MIC39100/1/2
1A, Low Voltage, Low Dropout Regulator
with Reversed-Battery Protection
Features
General Description
• Fixed and Adjustable Output Voltages to 1.24V
• 410 mV Typical Dropout at 1A Load
- Best Recommended for 3.0V to 2.5V Conversion
- Best Recommended for 2.5V to 1.8V Conversion
• 1A Minimum Guaranteed Output Current
• 1% Initial Accuracy
• Low Ground Current
• Current-Limiting and Thermal-Shutdown
Protection
• Reversed-Battery and Reversed-Leakage
Protection
• Fast Transient Response
• Low Profile SOT-223 Package
• Power SO-8 Package
The MIC39100, MIC39101, and MIC39102 are 1A low
dropout linear voltage regulators that provide low
voltage, high current output from an extremely small
package. The MIC39100/1/2 offers extremely low
dropout (typically 410 mV at 1A) and low ground
current (typically 11 mA at 1A).
Applications
•
•
•
•
•
•
LDO Linear Regulator for PC Add-In Cards
High-Efficiency Linear Power Supplies
SMPS Post Regulator
Multimedia and PC Processor Supplies
Battery Chargers
Low Voltage Microcontrollers and Digital Logic
The MIC39100 is a fixed output regulator offered in the
SOT-223 package. The MIC39101 and MIC39102 are
fixed and adjustable regulators, respectively, in a
thermally enhanced 8-lead SOIC package.
The MIC39100/1/2 is ideal for PC add-in cards that
need to convert from standard 5V to 3.3V, 3.3V to 2.5V,
or 2.5V to 1.8V. A guaranteed maximum dropout
voltage of 630 mV over all operating conditions allows
the MIC39100/1/2 to provide 2.5V from a supply as low
as 3.13V and 1.8V from a supply as low as 2.43V.
The MIC39100/1/2 is fully protected with overcurrent
limiting, thermal-shutdown, and reverse-battery
protection. Fixed voltages of 5.0V, 3.3V, 2.5V, and 1.8V
are available on MIC39100/1 with adjustable output
voltages to 1.24V on MIC39102.
Package Types
MIC39100-XX (FIXED)
SOT-223 (S)
(Top View)
GND
TAB
1
IN
2
3
GND OUT
2017 Microchip Technology Inc.
MIC39102 (ADJ.)
SOIC-8 (M)
(Top View)
MIC39101-XX (FIXED)
SOIC-8 (M)
(Top View)
EN 1
8 GND
EN 1
8 GND
IN 2
7 GND
IN 2
7 GND
OUT 3
6 GND
OUT 3
6 GND
FLG 4
5 GND
ADJ 4
5 GND
DS20005834A-page 1
MIC39100/1/2
Typical Application Circuits
2.5V/1A Regulator
MIC39100
VIN
3.3V
IN
OUT
2.5V
10μF
TANTALUM
GND
2.5V/1A Regulator with Error Flag
100k
ERROR FLAG
OUTPUT
MIC39101
VIN
3.3V
IN
2.5V
OUT
R1
ENABLE
SHUTDOWN
EN
FLG
GND
10μF
TANTALUM
1.5V/1A Adjustable Regulator
VIN
2.5V
ENABLE
SHUTDOWN
DS20005834A-page 2
MIC39102
IN
OUT
1.5V
R1
EN
ADJ
GND
R2
10μF
TANTALUM
2017 Microchip Technology Inc.
MIC39100/1/2
Functional Block Diagrams
MIC39100 Fixed Regulator
OU T
IN
O.V. ILIMIT
REFERENCE
1.240V
18V
THERMAL
SHUTDOWN
MIC39100
GND
MIC39101 Fixed Regulator
with Flag and Enable
OU T
IN
O.V. ILIMIT
1.180V
FL G
REFERENCE
18V
1.240V
EN
THERMAL
SHUTDOWN
GND
MIC39101
MIC39102 Adjustable Regulator
OU T
IN
O.V. ILIMIT
18V
1.240V
REFERENCE
ADJ
EN
THERMAL
SHUTDOWN
MIC39102
2017 Microchip Technology Inc.
GND
DS20005834A-page 3
MIC39100/1/2
1.0
ELECTRICAL CHARACTERISTICS
Absolute Maximum Ratings †
Supply Voltage (VIN).................................................................................................................................... –20V to +20V
Enable Voltage (VEN) ................................................................................................................................................+20V
ESD Rating ............................................................................................................................................................ Note 1
Maximum Power Dissipation (PD(MAX)) .................................................................................................................. Note 2
Operating Ratings ‡
Supply Voltage (VIN)................................................................................................................................. +2.25V to +16V
Enable Voltage (VEN) ................................................................................................................................................+16V
† Notice: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device.
