MCP1811A/11B/12A/12B
Ultra-Low Quiescent Current LDO Regulator
for Long-Life Battery-Powered Applications
Features
Description
• Ultra-Low Quiescent Current: 250 nA (typical)
• Ultra-Low Shutdown Supply Current:
- 10 nA typical for MCP1811A/12A
- 5 nA typical for MCP1811B/12B
• Output Current Capability:
- 150 mA for MCP1811X (Note 1)
- 300 mA for MCP1812X
• Input Voltage Range: 1.8V to 5.5V
• Standard Output Voltages (VR): 1V, 1.2V, 1.8V, 2.0V,
2.5V, 2.8V, 3.0V, 3.3V and 4.0V; for any other voltage
options (between 1V to 4V), please contact your local
sales office
• Stable with Ceramic Output Capacitor:
1.0 µF (MCP1811X) and 2.2 µF (MCP1812X)
• Overcurrent Protection
• Output Discharge (Shutdown mode,
SHDN = GND) MCP1811A/12A
• Available for the Following Packages:
- 3-Lead SOT-23
- 3-Lead SC70
- 4-Lead 1 x 1 mm UDFN
- 5-Lead SOT-23
- 5-Lead SC70
The MCP1811X/12X devices are 150 mA (MCP1811X)
and 300 mA (MCP1812X) Low Dropout (LDO) linear
regulators that provide high-current and low output
voltages while maintaining an ultra-low 250 nA of
quiescent current during device operation. In addition,
the MCP1811B/12B can be shut down for 5 nA (typical)
supply current draw.
Applications
•
•
•
•
•
Energy Harvesting
Long-Life, Battery-Powered Applications
Smart Cards
Ultra-Low Consumption “Green” Products
Wearable Electronics (smart watches, bracelets,
headsets)
• Medical Devices (hearing aids)
2018-2020 Microchip Technology Inc.
The MCP1811X/12X family comes in nine standard
fixed output voltage versions: 1V, 1.2V, 1.8V, 2.0V,
2.5V, 2.8V, 3.0V, 3.3V and 4.0V.
The 150/300 mA output current capability, combined
with the low output voltage capability, make the
MCP1811X/12X device family a good choice for new
ultra-long life LDO applications that have high-current
demands, but require ultra-low power consumption
during Sleep periods.
The MCP1811X/12X devices are stable with ceramic
output capacitors that inherently provide lower output
noise, and reduce the size and cost of the entire
regulator solution. Only 1 µF (2.2 µF for MCP1812X) of
output capacitance is needed to assure the stability of
the system with a low noise output.
The MCP1811X/12X family can be paired with other
ultra-low current devices, such as Microchip’s eXtreme
Low-Power (XLP) technology devices, for a complete
ultra-low power solution.
Note 1: The MCP1811X and MCP1812X designations refer to MCP1811A/11B and
MCP1812A/12B, respectively.
DS20006088C-page 1
MCP1811A/11B/12A/12B
Package Types
3-Lead SOT-23/SC70
GND
5-Lead SOT-23/SC70
VOUT
NC
3
5
1
2
VOUT
VIN
VIN
1
2
3
GND
Top View
* Includes Exposed Thermal Pad (see Table 3-1).
DS20006088C-page 2
4
4-Lead 1x1 mm UDFN
VIN SHDN
4
3
EP*
5
SHDN
1
VOUT
2
GND
2018-2020 Microchip Technology Inc.
MCP1811A/11B/12A/12B
Typical Application
VIN
VOUT
–
MCP1811X/12X
CIN
SHDN
COUT
LOAD
+
GND
Functional Block Diagram
VOUT
VIN
Current
Limit
Ref
–
Err Amp
RDCH
+
DT
SHDN
On/Off
Control
SHDN
Discharge Switch (DT)
MCP1811A/12A Only
GND
TABLE 1:
MCP1811X/12X FAMILY MEMBERS
Device
MCP1811A
Description
Ultra-Low Quiescent Current LDO Regulator with Output Discharge and 150 mA Output Current
MCP1811B
Ultra-Low Quiescent Current LDO Regulator with No Output Discharge and 150 mA Output Current
MCP1812A
Ultra-Low Quiescent Current LDO Regulator with Output Discharge and 300 mA Output Current
MCP1812B
Ultra-Low Quiescent Current LDO Regulator with No Output Discharge and 300 mA Output Current
2018-2020 Microchip Technology Inc.
DS20006088C-page 3
MCP1811A/11B/12A/12B
1.0
ELECTRICAL CHARACTERISTICS
Absolute Maximum Ratings†
Input Voltage, VIN .....................................................................................................................................................+6.0V
Maximum Voltage on Any Pin................................................................................................... GND – 0.3V to VIN + 0.3V
Output Short-Circuit Duration ...............................................................................................................Unlimited (Note 1)
Storage Temperature.............................................................................................................................. -55°C to +150°C
Maximum Junction Temperature, TJ...................................................................................................................... +125°C
Operating Junction Temperature, TJ .........................................................................................................-40°C to +85°C
ESD Protection on All Pins (HBM).......................................................................................................................... ≥ 4 kV
† Notice: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the
device. This is a stress rating only and functional operation of the device at those or any other conditions above
those indicated in the operational listings of this specification is not intended. Exposure to maximum rating
conditions for extended periods may affect device reliability.
AC/DC CHARACTERISTICS
Electrical Specifications: Unless otherwise indicated, VIN = VR + 1V (Note 2), IOUT = 1 mA,
CIN = COUT = 1 µF (MCP1811X) or 2.2 µF (MCP1812X) ceramic (X7R), TA = +25°C, SHDN > 1.4V.
Boldface type applies for junction temperatures TJ of -40°C to +85°C (Note 4).
Parameters
Input Operating Voltage
Output Voltage Range
Input Quiescent Current
Input Quiescent Current for
SHDN Mode
Ground Current
Sym.
Min.
Typ.
Max.
Units
VIN
1.8
—
5.5
V
IOUT ≤ 50 mA
(MCP1811X, MCP1812X)
2.0
—
5.5
V
IOUT ≤ 150 mA
(MCP1811X, MCP1812X)
V
—
5.5
VR – 4%
VR
VR + 4%
IQ
—
250
500
nA
IOUT = 0
(MCP1811X, MCP1812X)
ISHDN
—
10
250
nA
SHDN = GND (MCP1811A/12A)
—
5
125
nA
SHDN = GND (MCP1811B/12B)
—
90
110
µA
IOUT = 0 to 150 mA (MCP1811X)
—
180
220
150
—
—
300
—
—
—
250
420
—
500
840
IGND
IOUT
Current Limit
ILIMIT
2:
3:
4:
5:
IOUT ≤ 300 mA (MCP1812X)
2.4
VOUT
Maximum Continuous
Output Current
1:
Conditions
(MCP1811X, MCP1812X) (Note 2)
IOUT = 0 to 300 mA (MCP1812X)
mA
MCP1811X
MCP1812X
mA
MCP1811X
MCP1812X
The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable
junction temperature and the thermal resistance from junction to air (i.e., TA, TJ, JA). Exceeding the maximum
allowable power dissipation will cause the operating junction temperature to exceed the maximum +85°C
rating. Sustained junction temperatures above +85°C can impact device reliability.
VR is a nominal regulator output voltage. The minimum VIN must meet two conditions: VIN ≥ VIN(MIN) and
VIN ≥ VR + VDROPOUT(MAX).
Load regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load
regulation is tested over a load range from 1 mA to the maximum specified output current.
The junction temperature is approximated by soaking the device under test at an ambient temperature
equal to the desired junction temperature. The test time is small enough such that the rise in the junction
temperature over the ambient temperature is not significant.
Dropout voltage is defined as the input-to-output voltage differential at which the output voltage drops 2%
below its nominal value that was measured with an input voltage of VIN = VR + 1V.
DS20006088C-page 4
2018-2020 Microchip Technology Inc.
MCP1811A/11B/12A/12B
AC/DC CHARACTERISTICS (CONTINUED)
Electrical Specifications: Unless otherwise indicated, VIN = VR + 1V (Note 2), IOUT = 1 mA,
CIN = COUT = 1 µF (MCP1811X) or 2.2 µF (MCP1812X) ceramic (X7R), TA = +25°C, SHDN > 1.4V.
Boldface type applies for junction temperatures TJ of -40°C to +85°C (Note 4).
Parameters
Sym.
Foldback Current
Min.
Typ.
Max.
