MIC7111
1.8V to 11V, 15 μA, 25 kHz GBW, Rail-to-Rail Input
and Output Operational Amplifier
Features
General Description
•
•
•
•
•
•
•
•
•
The MIC7111 is a low-power operational amplifier with
rail-to-rail inputs and outputs. The device operates from
a 1.8V to 11V single supply or an ±0.9V to ±5.5V dual
supply. The device consumes a low 15 μA of current
from a 1.8V supply and 25 μA from a 10V supply. The
device features a unity gain bandwidth of 25 kHz and
swings within 1 mV of either the supply rail with a
100 kΩ load. The device is capable of sinking and
sourcing 25 mA of current from a 1.8V supply and up to
200 mA from a 10V supply. The device is available in
the cost effective SOT23-5 package.
1.8V to 11V Single Supply Operation
±0.9V to ±5.5V Dual Supply Operation
Low 15 μA Supply Current at 1.8V
25 kHz Gain Bandwidth
1 mV Input Offset Voltage (Typical)
1 pA Input Bias Current (Typical)
0.01 pA Input Offset Current (Typical)
Input-Referred Noise is 110 nV/√Hz at 1 kHz
Output Swing to within 1 mV of Rails with 1.8V
Supply And 100 kΩ Load
• Suitable for Driving Capacitive Loads
• Cost Effective SOT23-5 Package
Applications
•
•
•
•
•
Wireless and Cellular Communications
Gaas RF Bias Amplifier
Current Sensing for Battery Chargers
Transducer Linearization and Interface
Portable Computing
Package Type
MIC7111
SOT23-5 (M5)
(Top View)
IN+ V+ OUT
2
1
3
PART
IDENTIFICATION
MIC7111
Functional Configuration
IN+ V+ OUT
3
2
1
A13
4
IN–
5
V–
2020 Microchip Technology Inc.
4
IN–
5
V–
DS20006316A-page 1
MIC7111
1.0
ELECTRICAL CHARACTERISTICS
Absolute Maximum Ratings †
Supply Voltage, (VV+ –VV–) ...................................................................................................................................... +12V
Differential Input Voltage, (VIN+ –VIN–) .......................................................................................................... ±(VV+ –VV–)
I/O Pin Voltage, (VIN, VOUT), (Note 1) .......................................................................................... VV+ +0.3V to VV––0.3V
ESD Protection On All Pins, (Note 2) .......................................................................................................................±2 kV
Operating Ratings ††
Supply Voltage, (VV+ –VV–) ........................................................................................................................ +1.8V to +11V
Maximum Power Dissipation .................................................................................................................................. Note 3
† Notice: Absolute maximum ratings indicate limits beyond which damage to the component may occur. Electrical
specifications do not apply when operating the device outside its recommended operating ratings.
†† Notice: The device is not guaranteed to function outside its operating ratings.
Note 1: I/O pin voltage is any external voltage to which an input or output is referenced.
2: Devices are ESD protected, however, handling precautions are recommended. All limits guaranteed by testing on statistical analysis. Human body model, 1.5 kΩ in series with 100 pF.
3: The maximum allowable power dissipation is a function of the maximum junction temperature, TJ(MAX); the
junction-to-ambient thermal resistance, θJA; and the ambient temperature, TA. The maximum allowable
power dissipation at any ambient temperature is calculated using PD = (TJ(MAX) – TA) ÷ θJA. Exceeding the
maximum allowable power dissipation will result in excessive die temperature. See Temperature Specifications section.
DC ELECTRICAL CHARACTERISTICS (1.8V)
Electrical Characteristics: Unless otherwise indicated, VV+ = +1.8V; VV– = 0V; VCM = VOUT = VV+/2; RL = 1 MΩ;
TJ = +25°C.
Parameters
Sym.
Input Offset Voltage
VOS
Input Offset Voltage
Temperature Drift
TCVOS
Input Bias Current
IB
Min.
Typ.
Max.
