0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MIC860YC5-TR

MIC860YC5-TR

  • 厂商:

    ACTEL(微芯科技)

  • 封装:

    TSSOP5

  • 描述:

    IC OPAMP GP 1 CIRCUIT SC70-5

  • 数据手册
  • 价格&库存
MIC860YC5-TR 数据手册
MIC860 Ultra-Low Power Op Amp Features General Description • • • • • • • The MIC860 is a rail-to-rail output, operational amplifier in the SC70 package. The MIC860 provides 4 MHz gain-bandwidth product while consuming an incredibly low 30 μA supply current. 5-Lead SC70 Packaging 4 MHz Gain-Bandwidth Product 30 μA Supply Current Rail-to-Rail Output Ground Sensing at Input Common Mode to GND Common Mode to GND Drives Large Capacitive Loads Applications • • • • • The SC70 packaging achieves significant board space savings over devices packaged in SOT-23 or MSOP-8 packaging. The SC70 occupies approximately half the board area of an SOT-23 package. Portable Equipment Sensor Conditioning Analog Filters Mobile Phones Consumer Electronics Package Type MIC860 5-Lead SC70 (C5) (Top View) IN3 V2 IN+ 1 PART IDENTIFICATION Functional Pinout IN3 V2 IN+ 1 A32 4 OUT 5 V+  2020 Microchip Technology Inc. 4 OUT 5 V+ DS20006338A-page 1 MIC860 1.0 ELECTRICAL CHARACTERISTICS Absolute Maximum Ratings † Supply Voltage (VV+ – VV–) ..................................................................................................................................... +6.0V Differential Input Voltage (|VIN+ – VIN–|) (Note 1) .................................................................................................... +6.0V Input Voltage (VIN+ – VIN–) ............................................................................................................... V+ + 0.3V, V– – 0.3V Output Short-Circuit Duration ............................................................................................................................. Indefinite ESD Rating (Note 2)...................................................................................................................................ESD Sensitive Operating Ratings ‡ Supply Voltage (VV+ – VV–) ...................................................................................................................+2.43V to +5.25V † Notice: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability. ‡ Notice: The device is not guaranteed to function outside its operating ratings. Final test on outgoing product is performed at TA = +25°C. Note 1: Exceeding the maximum differential input voltage will damage the input stage and degrade performance. In particular, input bias current is likely to increase. 