This is a stress rating only and functional operation of the device at those or any other conditions above those indicated
in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended
periods may affect device reliability.
‡ Notice: The device is not guaranteed to function outside its operating ratings.
Note 1: Devices are ESD sensitive. Handling precautions are recommended. Human body model, 1.5 kΩ in series
with 100 pF.
2: PD(MAX) = (TJ(MAX) – TA) ÷ θJA, where θJA depends upon the printed circuit layout (see Application Information).
TABLE 1-1:
ELECTRICAL CHARACTERISTICS
Electrical Characteristics: VIN = VOUT + 1V; VEN = 2.25V; TJ = +25°C, bold values indicate –40°C ≤ TJ ≤ +125°C,
unless noted. Note 1
Parameter
Symbol
Output Voltage
VOUT
Line Regulation
Load Regulation
Output Voltage Temperature
Coefficient
Dropout Voltage, Note 3
Ground Current, Note 4
Current Limit
Min.
Typ.
Max.
–1
—
1
Units
Conditions
IOUT = 10 mA
%
10 mA ≤ IOUT ≤ 1A,
VOUT +1V ≤ VIN ≤ 8V
–2
—
2
—
—
0.06
0.5
%
IOUT = 10 mA,
VOUT + 1V ≤ VIN ≤ 16V
—
—
0.2
1
%
VIN = VOUT + 1V,
10 mA ≤ IOUT ≤ 1A
∆VOUT/
∆T
—
40
100
ppm/°C
—
140
—
275
—
—
300
500
VDO
IGND
IOUT(LIM)
—
410
200
IOUT = 100 mA, ∆VOUT = –1%
250
mV
550
—
400
—
4
—
—
6.5
—
—
11
20
—
1.8
2.5
—
—
0.8
2.25
—
—
IOUT = 500 mA, ∆VOUT = –1%
IOUT = 750 mA, ∆VOUT = –1%
IOUT = 1A, ∆VOUT = –1%
630
—
Note 2
µA
IOUT = 100 mA, VIN = VOUT + 1V
mA
IOUT = 750 mA, VIN = VOUT + 1V
IOUT = 500 mA, VIN = VOUT + 1V
IOUT = 1A, VIN = VOUT + 1V
A
VOUT = 0V, VIN = VOUT + 1V
Enable Input
Enable Input Voltage
DS20005834A-page 4
VEN
V
Logic LOW (Off)
Logic HIGH (On)
2017 Microchip Technology Inc.
MIC39100/1/2
TABLE 1-1:
ELECTRICAL CHARACTERISTICS (CONTINUED)
Electrical Characteristics: VIN = VOUT + 1V; VEN = 2.25V; TJ = +25°C, bold values indicate –40°C ≤ TJ ≤ +125°C,
unless noted. Note 1
Parameter
Enable Input Current
Symbol
IEN
Min.
Typ.
Max.
1
15
30
—
—
75
—
—
2
—
—
4
Units
Conditions
VEN = 2.25V
µA
VEN = 0.8V
Flag Output
Output Leakage Voltage
IFLG(LEAK)
—
0.01
Output Low Voltage
VFLG(DO)
—
210
93
—
Low Threshold
High Threshold
VFLG
Hysteresis
1
2
300
400
µA
VOH = 16V
mV
VIN = 2.250V, IOL = 250 µA, Note 5
—
—
—
99.2
—
1
—
% of VOUT
%
% of VOUT
—
MIC39102 Only
1.228
Reference Voltage
—
1.215
1.203
1.240
—
Adjust Pin Bias Current
—
—
40
Reference Voltage
Temperature Coefficient
—
—
20
Adjust Pin Bias Current
Temperature Coefficient
—
—
0.1
Note 1:
2:
3:
4:
5:
6:
1.252
1.265
V
Note 6
1.277
80
IOUT = 10 mA
nA
—
—
ppm/°C
—
—
nA/°C
—
120
Specification for packaged product only.
Output voltage temperature coefficient is ∆VOUT(WORST CASE) ÷ (TJ(MAX) – TJ(MIN)), where TJ(MAX) =
+125°C and TJ(MIN) = –40°C.
