MCP6V11/1U/2/4
7.5 µA, 80 kHz Zero-Drift Op Amps
Features:
Description:
• High DC Precision:
- VOS Drift: ±50 nV/°C (maximum)
- VOS: ±8 µV (maximum)
- AOL: 112 dB (minimum, VDD = 5.5V)
- PSRR: 118 dB (minimum, VDD = 5.5V)
- CMRR: 119 dB (minimum, VDD = 5.5V)
- Eni: 2.1 µVP-P (typical), f = 0.1 Hz to 10 Hz
- Eni: 0.67 µVP-P (typical), f = 0.01 Hz to 1 Hz
• Low Power and Supply Voltages:
- IQ: 7.5 µA/amplifier (typical)
- Wide Supply Voltage Range: 1.6V to 5.5V
• Small Packages:
- Singles in SC70, SOT-23
- Duals in MSOP-8, 2×3 TDFN
- Quads in TSSOP-14
• Easy to Use:
- Rail-to-Rail Input/Output
- Gain Bandwidth Product: 80 kHz (typical)
- Unity Gain Stable
• Extended Temperature Range: -40°C to +125°C
The Microchip Technology Inc. MCP6V11/1U/2/4 family
of operational amplifiers provides input offset voltage
correction for very low offset and offset drift. These are
low-power devices, with a gain bandwidth product of
80 kHz (typical). They are unity gain stable, have
virtually no 1/f noise, and have good Power Supply
Rejection Ratio (PSRR) and Common Mode Rejection
Ratio (CMRR). These products operate with a single
supply voltage as low as 1.6V, while drawing
7.5 µA/amplifier (typical) of quiescent current.
The Microchip Technology Inc. MCP6V11/1U/2/4 op
amps are offered in single (MCP6V11 and
MCP6V11U), dual (MCP6V12) and quad (MCP6V14)
packages. They were designed using an advanced
CMOS process.
Package Types
VOUT 1
VSS 2
VIN+ 3
Typical Applications:
•
•
•
•
•
Portable Instrumentation
Sensor Conditioning
Temperature Measurement
DC Offset Correction
Medical Instrumentation
Design Aids:
•
•
•
•
•
SPICE Macro Models
FilterLab® Software
Microchip Advanced Part Selector (MAPS)
Analog Demonstration and Evaluation Boards
Application Notes
Related Parts:
•
•
•
•
MCP6V01/2/3: Auto-Zeroed, Spread Clock
MCP6V06/7/8: Auto-Zeroed
MCP6V26/7/8: Auto-Zeroed, Low Noise
MCP6V31/1U/2/4: Zero-Drift, Low Power
2012-2014 Microchip Technology Inc.
MCP6V12
MSOP
MCP6V11
SOT-23
5 VDD VOUTA
VINA–
4 VIN– VINA+
VSS
MCP6V11U
SC70, SOT-23
1
2
3
4
8
7
6
5
VDD
VOUTB
VINB–
VINB+
MCP6V12
2×3 TDFN*
8 VDD
VOUTA 1
VIN+ 1
5 VDD
VSS 2
VIN– 3
VINA– 2
4 VOUT VINA+ 3
VSS 4
EP
9
7 VOUTB
6 VINB–
5 VINB+
MCP6V14
TSSOP
1
2
3
4
VINB+ 5
VINB– 6
VOUTB 7
VOUTA
VINA–
VINA+
VDD
14 VOUTD
13 VIND–
12 VIND+
11 VSS
10 VINC+
9 VINC–
8 VOUTC
* Includes Exposed Thermal Pad (EP); see Table 3-1.
DS20005124B-page 1
MCP6V11/1U/2/4
Typical Application Circuit
VIN
R1
R2
R3
VOUT
R4
C2
U1
R5
R2
VDD/2
U2
MCP6XXX
VDD/2
MCP6V11
Offset Voltage Correction for Power Driver
DS20005124B-page 2
2012-2014 Microchip Technology Inc.
MCP6V11/1U/2/4
1.0
ELECTRICAL
CHARACTERISTICS
1.1
Absolute Maximum Ratings †
VDD – VSS .................................................................................................................................................................6.5V
Current at Input Pins ..............................................................................................................................................±2 mA
Analog Inputs (VIN+ and VIN–) (Note 1) .....................................................................................VSS – 1.0V to VDD+1.0V
All other Inputs and Outputs .......................................................................................................VSS – 0.3V to VDD+0.3V
Difference Input voltage .................................................................................................................................|VDD – VSS|
Output Short Circuit Current ........................................................................................................................... Continuous
Current at Output and Supply Pins ...................................................................................................................... ±30 mA
Storage Temperature .............................................................................................................................-65°C to +150°C
Maximum Junction Temperature .......................................................................................................................... +150°C
ESD protection on all pins (HBM, CDM, MM) 2 kV, 1.5 kV, 400V
Note 1: See Section 4.2.1, Rail-to-Rail Inputs.
† Notice: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the
device. This is a stress rating only and functional operation of the device at those or any other conditions above those
indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability.
1.2
Specifications
TABLE 1-1:
DC ELECTRICAL SPECIFICATIONS
Electrical Characteristics: Unless otherwise indicated, TA = +25°C, VDD = +1.6V to +5.5V, VSS = GND,
VCM = VDD/3,VOUT = VDD/2, VL = VDD/2, RL = 100 kΩ to VL and CL = 20 pF (refer to Figure 1-4 and Figure 1-5).
Parameters
Sym.
Min.
Typ.
Max.
Units
Conditions
Input Offset Voltage
VOS
-8
—
+8
µV
Input Offset Voltage Drift with
Temperature (Linear Temp. Co.)
TC1
-50
—
+50
nV/°C TA = -40 to +125°C
(Note 1)
Input Offset Voltage Quadratic
Temp. Co.
TC2
—
±0.08
—
nV/°C2 TA = -40 to +125°C
Power Supply Rejection Ratio
PSRR
118
135
—
Input Bias Current
IB
—
+5
—
pA
Input Bias Current across Temperature
IB
—
+17
—
pA
TA = +85°C
+2.9
+5
nA
TA = +125°C
±50
—
pA
Input Offset
TA = +25°C
dB
Input Bias Current and Impedance
IB
0
Input Offset Current
IOS
—
Input Offset Current across Temperature
IOS
—
±80
—
pA
TA = +85°C
IOS
-1
±0.4
+1
nA
TA = +125°C
—
Ω||pF
—
Ω||pF
Common Mode Input Impedance
ZCM
—
1013||6
Differential Input Impedance
ZDIFF
—
1013||6
Note 1:
2:
For Design Guidance only; not tested.
Figure 2-18 shows how VCML and VCMH changed across temperature for the first production lot.
2012-2014 Microchip Technology Inc.
DS20005124B-page 3
MCP6V11/1U/2/4
TABLE 1-1:
DC ELECTRICAL SPECIFICATIONS (CONTINUED)
Electrical Characteristics: Unless otherwise indicated, TA = +25°C, VDD = +1.6V to +5.5V, VSS = GND,
VCM = VDD/3,VOUT = VDD/2, VL = VDD/2, RL = 100 kΩ to VL and CL = 20 pF (refer to Figure 1-4 and Figure 1-5).
Parameters
Sym.
Min.
Typ.
Max.
Units
Conditions
Common Mode
Input Voltage Range Low
VCML
—
—
VSS 0.15
V
(Note 2)
Common Mode
Input Voltage Range High
VCMH
VDD + 0.2
—
—
V
(Note 2)
Common Mode Rejection Ratio
CMRR
108
125
—
dB
VDD = 1.6V,
VCM = -0.15V to 1.8V
(Note 2)
CMRR
119
135
—
dB
VDD = 5.5V,
VCM = -0.15V to 5.7V
(Note 2)
AOL
100
120
—
dB
VDD = 1.6V,
VOUT = 0.3V to 1.4V
AOL
112
135
—
dB
VDD = 5.5V,
VOUT = 0.3V to 5.3V
VOL
VSS
VSS + 14
VSS + 45
mV
RL = 10 kΩ, G = +2,
0.5V input overdrive
VOL
—
VSS + 1.4
—
mV
RL = 100 kΩ, G = +2,
0.5V input overdrive
VOH
VDD – 45
VDD – 14
VDD
mV
RL = 10 kΩ, G = +2,
0.5V input overdrive
VOH
—
VDD – 1.4
—
mV
RL = 100 kΩ, G = +2,
0.5V input overdrive
ISC
—
±5
—
mA
VDD = 1.6V
ISC
—
±17
—
mA
VDD = 5.5V
VDD
1.6
—
5.5
V
IQ
4
7.5
11
µA
3
6.5
11
0.9
—
1.5
Common Mode
Open-Loop Gain
DC Open-Loop Gain (large signal)
Output
Minimum Output Voltage Swing
Maximum Output Voltage Swing
Output Short Circuit Current
Power Supply
Supply Voltage
Quiescent Current per amplifier
POR Trip Voltage
Note 1:
2:
VPOR
IO = 0, MCP6V11/1U
IO = 0, MCP6V12/14
V
For Design Guidance only; not tested.
Figure 2-18 shows how VCML and VCMH changed across temperature for the first production lot.
DS20005124B-page 4
2012-2014 Microchip Technology Inc.