2: Devices are ESD sensitive. Handling precautions are recommended. Human body model, 1.5 kΩ in series with 100 pF. Pin 4 is ESD sensitive. DS20006338A-page 2  2020 Microchip Technology Inc. MIC860 ELECTRICAL CHARACTERISTICS (2.7V) Electrical Characteristics: V+ = +2.7V, V– = 0V, VCM = V+/2; RL = 500 kΩ to V+/2; TA = +25°C, unless otherwise noted. Parameters Symbol Min. Typ. Max. Units –20 –5 15 mV –25 — 20 mV — 20 — μV/°C IB — 20 — pA — Input Offset Current IOS — 10 — pA — Input Voltage Range VCM 1 1.8 — V CMRR > 60 dB, –40°C ≤ TA ≤ +85°C Common Mode Rejection Ratio CMRR 38 76 — dB 0V < VCM < 1.35V, –40°C ≤ TA ≤ +85°C Power Supply Rejection Ratio PSRR 40 78 — dB Supply voltage change of 3V, –40°C ≤ TA ≤ +85°C 50 66 — dB RL = 5 kΩ, VOUT = 2 VPP, –40°C ≤ TA ≤ +85°C 66 81 — dB RL = 100 kΩ, VOUT = 2 VPP, –40°C ≤ TA ≤ +85°C 76 91 — dB RL = 500 kΩ, VOUT = 2 VPP, –40°C ≤ TA ≤ +85°C V±70mV V±34mV — V RL = 5 kΩ, –40°C ≤ TA ≤ +85°C V±2mV V±0.7mV — V RL = 500 kΩ, –40°C ≤ TA ≤ +85°C — V±11mV V±50mV mV RL = 5 kΩ, –40°C ≤ TA ≤ +85°C — V±0.2mV V±2mV mV RL = 500 kΩ, –40°C ≤ TA ≤ +85°C Input Offset Voltage Input Offset Voltage Temp. Coefficient VOS Input Bias Current Large-Signal Voltage Gain AVOL Conditions — Maximum Output Voltage Swing VOUT Minimum Output Voltage Swing VOUT Gain Bandwidth Product GBW — 4 — MHz — Slew Rate SR — 3 — V/μs — Short-Circuit Output Current ISC 4.5 6 — mA Source, –40°C ≤ TA ≤ +85°C 10 16 — mA Sink, –40°C ≤ TA ≤ +85°C Supply Current IS — 30 50 μA No Load  2020 Microchip Technology Inc. DS20006338A-page 3 MIC860 ELECTRICAL CHARACTERISTICS (5.0V) Electrical Characteristics: V+ = +5V, V– = 0V, VCM = V+/2; RL = 500 kΩ to V+/2; TA = +25°C, unless otherwise noted. Parameters Symbol Input Offset Voltage VOS Input Offset Voltage Temp Coefficient Min. Typ. Max. Units Conditions –20 –5 20 mV — — 20 — μV/°C — IB — 20 — pA — Input Offset Current IOS — 10 — pA — Input Voltage Range VCM 3.5 4.2 — V CMRR > 60 dB, –40°C ≤ TA ≤ +85°C Common Mode Rejection Ratio CMRR 44 77 — dB 0V < VCM < 3.5V, –40°C ≤ TA ≤ +85°C Power Supply Rejection Ratio PSRR 40 79 — dB Supply voltage change of 1V, –40°C ≤ TA ≤ +85°C 52 66 — dB RL = 5 kΩ, VOUT = 4.8 VPP, –40°C ≤ TA ≤ +85°C 67 80 — dB RL = 100 kΩ, VOUT = 4.8 VPP, –40°C ≤ TA ≤ +85°C 75 90 — dB RL = 500 kΩ, VOUT = 4.8 VPP, –40°C ≤ TA ≤ +85°C V±75mV V±37mV — V RL = 5 kΩ, –40°C ≤ TA ≤ +85°C V±35mV V±4mV — V RL = 500 kΩ, –40°C ≤ TA ≤ +85°C — V±14mV V±40mV mV RL = 5 kΩ, –40°C ≤ TA ≤ +85°C — V±0.4mV V±5mV mV RL = 500 kΩ, –40°C ≤ TA ≤ +85°C Input Bias Current Large Signal Voltage Gain AVOL Maximum Output Voltage Swing VOUT Minimum Output Voltage Swing VOUT Gain Bandwidth Product GBW — 4 — MHz — Slew Rate SR — 3 — V/μs — Short-Circuit Output Current ISC Supply Current IS 15 23 — mA Source, –40°C ≤ TA ≤ +85°C 30 47 — mA Sink, –40°C ≤ TA ≤ +85°C — 33 55 μA No Load, –40°C ≤ TA ≤ +85°C TEMPERATURE SPECIFICATIONS Parameters Sym. Min. Typ. Max. Units Conditions Temperature Ranges Storage Temperature TS — — +150 °C — Ambient Temperature Range TA –40 — +85 °C — Lead Temperature Soldering — — — +260 °C Soldering, 5 sec. JA — 450 — °C/W Package Thermal Resistances 5-Lead SC70 DS20006338A-page 4 —  2020 Microchip Technology Inc. MIC860 2.0 TEST CIRCUITS 20K 200K V+ V+ 0.1μF 10μF 10μF 0.1μF 10μF 20K RF 20K MIC860 MIC860 FET PROBE 50Ÿ 50Ÿ RF FET PROBE 0.1μF 0.1μF 50Ÿ 10μF FET PROBE V- FIGURE 2-4: Test Circuit 4, AV = –1. V- FIGURE 2-1: FET PROBE Test Circuit 1, AV = 10. V+ 10 μF 20K 100μF V+ 0.1μF 10μF 50 Ÿ BNC 20K 0.1 μF INPUT MIC860 10 μF RF 170k 48K FET PROBE 0.1μF 50Ÿ 10μF RL 5K FET PROBE 10K OUTPUT 50 Ÿ V- FIGURE 2-2: 10K BNC MIC860 Test Circuit 2, AV = 2. 