0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MCP1812AT-040/LT

MCP1812AT-040/LT

  • 厂商:

    ACTEL(微芯科技)

  • 封装:

    TSSOP5

  • 描述:

    IC REG LINEAR 4V 300MA SC70-5

  • 数据手册
  • 价格&库存
MCP1812AT-040/LT 数据手册
MCP1811A/11B/12A/12B Ultra-Low Quiescent Current LDO Regulator for Long-Life Battery-Powered Applications Features Description • Ultra-Low Quiescent Current: 250 nA (typical) • Ultra-Low Shutdown Supply Current: - 10 nA typical for MCP1811A/12A - 5 nA typical for MCP1811B/12B • Output Current Capability: - 150 mA for MCP1811X (Note 1) - 300 mA for MCP1812X • Input Voltage Range: 1.8V to 5.5V • Standard Output Voltages (VR): 1V, 1.2V, 1.8V, 2.0V, 2.5V, 2.8V, 3.0V, 3.3V and 4.0V; for any other voltage options (between 1V to 4V), please contact your local sales office • Stable with Ceramic Output Capacitor: 1.0 µF (MCP1811X) and 2.2 µF (MCP1812X) • Overcurrent Protection • Output Discharge (Shutdown mode, SHDN = GND) MCP1811A/12A • Available for the Following Packages: - 3-Lead SOT-23 - 3-Lead SC70 - 4-Lead 1 x 1 mm UDFN - 5-Lead SOT-23 - 5-Lead SC70 The MCP1811X/12X devices are 150 mA (MCP1811X) and 300 mA (MCP1812X) Low Dropout (LDO) linear regulators that provide high-current and low output voltages while maintaining an ultra-low 250 nA of quiescent current during device operation. In addition, the MCP1811B/12B can be shut down for 5 nA (typical) supply current draw. Applications • • • • • Energy Harvesting Long-Life, Battery-Powered Applications Smart Cards Ultra-Low Consumption “Green” Products Wearable Electronics (smart watches, bracelets, headsets) • Medical Devices (hearing aids)  2018-2020 Microchip Technology Inc. The MCP1811X/12X family comes in nine standard fixed output voltage versions: 1V, 1.2V, 1.8V, 2.0V, 2.5V, 2.8V, 3.0V, 3.3V and 4.0V. The 150/300 mA output current capability, combined with the low output voltage capability, make the MCP1811X/12X device family a good choice for new ultra-long life LDO applications that have high-current demands, but require ultra-low power consumption during Sleep periods. The MCP1811X/12X devices are stable with ceramic output capacitors that inherently provide lower output noise, and reduce the size and cost of the entire regulator solution. Only 1 µF (2.2 µF for MCP1812X) of output capacitance is needed to assure the stability of the system with a low noise output. The MCP1811X/12X family can be paired with other ultra-low current devices, such as Microchip’s eXtreme Low-Power (XLP) technology devices, for a complete ultra-low power solution. Note 1: The MCP1811X and MCP1812X designations refer to MCP1811A/11B and MCP1812A/12B, respectively. DS20006088C-page 1 MCP1811A/11B/12A/12B Package Types 3-Lead SOT-23/SC70 GND 5-Lead SOT-23/SC70 VOUT NC 3 5 1 2 VOUT VIN VIN 1 2 3 GND Top View * Includes Exposed Thermal Pad (see Table 3-1). DS20006088C-page 2 4 4-Lead 1x1 mm UDFN VIN SHDN 4 3 EP* 5 SHDN 1 VOUT 2 GND  2018-2020 Microchip Technology Inc. MCP1811A/11B/12A/12B Typical Application VIN VOUT – MCP1811X/12X CIN SHDN COUT LOAD + GND Functional Block Diagram VOUT VIN Current Limit Ref – Err Amp RDCH + DT SHDN On/Off Control SHDN Discharge Switch (DT) MCP1811A/12A Only GND TABLE 1: MCP1811X/12X FAMILY MEMBERS Device MCP1811A Description Ultra-Low Quiescent Current LDO Regulator with Output Discharge and 150 mA Output Current MCP1811B Ultra-Low Quiescent Current LDO Regulator with No Output Discharge and 150 mA Output Current MCP1812A Ultra-Low Quiescent Current LDO Regulator with Output Discharge and 300 mA Output Current MCP1812B Ultra-Low Quiescent Current LDO Regulator with No Output Discharge and 300 mA Output Current 2018-2020 Microchip Technology Inc. DS20006088C-page 3 MCP1811A/11B/12A/12B 1.0 ELECTRICAL CHARACTERISTICS Absolute Maximum Ratings† Input Voltage, VIN .....................................................................................................................................................+6.0V Maximum Voltage on Any Pin................................................................................................... GND – 0.3V to VIN + 0.3V Output Short-Circuit Duration ...............................................................................................................Unlimited (Note 1) Storage Temperature.............................................................................................................................. -55°C to +150°C Maximum Junction Temperature, TJ...................................................................................................................... +125°C Operating Junction Temperature, TJ .........................................................................................................-40°C to +85°C ESD Protection on All Pins (HBM).......................................................................................................................... ≥ 4 kV † Notice: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability. AC/DC CHARACTERISTICS Electrical Specifications: Unless otherwise indicated, VIN = VR + 1V (Note 2), IOUT = 1 mA, CIN = COUT = 1 µF (MCP1811X) or 2.2 µF (MCP1812X) ceramic (X7R), TA = +25°C, SHDN > 1.4V. Boldface type applies for junction temperatures TJ of -40°C to +85°C (Note 4). Parameters Input Operating Voltage Output Voltage Range Input Quiescent Current Input Quiescent Current for SHDN Mode Ground Current Sym. Min. Typ. Max. Units VIN 1.8 — 5.5 V IOUT ≤ 50 mA (MCP1811X, MCP1812X) 2.0 — 5.5 V IOUT ≤ 150 mA (MCP1811X, MCP1812X) V — 5.5 VR – 4% VR VR + 4% IQ — 250 500 nA IOUT = 0 (MCP1811X, MCP1812X) ISHDN — 10 250 nA SHDN = GND (MCP1811A/12A) — 5 125 nA SHDN = GND (MCP1811B/12B) — 90 110 µA IOUT = 0 to 150 mA (MCP1811X) — 180 220 150 — — 300 — — — 250 420 — 500 840 IGND IOUT Current Limit ILIMIT 2: 3: 4: 5: IOUT ≤ 300 mA (MCP1812X) 2.4 VOUT Maximum Continuous Output Current 1: Conditions (MCP1811X, MCP1812X) (Note 