Units
—
50
—
mA
Conditions
RLOAD = 1MCP1811X)
—
100
—
Start-up Voltage Overshoot
VOVER
—
5
10
Line Regulation
VOUT
—
±20
—
mV
1.8V < VIN < 5.5V (MCP1811X),
2.4V < VIN < 5.5V (MCP1812X)
Load Regulation
VOUT
—
±25
—
mV
IOUT = 1 mA to 150 mA
(MCP1811X) (Note 3)
—
±50
—
VDROPOUT
—
400
600
mV
Logic High Input
VSHDN-HIGH
70
—
—
%VIN
Logic Low Input
VSHDN-LOW
—
—
20
%VIN
SHDNILK
—
0.100
0.500
nA
SHDN = GND
Dropout Voltage
RLOAD = 1MCP1812X)
%VOUT VIN = 0V to 5.5V
IOUT = 1mA to 300 mA
(MCP1812X) (Note 3)
IOUT = 150 mA (MCP1811X),
IOUT = 300 mA (MCP1812X)
(Note 5)
Shutdown Input
Shutdown Input Leakage
Current
—
1.0
20.0
nA
SHDN = 5.5V
RDCH
—
100
—
MCP1811A/12A
TDELAY
—
400
—
µs
SHDN = GND to VIN,
VOUT = GND to 10% VR,
VIN = VR + 1V to 5.5V
Start-up Rise Time
TRISE
200
—
1000
µs
SHDN = GND to VIN,
VOUT = 10% VR to 95% VR,
VIN = VR + 1V to 5.5V
Power Supply Ripple
Rejection Ratio
PSRR
—
-50
—
dB
CIN = 0 µF,
VIN = VR + 1V + VINAC/2 or
VIN = VIN_Min + 1V + VINAC/2,
IOUT = 10 mA and Full Load,
VINAC = 0.2Vpk-pk,
f = 1 kHz
Discharge Transistor
AC Performance
Start-up Delay from SHDN
1:
2:
3:
4:
5:
The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable
junction temperature and the thermal resistance from junction to air (i.e., TA, TJ, JA). Exceeding the maximum
allowable power dissipation will cause the operating junction temperature to exceed the maximum +85°C
rating. Sustained junction temperatures above +85°C can impact device reliability.
VR is a nominal regulator output voltage. The minimum VIN must meet two conditions: VIN ≥ VIN(MIN) and
VIN ≥ VR + VDROPOUT(MAX).
Load regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load
regulation is tested over a load range from 1 mA to the maximum specified output current.
The junction temperature is approximated by soaking the device under test at an ambient temperature
equal to the desired junction temperature. The test time is small enough such that the rise in the junction
temperature over the ambient temperature is not significant.
Dropout voltage is defined as the input-to-output voltage differential at which the output voltage drops 2%
below its nominal value that was measured with an input voltage of VIN = VR + 1V.
2018-2020 Microchip Technology Inc.
DS20006088C-page 5
MCP1811A/11B/12A/12B
TEMPERATURE SPECIFICATIONS
Parameters
Sym.
Min.
Typ.
Max.
Units
Conditions
Operating Junction
Temperature Range
TJ
-40
—
+85
°C
Steady state
Maximum Junction
Temperature
TJ
—
—
+125
°C
Transient
Storage Temperature Range
TA
-65
—
+150
°C
JA
—
91.05
—
°C/W
JC(Top)
—
285.89
—
°C/W
JA
—
211.33
—
°C/W
JC(Top)
—
138.72
—
°C/W
JA
—
184.82
—
°C/W
JC(Top)
—
151.05
—
°C/W
JA
—
300.6
—
°C/W
JC(Top)
—
130.03
—
°C/W
JA
—
237.83
—
°C/W
JC(Top)
—
144.91
—
°C/W
Temperature Ranges
Thermal Package Resistances
Thermal Resistance,
4-Lead 1x1 mm UDFN
Thermal Resistance,
3-Lead SOT-23
Thermal Resistance,
5-Lead SOT-23
Thermal Resistance,
3-Lead SC70
Thermal Resistance,
5-Lead SC70
DS20006088C-page 6
JEDEC standard 4-layer FR4 board with
1 oz. copper and thermal vias
JEDEC standard 4-layer FR4 board with
1 oz. copper
2018-2020 Microchip Technology Inc.
MCP1811A/11B/12A/12B
2.0
TYPICAL PERFORMANCE CURVES
Note:
The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.
Note: Unless otherwise indicated, CIN = COUT = 1 µF (MCP1811X) or 2.2 µF (MCP1812X) ceramic type (X7R),
IOUT = 1 mA, TA = +25°C, VIN = VR + 1V, SHDN = 1 M pull-up to VIN.
4.050
1.040
VR = 4V
TJ = -40°C
Output Voltage (V)
Output Voltage (V)
VR = 1V
1.030
TJ = +25°C
1.020
1.010
TJ = +85°C
2.8
1.8
3.8
Input Voltage (V)
4.8
TJ = +25°C
4.030
TJ = +85°C
5.0
5.2
1.050
TJ = - 40°C
5.4
5.5
VIN = 2 V
VR = 1V
Output Voltage (V)
1.040
2.555
TJ = +25°C
2.550
TJ = +85°C
1.030
TJ = -40°C
TJ = +25°C
1.020
1.010
1.000
2.540
TJ = +85°C
0.990
3.5
4.0
4.5
5.0
5.5
0
25
Input Voltage (V)
50
75
100
125
150
Load Current (mA)
FIGURE 2-2:
Output Voltage vs. Input
Voltage (MCP1812X, VR = 2.5V).
FIGURE 2-5:
Output Voltage vs. Load
Current (MCP1811X, VR = 1.0V).
2.570
3.355
VIN = 3.5V
VR = 3.3V
TJ = - 40°C
3.350
3.345
TJ = +25°C
3.340
VR = 2.5V
2.560
Output Voltage (V)
Output Voltage (V)
5.3
FIGURE 2-4:
Output Voltage vs. Input
Voltage (MCP1811X, VR = 4.0V).
VR = 2.5V
2.545
5.1
Input Voltage (V)
FIGURE 2-1:
Output Voltage vs. Input
Voltage (MCP1811X, VR = 1.0V).
Output Voltage (V)
4.040
4.020
1.000
2.560
TJ = -40°C
TJ = +85°C
3.335
2.550
TJ = +25°C
2.540
TJ = +85°C
2.530
TJ = -40°C
2.520
3.330
2.510
4.3
4.5
4.7
4.9
5.1
Input Voltage (V)
5.3
5.5
FIGURE 2-3:
Output Voltage vs. Input
Voltage (MCP1812X, VR = 3.3V).
2018-2020 Microchip Technology Inc.
0
50
100
150
200
Load Current (mA)
250
300
FIGURE 2-6:
Output Voltage vs. Load
Current (MCP1812X, VR = 2.5V).
DS20006088C-page 7
MCP1811A/11B/12A/12B
Note: Unless otherwise indicated, CIN = COUT = 1 µF (MCP1811X) or 2.2 µF (MCP1812X) ceramic type (X7R),
IOUT = 1 mA, TA = +25°C, VIN = VR + 1V, SHDN = 1 M pull-up to VIN.
0.50
VIN = 4.3V
VR = 3.3V
VR = 3.3V
Dropout Voltage (V)
Output Voltage (V)
3.37
3.36
3.35
3.34
3.33
3.32
3.31
3.30
3.29
3.28
3.27
3.26
3.25
TJ = +85°C
TJ = +25°C
TJ = -40°C
0.45
TJ = -40°C
0.40
TJ = +25°C
0.35
0.30
TJ = +85°C
0.25
0.20
0
50
100
150
200
250
0
300
50
100
FIGURE 2-7:
Output Voltage vs. Load
Current (MCP1812X, VR = 3.3V).
0.50
Dropout Voltage (V)
Output Voltage (V)
4.050
TJ = -40°C
TJ = +25°C
4.030
4.020
TJ = +85°C
4.010
0.45
4.000
25
50
75
100
300
TJ = -40°C
0.40
0.35
TJ = +25°C
0.30
TJ = +85°C
0.25
0
250
VR = 4V
VR = 4V
4.040
200
FIGURE 2-10:
Dropout Voltage vs. Load
Current (MCP1812X, VR = 3.3V).
4.060
VIN = 5V
150
Load Current (mA)
Load Current (mA)
125
0.20
150
0
25
Load Current (mA)
FIGURE 2-8:
Output Voltage vs. Load
Current (MCP1811X, VR = 4.0V).
50
75
100
Load Current (mA)
125
150
FIGURE 2-11:
Dropout Voltage vs. Load
Current (MCP1811X, VR = 4.0V).
