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-9 CS281 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-16 QN48 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-23 QN68 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-25 QN132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-28 VQ100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-37 FG144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-42 FG256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-53 FG484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-63 Datasheet Information List of Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1 Datasheet Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-13 Safety Critical, Life Support, and High-Reliability Applications Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-13 R ev i si o n 2 7 V 1 – IGLOO Device Family Overview General Description The IGLOO family of flash FPGAs, based on a 130-nm flash process, offers the lowest power FPGA, a single-chip solution, small footprint packages, reprogrammability, and an abundance of advanced features. The Flash*Freeze technology used in IGLOO devices enables entering and exiting an ultra-low power mode that consumes as little as 5 µW while retaining SRAM and register data. Flash*Freeze technology simplifies power management through I/O and clock management with rapid recovery to operation mode. The Low Power Active capability (static idle) allows for ultra-low power consumption (from 12 µW) while the IGLOO device is completely functional in the system. This allows the IGLOO device to control system power management based on external inputs (e.g., scanning for keyboard stimulus) while consuming minimal power. Nonvolatile flash technology gives IGLOO devices the advantage of being a secure, low power, singlechip solution that is Instant On. IGLOO is reprogrammable and offers time-to-market benefits at an ASIClevel unit cost. These features enable designers to create high-density systems using existing ASIC or FPGA design flows and tools. IGLOO devices offer 1 kbit of on-chip, reprogrammable, nonvolatile FlashROM storage as well as clock conditioning circuitry based on an integrated phase-locked loop (PLL). The AGL015 and AGL030 devices have no PLL or RAM support. IGLOO devices have up to 1 million system gates, supported with up to 144 kbits of true dual-port SRAM and up to 300 user I/Os. M1 IGLOO devices support the high-performance, 32-bit Cortex-M1 processor developed by ARM for implementation in FPGAs. Cortex-M1 is a soft processor that is fully implemented in the FPGA fabric. It has a three-stage pipeline that offers a good balance between low power consumption and speed when implemented in an M1 IGLOO device. The processor runs the ARMv6-M instruction set, has a configurable nested interrupt controller, and can be implemented with or without the debug block. CortexM1 is available for free from Microsemi for use in M1 IGLOO FPGAs. The ARM-enabled devices have ordering numbers that begin with M1AGL and do not support AES decryption. Flash*Freeze Technology The IGLOO device offers unique Flash*Freeze technology, allowing the device to enter and exit ultra-low power Flash*Freeze mode. IGLOO devices do not need additional components to turn off I/Os or clocks while retaining the design information, SRAM content, and registers. Flash*Freeze technology is combined with in-system programmability, which enables users to quickly and easily upgrade and update their designs in the final stages of manufacturing or in the field. The ability of IGLOO V2 devices to support a wide range of core voltage (1.2 V to 1.5 V) allows further reduction in power consumption, thus achieving the lowest total system power. When the IGLOO device enters Flash*Freeze mode, the device automatically shuts off the clocks and inputs to the FPGA core; when the device exits Flash*Freeze mode, all activity resumes and data is retained. The availability of low power modes, combined with reprogrammability, a single-chip and single-voltage solution, and availability of small-footprint, high pin-count packages, make IGLOO devices the best fit for portable electronics. R ev i si o n 2 7 1-1 IGLOO Low Power Flash FPGAs Flash Advantages Low Power Flash-based IGLOO devices exhibit power characteristics similar to those of an ASIC, making them an ideal choice for power-sensitive applications. IGLOO devices have only a very limited power-on current surge and no high-current transition period, both of which occur on many FPGAs. IGLOO devices also have low dynamic power consumption to further maximize power savings; power is even further reduced by the use of a 1.2 V core voltage. Low dynamic power consumption, combined with low static power consumption and Flash*Freeze technology, gives the IGLOO device the lowest total system power offered by any FPGA. Security Nonvolatile, flash-based IGLOO devices do not require a boot PROM, so there is no vulnerable external bitstream that can be easily copied. IGLOO devices incorporate FlashLock, which provides a unique combination of reprogrammability and design security without external overhead, advantages that only an FPGA with nonvolatile flash programming can offer. IGLOO devices utilize a 128-bit flash-based lock and a separate AES key to provide the highest level of protection in the FPGA industry for intellectual property and configuration data. In addition, all FlashROM data in IGLOO devices can be encrypted prior to loading, using the industry-leading AES-128 (FIPS192) bit block cipher encryption standard. AES was adopted by the National Institute of Standards and Technology (NIST) in 2000 and replaces the 1977 DES standard. IGLOO devices have a built-in AES decryption engine and a flash-based AES key that make them the most comprehensive programmable logic device security solution available today. IGLOO devices with AES-based security provide a high level of protection for remote field updates over public networks such as the Internet, and are designed to ensure that valuable IP remains out of the hands of system overbuilders, system cloners, and IP thieves. Security, built into the FPGA fabric, is an inherent component of the IGLOO family. The flash cells are located beneath seven metal layers, and many device design and layout techniques have been used to make invasive attacks extremely difficult. The IGLOO family, with FlashLock and AES security, is unique in being highly resistant to both invasive and noninvasive attacks. Your valuable IP is protected with industry-standard security, making remote ISP possible. An IGLOO device provides the best available security for programmable logic designs. Single Chip Flash-based FPGAs store their configuration information in on-chip flash cells. Once programmed, the configuration data is an inherent part of the FPGA structure, and no external configuration data needs to be loaded at system powerup (unlike SRAM-based FPGAs). Therefore, flash-based IGLOO FPGAs do not require system configuration components such as EEPROMs or microcontrollers to load device configuration data. This reduces bill-of-materials costs and PCB area, and increases security and system reliability. Instant On Flash-based IGLOO devices support Level 0 of the Instant On classification standard. This feature helps in system component initialization, execution of critical tasks before the processor wakes up, setup and configuration of memory blocks, clock generation, and bus activity management. The Instant On feature of flash-based IGLOO devices greatly simplifies total system design and reduces total system cost, often eliminating the need for CPLDs and clock generation PLLs. In addition, glitches and brownouts in system power will not corrupt the IGLOO device's flash configuration, and unlike SRAM-based FPGAs, the device will not have to be reloaded when system power is restored. This enables the reduction or complete removal of the configuration PROM, expensive voltage monitor, brownout detection, and clock generator devices from the PCB design. Flash-based IGLOO devices simplify total system design and reduce cost and design risk while increasing system reliability and improving system initialization time. IGLOO flash FPGAs allow the user to quickly enter and exit Flash*Freeze mode. This is done almost instantly (within 1 µs) and the device retains configuration and data in registers and RAM. Unlike SRAM-based FPGAs the device does not need to reload configuration and design state from external memory components; instead it retains all necessary information to resume operation immediately. Reduced Cost of Ownership Advantages to the designer extend beyond low unit cost, performance, and ease of use. Unlike SRAM-based FPGAs, Flash-based IGLOO devices allow all functionality to be Instant On; no external boot PROM is required. On-board security mechanisms prevent access to all the programming information and enable secure remote updates of the FPGA logic. Designers can perform secure remote in-system reprogramming to support future design iterations and R ev i si o n 2 7 1-2 IGLOO Device Family Overview field upgrades with confidence that valuable intellectual property cannot be compromised or copied. Secure ISP can be performed using the industry-standard AES algorithm. The IGLOO family device architecture mitigates the need for ASIC migration at higher user volumes. This makes the IGLOO family a cost-effective ASIC replacement solution, especially for applications in the consumer, networking/communications, computing, and avionics markets. Firm-Error Immunity Firm errors occur most commonly when high-energy neutrons, generated in the upper atmosphere, strike a configuration cell of an SRAM FPGA. The energy of the collision can change the state of the configuration cell and thus change the logic, routing, or I/O behavior in an unpredictable way. These errors are impossible to prevent in SRAM FPGAs. The consequence of this type of error can be a complete system failure. Firm errors do not exist in the configuration memory of IGLOO flash-based FPGAs. Once it is programmed, the flash cell configuration element of IGLOO FPGAs cannot be altered by high-energy neutrons and is therefore immune to them. Recoverable (or soft) errors occur in the user data SRAM of all FPGA devices. These can easily be mitigated by using error detection and correction (EDAC) circuitry built into the FPGA fabric. Advanced Flash Technology The IGLOO family offers many benefits, including nonvolatility and reprogrammability, through an advanced flashbased, 130-nm LVCMOS process with seven layers of metal. Standard CMOS design techniques are used to implement logic and control functions. The combination of fine granularity, enhanced flexible routing resources, and abundant flash switches allows for very high logic utilization without compromising device routability or performance. Logic functions within the device are interconnected through a four-level routing hierarchy. IGLOO family FPGAs utilize design and process techniques to minimize power consumption in all modes of operation. Advanced Architecture The proprietary IGLOO architecture provides granularity comparable to standard-cell ASICs. The IGLOO device consists of five distinct and programmable architectural features (Figure 1-1 on page 1-4 and Figure 1-2 on page 1-4): • Flash*Freeze technology • FPGA VersaTiles • Dedicated FlashROM • Dedicated SRAM/FIFO memory† • Extensive CCCs and PLLs† • Advanced I/O structure The FPGA core consists of a sea of VersaTiles. Each VersaTile can be configured as a three-input logic function, a Dflip-flop (with or without enable), or a latch by programming the appropriate flash switch interconnections. The versatility of the IGLOO core tile as either a three-input lookup table (LUT) equivalent or a D-flip-flop/latch with enable allows for efficient use of the FPGA fabric. The VersaTile capability is unique to the ProASIC® family of thirdgeneration-architecture flash FPGAs. † The AGL015 and AGL030 do not support PLL or SRAM. 1 -3 R evis i o n 27 IGLOO Low Power Flash FPGAs VersaTiles are connected with any of the four levels of routing hierarchy. Flash switches are distributed throughout the device to provide nonvolatile, reconfigurable interconnect programming. Maximum core utilization is possible for virtually any design. Bank 0 Bank 0 Bank 1 CCC RAM Block 4,608-Bit Dual-Port SRAM or FIFO Block* I/Os ISP AES Decryption* User Nonvolatile FlashRom Flash*Freeze Technology Charge Pumps Bank 0 Bank 1 VersaTile Bank 1 Note: *Not supported by AGL015 and AGL030 devices Figure 1-1 • IGLOO Device Architecture Overview with Two I/O Banks (AGL015, AGL030, AGL060, and AGL125) Bank 0 Bank 1 Bank 3 CCC RAM Block 4,608-Bit Dual-Port SRAM or FIFO Block I/Os Bank 1 Bank 3 VersaTile ISP AES Decryption* User Nonvolatile FlashRom Flash*Freeze Technology Charge Pumps RAM Block 4,608-Bit Dual-Port SRAM or FIFO Block (AGL600 and AGL1000) Bank 2 Figure 1-2 • IGLOO Device Architecture Overview with Four I/O Banks (AGL250, AGL600, AGL400, and AGL1000) R ev i si o n 2 7 1-4 IGLOO Device Family Overview Flash*Freeze Technology The IGLOO device has an ultra-low power static mode, called Flash*Freeze mode, which retains all SRAM and register information and can still quickly return to normal operation. Flash*Freeze technology enables the user to quickly (within 1 µs) enter and exit Flash*Freeze mode by activating the Flash*Freeze pin while all power supplies are kept at their original values. In addition, I/Os and global I/Os can still be driven and can be toggling without impact on power consumption, clocks can still be driven or can be toggling without impact on power consumption, and the device retains all core registers, SRAM information, and states. I/O states are tristated during Flash*Freeze mode or can be set to a certain state using weak pull-up or pull-down I/O attribute configuration. No power is consumed by the I/O banks, clocks, JTAG pins, or PLL, and the device consumes as little as 5 µW in this mode. Flash*Freeze technology allows the user to switch to active mode on demand, thus simplifying the power management of the device. The Flash*Freeze pin (active low) can be routed internally to the core to allow the user's logic to decide when it is safe to transition to this mode. It is also possible to use the Flash*Freeze pin as a regular I/O if Flash*Freeze mode usage is not planned, which is advantageous because of the inherent low power static (as low as 12 µW) and dynamic capabilities of the IGLOO device. Refer to Figure 1-3 for an illustration of entering/exiting Flash*Freeze mode. IGLOO FPGA Flash*Freeze Mode Control Flash*Freeze Pin Figure 1-3 • IGLOO Flash*Freeze Mode VersaTiles The IGLOO core consists of VersaTiles, which have been enhanced beyond the ProASICPLUS® core tiles. The IGLOO VersaTile supports the following: • All 3-input logic functions—LUT-3 equivalent • Latch with clear or set • D-flip-flop with clear or set • Enable D-flip-flop with clear or set Refer to Figure 1-4 for VersaTile configurations. LUT-3 Equivalent X1 X2 X3 LUT-3 Y D-Flip-Flop with Clear or Set Data CLK CLR Y D-FF Enable D-Flip-Flop with Clear or Set Data CLK Enable CLR Figure 1-4 • 1 -5 VersaTile Configurations R evis i o n 27 Y D-FF IGLOO Low Power Flash FPGAs User Nonvolatile FlashROM IGLOO devices have 1 kbit of on-chip, user-accessible, nonvolatile FlashROM. The FlashROM can be used in diverse system applications: • Internet protocol addressing (wireless or fixed) • System calibration settings • Device serialization and/or inventory control • Subscription-based business models (for example, set-top boxes) • Secure key storage for secure communications algorithms • Asset management/tracking • Date stamping • Version management The FlashROM is written using the standard IGLOO IEEE 1532 JTAG programming interface. The core can be individually programmed (erased and written), and on-chip AES decryption can be used selectively to securely load data over public networks (except in the AGL015 and AGL030 devices), as in security keys stored in the FlashROM for a user design. The FlashROM can be programmed via the JTAG programming interface, and its contents can be read back either through the JTAG programming interface or via direct FPGA core addressing. Note that the FlashROM can only be programmed from the JTAG interface and cannot be programmed from the internal logic array. The FlashROM is programmed as 8 banks of 128 bits; however, reading is performed on a byte-by-byte