MCP1662
High-Voltage Step-Up LED Driver with UVLO and Open Load Protection
Features
General Description
•
•
•
•
The MCP1662 device is a compact, space-efficient,
fixed-frequency, non-synchronous step-up converter
optimized to drive LED strings with constant current
from a two- or three-cell alkaline or lithium Energizer®,
or NiMH/NiCd, or one-cell Lithium-Ion or Li-Polymer
batteries.
•
•
•
•
•
•
•
•
•
•
36V, 800 m Integrated Switch
Up to 92% Efficiency
Drive LED Strings in Constant Current
1.3A Peak Input Current Limit:
- ILED up to 200 mA @ 5.0V VIN, 4 White LEDs
- ILED up to 125 mA @ 3.3V VIN, 4 White LEDs
- ILED up to 100 mA @ 4.2V VIN, 8 White LEDs
Input Voltage Range: 2.4V to 5.5V
Feedback Voltage Reference: VFB = 300 mV
Undervoltage Lockout (UVLO):
- UVLO @ VIN Rising: 2.3V, typical
- UVLO @ VIN Falling: 1.85V, typical
Sleep Mode with 20 nA Typical Quiescent Current
PWM Operation: 500 kHz Switching Frequency
Cycle-by-Cycle Current Limiting
Internal Compensation
Open Load Protection (OLP) in the Event of:
- Feedback pin shorted to GND (prevent
excessive current into LEDs)
- Disconnected LED string (prevent overvoltage
to the converter’s Output and SW pin)
Overtemperature Protection
Available Packages:
- 5-Lead SOT-23
- 8-Lead 2x3 TDFN
The device integrates a 36V, 800 m low-side switch,
which is protected by the 1.3A cycle-by-cycle inductor
peak current limit operation. All compensation and protection circuitry is integrated to minimize the number of
external components.
The internal feedback (VFB) voltage is set to 300 mV for
low power dissipation when sensing and regulating the
LED current. A single resistor sets the LED current.
The device features an Undervoltage Lockout (UVLO)
that avoids start-up with low inputs or discharged batteries for two-cell-powered applications.
There is an open load protection (OLP) which turns off
the operation in situations when the LED string is accidentally disconnected or the feedback pin is short-circuited to GND.
For standby applications (EN = GND), the device stops
switching, enters into Sleep mode and consumes
20 nA typical of input current.
Package Types
MCP1662
SOT-23
Applications
• Two and Three-Cell Alkaline or NiMH/NiCd White
LED Driver for Backlighting Products
• Li-Ion Battery LED Lighting Application
• Camera Flash
• LED Flashlights and Backlight Current Source
• Medical Equipment
• Portable Devices:
- Handheld Gaming Devices
- GPS Navigation Systems
- LCD Monitors
- Portable DVD Players
SW 1
5 VIN
GND 2
VFB 3
4 EN
MCP1662
2x3 TDFN*
VFB 1
SGND 2
SW 3
NC 4
8 EN
EP
9
7 PGND
6 NC
5 V
IN
* Includes Exposed Thermal Pad (EP); see
Table 3-1.
2014-2015 Microchip Technology Inc.
DS20005316E-page 1
MCP1662
Typical Application
D
MBR0540
L
4.7 – 10 µH
VOUT
LED1
CIN
4.7 – 30 µF
VIN
2.4V – 3.0V
SW
LED2
VIN
+
ALKALINE
ILED =
LED6
EN
VFB
ON
ALAKLINE
COUT
10 µF
MCP1662
-
+
0.3V
RSET
OFF
GND
VFB = 0.3V
RSET
12
ILED = 25 mA
-
L
= 4.7 µH for maximum 4 white LEDs
L
= 10 µH for 5 to 10 white LEDs
CIN = 4.7-10 µF for VIN > 2.5V
CIN = 20-30 µF for VIN < 2.5V
Maximum LED Current in Regulation vs. Input Voltage, TA = + 25°C
250
4 wLEDs, L = 4.7 µH
IOUT
LED (mA)
200
150
8 wLEDs, L = 10 µH
100
50
0
2
DS20005316E-page 2
2.5
3
3.5
4
VIN (V)
4.5
5
5.5
2014-2015 Microchip Technology Inc.
MCP1662
1.0
ELECTRICAL
CHARACTERISTICS
† Notice: Stresses above those listed under “Maximum
Ratings” may cause permanent damage to the device.
This is a stress rating only and functional operation of
the device at those or any other conditions above those
indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device
reliability.