Units
—
0.9
7
mV
—
—
—
9
mV
–40°C ≤ TJ ≤ +85°C
—
2.0
—
μV/C
—
1
10
—
—
500
0.01
0.5
pA
Conditions
—
—
–40°C ≤ TJ ≤ +85°C
—
Input Offset Current
IOS
Input Resistance
RIN
—
>10
—
TΩ
—
Positive Power Supply
Rejection Ratio
+PSRR
60
85
—
dB
1.8V ≤ VV+ ≤ 5V, VV– = 0V,
VCM = VOUT = 0.9V
Negative Power Supply
Rejection Ratio
–PSRR
60
85
—
dB
–1.8V ≤ VV– ≤ –5V, VV+ = 0V,
VCM = VOUT = –0.9V
Common-Mode Rejection
Ratio
CMRR
50
70
—
dB
VCM = –0.2V to +2.0V
CIN
—
3
—
pF
—
Common-Mode Input
Capacitance
DS20006316A-page 2
—
75
pA
–40°C ≤ TJ ≤ +85°C
2020 Microchip Technology Inc.
MIC7111
DC ELECTRICAL CHARACTERISTICS (1.8V) (CONTINUED)
Electrical Characteristics: Unless otherwise indicated, VV+ = +1.8V; VV– = 0V; VCM = VOUT = VV+/2; RL = 1 MΩ;
TJ = +25°C.
Parameters
Output Voltage Swing
Output Short-Circuit
Current (Note 1)
Voltage Gain
Supply Current
Note 1:
Sym.
Min.
Typ.
Max.
—
0.14
1
Output HIGH, RL = 100 kΩ,
Specified as VV+ – VOUT
—
—
1
Output HIGH, RL = 100 kΩ,
Specified as VV+ – VOUT
–40°C ≤ TJ ≤ +85°C
—
0.14
1
Output LOW, RL = 100 kΩ
—
—
1
Output LOW, RL = 100 kΩ
–40°C ≤ TJ ≤ +85°C
—
6.8
23
Output HIGH, RL = 2 kΩ,
Specified as VV+ – VOUT
—
—
34
Output HIGH, RL = 2 kΩ,
Specified as VV+ – VOUT
–40°C ≤ TJ ≤ +85°C
—
6.8
23
Output LOW, RL = 2 kΩ
—
—
34
Output LOW, RL = 2 kΩ
–40°C ≤ TJ ≤ +85°C
15
25
—
15
25
—
—
400
—
—
400
—
—
15
35
VOUT
ISC
AVOL
IS
Units
mV
mA
V/mV
μA
Conditions
Sourcing, VOUT = 0V
Sinking, VOUT = 1.8V
Sourcing
Sinking
VV+ = 1.8V, VOUT = VV+/2
Short circuit may cause device to exceed maximum allowable power dissipation.
AC ELECTRICAL CHARACTERISTICS (1.8V)
Electrical Characteristics: Unless otherwise indicated, VV+ = +1.8V; VV– = 0V; VCM = VOUT = VV+/2; RL = 1 MΩ;
TJ = +25°C.
Parameters
Slew Rate
Gain Bandwidth Product
Sym.
Min.
Typ.
Max.
Units
Conditions
SR
—
0.015
—
V/μs
Voltage follower, 1V step, RL
= 100 kΩ at 0.9V,
VOUT = 1VPP
GBWP
—
25
—
kHz
—
DC ELECTRICAL CHARACTERISTICS (2.7V)
Electrical Characteristics: Unless otherwise indicated, VV+ = +2.7V; VV– = 0V; VCM = VOUT = VV+/2; RL = 1 MΩ;
TJ = +25°C.
Parameters
Sym.
Input Offset Voltage
VOS
Input Offset Voltage
Temperature Drift
TCVOS
Note 1:
Min.
Typ.
Max.
Units
Conditions
—
0.9
7
mV
—
—
—
9
mV
–40°C ≤ TJ ≤ +85°C
—
2.0
—
μV/C
—
Short circuit may cause device to exceed maximum allowable power dissipation.
