0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MIC910YM5-TR

MIC910YM5-TR

  • 厂商:

    ACTEL(微芯科技)

  • 封装:

    SOT23-5

  • 描述:

    IC OPAMP VFB 1 CIRCUIT SOT23-5

  • 数据手册
  • 价格&库存
MIC910YM5-TR 数据手册
MIC910 135MHz, Low-Power SOT-23-5 Op Amp General Description Features The MIC910 is a high-speed, unity-gain stable operational amplifier. It provides a gain-bandwidth product of 135MHz with a very low, 2.4mA supply current, and features the tiny SOT-23-5 package.       Supply voltage range is from ±2.5V to ±9V, allowing the MIC910 to be used in low-voltage circuits or applications requiring large dynamic range. The MIC910 is stable driving any capacitive load and achieves excellent PSRR, making it much easier to use than most conventional high-speed devices. Low supply voltage, low power consumption, and small packing make the MIC910 ideal for portable equipment. The ability to drive capacitive loads also makes it possible to drive long coaxial cables. 135MHz gain bandwidth product 2.4mA supply current Unconditionally unity-gain stable SOT-23-5 package 270V/µs slew rate Drives any capacitive load Applications      Video Imaging Ultrasound Portable equipment Line drivers Datasheets and support documentation are available on Micrel’s web site at: www.micrel.com. Functional Pinout SOT-23-5 Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com September 19, 2014 Revision 2.0 Micrel, Inc. MIC910 Ordering Information Part Number(1) Marking Junction Temperature Range Package A21 –40°C to +85°C SOT-23-5 MIC910YM5 Note: 1. Underbar ( ) may not be to scale. Pin Configuration SOT-23-5 (M5) (Top View) Pin Description Pin Number Pin Name 1 OUT 2 V+ Positive Supply (Input): Connect a 10µF capacitor in parallel with a 0.1µF capacitor to ground. 3 IN+ Noninverting Input. 4 IN− Inverting Input. 5 V− Negative Supply (Input): Connect a 10µF capacitor in parallel with a 0.1µF capacitor to ground. September 19, 2014 Pin Function Output: Amplifier output. 2 Revision 2.0 Micrel, Inc. MIC910 Absolute Maximum Ratings(2) Operating Ratings(3) Supply Voltage (VV+ − VV−) ........................................... +20V Differential Input Voltage (|VIN+ − VIN−|). ........................ 8V(4) Input Common-Mode Range (VIN+, VIN−) ...............VV+ to VV− Lead Temperature (soldering, 5s) ............................ +260°C Storage Temperature (TS) ........................................ +150°C ESD Rating(5) ............................................................... 1.5kV Supply Voltage (VS)......................................... ±2.5V to ±9V Junction Temperature (TJ) .......................... –40°C to +85°C Package Thermal Resistance SOT-23-5 (θJA) ............................................... +260°C/W Electrical Characteristics (±5V) VV+ = +5V; VV− = −5V, VCM = 0V, VOUT = 0V; RL = 10MΩ; TJ = +25°C, bold values indicate –40°C ≤ TJ ≤ +85°C, unless noted. Symbol VOS Parameter Condition Min. Typ. Max. Units Input Offset Voltage 1 15 mV Input Offset Voltage Temperature Coefficient 4 3.5 IB Input Bias Current IOS Input Offset Current VCM Input Common-Mode Range CMRR > 60dB CMRR Common-Mode Rejection Ratio −2.5V < VCM < +2.5V PSRR Power Supply Rejection Ratio ±5V < VS < ±9V AVOL Large-Signal Voltage Gain 5.5 µA 9 0.05 −3.25 70 74 +3.25 V dB 81 dB 70 71 RL = 200Ω, VOUT = ±2V 60 71 +3.3 3.5 dB +3.0 −3.5 Negative, RL = 2kΩ Positive, RL = 200Ω µA 60 60 Maximum Output Voltage Swing 3 90 RL = 2kΩ, VOUT = ±2V Positive, RL = 2kΩ VOUT µV/°C −3.3 −3.0 +3.0 V 3.2 +2.75 Negative, RL = 200Ω −2.8 −2.45 −2.2 GBW Gain Bandwidth Product RL = 1kΩ 125 MHz BW −3dB Bandwidth AV = 1, RL = 100Ω 192 MHz SR Slew Rate 230 V/µs Short-Circuit Output Current IGND Source 72 Sink 25 2.4 Supply Current 3.5 mA 4.1 Notes: 2. Exceeding the absolute maximum ratings may damage the device. 