2) IOUT = 0 to 300 mA (MCP1812X) mA MCP1811X MCP1812X mA MCP1811X MCP1812X The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air (i.e., TA, TJ, JA). Exceeding the maximum allowable power dissipation will cause the operating junction temperature to exceed the maximum +85°C rating. Sustained junction temperatures above +85°C can impact device reliability. VR is a nominal regulator output voltage. The minimum VIN must meet two conditions: VIN ≥ VIN(MIN) and VIN ≥ VR + VDROPOUT(MAX). Load regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested over a load range from 1 mA to the maximum specified output current. The junction temperature is approximated by soaking the device under test at an ambient temperature equal to the desired junction temperature. The test time is small enough such that the rise in the junction temperature over the ambient temperature is not significant. Dropout voltage is defined as the input-to-output voltage differential at which the output voltage drops 2% below its nominal value that was measured with an input voltage of VIN = VR + 1V. DS20006088C-page 4  2018-2020 Microchip Technology Inc. MCP1811A/11B/12A/12B AC/DC CHARACTERISTICS (CONTINUED) Electrical Specifications: Unless otherwise indicated, VIN = VR + 1V (Note 2), IOUT = 1 mA, CIN = COUT = 1 µF (MCP1811X) or 2.2 µF (MCP1812X) ceramic (X7R), TA = +25°C, SHDN > 1.4V. Boldface type applies for junction temperatures TJ of -40°C to +85°C (Note 4). Parameters Sym. Foldback Current Min. Typ. Max. Units — 50 — mA Conditions RLOAD = 1MCP1811X) — 100 — Start-up Voltage Overshoot VOVER — 5 10 Line Regulation VOUT — ±20 — mV 1.8V < VIN < 5.5V (MCP1811X), 2.4V < VIN < 5.5V (MCP1812X) Load Regulation VOUT — ±25 — mV IOUT = 1 mA to 150 mA (MCP1811X) (Note 3) — ±50 — VDROPOUT — 400 600 mV Logic High Input VSHDN-HIGH 70 — — %VIN Logic Low Input VSHDN-LOW — — 20 %VIN SHDNILK — 0.100 0.500 nA SHDN = GND Dropout Voltage RLOAD = 1MCP1812X) %VOUT VIN = 0V to 5.5V IOUT = 1mA to 300 mA (MCP1812X) (Note 3) IOUT = 150 mA (MCP1811X), IOUT = 300 mA (MCP1812X) (Note 5) Shutdown Input Shutdown Input Leakage Current — 1.0 20.0 nA SHDN = 5.5V RDCH — 100 —  MCP1811A/12A TDELAY — 400 — µs SHDN = GND to VIN, VOUT = GND to 10% VR, VIN = VR + 1V to 5.5V Start-up Rise Time TRISE 200 — 1000 µs SHDN = GND to VIN, VOUT = 10% VR to 95% VR, VIN = VR + 1V to 5.5V Power Supply Ripple Rejection Ratio PSRR — -50 — dB CIN = 0 µF, VIN = VR + 1V + VINAC/2 or VIN = VIN_Min + 1V + VINAC/2, IOUT = 10 mA and Full Load, VINAC = 0.2Vpk-pk, f = 1 kHz Discharge Transistor AC Performance Start-up Delay from SHDN 1: 2: 3: 4: 5: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air (i.e., TA, TJ, JA). Exceeding the maximum allowable power dissipation will cause the operating junction temperature to exceed the maximum +85°C rating. Sustained junction temperatures above +85°C can impact device reliability. VR is a nominal regulator output voltage. The minimum VIN must meet two conditions: VIN ≥ VIN(MIN) and VIN ≥ VR + VDROPOUT(MAX). Load regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested over a load range from 1 mA to the maximum specified output current. The junction temperature is approximated by soaking the device under test at an ambient temperature equal to the desired junction temperature. The test time is small enough such that the rise in the junction temperature over the ambient temperature is not significant. Dropout voltage is defined as the input-to-output voltage differential at which the output voltage drops 2% below its nominal value that was measured with an input voltage of VIN = VR + 1V. 2018-2020 Microchip Technology Inc. DS20006088C-page 5 MCP1811A/11B/12A/12B TEMPERATURE SPECIFICATIONS Parameters Sym. Min. Typ. Max. Units Conditions Operating Junction Temperature Range TJ -40 — +85 °C Steady state Maximum Junction Temperature TJ — — +125 °C Transient Storage Temperature Range TA -65 — +150 °C JA — 91.05 — °C/W JC(Top) — 285.89 — °C/W JA — 211.33 — °C/W JC(Top) — 138.72 — °C/W JA — 184.82 — °C/W JC(Top) — 151.05 — °C/W JA — 300.6 — °C/W JC(Top) — 130.03 — °C/W JA — 237.83 — °C/W JC(Top) — 144.91 — °C/W Temperature Ranges Thermal Package Resistances Thermal Resistance, 4-Lead 1x1 mm UDFN Thermal Resistance, 3-Lead SOT-23 Thermal Resistance, 5-Lead SOT-23 Thermal Resistance, 3-Lead SC70 Thermal Resistance, 5-Lead SC70 DS20006088C-page 6 JEDEC standard 4-layer FR4 board with 1 oz. copper and thermal vias JEDEC standard 4-layer FR4 board with 1 oz. copper  2018-2020 Microchip Technology Inc. MCP1811A/11B/12A/12B 2.0 TYPICAL PERFORMANCE CURVES Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range. Note: Unless otherwise indicated, CIN = COUT = 1 µF (MCP1811X) or 2.2 µF (MCP1812X) ceramic type (X7R), IOUT = 1 mA, TA = +25°C, VIN = VR + 1V, SHDN = 1 M pull-up to VIN. 4.050 1.040 VR = 4V TJ = -40°C Output Voltage (V) Output Voltage (V) VR = 1V 1.030 TJ = +25°C 1.020 1.010 TJ = +85°C 2.8 1.8 3.8 Input Voltage (V) 4.8 TJ = +25°C 4.030 TJ = +85°C 5.0  5.2 1.050 TJ = - 40°C 5.4 5.5 VIN = 2 V VR = 1V Output Voltage (V) 1.040 2.555 TJ = +25°C 2.550 TJ = +85°C 1.030 TJ = -40°C TJ = +25°C 1.020 1.010 1.000 2.540 TJ = +85°C 0.990 3.5 4.0 4.5 5.0 5.5 0 25 Input Voltage (V) 50 75 100 125 150 Load Current (mA) FIGURE 2-2: Output Voltage vs. Input Voltage (MCP1812X, VR = 2.5V). FIGURE 2-5: Output Voltage vs. Load Current (MCP1811X, VR = 1.0V). 2.570 3.355 VIN = 3.5V VR = 3.3V TJ = - 40°C 3.350 3.345 TJ = +25°C 3.340 VR = 2.5V 2.560 Output Voltage (V) Output Voltage (V) 5.3 FIGURE 2-4: Output Voltage vs. Input Voltage (MCP1811X, VR = 4.0V). VR = 2.5V 2.545 5.1 Input Voltage (V) FIGURE 2-1: Output Voltage vs. Input Voltage (MCP1811X, VR = 1.0V). Output Voltage (V) 4.040 4.020 1.000 2.560 TJ = -40°C TJ = +85°C 3.335 2.550 TJ = +25°C 2.540 TJ = +85°C 2.530 TJ = -40°C 2.520 3.330 2.510 4.3 4.5 4.7 4.9 5.1 Input Voltage (V) 5.3 5.5 FIGURE 2-3: Output Voltage vs. Input Voltage (MCP1812X, VR = 3.3V). 