2020 Microchip Technology Inc.
DS20006316A-page 3
MIC7111
DC ELECTRICAL CHARACTERISTICS (2.7V) (CONTINUED)
Electrical Characteristics: Unless otherwise indicated, VV+ = +2.7V; VV– = 0V; VCM = VOUT = VV+/2; RL = 1 MΩ;
TJ = +25°C.
Parameters
Input Bias Current
Sym.
IB
Min.
Typ.
Max.
—
1
10
—
—
500
0.01
0.5
Units
pA
Conditions
—
–40°C ≤ TJ ≤ +85°C
—
Input Offset Current
IOS
Input Resistance
RIN
—
>10
—
TΩ
—
Positive Power Supply
Rejection Ratio
+PSRR
60
90
—
dB
2.7V ≤ VV+ ≤ 5V, VV– = 0V,
VCM = VOUT = 1.35V
Negative Power Supply
Rejection Ratio
–PSRR
60
90
—
dB
–2.7V ≤ VV– ≤ –5V, VV+ = 0V,
VCM = VOUT = –1.35V
Common-Mode Rejection
Ratio
CMRR
52
75
—
dB
VCM = –0.2V to +2.9V
CIN
—
3
—
pF
—
—
0.2
1
Output HIGH, RL = 100 kΩ,
Specified as VV+ – VOUT
—
—
1
Output HIGH, RL = 100 kΩ,
Specified as VV+ – VOUT
–40°C ≤ TJ ≤ +85°C
—
0.2
1
Output LOW, RL = 100 kΩ
—
—
1
Output LOW, RL = 100 kΩ
–40°C ≤ TJ ≤ +85°C
—
10
33
Output HIGH, RL = 2 kΩ,
Specified as VV+ – VOUT
—
—
50
Output HIGH, RL = 2 kΩ,
Specified as VV+ – VOUT
–40°C ≤ TJ ≤ +85°C
—
10
33
Output Low, RL = 2 kΩ
—
—
50
Output Low, RL = 2 kΩ
–40°C ≤ TJ ≤ +85°C
30
50
—
30
50
—
—
400
—
—
400
—
—
17
42
Common-Mode Input
Capacitance
Output Voltage Swing
Output Short-Circuit
Current (Note 1)
Voltage Gain
Supply Current
Note 1:
—
75
VOUT
ISC
AVOL
IS
pA
mV
mA
V/mV
μA
–40°C ≤ TJ ≤ +85°C
Sourcing, VOUT = 0V
Sinking, VOUT = 2.7V
Sourcing
Sinking
VV+ = 2.7V, VOUT = VV+/2
Short circuit may cause device to exceed maximum allowable power dissipation.
DS20006316A-page 4
2020 Microchip Technology Inc.
MIC7111
AC ELECTRICAL CHARACTERISTICS (2.7V)
Electrical Characteristics: Unless otherwise indicated, VV+ = +2.7V; VV– = 0V; VCM = VOUT = VV+/2; RL = 1 MΩ;
TJ = +25°C.
Parameters
Slew Rate
Gain Bandwidth Product
Sym.
Min.
Typ.
Max.
Units
Conditions
SR
—
0.015
—
V/μs
Voltage follower, 1V step,
RL = 100 kΩ @ 1.35V,
VOUT = 1VPP
GBWP
—
25
—
kHz
—
DC ELECTRICAL CHARACTERISTICS (5.0V)
Electrical Characteristics: Unless otherwise indicated, VV+ = +5.0V; VV– = 0V; VCM = VOUT = VV+/2; RL = 1 MΩ;
TJ = +25°C.
Parameters
Sym.
Input Offset Voltage
VOS
Input Offset Voltage
Temperature Drift
TCVOS
Input Bias Current
IB
Min.
Typ.
Max.
