0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MCP1661T-E/MNY

MCP1661T-E/MNY

  • 厂商:

    ACTEL(微芯科技)

  • 封装:

    TDFN-8_2X3MM-EP

  • 描述:

    IC REG BOOST ADJ 200MA 8TDFN

  • 详情介绍
  • 数据手册
  • 价格&库存
MCP1661T-E/MNY 数据手册
MCP1661 High-Voltage Integrated Switch PWM Boost Regulator with UVLO Features General Description • • • • The MCP1661 device is a compact, high-efficiency, fixed-frequency, non-synchronous step-up DC-DC converter which integrates a 36V, 800 m NMOS switch. It provides a space-efficient high-voltage step-up power supply solution for applications powered by either two-cell or three-cell alkaline, Ultimate Lithium, NiCd, NiMH, one-cell Li-Ion or Li-Polymer batteries. • • • • • • • • • • • • • 36V, 800 m Integrated Switch Up to 92% Efficiency High Output Voltage Range: up to 32V 1.3A Peak Input Current Limit: - IOUT > 200 mA @ 5.0V VIN, 12V VOUT - IOUT > 125 mA @ 3.3V VIN, 12V VOUT - IOUT > 100 mA @ 4.2V VIN, 24V VOUT Input Voltage Range: 2.4V to 5.5V Undervoltage Lockout (UVLO): - UVLO @ VIN Rising: 2.3V, typical - UVLO @ VIN Falling: 1.85V, typical No Load Input Current: 250 µA, typical Sleep mode with 200 nA Typical Quiescent Current PWM Operation with Skip mode: 500 kHz Feedback Voltage Reference: VFB = 1.227V Cycle-by-Cycle Current Limiting Internal Compensation Inrush Current Limiting and Internal Soft Start Output Overvoltage Protection (OVP) in the event of: - Feedback pin shorted to GND - Disconnected feedback divider Overtemperature Protection Easily Configurable for SEPIC or Flyback Topologies Available Packages: - 5-Lead SOT-23 - 8-Lead 2x3 TDFN Applications • Two and Three-Cell Alkaline, Lithium Ultimate and NiMH/NiCd Portable Products • Single-Cell Li-Ion to 5V, 12V or 24V Converters • LCD Bias Supply for Portable Applications • Camera Phone Flash • Portable Medical Equipment • Hand-Held Instruments • Single-Cell Li-Ion to 3.0V or 3.3V SEPIC Applications (see Figure 6-3) The integrated switch is protected by the 1.3A cycle-by-cycle inductor peak current limit operation. There is an output overvoltage protection which turns off switching in case the feedback resistors are accidentally disconnected or the feedback pin is short-circuited to GND. Low-voltage technology allows the regulator to start-up without high inrush current or output voltage overshoot from a low-voltage input. The device features a UVLO which avoids start-up and operation with low inputs or discharged batteries for two cell-powered applications. For standby applications (EN = GND), the device stops switching, enters Sleep mode and consumes 200 nA (typical) of input current. MCP1661 is easy to use and allows creating classic boost, SEPIC or flyback DC-DC converters within a small Printed Circuit Board (PCB) area. All compensation and protection circuitry is integrated to minimize the number of external components. Ceramic input and output capacitors are used. Package Types MCP1661 SOT-23 SW 1 5 VIN GND 2 VFB 3 4 EN MCP1661 2x3 TDFN* VFB 1 SGND 2 SW 3 NC 4 8 EN EP 9 7 PGND 6 NC 5 VIN * Includes Exposed Thermal Pad (EP); see Table 3-1.  2014-2015 Microchip Technology Inc. DS20005315B-page 1 MCP1661 Typical Applications D PMEG2005 L 4.7 μH C IN 4.7-10 μF V IN 2.4V -3.0V SW V IN R TOP 1.05 M Ω MCP1661 V FB ALKALINE + EN - C OUT 4.7-10 μF R BOT 120 k Ω GND ON VFB = 1.227V OFF ALKALINE + V OUT 12V, 75 mA-125 mA - D MBR0540 L 10 μH C IN 10 μF V IN 3.0V - 4.2V V OUT 24V, 50 mA-125 mA SW V IN R TOP 1.05 MΩ MCP1661 V FB ALKALINE + EN - C OUT 10 μF R BOT 56 k Ω GND ALKALINE + - 300 VOUT = 12V IOUT (mA) 250 200 150 VOUT = 24V 100 50 0 2.4 2.8 3.2 3.6 VIN (V) 4 4.4 4.8 Maximum Output Current vs. VIN DS20005315B-page 2  2014-2015 Microchip Technology Inc. MCP1661 1.0 ELECTRICAL CHARACTERISTICS Absolute Maximum Ratings † VSW – GND .....................................................................