MCP6V11/1U/2/4
TABLE 1-2:
AC ELECTRICAL SPECIFICATIONS
Electrical Characteristics: Unless otherwise indicated, TA = +25°C, VDD = +1.6V to +5.5V, VSS = GND,
VCM = VDD/3, VOUT = VDD/2, VL = VDD/2, RL = 100 kΩ to VL and CL = 20 pF (refer to Figure 1-4 and Figure 1-5).
Parameters
Sym.
Min.
Typ.
Max.
Units
Conditions
GBWP
—
80
—
kHz
Slew Rate
SR
—
0.03
—
V/µs
Phase Margin
PM
—
70
—
°
Eni
—
0.67
—
µVP-P
f = 0.01 Hz to 1 Hz
µVP-P
f = 0.1 Hz to 10 Hz
Amplifier AC Response
Gain Bandwidth Product
G = +1
Amplifier Noise Response
Input Noise Voltage
Eni
—
2.1
—
Input Noise Voltage Density
eni
—
102
—
nV/√Hz f < 500 Hz
Input Noise Current Density
ini
—
4
—
fA/√Hz
IMD
—
50
—
µVPK
Amplifier Distortion (Note 1)
Intermodulation Distortion (AC)
VCM tone = 50 mVPK at 100 Hz, GN = 1
Amplifier Step Response
Start Up Time
tSTR
—
2
—
ms
G = +1, 0.1% VOUT settling (Note 2)
Offset Correction Settling Time
tSTL
—
300
—
µs
G = +1, VIN step of 2V,
VOS within 100 µV of its final value
Output Overdrive Recovery Time
tODR
—
450
—
µs
G = -10, ±0.5V input overdrive to VDD/2,
VIN 50% point to VOUT 90% point (Note 3)
Note 1:
2:
3:
These parameters were characterized using the circuit in Figure 1-6. In Figure 2-37 and Figure 2-38,
there is an IMD tone at DC, a residual tone at1 kHz and other IMD tones and clock tones.
High gains behave differently; see Section 4.3.3, Offset at Power Up.
tODR includes some uncertainty due to clock edge timing.
TABLE 1-3:
TEMPERATURE SPECIFICATIONS
Electrical Characteristics: Unless otherwise indicated, all limits are specified for: VDD = +1.6V to +5.5V,
VSS = GND.
Parameters
Sym.
Min.
Typ.
Max.
Units
Specified Temperature Range
TA
-40
—
+125
°C
Operating Temperature Range
TA
-40
—
+125
°C
Storage Temperature Range
TA
-65
—
+150
°C
Thermal Resistance, 5L-SC-70
JA
—
209
—
°C/W
Thermal Resistance, 5L-SOT-23
JA
—
201
—
°C/W
Thermal Resistance, 8L-2×3 TDFN
θJA
—
53
—
°C/W
Thermal Resistance, 8L-MSOP
θJA
—
211
—
°C/W
Thermal Resistance, 14L-TSSOP
θJA
—
100
—
°C/W
Conditions
Temperature Ranges
(Note 1)
Thermal Package Resistances
Note 1:
Operation must not cause TJ to exceed Maximum Junction Temperature specification (+150°C).
2012-2014 Microchip Technology Inc.
DS20005124B-page 5
MCP6V11/1U/2/4
1.3
Timing Diagrams
1.4
1.6V to 5.5V
1.6V
VDD 0V
tSTR
1.001(VDD/3)
VOUT
Test Circuits
The circuits used for most DC and AC tests are shown
in Figure 1-4 and Figure 1-5. Lay the bypass capacitors
out as discussed in Section 4.3.10, Supply Bypassing
and Filtering. RN is equal to the parallel combination of
RF and RG to minimize bias current effects.
0.999(VDD/3)
FIGURE 1-1:
Amplifier Start Up.
VDD
1 µF
RN
VIN
RISO
VOUT
MCP6V1X
VIN
tSTL
VOS + 100 µV
RG
VOS
VOS – 100 µV
FIGURE 1-2:
Time.
Offset Correction Settling
100 nF
VDD/3
1 µF
RISO
VOUT
MCP6V1X
tODR
100 nF
VIN
VDD
tODR
VDD/2
VSS
FIGURE 1-3:
VL
FIGURE 1-4:
AC and DC Test Circuit for
Most Non-Inverting Gain Conditions.
VDD/3 RN
VOUT
RL
RF
VDD
VIN
CL
Output Overdrive Recovery.
RG
CL
RL
VL
RF
FIGURE 1-5:
AC and DC Test Circuit for
Most Inverting Gain Conditions.
The circuit in Figure 1-6 tests the input’s dynamic
behavior (i.e., IMD, tSTR, tSTL and tODR). The
potentiometer balances the resistor network (VOUT
should equal VREF at DC). The op amp’s Common
mode input voltage is VCM = VIN/2. The error at the
input (VERR) appears at VOUT with a noise gain of
10 V/V.
11.0 kΩ 100 kΩ 500 Ω
0.1%
0.1% 25 turn
VREF = VDD/3
VDD
1 µF
VIN
100 nF
MCP6V1X
11.0 kΩ 100 kΩ 249 Ω
1%
0.1%
0.1%
FIGURE 1-6:
Input Behavior.
DS20005124B-page 6
RISO
0Ω
VOUT
CL
20 pF
RL
open
VL
Test Circuit for Dynamic
2012-2014 Microchip Technology Inc.
MCP6V11/1U/2/4
2.0
TYPICAL PERFORMANCE CURVES
Note:
The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.6V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,
VL = VDD/2, RL = 100 kΩ to VL and CL = 20 pF.
DC Input Precision
20%
15%
10%
5%
4
2
0
-2
-4
-6
FIGURE 2-1:
20%
15%
10%
5%
6.5
6.0
5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
VCM = VCMH
Representative Part
6
125°C
+85°C
+25°C
-40°C
4
2
0
-2
-4
-6
FIGURE 2-2:
Input Offset Voltage Drift.
15%
10%
5%
6.5
6.0
5.5
5.0
4.5
4.0
3.5
3.0
8
Representative Part
IInput O
Offset V
Voltage
e (µV)
20%
2.5
Power Supply Voltage (V)
FIGURE 2-5:
Input Offset Voltage vs.
Power Supply Voltage with VCM = VCMH.
42 Samples
VDD = 1.6V and 5.5V
25%
2.0
50
1.5
-50 -40 -30 -20 -10 0 10 20 30 40
Input Offset Voltage Drift; TC1 (nV/°C)
0.0
-8
0%
Percen
ntage of Occurrences
1.0
8
42 Samples
VDD = 1.6V and 5.5V
25%
30%
Power Supply Voltage (V)
FIGURE 2-4:
Input Offset Voltage vs.
Power Supply Voltage with VCM = VCML.
Input O
Offset V
Voltage
e (µV)
Percentage of Occurrences
Input Offset Voltage.
0.5
0.0
-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8
Input Offset Voltage (µV)
35%
-40°C
+25°C
25 C
+85°C
+125°C
-8
0%
30%
VCM = VCML
Representative Part
6
1.0
25%
8
42 Samples
TA = +25°C
VDD = 1.6V and 5.5V
0.5
Percentage of Occurrences
30%
Input O
Offset V
Voltage
e (µV)
2.1
6
4
2
VDD = 5.5V
0
-2
VDD = 1.6V
-4
-6
0%
-0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5
Input Offset Voltage's Quadratic Temp Co;
TC2 (nV/°C2)
FIGURE 2-3:
Input Offset Voltage
Quadratic Temp. Co.
2012-2014 Microchip Technology Inc.
-8
8
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
Output Voltage (V)
FIGURE 2-6:
Output Voltage.
Input Offset Voltage vs.
DS20005124B-page 7
MCP6V11/1U/2/4
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.6V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,
VL = VDD/2, RL = 100 kΩ to VL and CL = 20 pF.
45%
VDD = 1.6V
Representative Part
6
Pe
ercenta
age of Occurrrences
s
Input O
Offset V
Voltage
e (µV)
8
4
2
0
-2
-40°C
40°C
+25°C
+85°C
+125°C
-4
-6
-8
-0.5
30%
25%
20%
15%
10%
5%
2.5
-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
1/PSRR (µV/V)
FIGURE 2-10:
45%
8
VDD = 5.5V
Representative Part
6
Pe
ercenta
age of Occurrrences
s
Input O
Offset V
Voltage
e (µV)
35%
0%
0.0
0.5
1.0
1.5
2.0
Input Common Mode Voltage (V)
FIGURE 2-7:
Input Offset Voltage vs.
Common Mode Voltage with VDD = 1.6V.
4
2
0
-2
-40
40°C
C
+25°C
+85°C
+125
C
+125°C
-4
-6
-8
40%
PSRR.
21 Samples
TA = +25°C
35%
30%
25%
1 6V
VDD = 1.6V
20%
5 5V
VDD = 5.5V
15%
10%
5%
6.0
5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0
-0.5
0%
70%
60%
-0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5
1/AOL (µV/V)
Input Common Mode Voltage (V)
FIGURE 2-8:
Input Offset Voltage vs.
Common Mode Voltage with VDD = 5.5V.
FIGURE 2-11:
DC Open-Loop Gain.