Units
—
0.9
7
mV
—
—
—
9
mV
–40°C ≤ TJ ≤ +85°C
—
2.0
—
μV/C
—
1
10
—
—
500
0.01
0.5
pA
Conditions
—
—
–40°C ≤ TJ ≤ +85°C
—
Input Offset Current
IOS
Input Resistance
RIN
—
>10
—
TΩ
—
Positive Power Supply
Rejection Ratio
+PSRR
65
95
—
dB
5V ≤ VV+ ≤ 10V, VV– = 0V,
VCM = VOUT = 2.5V
Negative Power Supply
Rejection Ratio
–PSRR
65
95
—
dB
–5V ≤ VV– ≤ –10V, VV+ = 0V,
VCM = VOUT = –2.5V
Common-Mode Rejection
Ratio
CMRR
57
80
—
dB
VCM = –0.2V to +5.2V
CIN
—
3
—
pF
—
—
0.3
1.5
Output HIGH, RL = 100 kΩ,
Specified as VV+ – VOUT
—
—
1.5
Output HIGH, RL = 100 kΩ,
Specified as VV+ – VOUT
–40°C ≤ TJ ≤ +85°C
—
0.3
1.5
Output LOW, RL = 100 kΩ
—
—
1.5
Output LOW, RL = 100 kΩ
–40°C ≤ TJ ≤ +85°C
Common-Mode Input
Capacitance
Output Voltage Swing
2020 Microchip Technology Inc.
—
75
VOUT
pA
mV
–40°C ≤ TJ ≤ +85°C
—
15
50
Output HIGH, RL = 2 kΩ,
Specified as VV+ – VOUT
—
—
75
Output HIGH, RL = 2 kΩ,
Specified as VV+ – VOUT
–40°C ≤ TJ ≤ +85°C
—
15
50
Output LOW, RL = 2 kΩ
—
—
75
Output LOW, RL = 2 kΩ
–40°C ≤ TJ ≤ +85°C
DS20006316A-page 5
MIC7111
DC ELECTRICAL CHARACTERISTICS (5.0V) (CONTINUED)
Electrical Characteristics: Unless otherwise indicated, VV+ = +5.0V; VV– = 0V; VCM = VOUT = VV+/2; RL = 1 MΩ;
TJ = +25°C.
Parameters
Output Short-Circuit
Current (Note 1)
Voltage Gain
Supply Current
Note 1:
Sym.
ISC
AVOL
IS
Min.
Typ.
Max.
80
100
—
80
100
—
—
500
—
—
500
—
—
20
50
Units
mA
V/mV
μA
Conditions
Sourcing, VOUT = 0V
Sinking, VOUT = 5V
Sourcing
Sinking
VV+ = 5V, VOUT = VV+/2
Short circuit may cause device to exceed maximum allowable power dissipation.
AC ELECTRICAL CHARACTERISTICS (5.0V)
Electrical Characteristics: Unless otherwise indicated, VV+ = +5.0V; VV– = 0V; VCM = VOUT = VV+/2; RL = 1 MΩ;
TJ = +25°C.
Parameters
Slew Rate
Gain Bandwidth Product
Sym.
Min.
Typ.
Max.
Units
Conditions
SR
—
0.02
—
V/μs
Voltage follower, 1V step,
RL = 100 kΩ @ 1.5V,
VOUT = 1VPP
GBWP
—
25
—
kHz
Sourcing
DC ELECTRICAL CHARACTERISTICS (10.0V)
Electrical Characteristics: Unless otherwise indicated, VV+ = +10.0V; VV– = 0V; VCM = VOUT = VV+/2; RL = 1 MΩ;
TJ = +25°C.
Parameters
Sym.
Input Offset Voltage
VOS
Input Offset Voltage
Temperature Drift
TCVOS
Input Bias Current
IB
Min.
Typ.
Max.
