MCP1727
1.5A, Low Voltage, Low Quiescent Current LDO Regulator
Features
Description
•
•
•
•
The MCP1727 is a 1.5A Low Dropout (LDO) linear
regulator that provides high current and low output
voltages in a very small package. The MCP1727
comes in a fixed (or adjustable) output voltage version,
with an output voltage range of 0.8V to 5.0V. The 1.5A
output current capability, combined with the low output
voltage capability, makes the MCP1727 a good choice
for new sub-1.8V output voltage LDO applications that
have high current demands.
•
•
•
•
•
•
•
•
•
•
•
1.5A Output Current Capability
Input Operating Voltage Range: 2.3V to 6.0V
Adjustable Output Voltage Range: 0.8V to 5.0V
Standard Fixed Output Voltages:
- 0.8V, 1.2V, 1.8V, 2.5V, 3.0V, 3.3V, 5.0V
Other Fixed Output Voltage Options Available
Upon Request
Low Dropout Voltage: 330 mV typical at 1.5A
Typical Output Voltage Tolerance: 0.5%
Stable with 1.0 µF Ceramic Output Capacitor
Fast response to Load Transients
Low Supply Current: 120 µA (typical)
Low Shutdown Supply Current: 0.1 µA (typical)
Adjustable Delay on Power Good Output
Short Circuit Current Limiting and
Overtemperature Protection
3 mm x 3 mm DFN-8 and SOIC-8 Package
Options
Passes Automotive AEC-Q100 Reliability Testing
Applications
•
•
•
•
•
•
High-Speed Driver Chipset Power
Networking Backplane Cards
Notebook Computers
Network Interface Cards
Palmtop Computers
2.5V to 1.XV Regulators
The MCP1727 is stable using ceramic output
capacitors that inherently provide lower output noise
and reduce the size and cost of the entire regulator
solution. Only 1 µF of output capacitance is needed to
stabilize the LDO.
Using CMOS construction, the quiescent current
consumed by the MCP1727 is typically less than
120 µA over the entire input voltage range, making it
attractive for portable computing applications that
demand high output current. When shut down, the
quiescent current is reduced to less than 0.1 µA.
The scaled-down output voltage is internally monitored
and a power good (PWRGD) output is provided when
the output is within 92% of regulation (typical). An
external capacitor can be used on the CDELAY pin to
adjust the delay from 200 µs to 300 ms.
The overtemperature and short circuit current-limiting
provide additional protection for the LDO during system
fault conditions.
Package Types
Adjustable (SOIC-8)
VIN 1
VIN 2
SHDN 3
GND 4
8 VOUT
7 ADJ
6 CDELAY
5 PWRGD
Fixed (SOIC-8)
VIN 1
VIN 2
SHDN 3
GND 4
2006-2021 Microchip Technology Inc.
8 VOUT
7 Sense
6 CDELAY
5 PWRGD
Adjustable (3x3 DFN)
VIN 1
8
VOUT
VIN 2
7
ADJ
SHDN 3
6
CDELAY
GND 4
5
PWRGD
Fixed (3x3 DFN)
VIN 1
8
VOUT
VIN 2
7
Sense
SHDN 3
6
CDELAY
GND 4
5
PWRGD
DS20001999D-page 1
MCP1727
Typical Application
MCP1727 Fixed Output Voltage
VIN = 2.3V to 2.8V
C1
4.7 µF
1
VIN
VOUT 8
2
VIN
Sense 7
3
SHDN CDELAY 6
4
GND
VOUT = 1.8V @ 1A
C2
1 µF
PWRGD 5
C3
1000 pF
On
R1
100 k
Off
PWRGD
MCP1727 Adjustable Output Voltage
VIN = 2.3V to 2.8V
C1
4.7 µF
On
Off
1
VIN
VOUT 8
2
VIN
ADJ 7
3
SHDN CDELAY 6
4
GND
VOUT = 1.2V @ 1A
R1
40 k
C2
1 µF
R3
100 k
PWRGD 5
C3
1000 pF
R2
20 k
PWRGD
DS20001999D-page 2
2006-2021 Microchip Technology Inc.
MCP1727
Functional Block Diagram - Adjustable Output
PMOS
VIN
VOUT
Undervoltage
Lock Out
(UVLO)
ISNS
Cf
Rf
SHDN
Overtemperature
Sensing
ADJ
+
Driver w/limit
and SHDN
EA
–
SHDN
VREF
V IN
SHDN
Reference
Soft-Start
Comp
TDELAY
PWRGD
GND
92% of VREF
2006-2021 Microchip Technology Inc.
CDELAY
DS20001999D-page 3
MCP1727
Functional Block Diagram - Fixed Output
PMOS
VIN
VOUT
Undervoltage
Lock Out
(UVLO)
ISNS
Cf
Rf
SHDN
Overtemperature
Sensing
Sense
+
Driver w/limit
and SHDN
EA
–
SHDN
VREF
V IN
SHDN
Reference
Soft-Start
Comp
TDELAY
PWRGD
GND
92% of VREF
DS20001999D-page 4
CDELAY
2006-2021 Microchip Technology Inc.
MCP1727
1.0
ELECTRICAL CHARACTERISTICS
Absolute Maximum Ratings †
VIN ..................................................................................................................................................................................................... 6.5V
Maximum Voltage on Any Pin ................................................................................................................... (GND – 0.3V) to (VDD + 0.3)V
Maximum Power Dissipation...........................................................................................................................Internally-Limited (Note 6)
Output Short Circuit Duration ................................................................................................................................................. Continuous
Storage temperature ...................................................................................................................................................... -65°C to +150°C
Maximum Junction Temperature, TJ ............................................................................................................................................ +150°C
ESD protection on all pins (HBM/MM) 2 kV; 200V
† Notice: Stresses above those listed under “Maximum Ratings” may cause permanent damage to the device. This is a stress rating
only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this
specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
AC/DC CHARACTERISTICS
Electrical Specifications: Unless otherwise noted, VIN = VOUT(MAX) + VDROPOUT(MAX) (Note 1), VR = 1.8V for Adjustable Output,
IOUT = 1 mA, CIN = COUT = 4.7 µF (X7R Ceramic), TA = +25°C.
Boldface type applies for junction temperatures, TJ (Note 7) of -40°C to +125°C
Parameters
Sym.
Min.
Typ.
Max.
Units
Input Operating Voltage
VIN
2.3
—
6.0
V
Note 1
Input Quiescent Current
Iq
—
120
220
µA
IL = 0 mA, VIN = Note 1,
VOUT = 0.8V to 5.0V
Input Quiescent Current for
SHDN Mode
ISHDN
—
0.1
3
µA
SHDN = GND
Maximum Output Current
IOUT
1.5
—
—
A
VIN = 2.3V to 6.0V
VR = 0.8V to 5.0V, Note 1
Line Regulation
VOUT/
(VOUT x VIN)
—
0.05
0.16
%/V
Load Regulation
VOUT/VOUT
-1.0
±0.5
1.0
%
IOUT = 1 mA to 1.5A,
VIN = Note 1, (Note 4)
IOUT_SC
—
2.2
—
A
VIN = Note 1, RLOAD < 0.1,
Peak Current
Output Short Circuit Current
Conditions
(Note 1) VIN 6V
Adjust Pin Characteristics (Adjustable Output Only)
Adjust Pin Reference Voltage
VADJ
0.402
0.410
0.418
V
VIN = 2.3V to VIN = 6.0V,
IOUT = 1 mA
Adjust Pin Leakage Current
IADJ
-10
±0.01
+10
nA
VIN = 6.0V, VADJ = 0V to 6V
TCVOUT
—
40
—
Adjust Temperature Coefficient
Note 1:
2:
3:
4:
5:
6:
7:
ppm/°C Note 3
The minimum VIN must meet two conditions: VIN2.3V and VIN VOUT(MAX)VDROPOUT(MAX).
VR is the nominal regulator output voltage for the fixed cases. VR = 1.2V, 1.8V, etc. VR is the desired set point output
voltage for the adjustable cases. VR = VADJ * ((R1/R2)+1). Figure 4-1.
TCVOUT = (VOUT-HIGH – VOUT-LOW) *106 / (VR * Temperature). VOUT-HIGH is the highest voltage measured over the
temperature range. VOUT-LOW is the lowest voltage measured over the temperature range.
Load regulation is measured at a constant junction temperature using low duty-cycle pulse testing. Load regulation is
tested over a load range from 1 mA to the maximum specified output current.
Dropout voltage is defined as the input-to-output voltage differential at which the output voltage drops 2% below its
nominal value that was measured with an input voltage of VOUT = VR + VDROPOUT(MAX).
