MIC2205
2 MHz PWM Synchronous Buck Regulator with LDO Standby Mode
Feature
General Description
• 2.7 to 5.5V Supply Voltage
• Light Load LDO Mode
- 18 μA Quiescent Current
- Low Noise, 75 μVRMS
• 2 MHz PWM Mode
- Output Current to 600 mA
- >95% Efficiency
- 100% Maximum Duty Cycle
• Adjustable Output Voltage Option Down to 1V
- Fixed Output Voltage Options Available
• Ultra-Fast Transient Response
• Stable with 1 μF Ceramic Output Capacitor
• Fully Integrated MOSFET Switches
• Micropower Shutdown
• Thermal Shutdown and Current Limit Protection
• Pb-Free 3 mm x 3 mm VDFN Package
• –40°C to +125°C Junction Temperature Range
The MIC2205 is a high efficiency 2 MHz PWM
synchronous buck (step-down) regulator that features
an LDO standby mode that draws only 18 μA of
quiescent current. The MIC2205 allows an ultra-low
noise, small size, and high efficiency solution for
portable power applications.
In PWM mode, the MIC2205 operates with a constant
frequency 2 MHz PWM control. Under light load
conditions, such as in system sleep or standby modes,
the PWM switching operation can be disabled to
reduce switching losses. In this light load mode, the
LDO maintains the output voltage and draws only
18 μA of quiescent current. The LDO mode of
operation saves battery life while not introducing
spurious noise and high ripple as experienced with
pulse skipping or bursting mode regulators.
Applications
The MIC2205 operates from 2.7V to 5.5V input and
features internal power MOSFETs that can supply up to
600 mA output current in PWM mode. It can operate
with a maximum duty cycle of 100% for use in low
dropout conditions.
• Cellular Phones
• PDAs
• USB Peripherals
The MIC2205 is available in a 3 mm x 3 mm VDFN-10L
package with an operating junction temperature range
from –40°C to +125°C.
Package Type
MIC2205
VDFN-10 (ML)
2019 Microchip Technology Inc.
DS20006177A-page 1
MIC2205
Functional Block Diagram
Typical Application
MIC2205
VIN
2.7V to 5.5V
C1
1μF
LowQ
C2
0.1μF
8
VIN
4
AVIN
6
EN
7
LOWQ
3
BIAS
SW
9
LDO
2
FB
5
2.2μH
R1
100k
R2
125k
VOUT
C3
100pF
C4
2.2μF
PGND AGND
GND
DS20006177A-page 2
10
1
GND
2019 Microchip Technology Inc.
MIC2205
1.0
ELECTRICAL CHARACTERISTICS
Absolute Maximum Ratings †
Supply Voltage (VIN) .................................................................................................................................................. +6V
Output Switch Voltage (VSW) ..................................................................................................................................... +6V
Output Switch Current (ISW)..........................................................................................................................................2A
Logic Input Voltage (VEN, VLOWQ)) ................................................................................................................ –0.3V to VIN
Storage Temperature (TS) ......................................................................................................................–60°C to +150°C
ESD Rating (Note 1) ..................................................................................................................................................3 kV
Operating Ratings ‡
Supply Voltage (VIN) ................................................................................................................................. +2.7V to +5.5V
Logic Input Voltage (VEN, VLOWQ)) ................................................................................................................ –0.3V to VIN
Junction Temperature (TJ)......................................................................................................................–40°C to +125°C
Package Thermal Resistance
VDFN-10 (JA)...................................................................................................................................................... 60°C/W
† Notice: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device.
This is a stress rating only and functional operation of the device at those or any other conditions above those indicated
in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended
periods may affect device reliability. Specifications are for packaged product only.
‡ Notice: The device is not guaranteed to function outside its operating ratings.
Note 1: Devices are ESD sensitive. Handling precautions recommended. Human body model: 1.5 kΩ in series with
100 pF.
ELECTRICAL CHARACTERISTICS (Note 2)
Electrical Characteristics: VIN= VEN = VLOWQ = 3.6V; L = 2.2 μH; TA = 25°C, Bold values indicate –40°C ≤ TA ≤
+125°C; unless otherwise noted.
Parameter
Symbol
Min.
Typ.
Max.