3. The device is not guaranteed to function outside its operating ratings. 4. Exceeding the maximum differential input voltage will damage the input stage and degrade performance as input bias current is likely to increase. 5. Devices are ESD sensitive. Handling precautions are recommended. Human body model, 1.5kΩ in series with 100pF. September 19, 2014 3 Revision 2.0 Micrel, Inc. MIC910 Electrical Characteristics (±9V) VV+ = +9V; VV− = −9V, VCM = 0V, VOUT = 0V; RL = 10MΩ; TJ = +25°C, bold values indicate –40°C ≤ TJ ≤ +85°C, unless noted. Symbol VOS Parameter Condition Typ. Max. Units Input Offset Voltage 1 15 mV Input Offset Voltage Temperature Coefficient 4 3.5 IB Input Bias Current IOS Input Offset Current VCM Input Common-Mode Range CMRR > 60dB CMRR Common-Mode Rejection Ratio −6.5V < VCM < +6.5V AVOL Large-Signal Voltage Gain RL = 2kΩ, VOUT = ±6V 0.05 Maximum Output Voltage Swing Negative, RL = 2kΩ GBW Gain Bandwidth Product SR Slew Rate Short-Circuit Output Current IGND RL = 1kΩ −7.25 5.5 µA 70 3 µA +7.25 V 98 dB 60 60 73 +7.2 7.4 dB +6.8 −7.4 −7.2 V −6.8 135 MHz 270 V/µs Source 90 Sink 32 2.5 Supply Current September 19, 2014 µV/°C 9 Positive, RL = 2kΩ VOUT Min. 3.7 mA 4.3 4 Revision 2.0 Micrel, Inc. MIC910 Test Circuit PSRR vs. Frequency CMRR vs. Frequency Noise Measurement September 19, 2014 5 Revision 2.0 Micrel, Inc. MIC910 Typical Characteristics September 19, 2014 6 Revision 2.0 Micrel, Inc. MIC910 Typical Characteristics (Continued) September 19, 2014 7 Revision 2.0 Micrel, Inc. MIC910 Typical Characteristics (Continued) September 19, 2014 8 Revision 2.0 Micrel, Inc. MIC910 Typical Characteristics (Continued) September 19, 2014 9 Revision 2.0 Micrel, Inc. MIC910 Functional Characteristics September 19, 2014 10 Revision 2.0 Micrel, Inc. MIC910 Functional Characteristics (Continued) September 19, 2014 11 Revision 2.0 Micrel, Inc. MIC910 Application Information Power Supply Bypassing Regular supply bypassing techniques are recommended. A 10µF capacitor in parallel with a 0.1µF capacitor on both the positive and negative supplies is ideal. For best performance, all bypassing capacitors should be located as close to the op amp as possible and all capacitors should be low equivalent series inductance (ESL) and equivalent series resistance (ESR). Surface-mount ceramic capacitors are ideal. The MIC910 is a high-speed, voltage-feedback operational amplifier featuring very low supply current and excellent stability. This device is unity gain stable and capable of driving high capacitance loads. Driving High Capacitance The MIC910 is stable when driving any capacitance (see the “Gain Bandwidth and Phase Margin vs. Load Capacitance” graph in the Typical Characteristics section) making it ideal for driving long coaxial cables or other high-capacitance loads. Thermal Considerations The SOT-23-5 package, like all small packages, has a high thermal resistance. It is important to ensure the IC does not exceed the maximum operating junction (die) temperature of 85°C. The part can be operated up to the absolute maximum temperature rating of 125°C, but between 85°C and 125°C performance will degrade, in particular CMRR will reduce. Phase margin remains constant as load capacitance is increased. Most high-speed op amps are only able to drive limited capacitance. Note: increasing load capacitance does reduce the speed of the device (see the “Gain Bandwidth and Phase Margin vs. Load” in the Typical Characteristics section). In applications where the load capacitance reduces the speed of the op amp to an unacceptable level, the effect of the load capacitance can be reduced by adding a small resistor (
MIC910YM5-TR 价格&库存

很抱歉,暂时无法提供与“MIC910YM5-TR”相匹配的价格&库存,您可以联系我们找货

免费人工找货