+36V EN, VIN – GND...............................................................+6.0V VFB .................................................................................+1.3V Power Dissipation ....................................... Internally Limited Storage Temperature .................................... -65°C to +150°C Ambient Temperature with Power Applied .... -40°C to +125°C Operating Junction Temperature................... -40°C to +150°C ESD Protection On All Pins: HBM ................................................................. 4 kV MM ..................................................................300V † Notice: Stresses above those listed under “Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability. DC AND AC CHARACTERISTICS Electrical Specifications: Unless otherwise specified, all limits apply for typical values at ambient temperature TA = +25°C, VIN = 3.3V, IOUT = 20 mA, VOUT = 12V, CIN = COUT = 10 µF, X7R ceramic, L = 4.7 µH. Boldface specifications apply over the controlled TA range of -40°C to +125°C. Parameters Sym. Min. Typ. Max. Units VIN 2.4 — 5.5 V Note 1 UVLOSTART — 2.3 — V VIN rising, IOUT = 1 mA resistive load UVLOSTOP — 1.85 — V VIN falling, IOUT = 1 mA resistive load Output Voltage Adjust Range VOUT — — 32 V Note 1 Maximum Output Current IOUT — 125 — mA 3.3V VIN, 12V VOUT 200 — mA 5.0V VIN, 12V VOUT 100 — mA 4.2V VIN, 24V VOUT 1.227 1.264 V Input Voltage Range Undervoltage Lockout (UVLO) Feedback Voltage Conditions VFB 1.190 -3 — 3 % Feedback Input Bias Current IVFB — 0.005 — µA No Load Input Current IIN0 — 250 — µA Device switching, no load, 3.3V VIN, 12V VOUT (Note 2) Shutdown Quiescent Current IQSHDN — 200 — nA EN = GND, feedback divider current not included (Note 3) Peak Switch Current Limit IN(MAX) — 1.3 — A Note 4 INLK — 0.4 — µA VIN = VSW = 5V; VOUT = 5.5V VEN = VFB = GND RDS(ON) — 0.8 —  VIN = 5V, VOUT = 12V, IOUT = 100 mA (Note 4) VFB Accuracy NMOS Switch Leakage NMOS Switch ON Resistance Note 1: 2: 3: 4: Minimum input voltage in the range of VIN (VIN < 5.5V < VOUT) depends on the maximum duty cycle (DCMAX) and on the output voltage (VOUT), according to the boost converter equation: VINmin = VOUT x (1 – DCMAX). IIN0 varies with input and output voltage (Figure 2-8). IIN0 is measured on the VIN pin when the device is switching (EN = VIN), at no load, with RTOP = 120 k and RBOT = 1.05 M. IQSHDN is measured on the VIN pin when the device is not switching (EN = GND), at no load, with the feedback resistors (RTOP + RBOT) disconnected from VOUT. Determined by characterization, not production tested.  2014-2015 Microchip Technology Inc. DS20005315B-page 3 MCP1661 DC AND AC CHARACTERISTICS (CONTINUED) Electrical Specifications: Unless otherwise specified, all limits apply for typical values at ambient temperature TA = +25°C, VIN = 3.3V, IOUT = 20 mA, VOUT = 12V, CIN = COUT = 10 µF, X7R ceramic, L = 4.7 µH. Boldface specifications apply over the controlled TA range of -40°C to +125°C. Parameters Sym. Min. Typ. Max. Units Conditions Line Regulation |(VFB/VFB)/ VIN| — 0.05 0.5 %/V VIN = 3V to 5V, IOUT = 20 mA, VOUT = 12.0V Load Regulation |VFB/VFB| — 0.5 1.5 % Overvoltage Reference OVP_REF — 80 — mV IOUT = 20 mA to 100 mA, VIN = 3.3V, VOUT = 12.0V VFB to GND transition (Note 4) Maximum Duty Cycle DCMAX 88 90 — % Note 4 Switching Frequency fSW 425 500 575 kHz ±15% EN Input Logic High VIH 85 — — % of VIN IOUT = 1 mA EN Input Logic Low VIL — — 7.5 IENLK — 0.025 — % of VIN IOUT = 1 mA µA VEN = 5V Soft-Start Time tSS — 3 — ms Thermal Shutdown Die Temperature TSD — 150 — °C TSDHYS — 15 — °C EN Input Leakage Current Die Temperature Hysteresis Note 1: 2: 3: 4: TA, EN Low-to-High, 90% of VOUT Minimum input voltage in the range of VIN (VIN < 5.5V < VOUT) depends on the maximum duty cycle (DCMAX) and on the output voltage (VOUT), according to the boost converter equation: VINmin = VOUT x (1 – DCMAX). IIN0 varies with input and output voltage (Figure 2-8). IIN0 is measured on the VIN pin when the device is switching (EN = VIN), at no load, with RTOP = 120 k and RBOT = 1.05 M. IQSHDN is measured on the VIN pin when the device is not switching (EN = GND), at no load, with the feedback resistors (RTOP + RBOT) disconnected from VOUT. Determined by characterization, not production tested. TEMPERATURE SPECIFICATIONS Electrical Specifications: Unless otherwise specified, all limits apply for typical values at ambient temperature TA = +25°C, VIN = 3.3V, IOUT = 20 mA, VOUT = 12V, CIN = COUT = 10 µF, X7R ceramic, L = 4.7 µH and 5-lead SOT-23 package. Boldface specifications apply over the controlled TA range of -40°C to +125°C. Parameters Sym. Min. Typ. Max. Units Operating Junction Temperature Range TJ -40 — +125 °C Storage Temperature Range TA -65 — +150 °C Maximum Junction Temperature TJ — — +150 °C Thermal Resistance, 5LD-SOT-23 JA — 201.0 — °C/W Thermal Resistance, 8LD-2x3 TDFN JA — 52.5 — °C/W Conditions Temperature Ranges Steady State Transient Package Thermal Resistances DS20005315B-page 4  2014-2015 Microchip Technology Inc. MCP1661 2.0 TYPICAL PERFORMANCE CURVES Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range. Note: Unless otherwise indicated, VIN = 3.3V, IOUT = 20 mA, VOUT = 12V, CIN = COUT = 10 µF, X7R ceramic, L = 4.7 µH, TA = 25°C, 5-lead SOT-23 package. 100 UVLO Start 90 2.2 Efficiency (%) UVLO Thresholds (V) 2.3 2.1 2 1.9 UVLO Stop VOUT = 9.0V L = 4.7 μH VIN = 5.5V 80 VIN = 2.3V 70 VIN = 3.0V VIN = 4.0V 60 50 40 1.8 30 1.7 20 -40 -25 -10 5 20 35 50 65 80 95 110 125 Ambient Temperature (°C) 0.1 FIGURE 2-4: IOUT. FIGURE 2-1: Undervoltage Lockout (UVLO) vs. Ambient Temperature. 100 90 1.225 Efficiency (%) Feedback Voltage (V) 1.230 1.220 10 IOUT (mA) 100 1000 9.0V VOUT Efficiency vs. VOUT = 12.0V L = 4.7 μH VIN = 4.0V VIN = 5.5V 80 70 VIN = 2.3V VIN = 3.0V 60 50 40 1.215 30 20 1.210 -40 -25 -10 0.1 5 20 35 50 65 80 95 110 125 Ambient Temperature (°C) FIGURE 2-2: VFB Voltage vs. Ambient Temperature and VIN. 900 1 10 IOUT (mA) 100 1000 12.0V VOUT Efficiency vs. FIGURE 2-5: IOUT. 100 1000 L = 4.7 μH, VOUT = 6V, 9V and 12V L = 10 μH, VOUT = 24V 90 Efficiency (%) 800 700 IOUT (mA) 1 600 VOUT = 6.0V 500 400 VOUT = 9.0V 300 VOUT = 12V VOUT = 24.0V VIN = 5.5V L = 10 μH 80 70 VIN = 3.0V VIN = 4.0V 60 50 40 200 30 100 VOUT = 24V 0 2.3 2.7 FIGURE 2-3: vs. VIN. 3.1 3.5 3.9 4.3 VIN (V) 4.7 5.1 5.5 Maximum Output Current  2014-2015 Microchip Technology Inc. 20 0.1 FIGURE 2-6: IOUT. 1 10 IOUT (mA) 100 1000 24.0V VOUT Efficiency vs. DS20005315B-page 5 MCP1661 Note: Unless otherwise indicated, VIN = 3.3V, IOUT = 20 mA, VOUT = 12V, CIN = COUT = 10 µF, X7R ceramic, L = 4.7 µH, TA = 25°C, 5-lead SOT-23 package. IIN0 No Load Input Current (μA) Inductor Peak Current (A) 1.5 1.3 1.1 0.9 VIN = 5.0V VOUT = 12.0V 0.7 0.5 -40 -25 -10 1800 1200 1000 600 400 200 225 VOUT = 6.0V 200 175 5 20 35 50 65 80 95 110 125 FIGURE 2-10: No Load Input Current, IIN0 vs. Ambient Temperature. 550 VIN = 3.0V IOUT = 100 mA 525 500 475 450 425 150 2.3 2.7 3.1 3.5 3.9 4.3 Input Voltage (V) 4.7 5.1 -40 -25 -10 5.5 FIGURE 2-8: No Load Input Current, IIN0 vs. VIN (EN = VIN). 