The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction
temperature and the thermal resistance from junction to air. (i.e., TA, TJ, JA). Exceeding the maximum allowable power
dissipation will cause the device operating junction temperature to exceed the maximum +150°C rating. Sustained
junction temperatures above 150°C can impact device reliability.
The junction temperature is approximated by soaking the device under test at an ambient temperature equal to the
desired junction temperature. The test time is small enough such that the rise in the junction temperature over the
ambient temperature is not significant.
2006-2021 Microchip Technology Inc.
DS20001999D-page 5
MCP1727
AC/DC CHARACTERISTICS (CONTINUED)
Electrical Specifications: Unless otherwise noted, VIN = VOUT(MAX) + VDROPOUT(MAX) (Note 1), VR = 1.8V for Adjustable Output,
IOUT = 1 mA, CIN = COUT = 4.7 µF (X7R Ceramic), TA = +25°C.
Boldface type applies for junction temperatures, TJ (Note 7) of -40°C to +125°C
Parameters
Sym.
Min.
Typ.
Max.
Units
Conditions
Fixed-Output Characteristics (Fixed Output Only)
Voltage Regulation
VOUT
VR – 2.5% VR ±0.5% VR + 2.5%
V
Note 2
Dropout Characteristics
Dropout Voltage
VIN-VOUT
—
330
550
1.0
—
6.0
1.2
—
6.0
mV
Note 5, IOUT = 1.5A,
VIN(MIN) = 2.3V
Power Good Characteristics
PWRGD Input Voltage
Operating Range
VPWRGD_VIN
PWRGD Threshold Voltage
(Referenced to VOUT)
—
—
—
VPWRGD_TH
89
92
95
90
92
94
PWRGD Threshold Hysteresis
VPWRGD_HYS
1.0
2.0
PWRGD Output Voltage Low
VPWRGD_L
—
PWRGD Leakage
PWRGD_LK
—
TA = +25°C
V
TA = -40°C to +125°C
For VIN < 2.3V, ISINK = 100 µA
Falling Edge
%VOUT
VOUT < 2.5V Fixed, VOUT = Adj.
3.0
%VOUT
—
0.2
0.4
V
IPWRGD SINK = 1.2 mA,
ADJ = 0V,
SENSE = 0V
1
—
nA
VPWRGD = VIN = 6.0V
VOUT >= 2.5V Fixed
Rising Edge
RPULLUP = 10 k
PWRGD Time Delay
TPG
ICDELAY = 140 nA (Typ)
200
—
µs
CDELAY = OPEN
10
30
55
ms
CDELAY = 0.01 µF
—
300
—
ms
CDELAY = 0.1 µF
TVDET-PWRGD
—
200
—
µs
VADJ or VSENSE =
VPWRGD_TH + 20 mV to
VPWRGD_TH – 20 mV
Logic High Input
VSHDN-HIGH
45
—
—
%VIN
VIN = 2.3V to 6.0V
Logic Low Input
VSHDN-LOW
—
—
15
%VIN
VIN = 2.3V to 6.0V
SHDNILK
-0.1
±0.001
+0.1
µA
Detect Threshold to PWRGD
Active Time Delay
—
Shutdown Input
SHDN Input Leakage Current
Note 1:
2:
3:
4:
5:
6:
7:
VIN = 6V, SHDN = VIN,
SHDN = GND
The minimum VIN must meet two conditions: VIN2.3V and VIN VOUT(MAX)VDROPOUT(MAX).
VR is the nominal regulator output voltage for the fixed cases. VR = 1.2V, 1.8V, etc. VR is the desired set point output
voltage for the adjustable cases. VR = VADJ * ((R1/R2)+1). Figure 4-1.
TCVOUT = (VOUT-HIGH – VOUT-LOW) *106 / (VR * Temperature). VOUT-HIGH is the highest voltage measured over the
temperature range. VOUT-LOW is the lowest voltage measured over the temperature range.
Load regulation is measured at a constant junction temperature using low duty-cycle pulse testing. Load regulation is
tested over a load range from 1 mA to the maximum specified output current.
Dropout voltage is defined as the input-to-output voltage differential at which the output voltage drops 2% below its
nominal value that was measured with an input voltage of VOUT = VR + VDROPOUT(MAX).
The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction
temperature and the thermal resistance from junction to air. (i.e., TA, TJ, JA). Exceeding the maximum allowable power
dissipation will cause the device operating junction temperature to exceed the maximum +150°C rating. Sustained
junction temperatures above 150°C can impact device reliability.
The junction temperature is approximated by soaking the device under test at an ambient temperature equal to the
desired junction temperature. The test time is small enough such that the rise in the junction temperature over the
ambient temperature is not significant.
DS20001999D-page 6
2006-2021 Microchip Technology Inc.
MCP1727
AC/DC CHARACTERISTICS (CONTINUED)
Electrical Specifications: Unless otherwise noted, VIN = VOUT(MAX) + VDROPOUT(MAX) (Note 1), VR = 1.8V for Adjustable Output,
IOUT = 1 mA, CIN = COUT = 4.7 µF (X7R Ceramic), TA = +25°C.
Boldface type applies for junction temperatures, TJ (Note 7) of -40°C to +125°C
Parameters
Sym.
Min.
Typ.
Max.
Units
TOR
—
100
—
µs
eN
—
2.0
—
Conditions
AC Performance
Output Delay From SHDN
Output Noise
Power Supply Ripple Rejection
Ratio
PSRR
—
60
—
dB
TSD
—
150
—
°C
IOUT = 100 µA, VOUT = 1.8V,
VIN = 2.8V
TSD
—
10
—
°C
IOUT = 100 µA, VOUT = 1.8V,
VIN = 2.8V
Thermal Shutdown Hysteresis
3:
4:
5:
6:
7:
IOUT = 200 mA, f = 1 kHz,
µV/Hz COUT = 10 µF (X7R Ceramic),
VOUT = 2.5V
f = 100 Hz, COUT = 10 µF,
IOUT = 10 mA,
VINAC = 30 mV pk-pk,
CIN = 0 µF
Thermal Shutdown
Temperature
Note 1:
2:
SHDN = GND to VIN
VOUT = GND to 95% VR
The minimum VIN must meet two conditions: VIN2.3V and VIN VOUT(MAX)VDROPOUT(MAX).
VR is the nominal regulator output voltage for the fixed cases. VR = 1.2V, 1.8V, etc. VR is the desired set point output
voltage for the adjustable cases. VR = VADJ * ((R1/R2)+1). Figure 4-1.
TCVOUT = (VOUT-HIGH – VOUT-LOW) *106 / (VR * Temperature). VOUT-HIGH is the highest voltage measured over the
temperature range. VOUT-LOW is the lowest voltage measured over the temperature range.
Load regulation is measured at a constant junction temperature using low duty-cycle pulse testing. Load regulation is
tested over a load range from 1 mA to the maximum specified output current.
Dropout voltage is defined as the input-to-output voltage differential at which the output voltage drops 2% below its
nominal value that was measured with an input voltage of VOUT = VR + VDROPOUT(MAX).
The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction
temperature and the thermal resistance from junction to air. (i.e., TA, TJ, JA). Exceeding the maximum allowable power
dissipation will cause the device operating junction temperature to exceed the maximum +150°C rating. Sustained
junction temperatures above 150°C can impact device reliability.
The junction temperature is approximated by soaking the device under test at an ambient temperature equal to the
desired junction temperature. The test time is small enough such that the rise in the junction temperature over the
ambient temperature is not significant.
TEMPERATURE SPECIFICATIONS
Electrical Specifications: Unless otherwise indicated, all limits apply for VIN = 2.3V to 6.0V.
Parameters
Sym.
Min.
Typ.
Max.
Units
TJ
-40
—
+125
°C
Conditions
Temperature Ranges
Operating Junction Temperature Range
Steady State
Maximum Junction Temperature
TJ
—
—
+150
°C
Transient
Storage Temperature Range
TA
-65
—
+150
°C
—
Thermal Resistance, 8LD 3x3 DFN
JA
—
41
—
°C/W
4-Layer JC51-7 Standard
Board with vias
Thermal Resistance, 8LD SOIC
JA
—
150
—
°C/W
4-Layer JC51-7 Standard
Board
Thermal Package Resistances
2006-2021 Microchip Technology Inc.
DS20001999D-page 7
MCP1727
2.0
TYPICAL PERFORMANCE CURVES
Note:
The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.