Supply Voltage Range
—
2.7
—
5.5
Undervoltage Lockout Threshold
—
2.45
2.55
UVLO Hysteresis
—
—
100
Quiescent Current, PWM mode
—
—
Quiescent Current, LDO mode
—
—
Shutdown Current
—
—
[Adjustable] Feedback Voltage
—
0.99
0.98
[Fixed Output] Voltages
—
FB pin input current
Current Limit in PWM Mode
Units Conditions
V
—
2.65
V
Turn-On
—
mV
—
690
900
μA
VFB = 0.9 * VNOM (not switching)
16
29
μA
VLOWQ = 0V; IOUT = 0 mA
0.01
5
μA
VEN = 0V
1
1.01
1.02
V
±1%
±2% (over temperature)
–1
–2
—
+1
+2
%
Nominal VOUT tolerance
—
—
1
—
nA
—
—
0.75
1
1.85
A
VFB = 0.9 * VNOM
Output Voltage Line Regulation
—
—
0.13
—
%
VOUT > 2V; VIN = VOUT + 300 mV to
5.5V; ILOAD = 100 mA
VOUT < 2V; VIN = 2.7V to 5.5V; ILOAD
= 100 mA
Output Voltage Load Regulation,
PWM Mode
—
—
0.2
0.5
%
20 mA < ILOAD < 300 mA
Output Voltage Load Regulation,
LDO Mode
—
—
0.1
0.2
%
100 μA < ILOAD < 50 mA
VLOWQ = 0V
Maximum Duty Cycle
—
100
—
—
%
VFB ≤ 0.4V
2019 Microchip Technology Inc.
DS20006177A-page 3
MIC2205
ELECTRICAL CHARACTERISTICS (Note 2)
Electrical Characteristics: VIN= VEN = VLOWQ = 3.6V; L = 2.2 μH; TA = 25°C, Bold values indicate –40°C ≤ TA ≤
+125°C; unless otherwise noted.
Parameter
Symbol
Min.
Typ.
Max.
—
—
0.4
—
—
—
0.4
—
Oscillator Frequency
—
1.8
2
2.2
MHz
—
LOWQ Threshold Voltage
—
0.5
0.85
1.3
V
—
LOWQ Input Current
—
—
0.1
2
μA
—
Enable Threshold
—
0.5
0.85
1.3
V
—
Enable Input Current
—
—
0.1
2
μA
—
LDO Dropout Voltage (Note 1)
—
—
110
—
mV
IOUT = 50 mA
Output Voltage Noise
—
—
75
—
μVrms
LOWQ = 0V; COUT = 2.2 μF, 10 Hz to
100 kHz
LDO Current Limit
—
60
120
—
mA
LOWQ = 0V; VOUT = 0V (LDO Mode)
Overtemperature Shutdown
—
—
160
—
°C
—
Overtemperature Hysteresis
—
—
20
—
°C
—
PWM Switch-On Resistance
Note 1:
2:
Units Conditions
Ω
ISW = 50 mA
VFB = 0.7VFB_NOM (High Side Switch)
ISW = -50 mA
VFB = 1.1VFB_NOM (Low Side Switch)
Dropout voltage is defined as the input-to-output differential at which the output voltage drops 2% below its
nominal value that is initially measured at a 1V differential. For outputs below 2.7V, the dropout voltage is
the input-to-output voltage differential with a minimum input voltage of 2.7V
S pe cifica tion for pa cka ge d product only.
DS20006177A-page 4
2019 Microchip Technology Inc.
MIC2205
TEMPERATURE SPECIFICATIONS (Note 1)
Parameters
Symbol
Min.
Typ.
Max.
Units
Conditions
Storage Temperature
TS
–60
—
+150
°C
—
Junction Temperature Range
TJ
–40
—
+125
°C
—
JA
—
—
60
°C/W
—
Temperature Ranges
Package Thermal Resistances
Thermal Resistance 10-Lead VDFN
Note 1:
The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable
junction temperature and the thermal resistance from junction to air (i.e., TA, TJ, JA). Exceeding the
maximum allowable power dissipation will cause the device operating junction temperature to exceed the
maximum +125°C rating. Sustained junction temperatures above +125°C can impact the device reliability.
2019 Microchip Technology Inc.
DS20006177A-page 5
MIC2205
2.0
Note:
TYPICAL PERFORMANCE CURVES
The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.
PWM Mode
FIGURE 2-1:
Bode Plot.
FIGURE 2-4:
1.5 VOUT Efficiency.
FIGURE 2-2:
2.5 VOUT Efficiency.
FIGURE 2-5:
1.38 VOUT Efficiency.
FIGURE 2-3:
1.8 VOUT Efficiency.
FIGURE 2-6:
1.2 VOUT Efficiency.
DS20006177A-page 6
2019 Microchip Technology Inc.
MIC2205
FIGURE 2-7:
1.0 VOUT Efficiency.
FIGURE 2-10:
Frequency vs. Temperature.
