MCP1661
High-Voltage Integrated Switch PWM Boost Regulator with UVLO
Features
General Description
•
•
•
•
The MCP1661 device is a compact, high-efficiency,
fixed-frequency, non-synchronous step-up DC-DC
converter which integrates a 36V, 800 m NMOS
switch. It provides a space-efficient high-voltage
step-up power supply solution for applications powered
by either two-cell or three-cell alkaline, Ultimate Lithium,
NiCd, NiMH, one-cell Li-Ion or Li-Polymer batteries.
•
•
•
•
•
•
•
•
•
•
•
•
•
36V, 800 m Integrated Switch
Up to 92% Efficiency
High Output Voltage Range: up to 32V
1.3A Peak Input Current Limit:
- IOUT > 200 mA @ 5.0V VIN, 12V VOUT
- IOUT > 125 mA @ 3.3V VIN, 12V VOUT
- IOUT > 100 mA @ 4.2V VIN, 24V VOUT
Input Voltage Range: 2.4V to 5.5V
Undervoltage Lockout (UVLO):
- UVLO @ VIN Rising: 2.3V, typical
- UVLO @ VIN Falling: 1.85V, typical
No Load Input Current: 250 µA, typical
Sleep mode with 200 nA Typical Quiescent
Current
PWM Operation with Skip mode: 500 kHz
Feedback Voltage Reference: VFB = 1.227V
Cycle-by-Cycle Current Limiting
Internal Compensation
Inrush Current Limiting and Internal Soft Start
Output Overvoltage Protection (OVP) in the event
of:
- Feedback pin shorted to GND
- Disconnected feedback divider
Overtemperature Protection
Easily Configurable for SEPIC or Flyback
Topologies
Available Packages:
- 5-Lead SOT-23
- 8-Lead 2x3 TDFN
Applications
• Two and Three-Cell Alkaline, Lithium Ultimate and
NiMH/NiCd Portable Products
• Single-Cell Li-Ion to 5V, 12V or 24V Converters
• LCD Bias Supply for Portable Applications
• Camera Phone Flash
• Portable Medical Equipment
• Hand-Held Instruments
• Single-Cell Li-Ion to 3.0V or 3.3V SEPIC
Applications (see Figure 6-3)
The integrated switch is protected by the 1.3A
cycle-by-cycle inductor peak current limit operation.
There is an output overvoltage protection which turns
off switching in case the feedback resistors are
accidentally disconnected or the feedback pin is
short-circuited to GND.
Low-voltage technology allows the regulator to start-up
without high inrush current or output voltage overshoot
from a low-voltage input. The device features a UVLO
which avoids start-up and operation with low inputs or
discharged batteries for two cell-powered applications.
For standby applications (EN = GND), the device stops
switching, enters Sleep mode and consumes 200 nA
(typical) of input current.
MCP1661 is easy to use and allows creating classic
boost, SEPIC or flyback DC-DC converters within a
small Printed Circuit Board (PCB) area. All
compensation and protection circuitry is integrated to
minimize the number of external components. Ceramic
input and output capacitors are used.
Package Types
MCP1661
SOT-23
SW 1
5 VIN
GND 2
VFB 3
4 EN
MCP1661
2x3 TDFN*
VFB 1
SGND 2
SW 3
NC 4
8 EN
EP
9
7 PGND
6 NC
5 VIN
* Includes Exposed Thermal Pad (EP); see Table 3-1.
2014-2015 Microchip Technology Inc.
DS20005315B-page 1
MCP1661
Typical Applications
D
PMEG2005
L
4.7 μH
C IN
4.7-10 μF
V IN
2.4V -3.0V
SW
V IN
R TOP
1.05 M Ω
MCP1661
V FB
ALKALINE
+
EN
-
C OUT
4.7-10 μF
R BOT
120 k Ω
GND
ON
VFB = 1.227V
OFF
ALKALINE
+
V OUT
12V, 75 mA-125 mA
-
D
MBR0540
L
10 μH
C IN
10 μF
V IN
3.0V - 4.2V
V OUT
24V, 50 mA-125 mA
SW
V IN
R TOP
1.05 MΩ
MCP1661
V FB
ALKALINE
+
EN
-
C OUT
10 μF
R BOT
56 k Ω
GND
ALKALINE
+
-
300
VOUT = 12V
IOUT (mA)
250
200
150
VOUT = 24V
100
50
0
2.4
2.8
3.2
3.6
VIN (V)
4
4.4
4.8
Maximum Output Current vs. VIN
DS20005315B-page 2
2014-2015 Microchip Technology Inc.