NOTE: Unless otherwise indicated VOUT = 1.8V (Adjustable), VIN = 2.8V, COUT = 4.7 µF Ceramic (X7R), CIN = 4.7 µF
Ceramic (X7R), IOUT = 1 mA, Temperature = +25°C, VIN = VOUT + 0.6V, RPWRGD = 10 k To VIN.
NOTE: Junction Temperature (TJ) is approximated by soaking the device under test to an ambient temperature equal
to the desired Junction temperature. The test time is small enough such that the rise in Junction temperature over the
Ambient temperature is not significant.
140
130
Line Regulation (%/V)
Quiescent Current (μA)
150
130°C
90°C
120
25°C
110
-45°C
100
VOUT = 1.2V Adj
IOUT = 0 mA
90
2
3
4
5
0.1
0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01
0
VOUT = 1.2V adj
VIN = 2.3V to 6.0V
IOUT = 1 mA
IOUT = 1000 mA
IOUT = 100 mA
IOUT = 500 mA
-45
6
-20
5
30
0.15
200
190
180
170
160
150
140
130
120
110
100
VOUT = 1.2V Adj
80
105
130
FIGURE 2-4:
Line Regulation vs.
Temperature (1.2V Adjustable).
VIN=5.0V
Load Regulation (%)
Ground Current (μA)
FIGURE 2-1:
Quiescent Current vs. Input
Voltage (1.2V Adjustable).
VIN=3.3V
VIN=2.3V
VOUT = 3.3V
0.10
IOUT = 1.0 mA to 1500 mA
0.05
0.00
VOUT = 0.8V
-0.05
VOUT = 1.8V
VOUT = 5.0V
-0.10
-0.15
0
250
500
750
1000
1250
1500
-45
-20
5
Load Current (mA)
30
55
80
105
130
Temperature (°C)
FIGURE 2-2:
Ground Current vs. Load
Current (1.2V Adjustable).
FIGURE 2-5:
Temperature.
Load Regulation vs.
0.411
140
IOUT = 0 mA
VOUT = 1.2V Adj
135
Adjust Pin Voltage (V)
Quiescent Current (μA)
55
Temperature (°C)
Input Voltage (V)
130
125
120
VIN=5.0V
115
VIN=2.5V
110
VIN=4.0V
105
100
VIN = 6.0V
0.410
VIN = 5.0V
0.410
VIN = 2.3V
0.409
0.409
IOUT = 1.0 mA
0.408
-45
-20
5
30
55
80
105
130
-45
Temperature (°C)
FIGURE 2-3:
Quiescent Current vs.
Junction Temperature (1.2V Adjustable).
DS20001999D-page 8
-20
5
30
55
80
105
130
Temperature (°C)
FIGURE 2-6:
Temperature.
Adjust Pin Voltage vs.
2006-2021 Microchip Technology Inc.
MCP1727
NOTE: Unless otherwise indicated VOUT = 1.8V (Adjustable), VIN = 2.8V, COUT = 4.7 µF Ceramic (X7R), CIN = 4.7 µF
Ceramic (X7R), IOUT = 1 mA, Temperature = +25°C, VIN = VOUT + 0.6V, RPWRGD = 10 k To VIN.
150
V OUT = 5.0V Adj
0.30
Quiescent Current (μA)
Dropout Voltage (V)
0.35
0.25
0.20
VOUT = 2.5V Adj
0.15
0.10
0.05
VOUT = 0.8V
IOUT = 0 mA
140
+130°C
130
+85°C
120
+25°C
110
-45°C
100
90
80
0.00
0
250
500
750
1000
1250
2
1500
3
FIGURE 2-7:
Dropout Voltage vs. Load
Current (Adjustable Version).
VOUT = 5.0V Adj
VOUT = 3.3V Adj
VOUT = 2.5V Adj
0.32
Quiescent Current (μA)
Dropout Voltage (V)
150
0.36
0.34
VOUT = 2.5V
IOUT = 0 mA
140
+130 °C
130
+90°C
120
+25°C
110
-45 °C
100
90
80
0.30
-45
-20
5
30
55
80
105
3
130
3.5
31
CDELAY = 0.01 μF
VOUT = 1.8V Adj
VIN = 2.4V
30
29
28
VIN = 5.0V
27
VIN = 3.3V
26
4.5
5
5.5
6
FIGURE 2-11:
Quiescent Current vs. Input
Voltage (2.5V Fixed).
25
250.00
Ground Current (μA)
FIGURE 2-8:
Dropout Voltage vs.
Temperature (Adjustable Version).
32
4
Input Voltage (V)
Temperature (°C)
Power Good Time Delay (mS)
6
FIGURE 2-10:
Quiescent Current vs. Input
Voltage (0.8V Fixed).
IOUT = 1.5A
0.40
0.38
5
Input Voltage (V)
Load Current (mA)
0.42
4
200.00
VOUT=0.8V
150.00
VOUT=2.5V
100.00
50.00
VIN = 2.3V for VR=0.8V
VIN = 3.1V for VR=2.5V
0.00
-45
-20
5
30
55
80
105
130
0
Temperature (°C)
FIGURE 2-9:
Power Good (PWRGD)
Time Delay vs. Temperature.
2006-2021 Microchip Technology Inc.
250
500
750
1000
1250
1500
Load Current (mA)
FIGURE 2-12:
Current.
Ground Current vs. Load
DS20001999D-page 9
MCP1727
NOTE: Unless otherwise indicated VOUT = 1.8V (Adjustable), VIN = 2.8V, COUT = 4.7 µF Ceramic (X7R), CIN = 4.7 µF
Ceramic (X7R), IOUT = 1 mA, Temperature = +25°C, VIN = VOUT + 0.6V, RPWRGD = 10 k To VIN.
0.045
IOUT = 0 mA
125
Line Regulation (%/V)
Quiescent Current (μA)
130
120
115
110
VOUT = 0.8V
105
100
VOUT = 2.5V
95
-45
-20
5
VR = 2.5V
VIN = 3.1 to 6.0V
0.040
IOUT = 1 mA
0.035
0.030
IOUT = 100 mA
0.025
IOUT = 1000 mA
IOUT = 1500 mA
0.015
30
55
80
105
-45
130
-20
5
0.30
0.20
Load Regulation (%)
Ishdn (μA)
80
0.30
VR = 0.8V
VIN = 6.0V
0.15
VIN = 4.0V
0.10
VIN = 2.3V
0.05
105
130
VIN = 2.3V
VOUT = 0.8V
0.20
0.10
0.00
-0.10
IOUT = 1 mA to 1500 mA
-0.20
-0.30
0.00
-45
-20
5
30
55
80
105
-45
130
-20
5
FIGURE 2-14:
30
ISHDN vs. Temperature.
0.00
IOUT = 1 mA
IOUT = 1A
IOUT = 100 mA
IOUT = 500mA
VOUT = 0.8V
VIN = 2.3V to 6.0V
0.00
-20
5
30
55
80
105
Temperature (°C)
FIGURE 2-15:
Line Regulation vs.
Temperature (0.8V Fixed).
DS20001999D-page 10
130
Load Regulation (%)
0.08
-45
105
130
IOUT = 1 mA to 1500 mA
-0.05
0.04
80
FIGURE 2-17:
Load Regulation vs.
Temperature (VOUT < 2.5V Fixed).
0.10
0.06
55
Temperature (°C)
Temperature (°C)
Line Regulation (%/V)
55
FIGURE 2-16:
Line Regulation vs.
Temperature (2.5V Fixed).
Quiescent Current vs.
0.25
0.02
30
Temperature (°C)
Temperature (°C)
FIGURE 2-13:
Temperature.
IOUT = 500 mA
0.020
-0.10
-0.15
VOUT = 2.5V
-0.20
-0.25
VOUT = 5.0V
-0.30
-0.35
-0.40
-0.45
-45
-20
5
30
55
80
105
130
Temperature (°C)
FIGURE 2-18:
Load Regulation vs.
Temperature (VOUT 2.5V Fixed).
2006-2021 Microchip Technology Inc.
MCP1727
NOTE: Unless otherwise indicated VOUT = 1.8V (Adjustable), VIN = 2.8V, COUT = 4.7 µF Ceramic (X7R), CIN = 4.7 µF
Ceramic (X7R), IOUT = 1 mA, Temperature = +25°C, VIN = VOUT + 0.6V, RPWRGD = 10 k To VIN.