5 20 35 50 65 80 95 110 125 Ambient Temperature (°C) FIGURE 2-11: Temperature. fSW vs. Ambient 6 0.30 Note: Without FB Resistor Divider Current 0.25 5 0.20 4 VIN (V) IQ Shutdown Mode (μA) VIN = 5.5V 0 Ambient Temperature (°C) Switching Frequency (kHz) VOUT = 12.0V VIN= 3.0V 800 575 250 VIN = 2.3V 1400 -40 -25 -10 300 275 VOUT = 12V 1600 5 20 35 50 65 80 95 110 125 Ambient Temperature (°C) FIGURE 2-7: Inductor Peak Current Limit vs. Ambient Temperature. IIN0 No Load Input Current (μA) 2000 0.15 VOUT = 24.0V VOUT = 12.0V VOUT = 6.0V 3 0.10 2 0.05 1 0 0.00 1.8 2.2 2.6 3 3.4 3.8 Input Voltage (V) 4.2 4.6 FIGURE 2-9: Shutdown Quiescent Current, IQSHDN vs. VIN (EN = GND). DS20005315B-page 6 5 0 5 FIGURE 2-12: Threshold. 10 15 20 IOUT (mA) 25 30 PWM Pulse Skipping Mode  2014-2015 Microchip Technology Inc. MCP1661 Note: Unless otherwise indicated, VIN = 3.3V, IOUT = 20 mA, VOUT = 12V, CIN = COUT = 10 µF, X7R ceramic, L = 4.7 µH, TA = 25°C, 5-lead SOT-23 package. VOUT 50 mV/div, AC Coupled 20 MHz BW Enable Thresholds (% of VIN) 100 IOUT = 1 mA 90 EN VIH 80 VSW 5 V/div 70 60 50 40 30 20 EN VIL 10 0 2.3 2.6 2.9 FIGURE 2-13: Voltage. 3.2 3.5 3.8 4.1 Input Voltage (V) 4.4 4.7 IL 400 mA/div 5 1 µs/div Enable Threshold vs. Input FIGURE 2-16: Waveforms. High Load PWM Mode IOUT = 15 mA 1 Switch RDS(ON) (Ω) IOUT = 100 mA IOUT = 100 mA 0.8 VOUT 3 V/div 0.6 VIN 3 V/div 0.4 IL 300 mA/div 0.2 0 2.6 2.9 3.2 FIGURE 2-14: vs. VIN. 3.5 3.8 4.1 Input Voltage (V) 4.4 4.7 5 VEN 3 V/div 500 µs/div N-Channel Switch RDSON FIGURE 2-17: 12.0V Start-Up by Enable. IOUT = 15 mA IOUT = 5 mA VOUT 20 mV/div, AC Coupled 20 MHz BW VSW 5 V/div VOUT 3 V/div VIN 3 V/div IL 100 mA/div VSW 5 V/div 2 µs/div FIGURE 2-15: 12.0V VOUT Light Load PWM Mode Waveforms.  2014-2015 Microchip Technology Inc. 500 µs/div FIGURE 2-18: (VIN = VENABLE). 12.0V Start-Up DS20005315B-page 7 MCP1661 Note: Unless otherwise indicated, VIN = 3.3V, IOUT = 20 mA, VOUT = 12V, CIN = COUT = 10 µF, X7R ceramic, L = 4.7 µH, TA = 25°C, 5-lead SOT-23 package. VOUT 200 mV/div, AC Coupled Step from 20 mA to 50 mA IOUT 30 mA/div 2 ms/div FIGURE 2-19: Waveforms. 12.0V VOUT Load Transient IOUT = 60 mA VOUT 100 mV/div, AC Coupled Step from 3.3V to 5.0V VIN 1 V/div 1 ms/div FIGURE 2-20: Waveforms. DS20005315B-page 8 12.0V VOUT Line Transient  2014-2015 Microchip Technology Inc. MCP1661 3.0 PIN DESCRIPTIONS The descriptions of the pins are listed in Table 3-1. TABLE 3-1: 3.1 PIN FUNCTION TABLE MCP1661 SOT-23 MCP1661 2x3 TDFN 3 1 VFB — 2 SGND Symbol Description Feedback Voltage Pin Signal Ground Pin (TDFN only) 1 3 SW Switch Node, Boost Inductor Input Pin — 4, 6 NC Not Connected Input Voltage Pin 5 5 VIN — 7 PGND Power Ground Pin (TDFN only) 4 8 EN Enable Control Input Pin — 9 EP Exposed Thermal Pad (EP); must be connected to Ground. (TDFN only) 2 — GND Ground Pin (SOT-23 only) Feedback Voltage Pin (VFB) The VFB pin is used to provide output voltage regulation by using a resistor divider. The VFB voltage is 1.227V typical. 3.2 Signal Ground Pin (SGND) The signal ground pin is used as a return for the integrated reference voltage and error amplifier. The signal ground and power ground must be connected externally in one point. 3.3 Switch Node Pin (SW) Connect the inductor from the input voltage to the SW pin. The SW pin carries inductor current, which can be as high as 1.3A peak. The integrated N-Channel switch drain is internally connected to the SW node. 3.4 Not Connected (NC) 3.7 Enable Pin (EN) The EN pin is a logic-level input used to enable or disable device switching and lower quiescent current while disabled. A logic high (>85% of VIN) will enable the regulator output. A logic low ( 4 !/  ; : = 4 !
MCP1661T-E/MNY
物料型号:MCP1661

