0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MIC94310-GYMT-T5

MIC94310-GYMT-T5

  • 厂商:

    ACTEL(微芯科技)

  • 封装:

    TMLF®4

  • 描述:

    IC REG LDO 1.8V 0.2A 4TMLF

  • 数据手册
  • 价格&库存
MIC94310-GYMT-T5 数据手册
MIC94310 200 mA LDO with Ripple Blocker™ Technology Features General Description • 1.8V to 3.6V Input Voltage Range • Active Noise Rejection Over a Wide Frequency Band: >50 dB from 10 Hz to 10 MHz at 200 mA Load • Rated to 200 mA Output Current • Fixed Output Voltages • Current-Limit and Thermal-Limit Protected • 1.2 mm x 1.6 mm 4-Pin TDFN • 5-Pin SOT-23 • Ultra-Small 0.88 mm x 0.88 mm WLCSP • Logic-Controlled Enable Pin • -40°C to +125°C Junction Temperature Range The MIC94310 Ripple Blocker™ is a monolithic integrated circuit that provides low-frequency ripple attenuation (switching noise rejection) to a regulated output voltage. This is important for applications where a DC/DC switching converter is required to lower or raise a battery voltage, but where switching noise cannot be tolerated by sensitive downstream circuits such as in RF applications. The MIC94310 maintains high power supply ripple rejection (PSRR) with input voltages operating near the output voltage level to improve overall system efficiency. A low-voltage logic enable pin facilitates ON/OFF control at typical GPIO voltage levels. Applications • • • • • • Smartphones/Smart Books Tablet PC/Notebooks and Webcams Digital Still and Video Cameras Global Positioning Systems Mobile Computing Automotive and Industrial Applications The MIC94310 operates from an input voltage of 1.8V to 3.6V. Packaged in a 4-pin 1.2 mm × 1.6 mm TDFN, a 5-pin SOT-23, or a 0.88 mm × 0.88 mm 4-Ball WLCSP, the MIC94310 has a junction operating temperature range of -40°C to +125°C. Package Types MIC94310 SOT-23-5 (Top View) MIC94310 1.2 mm x 1.6 mm TDFN (Top View) 4 VIN VOUT 1 EN GND VIN 1 2 3 EP GND 2 3 EN MIC94310 0.88 mm x 0.88 mm 4-Ball WLCSP (Top View)  2018-2020 Microchip Technology Inc. 4 NC 5 VOUT DS20006105B-page 1 MIC94310 Typical Application Circuit MIC94310 1.2x1.6 TDFN MIC94310xxYMT 4 DC/DC CIN 1μF EN 3 VIN VOUT 1 EN GND LOAD 2 COUT 1μF Functional Block Diagram VIN CHARGE PUMP EN BIAS AND THERMAL SHUTDOWN + - EA VOUT DRIVER + VREF GND DS20006105B-page 2  2018-2020 Microchip Technology Inc. MIC94310 1.0 ELECTRICAL CHARACTERISTICS Absolute Maximum Ratings † Input Voltage, VIN ...................................................................................................................................... –0.3V to +4.0V Output Voltage, VOUT ............................................................................................................ –0.3V to VIN+0.3V or +4.0V Enable Voltage, VEN ............................................................................................................. –0.3V to VIN+0.3V or +4.0V ESD Rating (Note 1) .................................................................................................................................................. 3 kV Operating Ratings †† Supply Voltage, VIN ................................................................................................................................... +1.8V to +3.6V Enable Voltage, VEN ...........................................................................................................................................0V to VIN † Notice:Exceeding the “Absolute Maximum Ratings †” may damage the device. †† Notice:The device is not guaranteed to function outside its operating ratings. Note 1: Devices are ESD-sensitive. Handling precautions are recommended. Human