0.50
100.000
TJ = -40°C
10.000
0.40
0.35
Noise μV/√Hz
Dropout Voltage (V)
VR = 2.5V
0.45
TJ = +25°C
0.30
TJ = +85°C
0.25
0.20
0
50
100
150
200
Load Current (mA)
250
300
FIGURE 2-9:
Dropout Voltage vs. Load
Current (MCP1812X, VR = 2.5V)
DS20006088C-page 8
1.000
0.100
0.010
0.001
0.01
VIN = 2.4V
VOUT = 1V
Load = 50 mA
Output Noise 10 Hz - 100 kHz = 169.31 μVrms
0.1
1
10
100
Frequency (kHz)
1000
10000
FIGURE 2-12:
Noise vs. Frequency
(MCP1812X, VR = 1.0V).
2018-2020 Microchip Technology Inc.
MCP1811A/11B/12A/12B
Note: Unless otherwise indicated, CIN = COUT = 1 µF (MCP1811X) or 2.2 µF (MCP1812X) ceramic type (X7R),
IOUT = 1 mA, TA = +25°C, VIN = VR + 1V, SHDN = 1 M pull-up to VIN.
-10
100.000
VR = 1.0V
No CIN
VIN = 2.5V + 0.2Vpk-pk
-20
300 mA
-30
PSRR (dB)
Noise μV/√Hz
10.000
10 mA
1.000
0.100
VIN = 3.5V
VOUT = 2.5V
Load = 50 mA
0.010
-40
-50
-60
-70
Output Noise 10 Hz - 100 kHz = 223.04 μVrms
0.001
0.01
0.1
1
10
100
Frequency (kHz)
1000
-80
0.01
10000
FIGURE 2-13:
Noise vs. Frequency
(MCP1812X, VR = 2.5V).
0.1
1
10
Frequency (kHz)
100
1000
FIGURE 2-16:
Power Supply Ripple
Rejection vs. Frequency (MCP1812X, VR = 1.0V).
-10
100.000
-20
1.000
0.100
0.010
10 mA
300 mA
-30
PSRR (dB)
Noise μV/√Hz
10.000
VR = 2.5V
No CIN
VIN= 3.6V + 0.2Vpk-pk
VIN = 4.3V
VOUT = 3.3V
Load = 50 mA
0.1
-50
-60
-70
Output Noise 10 Hz - 100 kHz = 165.65 μVrms
0.001
0.01
-40
1
10
100
1000
-80
0.01
10000
0.1
Frequency (kHz)
FIGURE 2-14:
Noise vs. Frequency
(MCP1811X, VR = 3.3V).
1
10
Frequency (kHz)
100
1000
FIGURE 2-17:
Power Supply Ripple
Rejection vs. Frequency (MCP1812X, VR = 2.5V).
-10
100.000
-20
1.000
0.100
0.010
10 mA
150 mA
-30
PSRR (dB)
Noise μV/√Hz
10.000
VR = 3.3V
No CIN
VIN = 4.4V + 0.2Vpk-pk
VIN = 5V
VOUT = 4V
Load = 50 mA
0.1
1
10
100
Frequency (kHz)
1000
FIGURE 2-15:
Noise vs. Frequency
(MCP1811X, VR = 4.0V).
2018-2020 Microchip Technology Inc.
-50
-60
-70
Output Noise 10 Hz - 100 kHz = 265.92 μVrms
0.001
0.01
-40
10000
-80
0.01
0.1
1
10
Frequency (kHz)
100
1000
FIGURE 2-18:
Power Supply Ripple
Rejection vs. Frequency (MCP1811X, VR = 3.3V).
DS20006088C-page 9
MCP1811A/11B/12A/12B
Note: Unless otherwise indicated, CIN = COUT = 1 µF (MCP1811X) or 2.2 µF (MCP1812X) ceramic type (X7R),
IOUT = 1 mA, TA = +25°C, VIN = VR + 1V, SHDN = 1 M pull-up to VIN.
-10
-20
VR = 4.0V
No CIN
VIN = 5.1V + 0.2Vpk-pk
VR = 2.5V, VIN = 3.5V, IOUT = 100 µA to 10 mA
10 mA
300 mA
PSRR (dB)
-30
-40
VOUT (AC Coupled, 100 mV/Div)
-50
10 mA
-60
-70
-80
0.01
100 µA
0.1
1
10
Frequency (kHz)
100
1000
FIGURE 2-19:
Power Supply Ripple
Rejection vs. Frequency (MCP1812X, VR = 4.0V).
VR = 1V, VIN = 2.4V, IOUT = 100 µA to 10 mA
IOUT (DC Coupled, 5 mA/Div)
Time = 40 µs/Div
FIGURE 2-22:
Dynamic Load Step
(MCP1812X, VR = 2.5V).
VR = 2.5V, VIN = 3.5V, IOUT = 10 mA to 300 mA
VOUT (AC Coupled, 100 mV/Div)
VOUT (AC Coupled, 100 mV/Div)
10 mA
300 mA
10 mA
100 µA
IOUT (DC Coupled, 5 mA/Div)
Time = 40 µs/Div
FIGURE 2-20:
Dynamic Load Step
(MCP1812X, VR = 1.0V).
IOUT (DC Coupled, 200 mA/Div)
Time = 40 µs/Div
FIGURE 2-23:
Dynamic Load Step
(MCP1812X, VR = 2.5V).
VR = 1V, VIN = 2.4V, IOUT = 10 mA to 300 mA
VR = 3.3V, VIN = 4.3V, IOUT = 100 µA to 10 mA
VOUT (AC Coupled, 100 mV/Div)
VOUT (AC Coupled, 100 mV/Div)
10 mA
300 mA
100 µA
10 mA
IOUT (DC Coupled, 200 mA/Div)
Time = 40 µs/Div
FIGURE 2-21:
Dynamic Load Step
(MCP1812X, VR = 1.0V).
DS20006088C-page 10
IOUT (DC Coupled, 5 mA/Div)
Time = 40 µs/Div
FIGURE 2-24:
Dynamic Load Step
(MCP1811X, VR = 3.3V).
2018-2020 Microchip Technology Inc.
MCP1811A/11B/12A/12B
Note: Unless otherwise indicated, CIN = COUT = 1 µF (MCP1811X) or 2.2 µF (MCP1812X) ceramic type (X7R),
IOUT = 1 mA, TA = +25°C, VIN = VR + 1V, SHDN = 1 M pull-up to VIN.
VR = 3.3V, VIN = 4.3V, IOUT = 10 mA to 150 mA
VR = 1V, VIN = 2.4V to 3.4V, IOUT = 10 mA
VOUT (AC Coupled, 100 mV/Div)
2.4V
VIN (DC Coupled, 1V/div)
3.4V
150 mA
10 mA
VOUT (AC Coupled, 50 mV/Div)
IOUT (DC Coupled, 100 mA/Div)
Time = 200 µs/Div
Time = 40 µs/Div
FIGURE 2-25:
Dynamic Load Step
(MCP1811X, VR = 3.3V).
FIGURE 2-28:
Dynamic Line Step
(MCP1812X, VR = 1.0V).
VR = 1V, VIN = 2.4V to 3.4V, IOUT = 300 mA
VR = 4V, VIN = 5V, IOUT = 100 µA to 10 mA
3.4V
2.4V
VIN (DC Coupled, 1V/div)
VOUT (AC Coupled, 100 mV/Div)
10 mA
100 µA
VOUT (AC Coupled, 50 mV/Div)
IOUT (DC Coupled, 5 mA/Div)
Time = 200 µs/Div
Time = 40 µs/Div
FIGURE 2-26:
Dynamic Load Step
(MCP1811X, VR = 4.0V).
FIGURE 2-29:
Dynamic Line Step
(MCP1812X, VR = 1.0V).
VR = 4V, VIN = 5V, IOUT = 10 mA to 150 mA
VR = 2.5V, VIN = 3.5V to 4.5V, IOUT = 10 mA
VOUT (AC Coupled, 100 mV/Div)
3.5V
VIN (DC Coupled, 1V/div)
4.5V
150 mA
10 mA
IOUT (DC Coupled, 100 mA/Div)
Time = 40 µs/Div
FIGURE 2-27:
Dynamic Load Step
(MCP1811X, VR = 4.0V).
2018-2020 Microchip Technology Inc.
VOUT (AC Coupled, 50 mV/Div)
Time = 200 µs/Div
FIGURE 2-30:
Dynamic Line Step
(MCP1812X, VR = 2.5V).