VDO = VIN – VOUT when VOUT decreases to 99% of its nominal output voltage with VIN = VOUT + 1V. For
output voltages below 2.25V, dropout voltage is the input-to-output voltage differential with the minimum
input voltage being 2.25V. Minimum input operating voltage is 2.25V.
IGND is the quiescent current (IIN = IGND + IOUT).
For a 2.5V device, VIN = 2.250V (device is in dropout).
VREF ≤ VOUT ≤ (VIN – 1V), 2.25V ≤ VIN ≤ 16V, 10 mA ≤ IL ≤ 1A, TJ = TMAX.
2017 Microchip Technology Inc.
DS20005834A-page 5
MIC39100/1/2
TEMPERATURE SPECIFICATIONS (Note 1)
Parameters
Sym.
Min.
Typ.
Max.
Units
Conditions
Junction Operating Temperature
Range
TJ
–40
—
+125
°C
Storage Temperature Range
TS
–65
—
+150
°C
—
Lead Temperature
—
—
—
+260
°C
Soldering, 5s
Thermal Resistance SOT-223
JC
—
15
—
°C/W
—
Thermal Resistance SOIC-8
JC
—
20
—
°C/W
—
Temperature Ranges
—
Package Thermal Resistances
Note 1:
The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable
junction temperature and the thermal resistance from junction to air (i.e., TA, TJ, JA). Exceeding the
maximum allowable power dissipation will cause the device operating junction temperature to exceed the
maximum +125°C rating. Sustained junction temperatures above +125°C can impact the device reliability.
DS20005834A-page 6
2017 Microchip Technology Inc.
MIC39100/1/2
2.0
Note:
TYPICAL PERFORMANCE CURVES
The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.
80
80
VIN = 5V
VOUT = 3.3V
VIN = 3.3V
VOUT = 2.5V
60
PSRR (dB)
PSRR (dB)
60
40
20
0
10
IOUT = 1A
COUT = 10μF
CIN = 0μF
100
1K
40
20
10K
100K
IOUT = 1A
COUT = 47μF
CIN = 0μF
0
1M
1E+1
10 1E+2
100 1E+3
1K 1E+4
10K 1E+5
100K 1E+6
1M
FREQUENCY (Hz)
Power Supply Rejection
FIGURE 2-1:
Ratio.
FREQUENCY (Hz)
PSRR (dB)
60
40
20
IOUT = 1A
COUT = 47μF
CIN = 0μF
DROPOUT VOLTAGE (mV)
80
VIN = 5V
VOUT = 3.3V
Power Supply Rejection
FIGURE 2-4:
Ratio.
500
450
100
50
0
OUTPUT CURRENT (mA)
FIGURE 2-5:
Current.
40
IOUT = 1A
COUT = 10μF
CIN = 0μF
0
1E+1
10 1E+2
100 1E+3
1K 1E+4
10K 1E+5
100K 1E+6
1M
DROPOUT VOLTAGE (mV)
60
PSRR (dB)
1E+2
250 1E+3
500 1E+4
750 1E+5
1000 1E+6
1250
Dropout Voltage vs. Output
600
VIN = 3.3V
VOUT = 2.5V
550
Power Supply Rejection
2017 Microchip Technology Inc.
ILOAD = 1A
1.8V
500
3.3V
450
400
2.5V
350
300
1E+2
–40 –20
0 1E+3
20 401E+4
60 1E+5
80 100 120
TEMPERATURE (°C)
FREQUENCY (Hz)
FIGURE 2-3:
Ratio.
TA = 25°C
150
0
80
20
1.8V
200
FREQUENCY (Hz)
Power Supply Rejection
3.3V
250
0
1E+1
10 1E+2
100 1E+3
1K 1E+4
10K 1E+5
100K 1E+6
1M
FIGURE 2-2:
Ratio.
2.5V
400
350
300
FIGURE 2-6:
Temperature.
Dropout Voltage vs.
DS20005834A-page 7
MIC39100/1/2
2.0
2.6
GROUND CURRENT (mA)
OUTPUT VOLTAGE (V)
2.8
ILOAD = 100mA
2.4
2.2
ILOAD = 750mA
2.0
ILOAD = 1A
1.8
1.6
1.4
2
1E+2
1E+3
1E+4
2.3
2.6
2.9
1.8
1.6
1.2
1.0
0.8
ILOAD = 10mA
0.6
0.4
0.2
0
3.5
3.2
ILOAD = 100mA
1.4
0
Dropout Characteristics
FIGURE 2-7:
(2.5V).