body model, 1.5 kΩ in series with 100 pF. ELECTRICAL CHARACTERISTICS (Note 1) Electrical Characteristics: Unless otherwise indicated, VIN = VEN = VOUT + 500 mV (VIN = VEN = 3.6V for VOUT ≥ 3.1V); IOUT = 1 mA; COUT = 1 µF (YMT), COUT = 10 µF (YM5); TA = 25°C, bold values indicate –40°C ≤ TJ ≤ +125°C. Parameters Input Voltage Output Voltage Accuracy Dropout Voltage Sym. Min. Typ. Max. Units VIN 1.8 — 3.6 V — VOUT –3 ±1 +3 % Variation from nominal VOUT — 20 50 mV VIN to VOUT dropout at 100 mA output current — 40 100 mV VIN to VOUT dropout at 200 mA output current IOUT = 1 mA to 100 mA VDO Conditions Load Regulation ΔVOUT — 4 — mV Line Regulation ΔVOUT/ΔVIN — 0.01 0.5 % VIN = VOUT + 500 mV to 3.6V Ground Current IGND — 170 250 µA No load to full load Shutdown Current ISHDN — 0.2 5 µA VEN = 0V — 85 — dB f = 100 Hz, IOUT = 100 mA — 68 — dB f = 100 kHz, IOUT = 100 mA — 57 — dB f = 1 MHz, IOUT = 100 mA — 50 — dB f = 10 MHz, IOUT = 100 mA mA VOUT = 0V VIN Ripple Rejection PSRR Current Limit ILIM 250 400 700 Total Output Noise eno — 83 — Turn-on Time tON — 70 — μs — Input Logic Low Level VEN_LOW — — 0.4 V — Input Logic High Level VEN_HIGH 1.0 — — V — IEN — 0.01 1 μA — μVRMS f = 10 Hz to 100 kHz Enable Enable Input Current Note 1: Specification for packaged product only.  2018-2020 Microchip Technology Inc. DS20006105B-page 3 MIC94310 TEMPERATURE SPECIFICATIONS Parameters Sym. Min. Typ. Max. Units Conditions TJ –40 — +125 °C — Temperature Ranges Junction Operating Temperature Lead Temperature — — — +260 °C Soldering, 10 sec. Storage Temperature Range TS –65 — +150 °C — Thermal Resistance, TDFN JA — 173 — °C/W — Thermal Resistance, SOT-23-5Ld JA — 120 — °C/W — Thermal Resistance WLCSP JA — 250 — °C/W — Package Thermal Resistances Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air (i.e., TA, TJ, JA). Exceeding the maximum allowable power dissipation will cause the device operating junction temperature to exceed the maximum +125°C rating. Sustained junction temperatures above +125°C can impact the device reliability. DS20006105B-page 4  2018-2020 Microchip Technology Inc. MIC94310 2.0 TYPICAL PERFORMANCE CURVES Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range. 0 0 -20 -20 VIN = VIN(NOM) + 40mVpp LOAD = 100mA VOUT = 1.8V VIN = 2.0V IOUT = 100mA -40 PSRR (dB) PSRR (dB) -40 IOUT = 200mA -60 -60 -80 -80 -100 -100 VIN = 3.6V IOUT = 10mA VIN = 2.5V + 40mVpp VOUT = 1.8V -120 1.E+01 10 1.E+02 100 1.E+03 1K 1.E+04 10K 1.E+05 100K 1.E+06 1M 10M -120 1.E+01 10 1.E+02 100 1.E+03 1K 1.E+04 10K 1.E+05 100K 1.E+06 1M 1.E+07 10M FREQUENCY (Hz) FREQUENCY (Hz) FIGURE 2-1: PSRR COUT = 0.47 µF. FIGURE 2-4: 0 -20 VIN = 2.5V -40 -60 VIN = 3.6V -80 VIN = VIN(NOM) + 40mVpp LOAD = 100mA VOUT = 1.8V -120 1.E+01 10 1.E+02 100 1.E+03 1K 1.E+04 10K 1.E+05 100K 1.E+06 1M -40 PSRR (dB) PSRR (dB) VIN = 2.0V IOUT = 100mA -80 10M IOUT = 10mA -120 1.E+01 10 1.E+02 100 1.E+03 1K 1.E+04 10K 1.E+05 100K 1.E+06 1M FIGURE 2-5: -20 -20 IOUT = 200mA PSRR (dB) PSRR (dB) PSRR COUT = 0.47 µF. IOUT = 100mA -80 -100 IOUT = 10mA VIN = 2.5V + 40mVpp VOUT = 1.8V -120 1.E+01 10 1.E+02 100 1.E+03 1K 1.E+04 10K 1.E+05 100K 1.E+06 1M -40 VIN = VIN(NOM) + 40mVpp LOAD = 100mA VOUT = 1.8V VIN = 2.0V VIN = 2.5V -80 VIN = 3.6V -100 10M PSRR COUT = 1 µF.  2018-2020 Microchip Technology Inc. PSRR COUT = 2.2 µF. -60 -120 1.E+01 10 1.E+02 100 1.E+03 1K 1.E+04 10K 1.E+05 100K 1.E+06 1M FREQUENCY (Hz) FIGURE 2-3: 10M FREQUENCY (Hz) 0 -60 VIN = 2.5V + 40mVpp VOUT = 1.8V -100 0 -40 IOUT = 200mA -60 FREQUENCY (Hz) FIGURE 2-2: PSRR COUT = 1 µF. 0 -20 -100 VIN = 2.5V 10M FREQUENCY (Hz) FIGURE 2-6: PSRR COUT = 2.2 µF. DS20006105B-page 5 MIC94310 . 