DS20006088C-page 11
MCP1811A/11B/12A/12B
Note: Unless otherwise indicated, CIN = COUT = 1 µF (MCP1811X) or 2.2 µF (MCP1812X) ceramic type (X7R),
IOUT = 1 mA, TA = +25°C, VIN = VR + 1V, SHDN = 1 M pull-up to VIN.
VR = 2.5V, VIN = 3.5V to 4.5V, IOUT = 300 mA
VR = 4V, VIN = 5V to 5.5V, IOUT = 10 mA
5.5V
4.5V
5V
3.5V
VIN (DC Coupled, 1V/div)
VOUT (AC Coupled, 50 mV/Div)
VIN (DC Coupled, 500 mV/div)
Time = 200 µs/Div
FIGURE 2-31:
Dynamic Line Step
(MCP1812X, VR = 2.5V).
VOUT (AC Coupled, 20 mV/Div)
Time = 200 µs/Div
FIGURE 2-34:
Dynamic Line Step
(MCP1811X, VR = 4.0V).
VR = 4V, VIN = 5V to 5.5V, IOUT = 150 mA
VR = 3.3V, VIN = 4.3V to 5.3V, IOUT = 10 mA
5.5V
5.3V
5V
4.3V
VIN (DC Coupled, 500mV/div)
VIN (DC Coupled, 1V/div)
VOUT (AC Coupled, 50 mV/Div)
Time = 200 µs/Div
FIGURE 2-32:
Dynamic Line Step
(MCP1811X, VR = 3.3V).
VOUT (AC Coupled, 20 mV/Div)
Time = 200 µs/Div
FIGURE 2-35:
Dynamic Line Step
(MCP1811X, VR = 4.0V).
VR = 1V, VIN = 0V to 2.4V, IOUT = 100 µA
VR = 3.3V, VIN = 4.3V to 5.3V, IOUT = 150 mA
2.4V
5.3V
4.3V
VIN (DC Coupled, 1V/div)
0V
VIN (DC Coupled, 1V/div)
VOUT (AC Coupled, 50 mV/Div)
Time = 200 µs/Div
FIGURE 2-33:
Dynamic Line Step
(MCP1811X, VR = 3.3V).
DS20006088C-page 12
VOUT (DC Coupled, 500 mV/Div)
Time = 100 µs/Div
FIGURE 2-36:
Start-up from VIN
(MCP1812X, VR = 1.0V).
2018-2020 Microchip Technology Inc.
MCP1811A/11B/12A/12B
Note: Unless otherwise indicated, CIN = COUT = 1 µF (MCP1811X) or 2.2 µF (MCP1812X) ceramic type (X7R),
IOUT = 1 mA, TA = +25°C, VIN = VR + 1V, SHDN = 1 M pull-up to VIN.
VR = 3.3V, VIN = 0V to 4.3V, IOUT = 100 µA
VR = 1V, VIN = 0V to 2.4V, IOUT = 300 mA
2.4V
4.3V
0V
0V
VIN (DC Coupled, 2V/div)
VIN (DC Coupled, 1V/div)
VOUT (DC Coupled, 500 mV/Div)
Time = 100 µs/Div
FIGURE 2-37:
Start-up from VIN
(MCP1812X, VR = 1.0V).
Time = 200 µs/Div
VOUT (DC Coupled, 2V/Div)
FIGURE 2-40:
Start-up from VIN
(MCP1811X, VR = 3.3V).
VR = 3.3V, VIN = 0V to 4.3V, IOUT = 150 mA
VR = 2.5V, VIN = 0V to 3.5V, IOUT = 100 µA
4.3V
3.5V
0V
0V
VIN (DC Coupled, 2V/div)
VIN (DC Coupled, 2V/div)
VOUT (DC Coupled, 1V/Div)
Time = 200 µs/Div
FIGURE 2-38:
Start-up from VIN
(MCP1812X, VR = 2.5V).
VOUT (DC Coupled, 2V/Div)
FIGURE 2-41:
Start-up from VIN
(MCP1811X, VR = 3.3V).
VR = 4V, VIN = 0V to 5V, IOUT = 100 µA
VR = 2.5V, VIN = 0V to 3.5V, IOUT = 300 mA
5V
3.5V
0V
0V
VIN (DC Coupled, 2V/div)
VIN (DC Coupled, 2V/div)
VOUT (DC Coupled, 1V/Div)
Time = 200 µs/Div
FIGURE 2-39:
Start-up from VIN
(MCP1812X, VR = 2.5V).
2018-2020 Microchip Technology Inc.
Time = 200 µs/Div
VOUT (DC Coupled, 2V/Div)
Time = 200 µs/Div
FIGURE 2-42:
Start-up from VIN
(MCP1811X, VR = 4.0V).
DS20006088C-page 13
MCP1811A/11B/12A/12B
Note: Unless otherwise indicated, CIN = COUT = 1 µF (MCP1811X) or 2.2 µF (MCP1812X) ceramic type (X7R),
IOUT = 1 mA, TA = +25°C, VIN = VR + 1V, SHDN = 1 M pull-up to VIN.
VR = 4V, VIN = 0V to 5, IOUT = 150 mA
VR = 3.3V, VIN = 4.3V, IOUT = 10 mA
5V
4.3V
0V
0V
VIN (DC Coupled, 2V/div)
VOUT (DC Coupled, 2V/Div)
SHDN (DC Coupled, 2V/div)
Time = 200 µs/Div
FIGURE 2-43:
Start-up from VIN
(MCP1811X, VR = 4.0V).
VR = 1V, VIN = 2.4V, IOUT = 10 mA
Time = 200 µs/Div
VOUT (DC Coupled, 2V/Div)
FIGURE 2-46:
Start-up from SHDN
(MCP1811X, VR = 3.3V).
VR = 4V, VIN = 5V, IOUT = 10 mA
2.4V
5V
0V
0V
SHDN (DC Coupled, 1V/div)
VOUT (DC Coupled, 500 mV/Div)
SHDN (DC Coupled, 2V/div)
Time = 200 µs/Div
FIGURE 2-44:
Start-up from SHDN
(MCP1812X, VR = 1.0V).
Time = 200 µs/Div
VOUT (DC Coupled, 2V/Div)
FIGURE 2-47:
Start-up from SHDN
(MCP1811X, VR = 4.0V).
60
VR = 1V
IOUT = 0.1 mA to 150 mA
Load Regulation (mV)
VR = 2.5V, VIN = 3.5V, IOUT = 10 mA
3.5V
0V
SHDN (DC Coupled, 2V/div)
50
VIN = 2.0V
40
VIN = 3.0V
VIN = 2.4V
30
VIN = 4.0V
20
VIN = 5.5V
10
VOUT (DC Coupled, 1V/Div)
Time = 200 µs/Div
FIGURE 2-45:
Start-up from SHDN
(MCP1812X, VR = 2.5V).
DS20006088C-page 14
-40
-15
10
35
60
Junction Temperature (°C)
85
FIGURE 2-48:
Load Regulation vs.
Junction Temperature (MCP1811X, VR = 1.0V).
2018-2020 Microchip Technology Inc.
MCP1811A/11B/12A/12B
Note: Unless otherwise indicated, CIN = COUT = 1 µF (MCP1811X) or 2.2 µF (MCP1812X) ceramic type (X7R),
IOUT = 1 mA, TA = +25°C, VIN = VR + 1V, SHDN = 1 M pull-up to VIN.
40
VR = 2.5V
IOUT = 0.1 mA to 300 mA
45
VIN = 3.5V
Line Regulation (mV)
Load Regulation (mV)
55
VIN = 4.0V
35
25
VIN = 5.0V
VIN = 5.5V
15
30
IOUT = 150 mA
25
IOUT = 125 mA
20
15
10
IOUT = 100 mA
IOUT = 10 mA
0
-40
-15
10
35
60
Junction Temperature (°C)
85
FIGURE 2-49:
Load Regulation vs.
Junction Temperature (MCP1812X, VR = 2.5V).
30
25
VIN = 5.5V
20
-40
VIN = 5.0V
15
VIN = 4.5V
10
-40
-15
10
35
60
Junction Temperature (°C)
85
FIGURE 2-50:
Load Regulation vs.
Junction Temperature (MCP1812X, VR = 3.3V).