器件简介: - 36V、800 mΩ 集成开关 - 高效性能,最高可达 92% - 支持高达 32V 的输出电压范围 - 集成了欠压锁定 (UVLO) 功能 - 轻载时输入电流仅为 250µA - 睡眠模式下典型静态电流为 200nA - PWM 操作频率为 500kHz - 内部补偿 - 支持 SEPIC 和 Flyback 拓扑结构

引脚分配: - VFB:反馈电压引脚,用于输出电压调节 - SW:开关节点,连接升压电感 - EN:使能控制输入引脚 - VIN:输入电压引脚 - GND:地引脚

参数特性: - 输入电压范围:2.4V 至 5.5V - 输出电压调整范围:高达 32V - 最大输出电流:依据输入和输出电压而变化,典型情况下,5V 输入、12V 输出时为 200mA,3.3V 输入、12V 输出时为 125mA,4.2V 输入、24V 输出时为 100mA - 反馈电压参考值:VFB = 1.227V

功能详解: - 具有周期性电流限制和内部软启动功能 - 过压保护和过温保护 - 支持通过外部电阻分压来调节输出电压

应用信息: - 适用于便携式产品、医疗设备、手持仪器等 - 可用于将单节锂离子电池转换为 3.0V 或 3.3V 的 SEPIC 转换器

封装信息: - 5 引脚 SOT-23 - 8 引脚 2x3 TDFN,包含暴露的热垫 (EP)
MCP1661T-E/MNY 价格&库存

很抱歉,暂时无法提供与“MCP1661T-E/MNY”相匹配的价格&库存,您可以联系我们找货

免费人工找货
MCP1661T-E/MNY
  •  国内价格
  • 1+13.82401
  • 10+13.31201
  • 100+11.77600
  • 500+11.46880

库存:0

MCP1661T-E/MNY
  •  国内价格 香港价格
  • 3300+8.715723300+1.04282

库存:1366

MCP1661T-E/MNY
  •  国内价格 香港价格
  • 1+11.321591+1.35461
  • 25+9.4345125+1.12883
  • 100+8.71567100+1.04282

库存:1366