160
21 Samples
TA = 25°C
155
150
CMRR, PS
SRR (dB)
Percentage of Occurrences
21 Samples
TA = +25°C
40%
50%
VDD = 5.5V
40%
30%
20%
VDD = 1.6V
140
135
130
125
120
10%
115
1/CMRR (µV/V)
DS20005124B-page 8
CMRR.
1.6
1.2
0.8
0.4
0.0
-0.4
-0.8
-1.2
-1.6
0%
FIGURE 2-9:
PSRR
145
VDD = 5.5V
5 5V
VDD = 1.6V
CMRR
110
-50
-25
0
25
50
75
Ambient Temperature (°C)
100
125
FIGURE 2-12:
CMRR and PSRR vs.
Ambient Temperature.
2012-2014 Microchip Technology Inc.
MCP6V11/1U/2/4
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.6V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,
VL = VDD/2, RL = 100 kΩ to VL and CL = 20 pF.
10000
10n
Input Bias
s, Offse
et Currrents (A
A)
160
DC Ope
D
en-Loo
op Gain
n (dB)
155
150
145
VDD = 5.5V
VDD = 1.6V
140
135
130
125
120
115
110
-50
-25
0
25
50
75
Ambient Temperature (°C)
100
IOS
10
10p
IB
35
45
55 65 75 85 95 105 115 125
Ambient Temperature (°C)
1.E-02
10m
1.E-03
1.E
03
1m
Input Cu
urrent M
Magnitude (A
A)
Inpu
ut Bias
s, Offse
et Currents (p
pA)
100
100
100p
FIGURE 2-16:
Input Bias and Offset
Currents vs. Ambient Temperature with
VDD = +5.5V.
TA = +85°C
VDD = 5.5V
150
1000
1n
1
1p
25
125
FIGURE 2-13:
DC Open-Loop Gain vs.
Ambient Temperature.
200
VDD = 5.5V
1.E-04
100µ
100
1.E-05
10µ
50
IB
1.E-06
1µ
0
1.E-07
100n
-50
1.E-08
1
E-08
10n
-100
1.E-09
1n
IOS
-150
+125°C
+85°C
+85
C
+25°C
-40°C
1.E-10
100p
6.0
5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0
-0.5
-200
Common Mode Input Voltage (V)
FIGURE 2-14:
Input Bias and Offset
Currents vs. Common Mode Input Voltage with
TA = +85°C.
1.E-11
p
10p
-1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0
Input Voltage (V)
FIGURE 2-17:
Input Bias Current vs. Input
Voltage (below VSS).
Inpu
ut Bias
s, Offse
et Currents (p
pA)
5000
4000
TA = +125°C
VDD = 5.5V
3000
2000
IB
1000
0
IOS
1000
-1000
6.0
5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0
-0.5
-2000
Common Mode Input Voltage (V)
FIGURE 2-15:
Input Bias and Offset
Currents vs. Common Mode Input Voltage with
TA = +125°C.
2012-2014 Microchip Technology Inc.
DS20005124B-page 9
MCP6V11/1U/2/4
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.6V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,
VL = VDD/2, RL = 100 kΩ to VL and CL = 20 pF.
Other DC Voltages and Currents
FIGURE 2-22:
Supply Voltage.
6.5
6.0
5.5
5.0
6.5
6.0
5.5
Supply Current vs. Power
40%
RL = 25 kȍ
VDD = 5.5V
VDD – VOH
VOL – VSS
VDD = 1.6V
Percent
P
tage off Occu
urrence
es
35%
850 Samples
1 Wafer Lot
TA = +25°C
30%
25%
20%
15%
10%
5%
FIGURE 2-20:
Output Voltage Headroom
vs. Ambient Temperature.
DS20005124B-page 10
1.34
4
1.32
2
1.30
0
1.28
8
1.26
6
125
1.24
4
100
1.22
2
0
25
50
75
Ambient Temperature (°C)
1.20
0
-25
1.18
8
-50
1.16
6
0%
1.14
4
Outpu
ut Headroom (mV)
4.5
Power Supply Voltage (V)
FIGURE 2-19:
Output Voltage Headroom
vs. Output Current.
12
11
10
9
8
7
6
5
4
3
2
1
0
5.0
10
4.5
1
Output Current Magnitude (mA)
4.0
0.1
0.0
1
+125°C
+85°C
+25°C
-40°C
3.5
10
Representative Part
3.0
VDD = 5.5V
VDD = 1.6V
11
10
9
8
7
6
5
4
3
2
1
0
2.5
VDD – VOH
Supply C
Current (µA/amplifier)
Outtput Vo
oltage H
Headro
oom (m
mV)
1000
VOL – VSS
4.0
Power Supply Voltage (V)
FIGURE 2-21:
Output Short Circuit Current
vs. Power Supply Voltage.
FIGURE 2-18:
Input Common Mode
Voltage Headroom (Range) vs. Ambient
Temperature.
100
3.5
-40
125
2.0
0
25
50
75
100
Ambient Temperature (°C)
1.5
-25
1.0
-50
-30
3.0
-0.4
+125°C
+85°C
+25°C
-40°C
-20
2.5
-0.3
0
-10
2.0
Lower (VCML – VSS)
-0.2
10
1.5
00
0.0
-0.1
20
1.0
0.1
-40°C
+25°C
+85°C
+125°C
30
0.5
Upper ( VCMH – VDD)
0.2
40
0.5
Inp
put Com
mmon Mode Voltag
ge
Headroo
H
om (V)
1 Wafer Lot
03
0.3
0.0
0.4
Output Sho
ort Circuit Current (mA)
2.2
POR Trip Voltage (V)
FIGURE 2-23:
Voltage.
Power-on Reset Trip
2012-2014 Microchip Technology Inc.
MCP6V11/1U/2/4
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.6V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,
VL = VDD/2, RL = 100 kΩ to VL and CL = 20 pF.
1.6
POR
R Trip Voltage (V)
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
-50
-25
0
25
50
75
Ambient Temperature (°C)
100
125
FIGURE 2-24:
Power-on Reset Voltage vs.
Ambient Temperature.
2012-2014 Microchip Technology Inc.
DS20005124B-page 11
MCP6V11/1U/2/4
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.6V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,
VL = VDD/2, RL = 100 kΩ to VL and CL = 20 pF.
Frequency Response
Gain Band
dwidth Product (kHz)
140
90
70
60
CMRR
PSRR
20
10
60
60
40
50
VDD = 1.6V
GBWP
20
40
1k
10k
100k
1.E+03
1.E+04
1.E+05
Frequency (Hz)
-270
1M
1.E+06
-30
50
-60
40
-90
30
AOL
-120
20
-150
10
180
-180
| AOL |
0
-10
-210
-240
1k
10k
100k
1.E+03
1.E+04
1.E+05
Frequency (Hz)
-270
1M
1.E+06
FIGURE 2-27:
Open-Loop Gain vs.
Frequency with VDD = 5.5V.
DS20005124B-page 12
40
0
30
Common Mode Input Voltage (V)
140
0
Open
n-Loop Phase (°)
VDD = 5.5V
CL = 20 pF
60
20
FIGURE 2-29:
Gain Bandwidth Product
and Phase Margin vs. Common Mode Input
Voltage.
FIGURE 2-26:
Open-Loop Gain vs.
Frequency with VDD = 1.6V.
70
50
VDD = 1.6V
6.0
-240
40
5.5
-10
60
VDD = 5.5V
5.0
-210
60
4.5
| AOL |
0
70
4.0
180
-180
80
3.5
-150
10
80
3.0
20
90
100
2.5
-120
AOL
RF = 1 M
GBWP
2.0
30
120
1.5
-90
125
100
1.0
40
0
25
50
75
100
Ambient Temperature (°C)
PM
0.5
-30
-60
-25
140
0
50
30
-50
-0.5
Open
n-Loop Gain (dB)
70
FIGURE 2-28:
Gain Bandwidth Product
and Phase Margin vs. Ambient Temperature.
CMRR and PSRR vs.
VDD = 1.6V
CL = 20 pF
60
Open
n-Loop Gain (dB)
80
80
100k
1.E+05
Gain Bandwidth Product (kHz)
70
1k
10k
1.E+03
1.E+04
Frequency (Hz)
Open
n-Loop Phase (°)
100
1.E+02
FIGURE 2-25:
Frequency.
-20
100
1.E+02
100
0
0
10
1.E+01
-20
100
1.E+02
90
VDD = 5.5V
hase Margin (°)
Ph
40
30
120
120
100
VDD = 5.5V
GBWP
100
80
90
80
PM
60
70
60
40
50
Ph
hase Margin (°)
50
Gain Bandwidth Product (kHz)
CMR
RR, PSRR (dB)
80
100
PM
Ph
hase Margin (°)
100
0.0
2.3
VDD = 1.6V
20
40
0
30
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
Output Voltage (V)
FIGURE 2-30:
Gain Bandwidth Product
and Phase Margin vs. Output Voltage.
2012-2014 Microchip Technology Inc.
MCP6V11/1U/2/4
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.6V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,
VL = VDD/2, RL = 100 kΩ to VL and CL = 20 pF.