2018-2020 Microchip Technology Inc. 0 50 100 150 200 Load Current (mA) 250 300 FIGURE 2-6: Output Voltage vs. Load Current (MCP1812X, VR = 2.5V). DS20006088C-page 7 MCP1811A/11B/12A/12B Note: Unless otherwise indicated, CIN = COUT = 1 µF (MCP1811X) or 2.2 µF (MCP1812X) ceramic type (X7R), IOUT = 1 mA, TA = +25°C, VIN = VR + 1V, SHDN = 1 M pull-up to VIN. 0.50 VIN = 4.3V VR = 3.3V VR = 3.3V Dropout Voltage (V) Output Voltage (V) 3.37 3.36 3.35 3.34 3.33 3.32 3.31 3.30 3.29 3.28 3.27 3.26 3.25 TJ = +85°C TJ = +25°C TJ = -40°C 0.45 TJ = -40°C 0.40 TJ = +25°C 0.35 0.30 TJ = +85°C 0.25 0.20 0 50 100 150 200 250 0 300 50 100 FIGURE 2-7: Output Voltage vs. Load Current (MCP1812X, VR = 3.3V). 0.50 Dropout Voltage (V) Output Voltage (V) 4.050 TJ = -40°C TJ = +25°C 4.030 4.020 TJ = +85°C 4.010 0.45 4.000 25 50 75 100 300 TJ = -40°C 0.40 0.35 TJ = +25°C 0.30 TJ = +85°C 0.25 0 250 VR = 4V VR = 4V 4.040 200 FIGURE 2-10: Dropout Voltage vs. Load Current (MCP1812X, VR = 3.3V). 4.060 VIN = 5V 150 Load Current (mA) Load Current (mA) 125 0.20 150 0 25 Load Current (mA) FIGURE 2-8: Output Voltage vs. Load Current (MCP1811X, VR = 4.0V). 50 75 100 Load Current (mA) 125 150 FIGURE 2-11: Dropout Voltage vs. Load Current (MCP1811X, VR = 4.0V). 0.50 100.000 TJ = -40°C 10.000 0.40 0.35 Noise μV/√Hz Dropout Voltage (V) VR = 2.5V 0.45 TJ = +25°C 0.30 TJ = +85°C 0.25 0.20 0 50 100 150 200 Load Current (mA) 250 300 FIGURE 2-9: Dropout Voltage vs. Load Current (MCP1812X, VR = 2.5V) DS20006088C-page 8 1.000 0.100 0.010 0.001 0.01 VIN = 2.4V VOUT = 1V Load = 50 mA Output Noise 10 Hz - 100 kHz = 169.31 μVrms 0.1 1 10 100 Frequency (kHz) 1000 10000 FIGURE 2-12: Noise vs. Frequency (MCP1812X, VR = 1.0V).  2018-2020 Microchip Technology Inc. MCP1811A/11B/12A/12B Note: Unless otherwise indicated, CIN = COUT = 1 µF (MCP1811X) or 2.2 µF (MCP1812X) ceramic type (X7R), IOUT = 1 mA, TA = +25°C, VIN = VR + 1V, SHDN = 1 M pull-up to VIN. -10 100.000 VR = 1.0V No CIN VIN = 2.5V + 0.2Vpk-pk -20 300 mA -30 PSRR (dB) Noise μV/√Hz 10.000 10 mA 1.000 0.100 VIN = 3.5V VOUT = 2.5V Load = 50 mA 0.010 -40 -50 -60 -70 Output Noise 10 Hz - 100 kHz = 223.04 μVrms 0.001 0.01 0.1 1 10 100 Frequency (kHz) 1000 -80 0.01 10000 FIGURE 2-13: Noise vs. Frequency (MCP1812X, VR = 2.5V). 0.1 1 10 Frequency (kHz) 100 1000 FIGURE 2-16: Power Supply Ripple Rejection vs. Frequency (MCP1812X, VR = 1.0V). -10 100.000 -20 1.000 0.100 0.010 10 mA 300 mA -30 PSRR (dB) Noise μV/√Hz 10.000 VR = 2.5V No CIN VIN= 3.6V + 0.2Vpk-pk VIN = 4.3V VOUT = 3.3V Load = 50 mA 0.1 -50 -60 -70 Output Noise 10 Hz - 100 kHz = 165.65 μVrms 0.001 0.01 -40 1 10 100 1000 -80 0.01 10000 0.1 Frequency (kHz) FIGURE 2-14: Noise vs. Frequency (MCP1811X, VR = 3.3V). 1 10 Frequency (kHz) 100 1000 FIGURE 2-17: Power Supply Ripple Rejection vs. Frequency (MCP1812X, VR = 2.5V). -10 100.000 -20 1.000 0.100 0.010 10 mA 150 mA -30 PSRR (dB) Noise μV/√Hz 10.000 VR = 3.3V No CIN VIN = 4.4V + 0.2Vpk-pk VIN = 5V VOUT = 4V Load = 50 mA 0.1 1 10 100 Frequency (kHz) 1000 FIGURE 2-15: Noise vs. Frequency (MCP1811X, VR = 4.0V). 2018-2020 Microchip Technology Inc. -50 -60 -70 Output Noise 10 Hz - 100 kHz = 265.92 μVrms 0.001 0.01 -40 10000 -80 0.01 0.1 1 10 Frequency (kHz) 100 1000 FIGURE 2-18: Power Supply Ripple Rejection vs. Frequency (MCP1811X, VR = 3.3V). DS20006088C-page 9 MCP1811A/11B/12A/12B Note: Unless otherwise indicated, CIN = COUT = 1 µF (MCP1811X) or 2.2 µF (MCP1812X) ceramic type (X7R), IOUT = 1 mA, TA = +25°C, VIN = VR + 1V, SHDN = 1 M pull-up to VIN. -10 -20 VR = 4.0V No CIN VIN = 5.1V + 0.2Vpk-pk VR = 2.5V, VIN = 3.5V, IOUT = 100 µA to 10 mA 10 mA 300 mA PSRR (dB) -30 -40 VOUT (AC Coupled, 100 mV/Div) -50 10 mA -60 -70 -80 0.01 100 µA 0.1 1 10 Frequency (kHz) 100 1000 FIGURE 2-19: Power Supply Ripple Rejection vs. Frequency (MCP1812X, VR = 4.0V). VR = 1V, VIN = 2.4V, IOUT = 100 µA to 10 mA IOUT (DC Coupled, 5 mA/Div) Time = 40 µs/Div FIGURE 2-22: Dynamic Load Step (MCP1812X, VR = 2.5V). VR = 2.5V, VIN = 3.5V, IOUT = 10 mA to 300 mA VOUT (AC Coupled, 100 mV/Div) VOUT (AC Coupled, 100 mV/Div) 10 mA 300 mA 10 mA 100 µA IOUT (DC Coupled, 5 mA/Div) Time = 40 µs/Div FIGURE 2-20: Dynamic Load Step (MCP1812X, VR = 1.0V). IOUT (DC Coupled, 200 mA/Div) Time = 40 µs/Div FIGURE 2-23: Dynamic Load Step (MCP1812X, VR = 2.5V). VR = 1V, VIN = 2.4V, IOUT = 10 mA to 300 mA VR = 3.3V, VIN = 4.3V, IOUT = 100 µA to 10 mA VOUT (AC Coupled, 100 mV/Div) VOUT (AC Coupled, 100 mV/Div) 10 mA 300 mA 100 µA 10 mA IOUT (DC Coupled, 200 mA/Div) Time = 40 µs/Div FIGURE 2-21: Dynamic Load Step (MCP1812X, VR = 1.0V). DS20006088C-page 10 IOUT (DC Coupled, 5 mA/Div) Time = 40 µs/Div FIGURE 2-24: Dynamic Load Step (MCP1811X, VR = 3.3V).  2018-2020 Microchip Technology Inc. MCP1811A/11B/12A/12B Note: Unless otherwise indicated, CIN = COUT = 1 µF (MCP1811X) or 2.2 µF (MCP1812X) ceramic type (X7R), IOUT = 1 mA, TA = +25°C, VIN = VR + 1V, SHDN = 1 M pull-up to VIN. VR = 3.3V, VIN = 4.3V, IOUT = 10 mA to 150 mA VR = 1V, VIN = 2.4V to 3.4V, IOUT = 10 mA VOUT (AC Coupled, 100 mV/Div) 2.4V VIN (DC Coupled, 1V/div) 3.4V 150 mA 10 mA VOUT (AC Coupled, 50 mV/Div) IOUT (DC Coupled, 100 mA/Div) Time = 200 µs/Div Time = 40 µs/Div FIGURE 2-25: Dynamic Load Step (MCP1811X, VR = 3.3V). FIGURE 2-28: Dynamic Line Step (MCP1812X, VR = 1.0V). VR = 1V, VIN = 2.4V to 3.4V, IOUT = 300 mA VR = 4V, VIN = 5V, IOUT = 100 µA to 10 mA 3.4V 2.4V VIN (DC Coupled, 1V/div) VOUT (AC Coupled, 100 mV/Div) 10 mA 100 µA VOUT (AC Coupled, 50 mV/Div) IOUT (DC Coupled, 5 mA/Div) Time = 200 µs/Div Time = 40 µs/Div FIGURE 2-26: Dynamic Load Step (MCP1811X, VR = 4.0V). FIGURE 2-29: Dynamic Line Step (MCP1812X, VR = 1.0V). VR = 4V, VIN = 5V, IOUT = 10 mA to 150 mA VR = 2.5V, VIN = 3.5V to 4.5V, IOUT = 10 mA VOUT (AC Coupled, 100 mV/Div) 3.5V VIN (DC Coupled, 1V/div) 4.5V 150 mA 10 mA IOUT (DC Coupled, 100 mA/Div) Time = 40 µs/Div FIGURE 2-27: Dynamic Load Step (MCP1811X, VR = 4.0V). 