0.1μF V+ 0.1μF ALL RESISTORS: 1% METAL FILM 10μF 10μF MIC860 V— RF FET PROBE 0.1μF 50Ÿ 100μF 10μF RL 5K FET PROBE FIGURE 2-5: Test Circuit 5, Positive Power Supply Rejection Ratio Measurement. V- FIGURE 2-3: Test Circuit 3, AV = 1.  2020 Microchip Technology Inc. DS20006338A-page 5 MIC860 Note: TYPICAL PERFORMANCE CURVES The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range. SUPPLY CURRENT (mA) 39 37 35 V + = 5V -20 -30 31 V + = 2.7V 25 -40 -20 0 20 40 60 80 100 TEMPERATURE (°C) Supply Current vs. -60 -40 -20 0 20 40 60 80 100 TEMPERATURE (°C) FIGURE 3-4: vs. Temperature. -4.5 V + = 2.7V -5.5 SUPPLY CURRENT (μA) OFFSET VOLTAGE (mV) V + = 5V -4 -5 25 V + = 5V 20 15 10 V + = 2.7V 5 0 -40 -20 0 20 40 60 80 100 TEMPERATURE (°C) FIGURE 3-3: Short-Circuit Current (Source) vs. Temperature. DS20006338A-page 6 37 -40°C 35 33 31 +25°C 29 27 +85°C V + = 5V 1 1.5 2 2.5 3 SUPPLY VOLTAGE (±V) FIGURE 3-5: Voltage. Supply Current vs. Supply 5 4.5 4 -40°C 3.5 3 2.5 2 +25°C 1.5 1 0.5 V + = 5V +85°C 0 0 5 10 15 20 25 30 OUTPUT CURRENT (mA) OUTPUT VOLTAGE (V) SHORT CIRCUIT CURRENT (mA) Offset Voltage vs. 39 25 0.5 -6 -40 -20 0 20 40 60 80 100 TEMPERATURE (°C) FIGURE 3-2: Temperature. Short-Circuit Current (Sink) 41 -3 -3.5 V + = 5V -40 -50 27 FIGURE 3-1: Temperature. V + = 2.7V -10 33 29 0 SHORT CIRCUIT CURRENT (mA) 3.0 FIGURE 3-6: Current (Source). Output Voltage vs. Output  2020 Microchip Technology Inc. MIC860 2.5 6 OUTPUT VOLTAGE (V) 5 -40°C OFFSET VOLTAGE (mV) +85°C +25°C 4 1.5 3 2 1 -40°C +25°C +85°C 0.5 1 FIGURE 3-7: Current (Sink). V + = 5V 10 20 30 40 50 OUTPUT CURRENT (mA) 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 COMMON-MODE VOLTAGE (V) 60 Output Voltage vs. Output 30 +25°C 15 +85°C 10 5 0 0 V + = 5V 0.5 1 1.5 2 2.5 SUPPLY VOLTAGE (±V) 3 FIGURE 3-8: Short-Circuit Current vs. Supply Voltage (Source). OUTPUT CURRENT (mA) 60 OUTPUT VOLTAGE (V) +85°C 20 10 V + = 5V 0.5 1 1.5 2 2.5 SUPPLY VOLTAGE (±V) 3 FIGURE 3-9: Short-Circuit Current vs. Supply Voltage (Sink).  2020 Microchip Technology Inc. Offset Voltage vs. Common 4.5 +25°C 30 0 0 FIGURE 3-11: Mode Voltage. -40°C 50 40 Offset Voltage vs. Common 2.2 2.0 1.8 -40°C 1.6 1.4 1.2 +25°C 1.0 0.8 +85°C 0.6 0.4 0.2 V + = 2.7V 0 0 0.54 1.08 1.62 2.16 2.7 COMMON-MODE VOLTAGE (V) -40°C 25 20 FIGURE 3-10: Mode Voltage. OFFSET VOLTAGE (mV) 0 0 OUTPUT CURRENT (mA) V + = 5V 2 4 3.5 3 2.5 V + = 5V 2 1.5 1 0.5 0 V + = 2.7V -0.5 0.1 1 10 100 1000 10000 RESISTIVE LOAD (kŸ) FIGURE 3-12: Output Voltage Swing vs. Resistive Load (Sink). DS20006338A-page 7 MIC860 FIGURE 3-13: Output Voltage Swing vs. Resistive Load (Source). 