0 0 -20 -20 VIN = 2.0V IOUT = 200mA -40 PSRR (dB) PSRR (dB) VIN = VIN(NOM) + 40mVpp LOAD = 100mA VOUT = 1.8V IOUT = 100mA -60 -80 -100 -120 1.E+01 10 1.E+02 100 1.E+03 1K 1.E+04 10K 1.E+05 100K 1.E+06 1M -60 -80 PSRR COUT = 4.7 µF. FIGURE 2-10: PSRR COUT = 10 µF. 0 -20 -20 VIN = 2.0V -60 -80 -40 -60 -80 VIN = 3.6V -100 VIN = VIN(NOM) + 40mVpp LOAD = 100mA VOUT = 1.8V -100 -120 1.E+01 10 1.E+02 100 1.E+03 1K 1.E+04 10K 1.E+05 100K 1.E+06 1M COUT = 2.2μF VIN = 2.5V + 40mVpp LOAD = 100mA VOUT = 1.8V -120 1.E+01 10 1.E+02 100 1.E+03 1K 1.E+04 10K 1.E+05 100K 1.E+06 1M 10M 10M FREQUENCY (Hz) FREQUENCY (Hz) FIGURE 2-8: COUT = 0.47μF COUT = 1μF VIN = 2.5V -40 PSRR (dB) PSRR (dB) 10M FREQUENCY (Hz) 0 PSRR COUT = 4.7 µF. FIGURE 2-11: PSRR (Varying COUT). 0 0 -20 -20 -40 -40 COUT = 2.2μF IOUT = 200mA PSRR (dB) PSRR (dB) VIN = 3.6V -120 1.E+01 10 1.E+02 100 1.E+03 1K 1.E+04 10K 1.E+05 100K 1.E+06 1M 10M FREQUENCY (Hz) FIGURE 2-7: VIN = 2.5V -100 VIN = 2.5V + 40mVpp VOUT = 1.8V IOUT = 10mA -40 IOUT = 100mA -60 -100 -60 -80 -80 -100 VIN = 2.5V + 40mVpp VOUT = 1.8V IOUT = 10mA -120 1.E+01 10 1.E+02 100 1.E+03 1K 1.E+04 10K 1.E+05 100K 1.E+06 1M 10M DS20006105B-page 6 PSRR COUT = 10 µF. COUT = 4.7μF VIN = 2.5V + 40mVpp LOAD = 100mA VOUT = 1.8V -120 10 1.E+02 100 1.E+03 1K 1.E+04 10K 1.E+05 100K 1.E+06 1M 1.E+07 10M 1.E+01 FREQUENCY (Hz) FREQUENCY (Hz) FIGURE 2-9: COUT = 10μF FIGURE 2-12: PSRR (Varying COUT).  2018-2020 Microchip Technology Inc. MIC94310 10.00 30 25 Noise μV/√Hz DROPOUT VOLTAGE (mV) 35 20 15 10 1.00 VIN = VEN = 3.1V 0.10 CIN = COUT = 1μF VOUT = 1.8V NOISE (10Hz to 100kHz) = 82.55μVRMS 5 0 0 25 50 75 100 125 150 175 0.01 10 1.E+01 200 100 1.E+02 OUTPUT CURRENT (mA) FIGURE 2-13: Current. Drop Voltage vs. Output FIGURE 2-16: Density. 1.900 GROUND CURRENT (μA) OUTPUT VOLTAGE (V) 10k 1.E+04 100k 1.E+05 1M 1.E+06 Output Noise Spectral 175 1.875 1.850 1.825 1.800 1.775 1.750 VIN = 3.6V 1.725 170 165 160 155 VIN =2.8V CIN = COUT = 1μF CIN = COUT =1μF 150 1.700 0 20 40 60 0 80 100 120 140 160 180 200 20 40 FIGURE 2-14: Current. 60 80 100 120 140 160 180 200 OUTPUT CURRENT (mA) OUTPUT CURRENT (mA) Output Voltage vs. Output FIGURE 2-17: Current. 2.00 Ground Current vs. Output 190 GROUND CURRENT (μA) 1.95 OUTPUT VOLTAGE (V) 1k 1.E+03 FREQUENCY (Hz) 1.90 1.85 1.80 1.75 IOUT = 200mA 1.70 1.65 180 IOUT = 200mA 170 160 IOUT = 100mA 150 140 CIN = COUT =1μF 130 120 1.60 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 2 FIGURE 2-15: Voltage. Output Voltage vs. Input  2018-2020 Microchip Technology Inc. 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 INPUT VOLTAGE (V) INPUT VOLTAGE (V) FIGURE 2-18: Voltage. Ground Current vs. Input DS20006105B-page 7 MIC94310 200mA IOUT (50mA/div) VIN = 3.6V VOUT = 1.8V COUT = 1μF 0mA VOUT (AC-COUPLED) (20mV/div) VEN (1V/div) VOUT (1V/div) Time (40μs/div) FIGURE 2-19: 200 mA). Load Transient (0 mA to Time (40μs/div) FIGURE 2-21: Enable Turn-On. VOUT (1V/div) 3.6V VIN (1V/div) VIN = 3.6V VOUT = 1.8V IOUT = 200mA COUT = 1μF VIN = 3.6V VOUT = 1.8V IOUT = 200mA COUT = 1μF 2.3V VOUT = 1.8V IOUT = 200mA COUT = 1μF VEN (1V/div) VOUT (AC-COUPLED) (5mV/div) Time (40μs/div) FIGURE 2-22: Enable Turn-Off. Time (100μs/div) FIGURE 2-20: 3.6V). DS20006105B-page 8 Line Transient (2.6V to  2018-2020 Microchip Technology Inc. MIC94310 3.0 PIN DESCRIPTIONS The descriptions of the pins are listed in Table 3-1. TABLE 3-1: PIN FUNCTION TABLE MIC94310 TDFN MIC94310 SOT-23 MIC94310 WLCSP Symbol 1 5 A2 VOUT Power Switch Output 2 2 B2 GND Ground 3 3 B1 EN Enable Input A logic HIGH signal on this pin enables the part. Logic LOW disables the part. Do not leave floating. 