Closed-Loo
op Output Impedance
()
1.E+05
100k
140
VDD = 1.6V
120
Chan
nnel-to-Channel
Sepa
aration, RTI (dB)
1.E+04
10k
1.E+03
1k
1.E+02
100
1.E+01
10
G = 1 V/V
G = 11 V/V
G = 101 V/V
1.E+001
100
1.E+02
1k
1.E+03
100k
10k
1.E+04
1.E+05
Frequency (Hz)
60
40
0
1k
1.E+03
1M
1.E+06
10k
100k
1.E+04
1.E+05
Frequency (Hz)
1M
1.E+06
FIGURE 2-33:
Channel-to-Channel
Separation vs. Frequency.
10
VDD = 5.5V
Max
ximum Outputt Voltag
ge Swiing
(VP--P)
Closed-Loo
op Output Impedance
()
MCP6V12
MCP6V14
80
20
FIGURE 2-31:
Closed-Loop Output
Impedance vs. Frequency with VDD = 1.6V.
1.E+05
100k
100
1.E+04
10k
1.E+03
1k
1.E+02
100
1.E+01
10
1.E+001
100
1.E+02
G = 1 V/V
G = 11 V/V
G = 101 V/V
1k
1.E+03
100k
10k
1.E+04
1.E+05
Frequency (Hz)
1
1.E+02
VDD = 1.6V
1.E+03
1.E+04
1.E+05
01
0.1
1M
1.E+06
FIGURE 2-32:
Closed-Loop Output
Impedance vs. Frequency with VDD = 5.5V.
2012-2014 Microchip Technology Inc.
VDD = 5.5V
100
1k
10k
Frequency (Hz)
100k
FIGURE 2-34:
Maximum Output Voltage
Swing vs. Frequency.
DS20005124B-page 13
MCP6V11/1U/2/4
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.6V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,
VL = VDD/2, RL = 100 kΩ to VL and CL = 20 pF.
Input Noise and Distortion
1000
1000
eni
100
100
VDD = 5.5V
VDD = 1.6V
10
10
Eni(0 Hz to f)
GDM = 1 V/V
VDD tone = 50 mVPK, f = 100 Hz
IMD Sp
pectrum
m, RTI ((µVPK)
Input Noise Voltage Density;
eni (nV/¥Hz)
1000
Integrated
d Input Noise Voltage;
Eni (µVP-P)
2.4
100
IMD tone at DC
100 Hz tone
10
1
1
1
10 1.E+02
100 1.E+03
1k 1.E+04
10k 1.E+05
100k
1.E+00
1.E+01
Frequency (Hz)
1
10
1.E+00
FIGURE 2-35:
Input Noise Voltage Density
and Integrated Input Noise Voltage vs.
Frequency.
Input N
Noise Voltage; eni(t)
(0.5 µV/div)
In
nput No
oise Vo
oltage D
Density
y
(nV/¥
¥Hz)
VDD = 1.6V
100
VDD = 5.5V
60
40
20
NPBW = 10 Hz
NPBW = 1 Hz
6.0
5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0
-0.5
0
0
10
20
30
Common Mode Input Voltage (V)
FIGURE 2-36:
Input Noise Voltage Density
vs. Input Common Mode Voltage.
40 50 60
Time (s)
70
80
90
100
FIGURE 2-39:
Input Noise vs. Time with
1 Hz and 10 Hz Filters and VDD =1.6V.
3.0
GDM = 1 V/V
VCM tone = 50 mVPK, f = 100 Hz
VDD = 5.5V
2.5
Input N
Noise Voltage; eni(t)
(0.5 µV/div)
IMD Sp
pectrum
m, RTI ((µVPK)
1000
10k
1.E+05
VDD = 1.6V
f < 500 Hz
140
80
1k 1.E+04
1.E+01 100
1.E+02 1.E+03
Frequency (Hz)
FIGURE 2-38:
Inter-Modulation Distortion
vs. Frequency with VDD Disturbance
(see Figure 1-6).
160
120
VDD = 5.5V
VDD = 1.6V
2.0
100
1.5
residual 100 Hz tone
1.0
IMD tone at DC
0.5
VDD = 1.6V
VDD = 5.5V
10
0.0
NPBW = 10
0 Hz
-0.5
-1.0
-1.5
1
1
1.E+00
NPBW = 1 Hz
-2.0
10
1.E+01
100
1k
1.E+02
1.E+03
Frequency (Hz)
10k
1.E+04
100k
1.E+05
FIGURE 2-37:
Inter-Modulation Distortion
vs. Frequency with VCM Disturbance (see
Figure 1-6).
DS20005124B-page 14
0
10
20
30
40 50 60
Time (s)
70
80
90
100
FIGURE 2-40:
Input Noise vs. Time with
1 Hz and 10 Hz Filters and VDD =5.5V.
2012-2014 Microchip Technology Inc.
MCP6V11/1U/2/4
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.6V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,
VL = VDD/2, RL = 100 kΩ to VL and CL = 20 pF.
Time Response
80
80
35
60
70
TPCB
30
40
25
20
VDD = 1.6V
VDD = 5.5V
20
0
15
-20
10
-40
VOS
5
-60
0
-80
Temperature increased by
using heat gun for 5 seconds.
-5
-120
Input O
Offset Voltage (mV)
30
20
0
0
VDD
6
5
6
5.5
5
5.0
4
3
POR Trip Point
4
2
3
1
2
0
1
-1
0
-2
VOS
-1
-2
40
60
80 100 120 140 160 180 200
Time (µs)
Non-inverting Small Signal
VDD = 5.5V
G=1
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
-3
0.5
-4
0.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Time (ms)
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Time (ms)
FIGURE 2-45:
Step Response.
FIGURE 2-42:
Input Offset Voltage vs.
Time at Power Up.
Non-inverting Large Signal
80
VDD = 5.5V
G=1
VIN
6
VDD = 5.5V
G = -1
70
Output V
Voltage (10 mV/div)
7
Input, O
Output Voltage (V)
20
FIGURE 2-44:
Step Response.
Power Supply Voltage (V)
G=1
7
40
10 20 30 40 50 60 70 80 90 100
Time (s)
FIGURE 2-41:
Input Offset Voltage vs.
Time with Temperature Change.
8
50
Outtput Voltage (V)
0
60
10
-100
-10
VDD = 5.5V
G=1
Output V
Voltage (10 mV/div)
40
PCB T
Temperature (°C)
Input O
Offset Voltage (µV)
2.5
60
5
VOUT
50
4
3
40
2
30
1
20
0
10
-1
0
0
2
4
6
8
10 12
Time (ms)
14
16
18
20
FIGURE 2-43:
The MCP6V11/1U/2/4
Family Shows No Input Phase Reversal with
Overdrive.
2012-2014 Microchip Technology Inc.
0
20
40
FIGURE 2-46:
Response.
60
80 100 120 140 160 180 200
Time (µs)
Inverting Small Signal Step
DS20005124B-page 15
MCP6V11/1U/2/4
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.6V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,
VL = VDD/2, RL = 100 kΩ to VL and CL = 20 pF.
VDD = 5.5V
G = -1
5.0
7
7
6
6
Input Voltage × G (1 V/div)
5.5
Outp
put Voltage (V)
Outtput Voltage (V)
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
5
VOUT
G VIN
4
4
3
3
2
2
VDD = 5
5.5V
5V
G = -10 V/V
0.5V Overdrive
1
G VIN
1
VOUT
0
0.5
0.0
FIGURE 2-47:
Response.
Inverting Large Signal Step
0
-1
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Time (ms)
-1
0
1
0.07
Falling Edge
0.06
0.05
0.03
0.02
VDD = 1.6V
0.01
5
5
6
VDD = 1.6V
tODR, low
1.E-03
1m
0.04
2 Time
2 (500
3
3µs/div)
4
4
0.5V Input Overdrive
Overdriv
ve Recovery Time (s)
VDD = 5.5V
1
FIGURE 2-49:
Output Overdrive Recovery
vs. Time with G = -10 V/V.
1.E-02
10m
0.08
Sle
ew Rate (V/µs)
5
5V
VDD = 5
5.5V
tODR, high
Rising Edge
1.E-04
100µ
0.00
-50
-25
0
25
50
75
Ambient Temperature (°C)
FIGURE 2-48:
Temperature.
DS20005124B-page 16
100
Slew Rate vs. Ambient
125
1
10
100
Inverting Gain Magnitude (V/V)
1000
FIGURE 2-50:
Output Overdrive Recovery
Time vs. Inverting Gain.
2012-2014 Microchip Technology Inc.
MCP6V11/1U/2/4
3.0
PIN DESCRIPTIONS
Descriptions of the pins are listed in Table 3-1.
TABLE 3-1:
PIN FUNCTION TABLE
MCP6V11
MCP6V11U
SOT-23
SOT-23,
SC-70
2×3 TDFN
MSOP
TSSOP
1
4
1
1
1
4
3
2
2
2
VIN–, VINA–
Inverting Input (Op Amp A)
3
1
3
3
3
VIN+, VINA+
Non-inverting Input (Op Amp A)
3.1
MCP6V12
MCP6V14
VOUT, VOUTA Output (Op Amp A)
5
5
8
8
4
VDD
—
5
5
5
VINB+
Non-inverting Input (Op Amp B)
—
—
6
6
6
VINB–
Inverting Input (Op Amp B)
—
—
7
7
7
VOUTB
Output (Op Amp B)
—
—
—
—
8
VOUTC
Output (Op Amp C)
—
—
—
—
9
VINC–
Inverting Input (Op Amp C)
—
—
—
—
10
VINC+
2
2
4
4
11
VSS
—
—
—
—
12
VIND+
Non-inverting Input (Op Amp D)
—
—
—
—
13
VIND–
Inverting Input (Op Amp D)
—
—
—
—
14
VOUTD
—
—
9
—
—
EP
Analog Outputs
Analog Inputs
The non-inverting and inverting inputs (VIN+, VIN–, …)
are high-impedance CMOS inputs with low bias
currents.