FIGURE 2-8:
Load Regulation.
FIGURE 2-11:
Voltage.
Peak Current Limit vs.
FIGURE 2-9:
Supply Voltage.
Quiescent Current vs.
FIGURE 2-12:
Voltage.
Enable Threshold vs.
2019 Microchip Technology Inc.
DS20006177A-page 7
MIC2205
FIGURE 2-13:
Voltage.
Turn-On Time vs. Supply
FIGURE 2-16:
Dropout vs. Output Current.
FIGURE 2-14:
PSRR.
FIGURE 2-17:
Voltage.
Current Limit vs. Supply
FIGURE 2-15:
PSRR.
FIGURE 2-18:
Temperature.
Dropout Voltage vs.
LDO Mode
DS20006177A-page 8
2019 Microchip Technology Inc.
MIC2205
FIGURE 2-19:
Temperature.
Dropout Voltage vs.
FIGURE 2-22:
Temperature.
FIGURE 2-20:
Temperature.
Dropout Voltage vs.
FIGURE 2-23:
Enable Threshold Voltage
vs. Supply Voltage.
FIGURE 2-21:
Temperature.
Dropout Voltage vs.
FIGURE 2-24:
Voltage.
2019 Microchip Technology Inc.
Output Voltage vs.
Turn-On Time vs. Supply
DS20006177A-page 9
MIC2205
FIGURE 2-25:
Temperature.
Quiescent Current vs.
FIGURE 2-28:
Output Current.
Quiescent Current vs.
FIGURE 2-26:
Temperature.
Quiescent Current vs.
FIGURE 2-29:
Current.
Output Voltage vs. Output
FIGURE 2-27:
Supply Voltage.
Quiescent Current vs.
FIGURE 2-30:
Load Transient PWM Mode.
DS20006177A-page 10
2019 Microchip Technology Inc.
MIC2205
FIGURE 2-31:
Load Transient LDO Mode.
FIGURE 2-34:
Transient.
PWM Mode to LDO Mode
FIGURE 2-32:
Mode.
Enable Transient PWM
FIGURE 2-35:
Transient.
LDO Mode to PWM Mode
FIGURE 2-33:
Mode.
Enable Transient LDO
FIGURE 2-36:
PWM Waveform.
2019 Microchip Technology Inc.
DS20006177A-page 11
MIC2205
3.0
PIN DESCRIPTIONS
The descriptions of the pins are listed in Table 3-1.
TABLE 3-1:
PIN FUNCTION TABLE
Pin Number
Pin Name
Description
1
AGND
2
LDO
LDO (Output): Connect to VOUT for LDO mode operation.
3
BIAS
Internal circuit bias supply. Must be de-coupled to signal ground with a 0.1 μF
capacitor and should not be loaded.
4
AVIN
Analog Supply Voltage (Input): Supply voltage for the analog control circuitry and
LDO input power. Requires bypass capacitor to GND.
Analog (Signal) Ground.
5
FB
Feedback. Input to the error amplifier. For the adjustable option, connect to the
external resistor divider network to set the output voltage. For fixed output voltage
options, connect the feed forward capacitor between this pin and VOUT; the internal
resistor network sets the output voltage.
6
EN
Enable (Input). Logic low will shut down the device, reducing the quiescent current
to less than 5 μA.
7
LOWQ
Enable LDO Mode (Input): Logic low enables the internal LDO and disables the
PWM operation. Logic high enables the PWM mode and disables the LDO mode.
8
VIN
Supply Voltage (Input): Supply voltage for the internal switches and drivers.
Switch (Output): Internal power MOSFET output switches.
9
SW
10
PGND
EP
GND
DS20006177A-page 12
Power Ground.
Ground, backside pad.
2019 Microchip Technology Inc.
MIC2205
4.0
FUNCTIONAL DESCRIPTION
4.1
VIN
VIN provides power to the MOSFETs for the switch
mode regulator section, along with the current limiting
sensing. Due to the high switching speeds, a 1 μF
capacitor is recommended close to VIN and the power
ground (PGND) pin for bypassing.
4.2
LDO
The LDO pin is the output of the linear regulator and
should be connected to the output. In LOWQ mode
(LOWQ < 1.5V), the LDO provides the output voltage.
In PWM mode (LOWQ > 1.5V) the LDO pin is high
impedance.
4.4
EN
The enable pin provides a logic level control of the
output. In the off state, supply current of the device is
greatly reduced (typically
很抱歉,暂时无法提供与“MIC2205-1.3YML-TR”相匹配的价格&库存,您可以联系我们找货
免费人工找货