Units
—
0.9
7
mV
—
—
—
9
mV
–40°C ≤ TJ ≤ +85°C
—
2.0
—
μV/C
—
1
10
—
—
500
0.01
0.5
pA
Conditions
—
—
–40°C ≤ TJ ≤ +85°C
—
Input Offset Current
IOS
Input Resistance
RIN
—
>10
—
TΩ
—
Positive Power Supply
Rejection Ratio
+PSRR
65
95
—
dB
5V ≤ VV+ ≤ 10V, VV– = 0V,
VCM = VOUT = 2.5V
Negative Power Supply
Rejection Ratio
–PSRR
65
95
—
dB
–5V ≤ VV– ≤ –10V, VV+ = 0V,
VCM = VOUT = –2.5V
Common-Mode Rejection
Ratio
CMRR
60
85
—
dB
VCM = –0.2V to +10.2V
CIN
—
3
—
pF
—
Common-Mode Input
Capacitance
DS20006316A-page 6
—
75
pA
–40°C ≤ TJ ≤ +85°C
2020 Microchip Technology Inc.
MIC7111
DC ELECTRICAL CHARACTERISTICS (10.0V) (CONTINUED)
Electrical Characteristics: Unless otherwise indicated, VV+ = +10.0V; VV– = 0V; VCM = VOUT = VV+/2; RL = 1 MΩ;
TJ = +25°C.
Parameters
Output Voltage Swing
Output Short-Circuit
Current (Note 1)
Voltage Gain
Supply Current
Note 1:
Sym.
Min.
Typ.
Max.
—
0.45
2.5
Output HIGH, RL = 100 kΩ,
Specified as VV+ – VOUT
—
—
2.5
Output HIGH, RL = 100 kΩ,
Specified as VV+ – VOUT
–40°C ≤ TJ ≤ +85°C
—
0.45
2.5
Output LOW, RL = 100 kΩ
—
—
2.5
Output LOW, RL = 100 kΩ
–40°C ≤ TJ ≤ +85°C
—
24
80
Output HIGH, RL = 2 kΩ,
Specified as VV+ –VOUT
—
—
120
Output HIGH, RL = 2 kΩ,
Specified as VV+ –VOUT
–40°C ≤ TJ ≤ +85°C
—
24
80
Output LOW, RL = 2 kΩ
—
—
120
Output LOW, RL = 2 kΩ
–40°C ≤ TJ ≤ +85°C
100
200
—
100
200
—
—
500
—
—
500
—
—
25
65
VOUT
ISC
AVOL
IS
Units
mV
mA
V/mV
μA
Conditions
Sourcing, VOUT = 0V
Sinking, VOUT = 10V
Sourcing
Sinking
VV+ = 10V, VOUT = VV+/2
Short circuit may cause device to exceed maximum allowable power dissipation.
AC ELECTRICAL CHARACTERISTICS (10.0V)
Electrical Characteristics: Unless otherwise indicated, VV+ = +10.0V; VV– = 0V; VCM = VOUT = VV+/2; RL = 1 MΩ;
TJ = +25°C.
Parameters
Slew Rate
Gain Bandwidth Product
Sym.
Min.
Typ.
Max.
Units
Conditions
SR
—
0.02
—
V/μs
Voltage follower, 1V step,
RL = 100 kΩ @ 1.35V,
VOUT = 1VPP
GBWP
—
25
—
kHz
—
Phase Margin
ϕM
—
50
—
°
—
—
Gain Margin
GM
—
15
—
dB
Input-Referred Voltage
Noise
eN
—
110
—
nV/√Hz
f = 1 kHz, VCM = 1.0V
Input-Referred Current
Noise
iN
—
0.03
—
pA/√Hz
f = 1 kHz
2020 Microchip Technology Inc.
DS20006316A-page 7
MIC7111
TEMPERATURE SPECIFICATIONS
Parameters
Sym.
Min.
Typ.
Max.
Units
Conditions
Junction Operating Temperature
TJ
–40
—
+85
°C
Storage Temperature Range
TA
–65
—
+150
°C
—
Lead Temperature
TS
—
+260
—
°C
Soldering, 10s
JA
—
252
—
°C/W
Temperature Ranges
—
Package Thermal Resistances
Thermal Resistance, SOT-23-5Ld
DS20006316A-page 8
—
2020 Microchip Technology Inc.
MIC7111
2.0
PIN DESCRIPTIONS
The descriptions of the pins are listed in Table 2-1.
TABLE 2-1:
PIN FUNCTION TABLE
Pin Number
Pin Name
1
OUT
Amplifier Output.
2
V+
Positive Supply.
3
IN+
Non-inverting Input.
4
IN–
Inverting Input.