100 VCC = 5.0V VCC = 2.7V Gain Frequency Response. 25 225 20 15 180 135 10 5 90 45 0 -5 0 -45 VCC = 5V -10 R = 5kŸ L -15 C = 2pF L -20 A = 1 V -25 FIGURE 3-14: Resistive Load. Open Loop Gain vs. 225 180 135 90 45 10 5 90 45 0 -45 0 -5 0 -45 40 30 180 135 20 10 0 -10 -180 -225 1x107 2x107 1x106 -90 -135 1x105 1x104 DS20006338A-page 8 Unity Gain Frequency 20 15 225 FIGURE 3-15: Margin. -180 -225 25 50 VCC = 5V -20 A = 10 V -30 R = 1MŸ L -40 C = 2pF L -50 FIGURE 3-17: Response. 1x105 10 100 1000 10000 5(6,67,9(/2$' NŸ -90 -135 Gain Bandwidth and Phase VCC = 2.7V -10 R = 5kŸ L -15 C = 2pF L -20 A = 1 V -25 FIGURE 3-18: Response. 1x105 60 1 FIGURE 3-16: -180 -225 -90 -135 -180 -225 1x107 2x107 80 -90 -135 1x107 2x107 1 10 100 1000 10000 RESISTIVE LOAD (kŸ) VCC = 5V -10 A = 2 V -15 C = 2pF L -20 R = 5kŸ L -25 1x104 -0.5 0.1 0 -45 1x107 2x107 0.5 0 -5 1x106 1.5 90 45 1x106 V + = 2.7V 10 5 1x106 2.5 180 135 1x105 3.5 225 20 15 1x104 V + = 5V 4.5 25 1x104 OUTPUT VOLTAGE (V) 5.5 Unity Gain Frequency  2020 Microchip Technology Inc. MIC860 4 AV = 1 V+ = 2.7V CL = 2 pF RL NŸ VCC = 5.0V 3.5 3 2.5 2 VCC = 2.7V OUTPUT (50mV/div) 1.5 Note: To drive capacitive load, a 500Ÿ series resistor would help stablize the circuit 1 0.5 0 1 10 100 1000 CAPACITIVE LOAD (pF) FIGURE 3-19: Capacitive Load. Gain Bandwidth vs. TIME (500ns/div) FIGURE 3-22: Circuit 3: AV = 1. Small Signal Response Test 90 AV = 1 V+ = 5V CL = 2 pF RL NŸ 80 70 60 50 40 OUTPUT (50mV/div) 30 20 1x106 1x105 1x104 1x103 1x102 1x100 0 1x101 10 VCC = 2.7V FREQUENCY (Hz) FIGURE 3-20: TIME (500ns/div) PSRR vs. Frequency. FIGURE 3-23: Circuit 3: AV = 1. Small Signal Response Test 90 AV = 1 V+ = 2.7V CL = 50pF RL NŸ 80 70 60 50 40 OUTPUT (50mV/div) 30 20 1x106 1x105 1x104 1x103 1x102 1x100 0 1x101 10 VCC = 5V FREQUENCY (Hz) FIGURE 3-21: PSRR vs. Frequency.  2020 Microchip Technology Inc. TIME (500ns/div) FIGURE 3-24: Circuit 3: AV = 1. Small Signal Response Test DS20006338A-page 9 MIC860 AV = 1 V+ = 5V CL = 50pF RL NŸ AV = 1 V+ = 2.7V CL = 2pF RL 0Ÿ OUTPUT (50mV/div) OUTPUT (50mV/div) TIME (500ns/div) FIGURE 3-25: Circuit 3: AV = 1. Small Signal Response Test TIME (500ns/div) FIGURE 3-28: Circuit 3: AV = 1. AV = 1 V+ = 2.7V CL = 50pF RL Ÿ Small Signal Response Test V+ OUTPUT (50mV/div) RL V— CL TIME (500ns/div) FIGURE 3-26: Circuit 3: AV = 1. Small Signal Response Test FIGURE 3-29: the Output. AV = 1 V+ = 5V CL = 50pF RL Ÿ AV = -1 V+ = 2.7V CL = 2pF RL 0Ÿ OUTPUT (50mV/div) OUTPUT (50mV/div) TIME (500ns/div) FIGURE 3-27: Circuit 3: AV = 1. DS20006338A-page 10 Connection of RL and CL to Small Signal Response Test TIME (500ns/div) FIGURE 3-30: Circuit 4: AV = –1. Small Signal Response Test  2020 Microchip Technology Inc. MIC860 OUTPUT 2V/div AV = -1 V+ = 2.7V CL = 2pF RL NŸ OUTPUT (50mV/div) AV = 2 V+ = 5V CL = 2pF RL = 1MΩ TIME 250μs/div TIME (500ns/div) FIGURE 3-31: Circuit 4: AV = –1. Small Signal Response Test FIGURE 3-34: Rail-to-Rail Output Operation Test Circuit 2: AV = 2. AV = -1 V+ = 2.7V CL = 2pF RL 0Ÿ OUTPUT (50mV/div) OUTPUT (1V/div) TIME (250μs/div) TIME (500ns/div) FIGURE 3-32: Circuit 4: AV = –1. Small Signal Response Test AV = 2 V+ = 2.7V CL = 2 pF RL NŸ FIGURE 3-35: Rail-to-Rail Output Operation Test Circuit 2: AV = 2. AV = -1 V+ = 5V CL = 2pF RL NŸ OUTPUT (50mV/div) OUTPUT (2V/div) TIME (500ns/div) FIGURE 3-33: Circuit 4: AV = –1. Small Signal Response Test  2020 Microchip Technology Inc. AV = 2 V+ = 5V CL = 2 pF RL NŸ TIME (250μs/div) FIGURE 3-36: Rail-to-Rail Output Operation Test Circuit 2: AV = 2. DS20006338A-page 11 MIC860 ¨9P-P = 5V OUTPUT (1V/div) AV = 2 V+ = 5V CL = 2 pF RL 0Ÿ TIME (250μs/div) FIGURE 3-37: Rail-to-Rail Output Operation Test Circuit 2: AV = 2. AV = 1 V+ = 5V CL = 2pF RL NŸ ¨V = 2.84V ¨t = 700ns OUTPUT (50mV/div) Rise Slew Rate = 4.1V/μs Fall Slew Rate = 2.9V/μs TIME (5μs/div) FIGURE 3-38: Large Signal Pulse Response Test Circuit 3: AV = 1. AV = 1 V+ = 2.7V CL = 50pF RL NŸ ¨V = 730mV ¨t = 300ns OUTPUT (50mV/div) Rise Slew Rate = 2.4V/μs Fall Slew Rate = 4.7V/μs TIME (5μs/div) FIGURE 3-39: Large Signal Pulse Response Test Circuit 3: AV = 1. DS20006338A-page 12  2020 Microchip Technology Inc. MIC860 4.0 PIN DESCRIPTIONS The descriptions of the pins are listed in Table 4-1. TABLE 4-1: PIN FUNCTION TABLE Pin Number Symbol 1 IN+ Non-inverting input. 2 V– Negative power supply connection. Connect a 10 μF and 0.1 μF capacitor in parallel to this pin for power supply bypassing. 3 IN– Inverting input. 4 OUT Output of operational amplifier. 5 V+  2020 Microchip Technology Inc. Description Positive power supply input. Connect a 10 μF and 0.1 μF capacitor in parallel to this pin for power supply bypassing. DS20006338A-page 13 MIC860 5.0 APPLICATION INFORMATION 5.1 Power Supply Bypassing Regular supply bypassing techniques are recommended. A 10 μF capacitor in parallel with a 0.1 μF capacitor on both the positive and negative supplies are ideal. For best performance all bypassing capacitors should be located as close to the op amp as possible and all capacitors should be low ESI (equivalent series inductance), ESR (equivalent series resistance). Surface-mount ceramic capacitors are ideal. 5.2 Supply and Loading Considerations The MIC860 is intended for single supply applications configured with a grounded load. It is not advisable to operate the MIC860 with either: • A grounded load and split supplies (±V) or • A single supply where the load is terminated above ground. Under the above conditions, if the load is less than 20 kΩ and the output swing is greater than 1V (peak), there may be some instability when the output is sinking current. DS20006338A-page 14  2020 Microchip Technology Inc. MIC860 6.0 PACKAGING INFORMATION 6.1 Package Marking Information 5-Lead SC70* (Front) XXX e3 * A32 5-Lead SC70* Example NNN 408 (Back) Legend: XX...X Y YY WW NNN Example Product code or customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week ‘01’) Alphanumeric traceability code Pb-free JEDEC® designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ( e3 ) can be found on the outer packaging for this package. ●, ▲, ▼ Pin one index is identified by a dot, delta up, or delta down (triangle mark). Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information. Package may or may not include the corporate logo. Underbar (_) and/or Overbar (‾) symbol may not be to scale.  2020 Microchip Technology Inc. DS20006338A-page 15 MIC860 5-Lead SC70 Package Outline and Recommended Land Pattern Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging. DS20006338A-page 16  2020 Microchip Technology Inc. MIC860 APPENDIX A: REVISION HISTORY Revision A (April 2020) • Converted Micrel data sheet MIC860 to Microchip data sheet DS20006338A. • Minor grammatical corrections throughout.  2020 Microchip Technology Inc. DS20006338A-page 17 MIC860 NOTES: DS20006338A-page 18  2020 Microchip Technology Inc. MIC860 PRODUCT IDENTIFICATION SYSTEM To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office. PART NO. Device X XX -XX Temp. Package Media Type Device: MIC860: Temperature: Y = –40°C to +85°C Package: C5 = 5-Lead SC70 Media Type TR = 3,000/Reel Examples: a) MIC860YC5-TR: Ultra-Low Power Op Amp –40°C to +85°C Temperature Range, 5-Lead SC70 Package, 3,000/Reel Ultra-Low Power Op Amp  2020 Microchip Technology Inc. Note 1: Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option. DS20006338A-page 19 MIC860 NOTES: DS20006338A-page 20  2020 Microchip Technology Inc. Note the following details of the code protection feature on Microchip devices: • Microchip products meet the specification contained in their particular Microchip Data Sheet. • Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions. • There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property. • Microchip is willing to work with the customer who is concerned about the integrity of their code. • Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.” Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act. Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated. Trademarks The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A. Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. SQTP is a service mark of Microchip Technology Incorporated in the U.S.A. The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries. GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries. All other trademarks mentioned herein are property of their respective companies. © 2020, Microchip Technology Incorporated, All Rights Reserved. For information regarding Microchip’s Quality Management Systems, please visit www.microchip.com/quality.  