2018-2020 Microchip Technology Inc. VOUT (AC Coupled, 50 mV/Div) Time = 200 µs/Div FIGURE 2-30: Dynamic Line Step (MCP1812X, VR = 2.5V). DS20006088C-page 11 MCP1811A/11B/12A/12B Note: Unless otherwise indicated, CIN = COUT = 1 µF (MCP1811X) or 2.2 µF (MCP1812X) ceramic type (X7R), IOUT = 1 mA, TA = +25°C, VIN = VR + 1V, SHDN = 1 M pull-up to VIN. VR = 2.5V, VIN = 3.5V to 4.5V, IOUT = 300 mA VR = 4V, VIN = 5V to 5.5V, IOUT = 10 mA 5.5V 4.5V 5V 3.5V VIN (DC Coupled, 1V/div) VOUT (AC Coupled, 50 mV/Div) VIN (DC Coupled, 500 mV/div) Time = 200 µs/Div FIGURE 2-31: Dynamic Line Step (MCP1812X, VR = 2.5V). VOUT (AC Coupled, 20 mV/Div) Time = 200 µs/Div FIGURE 2-34: Dynamic Line Step (MCP1811X, VR = 4.0V). VR = 4V, VIN = 5V to 5.5V, IOUT = 150 mA VR = 3.3V, VIN = 4.3V to 5.3V, IOUT = 10 mA 5.5V 5.3V 5V 4.3V VIN (DC Coupled, 500mV/div) VIN (DC Coupled, 1V/div) VOUT (AC Coupled, 50 mV/Div) Time = 200 µs/Div FIGURE 2-32: Dynamic Line Step (MCP1811X, VR = 3.3V). VOUT (AC Coupled, 20 mV/Div) Time = 200 µs/Div FIGURE 2-35: Dynamic Line Step (MCP1811X, VR = 4.0V). VR = 1V, VIN = 0V to 2.4V, IOUT = 100 µA VR = 3.3V, VIN = 4.3V to 5.3V, IOUT = 150 mA 2.4V 5.3V 4.3V VIN (DC Coupled, 1V/div) 0V VIN (DC Coupled, 1V/div) VOUT (AC Coupled, 50 mV/Div) Time = 200 µs/Div FIGURE 2-33: Dynamic Line Step (MCP1811X, VR = 3.3V). DS20006088C-page 12 VOUT (DC Coupled, 500 mV/Div) Time = 100 µs/Div FIGURE 2-36: Start-up from VIN (MCP1812X, VR = 1.0V).  2018-2020 Microchip Technology Inc. MCP1811A/11B/12A/12B Note: Unless otherwise indicated, CIN = COUT = 1 µF (MCP1811X) or 2.2 µF (MCP1812X) ceramic type (X7R), IOUT = 1 mA, TA = +25°C, VIN = VR + 1V, SHDN = 1 M pull-up to VIN. VR = 3.3V, VIN = 0V to 4.3V, IOUT = 100 µA VR = 1V, VIN = 0V to 2.4V, IOUT = 300 mA 2.4V 4.3V 0V 0V VIN (DC Coupled, 2V/div) VIN (DC Coupled, 1V/div) VOUT (DC Coupled, 500 mV/Div) Time = 100 µs/Div FIGURE 2-37: Start-up from VIN (MCP1812X, VR = 1.0V). Time = 200 µs/Div VOUT (DC Coupled, 2V/Div) FIGURE 2-40: Start-up from VIN (MCP1811X, VR = 3.3V). VR = 3.3V, VIN = 0V to 4.3V, IOUT = 150 mA VR = 2.5V, VIN = 0V to 3.5V, IOUT = 100 µA 4.3V 3.5V 0V 0V VIN (DC Coupled, 2V/div) VIN (DC Coupled, 2V/div) VOUT (DC Coupled, 1V/Div) Time = 200 µs/Div FIGURE 2-38: Start-up from VIN (MCP1812X, VR = 2.5V). VOUT (DC Coupled, 2V/Div) FIGURE 2-41: Start-up from VIN (MCP1811X, VR = 3.3V). VR = 4V, VIN = 0V to 5V, IOUT = 100 µA VR = 2.5V, VIN = 0V to 3.5V, IOUT = 300 mA 5V 3.5V 0V 0V VIN (DC Coupled, 2V/div) VIN (DC Coupled, 2V/div) VOUT (DC Coupled, 1V/Div) Time = 200 µs/Div FIGURE 2-39: Start-up from VIN (MCP1812X, VR = 2.5V). 2018-2020 Microchip Technology Inc. Time = 200 µs/Div VOUT (DC Coupled, 2V/Div) Time = 200 µs/Div FIGURE 2-42: Start-up from VIN (MCP1811X, VR = 4.0V). DS20006088C-page 13 MCP1811A/11B/12A/12B Note: Unless otherwise indicated, CIN = COUT = 1 µF (MCP1811X) or 2.2 µF (MCP1812X) ceramic type (X7R), IOUT = 1 mA, TA = +25°C, VIN = VR + 1V, SHDN = 1 M pull-up to VIN. VR = 4V, VIN = 0V to 5, IOUT = 150 mA VR = 3.3V, VIN = 4.3V, IOUT = 10 mA 5V 4.3V 0V 0V VIN (DC Coupled, 2V/div) VOUT (DC Coupled, 2V/Div) SHDN (DC Coupled, 2V/div) Time = 200 µs/Div FIGURE 2-43: Start-up from VIN (MCP1811X, VR = 4.0V). VR = 1V, VIN = 2.4V, IOUT = 10 mA Time = 200 µs/Div VOUT (DC Coupled, 2V/Div) FIGURE 2-46: Start-up from SHDN (MCP1811X, VR = 3.3V). VR = 4V, VIN = 5V, IOUT = 10 mA 2.4V 5V 0V 0V SHDN (DC Coupled, 1V/div) VOUT (DC Coupled, 500 mV/Div) SHDN (DC Coupled, 2V/div) Time = 200 µs/Div FIGURE 2-44: Start-up from SHDN (MCP1812X, VR = 1.0V). Time = 200 µs/Div VOUT (DC Coupled, 2V/Div) FIGURE 2-47: Start-up from SHDN (MCP1811X, VR = 4.0V). 60 VR = 1V IOUT = 0.1 mA to 150 mA Load Regulation (mV) VR = 2.5V, VIN = 3.5V, IOUT = 10 mA 3.5V 0V SHDN (DC Coupled, 2V/div) 50 VIN = 2.0V 40 VIN = 3.0V VIN = 2.4V 30 VIN = 4.0V 20 VIN = 5.5V 10 VOUT (DC Coupled, 1V/Div) Time = 200 µs/Div FIGURE 2-45: Start-up from SHDN (MCP1812X, VR = 2.5V). DS20006088C-page 14 -40 -15 10 35 60 Junction Temperature (°C) 85 FIGURE 2-48: Load Regulation vs. Junction Temperature (MCP1811X, VR = 1.0V).  2018-2020 Microchip Technology Inc. MCP1811A/11B/12A/12B Note: Unless otherwise indicated, CIN = COUT = 1 µF (MCP1811X) or 2.2 µF (MCP1812X) ceramic type (X7R), IOUT = 1 mA, TA = +25°C, VIN = VR + 1V, SHDN = 1 M pull-up to VIN. 40 VR = 2.5V IOUT = 0.1 mA to 300 mA 45 VIN = 3.5V Line Regulation (mV) Load Regulation (mV) 55 VIN = 4.0V 35 25 VIN = 5.0V VIN = 5.5V 15 30 IOUT = 150 mA 25 IOUT = 125 mA 20 15 10 IOUT = 100 mA IOUT = 10 mA 0 -40 -15 10 35 60 Junction Temperature (°C) 85 FIGURE 2-49: Load Regulation vs. Junction Temperature (MCP1812X, VR = 2.5V). 30 25 VIN = 5.5V 20 -40 VIN = 5.0V 15 VIN = 4.5V 10 -40 -15 10 35 60 Junction Temperature (°C) 85 FIGURE 2-50: Load Regulation vs. Junction Temperature (MCP1812X, VR = 3.3V). 20 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 VIN = 5.0V 0 IOUT = 250 mA IOUT = 50 mA IOUT = 150 mA IOUT = 200 mA IOUT = 300 mA -15 10 35 60 Junction Temperature (°C) 85 VR = 3.3V VIN = 4.3V to 5.5V 10.0 IOUT = 50 mA 8.0 IOUT = 200 mA 6.0 IOUT = 150 mA 4.0 2.0 IOUT = 10 mA IOUT = 300 mA 0.0 85 FIGURE 2-51: Load Regulation vs. Junction Temperature (MCP1811X, VR = 4.0V). 