basis using a synchronous interface. A 7-bit address from the FPGA core defines which of the 8 banks and which of the 16 bytes within that bank are being read. The three most significant bits (MSBs) of the FlashROM address determine the bank, and the four least significant bits (LSBs) of the FlashROM address define the byte. The Microsemi development software solutions, Libero® System-on-Chip (SoC) and Designer, have extensive support for the FlashROM. One such feature is auto-generation of sequential programming files for applications requiring a unique serial number in each part. Another feature allows the inclusion of static data for system version control. Data for the FlashROM can be generated quickly and easily using Libero SoC and Designer software tools. Comprehensive programming file support is also included to allow for easy programming of large numbers of parts with differing FlashROM contents. SRAM and FIFO IGLOO devices (except the AGL015 and AGL030 devices) have embedded SRAM blocks along their north and south sides. Each variable-aspect-ratio SRAM block is 4,608 bits in size. Available memory configurations are 256×18, 512×9, 1k×4, 2k×2, and 4k×1 bits. The individual blocks have independent read and write ports that can be configured with different bit widths on each port. For example, data can be sent through a 4-bit port and read as a single bitstream. The embedded SRAM blocks can be initialized via the device JTAG port (ROM emulation mode) using the UJTAG macro (except in the AGL015 and AGL030 devices). In addition, every SRAM block has an embedded FIFO control unit. The control unit allows the SRAM block to be configured as a synchronous FIFO without using additional core VersaTiles. The FIFO width and depth are programmable. The FIFO also features programmable Almost Empty (AEMPTY) and Almost Full (AFULL) flags in addition to the normal Empty and Full flags. The embedded FIFO control unit contains the counters necessary for generation of the read and write address pointers. The embedded SRAM/FIFO blocks can be cascaded to create larger configurations. PLL and CCC IGLOO devices provide designers with very flexible clock conditioning circuit (CCC) capabilities. Each member of the IGLOO family contains six CCCs. One CCC (center west side) has a PLL. The AGL015 and AGL030 do not have a PLL. The six CCC blocks are located at the four corners and the centers of the east and west sides. One CCC (center west side) has a PLL. All six CCC blocks are usable; the four corner CCCs and the east CCC allow simple clock delay operations as well as clock spine access. The inputs of the six CCC blocks are accessible from the FPGA core or from one of several inputs located near the CCC that have dedicated connections to the CCC block. The CCC block has these key features: R ev i si o n 2 7 1-6 IGLOO Device Family Overview • Wide input frequency range (fIN_CCC) = 1.5 MHz up to 250 MHz • Output frequency range (fOUT_CCC) = 0.75 MHz up to 250 MHz • 2 programmable delay types for clock skew minimization • Clock frequency synthesis (for PLL only) Additional CCC specifications: • Internal phase shift = 0°, 90°, 180°, and 270°. Output phase shift depends on the output divider configuration (for PLL only). • Output duty cycle = 50% ± 1.5% or better (for PLL only) • Low output jitter: worst case < 2.5% × clock period peak-to-peak period jitter when single global network used (for PLL only) • Maximum acquisition time is 300 µs (for PLL only) • Exceptional tolerance to input period jitter—allowable input jitter is up to 1.5 ns (for PLL only) • Four precise phases; maximum misalignment between adjacent phases of 40 ps × 250 MHz / fOUT_CCC (for PLL only) Global Clocking IGLOO devices have extensive support for multiple clocking domains. In addition to the CCC and PLL support described above, there is a comprehensive global clock distribution network. Each VersaTile input and output port has access to nine VersaNets: six chip (main) and three quadrant global networks. The VersaNets can be driven by the CCC or directly accessed from the core via multiplexers (MUXes). The VersaNets can be used to distribute low-skew clock signals or for rapid distribution of high-fanout nets. I/Os with Advanced I/O Standards The IGLOO family of FPGAs features a flexible I/O structure, supporting a range of voltages (1.2 V, 1.5 V, 1.8 V, 2.5 V, 3.0 V wide range, and 3.3 V). IGLOO FPGAs support many different I/O standards—single-ended and differential. The I/Os are organized into banks, with two or four banks per device. The configuration of these banks determines the I/O standards supported (Table 1-1). Table 1-1 • I/O Standards Supported I/O Standards Supported I/O Bank Type Device and Bank Location LVTTL/ LVCMOS PCI/PCI-X LVPECL, LVDS, B-LVDS, M-LVDS Advanced East and west banks of AGL250 and larger devices    Standard Plus North and south banks of AGL250 and larger devices   Not supported  Not supported Not supported All banks of AGL060 and AGL125K Standard All banks of AGL015 and AGL030 Each I/O module contains several input, output, and enable registers. These registers allow the implementation of the following: • Single-Data-Rate applications • Double-Data-Rate applications—DDR LVDS, B-LVDS, and M-LVDS I/Os for point-to-point communications IGLOO banks for the AGL250 device and above support LVPECL, LVDS, B-LVDS, and M-LVDS. B-LVDS and M-LVDS can support up to 20 loads. Hot-swap (also called hot-plug, or hot-insertion) is the operation of hot-insertion or hot-removal of a card in a poweredup system. Cold-sparing (also called cold-swap) refers to the ability of a device to leave system data undisturbed when the system is powered up, while the component itself is powered down, or when power supplies are floating. 1 -7 R evis i o n 27 IGLOO Low Power Flash FPGAs Wide Range I/O Support IGLOO devices support JEDEC-defined wide range I/O operation. IGLOO devices support both the JESD8-B specification, covering 3 V and 3.3 V supplies, for an effective operating range of 2.7 V to 3.6 V, and JESD8-12 with its 1.2 V nominal, supporting an effective operating range of 1.14 V to 1.575 V. Wider I/O range means designers can eliminate power supplies or power conditioning components from the board or move to less costly components with greater tolerances. Wide range eases I/O bank management and provides enhanced protection from system voltage spikes, while providing the flexibility to easily run custom voltage applications. Specifying I/O States During Programming You can modify the I/O states during programming in FlashPro. In FlashPro, this feature is supported for PDB files generated from Designer v8.5 or greater. See the FlashPro User Guide for more information. Note: PDB files generated from Designer v8.1 to Designer v8.4 (including all service packs) have limited display of Pin Numbers only. 1. Load a PDB from the FlashPro GUI. You must have a PDB loaded to modify the I/O states during programming. 2. From the FlashPro GUI, click PDB Configuration. A FlashPoint – Programming File Generator window appears. 3. Click the Specify I/O States During Programming button to display the Specify I/O States During Programming dialog box. 4. Sort the pins as desired by clicking any of the column headers to sort the entries by that header. Select the I/Os you wish to modify (Figure 1-5 on page 1-9). 5. Set the I/O Output State. You can set Basic I/O settings if you want to use the default I/O settings for your pins, or use Custom I/O settings to customize the settings for each pin. Basic I/O state settings: 1 – I/O is set to drive out logic High 0 – I/O is set to drive out logic Low Last Known State – I/O is set to the last value that was driven out prior to entering the programming mode, and then held at that value during programming Z -Tri-State: I/O is tristated R ev i si o n 2 7 1-8 IGLOO Device Family Overview Figure 1-5 • I/O States During Programming Window 6. Click OK to return to the FlashPoint – Programming File Generator window. Note: I/O States During programming are saved to the ADB and resulting programming files after completing programming file generation. 1 -9 R evis i o n 27 2 – IGLOO DC and Switching Characteristics General Specifications Operating Conditions Stresses beyond those listed in Table 2-1 may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Absolute Maximum Ratings are stress ratings only; functional operation of the device at these or any other conditions beyond those listed under the Recommended Operating Conditions specified in Table 22 on page 2-2 is not implied. Table 2-1 • Symbol Absolute Maximum Ratings Parameter Limits1 Units VCC DC core supply voltage –0.3 to 1.65 V VJTAG JTAG DC voltage –0.3 to 3.75 V VPUMP Programming voltage –0.3 to 3.75 V VCCPLL Analog power supply (PLL) –0.3 to 1.65 V –0.3 to 3.75 V –0.3 V to 3.6 V (when I/O hot insertion mode is enabled) V VCCI and VMV 2 DC I/O buffer supply voltage VI I/O input voltage –0.3 V to (VCCI + 1 V) or 3.6 V, whichever voltage is lower (when I/O hot-insertion mode is disabled) TSTG 3 Storage Temperature –65 to +150 °C TJ 3 Junction Temperature +125 °C Notes: 1. The device should be operated within the limits specified by the datasheet. During transitions, the input signal may undershoot or overshoot according to the limits shown in Table 2-4 on page 2-3. 2. VMV pins must be connected to the corresponding VCCI pins. See the "Pin Descriptions" chapter of the IGLOO FPGA Fabric User Guide for further information. 3. For flash programming and retention, maximum limits refer to Table 2-3 on page 2-3, and for recommended operating limits, refer to Table 2-2 on page 2-2. R ev i si o n 2 7 2-1 IGLOO DC and Switching Characteristics Table 2-2 • Recommended Operating Conditions 1 Symbol Parameter Commercial Industrial Units 0 to +85 –40 to +100 °C 1.5 V DC core supply voltage 1.425 to 1.575 1.425 to 1.575 V 1.2 V–1.5 V wide range DC core supply voltage 4,6 1.14 to 1.575 1.14 to 1.575 V 1.4 to 3.6 1.4 to 3.6 V 3.15 to 3.45 3.15 to 3.45 V 0 to 3.6 0 to 3.6 V 1.425 to 1.575 1.425 to 1.575 V 1.14 to 1.575 1.14 to 1.575 V Junction Temperature 2 TJ 3 5 VCC VJTAG JTAG DC voltage VPUMP Programming voltage Programming Mode Operation 7 8 VCCPLL Analog power supply (PLL) 1.5 V DC core supply voltage 5 1.2 V – 1.5 V DC core supply voltage4,6 VCCI VMV 9 and 1.2 V DC core supply voltage6 1.14 to 1.26 1.14 to 1.26 V 1.2 V DC wide range DC supply voltage6 1.14 to 1.575 1.14 to 1.575 V 1.5 V DC supply voltage 1.425 to 1.575 1.425 to 1.575 V 1.8 V DC supply voltage 1.7 to 1.9 1.7 to 1.9 V 2.5 V DC supply voltage 2.3 to 2.7 2.3 to 2.7 V 3.0 V DC supply voltage 10 2.7 to 3.6 2.7 to 3.6 V 3.3 V DC supply voltage 3.0 to 3.6 3.0 to 3.6 V 2.375 to 2.625 2.375 to 2.625 V 3.0 to 3.6 3.0 to 3.6 V LVDS differential I/O LVPECL differential I/O Notes: 1. All parameters representing voltages are measured with respect to GND unless otherwise specified. 2. Software Default Junction Temperature Range in the Libero SoC software is set to 0°C to +70°C for commercial, and -40°C to +85°C for industrial. To ensure targeted reliability standards are met across the full range of junction temperatures, Microsemi recommends using custom settings for temperature range before running timing and power analysis tools. For more information on custom settings, refer to the New Project Dialog Box in the Libero SoC Online Help. 3. The ranges given here are for power supplies only. The recommended input voltage ranges specific to each I/O standard are given in Table 2-25 on page 2-24. VCCI should be at the same voltage within a given I/O bank. 4. All IGLOO devices (V5 and V2) must be programmed with the VCC core voltage at 1.5 V. Applications using the V2 devices powered by 1.2 V supply must switch the core supply to 1.5 V for in-system programming. 5. For IGLOO® V5 devices 6. For IGLOO V2 devices only, operating at VCCI  VCC. 7. VPUMP can be left floating during operation (not programming mode). 8. VCCPLL pins should be tied to VCC pins. See the "Pin Descriptions" chapter of the IGLOO FPGA Fabric User Guide for further information. 9. VMV and VCCI must be at the same voltage within a given I/O bank. VMV pins must be connected to the corresponding VCCI pins. See the "VMVx I/O Supply Voltage (quiet)" on page 3-1 for further information. 10. 3.3 V wide range is compliant to the JESD-8B specification and supports 3.0 V VCCI operation. 2 -2 R evis i o n 27 IGLOO Low Power Flash FPGAs Table 2-3 • Flash Programming Limits – Retention, Storage, and Operating Temperature1 Programming Cycles Program Retention (biased/unbiased) Maximum Storage Temperature TSTG (°C) 2 Maximum Operating Junction Temperature TJ (°C) 2 Commercial 500 20 years 110 100 Industrial 500 20 years 110 100 Product Grade Notes: 1. This is a stress rating only; functional operation at any condition other than those indicated is not implied. 2. These limits apply for program/data retention only. Refer to Table 2-1 on page 2-1 and Table 2-2 on page 2-2 for device operating conditions and absolute limits. Table 2-4 • VCCI Overshoot and Undershoot Limits 1 Average VCCI–GND Overshoot or Undershoot Duration as a Percentage of Clock Cycle2 Maximum Overshoot/ Undershoot2 10% 1.4 V 5% 1.49 V 2.7 V or less 3V 10% 1.1 V 5% 1.19 V 3.3 V 10% 0.79 V 5% 0.88 V 3.6 V 10% 0.45 V 5% 0.54 V Notes: 1. Based on reliability requirements at junction temperature at 85°C. 2. The duration is allowed at one out of six clock cycles. If the overshoot/undershoot occurs at one out of two cycles, the maximum overshoot/undershoot has to be reduced by 0.15 V. 3. This table does not provide PCI overshoot/undershoot limits. I/O Power-Up and Supply Voltage Thresholds for Power-On Reset (Commercial and Industrial) Sophisticated power-up management circuitry is designed into every IGLOO device. These circuits ensure easy transition from the powered-off state to the powered-up state of the device. The many different supplies can power up in any sequence with minimized current spikes or surges. In addition, the I/O will be in a known state through the power-up sequence. The basic principle is shown in Figure 2-1 on page 2-4 and Figure 2-2 on page 2-5. There are five regions to consider during power-up. IGLOO I/Os are activated only if ALL of the following three conditions are met: 1. VCC and VCCI are above the minimum specified trip points (Figure 2-1 on page 2-4 and Figure 2-2 on page 2-5). 