MCP1661
1.0
ELECTRICAL
CHARACTERISTICS
Absolute Maximum Ratings †
VSW – GND .....................................................................+36V
EN, VIN – GND...............................................................+6.0V
VFB .................................................................................+1.3V
Power Dissipation ....................................... Internally Limited
Storage Temperature .................................... -65°C to +150°C
Ambient Temperature with Power Applied .... -40°C to +125°C
Operating Junction Temperature................... -40°C to +150°C
ESD Protection On All Pins:
HBM ................................................................. 4 kV
MM ..................................................................300V
† Notice: Stresses above those listed under “Maximum
Ratings” may cause permanent damage to the device.
This is a stress rating only and functional operation of
the device at those or any other conditions above those
indicated in the operational sections of this
specification is not intended. Exposure to maximum
rating conditions for extended periods may affect
device reliability.
DC AND AC CHARACTERISTICS
Electrical Specifications: Unless otherwise specified, all limits apply for typical values at ambient temperature
TA = +25°C, VIN = 3.3V, IOUT = 20 mA, VOUT = 12V, CIN = COUT = 10 µF, X7R ceramic, L = 4.7 µH.
Boldface specifications apply over the controlled TA range of -40°C to +125°C.
Parameters
Sym.
Min.
Typ.
Max.
Units
VIN
2.4
—
5.5
V
Note 1
UVLOSTART
—
2.3
—
V
VIN rising,
IOUT = 1 mA resistive load
UVLOSTOP
—
1.85
—
V
VIN falling,
IOUT = 1 mA resistive load
Output Voltage Adjust Range
VOUT
—
—
32
V
Note 1
Maximum Output Current
IOUT
—
125
—
mA
3.3V VIN, 12V VOUT
200
—
mA
5.0V VIN, 12V VOUT
100
—
mA
4.2V VIN, 24V VOUT
1.227
1.264
V
Input Voltage Range
Undervoltage Lockout
(UVLO)
Feedback Voltage
Conditions
VFB
1.190
-3
—
3
%
Feedback Input Bias Current
IVFB
—
0.005
—
µA
No Load Input Current
IIN0
—
250
—
µA
Device switching, no load,
3.3V VIN, 12V VOUT (Note 2)
Shutdown Quiescent Current
IQSHDN
—
200
—
nA
EN = GND,
feedback divider current not
included (Note 3)
Peak Switch Current Limit
IN(MAX)
—
1.3
—
A
Note 4
INLK
—
0.4
—
µA
VIN = VSW = 5V; VOUT = 5.5V
VEN = VFB = GND
RDS(ON)
—
0.8
—
VIN = 5V, VOUT = 12V,
IOUT = 100 mA (Note 4)
VFB Accuracy
NMOS Switch Leakage
NMOS Switch ON Resistance
Note 1:
2:
3:
4:
Minimum input voltage in the range of VIN (VIN < 5.5V < VOUT) depends on the maximum duty cycle
(DCMAX) and on the output voltage (VOUT), according to the boost converter equation:
VINmin = VOUT x (1 – DCMAX).
IIN0 varies with input and output voltage (Figure 2-8). IIN0 is measured on the VIN pin when the device is
switching (EN = VIN), at no load, with RTOP = 120 k and RBOT = 1.05 M.
IQSHDN is measured on the VIN pin when the device is not switching (EN = GND), at no load, with the
feedback resistors (RTOP + RBOT) disconnected from VOUT.
Determined by characterization, not production tested.
2014-2015 Microchip Technology Inc.
DS20005315B-page 3
MCP1661
DC AND AC CHARACTERISTICS (CONTINUED)
Electrical Specifications: Unless otherwise specified, all limits apply for typical values at ambient temperature
TA = +25°C, VIN = 3.3V, IOUT = 20 mA, VOUT = 12V, CIN = COUT = 10 µF, X7R ceramic, L = 4.7 µH.