2020 Microchip Technology Inc. ISBN: 978-1-5224-6005-3 DS20006338A-page 21 Worldwide Sales and Service AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com Australia - Sydney Tel: 61-2-9868-6733 India - Bangalore Tel: 91-80-3090-4444 China - Beijing Tel: 86-10-8569-7000 India - New Delhi Tel: 91-11-4160-8631 Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 China - Chengdu Tel: 86-28-8665-5511 India - Pune Tel: 91-20-4121-0141 Denmark - Copenhagen Tel: 45-4485-5910 Fax: 45-4485-2829 China - Chongqing Tel: 86-23-8980-9588 Japan - Osaka Tel: 81-6-6152-7160 Finland - Espoo Tel: 358-9-4520-820 China - Dongguan Tel: 86-769-8702-9880 Japan - Tokyo Tel: 81-3-6880- 3770 China - Guangzhou Tel: 86-20-8755-8029 Korea - Daegu Tel: 82-53-744-4301 France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 China - Hangzhou Tel: 86-571-8792-8115 Korea - Seoul Tel: 82-2-554-7200 China - Hong Kong SAR Tel: 852-2943-5100 Malaysia - Kuala Lumpur Tel: 60-3-7651-7906 China - Nanjing Tel: 86-25-8473-2460 Malaysia - Penang Tel: 60-4-227-8870 China - Qingdao Tel: 86-532-8502-7355 Philippines - Manila Tel: 63-2-634-9065 China - Shanghai Tel: 86-21-3326-8000 Singapore Tel: 65-6334-8870 Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44 China - Shenyang Tel: 86-24-2334-2829 Taiwan - Hsin Chu Tel: 886-3-577-8366 Germany - Rosenheim Tel: 49-8031-354-560 China - Shenzhen Tel: 86-755-8864-2200 Taiwan - Kaohsiung Tel: 886-7-213-7830 Israel - Ra’anana Tel: 972-9-744-7705 China - Suzhou Tel: 86-186-6233-1526 Taiwan - Taipei Tel: 886-2-2508-8600 China - Wuhan Tel: 86-27-5980-5300 Thailand - Bangkok Tel: 66-2-694-1351 Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781 China - Xian Tel: 86-29-8833-7252 Vietnam - Ho Chi Minh Tel: 84-28-5448-2100 Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455 Austin, TX Tel: 512-257-3370 Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088 Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075 Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924 Detroit Novi, MI Tel: 248-848-4000 Houston, TX Tel: 281-894-5983 Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380 Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800 Raleigh, NC Tel: 919-844-7510 New York, NY Tel: 631-435-6000 San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270 Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078 DS20006338A-page 22 China - Xiamen Tel: 86-592-2388138 China - Zhuhai Tel: 86-756-3210040 Germany - Garching Tel: 49-8931-9700 Germany - Haan Tel: 49-2129-3766400 Germany - Heilbronn Tel: 49-7131-72400 Germany - Karlsruhe Tel: 49-721-625370 Italy - Padova Tel: 39-049-7625286 Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340 Norway - Trondheim Tel: 47-7288-4388 Poland - Warsaw Tel: 48-22-3325737 Romania - Bucharest Tel: 40-21-407-87-50 Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91 Sweden - Gothenberg Tel: 46-31-704-60-40 Sweden - Stockholm Tel: 46-8-5090-4654 UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820  2020 Microchip Technology Inc. 02/28/20
MIC860YC5-TR 价格&库存

很抱歉,暂时无法提供与“MIC860YC5-TR”相匹配的价格&库存,您可以联系我们找货

免费人工找货