2. VCCI > VCC – 0.75 V (typical) 3. Chip is in the operating mode. VCCI Trip Point: Ramping up (V5 devices): 0.6 V < trip_point_up < 1.2 V Ramping down (V5 Devices): 0.5 V < trip_point_down < 1.1 V Ramping up (V2 devices): 0.75 V < trip_point_up < 1.05 V Ramping down (V2 devices): 0.65 V < trip_point_down < 0.95 V VCC Trip Point: Ramping up (V5 devices): 0.6 V < trip_point_up < 1.1 V Ramping down (V5 devices): 0.5 V < trip_point_down < 1.0 V R ev i si o n 2 7 2-3 IGLOO DC and Switching Characteristics Ramping up (V2 devices): 0.65 V < trip_point_up < 1.05 V Ramping down (V2 devices): 0.55 V < trip_point_down < 0.95 V VCC and VCCI ramp-up trip points are about 100 mV higher than ramp-down trip points. This specifically built-in hysteresis prevents undesirable power-up oscillations and current surges. Note the following: • During programming, I/Os become tristated and weakly pulled up to VCCI. • JTAG supply, PLL power supplies, and charge pump VPUMP supply have no influence on I/O behavior. PLL Behavior at Brownout Condition Microsemi recommends using monotonic power supplies or voltage regulators to ensure proper power-up behavior. Power ramp-up should be monotonic at least until VCC and VCCPLX exceed brownout activation levels (see Figure 21 and Figure 2-2 on page 2-5 for more details). When PLL power supply voltage and/or VCC levels drop below the VCC brownout levels (0.75 V ± 0.25 V for V5 devices, and 0.75 V ± 0.2 V for V2 devices), the PLL output lock signal goes low and/or the output clock is lost. Refer to the Brownout Voltage section in the "Power-Up/-Down Behavior of Low Power Flash Devices" chapter of the ProASIC®3 and ProASIC3E FPGA fabric user guides for information on clock and lock recovery. Internal Power-Up Activation Sequence 1. Core 2. Input buffers 3. Output buffers, after 200 ns delay from input buffer activation To make sure the transition from input buffers to output buffers is clean, ensure that there is no path longer than 100 ns from input buffer to output buffer in your design. VCC VCC = VCCI + VT where VT can be from 0.58 V to 0.9 V (typically 0.75 V) VCC = 1.575 V Region 4: I/O buffers are ON. I/Os are functional (except differential inputs) but slower because VCCI is below specification. For the same reason, input buffers do not meet VIH / VIL levels, and output buffers do not meet VOH / VOL levels. Region 1: I/O Buffers are OFF Region 5: I/O buffers are ON and power supplies are within specification. I/Os meet the entire datasheet and timer specifications for speed, VIH / VIL, VOH / VOL, etc. VCC = 1.425 V Activation trip point: Va = 0.85 V ± 0.25 V Deactivation trip point: Vd = 0.75 V ± 0.25 V Region 2: I/O buffers are ON. I/Os are functional (except differential inputs) but slower because VCCI / VCC are below specification. For the same reason, input buffers do not meet VIH / VIL levels, and output buffers do not meet VOH / VOL levels. Region 1: I/O buffers are OFF Activation trip point: Va = 0.9 V ± 0.3 V Deactivation trip point: Vd = 0.8 V ± 0.3 V Figure 2-1 • 2 -4 Region 3: I/O buffers are ON. I/Os are functional; I/O DC specifications are met, but I/Os are slower because the VCC is below specification. Min VCCI datasheet specification voltage at a selected I/O standard; i.e., 1.425 V or 1.7 V or 2.3 V or 3.0 V V5 Devices – I/O State as a Function of VCCI and VCC Voltage Levels R evis i o n 27 VCCI IGLOO Low Power Flash FPGAs VCC VCC = VCCI + VT where VT can be from 0.58 V to 0.9 V (typically 0.75 V) VCC = 1.575 V Region 4: I/O buffers are ON. I/Os are functional (except differential inputs) but slower because VCCI is below specification. For the same reason, input buffers do not meet VIH / VIL levels, and output buffers do not meet VOH / VOL levels. Region 1: I/O Buffers are OFF Region 5: I/O buffers are ON and power supplies are within specification. I/Os meet the entire datasheet and timer specifications for speed, VIH / VIL , VOH / VOL , etc. VCC = 1.14 V Region 2: I/O buffers are ON. I/Os are functional (except differential inputs) but slower because VCCI/VCC are below specification. For the same reason, input buffers do not meet VIH/VIL levels, and output buffers do not meet VOH/VOL levels. Activation trip point: Va = 0.85 V ± 0.2 V Deactivation trip point: Vd = 0.75 V ± 0.2 V Region 1: I/O buffers are OFF Activation trip point: Va = 0.9 V ± 0.15 V Deactivation trip point: Vd = 0.8 V ± 0.15 V Figure 2-2 • Region 3: I/O buffers are ON. I/Os are functional; I/O DC specifications are met, but I/Os are slower because the VCC is below specification. Min VCCI datasheet specification voltage at a selected I/O standard; i.e., 1.14 V,1.425 V, 1.7 V, 2.3 V, or 3.0 V VCCI V2 Devices – I/O State as a Function of VCCI and VCC Voltage Levels Thermal Characteristics Introduction The temperature variable in the Designer software refers to the junction temperature, not the ambient temperature. This is an important distinction because dynamic and static power consumption cause the chip junction to be higher than the ambient temperature. EQ 1 can be used to calculate junction temperature. TJ = Junction Temperature = T + TA EQ 1 where: TA = Ambient Temperature T = Temperature gradient between junction (silicon) and ambient T = ja * P ja = Junction-to-ambient of the package. ja numbers are located in Table 2-5 on page 2-6. P = Power dissipation R ev i si o n 2 7 2-5 IGLOO DC and Switching Characteristics Package Thermal Characteristics The device junction-to-case thermal resistivity is jc and the junction-to-ambient air thermal resistivity is ja. The thermal characteristics for ja are shown for two air flow rates. The absolute maximum junction temperature is 100°C. EQ 2 shows a sample calculation of the absolute maximum power dissipation allowed for the AGL1000-FG484 package at commercial temperature and in still air. – 70Cjunction temp. (C) – Max. ambient temp. (C)- = 100C ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------= 1.28 W Maximum Power Allowed = Max. 23.3°C/W  ja (C/W) EQ 2 Table 2-5 • Package Thermal Resistivities ja Package Type Device Pin Count jc Still Air 1 m/s 2.5 m/s Unit Quad Flat No Lead (QN) AGL030 132 13.1 21.4 16.8 15.3 C/W AGL060 132 11.0 21.2 16.6 15.0 C/W AGL125 132 9.2 21.1 16.5 14.9 C/W AGL250 132 8.9 21.0 16.4 14.8 C/W AGL030 68 13.4 68.4 45.8 43.1 C/W 100 10.0 35.3 29.4 27.1 C/W AGL1000 281 6.0 28.0 22.8 21.5 C/W AGL400 196 7.2 37.1 31.1 28.9 C/W AGL250 196 7.6 38.3 32.2 30.0 C/W AGL125 196 8.0 39.5 33.4 31.1 C/W AGL030 81 12.4 32.8 28.5 27.2 C/W AGL060 81 11.1 28.8 24.8 23.5 C/W AGL250 81 10.4 26.9 22.3 20.9 C/W Micro Chip Scale Package (UC) AGL030 81 16.9 40.6 35.2 33.7 C/W Fine Pitch Ball Grid Array (FG) AGL060 144 18.6 55.2 49.4 47.2 C/W AGL1000 144 6.3 31.6 26.2 24.2 C/W AGL400 144 6.8 37.6 31.2 29.0 C/W AGL250 256 12.0 38.6 34.7 33.0 C/W AGL1000 256 6.6 28.1 24.4 22.7 C/W AGL1000 484 8.0 23.3 19.0 16.7 C/W Very Thin Quad Flat Pack (VQ)* Chip Scale Package (CS) Note: *Thermal resistances for other device-package combinations will be posted in a later revision. Disclaimer: The simulation for determining the junction-to-air thermal resistance is based on JEDEC standards (JESD51) and assumptions made in building the model. Junction-to-case is based on SEMI G38-88. JESD51 is only used for comparing one package to another package, provided the two tests uses the same condition. They have little relevance in actual application and therefore should be used with a degree of caution. 2 -6 R evis i o n 27 IGLOO Low Power Flash FPGAs Temperature and Voltage Derating Factors Table 2-6 • Temperature and Voltage Derating Factors for Timing Delays (normalized to TJ = 70°C, VCC = 1.425 V) For IGLOO V2 or V5 devices, 1.5 V DC Core Supply Voltage Junction Temperature (°C) Array Voltage VCC (V) –40°C 0°C 25°C 70°C 85°C 100°C 1.425 0.934 0.953 0.971 1.000 1.007 1.013 1.500 0.855 0.874 0.891 0.917 0.924 0.929 1.575 0.799 0.816 0.832 0.857 0.864 0.868 Table 2-7 • Temperature and Voltage Derating Factors for Timing Delays (normalized to TJ = 70°C, VCC = 1.14 V) For IGLOO V2, 1.2 V DC Core Supply Voltage Junction Temperature (°C) Array Voltage VCC (V) –40°C 0°C 25°C 70°C 85°C 100°C 1.14 0.967 0.978 0.991 1.000 1.006 1.010 1.20 0.864 0.874 0.885 0.894 0.899 0.902 1.26 0.794 0.803 0.814 0.821 0.827 0.830 Calculating Power Dissipation Quiescent Supply Current Quiescent supply current (IDD) calculation depends on multiple factors, including operating voltages (VCC, VCCI, and VJTAG), operating temperature, system clock frequency, and power modes usage. Microsemi recommends using the PowerCalculator and SmartPower software estimation tools to evaluate the projected static and active power based on the user design, power mode usage, operating voltage, and temperature. Table 2-8 • Power Supply State per Mode Power Supply Configurations Modes/power supplies VCC VCCPLL VCCI VJTAG VPUMP Flash*Freeze On On On On On/off/floating Sleep Off Off On Off Off Shutdown Off Off Off Off Off No Flash*Freeze On On On On On/off/floating Note: Off: Power supply level = 0 V Table 2-9 • Typical (25°C) Quiescent Supply Current (IDD) Characteristics, IGLOO Flash*Freeze Mode* Core Voltage AGL015 AGL030 AGL060 AGL125 AGL250 AGL400 AGL600 AGL1000 Units 1.2 V 4 4 8 13 20 27 30 44 µA 1.5 V 6 6 10 18 34 51 72 127 µA Note: *IDD includes VCC, VPUMP, VCCI, VCCPLL, and VMV currents. Values do not include I/O static contribution, which is shown in Table 2-13 on page 2-10 through Table 2-15 on page 2-11 and Table 2-16 on page 2-11 through Table 2-18 on page 2-12 (PDC6 and PDC7). R ev i si o n 2 7 2-7 IGLOO DC and Switching Characteristics Table 2-10 • Quiescent Supply Current (IDD) Characteristics, IGLOO Sleep Mode* Core Voltage VCCI/ VJTAG = 1.2 V (per bank) Typical (25°C) 1.2 V AGL015 AGL030 AGL060 AGL125 AGL250 AGL400 AGL600 AGL1000 Units 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 µA VCCI/VJTAG = 1.5 V 1.2 V / 1.5 (per bank) Typical (25°C) V 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 µA VCCI/VJTAG = 1.8 V 1.2 V / 1.5 (per bank) Typical (25°C) V 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 µA VCCI/VJTAG = 2.5 V 1.2 V / 1.5 (per bank) Typical (25°C) V 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 µA VCCI/VJTAG = 3.3 V 1.2 V / 1.5 (per bank) Typical (25°C) V 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 µA Note: IDD = NBANKS × ICCI. Values do not include I/O static contribution, which is shown in Table 2-13 on page 2-10 through Table 2-15 on page 2-11 and Table 2-16 on page 2-11 through Table 2-18 on page 2-12 (PDC6 and PDC7). Table 2-11 • Quiescent Supply Current (IDD) Characteristics, IGLOO Shutdown Mode Typical (25°C) Core Voltage AGL015 AGL030 Units 1.2 V / 1.5 V 0 0 µA Table 2-12 • Quiescent Supply Current (IDD), No IGLOO Flash*Freeze Mode1 Core Voltage ICCA Current AGL015 AGL030 AGL060 AGL125 AGL250 AGL400 AGL600 AGL1000 Units 2 Typical (25°C) 1.2 V 5 6 10 13 18 25 28 42 µA 1.5 V 14 16 20 28 44 66 82 137 µA VCCI/VJTAG = 1.2 V (per bank) Typical (25°C) 1.2 V 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 µA VCCI/VJTAG = 1.5 V (per bank) Typical (25°C) 1.2 V / 1.5 V 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 µA VCCI/VJTAG = 1.8 V (per bank) Typical (25°C) 1.2 V / 1.5 V 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 µA VCCI/VJTAG = 2.5 V (per bank) Typical (25°C) 1.2 V / 1.5 V 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 µA VCCI/VJTAG = 3.3 V (per bank) Typical (25°C) 1.2 V / 1.5 V 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 µA ICCI or IJTAG Current3 Notes: 1. IDD = NBANKS × ICCI + ICCA. JTAG counts as one bank when powered. 2. Includes VCC, VPUMP, and VCCPLL currents. 3. Values do not include I/O static contribution (PDC6 and PDC7). 2 -8 R evis i o n 27 IGLOO Low Power Flash FPGAs Power per I/O Pin Table 2-13 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings Applicable to Advanced I/O Banks VCCI (V) Static Power PDC6 (mW)1 Dynamic Power PAC9 (µW/MHz)2 3.3 V LVTTL / 3.3 V LVCMOS 3.3 – 16.27 3 3.3 V LVCMOS Wide Range 3.3 – 16.27 2.5 V LVCMOS 2.5 – 4.65 1.8 V LVCMOS 1.8 – 1.61 1.5 V LVCMOS (JESD8-11) 1.5 – 0.96 1.2 – 0.58 1.2 V LVCMOS Wide Range 1.2 – 0.58 3.3 V PCI 3.3 – 17.67 3.3 V PCI-X 3.3 – 17.67 LVDS 2.5 2.26 23.39 LVPECL 3.3 5.72 59.05 Single-Ended 1.2 V LVCMOS4 4 Differential Notes: 1. 2. 3. 4. PDC6 is the static power (where applicable) measured on VCCI. PAC9 is the total dynamic power measured on VCCI. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification. Applicable for IGLOO V2 devices only Table 2-14 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings Applicable to Standard Plus I/O Banks VCCI (V) Static Power PDC6 (mW)1 Dynamic Power PAC9 (µW/MHz)2 Single-Ended 3.3 V LVTTL / 3.3 V LVCMOS 3.3 – 16.41 3.3 V LVCMOS Wide Range3 3.3 – 16.41 2.5 V LVCMOS 2.5 – 4.75 1.8 V LVCMOS 1.8 – 1.66 1.5 V LVCMOS (JESD8-11) 1.5 – 1.00 1.2 V LVCMOS4 1.2 – 0.61 1.2 V LVCMOS Wide Range4 1.2 – 0.61 3.3 V PCI 3.3 – 17.78 3.3 V PCI-X 3.3 – 17.78 Notes: 1. 2. 3. 4. PDC6 is the static power (where applicable) measured on VCCI. PAC9 is the total dynamic power measured on VCCI. Applicable for IGLOO V2 devices only. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification. R ev i si o n 2 7 2-9 IGLOO DC and Switching Characteristics Table 2-15 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings Applicable to Standard I/O Banks VCCI (V) Static Power PDC6 (mW)1 Dynamic Power PAC9 (µW/MHz)2 3.3 V LVTTL / 3.3 V LVCMOS 3.3 – 17.24 3 3.3 V LVCMOS Wide Range 3.3 – 17.24 2.5 V LVCMOS 2.5 – 5.64 1.8 V LVCMOS 1.8 – 2.63 1.5 V LVCMOS (JESD8-11) 1.5 – 1.97 1.2 V LVCMOS 1.2 – 0.57 1.2 V LVCMOS Wide Range4 1.2 – 0.57 Single-Ended 4 Notes: 1. 2. 3. 4. PDC6 is the static power (where applicable) measured on VCCI. PAC9 is the total dynamic power measured on VCCI. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification. Applicable for IGLOO V2 devices only. Table 2-16 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings1 Applicable to Advanced I/O Banks CLOAD (pF) VCCI (V) Static Power PDC7 (mW)2 Dynamic Power PAC10 (µW/MHz)3 Single-Ended 3.3 V LVTTL / 3.3 V LVCMOS 5 3.3 – 136.95 3.3 V LVCMOS Wide Range4 5 3.3 – 136.95 2.5 V LVCMOS 5 2.5 – 76.84 1.8 V LVCMOS 5 1.8 – 49.31 1.5 V LVCMOS (JESD8-11) 5 1.5 – 33.36 1.2 V LVCMOS5 5 1.2 – 16.24 1.2 V LVCMOS Wide Range5 5 1.2 – 16.24 3.3 V PCI 10 3.3 – 194.05 3.3 V PCI-X 10 3.3 – 194.05 LVDS – 2.5 7.74 156.22 LVPECL – 3.3 19.54 339.35 Differential Notes: 1. 2. 3. 4. 5. Dynamic power consumption is given for standard load and software default drive strength and output slew. PDC7 is the static power (where applicable) measured on VCCI. PAC10 is the total dynamic power measured on VCCI. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification. Applicable for IGLOO V2 devices only. 2 -1 0 R evi s i o n 27 IGLOO Low Power Flash FPGAs Table 2-17 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings1 Applicable to Standard Plus I/O Banks CLOAD (pF) VCCI (V) Static Power PDC7 (mW)2 Dynamic Power PAC10 (µW/MHz)3 3.3 V LVTTL / 3.3 V LVCMOS 5 3.3 – 122.16 4 3.3 V LVCMOS Wide Range 5 3.3 – 122.16 2.5 V LVCMOS 5 2.5 – 68.37 1.8 V LVCMOS 5 1.8 – 34.53 1.5 V LVCMOS (JESD8-11) 5 1.5 – 23.66 1.2 V LVCMOS 5 1.2 – 14.90 1.2 V LVCMOS Wide Range5 5 1.2 – 14.90 3.3 V PCI 10 3.3 – 181.06 3.3 V PCI-X 10 3.3 – 181.06 Single-Ended 5 Notes: 1. 2. 3. 4. 5. Dynamic power consumption is given for standard load and software default drive strength and output slew. PDC7 is the static power (where applicable) measured on VCCI. PAC10 is the total dynamic power measured on VCCI. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification. Applicable for IGLOO V2 devices only. Table 2-18 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings1 Applicable to Standard I/O Banks CLOAD (pF) VCCI (V) Static Power PDC7 (mW)2 Dynamic Power PAC10 (µW/MHz)3 3.3 V LVTTL / 3.3 V LVCMOS 5 3.3 – 104.38 4 3.3 V LVCMOS Wide Range 5 3.3 – 104.38 2.5 V LVCMOS 5 2.5 – 59.86 1.8 V LVCMOS 5 1.8 – 31.26 1.5 V LVCMOS (JESD8-11) 5 1.5 – 21.96 5 1.2 – 13.49 5 1.2 – 13.49 Single-Ended 5 1.2 V LVCMOS 5 1.2 V LVCMOS Wide Range Notes: 1. 2. 3. 4. 5. Dynamic power consumption is given for standard load and software default drive strength and output slew. PDC7 is the static power (where applicable) measured on VCCI. PAC10 is the total dynamic power measured on VCCI. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification. Applicable for IGLOO V2 devices only. R ev i si o n 2 7 2-11 IGLOO DC and Switching Characteristics Power Consumption of Various Internal Resources Table 2-19 • Different Components Contributing to Dynamic Power Consumption in IGLOO Devices For IGLOO V2 or V5 Devices, 1.5 V DC Core Supply Voltage Device Specific Dynamic Power (µW/MHz) Parameter Definition AGL1000 AGL600 AGL400 AGL250 AGL125 AGL060 AGL030 AGL015 PAC1 Clock contribution of a Global Rib 7.778 6.221 6.082 4.460 4.446 2.736 0.000 0.000 PAC2 Clock contribution of a Global Spine 4.334 3.512 2.759 2.718 1.753 1.971 3.483 3.483 PAC3 Clock contribution of a VersaTile row 1.379 1.445 1.377 1.483 1.467 1.503 1.472 1.472 PAC4 Clock contribution of a VersaTile used as a sequential module 0.151 0.149 0.151 0.149 0.149 0.151 0.146 0.146 PAC5 First contribution of a VersaTile used as a sequential module 0.057 PAC6 Second contribution of a VersaTile used as a sequential module 0.207 PAC7 Contribution of a VersaTile used as a combinatorial module 0.276 0.262 0.279 0.277 0.280 0.300 0.281 0.273 PAC8 Average contribution of a routing net 1.161 1.147 1.193 1.273 1.076 1.088 1.134 1.153 PAC9 Contribution of an I/O input pin (standard-dependent) See Table 2-13 on page 2-10 through Table 2-15 on page 2-11. PAC10 Contribution of an I/O output pin (standard-dependent) See Table 2-16 on page 2-11 through Table 2-18 on page 2-12. PAC11 Average contribution of a RAM block during a read operation 25.00 PAC12 Average contribution of a RAM block during a write operation 30.00 PAC13 Dynamic PLL contribution 2.70 Note: For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi power spreadsheet calculator or SmartPower tool in Libero SoC. 2 -1 2 R evi s i o n 27 IGLOO Low Power Flash FPGAs Table 2-20 • Different Components Contributing to the Static Power Consumption in IGLOO Devices For IGLOO V2 or V5 Devices, 1.5 V DC Core Supply Voltage Device-Specific Static Power (mW) Parameter Definition AGL1000 AGL600 AGL400 AGL250 AGL125 AGL060 AGL030 AGL015 PDC1 Array static power in Active mode See Table 2-12 on page 2-9. PDC2 Array static power in Static (Idle) mode See Table 2-11 on page 2-8. PDC3 Array static power in Flash*Freeze mode See Table 2-9 on page 2-7. PDC4 Static PLL contribution 1.84 PDC5 Bank quiescent power (VCCI-dependent) See Table 2-12 on page 2-9. PDC6 I/O input pin static power (standard-dependent) See Table 2-13 on page 2-10 through Table 2-15 on page 2-11. PDC7 I/O output pin static power (standard-dependent) See Table 2-16 on page 2-11 through Table 2-18 on page 2-12. Note: *For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi power spreadsheet calculator or SmartPower tool in Libero SoC. R ev i si o n 2 7 2-13 IGLOO DC and Switching Characteristics Table 2-21 • Different Components Contributing to Dynamic Power Consumption in IGLOO Devices For IGLOO V2 Devices, 1.2 V DC Core Supply Voltage Device Specific Dynamic Power (µW/MHz) Parameter Definition AGL1000 AGL600 AGL400 AGL250 AGL125 AGL060 AGL030 AGL015 PAC1 Clock contribution of a Global Rib 4.978 3.982 3.892 2.854 2.845 1.751 0.000 0.000 PAC2 Clock contribution of a Global Spine 2.773 2.248 1.765 1.740 1.122 1.261 2.229 2.229 PAC3 Clock contribution of a VersaTile row 0.883 0.924 0.881 0.949 0.939 0.962 0.942 0.942 PAC4 Clock contribution of a VersaTile used as a sequential module 0.096 0.095 0.096 0.095 0.095 0.096 0.094 0.094 PAC5 First contribution of a VersaTile used as a sequential module 0.045 PAC6 Second contribution of a VersaTile used as a sequential module 0.186 PAC7 Contribution of a VersaTile used as a combinatorial module 0.158 0.149 0.158 0.157 0.160 0.170 0.160 0.155 PAC8 Average contribution of a routing net 0.756 0.729 0.753 0.817 0.678 0.692 0.738 0.721 PAC9 Contribution of an I/O input pin (standard-dependent) See Table 2-13 on page 2-10 through Table 2-15 on page 2-11. PAC10 Contribution of an I/O output pin (standard-dependent) See Table 2-16 on page 2-11 through Table 2-18 on page 2-12. PAC11 Average contribution of a RAM block during a read operation 25.00 PAC12 Average contribution of a RAM block during a write operation 30.00 PAC13 Dynamic PLL contribution 2.10 Note: For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi power spreadsheet calculator or SmartPower tool in Libero SoC. 2 -1 4 R evi s i o n 27 IGLOO Low Power Flash FPGAs Table 2-22 • Different Components Contributing to the Static Power Consumption in IGLOO Device For IGLOO V2 Devices, 1.2 V DC Core Supply Voltage Device Specific Static Power (mW) Parameter Definition AGL1000 AGL600 AGL400 AGL250 AGL125 AGL060 AGL030 AGL015 PDC1 Array static power in Active mode See Table 2-12 on page 2-9. PDC2 Array static power in Static (Idle) mode See Table 2-11 on page 2-8. PDC3 Array static power in Flash*Freeze mode See Table 2-9 on page 2-7. PDC4 Static PLL contribution 0.90 PDC5 Bank quiescent power (VCCI-Dependent) See Table 2-12 on page 2-9. PDC6 I/O input pin static power (standard-dependent) See Table 2-13 on page 2-10 through Table 2-15 on page 2-11. PDC7 I/O output pin static power (standard-dependent) See Table 2-16 on page 2-11 through Table 2-18 on page 2-12. Note: For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi power spreadsheet calculator or SmartPower tool in Libero SoC. R ev i si o n 2 7 2-15 IGLOO DC and Switching Characteristics Power Calculation Methodology This section describes a simplified method to estimate power consumption of an application. For more accurate and detailed power estimations, use the SmartPower tool in Microsemi Libero SoC software. The power calculation methodology described below uses the following variables: • The number of PLLs as well as the number and the frequency of each output clock generated • The number of combinatorial and sequential cells used in the design • The internal clock frequencies • The number and the standard of I/O pins used in the design • The number of RAM blocks used in the design • Toggle rates of I/O pins as well as VersaTiles—guidelines are provided in Table 2-23 on page 2-19. • Enable rates of output buffers—guidelines are provided for typical applications in Table 2-24 on page 2-19. • Read rate and write rate to the memory—guidelines are provided for typical applications in Table 2-24 on page 2-19. The calculation should be repeated for each clock domain defined in the design. Methodology Total Power Consumption—PTOTAL PTOTAL = PSTAT + PDYN PSTAT is the total static power consumption. PDYN is the total dynamic power consumption. Total Static Power Consumption—PSTAT PSTAT = (PDC1 or PDC2 or PDC3) + NBANKS * PDC5 + NINPUTS * PDC6 + NOUTPUTS * PDC7 NINPUTS is the number of I/O input buffers used in the design. NOUTPUTS is the number of I/O output buffers used in the design. NBANKS is the number of I/O banks powered in the design. Total Dynamic Power Consumption—PDYN PDYN = PCLOCK + PS-CELL + PC-CELL + PNET + PINPUTS + POUTPUTS + PMEMORY + PPLL Global Clock Contribution—PCLOCK PCLOCK = (PAC1 + NSPINE* PAC2 + NROW * PAC3 + NS-CELL* PAC4) * FCLK NSPINE is the number of global spines used in the user design—guidelines are provided in the "Spine Architecture" section of the IGLOO FPGA Fabric User Guide. NROW is the number of VersaTile rows used in the design—guidelines are provided in the "Spine Architecture" section of the IGLOO FPGA Fabric User Guide. FCLK is the global clock signal frequency. NS-CELL is the number of VersaTiles used as sequential modules in the design. PAC1, PAC2, PAC3, and PAC4 are device-dependent. Sequential Cells Contribution—PS-CELL PS-CELL = NS-CELL * (PAC5 + 1 / 2 * PAC6) * FCLK NS-CELL is the number of VersaTiles used as sequential modules in the design. When a multi-tile sequential cell is used, it should be accounted for as 1. 1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-23 on page 2-19. FCLK is the global clock signal frequency. 2 -1 6 R evi s i o n 27 IGLOO Low Power Flash FPGAs Combinatorial Cells Contribution—PC-CELL PC-CELL = NC-CELL* 1 / 2 * PAC7 * FCLK NC-CELL is the number of VersaTiles used as combinatorial modules in the design. 1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-23 on page 2-19. FCLK is the global clock signal frequency. Routing Net Contribution—PNET PNET = (NS-CELL + NC-CELL) * 1 / 2 * PAC8 * FCLK NS-CELL is the number of VersaTiles used as sequential modules in the design. NC-CELL is the number of VersaTiles used as combinatorial modules in the design. 1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-23 on page 2-19. FCLK is the global clock signal frequency. I/O Input Buffer Contribution—PINPUTS PINPUTS = NINPUTS * 2 / 2 * PAC9 * FCLK NINPUTS is the number of I/O input buffers used in the design. 2 is the I/O buffer toggle rate—guidelines are provided in Table 2-23 on page 2-19. FCLK is the global clock signal frequency. I/O Output Buffer Contribution—POUTPUTS POUTPUTS = NOUTPUTS * 2 / 2 * 1 * PAC10 * FCLK NOUTPUTS is the number of I/O output buffers used in the design. 2 is the I/O buffer toggle rate—guidelines are provided in Table 2-23 on page 2-19. 1 is the I/O buffer enable rate—guidelines are provided in Table 2-24 on page 2-19. FCLK is the global clock signal frequency. RAM Contribution—PMEMORY PMEMORY = PAC11 * NBLOCKS * FREAD-CLOCK * 2 + PAC12 * NBLOCK * FWRITE-CLOCK * 3 NBLOCKS is the number of RAM blocks used in the design. FREAD-CLOCK is the memory read clock frequency. 2 is the RAM enable rate for read operations. FWRITE-CLOCK is the memory write clock frequency. 3 is the RAM enable rate for write operations—guidelines are provided in Table 2-24 on page 2-19. PLL Contribution—PPLL PPLL = PDC4 + PAC13 *FCLKOUT FCLKOUT is the output clock frequency.† † If a PLL is used to generate more than one output clock, include each output clock in the formula by adding its corresponding contribution (PAC13* FCLKOUT product) to the total PLL contribution. R ev i si o n 2 7 2-17 IGLOO DC and Switching Characteristics Guidelines Toggle Rate Definition A toggle rate defines the frequency of a net or logic element relative to a clock. It is a percentage. If the toggle rate of a net is 100%, this means that this net switches at half the clock frequency. Below are some examples: • The average toggle rate of a shift register is 100% because all flip-flop outputs toggle at half of the clock frequency. • The average toggle rate of an 8-bit counter is 25%: – Bit 0 (LSB) = 100% – Bit 1 = 50% – Bit 2 = 25% – … – Bit 7 (MSB) = 0.78125% – Average toggle rate = (100% + 50% + 25% + 12.5% + . . . + 0.78125%) / 8 Enable Rate Definition Output enable rate is the average percentage of time during which tristate outputs are enabled. When nontristate output buffers are used, the enable rate should be 100%. Table 2-23 • Toggle Rate Guidelines Recommended for Power Calculation Component 1 2 Definition Guideline Toggle rate of VersaTile outputs 10% I/O buffer toggle rate 10% Table 2-24 • Enable Rate Guidelines Recommended for Power Calculation Component 1 2 3 2 -1 8 Definition Guideline I/O output buffer enable rate 100% RAM enable rate for read operations 12.5% RAM enable rate for write operations 12.5% R evi s i o n 27 IGLOO Low Power Flash FPGAs User I/O Characteristics Timing Model I/O Module (Non-Registered) Combinational Cell Combinational Cell Y LVPECL (Applicable to Advanced I/O Banks Only)L Y tPD = 1.22 ns tPD = 1.20 ns tDP = 1.72 ns I/O Module (Non-Registered) Combinational Cell Y LVTTL Output drive strength = 12 mA High slew rate tDP = 3.05 ns (Advanced I/O Banks) tPD = 1.80 ns I/O Module (Non-Registered) Combinational Cell I/O Module (Registered) Y LVTTL Output drive strength = 8 mA High slew rate tDP = 4.12 ns (Advanced I/O Banks) tPY = 1.20 ns LVPECL (Applicable to Advanced I/O Banks only) D tPD = 1.49 ns Q I/O Module (Non-Registered) Combinational Cell Y tICLKQ = 0.43 ns tISUD = 0.47 ns LVCMOS 1.5 V Output drive strength = 4 mA High slew rate tDP = 4.42 ns (Advanced I/O Banks) tPD = 0.86 ns Input LVTTL Clock Register Cell tPY = 0.87 ns (Advanced I/O Banks) D Combinational Cell Y Q I/O Module (Non-Registered) LVDS, BLVDS, M-LVDS (Applicable for Advanced I/O Banks only) Figure 2-3 • D Q D tPD = 0.92 ns tCLKQ = 0.90 ns tSUD = 0.82 ns tPY = 1.35 ns I/O Module (Registered) Register Cell Q LVTTL 3.3 V Output drive strength = 12 mA High slew rate tDP = 3.05 ns (Advanced I/O Banks) tCLKQ = 0.90 ns tSUD = 0.82 ns tOCLKQ = 1.02 ns tOSUD = 0.52 ns Input LVTTL Clock Input LVTTL Clock tPY = 0.87 ns (Advanced I/O Banks) tPY = 0.87 ns (Advanced I/O Banks) Timing Model Operating Conditions: Std. Speed, Commercial Temperature Range (TJ = 70°C), Worst-Case VCC = 1.425 V, for DC 1.5 V Core Voltage, Applicable to V2 and V5 Devices R ev i si o n 2 7 2-19 IGLOO DC and Switching Characteristics tPY tDIN D PAD Q DIN Y CLK tPY = MAX(tPY(R), tPY(F)) tDIN = MAX(tDIN(R), tDIN(F)) To Array I/O Interface VIH PAD Vtrip Vtrip VIL VCC 50% 50% Y GND tPY (F) tPY (R) VCC 50% DIN GND 50% tDIN tDIN (R) Figure 2-4 • 2 -2 0 (F) Input Buffer Timing Model and Delays (example) R evi s i o n 27 IGLOO Low Power Flash FPGAs tDOUT tDP D Q PAD DOUT D Std Load CLK From Array tDP = MAX(tDP(R), tDP(F)) tDOUT = MAX(tDOUT(R), tDOUT(F)) I/O Interface tDOUT tDOUT VCC (R) D 50% (F) 50% 0V VCC DOUT 50% 50% 0V VOH Vtrip Vtrip VOL PAD tDP (R) Figure 2-5 • tDP (F) Output Buffer Model and Delays (example) R ev i si o n 2 7 2-21 IGLOO DC and Switching Characteristics tEOUT D Q CLK E tZL, tZH, tHZ, tLZ, tZLS, tZHS EOUT D Q PAD DOUT CLK D tEOUT = MAX(tEOUT(r), tEOUT(f)) I/O Interface VCC D VCC 50% tEOUT (F) 50% E tEOUT (R) VCC 50% 50% 50% EOUT tZL tZH tHZ VCCI 90% VCCI PAD Vtrip Vtrip VOL 10% VCCI VCC D VCC E 50% tEOUT (R) 50% tEOUT (F) VCC EOUT 50% 50% tZLS VOH 50% tZHS PAD Vtrip Figure 2-6 • 2 -2 2 50% tLZ Vtrip VOL Tristate Output Buffer Timing Model and Delays (example) R evi s i o n 27 IGLOO Low Power Flash FPGAs Overview of I/O Performance Summary of I/O DC Input and Output Levels – Default I/O Software Settings Table 2-25 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions—Software Default Settings Applicable to Advanced I/O Banks I/O Standard VIL Equivalent Software Default Drive Max. Drive Strength Slew V Rate Min.V Strength Option2 VIH VOL VOH IOL1 IOH1 Min. V Max.V Max. V Min. V mA mA 3.3 V LVTTL / 3.3 V LVCMOS 12 mA 12 mA High –0.3 0.8 2 3.6 0.4 2.4 12 12 3.3 V LVCMOS Wide Range3 100 µA 12 mA High –0.3 0.8 2 3.6 0.2 VCCI – 0.2 0.1 0.1 2.5 V LVCMOS 12 mA 12 mA High –0.3 0.7 1.7 2.7 0.7 1.7 12 12 1.8 V LVCMOS 12 mA 12 mA High –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 12 12 1.5 V LVCMOS 12 mA 12 mA High –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 12 12 1.2 V LVCMOS4 2 mA 2 mA High –0.3 0.35 * VCCI 0.65 * VCCI 1.26 0.25 * VCCI 0.75 * VCCI 2 2 1.2 V LVCMOS Wide Range4,5 100 µA 2 mA High –0.3 0.7 * VCCI 1.575 0.1 VCCI – 0.1 0.1 0.1 3.3 V PCI 3.3 V PCI-X 0.3 * VCCI Per PCI specifications Per PCI-X specifications Notes: 1. Currents are measured at 85°C junction temperature. 2. The minimum drive strength for any LVCMOS 1.2 V or LVCMOS 3.3 V software configuration when run in wide range is ±100 µA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models. 3. All LVMCOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification. 4. Applicable to V2 Devices operating at VCCI VCC. 5. All LVCMOS 1.2 V software macros support LVCMOS 1.2 V wide range as specified in the JESD8-12 specification. R ev i si o n 2 7 2-23 IGLOO DC and Switching Characteristics Table 2-26 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions—Software Default Settings Applicable to Standard Plus I/O Banks I/O Standard Equivalent Software Default Drive Drive Strength Slew Strength Rate Option2 VIL VIH VOL VOH IOL IOH Min. V Max. V Min. V Max. V Max. V Min. V mA mA 3.3 V LVTTL / 3.3 V LVCMOS 12 mA 12 mA High –0.3 0.8 2 3.6 0.4 2.4 12 12 3.3 V LVCMOS Wide Range3 100 µA 12 mA High –0.3 0.8 2 3.6 0.2 VDD-0.2 0.1 0.1 2.5 V LVCMOS 12 mA 12 mA High –0.3 0.7 1.7 2.7 0.7 1.7 12 12 1.8 V LVCMOS 8 mA 8 mA High –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 8 8 1.5 V LVCMOS 4 mA 4 mA High –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 4 4 1.2 V LVCMOS4 2 mA 2 mA High –0.3 0.35 * VCCI 0.65 * VCCI 1.26 0.25 * VCCI 0.75 * VCCI 2 2 1.2 V LVCMOS Wide Range4 100 µA 2 mA High –0.3 0.3 * VCCI 0.7 * VCCI 1.575 0.1 VCCI – 0.1 0.1 0.1 3.3 V PCI 3.3 V PCI-X Per PCI specifications Per PCI-X specifications Notes: 1. Currents are measured at 85°C junction temperature. 2. The minimum drive strength for any LVCMOS 1.2 V or LVCMOS 3.3 V software configuration when run in wide range is ±100 µA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models. 3. All LVMCOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification. 4. Applicable to V2 Devices operating at VCCI  VCC. 5. All LVCMOS 1.2 V software macros support LVCMOS 1.2 V wide range as specified in the JESD8-12 specification. 2 -2 4 R evi s i o n 27 IGLOO Low Power Flash FPGAs Table 2-27 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions—Software Default Settings Applicable to Standard I/O Banks I/O Standard Equivalent Software Default Drive Drive Strength Slew Strength Rate Option2 VIL VIH VOL VOH IOL1 IOH1 Min. V Max. V Min. V Max. V Max. V Min. V mA mA 3.3 V LVTTL / 3.3 V LVCMOS 8 mA 8 mA High –0.3 0.8 2 3.6 0.4 2.4 8 8 3.3 V LVCMOS Wide Range3 100 µA 8 mA High –0.3 0.8 2 3.6 0.2 VDD-0.2 0.1 0.1 2.5 V LVCMOS 8 mA 8 mA High –0.3 0.7 1.7 3.6 0.7 1.7 8 8 1.8 V LVCMOS 4 mA 4 mA High –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 4 4 1.5 V LVCMOS 2 mA 2 mA High –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 2 2 1.2 V LVCMOS4 1 mA 1 mA High –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 1 1 1.2 V LVCMOS Wide Range4,5 100 µA 1 mA High –0.3 0.3 * VCCI 0.7 * VCCI 3.6 0.1 0.1 0.1 VCCI – 0.1 Notes: 1. Currents are measured at 85°C junction temperature. 2. The minimum drive strength for any LVCMOS 1.2 V or LVCMOS 3.3 V software configuration when run in wide range is ±100 µA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models. 3. All LVMCOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification. 4. Applicable to V2 Devices operating at VCCI  VCC. 5. All LVCMOS 1.2 V software macros support LVCMOS 1.2 V wide range as specified in the JESD8-12 specification. R ev i si o n 2 7 2-25 IGLOO DC and Switching Characteristics Table 2-28 • Summary of Maximum and Minimum DC Input Levels Applicable to Commercial and Industrial Conditions Commercial1 Industrial2 IIL4 IIH5 IIL4 IIH5 DC I/O Standards µA µA µA µA 3.3 V LVTTL / 3.3 V LVCMOS 10 10 15 15 3.3 V LVCMOS Wide Range 10 10 15 15 2.5 V LVCMOS 10 10 15 15 1.8 V LVCMOS 10 10 15 15 1.5 V LVCMOS 10 10 15 15 10 10 15 15 10 10 15 15 3.3 V PCI 10 10 15 15 3.3 V PCI-X 10 10 15 15 1.2 V LVCMOS3 1.2 V LVCMOS Wide Range 3 Notes: 1. 2. 3. 4. 5. Commercial range (0°C < TA < 70°C) Industrial range (–40°C < TA < 85°C) Applicable to V2 Devices operating at VCCI VCC. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges 2 -2 6 R evi s i o n 27 IGLOO Low Power Flash FPGAs Summary of I/O Timing Characteristics – Default I/O Software Settings Table 2-29 • Summary of AC Measuring Points Standard Measuring Trip Point (Vtrip) 3.3 V LVTTL / 3.3 V LVCMOS 1.4 V 3.3 V VCMOS Wide Range 1.4 V 2.5 V LVCMOS 1.2 V 1.8 V LVCMOS 0.90 V 1.5 V LVCMOS 0.75 V 1.2 V LVCMOS 0.60 V 1.2 V LVCMOS Wide Range 0.60 V 3.3 V PCI 0.285 * VCCI (RR) 0.615 * VCCI (FF) 3.3 V PCI-X 0.285 * VCCI (RR) 0.615 * VCCI (FF) Table 2-30 • I/O AC Parameter Definitions Parameter Parameter Definition tDP Data to Pad delay through the Output Buffer tPY Pad to Data delay through the Input Buffer tDOUT Data to Output Buffer delay through the I/O interface tEOUT Enable to Output Buffer Tristate Control delay through the I/O interface tDIN Input Buffer to Data delay through the I/O interface tHZ Enable to Pad delay through the Output Buffer—High to Z tZH Enable to Pad delay through the Output Buffer—Z to High tLZ Enable to Pad delay through the Output Buffer—Low to Z tZL Enable to Pad delay through the Output Buffer—Z to Low tZHS Enable to Pad delay through the Output Buffer with delayed enable—Z to High tZLS Enable to Pad delay through the Output Buffer with delayed enable—Z to Low R ev i si o n 2 7 2-27 IGLOO DC and Switching Characteristics – 0.97 2.93 0.18 1.19 0.66 2.95 2.27 3.81 4.30 6.54 5.87 ns 2.5 V LVCMOS 12 mA 12 High 5 – 0.97 2.09 0.18 1.08 0.66 2.14 1.83 2.73 2.93 5.73 5.43 ns 1.8 V LVCMOS 12 mA 12 High 5 – 0.97 2.24 0.18 1.01 0.66 2.29 2.00 3.02 3.40 5.88 5.60 ns 1.5 V LVCMOS 12 mA 12 High 5 – 0.97 2.50 0.18 1.17 0.66 2.56 2.27 3.21 3.48 6.15 5.86 ns 3.3 V PCI Per PCI spec – High 10 25 2 0.97 2.32 0.18 0.74 0.66 2.37 1.78 2.67 3.05 5.96 5.38 ns 3.3 V PCI-X Per PCIX spec – High 10 25 2 0.97 2.32 0.19 0.70 0.66 2.37 1.78 2.67 3.05 5.96 5.38 ns LVDS 24 mA – High – – 0.97 1.74 0.19 1.35 – – – – – – – ns LVPECL 24 mA – High – – 0.97 1.68 0.19 1.16 – – – – – – – ns Units 5 tZHS (ns) High tZLS (ns) 12 tHZ (ns) 100 µA tLZ (ns) 3.3 V LVCMOS Wide Range2 tZH (ns) 0.97 2.09 0.18 0.85 0.66 2.14 1.68 2.67 3.05 5.73 5.27 ns tZL (ns) – tE O U T (ns) 5 tPY (ns) External Resistor () High tDIN (ns) Capacitive Load (pF) 12 tDP (ns) Slew Rate 12 mA tDOUT (ns) Equivalent Software Default Drive Strength Option1 (mA) 3.3 V LVTTL / 3.3 V LVCMOS I/O Standard Drive Strength Table 2-31 • Summary of I/O Timing Characteristics—Software Default Settings, Std. Speed Grade, Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI (per standard) Applicable to Advanced I/O Banks Notes: 1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 µA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models. 2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification. 3. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-12 on page 2-79 for connectivity. This resistor is not required during normal operation. 4. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values. 2 -2 8 R evi s i o n 27 IGLOO Low Power Flash FPGAs High 5 – 0.97 2.45 0.18 1.20 0.66 2.47 1.92 3.33 3.90 6.06 5.51 ns 2.5 V LVCMOS 12 mA 12 High 5 – 0.97 1.75 0.18 1.08 0.66 1.79 1.52 2.38 2.70 5.39 5.11 ns 1.8 V LVCMOS 8 mA 8 High 5 – 0.97 1.97 0.18 1.01 0.66 2.02 1.76 2.46 2.66 5.61 5.36 ns 1.5 V LVCMOS 4 mA 4 High 5 – 0.97 2.25 0.18 1.18 0.66 2.30 2.00 2.53 2.68 5.89 5.59 ns 3.3 V PCI Per PCI spec – High 10 25 2 0.97 1.97 0.18 0.73 0.66 2.01 1.50 2.36 2.79 5.61 5.10 ns 3.3 V PCI-X Per PCIX spec – High 10 25 2 0.97 1.97 0.19 0.70 0.66 2.01 1.50 2.36 2.79 5.61 5.10 ns Units tZHS (ns) 12 tZLS (ns) 100 µA tHZ (ns) 3.3 V LVCMOS Wide Range2 tLZ (ns) ns tZH (ns) 0.97 1.75 0.18 0.85 0.66 1.79 1.40 2.36 2.79 5.38 4.99 tZL (ns) – tE O U T (ns) 5 tPY (ns) External Resistor () High tDIN (ns) Capacitive Load (pF) 12 tDP (ns) Slew Rate 12 mA tDOUT (ns) Equivalent Software Default Drive Strength Option1 (mA) 3.3 V LVTTL / 3.3 V LVCMOS I/O Standard Drive Strength Table 2-32 • Summary of I/O Timing Characteristics—Software Default Settings, Std. Speed Grade, Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI (per standard) Applicable to Standard Plus I/O Banks Notes: 1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 µA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models. 2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification. 3. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-12 on page 2-79 for connectivity. This resistor is not required during normal operation. 4. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values. R ev i si o n 2 7 2-29 IGLOO DC and Switching Characteristics Equivalent Software Default Drive Strength Option1 (mA) Slew Rate Capacitive Load (pF) External Resistor () tDOUT (ns) tDP (ns) tDIN (ns) tPY (ns) tE O U T (ns) tZL (ns) tZH (ns) tLZ (ns) tHZ (ns) Units 3.3 V LVTTL / 3.3 V LVCMOS 8 mA 8 High 5 – 0.97 1.85 0.18 0.83 0.66 1.89 1.46 1.96 2.26 ns 3.3 V LVCMOS Wide Range2 100 µA 8 High 5 – 0.97 2.62 0.18 1.17 0.66 2.63 2.02 2.79 3.17 ns 2.5 V LVCMOS 8 mA 8 High 5 – 0.97 1.88 0.18 1.04 0.66 1.92 1.63 1.95 2.15 ns 1.8 V LVCMOS 4 mA 4 High 5 – 0.97 2.18 0.18 0.98 0.66 2.22 1.93 1.97 2.06 ns 1.5 V LVCMOS 2 mA 2 High 5 – 0.97 2.51 0.18 1.14 0.66 2.56 2.21 1.99 2.03 ns I/O Standard Drive Strength) Table 2-33 • Summary of I/O Timing Characteristics—Software Default Settings, Std. Speed Grade, Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI (per standard) Applicable to Standard I/O Banks Notes: 1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 µA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models. 2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification. 3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values. 2 -3 0 R evi s i o n 27 IGLOO Low Power Flash FPGAs Equivalent Software Default Drive Strength Option1 Slew Rate Capacitive Load (pF) External Resistor () tDOUT (ns) tDP (ns) tDIN (ns) tPY (ns) tE O U T (ns) tZL (ns) tZH (ns) tLZ (ns) tHZ (ns) tZLS (ns) tZHS (ns) Units 3.3 V LVTTL / 3.3 V LVCMOS 12 mA 12 mA High 5 – 1.55 2.67 0.26 0.98 1.10 2.71 2.18 3.25 3.93 8.50 7.97 ns 3.3 V LVCMOS Wide Range2 100 µA 12 mA High 5 – 1.55 3.73 0.26 1.32 1.10 3.73 2.91 4.51 5.43 9.52 8.69 ns 2.5 V LVCMOS 12 mA 12 mA High 5 – 1.55 2.64 0.26 1.20 1.10 2.67 2.29 3.30 3.79 8.46 8.08 ns 1.8 V LVCMOS 12 mA 12 mA High 5 – 1.55 2.72 0.26 1.11 1.10 2.76 2.43 3.58 4.19 8.55 8.22 ns 1.5 V LVCMOS 12 mA 12 mA High 5 – 1.55 2.96 0.26 1.27 1.10 3.00 2.70 3.75 4.23 8.78 8.48 ns 1.2 V LVCMOS 2 mA 2 mA High 5 – 1.55 3.60 0.26 1.60 1.10 3.47 3.36 3.93 3.65 9.26 9.14 ns 1.2 V LVCMOS Wide Range3 100 µA 2 mA High 5 – 1.55 3.60 0.26 1.60 1.10 3.47 3.36 3.93 3.65 9.26 9.14 ns 3.3 V PCI Per PCI spec – High 10 252 1.55 2.91 0.26 0.86 1.10 2.95 2.29 3.25 3.93 8.74 8.08 ns 3.3 V PCI-X Per PCIX spec – High 10 252 1.55 2.91 0.25 0.86 1.10 2.95 2.29 3.25 3.93 8.74 8.08 ns LVDS 24 mA – High – – 1.55 2.27 0.25 1.57 – – – – – – – ns LVPECL 24 mA – High – – 1.55 2.24 0.25 1.38 – – – – – – – ns I/O Standard Drive Strength Table 2-34 • Summary of I/O Timing Characteristics—Software Default Settings, Std. Speed Grade, Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI (per standard) Applicable to Advanced I/O Banks Notes: 1. The minimum drive strength for any LVCMOS 1.2 V or LVCMOS 3.3 V software configuration when run in wide range is ±100 µA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models. 2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification. 3. All LVCMOS 1.2 V software macros support LVCMOS 1.2 V wide range as specified in the JESD8-12 specification 4. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-12 on page 2-79 for connectivity. This resistor is not required during normal operation. 5. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values. R ev i si o n 2 7 2-31 IGLOO DC and Switching Characteristics Equivalent Software Default Drive Strength Option1 (mA) Slew Rate Capacitive Load (pF) External Resistor () tDOUT (ns) tDP (ns) tDIN (ns) tPY (ns) tE O U T (ns) tZL (ns) tZH (ns) tLZ (ns) tHZ (ns) tZLS (ns) tZHS (ns) Units 3.3 V LVTTL / 3.3 V LVCMOS 12 mA 12 High 5 – 1.55 2.31 0.26 0.97 1.10 2.34 1.86 2.93 3.64 8.12 7.65 ns 3.3 V LVCMOS Wide Range2 100 µA 12 High 5 – 1.55 3.20 0.26 1.32 1.10 3.20 2.52 4.01 4.97 8.99 8.31 ns 2.5 V LVCMOS 12 mA 12 High 5 – 1.55 2.29 0.26 1.19 1.10 2.32 1.94 2.94 3.52 8.10 7.73 ns 1.8 V LVCMOS 8 mA 8 High 5 – 1.55 2.43 0.26 1.11 1.10 2.47 2.16 2.99 3.39 8.25 7.94 ns 1.5 V LVCMOS 4 mA 4 High 5 – 1.55 2.68 0.26 1.27 1.10 2.72 2.39 3.07 3.37 8.50 8.18 ns 1.2 V LVCMOS 2 mA 2 High 5 – 1.55 3.22 0.26 1.59 1.10 3.11 2.78 3.29 3.48 8.90 8.57 ns 1.2 V LVCMOS Wide Range3 100 µA 2 High 5 – 1.55 3.22 0.26 1.59 1.10 3.11 2.78 3.29 3.48 8.90 8.57 ns 3.3 V PCI Per PCI spec – High 10 252 1.55 2.53 0.26 0.84 1.10 2.57 1.98 2.93 3.64 8.35 7.76 ns Per PCI-X spec – High 10 252 1.55 2.53 0.25 0.85 1.10 2.57 1.98 2.93 3.64 8.35 7.76 ns I/O Standard Drive Strength Table 2-35 • Summary of I/O Timing Characteristics—Software Default Settings, Std. Speed Grade, Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI (per standard) Applicable to Standard Plus I/O Banks 3.3 V PCI-X Notes: 1. The minimum drive strength for any LVCMOS 1.2 V or LVCMOS 3.3 V software configuration when run in wide range is ±100 µA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models. 2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification. 3. All LVCMOS 1.2 V software macros support LVCMOS 1.2 V wide range as specified in the JESD8-12 specification 4. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-12 on page 2-79 for connectivity. This resistor is not required during normal operation. 5. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values. 2 -3 2 R evi s i o n 27 IGLOO Low Power Flash FPGAs Equivalent Software Default Drive Strength Option1 (mA) Slew Rate Capacitive Load (pF) External Resistor () tDOUT (ns) tDP (ns) tDIN (ns) tPY (ns) tE O U T (ns) tZL (ns) tZH (ns) tLZ (ns) tHZ (ns) Units 3.3 V LVTTL / 3.3 V LVCMOS 8 mA 8 High 5 – 1.55 2.38 0.26 0.94 1.10 2.41 1.92 2.40 2.96 ns 3.3 V LVCMOS Wide Range3 100 µA 8 High 5 – 1.55 3.33 0.26 1.29 1.10 3.33 2.62 3.34 4.07 ns 2.5 V LVCMOS 8 mA 8 High 5 – 1.55 2.39 0.26 1.15 1.10 2.42 2.05 2.38 2.80 ns 1.8 V LVCMOS 4 mA 4 High 5 – 1.55 2.60 0.26 1.08 1.10 2.64 2.33 2.38 2.62 ns 1.5 V LVCMOS 2 mA 2 High 5 – 1.55 2.92 0.26 1.22 1.10 2.96 2.60 2.40 2.56 ns 1.2 V LVCMOS 1 mA 1 High 5 – 1.55 3.59 0.26 1.53 1.10 3.47 3.06 2.51 2.49 ns 1.2 V LVCMOS Wide Range3 100 µA 1 High 5 – 1.55 3.59 0.26 1.53 1.10 3.47 3.06 2.51 2.49 ns I/O Standard Drive Strength Table 2-36 • Summary of I/O Timing Characteristics—Software Default Settings, Std. Speed Grade, Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI (per standard) Applicable to Standard I/O Banks Notes: 1. The minimum drive strength for any LVCMOS 1.2 V or LVCMOS 3.3 V software configuration when run in wide range is ±100 µA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models. 2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification. 3. All LVCMOS 1.2 V software macros support LVCMOS 1.2 V wide range as specified in the JESD8-12 specification 4. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values. R ev i si o n 2 7 2-33 IGLOO DC and Switching Characteristics Detailed I/O DC Characteristics Table 2-37 • Input Capacitance Symbol Definition Conditions Min. Max. Units CIN Input capacitance VIN = 0, f = 1.0 MHz 8 pF CINCLK Input capacitance on the clock pin VIN = 0, f = 1.0 MHz 8 pF Table 2-38 • I/O Output Buffer Maximum Resistances1 Applicable to Advanced I/O Banks Standard 3.3 V LVTTL / 3.3 V LVCMOS 3.3 V LVCMOS Wide Range 2.5 V LVCMOS 1.5 V LVCMOS 1.2 V LVCMOS4 1.2 V LVCMOS Wide Range4 3.3 V PCI/PCI-X Drive Strength RPULL-DOWN ()2 RPULL-UP ()3 2 mA 100 300 4 mA 100 300 6 mA 50 150 8 mA 50 150 12 mA 25 75 16 mA 17 50 24 mA 11 33 100 A Same as regular 3.3 V LVCMOS Same as regular 3.3 V LVCMOS 2 mA 100 200 4 mA 100 200 6 mA 50 100 8 mA 50 100 12 mA 25 50 16 mA 20 40 2 mA 200 224 4 mA 100 112 6 mA 67 75 8 mA 33 37 12 mA 33 37 2 mA 158 164 100 A Same as regular 1.2 V LVCMOS Same as regular 1.2 V LVCMOS Per PCI/PCI-X specification 25 75 Notes: 1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on VCCI, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located at http://www.microsemi.com/soc/download/ibis/default.aspx. 2. R(PULL-DOWN-MAX) = (VOLspec) / IOLspec 3. R(PULL-UP-MAX) = (VCCImax – VOHspec) / IO H spec 4. Applicable to IGLOO V2 Devices operating at VCCI  VCC 2 -3 4 R evi s i o n 27 IGLOO Low Power Flash FPGAs Table 2-39 • I/O Output Buffer Maximum Resistances1 Applicable to Standard Plus I/O Banks Standard 3.3 V LVTTL / 3.3 V LVCMOS 3.3 V LVCMOS Wide Range 2.5 V LVCMOS 1.8 V LVCMOS 1.5 V LVCMOS 4 1.2 V LVCMOS 1.2 V LVCMOS Wide Range4 3.3 V PCI/PCI-X Drive Strength RPULL-DOWN ()2 RPULL-UP ()3 2 mA 100 300 4 mA 100 300 6 mA 50 150 8 mA 50 150 12 mA 25 75 16 mA 25 75 100 A Same as regular 3.3 V LVCMOS Same as regular 3.3 V LVCMOS 2 mA 100 200 4 mA 100 200 6 mA 50 100 8 mA 50 100 12 mA 25 50 2 mA 200 225 4 mA 100 112 6 mA 50 56 8 mA 50 56 2 mA 200 224 4 mA 100 112 2 mA 158 164 100 A Same as regular 1.2 V LVCMOS Same as regular 1.2 V LVCMOS Per PCI/PCI-X specification 25 75 Notes: 1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on VCCI, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located at http://www.microsemi.com/soc/download/ibis/default.aspx. 2. R(PULL-DOWN-MAX) = (VOLspec) / IOLspec 3. R(PULL-UP-MAX) = (VCCImax – VOHspec) / IO H spec 4. Applicable to IGLOO V2 Devices operating at VCCI VCC R ev i si o n 2 7 2-35 IGLOO DC and Switching Characteristics Table 2-40 • I/O Output Buffer Maximum Resistances1 Applicable to Standard I/O Banks Standard 3.3 V LVTTL / 3.3 V LVCMOS 3.3 V LVCMOS Wide Range 2.5 V LVCMOS 1.8 V LVCMOS 1.5 V LVCMOS 1.2 V LVCMOS 1.2 V LVCMOS Wide Range 4 Drive Strength RPULL-DOWN ()2 RPULL-UP ()3 2 mA 100 300 4 mA 100 300 6 mA 50 150 8 mA 50 150 100 A Same as regular 3.3 V LVCMOS Same as regular 3.3 V LVCMOS 2 mA 100 200 4 mA 100 200 6 mA 50 100 8 mA 50 100 2 mA 200 225 4 mA 100 112 2 mA 200 224 1 mA 158 164 100 A Same as regular 1.2 V LVCMOS Same as regular 1.2 V LVCMOS Notes: 1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on VCCI, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located at http://www.microsemi.com/soc/download/ibis/default.aspx. 2. R(PULL-DOWN-MAX) = (VOLspec) / IOLspec 3. R(PULL-UP-MAX) = (VCCImax – VOHspec) / IO H spec Table 2-41 • I/O Weak Pull-Up/Pull-Down Resistances Minimum and Maximum Weak Pull-Up/Pull-Down Resistance Values R(WEAK PULL-UP)1 () R(WEAK PULL-DOWN)2 () VCCI Min. Max. Min. Max. 3.3 V 10 K 45 K 10 K 45 K 3.3 V Wide Range I/Os 10 K 45 K 10 K 45 K 2.5 V 11 K 55 K 12 K 74 K 1.8 V 18 K 70 K 17 K 110 K 1.5 V 19 K 90 K 19 K 140 K 1.2 V 25 K 110 K 25 K 150 K 1.2 V Wide Range I/Os 19 K 110 K 19 K 150 K Notes: 1. R(WEAK PULL-UP-MAX) = (VCCImax – VOHspec) / I(WEAK PULL-UP-MIN) 2. R(WEAK PULLDOWN-MAX) = (VOLspec) / I(WEAK PULLDOWN-MIN) 2 -3 6 R evi s i o n 27 IGLOO Low Power Flash FPGAs Table 2-42 • I/O Short Currents IOSH/IOSL Applicable to Advanced I/O Banks 3.3 V LVTTL / 3.3 V LVCMOS 3.3 V LVCMOS Wide Range 2.5 V LVCMOS 1.8 V LVCMOS 1.5 V LVCMOS 1.2 V LVCMOS 1.2 V LVCMOS Wide Range 3.3 V PCI/PCI-X Drive Strength IOSL (mA)* IOSH (mA)* 2 mA 25 27 4 mA 25 27 6 mA 51 54 8 mA 51 54 12 mA 103 109 16 mA 132 127 24 mA 268 181 100 A Same as regular 3.3 V LVCMOS Same as regular 3.3 V LVCMOS 2 mA 16 18 4 mA 16 18 6 mA 32 37 8 mA 32 37 12 mA 65 74 16 mA 83 87 24 mA 169 124 2 mA 9 11 4 mA 17 22 6 mA 35 44 8 mA 45 51 12 mA 91 74 16 mA 91 74 2 mA 13 16 4 mA 25 33 6 mA 32 39 8 mA 66 55 12 mA 66 55 2 mA 20 26 100 A 20 26 Per PCI/PCI-X specification 103 109 Note: *TJ = 100°C R ev i si o n 2 7 2-37 IGLOO DC and Switching Characteristics Table 2-43 • I/O Short Currents IOSH/IOSL Applicable to Standard Plus I/O Banks 3.3 V LVTTL / 3.3 V LVCMOS 3.3 V LVCMOS Wide Range 2.5 V LVCMOS 1.8 V LVCMOS 1.5 V LVCMOS 1.2 V LVCMOS 1.2 V LVCMOS Wide Range 3.3 V PCI/PCI-X Drive Strength IOSL (mA)* IOSH (mA)* 2 mA 25 27 4 mA 25 27 6 mA 51 54 8 mA 51 54 12 mA 103 109 16 mA 103 109 100 A Same as regular 3.3 V LVCMOS Same as regular 3.3 V LVCMOS 2 mA 16 18 4 mA 16 18 6 mA 32 37 8 mA 32 37 12 mA 65 74 2 mA 9 11 4 mA 17 22 6 mA 35 44 8 mA 35 44 2 mA 13 16 4 mA 25 33 2 mA 20 26 100 A 20 26 Per PCI/PCI-X specification 103 109 Note: *TJ = 100°C 2 -3 8 R evi s i o n 27 IGLOO Low Power Flash FPGAs Table 2-44 • I/O Short Currents IOSH/IOSL Applicable to Standard I/O Banks 3.3 V LVTTL / 3.3 V LVCMOS Drive Strength IOSL (mA)* IOSH (mA)* 2 mA 25 27 4 mA 25 27 6 mA 51 54 8 mA 51 54 100 A Same as regular 