Boldface specifications apply over the controlled TA range of -40°C to +125°C.
Parameters
Sym.
Min.
Typ.
Max.
Units
Conditions
Line Regulation
|(VFB/VFB)/
VIN|
—
0.05
0.5
%/V
VIN = 3V to 5V,
IOUT = 20 mA, VOUT = 12.0V
Load Regulation
|VFB/VFB|
—
0.5
1.5
%
Overvoltage Reference
OVP_REF
—
80
—
mV
IOUT = 20 mA to 100 mA,
VIN = 3.3V, VOUT = 12.0V
VFB to GND transition
(Note 4)
Maximum Duty Cycle
DCMAX
88
90
—
%
Note 4
Switching Frequency
fSW
425
500
575
kHz
±15%
EN Input Logic High
VIH
85
—
—
% of VIN IOUT = 1 mA
EN Input Logic Low
VIL
—
—
7.5
IENLK
—
0.025
—
% of VIN IOUT = 1 mA
µA
VEN = 5V
Soft-Start Time
tSS
—
3
—
ms
Thermal Shutdown
Die Temperature
TSD
—
150
—
°C
TSDHYS
—
15
—
°C
EN Input Leakage Current
Die Temperature Hysteresis
Note 1:
2:
3:
4:
TA, EN Low-to-High,
90% of VOUT
Minimum input voltage in the range of VIN (VIN < 5.5V < VOUT) depends on the maximum duty cycle
(DCMAX) and on the output voltage (VOUT), according to the boost converter equation:
VINmin = VOUT x (1 – DCMAX).
IIN0 varies with input and output voltage (Figure 2-8). IIN0 is measured on the VIN pin when the device is
switching (EN = VIN), at no load, with RTOP = 120 k and RBOT = 1.05 M.
IQSHDN is measured on the VIN pin when the device is not switching (EN = GND), at no load, with the
feedback resistors (RTOP + RBOT) disconnected from VOUT.
Determined by characterization, not production tested.
TEMPERATURE SPECIFICATIONS
Electrical Specifications: Unless otherwise specified, all limits apply for typical values at ambient temperature
TA = +25°C, VIN = 3.3V, IOUT = 20 mA, VOUT = 12V, CIN = COUT = 10 µF, X7R ceramic, L = 4.7 µH and 5-lead
SOT-23 package.
Boldface specifications apply over the controlled TA range of -40°C to +125°C.
Parameters
Sym.
Min.
Typ.
Max.
Units
Operating Junction Temperature
Range
TJ
-40
—
+125
°C
Storage Temperature Range
TA
-65
—
+150
°C
Maximum Junction Temperature
TJ
—
—
+150
°C
Thermal Resistance, 5LD-SOT-23
JA
—
201.0
—
°C/W
Thermal Resistance, 8LD-2x3 TDFN
JA
—
52.5
—
°C/W
Conditions
Temperature Ranges
Steady State
Transient
Package Thermal Resistances
DS20005315B-page 4
2014-2015 Microchip Technology Inc.
MCP1661
2.0
TYPICAL PERFORMANCE CURVES
Note:
The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.
Note: Unless otherwise indicated, VIN = 3.3V, IOUT = 20 mA, VOUT = 12V, CIN = COUT = 10 µF, X7R ceramic,
L = 4.7 µH, TA = 25°C, 5-lead SOT-23 package.
100
UVLO Start
90
2.2
Efficiency (%)
UVLO Thresholds (V)
2.3
2.1
2
1.9
UVLO Stop
VOUT = 9.0V
L = 4.7 μH
VIN = 5.5V
80
VIN = 2.3V
70
VIN = 3.0V VIN = 4.0V
60
50
40
1.8
30
1.7
20
-40 -25 -10
5 20 35 50 65 80 95 110 125
Ambient Temperature (°C)
0.1
FIGURE 2-4:
IOUT.
FIGURE 2-1:
Undervoltage Lockout
(UVLO) vs. Ambient Temperature.