0.40
VR=2.5V, VIN=3.3V
VOUT = 2.5V
0.30
0.25
VOUT = 5.0V
0.20
0.15
0.10
COUT=1 μF ceramic X7R
CIN=10 μF ceramic
1
Noise (µV/ Hz)
Dropout Voltage (V)
10
Temperature = 25°C
0.35
0.1
IOUT=200 mA
VR=0.8V, VIN=2.3V
0.01
0.05
0.00
0
250
500
750
1000
1250
0.001
0.01
1500
0.1
Load Current (mA)
FIGURE 2-19:
Current.
Dropout Voltage vs. Load
1000
0
IOUT = 1.5A
-10
0.40
-20
0.35
VOUT = 5.0V
0.30
-45
-20
-30
-40
VR=1.2V Adj
COUT=10 μF ceramic X7R
VIN=3.1V
CIN=0 μF
IOUT=10 mA
-50
-60
VOUT = 2.5V
-70
0.25
5
30
55
80
105
-80
0.01
130
0.1
Temperature (°C)
FIGURE 2-20:
Temperature.
1
10
Frequency (kHz)
100
1000
FIGURE 2-23:
Power Supply Ripple
Rejection (PSRR) vs. Frequency (VOUT = 1.2V
Adj.).
Dropout Voltage vs.
0
3.00
-10
2.50
-20
PSRR (dB)
Short Circuit Current (A)
100
FIGURE 2-22:
Output Noise Voltage
Density vs. Frequency.
PSRR (dB)
Dropout Voltage (V)
0.45
1
10
Frequency (kHz)
2.00
1.50
1.00
VOUT = 2.5V
Temperature = 25°C
0.50
0.00
3.0
3.5
4.0
4.5
5.0
5.5
6.0
Input Voltage (V)
FIGURE 2-21:
Input Voltage.
Short Circuit Current vs.
2006-2021 Microchip Technology Inc.
-30
-40
VR=1.2V Adj
COUT=22 μF ceramic X7R
VIN=3.1V
CIN=0 μF
IOUT=10 mA
-50
-60
-70
-80
0.01
0.1
1
10
Frequency (kHz)
100
1000
FIGURE 2-24:
Power Supply Ripple
Rejection (PSRR) vs. Frequency (VOUT = 1.2V
Adj.).
DS20001999D-page 11
MCP1727
NOTE: Unless otherwise indicated VOUT = 1.8V (Adjustable), VIN = 2.8V, COUT = 4.7 µF Ceramic (X7R), CIN = 4.7 µF
Ceramic (X7R), IOUT = 1 mA, Temperature = +25°C, VIN = VOUT + 0.6V, RPWRGD = 10 k To VIN.
0
-10
PSRR (dB)
-20
-30
-40
VR=2.5V Fixed
COUT=10 μF ceramic X7R
VIN=3.3V
CIN=0 μF
IOUT=10 mA
-50
-60
-70
-80
0.01
0.1
1
10
Frequency (kHz)
100
1000
PSRR (dB)
FIGURE 2-25:
Power Supply Ripple
Rejection (PSRR) vs. Frequency (VOUT = 2.5V
Fixed).
0
-10
-20
-30
-40
-50
-60
-70
-80
-90
0.01
FIGURE 2-28:
Shutdown.
2.5V (Fixed) Startup from
VR=2.5V Fixed
COUT=22 μF ceramic X7R
VIN=3.3V
CIN=0 μF
IOUT=10 mA
0.1
1
10
Frequency (kHz)
100
1000
FIGURE 2-26:
Power Supply Ripple
Rejection (PSRR) vs. Frequency (VOUT = 2.5V
Fixed).
FIGURE 2-29:
Power Good (PWRGD)
Timing with CBYPASS of 1000 pF.
FIGURE 2-27:
VIN.
FIGURE 2-30:
Power Good (PWRGD)
Timing with CBYPASS of 0.1 µF.
DS20001999D-page 12
2.5V (Fixed) Startup from
2006-2021 Microchip Technology Inc.
MCP1727
NOTE: Unless otherwise indicated VOUT = 1.8V (Adjustable), VIN = 2.8V, COUT = 4.7 µF Ceramic (X7R), CIN = 4.7 µF
Ceramic (X7R), IOUT = 1 mA, Temperature = +25°C, VIN = VOUT + 0.6V, RPWRGD = 10 k To VIN.
FIGURE 2-31:
(0.8V Fixed).
Dynamic Line Response
FIGURE 2-33:
Dynamic Load Response
(2.5V Fixed, 10 mA to 1000 mA).
FIGURE 2-32:
(2.5V Fixed).
Dynamic Line Response
FIGURE 2-34:
Dynamic Load Response
(2.5V Fixed, 100 mA to 1000 mA).
2006-2021 Microchip Technology Inc.
DS20001999D-page 13
MCP1727
3.0
PIN DESCRIPTION
The descriptions of the pins are listed in Table 3-1.
TABLE 3-1:
PIN FUNCTION TABLE
Fixed Output
Adjustable Output
Name
Description
1
1
VIN
Input Voltage Supply
2
2
VIN
Input Voltage Supply
3
3
SHDN
4
4
GND
Shutdown Control Input (active-low)
Ground
5
5
PWRGD
Power Good Output (open-drain)
6
6
CDELAY
Power Good Delay Set-Point Input
—
7
ADJ
7
—
Sense
Voltage Sense Input (fixed voltage version)
8
8
VOUT
Regulated Output Voltage
Exposed Pad
Exposed Pad
EP
3.1
Input Voltage Supply (VIN)
Connect the unregulated or regulated input voltage
source to VIN. If the input voltage source is located
several inches away from the LDO, or the input source
is a battery, it is recommended that an input capacitor
be used. A typical input capacitance value of 1 µF to
10 µF should be sufficient for most applications.
3.2
Shutdown Control Input (SHDN)
The SHDN input is used to turn the LDO output voltage
on and off. When the SHDN input is at a logic-high
level, the LDO output voltage is enabled. When the
SHDN input is pulled to a logic-low level, the LDO
output voltage is disabled. When the SHDN input is
pulled low, the PWRGD output also goes low and the
LDO enters a low quiescent current shutdown state
where the typical quiescent current is 0.1 µA.
3.3
Ground (GND)
Connect the GND pin of the LDO to a quiet circuit
ground. This will help the LDO power supply rejection
ratio and noise performance. The ground pin of the
LDO only conducts the quiescent current of the LDO
(typically 120 µA), so a heavy trace is not required.
For applications have switching or noisy inputs tie the
GND pin to the return of the output capacitor. Ground
planes help lower inductance and voltage spikes
caused by fast transient load currents and are
recommended for applications that are subjected to
fast load transients.
DS20001999D-page 14
Voltage Sense Input (adjustable version)
Exposed Pad of the DFN Package (ground potential)
3.4
Power Good Output (PWRGD)
The PWRGD output is an open-drain output used to
indicate when the LDO output voltage is within 92%
(typically) of its nominal regulation value. The PWRGD
threshold has a typical hysteresis value of 2%. The
PWRGD output is typically delayed by 200 µs (typical,
no capacitance on CDELAY pin) from the time the LDO
output is within 92% + 3% (max hysteresis) of the
regulated output value on power-up. This delay time is
controlled by the CDELAY pin.
3.5
Power Good Delay Set-Point Input
(CDELAY)
The CDELAY input sets the power-up delay time for the
PWRGD output. By connecting an external capacitor
from the CDELAY pin to ground, the typical delay times
for the PWRGD output can be adjusted from 200 µs (no
capacitance) to 300 ms (0.1 µF capacitor). This allows
for the optimal setting of the system reset time.
3.6
3.6.1
Output Voltage Sense/Adjust Input
(ADJ/Sense)
ADJ
For adjustable applications, the output voltage is
connected to the ADJ input through a resistor divider
that sets the output voltage regulation value. This
provides the user the capability to set the output
voltage to any value they desire within the 0.8V to 5.0V
range of the device.
2006-2021 Microchip Technology Inc.
MCP1727
3.6.2
Sense
For fixed output voltage versions of the device, the
SENSE input is used to provide output voltage
feedback to the internal circuitry of the MCP1727. The
SENSE pin typically improves load regulation by
allowing the device to compensate for voltage drops
due to packaging and circuit board layout.
3.7
Regulated Output Voltage (VOUT)
The VOUT pin(s) is the regulated output voltage of the
LDO. A minimum output capacitance of 1.0 µF is
required for LDO stability. The MCP1727 is stable with
ceramic,
tantalum
and
aluminum-electrolytic
capacitors. See Section 4.3 “Output Capacitor” for
output capacitor selection guidance.
3.8
Exposed Pad (EP)
The 3x3 DFN package has an exposed pad on the
bottom of the package. This pad should be soldered to
the Printed Circuit Board (PCB) to aid in the removal of
heat from the package during operation. The exposed
pad is at the ground potential of the LDO.