3.3
Description
—
The analog output pins (VOUT) are low-impedance
voltage sources.
3.2
Symbol
3.4
Positive Power Supply
Non-inverting Input (Op Amp C)
Negative Power Supply
Output (Op Amp D)
Exposed Thermal Pad (EP); must be
connected to VSS
Exposed Thermal Pad (EP)
There is an internal connection between the exposed
thermal pad (EP) and the VSS pin; they must be
connected to the same potential on the printed circuit
board (PCB).
This pad can be connected to a PCB ground plane to
provide a larger heat sink. This improves the package
thermal resistance (θJA).
Power Supply Pins
The positive power supply (VDD) is 1.6V to 5.5V higher
than the negative power supply (VSS). For normal
operation, the other pins are between VSS and VDD.
Typically, these parts are used in a single (positive)
supply configuration. In this case, VSS is connected to
ground and VDD is connected to the supply. VDD will
need bypass capacitors.
2012-2014 Microchip Technology Inc.
DS20005124B-page 17
MCP6V11/1U/2/4
NOTES:
DS20005124B-page 18
2012-2014 Microchip Technology Inc.
MCP6V11/1U/2/4
4.0
APPLICATIONS
The MCP6V11/1U/2/4 family of zero-drift op amps is
manufactured using Microchip’s state of the art CMOS
process. It is designed for precision applications with
requirements for small packages and low power. Its low
supply voltage and low quiescent current make the
MCP6V11/1U/2/4 devices ideal for battery-powered
applications.
4.1
Overview of Zero-Drift Operation
Figure 4-1 shows a simplified diagram of the
MCP6V11/1U/2/4 zero-drift op amps. This diagram will
be used to explain how slow voltage errors are reduced
in this architecture (much better VOS, ΔVOS/ΔTA (TC1),
CMRR, PSRR, AOL and 1/f noise).
The Low-Pass Filter reduces high-frequency content,
including harmonics of the Chopping Clock.
The Output Buffer drives external loads at the VOUT pin
(VREF is an internal reference voltage).
The Oscillator runs at fOSC1 = 50 kHz. Its output is
divided by two, to produce the Chopping Clock rate of
fCHOP = 25 kHz.
The internal POR part starts the part in a known good
state, protecting against power supply brown-outs.
The Digital Control block controls switching and POR
events.
4.1.2
CHOPPING ACTION
Figure 4-2 shows the amplifier connections for the first
phase of the Chopping Clock and Figure 4-3 shows
them for the second phase. Its slow voltage errors
alternate in polarity, making the average error small.
VREF
Output
Buffer
VOUT
VIN+
VIN+
VIN–
Main
Amp.
VIN–
NC
Oscillator
Aux.
Amp.
Digital Control
Chopper
Output
Switches
POR
FIGURE 4-1:
Simplified Zero-Drift Op
Amp Functional Diagram.
4.1.1
NC
Low-Pass
Filter
Low-Pass
Filter
Chopper
Input
Switches
Main
Amp.
Aux.
Amp.
FIGURE 4-2:
First Chopping Clock Phase;
Equivalent Amplifier Diagram.
VIN+
VIN–
Main
Amp.
NC
BUILDING BLOCKS
The Main Amplifier is designed for high gain and
bandwidth, with a differential topology. Its main input
pair (+ and - pins at the top left) is used for the higher
frequency portion of the input signal. Its auxiliary input
pair (+ and - pins at the bottom left) is used for the lowfrequency portion of the input signal and corrects the
op amp’s input offset voltage. Both inputs are added
together internally.
The Auxiliary Amplifier, Chopper Input Switches and
Chopper Output Switches provide a high DC gain to the
input signal. DC errors are modulated to higher
frequencies, while white noise is modulated to low
frequency.
2012-2014 Microchip Technology Inc.
Low-Pass
Filter
Aux.
Amp.
FIGURE 4-3:
Second Chopping Clock
Phase; Equivalent Amplifier Diagram.
DS20005124B-page 19
MCP6V11/1U/2/4
4.1.3
INTERMODULATION DISTORTION
(IMD)
These op amps will show intermodulation distortion
(IMD) products when an AC signal is present.
The signal and clock can be decomposed into sine
wave tones (Fourier series components). These tones
interact with the zero-drift circuitry’s nonlinear response
to produce IMD tones at sum and difference frequencies. Each of the square wave clock’s harmonics has a
series of IMD tones centered on it. See Figure 2-37 and
Figure 2-38.
4.2
4.2.1
Other Functional Blocks
RAIL-TO-RAIL INPUTS
The input stage of the MCP6V11/1U/2/4 op amps uses
two differential CMOS input stages in parallel. One
operates at low Common mode input voltage (VCM,
which is approximately equal to VIN+ and VIN– in
normal operation) and the other at high VCM. With this
topology, the input operates with VCM up to VDD + 0.2V,
and down to VSS – 0.15V, at +25°C (see Figure 2-18).
The input offset voltage (VOS) is measured at
VCM = VSS – 0.15V and VDD + 0.2V to ensure proper
operation.
The transition between the input stages occurs when
VCM ≈ VDD – 0.9V (see Figure 2-7 and Figure 2-8). For
the best distortion and gain linearity, with non-inverting
gains, avoid this region of operation.
4.2.1.1
VIN+ Bond
Pad
Input Voltage Limits
In order to prevent damage and/or improper operation
of these amplifiers, the circuit must limit the voltages at
the input pins (see Section 1.1 “Absolute Maximum
Ratings †”). This requirement is independent of the
current limits discussed later on.
Bond V –
IN
Pad
Input
Stage
VSS Bond
Pad
FIGURE 4-4:
Structures.
Simplified Analog Input ESD
The input ESD diodes clamp the inputs when they try
to go more than one diode drop below VSS. They also
clamp any voltages well above VDD; their breakdown
voltage is high enough to allow normal operation, but
not low enough to protect against slow overvoltage
(beyond VDD) events. Very fast ESD events (that meet
the spec) are limited so that damage does not occur.
In some applications, it may be necessary to prevent
excessive voltages from reaching the op amp inputs;
Figure 4-5 shows one approach to protecting these
inputs. D1 and D2 may be small signal silicon diodes,
Schottky diodes for lower clamping voltages or diode
connected FETs for low leakage.
VDD
Phase Reversal
The input devices are designed to not exhibit phase
inversion when the input pins exceed the supply
voltages. Figure 2-43 shows an input voltage
exceeding both supplies with no phase inversion.
4.2.1.2
VDD Bond
Pad
U1
D1
MCP6V1X
V1
D2
VOUT
V2
FIGURE 4-5:
Protecting the Analog Inputs
Against High Voltages.
The ESD protection on the inputs can be depicted as
shown in Figure 4-4. This structure was chosen to
protect the input transistors against many (but not all)
overvoltage conditions, and to minimize input bias
current (IB).
DS20005124B-page 20
2012-2014 Microchip Technology Inc.
MCP6V11/1U/2/4
4.2.1.3
4.3
Input Current Limits
In order to prevent damage and/or improper operation
of these amplifiers, the circuit must limit the currents
into the input pins (see Section 1.1 “Absolute Maximum Ratings †”). This requirement is independent of
the voltage limits discussed previously.
Figure 4-6 shows one approach to protecting these
inputs. The resistors R1 and R2 limit the possible
current in or out of the input pins (and into D1 and D2).
The diode currents will dump onto VDD.
V1
V2
R1
MCP6V1X
Table 1-1 gives both the linear and quadratic
temperature coefficients (TC1 and TC2) of input offset
voltage. The input offset voltage, at any temperature in
the specified range, can be calculated as follows:
EQUATION 4-1:
=
TA – 25°C
VOS(TA)
=
input offset voltage at TA
VOS
=
input offset voltage at +25°C
TC1
=
linear temperature coefficient
TC2
=
quadratic temperature coefficient
R2
VSS – min(V1, V2)
2 mA
max(V1, V2) – VDD
min(R1, R2) >
2 mA
FIGURE 4-6:
Protecting the Analog Inputs
Against High Currents.
It is also possible to connect the diodes to the left of
resistors R1 and R2. In this case, the currents through
the diodes D1 and D2 need to be limited by some other
mechanism. The resistors then serve as in-rush current
limiters; the DC current into the input pins (VIN+ and
VIN–) should be very small.
A significant amount of current can flow out of the
inputs (through the ESD diodes) when the Common
mode voltage (VCM) is below ground (VSS); see
Figure 2-17.
RAIL-TO-RAIL OUTPUT
The output voltage range of the MCP6V11/1U/2/4
zero-drift op amps is VDD – 20 mV (minimum) and
VSS + 20 mV (maximum) when RL = 10 kΩ is
connected to VDD/2 and VDD = 5.5V. Refer to
Figure 2-19 and Figure 2-20 for more information.