20
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0
VIN = 5.0V
0
IOUT = 250 mA
IOUT = 50 mA
IOUT = 150 mA
IOUT = 200 mA
IOUT = 300 mA
-15
10
35
60
Junction Temperature (°C)
85
VR = 3.3V
VIN = 4.3V to 5.5V
10.0
IOUT = 50 mA
8.0
IOUT = 200 mA
6.0
IOUT = 150 mA
4.0
2.0
IOUT = 10 mA
IOUT = 300 mA
0.0
85
FIGURE 2-51:
Load Regulation vs.
Junction Temperature (MCP1811X, VR = 4.0V).
2018-2020 Microchip Technology Inc.
VR = 2.5V
VIN = 3.5V to 5.5V
FIGURE 2-53:
Line Regulation vs. Junction
Temperature (MCP1812X, VR = 2.5V).
Line Regulation (mV)
VIN = 5.5V
10
-15
10
35
60
Junction Temperature (°C)
85
12.0
15
-40
10
35
60
Junction Temperature (°C)
IOUT = 10 mA
-40
VR = 4.0V
IOUT = 0.1 mA to 150 mA
5
-15
IOUT = 50 mA
FIGURE 2-52:
Line Regulation vs. Junction
Temperature (MCP1811X, VR = 1.0V).
Line Regulation (mV)
VR = 3.3V
IOUT = 0.1 mA to 300 mA
VIN = 4.3V
Load Regulation (mV)
VIN = 2V to 5.5V
5
5
Load Regulation (mV)
VR = 1.0V
35
-40
IOUT = 250 mA
-15
10
35
60
Junction Temperature (°C)
85
FIGURE 2-54:
Line Regulation vs. Junction
Temperature (MCP1812X, VR = 3.3V).
DS20006088C-page 15
MCP1811A/11B/12A/12B
Note: Unless otherwise indicated, CIN = COUT = 1 µF (MCP1811X) or 2.2 µF (MCP1812X) ceramic type (X7R),
IOUT = 1 mA, TA = +25°C, VIN = VR + 1V, SHDN = 1 M pull-up to VIN.
340
2.5
Quiescent Current (nA)
Line Regulation (mV)
VR = 4V
VIN = 5V to 5.5V
IOUT = 10 mA
2.0
IOUT = 50 mA
IOUT = 100 mA
1.5
IOUT = 125 mA
-15
10
35
60
Junction Temperature (°C)
280
260
4.9
TJ = -40°C
240
TJ = 25°C
TJ = 85°C
210
470
VR = 4V
IOUT = 0
2.5
3.0
3.5
4.0
4.5
Input Voltage (V)
5.0
410
380
350
TJ = 85°C
320
290
260
TJ = 25°C
5.0
5.2
5.3
5.4
5.5
FIGURE 2-59:
Quiescent Current vs. Input
Voltage (MCP1811X, VR = 4.0V).
3.00
VR = 2.5V
IOUT = 0
300
TJ = -40°C
280
5.1
Input Voltage (V)
Ground Current (μA)
Quiescent Current (nA)
200
5.5
FIGURE 2-56:
Quiescent Current vs. Input
Voltage (MCP1811X, VR = 1.0V).
320
5.5
TJ = -40°C
440
230
200
2.0
5.2
FIGURE 2-58:
Quiescent Current vs. Input
Voltage (MCP1812X, VR = 3.3V).
500
220
4.6
Input Voltage (V)
VR = 1V
IOUT = 0
230
TJ = 25°C
4.3
Quiescent Current (nA)
Quiescent Current (nA)
250
300
220
85
FIGURE 2-55:
Line Regulation vs. Junction
Temperature (MCP1811X, VR = 4.0V).
260
TJ = -40°C
TJ = 85°C
240
IOUT = 150 mA
1.0
-40
320
VR = 3.3V
IOUT = 0
260
TJ = 85°C
240
IOUT = 1 mA
VR = 1V
2.50
2.00
1.50
1.00
0.50
TJ = 25°C
0.00
220
3.5
4.0
4.5
5.0
5.5
Input Voltage (V)
FIGURE 2-57:
Quiescent Current vs. Input
Voltage (MCP1812X, VR = 2.5V).
DS20006088C-page 16
-40
-15
10
35
60
Junction Temperature (°C)
85
FIGURE 2-60:
Ground Current vs.
Temperature (MCP1811X, VR = 1.0V).
2018-2020 Microchip Technology Inc.
MCP1811A/11B/12A/12B
Note: Unless otherwise indicated, CIN = COUT = 1 µF (MCP1811X) or 2.2 µF (MCP1812X) ceramic type (X7R),
IOUT = 1 mA, TA = +25°C, VIN = VR + 1V, SHDN = 1 M pull-up to VIN.
IOUT = 1 mA
80
VR = 2.5V
4.00
3.00
2.00
1.00
-40
-15
10
35
60
Junction Temperature (°C)
6.00
40
TJ = 25°C
30
TJ = -40°C
20
10
IOUT = 1 mA
0
25
50
75
100
125
150
Load Current (mA)
FIGURE 2-64:
Ground Current vs. Load
Current (MCP1811X, VR = 1.0V).
160
VR = 3.3V
VR = 2.5V
VIN = 3.5V
140
5.00
Ground Current (μA)
Ground Current (μA)
50
85
FIGURE 2-61:
Ground Current vs.
Temperature (MCP1812X, VR = 2.5V).
4.00
3.00
2.00
1.00
0.00
120
100
TJ = 25°C
80
TJ = 85°C
60
TJ = -40°C
40
20
0
-40
-15
10
35
60
Junction Temperature (°C)
85
IOUT = 1 mA
0
30
60
90 120 150 180 210 240 270 300
Load Current (mA)
FIGURE 2-62:
Ground Current vs.
Temperature (MCP1812X, VR = 3.3V).
FIGURE 2-65:
Ground Current vs. Load
Current (MCP1812X, VR = 2.5V).
160
VR = 4V
VR = 3.3V
VIN = 4.3V
140
5.00
Ground Current (μA)
Ground Current (μA)
TJ = 85°C
60
0
0.00
6.00
VR = 1V
VIN = 2V
70
5.00
Ground Current (μA)
Ground Current (μA)
6.00
4.00
3.00
2.00
1.00
0.00
TJ = 85°C
120
100
80
TJ = 25°C
60
TJ = -40°C
40
20
0
-40
-15
10
35
60
Junction Temperature (°C)
FIGURE 2-63:
Ground Current vs.
Temperature (MCP1811X, VR = 4.0V).
2018-2020 Microchip Technology Inc.
85
0
30
60
90 120 150 180 210 240 270 300
Load Current (mA)
FIGURE 2-66:
Ground Current vs. Load
Current (MCP1812X, VR = 3.3V).
DS20006088C-page 17
MCP1811A/11B/12A/12B
Note: Unless otherwise indicated, CIN = COUT = 1 µF (MCP1811X) or 2.2 µF (MCP1812X) ceramic type (X7R),
IOUT = 1 mA, TA = +25°C, VIN = VR + 1V, SHDN = 1 M pull-up to VIN.
90
VR = 4V
VIN = 5V
2.5
VR = 3.3V
VIN = 5.5V
70
60
Ground Current (μA)
Ground Current (μA)
80
TJ = 25°C
50
TJ = -40°C
40
TJ = 85°C
30
20
2.0
1.5
TJ = 85°C
TJ = 25°C
1.0
TJ = -40°C
0.5
10
0.0
0
0
25
50
75
100
Load Current (mA)
125
1
150
FIGURE 2-67:
Ground Current vs. Load
Current (MCP1811X, VR = 4.0V).
1000
FIGURE 2-70:
Ground Current vs. Very
Low Load Current (MCP1811X, VR = 3.3V).
2.5
2.5
VR = 4V
VIN = 5.5V
VR = 1V
VIN = 5.5V
2.0
Ground Current (μA)
Ground Current (μA)
10
100
Load Current (μA)
TJ = 85°C
1.5
TJ = 25°C
1.0
TJ = -40°C
0.5
0.0
2.0
1.5
TJ = 85°C
1.0
TJ = 25°C
TJ = -40°C
0.5
0.0
1
10
100
Load Current (μA)
1000
FIGURE 2-68:
Ground Current vs. Very
Low Load Current (MCP1812X, VR = 1.0V).
1
10
100
Load Current (μA)
1000
FIGURE 2-71:
Ground Current vs. Very
Low Load Current (MCP1811X, VR = 4.0V).
2.5
Ground Current (μA)
VR = 2.5V
VIN = 5.5V
2.0
1.5
TJ = 85°C
TJ = 25°C
1.0
TJ = -40°C
0.5
0.0
1
10
100
Load Current (μA)
1000
FIGURE 2-69:
Ground Current vs. Very
Low Load Current (MCP1812X, VR = 2.5V).