5
V–
Negative Supply.
2020 Microchip Technology Inc.
Description
DS20006316A-page 9
MIC7111
3.0
APPLICATION INFORMATION
3.1
Input Common Mode Voltage
The MIC7111 tolerates input overdrive by at least
300 mV beyond either rail without producing phase
inversion.
If the absolute maximum input voltage is exceeded, the
input current should be limited to ±5 mA maximum to
prevent reducing reliability. A 10 kΩ series input
resistor, used as a current limiter, will protect the input
structure from voltages as large as 50V above the
supply or below ground. See Figure 3-1.
VIN
RIN
10k
FIGURE 3-1:
Protection.
3.2
VOUT
Input Current-Limit
Output Voltage Swing
Sink and source output resistances of the MIC7111 are
equal. Maximum output voltage swing is determined by
the load and the approximate output resistance. The
output resistance is presented in Equation 3-1:
3.3
Driving Capacitative Loads
Driving a capacitive load introduces phase-lag into the
output signal, and this, in turn, reduces op-amp system
phase margin. The application that is least forgiving of
reduced phase margin is a unity gain amplifier. The
MIC7111 can typically drive a 500 pF capacitive load
connected directly to the output when configured as a
unity-gain amplifier.
3.4
Using Large-Value Feedback
Resistors
A large-value feedback resistor (>500 kΩ) can reduce
the phase margin of a system. This occurs when the
feedback resistor acts in conjunction with input
capacitance to create phase lag in the feedback signal.
Input capacitance is usually a combination of input
circuit components and other parasitic capacitance,
such as amplifier input capacitance and stray printed
circuit board capacitance.
Figure 3-2 illustrates a method of compensating phase
lag caused by using a large-value feedback resistor.
Feedback capacitor CFB introduces sufficient phase
lead to overcome the phase lag caused by feedback
resistor RFB and input capacitance CIN. The value of
CFB is determined by first estimating CIN and then
applying the following formula:
EQUATION 3-4:
R IN C IN R FB C FB
EQUATION 3-1:
V DROP
R OUT = ----------------I LOAD
VDROP is the voltage dropped within the amplifier
output stage. VDROP and ILOAD can be determined from
the VO (output swing) portion of the appropriate
electrical characteristics table. ILOAD is equal to the
typical output high voltage minus V+/2 and divided by
RLOAD. For example, using the DC Electrical
Characteristics (5.0V) table, the typical output voltage
drop using a 2 kΩ load (connected to V+/2) is 0.015V,
which produces an ILOAD of:
EQUATION 3-2:
2.5V – 0.015V
------------------------------------ = 1.243mA
2k
CFB
VIN
RIN
RFB
VOUT
CIN
FIGURE 3-2:
Lag.
Canceling Feedback Phase
Because a significant percentage of CIN may be
caused by board layout, it is important to note that the
correct value of CFB may change when changing from
a breadboard to the final circuit layout.
Then:
3.5
EQUATION 3-3:
Some single-supply, rail-to-rail applications for which
the MIC7111 is well suited are shown in the circuit
diagrams of Figure 3-3 through Figure 3-8.
15mV
R OUT = ---------------------- = 12.1 = 12
1.243mA
DS20006316A-page 10
Typical Circuits
2020 Microchip Technology Inc.
MIC7111
V+
1.8V TO 10V
VIN
2
1
V+
0V TO
AV
4
R1
10Nȍ
MIC7111
MIC7111
VOUT
0V TO V+
5
Noninverting Amplifier.
Q1
2N3904
5
{
VCEO = 40V
IC(MAX) = 200mA
RS
10
½W
VIN
= 100mA/V AS SHOWN
RS
IOUT =
Voltage-Controlled Current
VOUT (V)
R4
Nȍ
R2
§
AV = 1 +
R1
0
C1
0.001μF
V+
4
3
Noninverting Amplifier
2
VOUT
0V TO V+
5
FIGURE 3-7:
5
Square Wave Oscillator.
R2
Nȍ
CIN
MIC7111
R1
Nȍ
VOUT = VIN
Voltage Follower/Buffer.