This op amp is designed to drive light loads; use
another amplifier to buffer the output from heavy loads.
2012-2014 Microchip Technology Inc.
2
ΔT
VOUT
min(R1, R2) >
4.2.2
INPUT OFFSET VOLTAGE OVER
TEMPERATURE
Where:
U1
D2
4.3.1
V OS T A = VOS + TC 1 T + TC2 T
VDD
D1
Application Tips
4.3.2
DC GAIN PLOTS
Figures 2-9 to 2-11 are histograms of the reciprocals
(in units of µV/V) of CMRR, PSRR and AOL,
respectively. They represent the change in input offset
voltage (VOS) with a change in Common mode input
voltage (VCM), power supply voltage (VDD) and output
voltage (VOUT).
The 1/AOL histogram is centered near 0 µV/V because
the measurements are dominated by the op amp’s
input noise. The negative values shown represent
noise and tester limitations, not unstable behavior. Production tests make multiple VOS measurements, which
validates an op amp's stability; an unstable part would
show greater VOS variability, or the output would stick
at one of the supply rails.
4.3.3
OFFSET AT POWER UP
When these parts power up, the input offset (VOS)
starts at its uncorrected value (usually less than
±5 mV). Circuits with high DC gain can cause the
output to reach one of the two rails. In this case, the
time to a valid output is delayed by an output overdrive
time (like tODR), in addition to the start-up time (like
tSTR).
It can be simple to avoid this extra start-up time.
Reducing the gain is one method. Adding a capacitor
across the feedback resistor (RF) is another method.
DS20005124B-page 21
MCP6V11/1U/2/4
SOURCE RESISTANCES
The input bias currents have two significant
components; switching glitches that dominate at room
temperature and below, and input ESD diode leakage
currents that dominate at +85°C and above.
Make the resistances seen by the inputs small and
equal. This minimizes the output offset caused by the
input bias currents.
The inputs should see a resistance on the order of 10 Ω
to 1 kΩ at high frequencies (i.e., above 1 MHz). This
helps minimize the impact of switching glitches, which
are very fast, on overall performance. In some cases, it
may be necessary to add resistors in series with the
inputs to achieve this improvement in performance.
Small input resistances may be needed for high gains.
Without them, parasitic capacitances might cause
positive feedback and instability.
4.3.5
SOURCE CAPACITANCE
The capacitances seen by the two inputs should be
small. Large input capacitances and source resistances, together with high gain, can lead to positive
feedback and instability.
4.3.6
CAPACITIVE LOADS
Driving large capacitive loads can cause stability
problems for voltage feedback op amps. As the load
capacitance increases, the feedback loop’s phase
margin decreases and the closed-loop bandwidth is
reduced. This produces gain peaking in the frequency
response, with overshoot and ringing in the step
response. These zero-drift op amps have a different
output impedance than most op amps, due to their
unique topology.
When driving a capacitive load with these op amps, a
series resistor at the output (RISO in Figure 4-7)
improves the feedback loop’s phase margin (stability)
by making the output load resistive at higher
frequencies. The bandwidth will be generally lower
than the bandwidth with no capacitive load.
GN is the circuit’s noise gain. For non-inverting gains,
GN and the Signal Gain are equal. For inverting gains,
GN is 1+|Signal Gain| (e.g., -1 V/V gives GN = +2 V/V).
1.E+05
100k
RL||(RF + RG) 100 k
Recom
mmended RISO ()
4.3.4
1.E+04
10k
1.E+03
1
E+03
1k
GN = 1
1.E+02
100
10p
1.E-11
GN = 10
100p
1.E-10
GN = 100
1n
10n
100n
1.E-09
1.E-08
1.E-07
Capacitive Load (F)
1µ
1.E-06
FIGURE 4-8:
Recommended RISO Values
for Capacitive Loads.
After selecting RISO for your circuit, double check the
resulting frequency response peaking and step
response overshoot. Modify RISO's value until the
response is reasonable. Bench evaluation is helpful.
4.3.7
STABILIZING OUTPUT LOADS
This family of zero-drift op amps has an output
impedance (Figure 2-31 and Figure 2-32) that has a
double zero when the gain is low. This can cause a
large phase shift in feedback networks that have lowimpedance near the part’s bandwidth. This large phase
shift can cause stability problems.
Figure 4-9 shows that the load on the output is
(RL + RISO)||(RF + RG), where RISO is before the load
(like Figure 4-7). This load needs to be large enough to
maintain stability; it should be at least 10 kΩ.
RG
RF
VOUT
RL
CL
U1
MCP6V1X
RISO
VOUT
FIGURE 4-9:
Output Load.
CL
U1
MCP6V1X
FIGURE 4-7:
Output Resistor, RISO,
Stabilizes Capacitive Loads.
Figure 4-8 gives recommended RISO values for
different capacitive loads and gains. The x-axis is the
load capacitance (CL). The y-axis is the resistance
(RISO).
DS20005124B-page 22
2012-2014 Microchip Technology Inc.
MCP6V11/1U/2/4
4.3.8
GAIN PEAKING
4.3.9
Figure 4-10 shows an op amp circuit that represents
non-inverting amplifiers (VM is a DC voltage and VP is
the input) or inverting amplifiers (VP is a DC voltage
and VM is the input). The capacitances CN and CG
represent the total capacitance at the input pins; they
include the op amp’s Common mode input capacitance
(CCM), board parasitic capacitance and any capacitor
placed in parallel. The capacitance CFP represents the
parasitic capacitance coupling the output and noninverting input pins.
RN
VP
CN
CFP
Reduce undesired noise and signals with:
• Low bandwidth signal filters:
- Minimizes random analog noise
- Reduces interfering signals
• Good PCB layout techniques:
- Minimizes crosstalk
- Minimizes parasitic capacitances and
inductances that interact with fast switching
edges
• Good power supply design:
- Isolation from other parts
- Filtering of interference on supply line(s)
4.3.10
U1
MCP6V1X
VM
RG
FIGURE 4-10:
Capacitance.
CG
RF
VOUT
Amplifier with Parasitic
CG acts in parallel with RG (except for a gain of +1 V/V),
which causes an increase in gain at high frequencies.
CG also reduces the phase margin of the feedback
loop, which becomes less stable. This effect can be
reduced by either reducing CG or RF||RG.
CN and RN form a low-pass filter that affects the signal
at VP. This filter has a single real pole at 1/(2πRNCN).
The largest value of RF that should be used depends
on noise gain (see GN in Section 4.3.6, Capacitive
Loads), CG and the open-loop gain’s phase shift. An
approximate limit for RF is:
EQUATION 4-2:
2
12 pF
R F 40 k -------------- G N
CG
Some applications may modify these values to reduce
either output loading or gain peaking (step response
overshoot).
At high gains, RN needs to be small, in order to prevent
positive feedback and oscillations. Large CN values
can also help.
2012-2014 Microchip Technology Inc.
REDUCING UNDESIRED NOISE
AND SIGNALS
SUPPLY BYPASSING AND
FILTERING
With this family of operational amplifiers, the power
supply pin (VDD for single supply) should have a local
bypass capacitor (i.e., 0.01 µF to 0.1 µF) within 2 mm
of the pin for good high-frequency performance.
These parts also need a bulk capacitor (i.e., 1 µF or
larger) within 100 mm to provide large, slow currents.
This bulk capacitor can be shared with other low noise,
analog parts.
In some cases, high-frequency power supply noise
(e.g., switched mode power supplies) may cause
undue intermodulation distortion, with a DC offset shift;
this noise needs to be filtered. Adding a resistor into the
supply connection can be helpful.
4.3.11
PCB DESIGN FOR DC PRECISION
In order to achieve DC precision on the order of ±1 µV,
many physical errors need to be minimized. The design
of the Printed Circuit Board (PCB), the wiring, and the
thermal environment have a strong impact on the
precision achieved. A poor PCB design can easily be
more than 100 times worse than the MCP6V11/1U/2/4
op amps’ minimum and maximum specifications.
4.3.11.1
PCB Layout
Any time two dissimilar metals are joined together, a
temperature dependent voltage appears across the
junction (the Seebeck or thermojunction effect). This
effect is used in thermocouples to measure
temperature. The following are examples of
thermojunctions on a PCB:
• Components (resistors, op amps, …) soldered to
a copper pad
• Wires mechanically attached to the PCB
• Jumpers
• Solder joints
• PCB vias
DS20005124B-page 23
MCP6V11/1U/2/4
Typical thermojunctions have temperature to voltage
conversion coefficients of 1 to 100 µV/°C (sometimes
higher).
4.4
Microchip’s AN1258 (“Op Amp Precision Design: PCB
Layout Techniques”) contains in-depth information on
PCB layout techniques that minimize thermojunction
effects. It also discusses other effects, such as
crosstalk, impedances, mechanical stresses and
humidity.
Many sensors are configured as Wheatstone bridges.
Strain gauges and pressure sensors are two common
examples. These signals can be small and the
Common mode noise large. Amplifier designs with high
differential gain are desirable.