3.3 V LVCMOS Same as regular 3.3 V LVCMOS 2 mA 16 18 4 mA 16 18 6 mA 32 37 8 mA 32 37 2 mA 9 11 4 mA 17 22 1.5 V LVCMOS 2 mA 13 16 1.2 V LVCMOS 1 mA 20 26 100 A 20 26 3.3 V LVCMOS Wide Range 2.5 V LVCMOS 1.8 V LVCMOS 1.2 V LVCMOS Wide Range Note: *TJ = 100°C The length of time an I/O can withstand IOSH/IOSL events depends on the junction temperature. The reliability data below is based on a 3.3 V, 12 mA I/O setting, which is the worst case for this type of analysis. For example, at 100°C, the short current condition would have to be sustained for more than six months to cause a reliability concern. The I/O design does not contain any short circuit protection, but such protection would only be needed in extremely prolonged stress conditions. Table 2-45 • Duration of Short Circuit Event before Failure Temperature Time before Failure –40°C > 20 years –20°C > 20 years 0°C > 20 years 25°C > 20 years 70°C 5 years 85°C 2 years 100°C 6 months Table 2-46 • I/O Input Rise Time, Fall Time, and Related I/O Reliability1 Input Buffer Input Rise/Fall Time (min.) Input Rise/Fall Time (max.) Reliability LVTTL/LVCMOS No requirement 10 ns * 20 years (100°C) LVDS/B-LVDS/M-LVDS/ LVPECL No requirement 10 ns * 10 years (100°C) Note: The maximum input rise/fall time is related to the noise induced into the input buffer trace. If the noise is low, then the rise time and fall time of input buffers can be increased beyond the maximum value. The longer the rise/fall times, the more susceptible the input signal is to the board noise. Microsemi recommends signal integrity evaluation/characterization of the system to ensure that there is no excessive noise coupling into input signals. R ev i si o n 2 7 2-39 IGLOO DC and Switching Characteristics Single-Ended I/O Characteristics 3.3 V LVTTL / 3.3 V LVCMOS Low-Voltage Transistor–Transistor Logic (LVTTL) is a general-purpose standard (EIA/JESD) for 3.3 V applications. It uses an LVTTL input buffer and push-pull output buffer. Furthermore, all LVCMOS 3.3 V software macros comply with LVCMOS 3.3 V wide range as specified in the JESD8a specification. Table 2-47 • Minimum and Maximum DC Input and Output Levels Applicable to Advanced I/O Banks 3.3 V LVTTL / 3.3 V LVCMOS VIL VIH VOL VOH IOL IOH IOSL IOSH IIL1 IIH2 mA mA Max. mA3 Max. mA3 µA4 µA4 25 27 Drive Strength Min. V Max. V Min. V Max. V Max. V Min. V 2 mA –0.3 0.8 2 3.6 0.4 2.4 4 mA –0.3 0.8 2 3.6 0.4 2.4 4 4 25 27 10 10 6 mA –0.3 0.8 2 3.6 0.4 2.4 6 6 51 54 10 10 8 mA –0.3 0.8 2 3.6 0.4 2.4 8 8 51 54 10 10 12 mA –0.3 0.8 2 3.6 0.4 2.4 12 12 103 109 10 10 16 mA –0.3 0.8 2 3.6 0.4 2.4 16 16 132 127 10 10 24 mA –0.3 0.8 2 3.6 0.4 2.4 24 24 268 181 10 10 2 2 10 10 Notes: 1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges. 3. Currents are measured at 100°C junction temperature and maximum voltage. 4. Currents are measured at 85°C junction temperature. 5. Software default selection highlighted in gray. Table 2-48 • Minimum and Maximum DC Input and Output Levels Applicable to Standard Plus I/O Banks 3.3 V LVTTL / 3.3 V LVCMOS VIL VIH VOL VOH IOL IOH IOSL IOSH IIL1 IIH2 µA4 µA4 Drive Strength Min. V Max. V Min. V Max. V Max. V Min. V mA mA Max. mA3 Max. mA3 2 mA –0.3 0.8 2 3.6 0.4 2.4 2 2 25 27 10 10 4 mA –0.3 0.8 2 3.6 0.4 2.4 4 4 25 27 10 10 6 mA –0.3 0.8 2 3.6 0.4 2.4 6 6 51 54 10 10 8 mA –0.3 0.8 2 3.6 0.4 2.4 8 8 51 54 10 10 12 mA –0.3 0.8 2 3.6 0.4 2.4 12 12 103 109 10 10 16 mA –0.3 0.8 2 3.6 0.4 2.4 16 16 103 109 10 10 Notes: 1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges 3. Currents are measured at 100°C junction temperature and maximum voltage. 4. Currents are measured at 85°C junction temperature. 5. Software default selection highlighted in gray. 2 -4 0 R evi s i o n 27 IGLOO Low Power Flash FPGAs Table 2-49 • Minimum and Maximum DC Input and Output Levels Applicable to Standard I/O Banks 3.3 V LVTTL / 3.3 V LVCMOS VIL VIH VOL VOH IOL IOH IOSL IOSH IIL1 IIH2 mA mA Max. mA3 Max. mA3 µA4 µA4 Drive Strength Min. V Max. V Min. V Max. V Max. V Min. V 2 mA –0.3 0.8 2 3.6 0.4 2.4 2 2 25 27 10 10 4 mA –0.3 0.8 2 3.6 0.4 2.4 4 4 25 27 10 10 6 mA –0.3 0.8 2 3.6 0.4 2.4 6 6 51 54 10 10 8 mA –0.3 0.8 2 3.6 0.4 2.4 8 8 51 54 10 10 Notes: 1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges 3. Currents are measured at 100°C junction temperature and maximum voltage. 4. Currents are measured at 85°C junction temperature. 5. Software default selection highlighted in gray. Test Point Datapath Figure 2-7 • 5 pF R=1k Test Point Enable Path R to VCCI for tLZ / tZL / tZLS R to GND for tHZ / tZH / tZHS 5 pF for tZH / tZHS / tZL / tZLS 5 pF for tHZ / tLZ AC Loading Table 2-50 • AC Waveforms, Measuring Points, and Capacitive Loads Input Low (V) 0 Input High (V) Measuring Point* (V) CLOAD (pF) 3.3 1.4 5 Note: *Measuring point = Vtrip. See Table 2-29 on page 2-28 for a complete table of trip points. R ev i si o n 2 7 2-41 IGLOO DC and Switching Characteristics Timing Characteristics Applies to 1.5 V DC Core Voltage Table 2-51 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Advanced I/O Banks Drive Strength Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units 2 mA Std. 0.97 4.47 0.18 0.85 0.66 4.56 3.89 2.24 2.19 8.15 7.48 ns 4 mA Std. 0.97 4.47 0.18 0.85 0.66 4.56 3.89 2.24 2.19 8.15 7.48 ns 6 mA Std. 0.97 3.74 0.18 0.85 0.66 3.82 3.37 2.49 2.63 7.42 6.96 ns 8 mA Std. 0.97 3.74 0.18 0.85 0.66 3.82 3.37 2.49 2.63 7.42 6.96 ns 12 mA Std. 0.97 3.23 0.18 0.85 0.66 3.30 2.98 2.66 2.91 6.89 6.57 ns 16 mA Std. 0.97 3.08 0.18 0.85 0.66 3.14 2.89 2.70 2.99 6.74 6.48 ns 24 mA Std. 0.97 3.00 0.18 0.85 0.66 3.06 2.91 2.74 3.27 6.66 6.50 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values. Table 2-52 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Advanced I/O Banks Drive Strength Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units 2 mA Std. 0.97 2.73 0.18 0.85 0.66 2.79 2.22 2.25 2.32 6.38 5.82 ns 4 mA Std. 0.97 2.73 0.18 0.85 0.66 2.79 2.22 2.25 2.32 6.38 5.82 ns 6 mA Std. 0.97 2.32 0.18 0.85 0.66 2.37 1.85 2.50 2.76 5.96 5.45 ns 8 mA Std. 0.97 2.32 0.18 0.85 0.66 2.37 1.85 2.50 2.76 5.96 5.45 ns 12 mA Std. 0.97 2.09 0.18 0.85 0.66 2.14 1.68 2.67 3.05 5.73 5.27 ns 16 mA Std. 0.97 2.05 0.18 0.85 0.66 2.10 1.64 2.70 3.12 5.69 5.24 ns 24 mA Std. 0.97 2.07 0.18 0.85 0.66 2.12 1.60 2.75 3.41 5.71 5.20 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values. Table 2-53 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Standard Plus Banks Drive Strength Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units 2 mA Std. 0.97 3.94 0.18 0.85 0.66 4.02 3.46 1.98 2.03 7.62 7.05 ns 4 mA Std. 0.97 3.94 0.18 0.85 0.66 4.02 3.46 1.98 2.03 7.62 7.05 ns 6 mA Std. 0.97 3.24 0.18 0.85 0.66 3.31 2.99 2.21 2.42 6.90 6.59 ns 8 mA Std. 0.97 3.24 0.18 0.85 0.66 3.31 2.99 2.21 2.42 6.90 6.59 ns 12 mA Std. 0.97 2.76 0.18 0.85 0.66 2.82 2.63 2.36 2.68 6.42 6.22 ns 16 mA Std. 0.97 2.76 0.18 0.85 0.66 2.82 2.63 2.36 2.68 6.42 6.22 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values. 2 -4 2 R evi s i o n 27 IGLOO Low Power Flash FPGAs Table 2-54 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Standard Plus Banks Drive Strength Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units 2 mA Std. 0.97 2.32 0.18 0.85 0.66 2.37 1.90 1.98 2.13 5.96 5.49 ns 4 mA Std. 0.97 2.32 0.18 0.85 0.66 2.37 1.90 1.98 2.13 5.96 5.49 ns 6 mA Std. 0.97 1.94 0.18 0.85 0.66 1.99 1.57 2.20 2.53 5.58 5.16 ns 8 mA Std. 0.97 1.94 0.18 0.85 0.66 1.99 1.57 2.20 2.53 5.58 5.16 ns 12 mA Std. 0.97 1.75 0.18 0.85 0.66 1.79 1.40 2.36 2.79 5.38 4.99 ns 16 mA Std. 0.97 1.75 0.18 0.85 0.66 1.79 1.40 2.36 2.79 5.38 4.99 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values. Table 2-55 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Standard Banks Drive Strength Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ Units 2 mA Std. 0.97 3.80 0.18 0.83 0.66 3.88 3.41 1.74 1.78 ns 4 mA Std. 0.97 3.80 0.18 0.83 0.66 3.88 3.41 1.74 1.78 ns 6 mA Std. 0.97 3.15 0.18 0.83 0.66 3.21 2.94 1.96 2.17 ns 8 mA Std. 0.97 3.15 0.18 0.83 0.66 3.21 2.94 1.96 2.17 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values. Table 2-56 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Standard Banks Drive Strength Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ Units 2 mA Std. 0.97 2.19 0.18 0.83 0.66 2.24 1.79 1.74 1.87 ns 4 mA Std. 0.97 2.19 0.18 0.83 0.66 2.24 1.79 1.74 1.87 ns 6 mA Std. 0.97 1.85 0.18 0.83 0.66 1.89 1.46 1.96 2.26 ns 8 mA Std. 0.97 1.85 0.18 0.83 0.66 1.89 1.46 1.96 2.26 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values. R ev i si o n 2 7 2-43 IGLOO DC and Switching Characteristics Applies to 1.2 V DC Core Voltage Table 2-57 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V Applicable to Advanced I/O Banks Drive Strength Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units 2 mA Std. 1.55 5.12 0.26 0.98 1.10 5.20 4.46 2.81 3.02 10.99 10.25 ns 4 mA Std. 1.55 5.12 0.26 0.98 1.10 5.20 4.46 2.81 3.02 10.99 10.25 ns 6 mA Std. 1.55 4.38 0.26 0.98 1.10 4.45 3.93 3.07 3.48 10.23 9.72 ns 8 mA Std. 1.55 4.38 0.26 0.98 1.10 4.45 3.93 3.07 3.48 10.23 9.72 ns 12 mA Std. 1.55 3.85 0.26 0.98 1.10 3.91 3.53 3.24 3.77 9.69 9.32 ns 16 mA Std. 1.55 3.69 0.26 0.98 1.10 3.75 3.44 3.28 3.84 9.54 9.23 ns 24 mA Std. 1.55 3.61 0.26 0.98 1.10 3.67 3.46 3.33 4.13 9.45 9.24 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values. Table 2-58 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V Applicable to Advanced I/O Banks Drive Strength Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units 2 mA Std. 1.55 3.33 0.26 0.98 1.10 3.38 2.75 2.82 3.18 9.17 8.54 ns 4 mA Std. 1.55 3.33 0.26 0.98 1.10 3.38 2.75 2.82 3.18 9.17 8.54 ns 6 mA Std. 1.55 2.91 0.26 0.98 1.10 2.95 2.37 3.07 3.64 8.73 8.15 ns 8 mA Std. 1.55 2.91 0.26 0.98 1.10 2.95 2.37 3.07 3.64 8.73 8.15 ns 12 mA Std. 1.55 2.67 0.26 0.98 1.10 2.71 2.18 3.25 3.93 8.50 7.97 ns 16 mA Std. 1.55 2.63 0.26 0.98 1.10 2.67 2.14 3.28 4.01 8.45 7.93 ns 24 mA Std. 1.55 2.65 0.26 0.98 1.10 2.69 2.10 3.33 4.31 8.47 7.89 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values. Table 2-59 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V Applicable to Standard Plus Banks Drive Strength Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units 2 mA Std. 1.55 4.56 0.26 0.97 1.10 4.63 3.98 2.54 2.83 10.42 9.76 ns 4 mA Std. 1.55 4.56 0.26 0.97 1.10 4.63 3.98 2.54 2.83 10.42 9.76 ns 6 mA Std. 1.55 3.84 0.26 0.97 1.10 3.90 3.50 2.77 3.24 9.69 9.29 ns 8 mA Std. 1.55 3.84 0.26 0.97 1.10 3.90 3.50 2.77 3.24 9.69 9.29 ns 12 mA Std. 1.55 3.35 0.26 0.97 1.10 3.40 3.13 2.93 3.51 9.19 8.91 ns 16 mA Std. 1.55 3.35 0.26 0.97 1.10 3.40 3.13 2.93 3.51 9.19 8.91 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values. 2 -4 4 R evi s i o n 27 IGLOO Low Power Flash FPGAs Table 2-60 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V Applicable to Standard Plus Banks Drive Strength Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units 2 mA Std. 1.55 2.89 0.26 0.97 1.10 2.93 2.38 2.53 2.96 8.72 8.17 ns 4 mA Std. 1.55 2.89 0.26 0.97 1.10 2.93 2.38 2.53 2.96 8.72 8.17 ns 6 mA Std. 1.55 2.50 0.26 0.97 1.10 2.54 2.04 2.77 3.37 8.33 7.82 ns 8 mA Std. 1.55 2.50 0.26 0.97 1.10 2.54 2.04 2.77 3.37 8.33 7.82 ns 12 mA Std. 1.55 2.31 0.26 0.97 1.10 2.34 1.86 2.93 3.64 8.12 7.65 ns 16 mA Std. 1.55 2.31 0.26 0.97 1.10 2.34 1.86 2.93 3.64 8.12 7.65 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values. Table 2-61 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V Applicable to Standard Banks Drive Strength Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ Units 2 mA Std. 1.55 4.39 0.26 0.94 1.10 4.46 3.91 2.17 2.44 ns 4 mA Std. 1.55 4.39 0.26 0.94 1.10 4.46 3.91 2.17 2.44 ns 6 mA Std. 1.55 3.72 0.26 0.94 1.10 3.78 3.43 2.40 2.85 ns 8 mA Std. 1.55 3.72 0.26 0.94 1.10 3.78 3.43 2.40 2.85 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values. Table 2-62 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V Applicable to Standard Banks Drive Strength Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ Units 2 mA Std. 1.55 2.74 0.26 0.94 1.10 2.78 2.26 2.17 2.55 ns 4 mA Std. 1.55 2.74 0.26 0.94 1.10 2.78 2.26 2.17 2.55 ns 6 mA Std. 1.55 2.38 0.26 0.94 1.10 2.41 1.92 2.40 2.96 ns 8 mA Std. 1.55 2.38 0.26 0.94 1.10 2.41 1.92 2.40 2.96 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values. R ev i si o n 2 7 2-45 IGLOO DC and Switching Characteristics 3.3 V LVCMOS Wide Range Table 2-63 • Minimum and Maximum DC Input and Output Levels for LVCMOS 3.3 V Wide Range Applicable to Advanced I/O Banks 3.3 V LVCMOS Wide Range Drive Strength Equivalent Software Default Drive Strength Option1 VIL VOL VOH IOL IOH IOSL IOSH IIL2 IIH3 Max. V Max. V Min. V µA µA Max. mA4 Max. mA4 µA5 µA5 VIH Min. Min. V Max. V V 100 µA 2 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 25 27 10 10 100 µA 4 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 25 27 10 10 100 µA 6 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 51 54 10 10 100 µA 8 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 51 54 10 10 100 µA 12 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 103 109 10 10 100 µA 16 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 132 127 10 10 100 µA 24 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 268 181 10 10 Notes: 1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ± 100 µA. Drive strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models. 2. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges 4. Currents are measured at 100°C junction temperature and maximum voltage. 5. Currents are measured at 85°C junction temperature. 6. Software default selection highlighted in gray. 2 -4 6 R evi s i o n 27 IGLOO Low Power Flash FPGAs Table 2-64 • Minimum and Maximum DC Input and Output Levels for LVCMOS 3.3 V Wide Range Applicable to Standard Plus I/O Banks 3.3 V LVCMOS Wide Range VIL VIH VOL VOH IOL IOH IOSL IOSH IIL2 IIH3 Min. V µA Max. mA4 Max. mA4 µA5 µA5 Equivalent Software Default Drive Strength Option1 Min. V Max. V Min. V Max. V Max. V 100 µA 2 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 25 27 10 10 100 µA 4 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 25 27 10 10 100 µA 6 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 51 54 10 10 100 µA 8 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 51 54 10 10 100 µA 12 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 103 109 10 10 100 µA 16 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 103 109 10 10 Drive Strength µA Notes: 1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ± 100 µA. Drive strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models. 2. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges 4. Currents are measured at 100°C junction temperature and maximum voltage. 5. Currents are measured at 85°C junction temperature. 6. Software default selection highlighted in gray. R ev i si o n 2 7 2-47 IGLOO DC and Switching Characteristics Table 2-65 • Minimum and Maximum DC Input and Output Levels for LVCMOS 3.3 V Wide Range Applicable to Standard I/O Banks 3.3 V LVCMOS Wide Range VIL VIH VOL VOH IOL IOH IOSL IOSH IIL2 IIH3 Min. V µA µA Max. mA4 Max. mA4 µA5 µA5 Equivalent Software Default Drive Strength Option1 Min. V Max. V Min. V Max. V Max. V 100 µA 2 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 25 27 10 10 100 µA 4 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 25 27 10 10 100 µA 6 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 51 54 10 10 100 µA 8 mA –0.3 0.8 2 3.6 0.2 VDD – 0.2 100 100 51 54 10 10 Drive Strength Notes: 1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ± 100 µA. Drive strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models. 2. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges 4. Currents are measured at 100°C junction temperature and maximum voltage. 5. Currents are measured at 85°C junction temperature. 6. Software default selection highlighted in gray. Table 2-66 • 3.3 V LVCMOS Wide Range AC Waveforms, Measuring Points, and Capacitive Loads Input Low (V) 0 Input High (V) Measuring Point* (V) CLOAD (pF) 3.3 1.4 5 Note: *Measuring point = Vtrip. See Table 2-29 on page 2-28 for a complete table of trip points. 