Absolute Maximum Ratings †
VSW – GND .....................................................................+36V
EN, VIN – GND...............................................................+6.0V
VFB ...............................................................................+0.35V
Power Dissipation ....................................... Internally Limited
Storage Temperature .................................... -65°C to +150°C
Ambient Temperature with Power Applied .... -40°C to +125°C
Operating Junction Temperature................... -40°C to +150°C
ESD Protection on All Pins:
HBM ................................................................. 4 kV
MM ..................................................................300V
DC AND AC CHARACTERISTICS
Electrical Specifications: Unless otherwise specified, all limits apply for typical values at ambient temperature
TA = +25°C, VIN = 3.3V, VOUT = 9V or 3 white LEDs (VF = 2.75V @ IF = 20 mA or VF = 3.1V @ IF = 100 mA),
ILED = 20 mA, CIN = COUT = 10 µF, X7R ceramic, L = 4.7 µH.
Boldface specifications apply over the controlled TA range of -40°C to +125°C.
Parameters
Sym.
Min.
Typ.
Max.
Units
VIN
2.4
—
5.5
V
UVLOSTART
—
2.3
—
V
VIN rising, ILED = 20 mA
UVLOSTOP
—
1.85
—
V
VIN falling, ILED = 20 mA
Maximum Output Voltage
VOUTmax
—
—
32
V
Maximum Output Current
IOUT
—
100
—
mA
4.2V VIN, 8 LEDs
125
—
mA
3.3V VIN, 4 LEDs
200
—
mA
5.0V VIN, 4 LEDs
Input Voltage Range
Undervoltage Lockout (UVLO)
Feedback Voltage Reference
Conditions
Note 1
VFB
275
300
325
mV
VFB_OLP
—
50
—
mV
Feedback Input Bias Current
IVFB
—
0.005
—
µA
Shutdown Quiescent Current
IQSHDN
—
0.02
—
µA
EN = GND
IN(MAX)
—
1.3
—
A
Note 2
INLK
—
0.4
—
µA
VIN = VSW = 5V;
VOUT = 5.5V
VEN = VFB = GND
RDS(ON)
—
0.8
—
VIN = 5V,
ILED = 100 mA,
4 series white LEDs
(Note 2)
|(VFB/VFB)/VIN|
—
0.25
—
%/V
Feedback Open Load
Protection (OLP) Threshold
NMOS Peak Switch Current
Limit
NMOS Switch Leakage
NMOS Switch ON Resistance
Feedback Voltage
Line Regulation
VFB falling (Note 2)
VIN = 3.0V to 5V
Maximum Duty Cycle
DCMAX
—
90
—
%
Note 2
Switching Frequency
fSW
425
500
575
kHz
±15%
EN Input Logic High
VIH
85
—
—
% of VIN
Note 1:
2:
Minimum input voltage in the range of VIN (VIN < 5.5V < VOUT) depends on the maximum duty cycle
(DCMAX) and on the output voltage (VOUT), according to the boost converter equation:
VINmin = VOUT x (1 – DCMAX). Output voltage is equal to the LED voltage plus the voltage on the sense
resistor (VOUT = VLED + V_RSET).
Determined by characterization, not production tested.
2014-2015 Microchip Technology Inc.
DS20005316E-page 3
MCP1662
DC AND AC CHARACTERISTICS (CONTINUED)
Electrical Specifications: Unless otherwise specified, all limits apply for typical values at ambient temperature
TA = +25°C, VIN = 3.3V, VOUT = 9V or 3 white LEDs (VF = 2.75V @ IF = 20 mA or VF = 3.1V @ IF = 100 mA),
ILED = 20 mA, CIN = COUT = 10 µF, X7R ceramic, L = 4.7 µH.
Boldface specifications apply over the controlled TA range of -40°C to +125°C.
Parameters
Sym.
Min.
Typ.
Max.
Units
VIL
—
—
7.5
% of VIN
IENLK
—
0.025
—
µA
VEN = 5V
Start-up Time
tSS
—
100
—
µs
EN Low-to-High,
90% of ILED
(Note 2, Figure 2-10)
Thermal Shutdown
Die Temperature
TSD
—
150
—
°C
TSDHYS
—
15
—
°C
EN Input Logic Low
EN Input Leakage Current
Die Temperature Hysteresis
Note 1:
2:
Conditions
Minimum input voltage in the range of VIN (VIN < 5.5V < VOUT) depends on the maximum duty cycle
(DCMAX) and on the output voltage (VOUT), according to the boost converter equation:
VINmin = VOUT x (1 – DCMAX). Output voltage is equal to the LED voltage plus the voltage on the sense
resistor (VOUT = VLED + V_RSET).