4 1 A1 VIN Power switch input and chip supply — 4 — NC No Connect, not internally connected EP — — EPAD  2018-2020 Microchip Technology Inc. Description Exposed Heatsink Pad Connect to ground for best thermal performance. DS20006105B-page 9 MIC94310 4.0 APPLICATION INFORMATION The MIC94310 is a very-high PSRR, fixed-output, 200 mA LDO utilizing Ripple Blocker technology. The MIC94310 is fully protected from damage due to fault conditions, offering linear current limiting and thermal shutdown. 4.1 Input Capacitor The MIC94310 is a high-performance, high-bandwidth device. An input capacitor of 0.47 µF is required from the input to ground to provide stability. Low-ESR ceramic capacitors provide optimal performance at a minimum of space. Additional high-frequency capacitors, such as small-valued NPO dielectric-type capacitors, help filter out high-frequency noise and are good practice in any RF-based circuit. X5R or X7R dielectrics are recommended for the input capacitor. Y5V dielectrics lose most of their capacitance over temperature and are therefore, not recommended. 4.2 Output Capacitance In order to maintain stability, the MIC94310 requires an output capacitor of 0.47 µF or greater for the Thin DFN package and 10 µF or greater for the SOT-23 package. For optimal ripple rejection performance, a 1 µF capacitor is recommended for the Thin DFN package. A 10 µF capacitor is recommended for the SOT-23 package. The design is optimized for use with low-ESR ceramic chip capacitors. High-ESR capacitors are not recommended because they may cause high-frequency oscillation. The output capacitor can be increased, but performance has been optimized for a 1 µF ceramic output capacitor and does not improve significantly with larger capacitance. X7R/X5R dielectric type ceramic capacitors are recommended because of their temperature performance. X7R type capacitors change capacitance by 15% over their operating temperature range and are the most stable type of ceramic capacitors. Z5U and Y5V dielectric capacitors change their value by as much as 50% and 60%, respectively, over their operating temperature ranges. To use a ceramic chip capacitor with the Y5V dielectric, the value must be much higher than an X7R ceramic capacitor to ensure the same minimum capacitance over the equivalent operating temperature range. 4.3 No Load Stability The MIC94310 will remain stable and in regulation with no load. This is especially important in CMOS RAM keep-alive applications. DS20006105B-page 10 4.4 Enable/Shutdown Forcing the enable (EN) pin low disables the MIC94310 and sends it into a “zero” off mode current state. In this state, current consumed by the MIC94310 goes nearly to zero. Forcing EN high enables the output voltage. The EN pin uses CMOS technology and cannot be left floating as it could cause an indeterminate state on the output. 4.5 Thermal Considerations The MIC94310 is designed to provide 200 mA of continuous current in a very small package. Maximum ambient operating temperature can be calculated based on the output current and the voltage drop across the part. For example if the input voltage is 2.5V, the output voltage is 1.8V, and the output current equals 200 mA. The actual power dissipation of the Ripple Blocker can be determined using Equation 4-1: EQUATION 4-1: P D =  V IN – V OUT1 I OUT + V IN I GND Because this device is CMOS and the ground current is typically
MIC94310-GYMT-T5 价格&库存

很抱歉,暂时无法提供与“MIC94310-GYMT-T5”相匹配的价格&库存,您可以联系我们找货

免费人工找货
MIC94310-GYMT-T5
    •  国内价格
    • 1000+2.51900

    库存:0