2018-2020 Microchip Technology Inc. VR = 2.5V VIN = 3.5V to 5.5V FIGURE 2-53: Line Regulation vs. Junction Temperature (MCP1812X, VR = 2.5V). Line Regulation (mV) VIN = 5.5V 10 -15 10 35 60 Junction Temperature (°C) 85 12.0 15 -40 10 35 60 Junction Temperature (°C) IOUT = 10 mA -40 VR = 4.0V IOUT = 0.1 mA to 150 mA 5 -15 IOUT = 50 mA FIGURE 2-52: Line Regulation vs. Junction Temperature (MCP1811X, VR = 1.0V). Line Regulation (mV) VR = 3.3V IOUT = 0.1 mA to 300 mA VIN = 4.3V Load Regulation (mV) VIN = 2V to 5.5V 5 5 Load Regulation (mV) VR = 1.0V 35 -40 IOUT = 250 mA -15 10 35 60 Junction Temperature (°C) 85 FIGURE 2-54: Line Regulation vs. Junction Temperature (MCP1812X, VR = 3.3V). DS20006088C-page 15 MCP1811A/11B/12A/12B Note: Unless otherwise indicated, CIN = COUT = 1 µF (MCP1811X) or 2.2 µF (MCP1812X) ceramic type (X7R), IOUT = 1 mA, TA = +25°C, VIN = VR + 1V, SHDN = 1 M pull-up to VIN. 340 2.5 Quiescent Current (nA) Line Regulation (mV) VR = 4V VIN = 5V to 5.5V IOUT = 10 mA 2.0 IOUT = 50 mA IOUT = 100 mA 1.5 IOUT = 125 mA -15 10 35 60 Junction Temperature (°C) 280 260 4.9 TJ = -40°C 240 TJ = 25°C TJ = 85°C 210 470 VR = 4V IOUT = 0 2.5 3.0 3.5 4.0 4.5 Input Voltage (V) 5.0 410 380 350 TJ = 85°C 320 290 260 TJ = 25°C 5.0 5.2 5.3 5.4 5.5 FIGURE 2-59: Quiescent Current vs. Input Voltage (MCP1811X, VR = 4.0V). 3.00 VR = 2.5V IOUT = 0 300 TJ = -40°C 280 5.1 Input Voltage (V) Ground Current (μA) Quiescent Current (nA) 200 5.5 FIGURE 2-56: Quiescent Current vs. Input Voltage (MCP1811X, VR = 1.0V). 320 5.5 TJ = -40°C 440 230 200 2.0 5.2 FIGURE 2-58: Quiescent Current vs. Input Voltage (MCP1812X, VR = 3.3V). 500 220 4.6 Input Voltage (V) VR = 1V IOUT = 0 230 TJ = 25°C 4.3 Quiescent Current (nA) Quiescent Current (nA) 250 300 220 85 FIGURE 2-55: Line Regulation vs. Junction Temperature (MCP1811X, VR = 4.0V). 260 TJ = -40°C TJ = 85°C 240 IOUT = 150 mA 1.0 -40 320 VR = 3.3V IOUT = 0 260 TJ = 85°C 240 IOUT = 1 mA VR = 1V 2.50 2.00 1.50 1.00 0.50 TJ = 25°C 0.00 220 3.5 4.0 4.5 5.0 5.5 Input Voltage (V) FIGURE 2-57: Quiescent Current vs. Input Voltage (MCP1812X, VR = 2.5V). DS20006088C-page 16 -40 -15 10 35 60 Junction Temperature (°C) 85 FIGURE 2-60: Ground Current vs. Temperature (MCP1811X, VR = 1.0V).  2018-2020 Microchip Technology Inc. MCP1811A/11B/12A/12B Note: Unless otherwise indicated, CIN = COUT = 1 µF (MCP1811X) or 2.2 µF (MCP1812X) ceramic type (X7R), IOUT = 1 mA, TA = +25°C, VIN = VR + 1V, SHDN = 1 M pull-up to VIN. IOUT = 1 mA 80 VR = 2.5V 4.00 3.00 2.00 1.00 -40 -15 10 35 60 Junction Temperature (°C) 6.00 40 TJ = 25°C 30 TJ = -40°C 20 10 IOUT = 1 mA 0 25 50 75 100 125 150 Load Current (mA) FIGURE 2-64: Ground Current vs. Load Current (MCP1811X, VR = 1.0V). 160 VR = 3.3V VR = 2.5V VIN = 3.5V 140 5.00 Ground Current (μA) Ground Current (μA) 50 85 FIGURE 2-61: Ground Current vs. Temperature (MCP1812X, VR = 2.5V). 4.00 3.00 2.00 1.00 0.00 120 100 TJ = 25°C 80 TJ = 85°C 60 TJ = -40°C 40 20 0 -40 -15 10 35 60 Junction Temperature (°C) 85 IOUT = 1 mA 0 30 60 90 120 150 180 210 240 270 300 Load Current (mA) FIGURE 2-62: Ground Current vs. Temperature (MCP1812X, VR = 3.3V). FIGURE 2-65: Ground Current vs. Load Current (MCP1812X, VR = 2.5V). 160 VR = 4V VR = 3.3V VIN = 4.3V 140 5.00 Ground Current (μA) Ground Current (μA) TJ = 85°C 60 0 0.00 6.00 VR = 1V VIN = 2V 70 5.00 Ground Current (μA) Ground Current (μA) 6.00 4.00 3.00 2.00 1.00 0.00 TJ = 85°C 120 100 80 TJ = 25°C 60 TJ = -40°C 40 20 0 -40 -15 10 35 60 Junction Temperature (°C) FIGURE 2-63: Ground Current vs. Temperature (MCP1811X, VR = 4.0V). 2018-2020 Microchip Technology Inc. 85 0 30 60 90 120 150 180 210 240 270 300 Load Current (mA) FIGURE 2-66: Ground Current vs. Load Current (MCP1812X, VR = 3.3V). DS20006088C-page 17 MCP1811A/11B/12A/12B Note: Unless otherwise indicated, CIN = COUT = 1 µF (MCP1811X) or 2.2 µF (MCP1812X) ceramic type (X7R), IOUT = 1 mA, TA = +25°C, VIN = VR + 1V, SHDN = 1 M pull-up to VIN. 90 VR = 4V VIN = 5V 2.5 VR = 3.3V VIN = 5.5V 70 60 Ground Current (μA) Ground Current (μA) 80 TJ = 25°C 50 TJ = -40°C 40 TJ = 85°C 30 20 2.0 1.5 TJ = 85°C TJ = 25°C 1.0 TJ = -40°C 0.5 10 0.0 0 0 25 50 75 100 Load Current (mA) 125 1 150 FIGURE 2-67: Ground Current vs. Load Current (MCP1811X, VR = 4.0V). 1000 FIGURE 2-70: Ground Current vs. Very Low Load Current (MCP1811X, VR = 3.3V). 2.5 2.5 VR = 4V VIN = 5.5V VR = 1V VIN = 5.5V 2.0 Ground Current (μA) Ground Current (μA) 10 100 Load Current (μA) TJ = 85°C 1.5 TJ = 25°C 1.0 TJ = -40°C 0.5 0.0 2.0 1.5 TJ = 85°C 1.0 TJ = 25°C TJ = -40°C 0.5 0.0 1 10 100 Load Current (μA) 1000 FIGURE 2-68: Ground Current vs. Very Low Load Current (MCP1812X, VR = 1.0V). 1 10 100 Load Current (μA) 1000 FIGURE 2-71: Ground Current vs. Very Low Load Current (MCP1811X, VR = 4.0V). 2.5 Ground Current (μA) VR = 2.5V VIN = 5.5V 2.0 1.5 TJ = 85°C TJ = 25°C 1.0 TJ = -40°C 0.5 0.0 1 10 100 Load Current (μA) 1000 FIGURE 2-69: Ground Current vs. Very Low Load Current (MCP1812X, VR = 2.5V). DS20006088C-page 18  2018-2020 Microchip Technology Inc. MCP1811A/11B/12A/12B 3.0 PIN DESCRIPTION The descriptions of the pins are listed in Table 3-1. TABLE 3-1: PIN FUNCTION TABLE MCP1811X/12X 4-Lead 1x1 mm UDFN MCP1811X/12X 3-Lead SOT-23/SC70 MCP1811X/12X 5-Lead SOT-23/SC70 2 3 2 GND Ground 1 1 5 VOUT Regulated Output Voltage VR — — 4 NC Not Connected Pins (should either be left floated or connected to ground) 4 2 1 VIN Input Voltage Supply 3 — 3 SHDN Shutdown Control Input (active-low); do not leave this pin floating 5 — — EP Exposed Thermal Pad, connected to GND 3.1 Ground Pin (GND) For optimal noise and Power Supply Rejection Ratio (PSRR) performance, the GND pin of the LDO should be tied to an electrically “quiet” ground circuit. The GND pin of the LDO conducts only the ground current, so a wider trace is not required. For powered applications that have switching or noisy circuits, tie the GND pin to the return of the output capacitor. Ground planes help lower the inductance and voltage spikes caused by fast transient load currents. 3.2 Regulated Output Voltage Pin (VOUT) The VOUT pin is the regulated output voltage VR of the LDO. A minimum output capacitance of 1.0 µF (MCP1811X) and 2.2 µF (MCP1812X) are required for LDO stability. The MCP1811X/12X is stable with ceramic capacitors. See Section 4.2 “Output Capacitor” for output capacitor selection guidance. 