Determined by characterization, not production tested.
TEMPERATURE SPECIFICATIONS
Electrical Specifications: Unless otherwise specified, all limits apply for typical values at ambient temperature
TA = +25°C, VIN = 3.0V, IOUT = 20 mA, VOUT = 12V, CIN = COUT = 10 µF, X7R ceramic, L = 4.7 µH.
Boldface specifications apply over the air-forced TA range of -40°C to +125°C.
Parameters
Sym.
Min.
Typ.
Max.
Units
Operating Junction Temperature
Range
TJ
-40
—
+125
°C
Storage Temperature Range
TA
-65
—
+150
°C
Maximum Junction Temperature
TJ
—
—
+150
°C
Thermal Resistance, 5L-SOT-23
JA
—
201.0
—
°C/W
Thermal Resistance, 8L 2x3 TDFN
JA
—
52.5
—
°C/W
Conditions
Temperature Ranges
Steady State
Transient
Package Thermal Resistances
DS20005316E-page 4
2014-2015 Microchip Technology Inc.
MCP1662
2.0
TYPICAL PERFORMANCE CURVES
Note:
The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.
Note: Unless otherwise indicated: VIN = 3.3V, ILED = 20 mA, VOUT = 12V or 4 white LEDs (VF = 2.75V @ IF = 20 mA or
VF = 3.1V @ IF = 100 mA), CIN = COUT = 10 µF, X7R ceramic, L = 4.7 µH.
150
100
4 x wLED, L = 4.7 µH
RSET = 2.2ȍ
80
Efficiency (%)
LED Current (mA)
VIN = 5.5V
90
125
RSET = 3.2ȍ
100
75
RSET = 6.2ȍ
50
VIN = 4.0V
70
60
VIN = 3.0V
50
40
30
25
L = 4.7 µH,
4 wLEDs
20
RSET = 15ȍ
10
0
0
2.3
2.7
FIGURE 2-1:
3.1
3.5 3.9 4.3
Input Voltage (V)
4.7
5.1
5.5
4 White LEDs, ILED vs. VIN.
0
50
75 100 125 150 175 200 225 250
ILED (mA)
FIGURE 2-4:
ILED.
4 White LEDs, Efficiency vs.
100
120
4 x wLED, L = 4.7 µH, VIN = 3.3V
90
RSET = 3.2ȍ
80
60
RSET = 6.2ȍ
40
80
Efficiency (%)
100
LED Current (mA)
25
VIN = 5.5V
70
VIN = 3.0V
VIN = 4.0V
60
50
40
30
RSET = 15ȍ
20
L = 10 µH,
8 wLEDs
20
10
0
0
-40 -25 -10
FIGURE 2-2:
4 White LEDs, ILED vs.
Ambient Temperature.
40
60
80 100
ILED (mA)
120
140
160
8 White LEDs, Efficiency vs.
300
8 x wLED, L = 10 µH, VIN = 4.2V
250
RSET = 3.2ȍ
100
LED Current (mA)
20
FIGURE 2-5:
ILED.
80
60
RSET = 6.2ȍ
40
RSET = 15ȍ
20
LED Current (mA)
120
0
5 20 35 50 65 80 95 110 125
Ambient Temperature (oC)
200
2 wLEDs, L = 4.7 µH
150
5 wLEDs, L = 10 µH
4 wLEDs, L = 4.7 µH
100
8 wLEDs, L = 10 µH
50
0
0
-40 -25 -10
5 20 35 50 65 80 95 110 125
Ambient Temperature (oC)
FIGURE 2-3:
8 White LEDs, ILED vs.
Ambient Temperature.
2014-2015 Microchip Technology Inc.
2.3
2.7
FIGURE 2-6:
3.1
3.5 3.9 4.3
Input Voltage (V)
4.7
5.1
5.5
Maximum ILED vs. VIN.
DS20005316E-page 5
MCP1662
Note: Unless otherwise indicated: VIN = 3.3V, ILED = 20 mA, VOUT = 12V or 4 white LEDs (VF = 2.75V @ IF = 20 mA or
VF = 3.1V @ IF = 100 mA), CIN = COUT = 10 µF, X7R ceramic, L = 4.7 µH.