GROUND CURRENT (mA)
OUTPUT VOLTAGE (V)
6
8
Ground Current vs. Supply
FIGURE 2-10:
Voltage (2.5V).
ILOAD = 100mA
3.4
3.2
3.0
ILOAD = 750mA
2.8
ILOAD = 1A
2.6
1E+2 1E+3 1E+4
2.8
3.2
3.6
4.0
30
25
15
10
5
0
4.4
ILOAD = 1A
20
0
Dropout Characteristics
FIGURE 2-8:
(3.3V).
2
4
6
8
SUPPLY VOLTAGE (V)
SUPPLY VOLTAGE (V)
Ground Current vs. Supply
FIGURE 2-11:
Voltage (2.5V).
12
10
1.8V
2.5V
8
3.3V
6
4
2
GROUND CURRENT (mA)
1.4
14
GROUND CURRENT (mA)
4
35
3.6
2.4
2
SUPPLY VOLTAGE (V)
SUPPLY VOLTAGE (V)
1.2
1.0
ILOAD = 100mA
0.8
0.6
ILOAD = 10mA
0.4
0.2
0
0
0
200
400
600
800
0
1000
DS20005834A-page 8
Ground Current vs. Output
4
6
8
SUPPLY VOLTAGE (V)
OUTPUT CURRENT (mA)
FIGURE 2-9:
Current.
2
FIGURE 2-12:
Voltage (3.3V).
Ground Current vs. Supply
2017 Microchip Technology Inc.
MIC39100/1/2
20
GROUND CURRENT (mA)
GROUND CURRENT (mA)
50
40
ILOAD = 1A
30
20
10
2
4
6
15
8
10
Ground Current vs. Supply
20 40
60 80 100 120
Ground Current vs.
FIGURE 2-16:
Temperature.
3.40
0.8
ILOAD = 10mA
0.6
3.3V
2.5V
0.4
0.2
1.8V
OUTPUT VOLTAGE (V)
GROUND CURRENT (mA)
0
TEMPERATURE (°C)
1.0
3.35
3.30
3.25
TYPICAL 3.3V DEVICE
0
–40 –20
3.20
0
20 40
–40 –20
60 80 100 120
5.0
4.5
2.5V
4.0
3.3V
3.5
3.0
2.5
1.8V
2.0
1.5
1.0
0.5
ILOAD = 500mA
0
–40 –20
0
20 40
60 80 100 120
Ground Current vs.
2017 Microchip Technology Inc.
60 80 100 120
2.5
3.3V
2.0
1.5
2.5V
1.8V
1.0
0.5
0
–40 –20
0
20 40
60 80 100 120
TEMPERATURE (°C)
TEMPERATURE (°C)
FIGURE 2-15:
Temperature.
20 40
Output Voltage vs.
FIGURE 2-17:
Temperature.
SHORT-CIRCUIT CURRENT (A)
Ground Current vs.
FIGURE 2-14:
Temperature.
0
TEMPERATURE (°C)
TEMPERATURE (°C)
GROUND CURRENT (mA)
3.3V
5
SUPPLY VOLTAGE (V)
FIGURE 2-13:
Voltage (3.3V).
1.8V
2.5V
0
–40 –20
0
0
ILOAD = 1A
FIGURE 2-18:
Temperature.
Short-Circuit vs.
DS20005834A-page 9
MIC39100/1/2
6
VOUT = 2.5V
COUT = 10μF
FLAG VOLTAGE (V)
VIN = 5V
5
OUTPUT
VOLTAGE
(200mV/div)
FLAG HIGH (OK)
4
3
1A
2
FLAG LOW (FAULT)
1
0
10
100
1K 10K 100K
1M 10M
LOAD
CURRENT
(500mA/div)
100mA
RESISTANCE ()
FIGURE 2-19:
Error Flag Voltage vs.
Pull-Up Resistor Value.
TIME (250μs/div)
FIGURE 2-22:
Load Transient Response.
ENABLE CURRENT (μA)
12
VIN = VOUT + 1V
VEN = 2.4V
10
8
VOUT = 2.5V
COUT = 47μF
OUTPUT
VOLTAGE
(200mV/div)
6
4
1A
2
0
–40 –20 0 20 40 60 80 100 120 140
LOAD
CURRENT
(500mA/div)
10mA
TEMPERATURE (°C)
Enable Current vs.
FIGURE 2-20:
Temperature.