V+
4
2
1
3
V+
5
COUT
RL
VOUT
0V
R3
Nȍ
C1
1μF
FIGURE 3-8:
Amplifier.
2020 Microchip Technology Inc.
VOUT
V+
0V
R4
Nȍ
R3
Nȍ
MIC7111
1
4
2
R2
Nȍ
V+
3
MIC7111
1
VIN (V)
V+
1.8V TO 10V
FIGURE 3-5:
VOUT
0V TO V+
IOUT
1
FIGURE 3-6:
Sink.
FIGURE 3-4:
Behavior.
VIN
0V TO V+
2
CHANGE Q1 AND RS
FOR HIGHER CURRENT
AND/OR DIFFERENT GAIN
V+
0
3
VIN
0V TO 2V
4
R2
91Nȍ
FIGURE 3-3:
V+
1.8V TO 10V
LOAD
3
VS
0.5V TO Q1 VCEO(SUS)
R2 Nȍ –10
R4
AV = –
=
=
R1 Nȍ
Nȍ
AC-Coupled Inverting
DS20006316A-page 11
MIC7111
4.0
PACKAGING INFORMATION
4.1
Package Marking Information
5-Lead SOT-23*
(Front)
XXX
e3
*
A13
5-Lead SOT-23*
Example
NNN
469
(Back)
Legend: XX...X
Y
YY
WW
NNN
Example
Product code or customer-specific information
Year code (last digit of calendar year)
Year code (last 2 digits of calendar year)
Week code (week of January 1 is week ‘01’)
Alphanumeric traceability code
Pb-free JEDEC® designator for Matte Tin (Sn)
This package is Pb-free. The Pb-free JEDEC designator ( e3 )
can be found on the outer packaging for this package.
●, ▲, ▼ Pin one index is identified by a dot, delta up, or delta down (triangle
mark).
Note:
In the event the full Microchip part number cannot be marked on one line, it will
be carried over to the next line, thus limiting the number of available
characters for customer-specific information. Package may or may not include
the corporate logo.
Underbar (_) and/or Overbar (‾) symbol may not be to scale.
DS20006316A-page 12
2020 Microchip Technology Inc.
MIC7111
5-Lead SOT23-5 Package Outline & Recommended Land Pattern
Note:
For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging.
2020 Microchip Technology Inc.
DS20006316A-page 13
MIC7111
NOTES:
DS20006316A-page 14
2020 Microchip Technology Inc.
MIC7111
APPENDIX A:
REVISION HISTORY
Revision A (March 2020)
• Converted Micrel document MIC7111 to Microchip
data sheet template DS20006316A.
• Minor grammatical text changes throughout.
2020 Microchip Technology Inc.
DS20006316A-page 15
MIC7111
NOTES:
DS20006316A-page 16
2020 Microchip Technology Inc.
MIC7111
PRODUCT IDENTIFICATION SYSTEM
To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.
PART NO.
X
XX
-XX
Device
Temperature
Range
Package
Media Type
Device:
MIC7111:
1.8V to 11V, 15 μA, 25 kHz GBW, Rail-to-Rail
Input and Output Operational Amplifier
Temperature
Range:
Y
=
–40C to +85C (Industrial)
Packages:
M5
=
5-Lead SOT-23
Media Type:
TR
=
3,000/Reel
2020 Microchip Technology Inc.
Examples:
a)
MIC7111YM5-TR:
Note 1:
MIC7111, –40°C to +85°C
Temperature Range, 5Lead SOT-23, 3,000/Reel
Tape and Reel identifier only appears in the
catalog part number description. This identifier is
used for ordering purposes and is not printed on
the device package. Check with your Microchip
Sales Office for package availability with the
Tape and Reel option.
DS20006316A-page 17
MIC7111
NOTES:
DS20006316A-page 18
2020 Microchip Technology Inc.
Note the following details of the code protection feature on Microchip devices:
•
Microchip products meet the specification contained in their particular Microchip Data Sheet.
•
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.