DS20006088C-page 18
2018-2020 Microchip Technology Inc.
MCP1811A/11B/12A/12B
3.0
PIN DESCRIPTION
The descriptions of the pins are listed in Table 3-1.
TABLE 3-1:
PIN FUNCTION TABLE
MCP1811X/12X
4-Lead
1x1 mm UDFN
MCP1811X/12X
3-Lead
SOT-23/SC70
MCP1811X/12X
5-Lead
SOT-23/SC70
2
3
2
GND
Ground
1
1
5
VOUT
Regulated Output Voltage VR
—
—
4
NC
Not Connected Pins (should either be left
floated or connected to ground)
4
2
1
VIN
Input Voltage Supply
3
—
3
SHDN
Shutdown Control Input (active-low); do not
leave this pin floating
5
—
—
EP
Exposed Thermal Pad, connected to GND
3.1
Ground Pin (GND)
For optimal noise and Power Supply Rejection Ratio
(PSRR) performance, the GND pin of the LDO should
be tied to an electrically “quiet” ground circuit. The GND
pin of the LDO conducts only the ground current, so a
wider trace is not required. For powered applications
that have switching or noisy circuits, tie the GND pin to
the return of the output capacitor. Ground planes help
lower the inductance and voltage spikes caused by fast
transient load currents.
3.2
Regulated Output Voltage Pin
(VOUT)
The VOUT pin is the regulated output voltage VR of the
LDO. A minimum output capacitance of 1.0 µF
(MCP1811X) and 2.2 µF (MCP1812X) are required for
LDO stability. The MCP1811X/12X is stable with ceramic
capacitors. See Section 4.2 “Output Capacitor” for
output capacitor selection guidance.
2018-2020 Microchip Technology Inc.
Symbol
3.3
Description
Input Voltage Supply Pin (VIN)
Connect the input voltage source to VIN. If the input
voltage source is located several inches away from the
LDO or is a battery, it is recommended that an input
capacitor be used. A typical input capacitance value of
1 µF to 10 µF is sufficient for most applications (1 µF is
typical for MCP1811X and 2.2 µF is typical for
MCP1812X). The type of capacitor used is ceramic.
However, the low-ESR characteristics of the ceramic
capacitor will yield better noise and PSRR performance
at high frequency.
3.4
Shutdown Control Input (SHDN)
The SHDN input is used to turn the LDO output voltage
on and off. When the SHDN input is at a logic high level,
the LDO output voltage is enabled. When the SHDN
input is pulled to a logic low level, the LDO output voltage
is disabled (with output discharge for MCP1811A/12A).
When the SHDN input is pulled low, the LDO enters in a
low-current shutdown state, where the typical quiescent
current is 10 nA for MCP1811A/12A and 5 nA for
MCP1811B/12B.
DS20006088C-page 19
MCP1811A/11B/12A/12B
4.0
DEVICE OVERVIEW
The MCP1811X/12X family is a 150 mA/300 mA output
current, Low Dropout (LDO) voltage regulator. The
Low Dropout voltage of 400 mV, typical, at 300 mA of
current, makes it recommended for long-life
battery-powered applications. The input voltage ranges
from a minimum of 1.8V to 5.5V. The MCP1811X/12X
family features a shutdown control input pin and is
available in nine standard fixed output voltage options:
1V, 1.2V, 1.8V, 2.0V, 2.5V, 2.8V, 3.0V, 3.3V and 4.0V. It
uses a proprietary voltage reference and sensing
scheme to maintain the ultra-low 250 nA quiescent
current.
4.1
Output Capabilities and Current
Limiting
The MCP1811X/12X LDO is tested and ensured to
supply a minimum of 150 mA of output current for
MCP1811X and 300 mA of output current for
MCP1812X.
The MCP1811X/12X devices do not incorporate an
internal voltage divider. This is another design key of
achieving ultra-low power consumption. In addition,
there is a pull-down switch on the output to limit the
overshoot in case of powering an ultra-light load. Due
to the increased leakage through the power transistor
at elevated temperature (> 60°C), the output voltage
can be drifted up (to approximately 210 mV) when the
input supply to the output differential is larger than 3V.
It is recommended to add a very small dummy load
(25 nA, typical) to compensate for the leakage. In
conditions other than mentioned above, the device
does not require a minimum load to regulate the output
voltage within the specified tolerance.
The MCP1811X/12X family also incorporates an output
current foldback protection during overload conditions.
The MCP1811X/12X devices enter foldback when
VOUT falls below 0.6V (typical).
4.2
Output Capacitor
The MCP1811X/12X devices require a minimum output
capacitance of 1 µF (2.2 µF for MCP1812X) for output
voltage stability. Ceramic capacitors are recommended
because of their size, cost and robust environmental
qualities.
The output capacitor should be located as close to the
LDO output as is practical. Ceramic materials, X7R and
X5R, have low-temperature coefficients, and are well
within the acceptable ESR range required. A typical
1 µF X7R 0805 capacitor has an ESR of 20 m.
DS20006088C-page 20
4.3
Input Capacitor
Low input source impedance is necessary for the LDO
output to operate properly. When operating from
batteries, or in applications with long lead length
(> 10 inches) between the input source and the LDO,
some input capacitance is recommended. A minimum
of 1 µF (2.2 µF for MCP1812X) to 10 µF of capacitance
is recommended for most applications.
For applications that have output step load requirements,
the input capacitance of the LDO is very important. The
input capacitance must provide a low-impedance
source. This allows the LDO to respond quickly to the
output load step. For good step response performance,
the input capacitor should be equivalent to, or of higher
value than, the output capacitor. The capacitor should
be placed as close to the input of the LDO as is practical. Larger input capacitors will also help reduce any
high-frequency noise on the input and output of the
LDO, as well as the effects of any inductance that
exists between the input source voltage and the input
capacitance of the LDO.
4.4
Shutdown Input (SHDN)
The SHDN input is an active-low input signal that turns
the LDO on and off. The SHDN threshold is a
percentage of the input voltage. The maximum input
low logic level is 20% of VIN and the minimum high logic
level is 70% of VIN.
The SHDN pin ignores low going pulses that are up to
400 ns. This small bit of filtering helps to reject any
system noise spikes on the SHDN input signal.
On the rising edge of the SHDN input, the shutdown
circuitry has a typical 400 µs delay before allowing the
regulator output to turn on. This delay helps to reject
any false turn-on signals or noise on the SHDN input
signal. After the typical 400 µs delay, the regulator
starts charging the load capacitor as the output rises
from 0V to its final regulated value. The charging
current will be limited by the short-circuit current value
of the device. If the SHDN input signal is pulled low
during the typical 400 µs delay period, the timer will be
reset and the delay time will start over again on the next
rising edge of the SHDN input. The total time from the
SHDN input going high (turn-on) to the output being in
regulation shall typically be 400 µs delay time plus output voltage rise time, which is VR-dependent and may
vary from 200 µs up to 1000 µs for a CLOAD = 1.0 µF and
for a CLOAD = 2.2 µF. Figure 4-1 shows a timing
diagram of the SHDN input.
2018-2020 Microchip Technology Inc.
MCP1811A/11B/12A/12B
4.5
TDELAY
Typ. 400 µs
CLOAD Charging Time = TRISE
200 µs-1000 µs
400 ns (typical)
SHDN
VOUT
FIGURE 4-1:
Diagram.
CLOAD = 1 µF for MCP1811X
CLOAD = 2.2 µF for MCP1812X
Dropout Voltage
Dropout voltage is defined as the input-to-output
voltage differential at which the output voltage drops
2% below the nominal value that was measured with a
VR + 1V differential applied. The MCP1811X/12X LDO
devices show a Low Dropout voltage specification of
400 mV (typical) for all VR, and presents small variations in the dropout value with load and temperature
changes.
See Section 1.0 “Electrical Characteristics” for
maximum dropout voltage specifications.
Shutdown Input Timing
2018-2020 Microchip Technology Inc.
DS20006088C-page 21
MCP1811A/11B/12A/12B
5.0
APPLICATION CIRCUITS
5.1
Typical Application
EQUATION 5-2:
P IGND = V IN MAX I GND
Where:
The MCP1811A/11B/12A/12B family is used for
applications that require ultra-low quiescent current draw.
P(IGND) = Power dissipation due to the ground
current of the LDO
VIN(MAX) = Maximum input voltage
VIN
MCP1811X/12X
SHDN
COUT
LOAD
CIN
+
–
IGND = Current flowing out of the GND pin
VOUT
GND
VIN = 3.5V
VOUT = 2.5V
LOAD = 100 mA
CIN = COUT = 1 µF (MCP1811X)
CIN = COUT = 2.2 µF (MCP1812X)
FIGURE 5-1:
5.2
Typical Application Circuit.