100
90
1.225
Efficiency (%)
Feedback Voltage (V)
1.230
1.220
10
IOUT (mA)
100
1000
9.0V VOUT Efficiency vs.
VOUT = 12.0V
L = 4.7 μH
VIN = 4.0V
VIN = 5.5V
80
70
VIN = 2.3V
VIN = 3.0V
60
50
40
1.215
30
20
1.210
-40 -25 -10
0.1
5 20 35 50 65 80 95 110 125
Ambient Temperature (°C)
FIGURE 2-2:
VFB Voltage vs. Ambient
Temperature and VIN.
900
1
10
IOUT (mA)
100
1000
12.0V VOUT Efficiency vs.
FIGURE 2-5:
IOUT.
100
1000
L = 4.7 μH, VOUT = 6V, 9V and 12V
L = 10 μH, VOUT = 24V
90
Efficiency (%)
800
700
IOUT (mA)
1
600
VOUT = 6.0V
500
400
VOUT = 9.0V
300
VOUT = 12V
VOUT = 24.0V
VIN = 5.5V
L = 10 μH
80
70
VIN = 3.0V
VIN = 4.0V
60
50
40
200
30
100
VOUT = 24V
0
2.3
2.7
FIGURE 2-3:
vs. VIN.
3.1
3.5
3.9 4.3
VIN (V)
4.7
5.1
5.5
Maximum Output Current
2014-2015 Microchip Technology Inc.
20
0.1
FIGURE 2-6:
IOUT.
1
10
IOUT (mA)
100
1000
24.0V VOUT Efficiency vs.
DS20005315B-page 5
MCP1661
Note: Unless otherwise indicated, VIN = 3.3V, IOUT = 20 mA, VOUT = 12V, CIN = COUT = 10 µF, X7R ceramic,
L = 4.7 µH, TA = 25°C, 5-lead SOT-23 package.
IIN0 No Load Input Current (μA)
Inductor Peak Current (A)
1.5
1.3
1.1
0.9
VIN = 5.0V
VOUT = 12.0V
0.7
0.5
-40 -25 -10
1800
1200
1000
600
400
200
225
VOUT = 6.0V
200
175
5
20 35 50 65 80 95 110 125
FIGURE 2-10:
No Load Input Current, IIN0
vs. Ambient Temperature.
550
VIN = 3.0V
IOUT = 100 mA
525
500
475
450
425
150
2.3
2.7
3.1
3.5 3.9 4.3
Input Voltage (V)
4.7
5.1
-40 -25 -10
5.5
FIGURE 2-8:
No Load Input Current, IIN0
vs. VIN (EN = VIN).
5 20 35 50 65 80 95 110 125
Ambient Temperature (°C)
FIGURE 2-11:
Temperature.
fSW vs. Ambient
6
0.30
Note: Without FB Resistor Divider Current
0.25
5
0.20
4
VIN (V)
IQ Shutdown Mode (μA)
VIN = 5.5V
0
Ambient Temperature (°C)
Switching Frequency (kHz)
VOUT = 12.0V
VIN= 3.0V
800
575
250
VIN = 2.3V
1400
-40 -25 -10
300
275
VOUT = 12V
1600
5 20 35 50 65 80 95 110 125
Ambient Temperature (°C)
FIGURE 2-7:
Inductor Peak Current Limit
vs. Ambient Temperature.
IIN0 No Load Input Current (μA)
2000
0.15
VOUT = 24.0V
VOUT = 12.0V
VOUT = 6.0V
3
0.10
2
0.05
1
0
0.00
1.8
2.2
2.6
3
3.4 3.8
Input Voltage (V)
4.2
4.6
FIGURE 2-9:
Shutdown Quiescent
Current, IQSHDN vs. VIN (EN = GND).
DS20005315B-page 6
5
0
5
FIGURE 2-12:
Threshold.
10
15
20
IOUT (mA)
25
30
PWM Pulse Skipping Mode
2014-2015 Microchip Technology Inc.
MCP1661
Note: Unless otherwise indicated, VIN = 3.3V, IOUT = 20 mA, VOUT = 12V, CIN = COUT = 10 µF, X7R ceramic,
L = 4.7 µH, TA = 25°C, 5-lead SOT-23 package.