2006-2021 Microchip Technology Inc.
DS20001999D-page 15
MCP1727
4.0
DEVICE OVERVIEW
EQUATION 4-2:
The MCP1727 is a high output current, Low Dropout
(LDO) voltage regulator with an adjustable delay
power-good output and shutdown control input. The
low dropout voltage of 330 mV typical at 1.5A of current
makes it ideal for battery-powered applications. Unlike
other high output current LDOs, the MCP1727 only
draws a maximum of 220 µA of quiescent current.
4.1
The MCP1727 LDO is available with either a fixed
output voltage or an adjustable output voltage. The
output voltage range is 0.8V to 5.0V for both versions.
4.1.1
ADJUST INPUT
The adjustable version of the MCP1727 uses the ADJ
pin (pin 7) to get the output voltage feedback for output
voltage regulation. This allows the user to set the
output voltage of the device with two external resistors.
The nominal voltage for ADJ is 0.41V.
Figure 4-1 shows the adjustable version of the
MCP1727. Resistors R1 and R2 form the resistor
divider network necessary to set the output voltage.
With this configuration, the equation for setting VOUT is:
EQUATION 4-1:
R1 + R2
V OUT = V ADJ ------------------
R2
Where:
VOUT
=
LDO Output Voltage
VADJ
=
ADJ Pin Voltage
(typically 0.41V)
C1
4.7 µF
Off
On
1 VIN
VOUT 8
2 VIN
ADJ 7
3 SHDN CDELAY 6
VOUT
R1
C2
1 µF
R2
FIGURE 4-1:
Typical Adjustable Output
Voltage Application Circuit.
The allowable resistance value range for resistor R2 is
from 10 k to 200 k. Solving the equation for R1
yields the following equation:
DS20001999D-page 16
=
LDO Output Voltage
VADJ
=
ADJ Pin Voltage
(typically 0.41V)
Output Current and Current
Limiting
The MCP1727 LDO is tested and ensured to supply a
minimum of 1.5A of output current. The MCP1727 has
no minimum output load, so the output load current can
go to 0 mA and the LDO will continue to regulate the
output voltage to within tolerance.
The MCP1727 also incorporates an output current limit.
If the output voltage falls below 0.7V due to an overload
condition (usually represents a shorted load condition),
the output current is limited to 2.2A (typical). If the
overload condition is a soft overload, the MCP1727 will
supply higher load currents of up to 3A. The MCP1727
should not be operated in this condition continuously as
it may result in failure of the device. However, this does
allow for device usage in applications that have higher
pulsed load currents having an average output current
value of 1.5A or less.
4.3
4 GND PWRGD 5
C3
1000 pF
VOUT
Output overload conditions may also result in an overtemperature shutdown of the device. If the junction
temperature rises above 150°C, the LDO will shut
down the output voltage. See Section 4.9 “Overtemperature Protection” for more information on
overtemperature shutdown.
MCP1727-ADJ
VIN
Where:
4.2
LDO Output Voltage
V OUT – V ADJ
R 1 = R 2 --------------------------------
V ADJ
Output Capacitor
The MCP1727 requires a minimum output capacitance
of 1 µF for output voltage stability. Ceramic capacitors
are recommended because of their size, cost and
environmental robustness qualities.
Aluminum-electrolytic and tantalum capacitors can be
used on the LDO output as well. The Equivalent Series
Resistance (ESR) of the electrolytic output capacitor
must be no greater than 1. The output capacitor
should be located as close to the LDO output as is
practical. Ceramic materials X7R and X5R have low
temperature coefficients and are well within the
acceptable ESR range required. A typical 1 µF X7R
0805 capacitor has an ESR of 50 m.
Larger LDO output capacitors can be used with the
MCP1727 to improve dynamic performance and power
supply ripple rejection performance. A maximum of
22 µF
is
recommended. Aluminum-electrolytic
capacitors are not recommended for low-temperature
applications of -25°C.
2006-2021 Microchip Technology Inc.
MCP1727
4.4
Input Capacitor
Low input source impedance is necessary for the LDO
output to operate properly. When operating from
batteries, or in applications with long lead length
(> 10 inches) between the input source and the LDO,
some input capacitance is recommended. A minimum
of 1.0 µF to 4.7 µF is recommended for most
applications.
For applications that have output step load
requirements, the input capacitance of the LDO is very
important. The input capacitance provides the LDO
with a good local low-impedance source to pull the
transient currents from in order to respond quickly to
the output load step. For good step response
performance, the input capacitor should be of
equivalent (or higher) value than the output capacitor.
The capacitor should be placed as close to the input of
the LDO as is practical. Larger input capacitors will also
help reduce any high-frequency noise on the input and
output of the LDO and reduce the effects of any
inductance that exists between the input source
voltage and the input capacitance of the LDO.
4.5
Power Good Output (PWRGD)
The PWRGD output is used to indicate when the output
voltage of the LDO is within 92% (typical value, see
Section 1.0 “Electrical Characteristics” for Minimum
and Maximum specifications) of its nominal regulation
value.
As the output voltage of the LDO rises, the PWRGD
output will be held low until the output voltage has
exceeded the power good threshold plus the hysteresis
value. Once this threshold has been exceeded, the
power good time delay is started (shown as TPG in the
Electrical Characteristics table). The power good time
delay is adjustable via the CDELAY pin of the LDO (see
Section 4.6 “CDELAY Input”). By placing a capacitor
from the CDELAY pin to ground, the power good time
delay can be adjusted from 200 µs (no capacitance) to
300 ms (0.1 µF capacitor). After the time delay period,
the PWRGD output will go high, indicating that the
output voltage is stable and within regulation limits.
If the output voltage of the LDO falls below the power
good threshold, the power good output will transition
low. The power good circuitry has a 200 µs delay when
detecting a falling output voltage, which helps to
increase noise immunity of the power good output and
avoid false triggering of the power good output during
fast output transients. See Figure 4-2 for power good
timing characteristics.
When the LDO is put into Shutdown mode using the
SHDN input, the power good output is pulled low
immediately, indicating that the output voltage will be
out of regulation. The timing diagram for the power
good output when using the shutdown input is shown in
Figure 4-3.
2006-2021 Microchip Technology Inc.
The power good output is an open-drain output that can
be pulled up to any voltage that is equal to or less than
the LDO input voltage. This output is capable of sinking
1.2 mA (VPWRGD < 0.4V maximum).
VPWRGD_TH
VOUT
TPG
VOH
TVDET_PWRGD
PWRGD
VOL
FIGURE 4-2:
VIN
Power Good Timing.
TOR
30 µs
70 µs
TPG
SHDN
VOUT
PWRGD
FIGURE 4-3:
Shutdown.
4.6
Power Good Timing from
CDELAY Input
The CDELAY input is used to provide the power-up delay
timing for the power good output, as discussed in the
previous section. By adding a capacitor from the
CDELAY pin to ground, the PWRGD power-up time
delay can be adjusted from 200 µs (no capacitance on
CDELAY) to 300 ms (0.1 µF of capacitance on CDELAY).
See Section 1.0 “Electrical Characteristics” for
CDELAY timing tolerances.
DS20001999D-page 17
MCP1727
Once the power good threshold (rising) has been
reached, the CDELAY pin charges the external capacitor
to VIN. The charging current is 140 nA (typical). The
PWRGD output will transition high when the CDELAY pin
voltage has charged to 0.42V. If the output falls below
the power good threshold limit during the charging time
between 0.0V and 0.42V on the CDELAY pin, the
CDELAY pin voltage will be pulled to ground, thus resetting the timer. The CDELAY pin will be held low until the
output voltage of the LDO has once again risen above
the power good rising threshold. A timing diagram
showing CDELAY, PWRGD and VOUT is shown in
Figure 4-4.
high (turn-on) to the LDO output being in regulation is
typically 100 µs. See Figure 4-5 for a timing diagram of
the SHDN input.
TOR
400 ns (typ)
30 µs
70 µs
SHDN
VOUT
VOUT
VPWRGD_TH
TPG
CDELAY
VIN (typ)
CDELAY Threshold (0.42V)
0V
PWRGD
FIGURE 4-4:
Diagram.
4.7
CDELAY and PWRGD Timing
Shutdown Input (SHDN)
The SHDN input is an active-low input signal that turns
the LDO on and off. The SHDN threshold is a
percentage of the input voltage. The typical value of
this shutdown threshold is 30% of VIN, with minimum
and maximum limits over the entire operating
temperature range of 45% and 15%, respectively.