2018-2020 Microchip Technology Inc. Symbol 3.3 Description Input Voltage Supply Pin (VIN) Connect the input voltage source to VIN. If the input voltage source is located several inches away from the LDO or is a battery, it is recommended that an input capacitor be used. A typical input capacitance value of 1 µF to 10 µF is sufficient for most applications (1 µF is typical for MCP1811X and 2.2 µF is typical for MCP1812X). The type of capacitor used is ceramic. However, the low-ESR characteristics of the ceramic capacitor will yield better noise and PSRR performance at high frequency. 3.4 Shutdown Control Input (SHDN) The SHDN input is used to turn the LDO output voltage on and off. When the SHDN input is at a logic high level, the LDO output voltage is enabled. When the SHDN input is pulled to a logic low level, the LDO output voltage is disabled (with output discharge for MCP1811A/12A). When the SHDN input is pulled low, the LDO enters in a low-current shutdown state, where the typical quiescent current is 10 nA for MCP1811A/12A and 5 nA for MCP1811B/12B. DS20006088C-page 19 MCP1811A/11B/12A/12B 4.0 DEVICE OVERVIEW The MCP1811X/12X family is a 150 mA/300 mA output current, Low Dropout (LDO) voltage regulator. The Low Dropout voltage of 400 mV, typical, at 300 mA of current, makes it recommended for long-life battery-powered applications. The input voltage ranges from a minimum of 1.8V to 5.5V. The MCP1811X/12X family features a shutdown control input pin and is available in nine standard fixed output voltage options: 1V, 1.2V, 1.8V, 2.0V, 2.5V, 2.8V, 3.0V, 3.3V and 4.0V. It uses a proprietary voltage reference and sensing scheme to maintain the ultra-low 250 nA quiescent current. 4.1 Output Capabilities and Current Limiting The MCP1811X/12X LDO is tested and ensured to supply a minimum of 150 mA of output current for MCP1811X and 300 mA of output current for MCP1812X. The MCP1811X/12X devices do not incorporate an internal voltage divider. This is another design key of achieving ultra-low power consumption. In addition, there is a pull-down switch on the output to limit the overshoot in case of powering an ultra-light load. Due to the increased leakage through the power transistor at elevated temperature (> 60°C), the output voltage can be drifted up (to approximately 210 mV) when the input supply to the output differential is larger than 3V. It is recommended to add a very small dummy load (25 nA, typical) to compensate for the leakage. In conditions other than mentioned above, the device does not require a minimum load to regulate the output voltage within the specified tolerance. The MCP1811X/12X family also incorporates an output current foldback protection during overload conditions. The MCP1811X/12X devices enter foldback when VOUT falls below 0.6V (typical). 4.2 Output Capacitor The MCP1811X/12X devices require a minimum output capacitance of 1 µF (2.2 µF for MCP1812X) for output voltage stability. Ceramic capacitors are recommended because of their size, cost and robust environmental qualities. The output capacitor should be located as close to the LDO output as is practical. Ceramic materials, X7R and X5R, have low-temperature coefficients, and are well within the acceptable ESR range required. A typical 1 µF X7R 0805 capacitor has an ESR of 20 m. DS20006088C-page 20 4.3 Input Capacitor Low input source impedance is necessary for the LDO output to operate properly. When operating from batteries, or in applications with long lead length (> 10 inches) between the input source and the LDO, some input capacitance is recommended. A minimum of 1 µF (2.2 µF for MCP1812X) to 10 µF of capacitance is recommended for most applications. For applications that have output step load requirements, the input capacitance of the LDO is very important. The input capacitance must provide a low-impedance source. This allows the LDO to respond quickly to the output load step. For good step response performance, the input capacitor should be equivalent to, or of higher value than, the output capacitor. The capacitor should be placed as close to the input of the LDO as is practical. Larger input capacitors will also help reduce any high-frequency noise on the input and output of the LDO, as well as the effects of any inductance that exists between the input source voltage and the input capacitance of the LDO. 4.4 Shutdown Input (SHDN) The SHDN input is an active-low input signal that turns the LDO on and off. The SHDN threshold is a percentage of the input voltage. The maximum input low logic level is 20% of VIN and the minimum high logic level is 70% of VIN. The SHDN pin ignores low going pulses that are up to 400 ns. This small bit of filtering helps to reject any system noise spikes on the SHDN input signal. On the rising edge of the SHDN input, the shutdown circuitry has a typical 400 µs delay before allowing the regulator output to turn on. This delay helps to reject any false turn-on signals or noise on the SHDN input signal. After the typical 400 µs delay, the regulator starts charging the load capacitor as the output rises from 0V to its final regulated value. The charging current will be limited by the short-circuit current value of the device. If the SHDN input signal is pulled low during the typical 400 µs delay period, the timer will be reset and the delay time will start over again on the next rising edge of the SHDN input. The total time from the SHDN input going high (turn-on) to the output being in regulation shall typically be 400 µs delay time plus output voltage rise time, which is VR-dependent and may vary from 200 µs up to 1000 µs for a CLOAD = 1.0 µF and for a CLOAD = 2.2 µF. Figure 4-1 shows a timing diagram of the SHDN input.  