Power Calculations
5.2.1
POWER DISSIPATION
The
internal
power
dissipation
within
the
MCP1811X/12X devices is a function of input voltage,
output voltage, output current and ground current.
Equation 5-1 can be used to calculate the internal
power dissipation for the LDO.
EQUATION 5-1:
P LDO = VIN MAX – V OUT MIN I OUT MAX
Where:
The total power dissipated within the MCP1811X/12X
devices is the sum of the power dissipated in the LDO
pass device and the P(IGND) term. Because of the
CMOS construction, the typical IGND for the
MCP1811X/12X devices is 90 µA for MCP1811X and
180 µA for MCP1812X at full load. Operating at a maximum VIN of 5.5V results in a power dissipation of
0.5 mW for MCP1811X and 1 mW for MCP1812X. For
most applications, this is small compared to the LDO
pass device power dissipation and can be neglected.
The maximum continuous operating junction temperature specified for the MCP1811X/12X family is +85°C.
To estimate the internal junction temperature of the
MCP1811X/12X devices, the total internal power
dissipation is multiplied by the thermal resistance from
junction-to-ambient (JA) of the device. For example,
the thermal resistance from junction-to-ambient for the
5-Lead SOT-23 package is estimated at 184.82°C/W.
EQUATION 5-3:
T J MAX = PLDO JA + T A MAX
Where:
TJ(MAX) = Maximum continuous junction
temperature
PLDO = Total power dissipation of the device
JA = Thermal resistance from junction to
ambient (see “Temperature
Specifications”)
PLDO = Internal power dissipation of the
LDO active element
VIN(MAX) = Maximum input voltage
VOUT(MIN) = LDO minimum output voltage
IOUT(MAX) = Maximum output current
In addition to the LDO pass element power dissipation,
there is power dissipation within the MCP1811X/12X
devices as a result of quiescent or ground current. The
power dissipation, as a result of the ground current, can
be calculated by applying Equation 5-2.
TA(MAX) = Maximum ambient temperature
The maximum power dissipation capability for a
package can be calculated given the junction-to-ambient
thermal resistance and the maximum ambient temperature for the application. Equation 5-4 can be used to
determine the package maximum internal power
dissipation.
EQUATION 5-4:
T J MAX – T A MAX
P D MAX = ---------------------------------------------------
JA
Where:
PD(MAX) = Maximum power dissipation of the
device
DS20006088C-page 22
2018-2020 Microchip Technology Inc.
MCP1811A/11B/12A/12B
EQUATION 5-5:
T J RISE = P D MAX JA
Where:
TJ(RISE) = Rise in the device junction
temperature over the ambient
temperature
EQUATION 5-6:
T J = T J RISE + T A
Where:
TJ = Junction temperature
TA = Ambient temperature
5.3.1.1
Device Junction Temperature Rise
The internal junction temperature rise is a function of
internal power dissipation and of the thermal resistance,
from junction-to-ambient, for the application. The
thermal resistance, from junction-to-ambient (JA), is
derived from EIA/JEDEC standards for measuring
thermal resistance. The EIA/JEDEC specification is
JESD51. The standard describes the test method and
board specifications for measuring the thermal resistance from junction-to-ambient. The actual thermal
resistance for a particular application can vary
depending on many factors, such as copper area and
thickness. Refer to Application Note AN792, “A Method
to Determine How Much Power a SOT-23 Can Dissipate in an Application” (DS00792) for more information
regarding this subject.
EXAMPLE 5-2:
5.3
Typical Application Examples
Internal power dissipation, junction temperature rise,
junction temperature and maximum power dissipation
are calculated in the following example. The power
dissipation, as a result of ground current, is small
enough to be neglected.
5.3.1
POWER DISSIPATION EXAMPLE
EXAMPLE 5-1:
Package
Package Type = 5-Lead SOT-23
Input Voltage
VIN = 3.5V ± 5%
LDO Output Voltage and Current
VOUT = 2.5V
IOUT = 100 mA
Maximum Ambient Temperature
TA(MAX) = +60°C
Internal Power Dissipation
PLDO(MAX) = (VIN(MAX) – VOUT(MIN)) x IOUT(MAX)
PLDO = ((3.5V x 1.05) – (2.5V x 0.96)) x
100 mA
TJ(RISE) = PTOTAL x JA
TJ(RISE) = 0.127W x 184.82°C/W
TJ(RISE) = 23.47°C
5.3.1.2
Junction Temperature Estimate
To estimate the internal junction temperature, the
calculated temperature rise is added to the ambient or
offset temperature. For this example, the worst-case
junction temperature is estimated below:
EXAMPLE 5-3:
TJ = TJ(RISE) + TA(MAX)
TJ = 23.47°C + 60.0°C
TJ = 83.47°C
5.3.1.3
Maximum Package Power
Dissipation at +60°C Ambient
Temperature
EXAMPLE 5-4:
5-Lead SOT-23 (JA = 184.82°C/W):
PD(MAX) = (85°C – 60°C)/184.82°C/W
PD(MAX) = 0.135W
PLDO = 0.127W
2018-2020 Microchip Technology Inc.
DS20006088C-page 23
MCP1811A/11B/12A/12B
6.0
PACKAGING INFORMATION
6.1
Package Marking Information
3-Lead SOT-23
Part Number
MCP1811AT-010/TT
XXXNNN
Code
Example
AADNNN
MCP1811AT-012/TT
AAHNNN
MCP1811AT-018/TT
AAMNNN
MCP1811AT-020/TT
AASNNN
MCP1811AT-025/TT
AA8NNN
MCP1811AT-028/TT
ABVNNN
MCP1811AT-030/TT
ABANNN
MCP1811AT-033/TT
ABENNN
MCP1811AT-040/TT
ABONNN
MCP1811BT-010/TT
AAENNN
MCP1811BT-012/TT
AAJNNN
MCP1811BT-018/TT
AAPNNN
MCP1811BT-020/TT
AATNNN
MCP1811BT-025/TT
AAXNNN
MCP1811BT-028/TT
AB8NNN
MCP1811BT-030/TT
ABBNNN
MCP1811BT-033/TT
ABFNNN
MCP1811BT-040/TT
ABPNNN
MCP1812AT-010/TT
AAFNNN
MCP1812AT-012/TT
AAKNNN
MCP1812AT-018/TT
AAQNNN
MCP1812AT-020/TT
AAUNNN
MCP1812AT-025/TT
AAYNNN
MCP1812AT-028/TT
ABTNNN
MCP1812AT-030/TT
ABCNNN
MCP1812AT-033/TT
ABGNNN
MCP1812AT-040/TT
ABRNNN
MCP1812BT-010/TT
AAGNNN
MCP1812BT-012/TT
AALNNN
MCP1812BT-018/TT
AARNNN
MCP1812BT-020/TT
AAVNNN
MCP1812BT-025/TT
AAZNNN
MCP1812BT-028/TT
ABUNNN
MCP1812BT-030/TT
ABDNNN
MCP1812BT-033/TT
ABHNNN
MCP1812BT-040/TT
ABSNNN
AAD256
Legend: XX...X
Y
YY
WW
NNN
e3
*
Customer-specific information
Year code (last digit of calendar year)
Year code (last 2 digits of calendar year)
Week code (week of January 1 is week ‘01’)
Alphanumeric traceability code
Pb-free JEDEC® designator for Matte Tin (Sn)
This package is Pb-free. The Pb-free JEDEC designator ( e3)
can be found on the outer packaging for this package.
●, ▲, ▼ Pin one index is identified by a dot, delta up, or delta down (triangle
mark).
Note:
DS20006088C-page 24
In the event the full Microchip part number cannot be marked on one line, it will
be carried over to the next line, thus limiting the number of available
characters for customer-specific information.
2018-2020 Microchip Technology Inc.