The SHDN input will ignore low-going pulses (pulses
meant to shut down the LDO) that are up to 400 ns in
pulse width. If the shutdown input is pulled low for more
than 400 ns, the LDO will enter Shutdown mode. This
small bit of filtering helps to reject any system noise
spikes on the shutdown input signal.
On the rising edge of the SHDN input, the shutdown
circuitry has a 30 µs delay before allowing the LDO
output to turn on. This delay helps to reject any false
turn-on signals or noise on the SHDN input signal. After
the 30 µs delay, the LDO output enters its soft-start
period as it rises from 0V to its final regulation value. If
the SHDN input signal is pulled low during the 30 µs
delay period, the timer will be reset and the delay time
will start over again on the next rising edge of the
SHDN input. The total time from the SHDN input going
DS20001999D-page 18
FIGURE 4-5:
Diagram.
4.8
Shutdown Input Timing
Dropout Voltage and Undervoltage
Lockout
Dropout voltage is defined as the input-to-output
voltage differential at which the output voltage drops
2% below the nominal value that was measured with a
VR + 0.6V differential applied. The MCP1727 LDO has
a very low dropout voltage specification of 330 mV
(typical) at 1.5A of output current. See Section 1.0
“Electrical Characteristics” for maximum dropout
voltage specifications.
The MCP1727 LDO operates across an input voltage
range of 2.3V to 6.0V and incorporates input Undervoltage Lockout (UVLO) circuitry that keeps the LDO
output voltage off until the input voltage reaches a
minimum of 2.18V (typical) on the rising edge of the
input voltage. As the input voltage falls, the LDO output
will remain on until the input voltage level reaches
2.04V (typical).
Since the MCP1727 LDO undervoltage lockout
activates at 2.04V as the input voltage is falling, the
dropout voltage specification does not apply for output
voltages that are less than 1.9V.
For high-current applications, voltage drops across the
PCB traces must be taken into account. The trace
resistances can cause significant voltage drops
between the input voltage source and the LDO. For
applications with input voltages near 2.3V, these PCB
trace voltage drops can sometimes lower the input
voltage enough to trigger a shutdown due to
undervoltage lockout.
2006-2021 Microchip Technology Inc.
MCP1727
4.9
Overtemperature Protection
The MCP1727 LDO has temperature-sensing circuitry
to prevent the junction temperature from exceeding
approximately 150°C. If the LDO junction temperature
does reach 150°C, the LDO output will be turned off
until the junction temperature cools to approximately
140°C, at which point the LDO output will automatically
resume normal operation. If the internal power
dissipation continues to be excessive, the device will
again shut off. The junction temperature of the die is a
function of power dissipation, ambient temperature
and package thermal resistance. See Section 5.0
“Application Circuits/Issues” for more information
on LDO power dissipation and junction temperature.
2006-2021 Microchip Technology Inc.
DS20001999D-page 19
MCP1727
5.0
APPLICATION CIRCUITS/
ISSUES
5.1
Typical Application
In addition to the LDO pass element power dissipation,
there is power dissipation within the MCP1727 as a
result of quiescent or ground current. The power
dissipation as a result of the ground current can be
calculated using the following equation:
The MCP1727 is used for applications that require high
LDO output current and a power good output.
C1
10 µF
Off
Where:
MCP1727-2.5
VIN = 3.3V
1 VIN
VOUT 8
2 VIN
Sense 7
VOUT = 2.5V @ 1.5A
R1
10k
3 SHDN CDELAY 6
C2
10 µF
4 GND PWRGD 5
On
EQUATION 5-2:
P I GND = V IN MAX I VIN
PI(GND
=
Power dissipation due to the
quiescent current of the LDO
VIN(MAX)
=
Maximum input voltage
IVIN
=
Current flowing in the VIN pin
with no LDO output current
(LDO quiescent current)
C3
1000 pF
PWRGD
FIGURE 5-1:
5.1.1
Typical Application Circuit.
APPLICATION CONDITIONS
Package Type = 3x3DFN8
Input Voltage Range = 3.3V ± 5%
VIN maximum = 3.465V
VIN minimum = 3.135V
VDROPOUT (max) = 0.525V
VOUT (typical) = 2.5V
IOUT = 1.5A maximum
PDISS (typical) = 1.2W
Temperature Rise = 49.2°C
5.2
Power Calculations
5.2.1
POWER DISSIPATION
The internal power dissipation within the MCP1727 is a
function of input voltage, output voltage, output current
and quiescent current. Equation 5-1 can be used to
calculate the internal power dissipation for the LDO.
The total power dissipated within the MCP1727 is the
sum of the power dissipated in the LDO pass device
and the P(IGND) term. Because of the CMOS
construction, the typical IGND for the MCP1727 is
120 µA. Operating at a maximum of 3.465V results in a
power dissipation of 0.42 mW. For most applications,
this is small compared to the LDO pass device power
dissipation and can be neglected.
The maximum continuous operating junction
temperature specified for the MCP1727 is +125°C. To
estimate the internal junction temperature of the
MCP1727, the total internal power dissipation is
multiplied by the thermal resistance from junction to
ambient (RJA) of the device. The thermal resistance
from junction to ambient for the 3x3 DFN package is
estimated at 41°C/W.
EQUATION 5-3:
T J MAX = P TOTAL R JA + T AMAX
TJ(MAX) = Maximum continuous junction
temperature
PTOTAL = Total device power dissipation
RJA = Thermal resistance from junction to
ambient
TAMAX = Maximum ambient temperature
EQUATION 5-1:
P LDO = V IN MAX – V OUT MIN I OUT MAX
Where:
PLDO = LDO Pass device internal power
dissipation
VIN(MAX) = Maximum input voltage
VOUT(MIN) = LDO minimum output voltage
DS20001999D-page 20
2006-2021 Microchip Technology Inc.
MCP1727
The maximum power dissipation capability for a
package can be calculated given the junction-toambient thermal resistance and the maximum ambient
temperature for the application. Equation 5-4 can be
used to determine the package maximum internal
power dissipation.
EQUATION 5-4:
P D MAX
T J MAX – T A MAX
= --------------------------------------------------R JA
PD(MAX) = Maximum device power dissipation
TJ(MAX) = maximum continuous junction
temperature
TA(MAX) = maximum ambient temperature
RJA = Thermal resistance from junction to
ambient
EQUATION 5-5:
T J RISE = P D MAX R JA
5.3
Typical Application
Internal power dissipation, junction temperature rise,
junction temperature and maximum power dissipation
is calculated in the following example. The power
dissipation as a result of ground current is small
enough to be neglected.
5.3.1
POWER DISSIPATION EXAMPLE
Package
Package Type = 3x3DFN
Input Voltage
VIN = 3.3V ± 5%
LDO Output Voltage and Current
VOUT = 2.5V
IOUT = 1.5A
Maximum Ambient Temperature
TA(MAX) = 60°C
Internal Power Dissipation
PLDO(MAX) = (VIN(MAX) – VOUT(MIN)) x IOUT(MAX)
PLDO = ((3.3V x 1.05) – (2.5V x 0.975))
x 1.5A
TJ(RISE) = Rise in device junction temperature
over the ambient temperature
PLDO = 1.54 Watts
PD(MAX) = Maximum device power dissipation
RJA = Thermal resistance from junction to
ambient
EQUATION 5-6:
T J = T J RISE + T A
TJ = Junction temperature
TJ(RISE) = Rise in device junction temperature
over the ambient temperature
TA = Ambient temperature
5.3.1.1
Device Junction Temperature Rise
The internal junction temperature rise is a function of
internal power dissipation and the thermal resistance
from junction-to-ambient for the application. The
thermal resistance from junction-to-ambient (RJA) is
derived from an EIA/JEDEC standard for measuring
thermal resistance for small surface-mount packages.
The EIA/JEDEC specification is JESD51-7 “High
Effective Thermal Conductivity Test Board for Leaded
Surface-Mount Packages”. The standard describes the
test method and board specifications for measuring the
thermal resistance from junction to ambient. The actual
thermal resistance for a particular application can vary
depending on many factors such as copper area and
thickness. Refer to AN792, “A Method to Determine
How Much Power a SOT23 Can Dissipate in an
Application” (DS00792), for more information regarding
this subject.
TJ(RISE) = PTOTAL x RJA
TJRISE = 1.54 W x 41.0°C/W
TJRISE = 63.14°C
2006-2021 Microchip Technology Inc.