2.5
250
UVLO Start
2.3
Blue Bars - ILED = 20 mA
Red Bars - ILED = 40 mA
200
2.2
2.1
2
UVLO Stop
1.9
1.8
1.7
Start-up Time (µs)
UVLO Thresholds (V)
2.4
150
100
50
1.6
0
1.5
-40 -25 -10
5
3
20 35 50 65 80 95 110 125
Ambient Temperature
4
5
6
Number of LEDs
7
8
(oC)
FIGURE 2-7:
Undervoltage Lockout
(UVLO) vs. Ambient Temperature.
FIGURE 2-10:
of LEDs.
Soft Start Time vs. Number
50
3 LEDs, ILED = 20 mA
Shutdown Iq (nA)
40
ILED
10 mA/div
30
20
VEN
2V/div
10
VIN
2V/div
0
2.2 2.5 2.8 3.1 3.4 3.7 4.0 4.3 4.6 4.9 5.2 5.5
Input Voltage (V)
FIGURE 2-8:
Shutdown Quiescent
Current, IQSHDN, vs. VIN (EN = GND).
40 µs/div
FIGURE 2-11:
VIN = VENABLE.
Start-Up When
Switching Frequency (kHz)
550
3 LED, ILED = 20 mA
525
ILED
10 mA/div
500
VEN
2V/div
475
VIN
2V/div
450
-40 -25 -10
5 20 35 50 65 80 95 110 125
Ambient Temperature (°C)
FIGURE 2-9:
Switching Frequency, fSW
vs. Ambient Temperature.
DS20005316E-page 6
40 µs/div
FIGURE 2-12:
Start-Up After Enable.
2014-2015 Microchip Technology Inc.
MCP1662
Note: Unless otherwise indicated: VIN = 3.3V, ILED = 20 mA, VOUT = 12V or 4 white LEDs (VF = 2.75V @ IF = 20 mA or
VF = 3.1V @ IF = 100 mA), CIN = COUT = 10 µF, X7R ceramic, L = 4.7 µH.
3 LEDs
3 LEDs
VOUT
3V/div
ILED
10 mA/div
VSW
4V/div
VSW
4V/div
ILED
20 mA/div
VEN
3V/div
1 µs/div
2 ms/div
FIGURE 2-13:
Duty Cycle.
100 Hz PWM Dimming, 15%
FIGURE 2-16:
3.3V Input, 20 mA 3 White
LEDs PWM Discontinuous Mode Waveforms.
3 LEDs
3 LEDs
ILED
100 mA/div
VOUT
3V/div
VSW
4V/div
ILED
50 mA/div
VSW
4V/div
VEN
3V/div
1 µs/div
2 ms/div
FIGURE 2-14:
Duty Cycle.
100 Hz PWM Dimming, 85%
FIGURE 2-17:
3.3V Input, 100 mA 3 White
LEDs PWM Continuous Mode Waveforms.
3 LEDs
VFB
300 mV/div
ILED
10 mA/div
VSW
4V/div
50 ms/div
FIGURE 2-15:
Open Load (LED Fail or FB
to GND) Response.
2014-2015 Microchip Technology Inc.
DS20005316E-page 7
MCP1662
3.0
PIN DESCRIPTIONS
The descriptions of the pins are listed in Table 3-1.
TABLE 3-1:
3.1
PIN FUNCTION TABLE
MCP1662
SOT-23
MCP1662
2x3 TDFN
3
1
VFB
—
2
SGND
Symbol
Description
Feedback Voltage Pin
Signal Ground Pin
1
3
SW
Switch Node, Boost Inductor Input Pin
—
4, 6
NC
Not Connected
Input Voltage Pin
5
5
VIN
—
7
PGND
Power Ground Pin
4
8
EN
Enable Control Input Pin
—
9
EP
Exposed Thermal Pad (EP); must be connected to Ground
2
—
GND
Ground Pin
Feedback Voltage Pin (VFB)
The VFB pin is used to regulate the voltage across the
RSET sense resistor to 300 mV to keep the output LED
current in regulation. Connect the cathode of the LED
to the VFB pin.
3.2
Signal Ground Pin (SGND)
The signal ground pin is used as a return for the integrated reference voltage and error amplifier. The signal
ground and power ground must be connected externally in one point.
3.3
Switch Node Pin (SW)
Connect the inductor from the input voltage to the SW
pin. The SW pin carries inductor current and has a typical value of 1.3A peak. The integrated N-Channel
switch drain is internally connected to the SW node.
3.4
Not Connected (NC)
3.7
Enable Pin (EN)
The EN pin is a logic-level input used to enable or disable device switching and lower quiescent current
while disabled. A logic high (>85% of VIN) will enable
the regulator output. A logic low (
4
!/
;
:
=
4
!