MCP1811A/11B/12A/12B
3-Lead SC70
Part Number
Code
Example
3-Lead SC70
5-Lead SC70
MCP1811AT-010/LB
LANN
MCP1811AT-012/LB
LENN
MCP1811AT-018/LB
LINN
MCP1811AT-020/LB
LMNN
MCP1811AT-025/LB
LQNN
MCP1811AT-028/LB
MMNN
MCP1811AT-030/LB
LUNN
MCP1811AT-033/LB
LYNN
MCP1811AT-040/LB
MGNN
MCP1811BT-010/LB
LBNN
MCP1811BT-012/LB
LFNN
MCP1811BT-018/LB
LJNN
MCP1811BT-020/LB
LNNN
MCP1811BT-025/LB
LRNN
MCP1811BT-028/LB
MNNN
MCP1811BT-030/LB
LVNN
MCP1811BT-033/LB
LZNN
MCP1811BT-040/LB
MHNN
MCP1812AT-010/LB
LCNN
MCP1812AT-012/LB
LGNN
MCP1812AT-018/LB
LKNN
MCP1812AT-020/LB
LONN
MCP1812AT-025/LB
LSNN
MCP1812AT-028/LB
MKNN
MCP1812AT-030/LB
LWNN
MCP1812AT-033/LB
MANN
MCP1812AT-040/LB
MINN
MCP1812BT-010/LB
LDNN
MCP1812BT-012/LB
LHNN
MCP1812BT-018/LB
LLNN
MCP1812BT-020/LB
LPNN
MCP1812BT-025/LB
LTNN
MCP1812BT-028/LB
MLNN
MCP1812BT-030/LB
LXNN
MCP1812BT-033/LB
MBNN
MCP1812BT-040/LB
MJNN
LA25
Example
5-Lead SC70
MCP1811AT-010/LT
XXNN
2018-2020 Microchip Technology Inc.
DXNN
MCP1811AT-012/LT
EBNN
MCP1811AT-018/LT
EGNN
MCP1811AT-020/LT
EKNN
MCP1811AT-025/LT
EPNN
MCP1811AT-028/LT
FNNN
MCP1811AT-030/LT
ETNN
MCP1811AT-033/LT
EXNN
MCP1811AT-040/LT
FHNN
MCP1811BT-010/LT
DYNN
MCP1811BT-012/LT
ECNN
MCP1811BT-018/LT
EHNN
LA25
DS20006088C-page 25
MCP1811A/11B/12A/12B
Part Number
Code
5-Lead SC70 (Continued)
DS20006088C-page 26
MCP1811BT-020/LT
EMNN
MCP1811BT-025/LT
EQNN
MCP1811BT-028/LT
FONN
MCP1811BT-030/LT
EUNN
MCP1811BT-033/LT
EYNN
MCP1811AT-040/LT
FHNN
MCP1811BT-010/LT
DYNN
MCP1811BT-012/LT
ECNN
MCP1811BT-018/LT
EHNN
MCP1811BT-020/LT
EMNN
MCP1811BT-025/LT
EQNN
MCP1811BT-028/LT
FONN
MCP1811BT-030/LT
EUNN
MCP1811BT-033/LT
EYNN
MCP1811BT-040/LT
FINN
MCP1812AT-010/LT
DZNN
MCP1812AT-012/LT
EDNN
MCP1812AT-018/LT
EINN
MCP1812AT-020/LT
ENNN
MCP1812AT-025/LT
ERNN
MCP1812AT-028/LT
FLNN
MCP1812AT-030/LT
EVNN
MCP1812AT-033/LT
EZNN
MCP1812AT-040/LT
FJNN
MCP1812BT-010/LT
EANN
MCP1812BT-012/LT
EFNN
MCP1812BT-018/LT
EJNN
MCP1812BT-020/LT
EONN
MCP1812BT-025/LT
ESNN
MCP1812BT-028/LT
FMNN
MCP1812BT-030/LT
EWNN
MCP1812BT-033/LT
FANN
MCP1812BT-040/LT
FKNN
2018-2020 Microchip Technology Inc.
MCP1811A/11B/12A/12B
5-Lead SOT-23
2018-2020 Microchip Technology Inc.
Part Number
Code
MCP1811AT-010/OT
AADRY
MCP1811AT-012/OT
AADVY
MCP1811AT-018/OT
AADZY
MCP1811AT-020/OT
AAEDY
MCP1811AT-025/OT
AAEHY
MCP1811AT-028/OT
QZAAY
MCP1811AT-030/OT
AAEMY
MCP1811AT-033/OT
ABERY
MCP1811AT-040/OT
QSAAY
MCP1811BT-010/OT
AADSY
MCP1811BT-012/OT
AADWY
MCP1811BT-018/OT
AAEAY
MCP1811BT-020/OT
AAEEY
MCP1811BT-025/OT
AAEJY
MCP1811BT-028/OT
RAAAY
MCP1811BT-030/OT
ABENY
MCP1811BT-033/OT
ABESY
MCP1811BT-040/OT
QTAAY
MCP1812AT-010/OT
AADTY
MCP1812AT-012/OT
AADXY
MCP1812AT-018/OT
AAEBY
MCP1812AT-020/OT
AAEFY
MCP1812AT-025/OT
AAEKY
MCP1812AT-028/OT
QXAAY
MCP1812AT-030/OT
ABEPY
MCP1812AT-033/OT
ABETY
MCP1812AT-040/OT
QVAAY
MCP1812BT-010/OT
AADUY
MCP1812BT-012/OT
AADYY
MCP1812BT-018/OT
AAECY
MCP1812BT-020/OT
AAEGY
MCP1812BT-025/OT
AAELY
MCP1812BT-028/OT
QYAAY
MCP1812BT-030/OT
ABEQY
MCP1812BT-033/OT
ABEUY
MCP1812BT-040/OT
QWAAY
Example
AADRY
13256
DS20006088C-page 27
MCP1811A/11B/12A/12B
4-Lead 1x1 mm UDFN
DS20006088C-page 28
Part Number
Code
MCP1811AT-010/HCA
AA
MCP1811AT-012/HCA
AE
MCP1811AT-018/HCA
AJ
MCP1811AT-020/HCA
AN
MCP1811AT-025/HCA
AS
MCP1811AT-028/HCA
BN
MCP1811AT-030/HCA
AW
MCP1811AT-033/HCA
BA
MCP1811AT-040/HCA
▲H2
MCP1811BT-010/HCA
AB
MCP1811BT-012/HCA
AF
MCP1811BT-018/HCA
AK
MCP1811BT-020/HCA
AP
MCP1811BT-025/HCA
AT
MCP1811BT-028/HCA
BP
MCP1811BT-030/HCA
AX
MCP1811BT-033/HCA
BB
MCP1811BT-040/HCA
▲H3
MCP1812AT-010/HCA
AC
MCP1812AT-012/HCA
AG
MCP1812AT-018/HCA
AL
MCP1812AT-020/HCA
AQ
MCP1812AT-025/HCA
AU
MCP1812AT-028/HCA
BK
MCP1812AT-030/HCA
AY
MCP1812AT-033/HCA
BC
MCP1812AT-040/HCA
▲H4
MCP1812BT-010/HCA
AD
MCP1812BT-012/HCA
AH
MCP1812BT-018/HCA
AM
MCP1812BT-020/HCA
AR
MCP1812BT-025/HCA
AV
MCP1812BT-028/HCA
BL
MCP1812BT-030/HCA
AZ
MCP1812BT-033/HCA
BD
MCP1812BT-040/HCA
▲H5
Example
AA
2018-2020 Microchip Technology Inc.
MCP1811A/11B/12A/12B
/HDG3ODVWLF6PDOO2XWOLQH7UDQVLVWRU77>627@
1RWH
)RUWKHPRVWFXUUHQWSDFNDJHGUDZLQJVSOHDVHVHHWKH0LFURFKLS3DFNDJLQJ6SHFLILFDWLRQORFDWHGDW
KWWSZZZPLFURFKLSFRPSDFNDJLQJ
b
N
E
E1
2
1
e
e1
D
c
A
φ
A2
A1
L
8QLWV
'LPHQVLRQ/LPLWV
1XPEHURI3LQV
0,//,0(7(56
0,1
120
0$;
1
/HDG3LWFK
H
%6&
2XWVLGH/HDG3LWFK
H
2YHUDOO+HLJKW
$
±
0ROGHG3DFNDJH7KLFNQHVV
$
6WDQGRII
$
±
%6&
2YHUDOO:LGWK
(
±
0ROGHG3DFNDJH:LGWK
(
2YHUDOO/HQJWK
'
)RRW/HQJWK
/
)RRW$QJOH
±
/HDG7KLFNQHVV
F
±
/HDG:LGWK
E
±
1RWHV
'LPHQVLRQV'DQG(GRQRWLQFOXGHPROGIODVKRUSURWUXVLRQV0ROGIODVKRUSURWUXVLRQVVKDOOQRWH[FHHGPPSHUVLGH
'LPHQVLRQLQJDQGWROHUDQFLQJSHU$60(