4.3.11.2
Crosstalk
DC crosstalk causes offsets that appear as a larger
input offset voltage. Common causes include:
Typical Applications
4.4.1
WHEATSTONE BRIDGE
Figure 4-11 shows how to interface to a Wheatstone
bridge with a minimum of components. Because the
circuit is not symmetric, the ADC input is single ended,
and there is a minimum of filtering; the CMRR is good
enough for moderate Common mode noise.
• Common mode noise (remote sensors)
• Ground loops (current return paths)
• Power supply coupling
Interference from the mains (usually 50 Hz or 60 Hz),
and other AC sources, can also affect the DC
performance. Nonlinear distortion can convert these
signals to multiple tones, including a DC shift in voltage.
When the signal is sampled by an ADC, these AC
signals can also be aliased to DC, causing an apparent
shift in offset.
To reduce interference:
-
Keep traces and wires as short as possible
Use shielding
Use ground plane (at least a star ground)
Place the input signal source near to the DUT
Use good PCB layout techniques
Use a separate power supply filter (bypass
capacitors) for these zero-drift op amps
4.3.11.3
Miscellaneous Effects
Keep the resistances seen by the input pins as small
and as near to equal as possible, to minimize biascurrent-related offsets.
Make the (trace) capacitances seen by the input pins
small and equal. This is helpful in minimizing switching
glitch-induced offset voltages.
Bending a coax cable with a radius that is too small
causes a small voltage drop to appear on the center
conductor (the triboelectric effect). Make sure the
bending radius is large enough to keep the conductors
and insulation in full contact.
Mechanical stresses can make some capacitor types
(such as some ceramics) output small voltages. Use
more appropriate capacitor types in the signal path and
minimize mechanical stresses and vibration.
Humidity can cause electrochemical potential voltages
to appear in a circuit. Proper PCB cleaning helps, as
does the use of encapsulants.
DS20005124B-page 24
0.01C
VDD
R R
0.2R
R R
4.4.2
100R
VDD
ADC
U1
0.2R
FIGURE 4-11:
1 kΩ
MCP6V11
Simple Design.
RTD SENSOR
The ratiometric circuit in Figure 4-12 conditions a twowire RTD, for applications with a limited temperature
range. U1 acts a difference amplifier, with a low
frequency pole. The sensor’s wiring resistance (RW) is
corrected in firmware. Failure (open) of the RTD is
detected by an out-of-range voltage.
VDD
RT
RN
34.8 kΩ 10.0 kΩ
RF
2.00 MΩ
RW
RRTD
100Ω
RW
10 nF
U1
MCP6V11
RG
RF
10.0 kΩ 2.00 MΩ
1.00 kΩ
100 nF
RB
4.99 kΩ
1.0 µF
10 nF
VDD
ADC
FIGURE 4-12:
RTD Sensor.
2012-2014 Microchip Technology Inc.
MCP6V11/1U/2/4
4.4.3
OFFSET VOLTAGE CORRECTION
Figure 4-13 shows MCP6V11 (U2) correcting the input
offset voltage of another op amp (U1). R2 and C2
integrate the offset error seen at U1’s input; the
integration needs to be slow enough to be stable (with
the feedback provided by R1 and R3). R4 and R5
attenuate the integrator’s output; this shifts the
integrator pole down in frequency.
R1
VIN
R3
R2
VOUT
R4
C2
U1
R5
R2
VDD/2
MCP6XXX
U2
VDD/2
MCP6V11
FIGURE 4-13:
4.4.4
Offset Correction.
PRECISION COMPARATOR
Use high gain before a comparator to improve the
latter’s performance. Do not use MCP6V11/1U/2/4 as a
comparator by itself; the VOS correction circuitry does
not operate properly without a feedback loop.
U1
VIN
MCP6V11
R1
R2
R3
R4
R5
VOUT
VDD/2
U2
MCP6541
FIGURE 4-14:
Precision Comparator.
2012-2014 Microchip Technology Inc.
DS20005124B-page 25
MCP6V11/1U/2/4
NOTES:
DS20005124B-page 26
2012-2014 Microchip Technology Inc.
MCP6V11/1U/2/4
5.0
DESIGN AIDS
Microchip provides the basic design aids needed for
the MCP6V11/1U/2/4 family of op amps.
5.1
SPICE Macro Model
The latest SPICE macro model for the
MCP6V11/1U/2/4 op amps is available on the
Microchip web site at www.microchip.com. This model
is intended to be an initial design tool that works well in
the op amp’s linear region of operation over the temperature range. See the model file for information on its
capabilities.
Bench testing is a very important part of any design and
cannot be replaced with simulations. Also, simulation
results using this macro model need to be validated by
comparing them to the data sheet specifications and
characteristic curves.
5.2
FilterLab® Software
Microchip’s FilterLab® software is an innovative
software tool that simplifies analog active filter (using
op amps) design. Available at no cost from the
Microchip web site at www.microchip.com/filterlab, the
FilterLab design tool provides full schematic diagrams
of the filter circuit with component values. It also
outputs the filter circuit in SPICE format, which can be
used with the macro model to simulate actual filter
performance.
5.3
Microchip Advanced Part Selector
(MAPS)
MAPS is a software tool that helps efficiently identify
Microchip devices that fit a particular design requirement. Available at no cost from the Microchip web site
at www.microchip.com/maps, MAPS is an overall
selection tool for Microchip’s product portfolio that
includes Analog, Memory, MCUs and DSCs. Using this
tool, a customer can define a filter to sort features for a
parametric search of devices and export side-by-side
technical comparison reports. Helpful links are also
provided for Data Sheets, Purchase and Sampling of
Microchip parts.
5.4
Analog Demonstration and
Evaluation Boards
Microchip offers a broad spectrum of Analog
Demonstration and Evaluation Boards that are
designed to help customers achieve faster time to
market. For a complete listing of these boards and their
corresponding user’s guides and technical information,
visit the Microchip web site at www.microchip.com/analog tools.
Some boards that are especially useful are:
• MCP6V01 Thermocouple Auto-Zeroed Reference
Design (P/N MCP6V01RD-TCPL)
• MCP6XXX Amplifier Evaluation Board 1 (P/N
DS51667)
• MCP6XXX Amplifier Evaluation Board 2 (P/N
DS51668)
• MCP6XXX Amplifier Evaluation Board 3 (P/N
DS51673)
• MCP6XXX Amplifier Evaluation Board 4 (P/N
DS51681)
• Active Filter Demo Board Kit (P/N DS51614)
• 8-Pin SOIC/MSOP/TSSOP/DIP Evaluation Board
(P/N SOIC8EV)
• 14-Pin SOIC/TSSOP/DIP Evaluation Board (P/N
SOIC14EV)
5.5
Application Notes
The following Microchip Application Notes are
available on the Microchip web site at www.microchip.
com/appnotes and are recommended as supplemental
reference resources.
ADN003: “Select the Right Operational Amplifier for
your Filtering Circuits”, DS21821
AN722: “Operational Amplifier Topologies and DC
Specifications”, DS00722
AN723: “Operational Amplifier AC Specifications and
Applications”, DS00723
AN884: “Driving Capacitive Loads With Op Amps”,
DS00884
AN990: “Analog Sensor Conditioning Circuits – An
Overview”, DS00990
AN1177: “Op Amp Precision Design: DC Errors”,
DS01177
AN1228: “Op Amp Precision Design: Random Noise”,
DS01228
AN1258: “Op Amp Precision Design: PCB Layout
Techniques”, DS01258
These Application Notes and others are listed in the
design guide:
“Signal Chain Design Guide”, DS21825
2012-2014 Microchip Technology Inc.
DS20005124B-page 27
MCP6V11/1U/2/4
NOTES:
DS20005124B-page 28
2012-2014 Microchip Technology Inc.
MCP6V11/1U/2/4
6.0
PACKAGING INFORMATION
6.1
Package Marking Information
Example:
5-Lead SC70 (MCP6V11U)
Device
MCP6V11UT-E/LT
Note:
Code
DJNN
DJ25
Applies to 5-Lead SC-70.
Example:
5-Lead SOT-23 (MCP6V11/1U)
Device
Code
MCP6V11T-E/OT
2CNN
MCP6V11UT-E/OT
2DNN
Note:
8-Lead MSOP (3x3 mm)(MCP6V12)
2C25
Applies to 5-Lead SOT-23.
Example
6V12E
410256
Legend: XX...X
Y
YY
WW
NNN
e3
*
Note:
Customer-specific information
Year code (last digit of calendar year)
Year code (last 2 digits of calendar year)
Week code (week of January 1 is week ‘01’)
Alphanumeric traceability code
Pb-free JEDEC® designator for Matte Tin (Sn)
This package is Pb-free. The Pb-free JEDEC designator ( e3 )
can be found on the outer packaging for this package.
In the event the full Microchip part number cannot be marked on one line, it will
be carried over to the next line, thus limiting the number of available
characters for customer-specific information.
2012-2014 Microchip Technology Inc.
DS20005124B-page 29
MCP6V11/1U/2/4
8-Lead TDFN (2x3x0.75 mm)(MCP6V12)
Device
ABV
MCP6V12T-E/MNY
ABV
14-Lead TSSOP (4.4 mm)(MCP6V14)
DS20005124B-page 30
Code
MCP6V12-E/MNY
Note:
XXXXXXXX
YYWW
NNN
Example
Applies to 8-Lead 2x3 TDFN.