VOUT
50 mV/div, AC Coupled
20 MHz BW
Enable Thresholds (% of VIN)
100
IOUT = 1 mA
90
EN VIH
80
VSW
5 V/div
70
60
50
40
30
20
EN VIL
10
0
2.3
2.6
2.9
FIGURE 2-13:
Voltage.
3.2 3.5 3.8 4.1
Input Voltage (V)
4.4
4.7
IL
400 mA/div
5
1 µs/div
Enable Threshold vs. Input
FIGURE 2-16:
Waveforms.
High Load PWM Mode
IOUT = 15 mA
1
Switch RDS(ON) (Ω)
IOUT = 100 mA
IOUT = 100 mA
0.8
VOUT
3 V/div
0.6
VIN
3 V/div
0.4
IL
300 mA/div
0.2
0
2.6
2.9
3.2
FIGURE 2-14:
vs. VIN.
3.5
3.8
4.1
Input Voltage (V)
4.4
4.7
5
VEN
3 V/div
500 µs/div
N-Channel Switch RDSON
FIGURE 2-17:
12.0V Start-Up by Enable.
IOUT = 15 mA
IOUT = 5 mA
VOUT
20 mV/div, AC Coupled
20 MHz BW
VSW
5 V/div
VOUT
3 V/div
VIN
3 V/div
IL
100 mA/div
VSW
5 V/div
2 µs/div
FIGURE 2-15:
12.0V VOUT Light Load
PWM Mode Waveforms.
2014-2015 Microchip Technology Inc.
500 µs/div
FIGURE 2-18:
(VIN = VENABLE).
12.0V Start-Up
DS20005315B-page 7
MCP1661
Note: Unless otherwise indicated, VIN = 3.3V, IOUT = 20 mA, VOUT = 12V, CIN = COUT = 10 µF, X7R ceramic,
L = 4.7 µH, TA = 25°C, 5-lead SOT-23 package.
VOUT
200 mV/div, AC Coupled
Step from 20 mA to 50 mA
IOUT
30 mA/div
2 ms/div
FIGURE 2-19:
Waveforms.
12.0V VOUT Load Transient
IOUT = 60 mA
VOUT
100 mV/div, AC Coupled
Step from 3.3V to 5.0V
VIN
1 V/div
1 ms/div
FIGURE 2-20:
Waveforms.
DS20005315B-page 8
12.0V VOUT Line Transient
2014-2015 Microchip Technology Inc.
MCP1661
3.0
PIN DESCRIPTIONS
The descriptions of the pins are listed in Table 3-1.
TABLE 3-1:
3.1
PIN FUNCTION TABLE
MCP1661
SOT-23
MCP1661
2x3 TDFN
3
1
VFB
—
2
SGND
Symbol
Description
Feedback Voltage Pin
Signal Ground Pin (TDFN only)
1
3
SW
Switch Node, Boost Inductor Input Pin
—
4, 6
NC
Not Connected
Input Voltage Pin
5
5
VIN
—
7
PGND
Power Ground Pin (TDFN only)
4
8
EN
Enable Control Input Pin
—
9
EP
Exposed Thermal Pad (EP); must be connected to Ground.
(TDFN only)
2
—
GND
Ground Pin (SOT-23 only)
Feedback Voltage Pin (VFB)
The VFB pin is used to provide output voltage regulation
by using a resistor divider. The VFB voltage is 1.227V
typical.
3.2
Signal Ground Pin (SGND)
The signal ground pin is used as a return for the
integrated reference voltage and error amplifier. The
signal ground and power ground must be connected
externally in one point.
3.3
Switch Node Pin (SW)
Connect the inductor from the input voltage to the SW
pin. The SW pin carries inductor current, which can be
as high as 1.3A peak. The integrated N-Channel switch
drain is internally connected to the SW node.
3.4
Not Connected (NC)
3.7
Enable Pin (EN)
The EN pin is a logic-level input used to enable or
disable device switching and lower quiescent current
while disabled. A logic high (>85% of VIN) will enable
the regulator output. A logic low (
4
!/
;
:
=
4
!