2 -4 8 R evi s i o n 27 IGLOO Low Power Flash FPGAs Timing Characteristics Applies to 1.5 V DC Core Voltage Table 2-67 • 3.3 V LVCMOS Wide Range Low Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V Applicable to Advanced Banks Equivalent Software Default Drive Strength Option1 Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units 100 µA 2 mA Std. 0.97 6.61 0.18 1.19 0.66 6.63 5.63 3.15 2.98 10.22 9.23 ns 100 µA 4 mA Std. 0.97 6.61 0.18 1.19 0.66 6.63 5.63 3.15 2.98 10.22 9.23 ns 100 µA 6 mA Std. 0.97 5.49 0.18 1.19 0.66 5.51 4.84 3.54 3.66 9.10 8.44 ns 100 µA 8 mA Std. 0.97 5.49 0.18 1.19 0.66 5.51 4.84 3.54 3.66 9.10 8.44 ns 100 µA 12 mA Std. 0.97 4.69 0.18 1.19 0.66 4.71 4.25 3.80 4.10 8.31 7.85 ns 100 µA 16 mA Std. 0.97 4.46 0.18 1.19 0.66 4.48 4.11 3.86 4.21 8.07 7.71 ns 100 µA 24 mA Std. 0.97 4.34 0.18 1.19 0.66 4.36 4.14 3.93 4.64 7.95 7.74 ns Drive Strength Notes: 1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ± 100 µA. Drive strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models. 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values. Table 2-68 • 3.3 V LVCMOS Wide Range High Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V Applicable to Advanced Banks Equivalent Software Default Drive Strength Option1 Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units 100 µA 2 mA Std. 0.97 3.92 0.18 1.19 0.66 3.94 3.10 3.16 3.17 7.54 6.70 ns 100 µA 4 mA Std. 0.97 3.92 0.18 1.19 0.66 3.94 3.10 3.16 3.17 7.54 6.70 ns 100 µA 6 mA Std. 0.97 3.28 0.18 1.19 0.66 3.30 2.54 3.54 3.86 6.90 6.14 ns 100 µA 8 mA Std. 0.97 3.28 0.18 1.19 0.66 3.30 2.54 3.54 3.86 6.90 6.14 ns 100 µA 12 mA Std. 0.97 2.93 0.18 1.19 0.66 2.95 2.27 3.81 4.30 6.54 5.87 ns 100 µA 16 mA Std. 0.97 2.87 0.18 1.19 0.66 2.89 2.22 3.86 4.41 6.49 5.82 ns 100 µA 24 mA Std. 0.97 2.90 0.18 1.19 0.66 2.92 2.16 3.94 4.86 6.51 5.75 ns Drive Strength Notes: 1. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values. 2. Software default selection highlighted in gray. 3. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ± 100 µA. Drive strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models. R ev i si o n 2 7 2-49 IGLOO DC and Switching Characteristics Table 2-69 • 3.3 V LVCMOS Wide Range Low Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V Applicable to Standard Plus Banks Equivalent Software Default Drive Strength Option1 Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units 100 µA 2 mA Std. 0.97 5.84 0.18 1.20 0.66 5.86 5.04 2.74 2.71 9.46 8.64 ns 100 µA 4 mA Std. 0.97 5.84 0.18 1.20 0.66 5.86 5.04 2.74 2.71 9.46 8.64 ns 100 µA 6 mA Std. 0.97 4.76 0.18 1.20 0.66 4.78 4.33 3.09 3.33 8.37 7.93 ns 100 µA 8 mA Std. 0.97 4.76 0.18 1.20 0.66 4.78 4.33 3.09 3.33 8.37 7.93 ns 100 µA 12 mA Std. 0.97 4.02 0.18 1.20 0.66 4.04 3.78 3.33 3.73 7.64 7.37 ns 100 µA 16 mA Std. 0.97 4.02 0.18 1.20 0.66 4.04 3.78 3.33 3.73 7.64 7.37 ns Drive Strength Notes: 1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ± 100 µA. Drive strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models. 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values. Table 2-70 • 3.3 V LVCMOS Wide Range High Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V Applicable to Standard Plus Banks Equivalent Software Default Drive Strength Option1 Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units 100 µA 2 mA Std. 0.97 3.33 0.18 1.20 0.66 3.35 2.68 2.73 2.88 6.94 6.27 ns 100 µA 4 mA Std. 0.97 3.33 0.18 1.20 0.66 3.35 2.68 2.73 2.88 6.94 6.27 ns 100 µA 6 mA Std. 0.97 2.75 0.18 1.20 0.66 2.77 2.17 3.08 3.50 6.36 5.77 ns 100 µA 8 mA Std. 0.97 2.75 0.18 1.20 0.66 2.77 2.17 3.08 3.50 6.36 5.77 ns 100 µA 12 mA Std. 0.97 2.45 0.18 1.20 0.66 2.47 1.92 3.33 3.90 6.06 5.51 ns 100 µA 16 mA Std. 0.97 2.45 0.18 1.20 0.66 2.47 1.92 3.33 3.90 6.06 5.51 ns Drive Strength Notes: 1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ± 100 µA. Drive strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models. 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values. 3. Software default selection highlighted in gray. 2 -5 0 R evi s i o n 27 IGLOO Low Power Flash FPGAs Table 2-71 • 3.3 V LVCMOS Wide Range Low Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V Applicable to Standard Banks Equivalent Software Default Drive Strength Option1 Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ Units 100 µA 2 mA Std. 0.97 5.64 0.18 1.17 0.66 5.65 4.98 2.45 2.42 ns 100 µA 4 mA Std. 0.97 5.64 0.18 1.17 0.66 5.65 4.98 2.45 2.42 ns 100 µA 6 mA Std. 0.97 4.63 0.18 1.17 0.66 4.64 4.26 2.80 3.02 ns 100 µA 8 mA Std. 0.97 4.63 0.18 1.17 0.66 4.64 4.26 2.80 3.02 ns Drive Strength Notes: 1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ± 100 µA. Drive strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models. 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values. Table 2-72 • 3.3 V LVCMOS Wide Range High Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V Applicable to Standard Banks Equivalent Software Default Drive Strength Option1 Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ Units 100 µA 2 mA 0.97 3.16 0.18 1.17 0.66 3.17 2.53 2.45 2.56 0.97 ns 100 µA 4 mA 0.97 3.16 0.18 1.17 0.66 3.17 2.53 2.45 2.56 0.97 ns 100 µA 6 mA 0.97 2.62 0.18 1.17 0.66 2.63 2.02 2.79 3.17 0.97 ns 100 µA 8 mA 0.97 2.62 0.18 1.17 0.66 2.63 2.02 2.79 3.17 0.97 ns Drive Strength Notes: 1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ± 100 µA. Drive strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models. 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values. 3. Software default selection highlighted in gray. R ev i si o n 2 7 2-51 IGLOO DC and Switching Characteristics Applies to 1.2 V DC Core Voltage Table 2-73 • 3.3 V LVCMOS Wide Range Low Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.7 V Applicable to Advanced Banks Equivalent Software Default Drive Strength Option1 Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units 100 µA 2 mA Std. 1.55 7.52 0.26 1.32 1.10 7.52 6.38 3.84 4.02 13.31 12.16 ns 100 µA 4 mA Std. 1.55 7.52 0.26 1.32 1.10 7.52 6.38 3.84 4.02 13.31 12.16 ns 100 µA 6 mA Std. 1.55 6.37 0.26 1.32 1.10 6.37 5.57 4.23 4.73 12.16 11.35 ns 100 µA 8 mA Std. 1.55 6.37 0.26 1.32 1.10 6.37 5.57 4.23 4.73 12.16 11.35 ns 100 µA 12 mA Std. 1.55 5.55 0.26 1.32 1.10 5.55 4.96 4.50 5.18 11.34 10.75 ns 100 µA 16 mA Std. 1.55 5.32 0.26 1.32 1.10 5.32 4.82 4.56 5.29 11.10 10.61 ns 100 µA 24 mA Std. 1.55 5.19 0.26 1.32 1.10 5.19 4.85 4.63 5.74 10.98 10.63 ns Drive Strength Notes: 1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ± 100 µA. Drive strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models. 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values. Table 2-74 • 3.3 V LVCMOS Wide Range High Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.7 Applicable to Advanced Banks Equivalent Software Default Drive Strength Option1 Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units 100 µA 2 mA Std. 1.55 4.75 0.26 1.32 1.10 4.75 3.77 3.84 4.27 10.54 9.56 ns 100 µA 4 mA Std. 1.55 4.75 0.26 1.32 1.10 4.75 3.77 3.84 4.27 10.54 9.56 ns 100 µA 6 mA Std. 1.55 4.10 0.26 1.32 1.10 4.10 3.19 4.24 4.98 9.88 8.98 ns 100 µA 8 mA Std. 1.55 4.10 0.26 1.32 1.10 4.10 3.19 4.24 4.98 9.88 8.98 ns 100 µA 12 mA Std. 1.55 3.73 0.26 1.32 1.10 3.73 2.91 4.51 5.43 9.52 8.69 ns 100 µA 16 mA Std. 1.55 3.67 0.26 1.32 1.10 3.67 2.85 4.57 5.55 9.46 8.64 ns 100 µA 24 mA Std. 1.55 3.70 0.26 1.32 1.10 3.70 2.79 4.65 6.01 9.49 8.58 ns Drive Strength Notes: 1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ± 100 µA. Drive strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models. 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values. 3. Software default selection highlighted in gray. 2 -5 2 R evi s i o n 27 IGLOO Low Power Flash FPGAs Table 2-75 • 3.3 V LVCMOS Wide Range Low Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.7 Applicable to Standard Plus Banks Equivalent Software Default Drive Strength Option1 Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units 100 µA 2 mA Std. 1.55 6.69 0.26 1.32 1.10 6.69 5.73 3.41 3.72 12.48 11.52 ns 100 µA 4 mA Std. 1.55 6.69 0.26 1.32 1.10 6.69 5.73 3.41 3.72 12.48 11.52 ns 100 µA 6 mA Std. 1.55 5.58 0.26 1.32 1.10 5.58 5.01 3.77 4.35 11.36 10.79 ns 100 µA 8 mA Std. 1.55 5.58 0.26 1.32 1.10 5.58 5.01 3.77 4.35 11.36 10.79 ns 100 µA 12 mA Std. 1.55 4.82 0.26 1.32 1.10 4.82 4.44 4.02 4.76 10.61 10.23 ns 100 µA 16 mA Std. 1.55 4.82 0.26 1.32 1.10 4.82 4.44 4.02 4.76 10.61 10.23 ns Drive Strength Notes: 1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ± 100 µA. Drive strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models. 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values. Table 2-76 • 3.3 V LVCMOS Wide Range High Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.7 Applicable to Standard Plus Banks Equivalent Software Default Drive Strength Option1 Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units 100 µA 2 mA Std. 1.55 4.10 0.26 1.32 1.10 4.10 3.30 3.40 3.92 9.89 9.09 ns 100 µA 4 mA Std. 1.55 4.10 0.26 1.32 1.10 4.10 3.30 3.40 3.92 9.89 9.09 ns 100 µA 6 mA Std. 1.55 3.51 0.26 1.32 1.10 3.51 2.79 3.76 4.56 9.30 8.57 ns 100 µA 8 mA Std. 1.55 3.51 0.26 1.32 1.10 3.51 2.79 3.76 4.56 9.30 8.57 ns 100 µA 12 mA Std. 1.55 3.20 0.26 1.32 1.10 3.20 2.52 4.01 4.97 8.99 8.31 ns 100 µA 16 mA Std. 1.55 3.20 0.26 1.32 1.10 3.20 2.52 4.01 4.97 8.99 8.31 ns Drive Strength Notes: 1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ± 100 µA. Drive strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models. 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values. 3. Software default selection highlighted in gray. R ev i si o n 2 7 2-53 IGLOO DC and Switching Characteristics Table 2-77 • 3.3 V LVCMOS Wide Range Low Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.7 Applicable to Standard Banks Equivalent Software Default Drive Strength Option1 Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ Units 100 µA 2 mA Std. 1.55 6.44 0.26 1.29 1.10 6.44 5.64 2.99 3.28 ns 100 µA 4 mA Std. 1.55 6.44 0.26 1.29 1.10 6.44 5.64 2.99 3.28 ns 100 µA 6 mA Std. 1.55 5.41 0.26 1.29 1.10 5.41 4.91 3.35 3.89 ns 100 µA 8 mA Std. 1.55 5.41 0.26 1.29 1.10 5.41 4.91 3.35 3.89 ns Drive Strength Notes: 1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ± 100 µA. Drive strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models. 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values. Table 2-78 • 3.3 V LVCMOS Wide Range High Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.7 Applicable to Standard Banks Equivalent Software Default Drive Strength Option1 Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ Units 100 µA 2 mA Std. 1.55 3.89 0.26 1.29 1.10 3.89 3.13 2.99 3.45 ns 100 µA 4 mA Std. 1.55 3.89 0.26 1.29 1.10 3.89 3.13 2.99 3.45 ns 100 µA 6 mA Std. 1.55 3.33 0.26 1.29 1.10 3.33 2.62 3.34 4.07 ns 100 µA 8 mA Std. 1.55 3.33 0.26 1.29 1.10 3.33 2.62 3.34 4.07 ns Drive Strength Notes: 1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ± 100 µA. Drive strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models. 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values. 3. Software default selection highlighted in gray. 2 -5 4 R evi s i o n 27 IGLOO Low Power Flash FPGAs 2.5 V LVCMOS Low-Voltage CMOS for 2.5 V is an extension of the LVCMOS standard (JESD8-5) used for general-purpose 2.5 V applications. Table 2-79 • Minimum and Maximum DC Input and Output Levels Applicable to Advanced I/O Banks 2.5 V LVCMOS VIL VIH VOL VOH IOL IOH IOSH IOSL IIL1 IIH2 mA mA Max. mA3 Max. mA3 µA4 µA4 Drive Strength Min. V Max. V Min. V Max. V Max. V Min. V 2 mA –0.3 0.7 1.7 2.7 0.7 1.7 2 2 16 18 10 10 4 mA –0.3 0.7 1.7 2.7 0.7 1.7 4 4 16 18 10 10 6 mA –0.3 0.7 1.7 2.7 0.7 1.7 6 6 32 37 10 10 8 mA –0.3 0.7 1.7 2.7 0.7 1.7 8 8 32 37 10 10 12 mA –0.3 0.7 1.7 2.7 0.7 1.7 12 12 65 74 10 10 16 mA –0.3 0.7 1.7 2.7 0.7 1.7 16 16 83 87 10 10 24 mA –0.3 0.7 1.7 2.7 0.7 1.7 24 24 169 124 10 10 Notes: 1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges 3. Currents are measured at 100°C junction temperature and maximum voltage. 4. Currents are measured at 85°C junction temperature. 5. Software default selection highlighted in gray. Table 2-80 • Minimum and Maximum DC Input and Output Levels Applicable to Standard Plus I/O Banks 2.5 V LVCMOS VIL VIH VOL VOH IOL IOH IOSH IOSL IIL1 IIH2 Drive Strength Min. V Max. V Min. V Max. V Max. V Min. V mA mA Max. mA3 Max. mA3 µA4 µA4 2 mA –0.3 0.7 1.7 2.7 0.7 1.7 2 2 16 18 10 10 4 mA –0.3 0.7 1.7 2.7 0.7 1.7 4 4 16 18 10 10 6 mA –0.3 0.7 1.7 2.7 0.7 1.7 6 6 32 37 10 10 8 mA –0.3 0.7 1.7 2.7 0.7 1.7 8 8 32 37 10 10 12 mA –0.3 0.7 1.7 2.7 0.7 1.7 12 12 65 74 10 10 Notes: 1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges 3. Currents are measured at 100°C junction temperature and maximum voltage. 4. Currents are measured at 85°C junction temperature. 5. Software default selection highlighted in gray. R ev i si o n 2 7 2-55 IGLOO DC and Switching Characteristics Table 2-81 • Minimum and Maximum DC Input and Output Levels Applicable to Standard I/O Banks 2.5 V LVCMOS VIL VIH VOL VOH IOL IOH IOSH IOSL IIL1 IIH2 Drive Strength Min. V Max. V Min. V Max. V Max. V Min. V mA mA Max. mA3 Max. mA3 µA4 µA4 2 mA –0.3 0.7 1.7 3.6 0.7 1.7 2 2 16 18 10 10 4 mA –0.3 0.7 1.7 3.6 0.7 1.7 4 4 16 18 10 10 6 mA –0.3 0.7 1.7 3.6 0.7 1.7 6 6 32 37 10 10 8 mA –0.3 0.7 1.7 3.6 0.7 1.7 8 8 32 37 10 10 Notes: 1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges 3. Currents are measured at 100°C junction temperature and maximum voltage. 4. Currents are measured at 85°C junction temperature. 5. Software default selection highlighted in gray. Test Point Datapath Figure 2-8 • 5 pF R=1k Test Point Enable Path R to VCCI for tLZ / tZL / tZLS R to GND for tHZ / tZH / tZHS 5 pF for tZH / tZHS / tZL / tZLS 5 pF for tHZ / tLZ AC Loading Table 2-82 • AC Waveforms, Measuring Points, and Capacitive Loads Input Low (V) 0 Input High (V) Measuring Point* (V) CLOAD (pF) 2.5 1.2 5 Note: *Measuring point = Vtrip. See Table 2-29 on page 2-28 for a complete table of trip points. 2 -5 6 R evi s i o n 27 IGLOO Low Power Flash FPGAs Timing Characteristics Applies to 1.5 V DC Core Voltage Table 2-83 • 2.5 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V Applicable to Advanced I/O Banks Drive Strength Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units 2 mA Std. 0.97 4.96 0.18 1.08 0.66 5.06 4.59 2.26 2.00 8.66 8.19 ns 4 mA Std. 0.97 4.96 0.18 1.08 0.66 5.06 4.59 2.26 2.00 8.66 8.19 ns 6 mA Std. 0.97 4.15 0.18 1.08 0.66 4.24 3.94 2.54 2.51 7.83 7.53 ns 8 mA Std. 0.97 4.15 0.18 1.08 0.66 4.24 3.94 2.54 2.51 7.83 7.53 ns 12 mA Std. 0.97 3.57 0.18 1.08 0.66 3.65 3.47 2.73 2.84 7.24 7.06 ns 16 mA Std. 0.97 3.39 0.18 1.08 0.66 3.46 3.36 2.78 2.92 7.06 6.95 ns 24 mA Std. 0.97 3.38 0.18 1.08 0.66 3.38 3.38 2.83 3.25 6.98 6.98 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values. Table 2-84 • 2.5 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V Applicable to Advanced I/O Banks Drive Strength Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units 2 mA Std. 0.97 2.77 0.18 1.08 0.66 2.83 2.60 2.26 2.08 6.42 6.19 ns 4 mA Std. 0.97 2.77 0.18 1.08 0.66 2.83 2.60 2.26 2.08 6.42 6.19 ns 6 mA Std. 0.97 2.34 0.18 1.08 0.66 2.39 2.08 2.54 2.60 5.99 5.68 ns 8 mA Std. 0.97 2.34 0.18 1.08 0.66 2.39 2.08 2.54 2.60 5.99 5.68 ns 12 mA Std. 0.97 2.09 0.18 1.08 0.66 2.14 1.83 2.73 2.93 5.73 5.43 ns 16 mA Std. 0.97 2.05 0.18 1.08 0.66 2.09 1.78 2.78 3.02 5.69 5.38 ns 24 mA Std. 0.97 2.06 0.18 1.08 0.66 2.10 1.72 2.83 3.35 5.70 5.32 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values. Table 2-85 • 2.5 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V Applicable to Standard Plus Banks Drive Strength Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units 2 mA Std. 0.97 4.42 0.18 1.08 0.66 4.51 4.10 1.96 1.85 8.10 7.69 ns 4 mA Std. 0.97 4.42 0.18 1.08 0.66 4.51 4.10 1.96 1.85 8.10 7.69 ns 6 mA Std. 0.97 3.62 0.18 1.08 0.66 3.70 3.52 2.21 2.32 7.29 7.11 ns 8 mA Std. 0.97 3.62 0.18 1.08 0.66 3.70 3.52 2.21 2.32 7.29 7.11 ns 12 mA Std. 0.97 3.09 0.18 1.08 0.66 3.15 3.09 2.39 2.61 6.74 6.68 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values. R ev i si o n 2 7 2-57 IGLOO DC and Switching Characteristics Table 2-86 • 2.5 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V Applicable to Standard Plus Banks Drive Strength Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units 2 mA Std. 0.97 2.36 0.18 1.08 0.66 2.41 2.21 1.96 1.92 6.01 5.81 ns 4 mA Std. 0.97 2.36 0.18 1.08 0.66 2.41 2.21 1.96 1.92 6.01 5.81 ns 6 mA Std. 0.97 1.97 0.18 1.08 0.66 2.01 1.75 2.21 2.40 5.61 5.34 ns 8 mA Std. 0.97 1.97 0.18 1.08 0.66 2.01 1.75 2.21 2.40 5.61 5.34 ns 12 mA Std. 0.97 1.75 0.18 1.08 0.66 1.79 1.52 2.38 2.70 5.39 5.11 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values. Table 2-87 • 2.5 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V Applicable to Standard Banks Drive Strength Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ Units 2 mA Std. 0.97 4.27 0.18 1.04 0.66 4.36 4.06 1.71 1.62 ns 4 mA Std. 0.97 4.27 0.18 1.04 0.66 4.36 4.06 1.71 1.62 ns 6 mA Std. 0.97 3.54 0.18 1.04 0.66 3.61 3.48 1.95 2.08 ns 8 mA Std. 0.97 3.54 0.18 1.04 0.66 3.61 3.48 1.95 2.08 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values. Table 2-88 • 2.5 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V Applicable to Standard Banks Drive Strength Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ Units 2 mA Std. 0.97 2.24 0.18 1.04 0.66 2.29 2.09 1.71 1.68 ns 4 mA Std. 0.97 2.24 0.18 1.04 0.66 2.29 2.09 1.71 1.68 ns 6 mA Std. 0.97 1.88 0.18 1.04 0.66 1.92 1.63 1.95 2.15 ns 8 mA Std. 0.97 1.88 0.18 1.04 0.66 1.92 1.63 1.95 2.15 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values. 