ABV
410
25
Example
6V14E/ST
1410
256
2012-2014 Microchip Technology Inc.
MCP6V11/1U/2/4
.
#
#$ #/! - 0 #
1/%#
#!#
##+22---
2/
D
b
3
1
2
E1
E
4
5
e
A
e
A2
c
A1
L
3#
4#
5$8
%1
44"
"
5
5
56
7
(
1#
6, :#
;
9()*
<
!!1/
/
;
<
#!
%%
<
6, =!#
"
;
!!1/=!#
"
(
(
(
6, 4#
;
(
.
#4#
4
9
4!
/
;
<
9
4!=!#
8
(
<
!"!
#$!
!%
# $
!%
# $
#&! !
!#
"'(
)*+ )
#&#,$
--#
$##
- *9)
2012-2014 Microchip Technology Inc.
DS20005124B-page 31
MCP6V11/1U/2/4
.
#
#$ #/! - 0 #
1/%#
#!#
##+22---
2/
DS20005124B-page 32
2012-2014 Microchip Technology Inc.
MCP6V11/1U/2/4
!
.
#
#$ #/! - 0 #
1/%#
#!#
##+22---
2/
b
N
E
E1
3
2
1
e
e1
D
A2
A
c
φ
A1
L
L1
3#
4#
5$8
%1
44"
"
5
56
7
5
(
4!1#
()*
6$# !4!1#
6, :#
<
!!1/
/
;
<
#!
%%
<
(
6, =!#
"
<
!!1/=!#
"
<
;
6, 4#
<
)*
(
.
#4#
4
<
9
.
# #
4
(
<
;
.
#
>
<
>
4!
/
;
<
9
4!=!#
8
<
(
!"!
#$!
!%
# $
!%
# $
#&! !
!#
"'(
)*+ )
#&#,$
--#
$##
- *)
2012-2014 Microchip Technology Inc.
DS20005124B-page 33
MCP6V11/1U/2/4
Note:
For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
DS20005124B-page 34
2012-2014 Microchip Technology Inc.
MCP6V11/1U/2/4
Note:
For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
2012-2014 Microchip Technology Inc.
DS20005124B-page 35
MCP6V11/1U/2/4
Note:
For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
DS20005124B-page 36
2012-2014 Microchip Technology Inc.
MCP6V11/1U/2/4
Note:
For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
2012-2014 Microchip Technology Inc.
DS20005124B-page 37
MCP6V11/1U/2/4
Note:
For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
DS20005124B-page 38
2012-2014 Microchip Technology Inc.
MCP6V11/1U/2/4
Note:
For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
2012-2014 Microchip Technology Inc.
DS20005124B-page 39
MCP6V11/1U/2/4
"
#
$
% &'() *!*+,-#$
.
#
#$ #/! - 0 #
1/%#
#!#
##+22---
2/
DS20005124B-page 40
2012-2014 Microchip Technology Inc.
MCP6V11/1U/2/4
Note:
For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
2012-2014 Microchip Technology Inc.
DS20005124B-page 41
MCP6V11/1U/2/4
Note:
For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
DS20005124B-page 42
2012-2014 Microchip Technology Inc.
MCP6V11/1U/2/4
Note:
For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
2012-2014 Microchip Technology Inc.
DS20005124B-page 43
MCP6V11/1U/2/4
NOTES:
DS20005124B-page 44
2012-2014 Microchip Technology Inc.
MCP6V11/1U/2/4
APPENDIX A:
REVISION HISTORY
Revision B (March 2014)
The following is the list of modifications:
1.
2.
3.
4.
5.
6.
Added new devices to the family: MCP6V12 and
MCP6V14, and the related information
throughout the document.
Updated Table 1-3 with new packages’ thermal
resistances.
Updated Figures 1-6, 2-19 and 2-22 in
Section 2.0 “Typical Performance Curves”.
Added new Figure 2-33.
Updated Table 3-1 in Section 3.0 “Pin
Descriptions” for the new devices.
Updated markings and specification drawings in
Section 6.0 “Packaging Information”.
Updated Product Identification System.
Revision A (March 2012)
• Original Release of this Document.
2012-2014 Microchip Technology Inc.
DS20005124B-page 45
MCP6V11/1U/2/4
NOTES:
DS20005124B-page 46
2012-2014 Microchip Technology Inc.
MCP6V11/1U/2/4
PRODUCT IDENTIFICATION SYSTEM
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.
PART NO.
[X](1)
–X
/XX
Examples:
a)
MCP6V11T-E/OT:
MCP6V11T:
Single Op Amp (Tape and Reel) (SOT-23)
MCP6V11UT: Single Op Amp (Tape and Reel)
(SC-70, SOT-23)
MCP6V12:
Dual Op Amp (MSOP, 2x3 TDFN)
MCP6V12T: Dual Op Amp (Tape and Reel) (MSOP,
2x3 TDFN)
MCP6V14:
Quad Op Amp (TSSOP)
MCP6V14T: Quad Op Amp (Tape and Reel) (TSSOP)
a)
MCP6V11UT-E/LT:
a)
MCP6V12-E/MS:
Temperature Range:
E
b)
MCP6V12T-E/MS:
Package:
LT
= Plastic Small Outline Transistor, 5-lead
OT
= Plastic Small Outline Transistor, 5-lead
MNY* = Plastic Dual Flat, No-Lead - 2×3×0.75 mm
Body, 8-lead
MS
= Plastic Micro Small Outline, 8-lead
ST
= Plastic Thin Shrink Small Outline - 4.4 mm
Body, 14-lead
Device Tape and Reel Temperature
Range
Device:
Package
= -40°C to +125°C (Extended)
b)
c)
Tape and Reel
Extended temperature,
5LD SC70 package
MCP6V11UT-E/OT: Tape and Reel,
Extended temperature,
5LD SOT-23 package
Extended temperature,
8LD MSOP package
Tape and Reel,
Extended temperature,
8LD MSOP package
MCP6V12T-E/MNY: Tape and Reel,
Extended temperature,
8LD 2x3 TDFN package
a)
MCP6V14-E/ST:
b)
MCP6V14T-E/ST:
* Y = Nickel palladium gold manufacturing designator. Only
available on the TDFN package.
Note 1:
2012-2014 Microchip Technology Inc.
Tape and Reel,
Extended temperature,
5LD SOT-23 package
Extended temperature,
14LD TSSOP package
Tape and Reel
Extended temperature,
14LD TSSOP package
Tape and Reel identifier only appears in the
catalog part number description. This identifier is used for ordering purposes and is not
printed on the device package. Check with
your Microchip Sales Office for package
availability with the Tape and Reel option.
DS20005124B-page 47
MCP6V11/1U/2/4
NOTES:
DS20005124B-page 48
2012-2014 Microchip Technology Inc.
Note the following details of the code protection feature on Microchip devices:
•
Microchip products meet the specification contained in their particular Microchip Data Sheet.
•
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.
•
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
•
Microchip is willing to work with the customer who is concerned about the integrity of their code.
•
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.
Trademarks
The Microchip name and logo, the Microchip logo, dsPIC,
FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,
PICSTART, PIC32 logo, rfPIC, SST, SST Logo, SuperFlash
and UNI/O are registered trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,
MTP, SEEVAL and The Embedded Control Solutions
Company are registered trademarks of Microchip Technology
Incorporated in the U.S.A.
Silicon Storage Technology is a registered trademark of
Microchip Technology Inc. in other countries.
Analog-for-the-Digital Age, Application Maestro, BodyCom,
chipKIT, chipKIT logo, CodeGuard, dsPICDEM,
dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial
Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB
Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,
PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O,
Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA
and Z-Scale are trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.
SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.
GestIC and ULPP are registered trademarks of Microchip
Technology Germany II GmbH & Co. KG, a subsidiary of
Microchip Technology Inc., in other countries.
All other trademarks mentioned herein are property of their
respective companies.
© 2012-2014, Microchip Technology Incorporated, Printed in
the U.S.A., All Rights Reserved.
Printed on recycled paper.
ISBN: 978-1-63276-007-4
QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV
== ISO/TS 16949 ==
2012-2014 Microchip Technology Inc.
Microchip received ISO/TS-16949:2009 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.
DS20005124B-page 49
Worldwide Sales and Service
AMERICAS
ASIA/PACIFIC
ASIA/PACIFIC
EUROPE
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Canada - Toronto
Tel: 905-673-0699
Fax: 905-673-6509
DS20005124B-page 50
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500
China - Hangzhou
Tel: 86-571-8792-8115
Fax: 86-571-8792-8116
China - Hong Kong SAR
Tel: 852-2943-5100
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8864-2200
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
India - Pune
Tel: 91-20-3019-1500
Japan - Osaka
Tel: 81-6-6152-7160
Fax: 81-6-6152-9310
Germany - Dusseldorf
Tel: 49-2129-3766400
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Japan - Tokyo
Tel: 81-3-6880- 3770
Fax: 81-3-6880-3771
Germany - Pforzheim
Tel: 49-7231-424750
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Italy - Venice
Tel: 39-049-7625286
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Poland - Warsaw
Tel: 48-22-3325737
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049
03/13/14
2012-2014 Microchip Technology Inc.