DS20001999D-page 21
MCP1727
5.3.1.2
Junction Temperature Estimate
To estimate the internal junction temperature, the
calculated temperature rise is added to the ambient or
offset temperature. For this example, the worst-case
junction temperature is estimated below:
TJ = TJRISE + TA(MAX)
TJ = 63.14°C + 60.0°C
TJ = 123.14°C
As you can see from the result, this application will be
operating very near the maximum operating junction
temperature of 125°C. The PCB layout for this
application is very important as it has a significant
impact on the junction-to-ambient thermal resistance
(RJA) of the 3x3 DFN package, which is very important
in this application.
5.3.1.3
Maximum Package Power
Dissipation at 60°C Ambient
Temperature
5.4
CDELAY Calculations (Typical)
T
C = I ------V
Where:
C
=
CDELAY Capacitor
I
=
CDELAY charging current,
140 nA typical
T
=
time delay
V
=
CDELAY threshold voltage,
0.42V typical
T
140nA T - = 333.3 10–09 T
C = I ------- = --------------------------------V
0.42V
For a delay of 300 ms:
C = 333.3E-09 * .300
C = 100E-09uF (0.1 µF)
3x3 DFN (41°C/W RJA):
PD(MAX) = (125°C – 60°C) / 41°C/W
PD(MAX) = 1.585W
SOIC8 (150°C/Watt RJA):
PD(MAX) = (125°C – 60°C)/ 150°C/W
PD(MAX) = 0.433W
From this table, you can see the difference in maximum
allowable power dissipation between the 3x3 DFN
package and the 8-pin SOIC package. This difference
is due to the exposed metal tab on the bottom of the
DFN package. The exposed tab of the DFN package
provides a very good thermal path from the die of the
LDO to the PCB. The PCB then acts like a heatsink,
providing more area to distribute the heat generated by
the LDO.
DS20001999D-page 22
2006-2021 Microchip Technology Inc.
MCP1727
6.0
PACKAGING INFORMATION
6.1
Package Marking Information
8-Lead DFN
(3 mm x 3 mm)
Example:
Standard
Extended Temp
XXXX
YYWW
NNN
Code
Voltage
Options *
Code
Voltage
Options *
CAAJ
0620
256
CAAJ
0.8
CAAP
3.0
CAAK
1.2
CAAQ
3.3
CAAL
1.8
CAAR
5.0
CAAM
2.5
CAAH
ADJ
* Custom output voltages available upon request.
Contact your local Microchip sales office for more
information.
8-Lead SOIC (150 mil)
Extended Temp
XXXXXXXX
XXXXYYWW
NNN
Code
Voltage
Options *
Code
Voltage
Options *
082E
0.8
302E
3.0
122E
1.2
332E
3.3
182E
1.8
502E
5.0
252E
2.5
ADJE
ADJ
* Custom output voltages available upon request.
Contact your local Microchip sales office for more
information.
Legend: XX...X
Y
YY
WW
NNN
e3
*
Note:
Example:
Standard
1727082E
3
SN e^^0620
256
Customer-specific information
Year code (last digit of calendar year)
Year code (last 2 digits of calendar year)
Week code (week of January 1 is week ‘01’)
Alphanumeric traceability code
Pb-free JEDEC designator for Matte Tin (Sn)
This package is Pb-free. The Pb-free JEDEC designator ( e3 )
can be found on the outer packaging for this package.
In the event the full Microchip part number cannot be marked on one line, it will
be carried over to the next line, thus limiting the number of available
characters for customer-specific information.
2006-2021 Microchip Technology Inc.
DS20001999D-page 23
MCP1727
Note:
For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
DS20001999D-page 24
2006-2021 Microchip Technology Inc.
MCP1727
Note:
For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
2006-2021 Microchip Technology Inc.
DS20001999D-page 25
MCP1727
Note:
For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
DS20001999D-page 26
2006-2021 Microchip Technology Inc.
MCP1727
8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm (.150 In.) Body [SOIC]
Note:
For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
2X
0.10 C A–B
D
A
D
NOTE 5
N
E
2
E1
2
E1
E
2X
0.10 C A–B
2X
0.10 C A–B
NOTE 1
2
1
e
B
NX b
0.25
C A–B D
NOTE 5
TOP VIEW
0.10 C
C
A A2
SEATING
PLANE
8X
A1
SIDE VIEW
0.10 C
h
R0.13
h
R0.13
H
SEE VIEW C
VIEW A–A
0.23
L
(L1)
VIEW C
Microchip Technology Drawing No. C04-057-SN Rev F Sheet 1 of 2
2006-2021 Microchip Technology Inc.
DS20001999D-page 27
MCP1727
8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm (.150 In.) Body [SOIC]
Note:
For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
Units
Dimension Limits
Number of Pins
N
e
Pitch
Overall Height
A
Molded Package Thickness
A2
§
Standoff
A1
Overall Width
E
Molded Package Width
E1
Overall Length
D
Chamfer (Optional)
h
Foot Length
L
Footprint
L1
Foot Angle
c
Lead Thickness
b
Lead Width
Mold Draft Angle Top
Mold Draft Angle Bottom
MIN
1.25
0.10
0.25
0.40
0°
0.17
0.31
5°
5°
MILLIMETERS
NOM
8
1.27 BSC
6.00 BSC
3.90 BSC
4.90 BSC
1.04 REF
-
MAX
1.75
0.25
0.50
1.27
8°
0.25
0.51
15°
15°
Notes:
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. § Significant Characteristic
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or
protrusions shall not exceed 0.15mm per side.
4. Dimensioning and tolerancing per ASME Y14.5M
BSC: Basic Dimension. Theoretically exact value shown without tolerances.
REF: Reference Dimension, usually without tolerance, for information purposes only.
5. Datums A & B to be determined at Datum H.
Microchip Technology Drawing No. C04-057-SN Rev F Sheet 2 of 2
DS20001999D-page 28
2006-2021 Microchip Technology Inc.
MCP1727
8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm (.150 In.) Body [SOIC]
Note:
For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
SILK SCREEN
C
Y1
X1
E
RECOMMENDED LAND PATTERN
Units
Dimension Limits
E
Contact Pitch
Contact Pad Spacing
C
Contact Pad Width (X8)
X1
Contact Pad Length (X8)
Y1
MIN
MILLIMETERS
NOM
1.27 BSC
5.40
MAX
0.60
1.55
Notes:
1. Dimensioning and tolerancing per ASME Y14.5M
BSC: Basic Dimension. Theoretically exact value shown without tolerances.
Microchip Technology Drawing C04-2057-SN Rev F
2006-2021 Microchip Technology Inc.
DS20001999D-page 29
MCP1727
NOTES:
DS20001999D-page 30
2006-2021 Microchip Technology Inc.
MCP1727
APPENDIX A:
REVISION HISTORY
Revision D (August 2021)
• Updated the Product Identification System to
include examples for the Adjustable Version.
• Minor editorial and formatting changes.
Revision C (May 2021)
The following is a list of changes:
• Updated the Features section.
• Updated Section 6.0 “Packaging Information”.
• Updated the Product Identification System to
include automotive examples.
• Minor editorial corrections.
Revision B (February 2007)
The following is a list of changes:
•
•
•
•
Revised Notes on pages 8–13.
Added junction temperature note.
Figure 2-22: Revised label on Y-axis
Replaced Figure 2-27 and Figure 2-28 and
revised figure captions.
• Added disclaimers to package outline drawings.
• Updated package outline drawings.
Revision A (July 2006)
• Original Release of this Document.
2006-2021 Microchip Technology Inc.
DS20001999D-page 31
MCP1727
NOTES:
2006-2021 Microchip Technology Inc.
DS20001999D-page 32
MCP1727
PRODUCT IDENTIFICATION SYSTEM
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.
Examples:
PART NO.