•
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
•
Microchip is willing to work with the customer who is concerned about the integrity of their code.
•
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights unless otherwise stated.
Trademarks
The Microchip name and logo, the Microchip logo, Adaptec,
AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT,
chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex,
flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck,
LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi,
Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer,
PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire,
Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST,
SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon,
TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA
are registered trademarks of Microchip Technology Incorporated in
the U.S.A. and other countries.
APT, ClockWorks, The Embedded Control Solutions Company,
EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load,
IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision
Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire,
SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub,
TimePictra, TimeProvider, Vite, WinPath, and ZL are registered
trademarks of Microchip Technology Incorporated in the U.S.A.
Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any
Capacitor, AnyIn, AnyOut, BlueSky, BodyCom, CodeGuard,
CryptoAuthentication, CryptoAutomotive, CryptoCompanion,
CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average
Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial
Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker,
KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM, MPF,
MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach,
Omniscient Code Generation, PICDEM, PICDEM.net, PICkit,
PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple
Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI,
SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC,
USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and
ZENA are trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.
SQTP is a service mark of Microchip Technology Incorporated in
the U.S.A.
The Adaptec logo, Frequency on Demand, Silicon Storage
Technology, and Symmcom are registered trademarks of Microchip
Technology Inc. in other countries.
GestIC is a registered trademark of Microchip Technology Germany
II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in
other countries.
All other trademarks mentioned herein are property of their
respective companies.
© 2020, Microchip Technology Incorporated, All Rights Reserved.
For information regarding Microchip’s Quality Management Systems,
please visit www.microchip.com/quality.
2020 Microchip Technology Inc.
ISBN: 978-1-5224-5737-4
DS20006316A-page 19
Worldwide Sales and Service
AMERICAS
ASIA/PACIFIC
ASIA/PACIFIC
EUROPE
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com
Australia - Sydney
Tel: 61-2-9868-6733
India - Bangalore
Tel: 91-80-3090-4444
China - Beijing
Tel: 86-10-8569-7000
India - New Delhi
Tel: 91-11-4160-8631
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
China - Chengdu
Tel: 86-28-8665-5511
India - Pune
Tel: 91-20-4121-0141
Denmark - Copenhagen
Tel: 45-4485-5910
Fax: 45-4485-2829
China - Chongqing
Tel: 86-23-8980-9588
Japan - Osaka
Tel: 81-6-6152-7160
Finland - Espoo
Tel: 358-9-4520-820
China - Dongguan
Tel: 86-769-8702-9880
Japan - Tokyo
Tel: 81-3-6880- 3770
China - Guangzhou
Tel: 86-20-8755-8029
Korea - Daegu
Tel: 82-53-744-4301
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
China - Hangzhou
Tel: 86-571-8792-8115
Korea - Seoul
Tel: 82-2-554-7200
China - Hong Kong SAR
Tel: 852-2943-5100
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
China - Nanjing
Tel: 86-25-8473-2460
Malaysia - Penang
Tel: 60-4-227-8870
China - Qingdao
Tel: 86-532-8502-7355
Philippines - Manila
Tel: 63-2-634-9065
China - Shanghai
Tel: 86-21-3326-8000
Singapore
Tel: 65-6334-8870
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
China - Shenyang
Tel: 86-24-2334-2829
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Germany - Rosenheim
Tel: 49-8031-354-560
China - Shenzhen
Tel: 86-755-8864-2200
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Israel - Ra’anana
Tel: 972-9-744-7705
China - Suzhou
Tel: 86-186-6233-1526
Taiwan - Taipei
Tel: 886-2-2508-8600
China - Wuhan
Tel: 86-27-5980-5300
Thailand - Bangkok
Tel: 66-2-694-1351
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
China - Xian
Tel: 86-29-8833-7252
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC
Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078
DS20006316A-page 20
China - Xiamen
Tel: 86-592-2388138
China - Zhuhai
Tel: 86-756-3210040
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-72400
Germany - Karlsruhe
Tel: 49-721-625370
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-7288-4388
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820
2020 Microchip Technology Inc.
02/28/20