2 -5 8 R evi s i o n 27 IGLOO Low Power Flash FPGAs Applies to 1.2 V Core Voltage Table 2-89 • 2.5 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V Applicable to Advanced I/O Banks Drive Strength Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units 2 mA Std. 1.55 5.59 0.26 1.20 1.10 5.68 5.14 2.82 2.80 11.47 10.93 ns 4 mA Std. 1.55 5.59 0.26 1.20 1.10 5.68 5.14 2.82 2.80 11.47 10.93 ns 6 mA Std. 1.55 4.76 0.26 1.20 1.10 4.84 4.47 3.10 3.33 10.62 10.26 ns 8 mA Std. 1.55 4.76 0.26 1.20 1.10 4.84 4.47 3.10 3.33 10.62 10.26 ns 12 mA Std. 1.55 4.17 0.26 1.20 1.10 4.23 3.99 3.30 3.67 10.02 9.77 ns 16 mA Std. 1.55 3.98 0.26 1.20 1.10 4.04 3.88 3.34 3.76 9.83 9.66 ns 24 mA Std. 1.55 3.90 0.26 1.20 1.10 3.96 3.90 3.40 4.09 9.75 9.68 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values. Table 2-90 • 2.5 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V Applicable to Advanced I/O Banks Drive Strength Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units 2 mA Std. 1.55 3.33 0.26 1.20 1.10 3.38 3.09 2.82 2.91 9.17 8.88 ns 4 mA Std. 1.55 3.33 0.26 1.20 1.10 3.38 3.09 2.82 2.91 9.17 8.88 ns 6 mA Std. 1.55 2.89 0.26 1.20 1.10 2.93 2.56 3.10 3.45 8.72 8.34 ns 8 mA Std. 1.55 2.89 0.26 1.20 1.10 2.93 2.56 3.10 3.45 8.72 8.34 ns 12 mA Std. 1.55 2.64 0.26 1.20 1.10 2.67 2.29 3.30 3.79 8.46 8.08 ns 16 mA Std. 1.55 2.59 0.26 1.20 1.10 2.63 2.24 3.34 3.88 8.41 8.03 ns 24 mA Std. 1.55 2.60 0.26 1.20 1.10 2.64 2.18 3.40 4.22 8.42 7.97 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values. Table 2-91 • 2.5 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V Applicable to Standard Plus Banks Drive Strength Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units 2 mA Std. 1.55 5.02 0.26 1.19 1.10 5.11 4.60 2.50 2.62 10.89 10.38 ns 4 mA Std. 1.55 5.02 0.26 1.19 1.10 5.11 4.60 2.50 2.62 10.89 10.38 ns 6 mA Std. 1.55 4.21 0.26 1.19 1.10 4.27 4.00 2.76 3.10 10.06 9.79 ns 8 mA Std. 1.55 4.21 0.26 1.19 1.10 4.27 4.00 2.76 3.10 10.06 9.79 ns 12 mA Std. 1.55 3.66 0.26 1.19 1.10 3.71 3.55 2.94 3.41 9.50 9.34 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values. R ev i si o n 2 7 2-59 IGLOO DC and Switching Characteristics Table 2-92 • 2.5 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V Applicable to Standard Plus Banks Drive Strength Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units 2 mA Std. 1.55 2.91 0.26 1.19 1.10 2.95 2.66 2.50 2.72 8.74 8.45 ns 4 mA Std. 1.55 2.91 0.26 1.19 1.10 2.95 2.66 2.50 2.72 8.74 8.45 ns 6 mA Std. 1.55 2.51 0.26 1.19 1.10 2.54 2.18 2.75 3.21 8.33 7.97 ns 8 mA Std. 1.55 2.51 0.26 1.19 1.10 2.54 2.18 2.75 3.21 8.33 7.97 ns 12 mA Std. 1.55 2.29 0.26 1.19 1.10 2.32 1.94 2.94 3.52 8.10 7.73 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values. Table 2-93 • 2.5 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V Applicable to Standard Banks Drive Strength Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ Units 2 mA Std. 1.55 4.85 0.26 1.15 1.10 4.93 4.55 2.13 2.24 ns 4 mA Std. 1.55 4.85 0.26 1.15 1.10 4.93 4.55 2.13 2.24 ns 6 mA Std. 1.55 4.09 0.26 1.15 1.10 4.16 3.95 2.38 2.71 ns 8 mA Std. 1.55 4.09 0.26 1.15 1.10 4.16 3.95 2.38 2.71 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values. Table 2-94 • 2.5 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V Applicable to Standard Banks Drive Strength Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ Units 2 mA Std. 1.55 2.76 0.26 1.15 1.10 2.80 2.52 2.13 2.32 ns 4 mA Std. 1.55 2.76 0.26 1.15 1.10 2.80 2.52 2.13 2.32 ns 6 mA Std. 1.55 2.39 0.26 1.15 1.10 2.42 2.05 2.38 2.80 ns 8 mA Std. 1.55 2.39 0.26 1.15 1.10 2.42 2.05 2.38 2.80 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values. 2 -6 0 R evi s i o n 27 IGLOO Low Power Flash FPGAs 1.8 V LVCMOS Low-voltage CMOS for 1.8 V is an extension of the LVCMOS standard (JESD8-5) used for general-purpose 1.8 V applications. It uses a 1.8 V input buffer and a push-pull output buffer. Table 2-95 • Minimum and Maximum DC Input and Output Levels Applicable to Advanced I/O Banks 1.8 V LVCMOS VIL VIH VOL VOH IOL IOH IOSH IOSL IIL1 IIH2 mA mA Max. mA3 Max. mA3 µA4 µA4 Drive Strength Min. V Max. V Min. V Max. V Max. V Min. V 2 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 2 2 9 11 10 10 4 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 4 4 17 22 10 10 6 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 6 6 35 44 10 10 8 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 8 8 45 51 10 10 12 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 12 12 91 74 10 10 16 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 16 16 91 74 10 10 Notes: 1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges 3. Currents are measured at 100°C junction temperature and maximum voltage. 4. Currents are measured at 85°C junction temperature. 5. Software default selection highlighted in gray. Table 2-96 • Minimum and Maximum DC Input and Output Levels Applicable to Standard Plus I/O Banks 1.8 V LVCMOS VIL VIH VOL VOH IOL IOH IOSH IOSL IIL1 IIH2 µA4 µA4 Drive Strength Min. V Max. V Min. V Max. V Max. V Min. V mA mA Max. mA3 Max. mA3 2 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 2 2 9 11 10 10 4 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 4 4 17 22 10 10 6 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 6 6 35 44 10 10 8 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 8 8 35 44 10 10 Notes: 1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges 3. Currents are measured at 100°C junction temperature and maximum voltage. 4. Currents are measured at 85°C junction temperature. 5. Software default selection highlighted in gray. R ev i si o n 2 7 2-61 IGLOO DC and Switching Characteristics Table 2-97 • Minimum and Maximum DC Input and Output Levels Applicable to Standard I/O Banks 1.8 V LVCMOS VIL VIH VOL VOH IOL IOH IOSH IOSL IIL1 IIH2 mA mA Max. mA3 Max. mA3 µA4 µA4 Drive Strength Min. V Max. V Min. V Max. V Max. V Min. V 2 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 2 2 9 11 10 10 4 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 4 4 17 22 10 10 Notes: 1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges 3. Currents are measured at 100°C junction temperature and maximum voltage. 4. Currents are measured at 85°C junction temperature. 5. Software default selection highlighted in gray. R=1k Test Point Enable Path Test Point Datapath Figure 2-9 • 5 pF R to VCCI for tLZ / tZL / tZLS R to GND for tHZ / tZH / tZHS 5 pF for tZH / tZHS / tZL / tZLS 5 pF for tHZ / tLZ AC Loading Table 2-98 • AC Waveforms, Measuring Points, and Capacitive Loads Input Low (V) Input High (V) Measuring Point* (V) CLOAD (pF) 1.8 0.9 5 0 Note: *Measuring point = Vtrip. See Table 2-29 on page 2-28 for a complete table of trip points. Timing Characteristics 1.5 V DC Core Voltage Table 2-99 • 1.8 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V Applicable to Advanced I/O Banks Drive Strength Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units 2 mA Std. 0.97 6.38 0.18 1.01 0.66 6.51 5.93 2.33 1.56 10.10 9.53 ns 4 mA Std. 0.97 5.35 0.18 1.01 0.66 5.46 5.04 2.67 2.38 9.05 8.64 ns 6 mA Std. 0.97 4.62 0.18 1.01 0.66 4.71 4.44 2.90 2.79 8.31 8.04 ns 8 mA Std. 0.97 4.37 0.18 1.01 0.66 4.46 4.31 2.95 2.89 8.05 7.90 ns 12 mA Std. 0.97 4.32 0.18 1.01 0.66 4.37 4.32 3.03 3.30 7.97 7.92 ns 16 mA Std. 0.97 4.32 0.18 1.01 0.66 4.37 4.32 3.03 3.30 7.97 7.92 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values. 2 -6 2 R evi s i o n 27 IGLOO Low Power Flash FPGAs Table 2-100 • 1.8 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V Applicable to Advanced I/O Banks Drive Strength Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units 2 mA Std. 0.97 3.25 0.18 1.01 0.66 3.21 3.25 2.33 1.61 6.80 6.85 ns 4 mA Std. 0.97 2.62 0.18 1.01 0.66 2.68 2.51 2.66 2.46 6.27 6.11 ns 6 mA Std. 0.97 2.31 0.18 1.01 0.66 2.36 2.15 2.90 2.87 5.95 5.75 ns 8 mA Std. 0.97 2.25 0.18 1.01 0.66 2.30 2.08 2.95 2.98 5.89 5.68 ns 12 mA Std. 0.97 2.24 0.18 1.01 0.66 2.29 2.00 3.02 3.40 5.88 5.60 ns 16 mA Std. 0.97 2.24 0.18 1.01 0.66 2.29 2.00 3.02 3.40 5.88 5.60 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values. Table 2-101 • 1.8 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V Applicable to Standard Plus Banks Drive Strength Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units 2 mA Std. 0.97 5.78 0.18 1.01 0.66 5.90 5.32 1.95 1.47 9.49 8.91 ns 4 mA Std. 0.97 4.75 0.18 1.01 0.66 4.85 4.54 2.25 2.21 8.44 8.13 ns 6 mA Std. 0.97 4.07 0.18 1.01 0.66 4.15 3.98 2.46 2.58 7.75 7.57 ns 8 mA Std. 0.97 4.07 0.18 1.01 0.66 4.15 3.98 2.46 2.58 7.75 7.57 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values. Table 2-102 • 1.8 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V Applicable to Standard Plus Banks Drive Strength Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units 2 mA Std. 0.97 2.76 0.18 1.01 0.66 2.79 2.76 1.94 1.51 6.39 6.35 ns 4 mA Std. 0.97 2.25 0.18 1.01 0.66 2.30 2.09 2.24 2.29 5.89 5.69 ns 6 mA Std. 0.97 1.97 0.18 1.01 0.66 2.02 1.76 2.46 2.66 5.61 5.36 ns 8 mA Std. 0.97 1.97 0.18 1.01 0.66 2.02 1.76 2.46 2.66 5.61 5.36 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values. Table 2-103 • 1.8 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V Applicable to Standard Banks Drive Strength Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ Units 2 mA Std. 0.97 5.63 0.18 0.98 0.66 5.74 5.30 1.68 1.24 ns 4 mA Std. 0.97 4.69 0.18 0.98 0.66 4.79 4.52 1.97 1.98 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values. R ev i si o n 2 7 2-63 IGLOO DC and Switching Characteristics Table 2-104 • 1.8 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V Applicable to Standard Banks Drive Strength Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ Units 2 mA Std. 2.62 0.18 0.98 0.66 2.67 2.59 1.67 1.29 2.62 ns 4 mA Std. 2.18 0.18 0.98 0.66 2.22 1.93 1.97 2.06 2.18 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values. 1.2 V DC Core Voltage Table 2-105 • 1.8 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V Applicable to Advanced I/O Banks Drive Strength Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units 2 mA Std. 1.55 6.97 0.26 1.11 1.10 7.08 6.48 2.87 2.29 12.87 12.27 ns 4 mA Std. 1.55 5.91 0.26 1.11 1.10 6.01 5.57 3.21 3.14 11.79 11.36 ns 6 mA Std. 1.55 5.16 0.26 1.11 1.10 5.24 4.95 3.45 3.55 11.03 10.74 ns 8 mA Std. 1.55 4.90 0.26 1.11 1.10 4.98 4.81 3.50 3.66 10.77 10.60 ns 12 mA Std. 1.55 4.83 0.26 1.11 1.10 4.90 4.83 3.58 4.08 10.68 10.61 ns 16 mA Std. 1.55 4.83 0.26 1.11 1.10 4.90 4.83 3.58 4.08 10.68 10.61 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values. Table 2-106 • 1.8 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V Applicable to Advanced I/O Banks Drive Strength Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units 2 mA Std. 1.55 3.73 0.26 1.11 1.10 3.71 3.73 2.86 2.34 9.49 9.51 ns 4 mA Std. 1.55 3.12 0.26 1.11 1.10 3.16 2.97 3.21 3.22 8.95 8.75 ns 6 mA Std. 1.55 2.79 0.26 1.11 1.10 2.83 2.59 3.45 3.65 8.62 8.38 ns 8 mA Std. 1.55 2.73 0.26 1.11 1.10 2.77 2.52 3.50 3.75 8.56 8.30 ns 12 mA Std. 1.55 2.72 0.26 1.11 1.10 2.76 2.43 3.58 4.19 8.55 8.22 ns 16 mA Std. 1.55 2.72 0.26 1.11 1.10 2.76 2.43 3.58 4.19 8.55 8.22 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values. 2 -6 4 R evi s i o n 27 IGLOO Low Power Flash FPGAs Table 2-107 • 1.8 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V Applicable to Standard Plus Banks Drive Strength Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units 2 mA Std. 1.55 6.32 0.26 1.11 1.10 6.43 5.81 2.47 2.16 12.22 11.60 ns 4 mA Std. 1.55 5.27 0.26 1.11 1.10 5.35 5.01 2.78 2.92 11.14 10.79 ns 6 mA Std. 1.55 4.56 0.26 1.11 1.10 4.64 4.44 3.00 3.30 10.42 10.22 ns 8 mA Std. 1.55 4.56 0.26 1.11 1.10 4.64 4.44 3.00 3.30 10.42 10.22 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values. Table 2-108 • 1.8 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V Applicable to Standard Plus Banks Drive Strength Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units 2 mA Std. 1.55 3.22 0.26 1.11 1.10 3.26 3.18 2.47 2.20 9.05 8.97 ns 4 mA Std. 1.55 2.72 0.26 1.11 1.10 2.75 2.50 2.78 3.01 8.54 8.29 ns 6 mA Std. 1.55 2.43 0.26 1.11 1.10 2.47 2.16 2.99 3.39 8.25 7.94 ns 8 mA Std. 1.55 2.43 0.26 1.11 1.10 2.47 2.16 2.99 3.39 8.25 7.94 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values. Table 2-109 • 1.8 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V Applicable to Standard Banks Drive Strength Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ Units 2 mA Std. 1.55 6.13 0.26 1.08 1.10 6.24 5.79 2.08 1.78 ns 4 mA Std. 1.55 5.17 0.26 1.08 1.10 5.26 4.98 2.38 2.54 ns Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values. Table 2-110 • 1.8 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V Applicable to Standard Banks Drive Strength Speed Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ Units 2 mA Std. 3.06 0.26 1.08 1.10 3.10 3.01 2.08 1.83 3.06 ns 4 mA Std. 2.60 0.26 1.08 1.10 2.64 2.33 2.38 2.62 2.60 ns Notes: 1. Software default selection highlighted in gray. 2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values. R ev i si o n 2 7 2-65 IGLOO DC and Switching Characteristics 1.5 V LVCMOS (JESD8-11) Low-Voltage CMOS for 1.5 V is an extension of the LVCMOS standard (JESD8-5) used for general-purpose 1.5 V applications. It uses a 1.5 V input buffer and a push-pull output buffer. Table 2-111 • Minimum and Maximum DC Input and Output Levels Applicable to Advanced I/O Banks 1.5 V LVCMOS VIL VIH VOL VOH IOL IOH IOSH IOSL IIL1 IIH2 mA mA Max. mA3 Max. mA3 µA4 µA4 Drive Strength Min. V Max. V Min. V Max. V Max. V Min. V 2 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 2 2 13 16 10 10 4 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 4 4 25 33 10 10 6 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 6 6 32 39 10 10 8 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 8 8 66 55 10 10 12 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 12 12 66 55 10 10 Notes: 1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges 3. Currents are measured at 100°C junction temperature and maximum voltage. 4. Currents are measured at 85°C junction temperature. 5. Software default selection highlighted in gray. Table 2-112 • Minimum and Maximum DC Input and Output Levels Applicable to Standard Plus I/O Banks 1.5 V LVCMOS VIL VIH VOL VOH IOL IOH IOSH IOSL IIL1 IIH2 mA mA Max. mA3 Max. mA3 µA4 µA4 Drive Strength Min. V Max. V Min. V Max. V Max. V Min. V 2 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 2 2 13 16 10 10 4 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 4 4 25 33 10 10 Notes: 1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges 3. Currents are measured at 100°C junction temperature and maximum voltage. 4. Currents are measured at 85°C junction temperature. 5. Software default selection highlighted in gray. 2 -6 6 R evi s i o n 27 IGLOO Low Power Flash FPGAs Table 2-113 • Minimum and Maximum DC Input and Output Levels Applicable to Standard I/O Banks 1.5 V LVCMOS VIL VIH VOL VOH IOL IOH IOSH IOSL IIL1 IIH2 mA mA Max. mA3 Max. mA3 µA4 µA4 13 16 Drive Strength Min. V Max. V Min. V Max. V Max. V Min. V 2 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 2 2 10 10 Notes: 1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL. 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN
M1AGL250V5-VQG100
物料型号: - 文档中提到了多种封装类型,例如QN132、VQ100、FG144、FG256、FG484等,这些可能是FPGA的封装型号。

器件简介: - 文档为Microsemi的IGLOO系列低功耗闪存FPGAs的数据手册,提供了详细的器件信息和引脚分配

引脚分配: - 文档列出了不同封装下的引脚分配,例如QN132、VQ100、FG144、FG256、FG484等,每个封装型号都有对应的引脚功能列表。

参数特性: - 文档中包含了FPGA的多种参数特性,如电源引脚(VCC)、地引脚(GND)、输入/输出引脚(IOxx)、配置引脚(TDI、TMS、TCK)等。

功能详解: - 每个引脚的功能都有详细的描述,例如电源供应、接地、输入输出功能、配置和测试功能等。

应用信息: - 虽然文档没有直接提供应用信息,但从引脚分配和功能描述可以推断,这些FPGA适用于需要低功耗和灵活I/O配置的嵌入式系统和通信设备。

封装信息: - 文档提供了不同封装的详细信息,包括引脚数量和分配,这些信息对于硬件设计和PCB布局至关重要。
M1AGL250V5-VQG100 价格&库存

很抱歉,暂时无法提供与“M1AGL250V5-VQG100”相匹配的价格&库存,您可以联系我们找货

免费人工找货