XX
X
X/
XX
X
Device
Output Feature Tolerance Temp. Package
Voltage Code
Device:
MCP1727: 1.5A Low Dropout Regulator
MCP1727T: 1.5A Low Dropout Regulator
Tape and Reel
Output Voltage *:
08
12
18
25
30
33
50
=
=
=
=
=
=
=
0.8V “Standard”
1.2V “Standard”
1.8V “Standard”
2.5V “Standard”
3.0V “Standard”
3.3V “Standard”
5.0V “Standard”
*Contact factory for other output voltage options
Adjustable Option
ADJ = Adjustable Version
Extra Feature Code:
0
= Fixed
Tolerance:
2
= 2.0% (Standard)
Temperature:
E
= -40C to +125C
Package Type:
MF = Plastic Dual Flat No Lead (DFN)
(3x3x0.9 mm Body), 8-Lead
SN = Plastic Small Outline (150 mil Body), 8-Lead
MFVAO = Plastic Dual Flat No Lead (DFN)
(3x3x0.9 mm Body), 8-Lead, Automotive
MFV01 = Plastic Dual Flat No Lead (DFN)
(3x3x0.9 mm Body), 8-Lead, Automotive
2006-2021 Microchip Technology Inc.
a)
MCP1727-0802E/MF:
0.8V Low Dropout
Regulator, DFN8 pkg.
b)
MCP1727T-1202E/MF: Tape and Reel,
1.2V Low Dropout
Regulator, DFN8 pkg.
c)
MCP1727-1802E/MF:
d)
MCP1727T-2502E/MF: Tape and Reel,
2.5V Low Dropout
Voltage Regulator,
DFN8 pkg.
e)
MCP1727-3002E/MF:
3.0V Low Dropout
Voltage Regulator,
DFN8 pkg.
f)
MCP1727-3302E/MF:
3.3V Low Dropout
Voltage Regulator,
DFN8 pkg.
g)
MCP1727-3302E/MFV01: 3.3V Low Dropout
Voltage Regulator,
Automotive,
DFN8 pkg.
h)
MCP1727T-5002E/MF: Tape and Reel,
5.0V Low Dropout
Voltage Regulator,
DFN8 pkg.
i)
MCP1727T-0802E/SN: Tape and Reel,
0.8V Low Dropout
Voltage Regulator,
SOIC8 pkg.
j)
MCP1727-1202E/SN:
k)
MCP1727T-1802E/SN: Tape and Reel,
1.8V Low Dropout
Voltage Regulator,
SOIC8 pkg.
l)
MCP1727-2502E/SN:
2.5V Low Dropout
Voltage Regulator,
SOIC8 pkg.
m)
MCP1727-3002E/SN:
3.0V Low Dropout
Voltage Regulator,
SOIC8 pkg.
n)
MCP1727-3302E/SN:
3.3V Low Dropout
Voltage Regulator,
SOIC8 pkg.
o)
MCP1727T-5002E/SN: Tape and Reel,
5.0V Low Dropout
Voltage Regulator,
SOIC8 pkg.
p)
MCP1727-ADJE/MF:
q)
MCP1727-ADJE/MFVAO: Adjustable Version
Voltage Regulator,
Automotive
DFN8 pkg.
r)
MCP1727-ADJE/SN:
1.8V Low Dropout
Voltage Regulator,
DFN8 pkg.
1.2V Low Dropout
Voltage Regulator,
SOIC8 pkg.
Adjustable Version
Voltage Regulator,
DFN8 pkg.
Adjustable Version
Voltage Regulator,
SOIC8 pkg.
DS20001999D-page 33
MCP1727
NOTES:
DS20001999D-page 34
2006-2021 Microchip Technology Inc.
Note the following details of the code protection feature on Microchip devices:
•
Microchip products meet the specifications contained in their particular Microchip Data Sheet.
•
Microchip believes that its family of products is secure when used in the intended manner and under normal conditions.
•
There are dishonest and possibly illegal methods being used in attempts to breach the code protection features of the Microchip
devices. We believe that these methods require using the Microchip products in a manner outside the operating specifications
contained in Microchip's Data Sheets. Attempts to breach these code protection features, most likely, cannot be accomplished
without violating Microchip's intellectual property rights.
•
Microchip is willing to work with any customer who is concerned about the integrity of its code.
•
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not
mean that we are guaranteeing the product is "unbreakable." Code protection is constantly evolving. We at Microchip are
committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection
feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or
other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication is provided for the sole
purpose of designing with and using Microchip products. Information regarding device applications and the like is provided
only for your convenience and may be superseded by updates.
It is your responsibility to ensure that your application meets
with your specifications.
THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS".
MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED,
WRITTEN OR ORAL, STATUTORY OR OTHERWISE,
RELATED TO THE INFORMATION INCLUDING BUT NOT
LIMITED TO ANY IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A
PARTICULAR PURPOSE OR WARRANTIES RELATED TO
ITS CONDITION, QUALITY, OR PERFORMANCE.
IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND
WHATSOEVER RELATED TO THE INFORMATION OR ITS
USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS
BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES
ARE FORESEEABLE. TO THE FULLEST EXTENT
ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON
ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION
OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF
ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP
FOR THE INFORMATION. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and
the buyer agrees to defend, indemnify and hold harmless
Microchip from any and all damages, claims, suits, or expenses
resulting from such use. No licenses are conveyed, implicitly or
otherwise, under any Microchip intellectual property rights
unless otherwise stated.
Trademarks
The Microchip name and logo, the Microchip logo, Adaptec,
AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT,
chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex,
flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck,
LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi,
Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer,
PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire,
Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST,
SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon,
TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered
trademarks of Microchip Technology Incorporated in the U.S.A. and
other countries.
AgileSwitch, APT, ClockWorks, The Embedded Control Solutions
Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight
Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3,
Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, QuietWire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub,
TimePictra, TimeProvider, WinPath, and ZL are registered
trademarks of Microchip Technology Incorporated in the U.S.A.
Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any
Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky,
BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive,
CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net,
Dynamic Average Matching, DAM, ECAN, Espresso T1S,
EtherGREEN, IdealBridge, In-Circuit Serial Programming, ICSP,
INICnet, Intelligent Paralleling, Inter-Chip Connectivity,
JitterBlocker, maxCrypto, maxView, memBrain, Mindi, MiWi,
MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK,
NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net,
PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE,
Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O,
simpleMAP, SimpliPHY, SmartBuffer, SMART-I.S., storClad, SQI,
SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total
Endurance, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY,
ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks
of Microchip Technology Incorporated in the U.S.A. and other
countries.
SQTP is a service mark of Microchip Technology Incorporated in
the U.S.A.
The Adaptec logo, Frequency on Demand, Silicon Storage
Technology, and Symmcom are registered trademarks of Microchip
Technology Inc. in other countries.
GestIC is a registered trademark of Microchip Technology Germany
II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in
other countries.
All other trademarks mentioned herein are property of their
respective companies.
© 2006-2021, Microchip Technology Incorporated, All Rights
Reserved.
For information regarding Microchip’s Quality Management Systems,
please visit www.microchip.com/quality.
2006-2021 Microchip Technology Inc.
ISBN: 978-1-5224-8738-8
DS20001999D-page 35
Worldwide Sales and Service
AMERICAS
ASIA/PACIFIC
ASIA/PACIFIC
EUROPE
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com
Australia - Sydney
Tel: 61-2-9868-6733
India - Bangalore
Tel: 91-80-3090-4444
China - Beijing
Tel: 86-10-8569-7000
India - New Delhi
Tel: 91-11-4160-8631
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
China - Chengdu
Tel: 86-28-8665-5511
India - Pune
Tel: 91-20-4121-0141
China - Chongqing
Tel: 86-23-8980-9588
Japan - Osaka
Tel: 81-6-6152-7160
China - Dongguan
Tel: 86-769-8702-9880
Japan - Tokyo
Tel: 81-3-6880- 3770
China - Guangzhou
Tel: 86-20-8755-8029
Korea - Daegu
Tel: 82-53-744-4301
China - Hangzhou
Tel: 86-571-8792-8115
Korea - Seoul
Tel: 82-2-554-7200
China - Hong Kong SAR
Tel: 852-2943-5100
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
China - Nanjing
Tel: 86-25-8473-2460
Malaysia - Penang
Tel: 60-4-227-8870
China - Qingdao
Tel: 86-532-8502-7355
Philippines - Manila
Tel: 63-2-634-9065
China - Shanghai
Tel: 86-21-3326-8000
Singapore
Tel: 65-6334-8870
China - Shenyang
Tel: 86-24-2334-2829
Taiwan - Hsin Chu
Tel: 886-3-577-8366
China - Shenzhen
Tel: 86-755-8864-2200
Taiwan - Kaohsiung
Tel: 886-7-213-7830
China - Suzhou
Tel: 86-186-6233-1526
Taiwan - Taipei
Tel: 886-2-2508-8600
China - Wuhan
Tel: 86-27-5980-5300
Thailand - Bangkok
Tel: 66-2-694-1351
China - Xian
Tel: 86-29-8833-7252
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC
Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078
DS20001999D-page 36
China - Xiamen
Tel: 86-592-2388138
China - Zhuhai
Tel: 86-756-3210040
Denmark - Copenhagen
Tel: 45-4485-5910
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-72400
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-7288-4388
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820
2006-2021 Microchip Technology Inc.
02/28/20