TIME (500μs/div)
FIGURE 2-23:
Load Transient Response.
FLAG VOLTAGE (mV)
250
200
VOUT = 2.5V
COUT = 10μF
FLAG-LOW
VOLTAGE
OUTPUT
VOLTAGE
(50mV/div)
150
100
VIN = 2.25V
RPULL-UP = 22k
50
INPUT
VOLTAGE
(2V/div)
0
–40 –20 0 20 40 60 80 100 120 140
TEMPERATURE (°C)
FIGURE 2-21:
Temperature.
DS20005834A-page 10
Flag-Low Voltage vs.
TIME (25μs/div)
FIGURE 2-24:
Line Transient Response.
2017 Microchip Technology Inc.
MIC39100/1/2
3.0
PIN DESCRIPTIONS
The descriptions of the pins are listed in Table 3-1.
TABLE 3-1:
PIN FUNCTION TABLE
Pin Number
MIC39100
Pin Number
MIC39101
Pin Number
MIC39102
Pin Name
—
1
1
EN
Enable (Input): CMOS-compatible control input.
Logic HIGH = enable; logic LOW or OPEN =
shutdown.
1
2
2
IN
Supply (Input).
Description
3
3
3
OUT
Regulator Output.
—
4
—
FLG
Flag (Output): Open-collector error flag output.
Active LOW = output undervoltage.
—
—
4
ADJ
Adjustable Input: Feedback input. Connect to
resistive voltage-divider network.
2, TAB
5, 6, 7, 8
5, 6, 7, 8
GND
Ground.
2017 Microchip Technology Inc.
DS20005834A-page 11
MIC39100/1/2
4.0
APPLICATION INFORMATION
The MIC39100/1/2 is a high performance, low dropout
voltage regulator suitable for moderate to high current
voltage regulator applications. Its 630 mV dropout
voltage at full load and over temperature makes it
especially valuable in battery-powered systems and as
high efficiency noise filters in post-regulator
applications. Unlike older NPN-pass transistor designs,
where the minimum dropout voltage is limited by the
base-to-emitter voltage drop and collector-to-emitter
saturation voltage, dropout performance of the PNP
output of these devices is limited only by the low VCE
saturation voltage.
A trade-off for the low dropout voltage is a varying base
drive requirement that reduces the drive requirement to
only 2% of the load current.
The MIC39100/1/2 regulator is fully protected from
damage due to fault conditions. Linear current limiting
is provided. Output current during overload conditions
is constant. Thermal shutdown disables the device
when the die temperature exceeds the maximum safe
operating temperature. Transient protection allows
device (and load) survival even when the input voltage
spikes above and below nominal. The output structure
of these regulators allows voltages in excess of the
desired output voltage to be applied without reverse
current flow.
The value of the output capacitor can be increased
without limit. Higher capacitance values help to
improve transient response and ripple rejection and
reduce output noise.
4.2
Input Capacitor
An input capacitor of 1 µF or greater is recommended
when the device is more than four inches away from
the bulk ac supply capacitance or when the supply is a
battery. Small, surface mount, ceramic chip capacitors
can be used for bypassing. Larger values will help to
improve ripple rejection by bypassing the input to the
regulator, further improving the integrity of the output
voltage.
4.3
Error Flag
The MIC39101 features an error flag (FLG) that
monitors the output voltage and signals an error
condition when this voltage drops 5% below its
expected value. The error flag is an open-collector
output that pulls low under fault conditions and may
sink up to 10 mA. Low output voltage signifies a
number of possible problems, including an overcurrent
fault (the device is in current-limit) or low input voltage.
The flag output is inoperative during overtemperature
conditions. A pull-up resistor from FLG to either VIN or
VOUT is required for proper operation. For information
regarding the minimum and maximum values of pull-up
resistance, refer to Figure 2-19.
MIC39100-x.x.
VIN
IN
CIN
FIGURE 4-1:
4.1
OUT
GND
VOUT
COUT
Capacitor Requirements.
Output Capacitor
The MIC39100/1/2 requires an output capacitor to
maintain stability and improve transient response.
Proper capacitor selection is important to ensure
proper operation. The MIC39100/1/2 output capacitor
selection is dependent upon the equivalent series
resistance (ESR) of the output capacitor to maintain
stability. When the output capacitor is 10 µF or greater,
the output capacitor should have an ESR less than 2Ω.
This will improve transient response as well as promote
stability. Ultra-low ESR capacitors (