2018-2020 Microchip Technology Inc. MCP1811A/11B/12A/12B 4.5 TDELAY Typ. 400 µs CLOAD Charging Time = TRISE 200 µs-1000 µs 400 ns (typical) SHDN VOUT FIGURE 4-1: Diagram. CLOAD = 1 µF for MCP1811X CLOAD = 2.2 µF for MCP1812X Dropout Voltage Dropout voltage is defined as the input-to-output voltage differential at which the output voltage drops 2% below the nominal value that was measured with a VR + 1V differential applied. The MCP1811X/12X LDO devices show a Low Dropout voltage specification of 400 mV (typical) for all VR, and presents small variations in the dropout value with load and temperature changes. See Section 1.0 “Electrical Characteristics” for maximum dropout voltage specifications. Shutdown Input Timing 2018-2020 Microchip Technology Inc. DS20006088C-page 21 MCP1811A/11B/12A/12B 5.0 APPLICATION CIRCUITS 5.1 Typical Application EQUATION 5-2: P IGND  = V IN  MAX   I GND Where: The MCP1811A/11B/12A/12B family is used for applications that require ultra-low quiescent current draw. P(IGND) = Power dissipation due to the ground current of the LDO VIN(MAX) = Maximum input voltage VIN MCP1811X/12X SHDN COUT LOAD CIN + – IGND = Current flowing out of the GND pin VOUT GND VIN = 3.5V VOUT = 2.5V LOAD = 100 mA CIN = COUT = 1 µF (MCP1811X) CIN = COUT = 2.2 µF (MCP1812X) FIGURE 5-1: 5.2 Typical Application Circuit. Power Calculations 5.2.1 POWER DISSIPATION The internal power dissipation within the MCP1811X/12X devices is a function of input voltage, output voltage, output current and ground current. Equation 5-1 can be used to calculate the internal power dissipation for the LDO. EQUATION 5-1: P LDO =  VIN  MAX  – V OUT  MIN    I OUT  MAX  Where: The total power dissipated within the MCP1811X/12X devices is the sum of the power dissipated in the LDO pass device and the P(IGND) term. Because of the CMOS construction, the typical IGND for the MCP1811X/12X devices is 90 µA for MCP1811X and 180 µA for MCP1812X at full load. Operating at a maximum VIN of 5.5V results in a power dissipation of 0.5 mW for MCP1811X and 1 mW for MCP1812X. For most applications, this is small compared to the LDO pass device power dissipation and can be neglected. The maximum continuous operating junction temperature specified for the MCP1811X/12X family is +85°C. To estimate the internal junction temperature of the MCP1811X/12X devices, the total internal power dissipation is multiplied by the thermal resistance from junction-to-ambient (JA) of the device. For example, the thermal resistance from junction-to-ambient for the 5-Lead SOT-23 package is estimated at 184.82°C/W. EQUATION 5-3: T J  MAX  = PLDO   JA + T A  MAX  Where: TJ(MAX) = Maximum continuous junction temperature PLDO = Total power dissipation of the device JA = Thermal resistance from junction to ambient (see “Temperature Specifications”) PLDO = Internal power dissipation of the LDO active element VIN(MAX) = Maximum input voltage VOUT(MIN) = LDO minimum output voltage IOUT(MAX) = Maximum output current In addition to the LDO pass element power dissipation, there is power dissipation within the MCP1811X/12X devices as a result of quiescent or ground current. The power dissipation, as a result of the ground current, can be calculated by applying Equation 5-2. TA(MAX) = Maximum ambient temperature The maximum power dissipation capability for a package can be calculated given the junction-to-ambient thermal resistance and the maximum ambient temperature for the application. Equation 5-4 can be used to determine the package maximum internal power dissipation. EQUATION 5-4:  T J  MAX  – T A  MAX   P D  MAX  = ---------------------------------------------------  JA Where: PD(MAX) = Maximum power dissipation of the device DS20006088C-page 22  2018-2020 Microchip Technology Inc. MCP1811A/11B/12A/12B EQUATION 5-5: T J  RISE  = P D  MAX    JA Where: TJ(RISE) = Rise in the device junction temperature over the ambient temperature EQUATION 5-6: T J = T J  RISE  + T A Where: TJ = Junction temperature TA = Ambient temperature 5.3.1.1 Device Junction Temperature Rise The internal junction temperature rise is a function of internal power dissipation and of the thermal resistance, from junction-to-ambient, for the application. The thermal resistance, from junction-to-ambient (JA), is derived from EIA/JEDEC standards for measuring thermal resistance. The EIA/JEDEC specification is JESD51. The standard describes the test method and board specifications for measuring the thermal resistance from junction-to-ambient. The actual thermal resistance for a particular application can vary depending on many factors, such as copper area and thickness. Refer to Application Note AN792, “A Method to Determine How Much Power a SOT-23 Can Dissipate in an Application” (DS00792) for more information regarding this subject. EXAMPLE 5-2: 5.3 Typical Application Examples Internal power dissipation, junction temperature rise, junction temperature and maximum power dissipation are calculated in the following example. The power dissipation, as a result of ground current, is small enough to be neglected. 5.3.1 POWER DISSIPATION EXAMPLE EXAMPLE 5-1: Package Package Type = 5-Lead SOT-23 Input Voltage VIN = 3.5V ± 5% LDO Output Voltage and Current VOUT = 2.5V IOUT = 100 mA Maximum Ambient Temperature TA(MAX) = +60°C Internal Power Dissipation PLDO(MAX) = (VIN(MAX) – VOUT(MIN)) x IOUT(MAX) PLDO = ((3.5V x 1.05) – (2.5V x 0.96)) x 100 mA TJ(RISE) = PTOTAL x JA TJ(RISE) = 0.127W x 184.82°C/W TJ(RISE) = 23.47°C 5.3.1.2 Junction Temperature Estimate To estimate the internal junction temperature, the calculated temperature rise is added to the ambient or offset temperature. For this example, the worst-case junction temperature is estimated below: EXAMPLE 5-3: TJ = TJ(RISE) + TA(MAX) TJ = 23.47°C + 60.0°C TJ = 83.47°C 5.3.1.3 Maximum Package Power Dissipation at +60°C Ambient Temperature EXAMPLE 5-4: 5-Lead SOT-23 (JA = 184.82°C/W): PD(MAX) = (85°C – 60°C)/184.82°C/W PD(MAX) = 0.135W PLDO = 0.127W 2018-2020 Microchip Technology Inc. DS20006088C-page 23 MCP1811A/11B/12A/12B 6.0 PACKAGING INFORMATION 6.1 Package Marking Information 3-Lead SOT-23 Part Number MCP1811AT-010/TT XXXNNN Code Example AADNNN MCP1811AT-012/TT AAHNNN MCP1811AT-018/TT AAMNNN MCP1811AT-020/TT AASNNN MCP1811AT-025/TT AA8NNN MCP1811AT-028/TT ABVNNN MCP1811AT-030/TT ABANNN MCP1811AT-033/TT ABENNN MCP1811AT-040/TT ABONNN MCP1811BT-010/TT AAENNN MCP1811BT-012/TT AAJNNN MCP1811BT-018/TT AAPNNN MCP1811BT-020/TT AATNNN MCP1811BT-025/TT AAXNNN MCP1811BT-028/TT AB8NNN MCP1811BT-030/TT ABBNNN MCP1811BT-033/TT ABFNNN MCP1811BT-040/TT ABPNNN MCP1812AT-010/TT AAFNNN MCP1812AT-012/TT AAKNNN MCP1812AT-018/TT AAQNNN MCP1812AT-020/TT AAUNNN MCP1812AT-025/TT AAYNNN MCP1812AT-028/TT ABTNNN MCP1812AT-030/TT ABCNNN MCP1812AT-033/TT ABGNNN MCP1812AT-040/TT ABRNNN MCP1812BT-010/TT AAGNNN MCP1812BT-012/TT AALNNN MCP1812BT-018/TT AARNNN MCP1812BT-020/TT AAVNNN MCP1812BT-025/TT AAZNNN MCP1812BT-028/TT ABUNNN MCP1812BT-030/TT ABDNNN MCP1812BT-033/TT ABHNNN MCP1812BT-040/TT ABSNNN AAD256 Legend: XX...X Y YY WW NNN e3 * Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week ‘01’) Alphanumeric traceability code Pb-free JEDEC® designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ( e3) can be found on the outer packaging for this package. ●, ▲, ▼ Pin one index is identified by a dot, delta up, or delta down (triangle mark). Note: DS20006088C-page 24 In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.  2018-2020 Microchip Technology Inc. MCP1811A/11B/12A/12B 3-Lead SC70 Part Number Code Example 3-Lead SC70 5-Lead SC70 MCP1811AT-010/LB LANN MCP1811AT-012/LB LENN MCP1811AT-018/LB LINN MCP1811AT-020/LB LMNN MCP1811AT-025/LB LQNN MCP1811AT-028/LB MMNN MCP1811AT-030/LB LUNN MCP1811AT-033/LB LYNN MCP1811AT-040/LB MGNN MCP1811BT-010/LB LBNN MCP1811BT-012/LB LFNN MCP1811BT-018/LB LJNN MCP1811BT-020/LB LNNN MCP1811BT-025/LB LRNN MCP1811BT-028/LB MNNN MCP1811BT-030/LB LVNN MCP1811BT-033/LB LZNN MCP1811BT-040/LB MHNN MCP1812AT-010/LB LCNN MCP1812AT-012/LB LGNN MCP1812AT-018/LB LKNN MCP1812AT-020/LB LONN MCP1812AT-025/LB LSNN MCP1812AT-028/LB MKNN MCP1812AT-030/LB LWNN MCP1812AT-033/LB MANN MCP1812AT-040/LB MINN MCP1812BT-010/LB LDNN MCP1812BT-012/LB LHNN MCP1812BT-018/LB LLNN MCP1812BT-020/LB LPNN MCP1812BT-025/LB LTNN MCP1812BT-028/LB MLNN MCP1812BT-030/LB LXNN MCP1812BT-033/LB MBNN MCP1812BT-040/LB MJNN LA25 Example 5-Lead SC70 MCP1811AT-010/LT XXNN 2018-2020 Microchip Technology Inc. DXNN MCP1811AT-012/LT EBNN MCP1811AT-018/LT EGNN MCP1811AT-020/LT EKNN MCP1811AT-025/LT EPNN MCP1811AT-028/LT FNNN MCP1811AT-030/LT ETNN MCP1811AT-033/LT EXNN MCP1811AT-040/LT FHNN MCP1811BT-010/LT DYNN MCP1811BT-012/LT ECNN MCP1811BT-018/LT EHNN LA25 DS20006088C-page 25 MCP1811A/11B/12A/12B Part Number Code 5-Lead SC70 (Continued) DS20006088C-page 26 MCP1811BT-020/LT EMNN MCP1811BT-025/LT EQNN MCP1811BT-028/LT FONN MCP1811BT-030/LT EUNN MCP1811BT-033/LT EYNN MCP1811AT-040/LT FHNN MCP1811BT-010/LT DYNN MCP1811BT-012/LT ECNN MCP1811BT-018/LT EHNN MCP1811BT-020/LT EMNN MCP1811BT-025/LT EQNN MCP1811BT-028/LT FONN MCP1811BT-030/LT EUNN MCP1811BT-033/LT EYNN MCP1811BT-040/LT FINN MCP1812AT-010/LT DZNN MCP1812AT-012/LT EDNN MCP1812AT-018/LT EINN MCP1812AT-020/LT ENNN MCP1812AT-025/LT ERNN MCP1812AT-028/LT FLNN MCP1812AT-030/LT EVNN MCP1812AT-033/LT EZNN MCP1812AT-040/LT FJNN MCP1812BT-010/LT EANN MCP1812BT-012/LT EFNN MCP1812BT-018/LT EJNN MCP1812BT-020/LT EONN MCP1812BT-025/LT ESNN MCP1812BT-028/LT FMNN MCP1812BT-030/LT EWNN MCP1812BT-033/LT FANN MCP1812BT-040/LT FKNN  2018-2020 Microchip Technology Inc. MCP1811A/11B/12A/12B 5-Lead SOT-23 2018-2020 Microchip Technology Inc. Part Number Code MCP1811AT-010/OT AADRY MCP1811AT-012/OT AADVY MCP1811AT-018/OT AADZY MCP1811AT-020/OT AAEDY MCP1811AT-025/OT AAEHY MCP1811AT-028/OT QZAAY MCP1811AT-030/OT AAEMY MCP1811AT-033/OT ABERY MCP1811AT-040/OT QSAAY MCP1811BT-010/OT AADSY MCP1811BT-012/OT AADWY MCP1811BT-018/OT AAEAY MCP1811BT-020/OT AAEEY MCP1811BT-025/OT AAEJY MCP1811BT-028/OT RAAAY MCP1811BT-030/OT ABENY MCP1811BT-033/OT ABESY MCP1811BT-040/OT QTAAY MCP1812AT-010/OT AADTY MCP1812AT-012/OT AADXY MCP1812AT-018/OT AAEBY MCP1812AT-020/OT AAEFY MCP1812AT-025/OT AAEKY MCP1812AT-028/OT QXAAY MCP1812AT-030/OT ABEPY MCP1812AT-033/OT ABETY MCP1812AT-040/OT QVAAY MCP1812BT-010/OT AADUY MCP1812BT-012/OT AADYY MCP1812BT-018/OT AAECY MCP1812BT-020/OT AAEGY MCP1812BT-025/OT AAELY MCP1812BT-028/OT QYAAY MCP1812BT-030/OT ABEQY MCP1812BT-033/OT ABEUY MCP1812BT-040/OT QWAAY Example AADRY 13256 DS20006088C-page 27 MCP1811A/11B/12A/12B 4-Lead 1x1 mm UDFN DS20006088C-page 28 Part Number Code MCP1811AT-010/HCA AA MCP1811AT-012/HCA AE MCP1811AT-018/HCA AJ MCP1811AT-020/HCA AN MCP1811AT-025/HCA AS MCP1811AT-028/HCA BN MCP1811AT-030/HCA AW MCP1811AT-033/HCA BA MCP1811AT-040/HCA ▲H2 MCP1811BT-010/HCA AB MCP1811BT-012/HCA AF MCP1811BT-018/HCA AK MCP1811BT-020/HCA AP MCP1811BT-025/HCA AT MCP1811BT-028/HCA BP MCP1811BT-030/HCA AX MCP1811BT-033/HCA BB MCP1811BT-040/HCA ▲H3 MCP1812AT-010/HCA AC MCP1812AT-012/HCA AG MCP1812AT-018/HCA AL MCP1812AT-020/HCA AQ MCP1812AT-025/HCA AU MCP1812AT-028/HCA BK MCP1812AT-030/HCA AY MCP1812AT-033/HCA BC MCP1812AT-040/HCA ▲H4 MCP1812BT-010/HCA AD MCP1812BT-012/HCA AH MCP1812BT-018/HCA AM MCP1812BT-020/HCA AR MCP1812BT-025/HCA AV MCP1812BT-028/HCA BL MCP1812BT-030/HCA AZ MCP1812BT-033/HCA BD MCP1812BT-040/HCA ▲H5 Example AA  2018-2020 Microchip Technology Inc. MCP1811A/11B/12A/12B /HDG3ODVWLF6PDOO2XWOLQH7UDQVLVWRU 77 >627@ 1RWH )RUWKHPRVWFXUUHQWSDFNDJHGUDZLQJVSOHDVHVHHWKH0LFURFKLS3DFNDJLQJ6SHFLILFDWLRQORFDWHGDW KWWSZZZPLFURFKLSFRPSDFNDJLQJ b N E E1 2 1 e e1 D c A φ A2 A1 L 8QLWV 'LPHQVLRQ/LPLWV 1XPEHURI3LQV 0,//,0(7(56 0,1 120 0$; 1  /HDG3LWFK H %6& 2XWVLGH/HDG3LWFK H 2YHUDOO+HLJKW $  ± 0ROGHG3DFNDJH7KLFNQHVV $    6WDQGRII $  ±  %6&  2YHUDOO:LGWK (  ±  0ROGHG3DFNDJH:LGWK (    2YHUDOO/HQJWK '    )RRW/HQJWK /    )RRW$QJOH  ƒ ± ƒ /HDG7KLFNQHVV F  ±  /HDG:LGWK E  ±  1RWHV  'LPHQVLRQV'DQG(GRQRWLQFOXGHPROGIODVKRUSURWUXVLRQV0ROGIODVKRUSURWUXVLRQVVKDOOQRWH[FHHGPPSHUVLGH  'LPHQVLRQLQJDQGWROHUDQFLQJSHU$60(
MCP1812AT-040/LT 价格&库存

很抱歉,暂时无法提供与“MCP1812AT-040/LT”相匹配的价格&库存,您可以联系我们找货

免费人工找货