MIC94310
200 mA LDO with Ripple Blocker™ Technology
Features
General Description
• 1.8V to 3.6V Input Voltage Range
• Active Noise Rejection Over a Wide Frequency
Band: >50 dB from 10 Hz to 10 MHz at 200 mA
Load
• Rated to 200 mA Output Current
• Fixed Output Voltages
• Current-Limit and Thermal-Limit Protected
• 1.2 mm x 1.6 mm 4-Pin TDFN
• 5-Pin SOT-23
• Ultra-Small 0.88 mm x 0.88 mm WLCSP
• Logic-Controlled Enable Pin
• -40°C to +125°C Junction Temperature Range
The MIC94310 Ripple Blocker™ is a monolithic
integrated circuit that provides low-frequency ripple
attenuation (switching noise rejection) to a regulated
output voltage. This is important for applications where
a DC/DC switching converter is required to lower or
raise a battery voltage, but where switching noise
cannot be tolerated by sensitive downstream circuits
such as in RF applications. The MIC94310 maintains
high power supply ripple rejection (PSRR) with input
voltages operating near the output voltage level to
improve overall system efficiency. A low-voltage logic
enable pin facilitates ON/OFF control at typical GPIO
voltage levels.
Applications
•
•
•
•
•
•
Smartphones/Smart Books
Tablet PC/Notebooks and Webcams
Digital Still and Video Cameras
Global Positioning Systems
Mobile Computing
Automotive and Industrial Applications
The MIC94310 operates from an input voltage of 1.8V
to 3.6V.
Packaged in a 4-pin 1.2 mm × 1.6 mm TDFN, a 5-pin
SOT-23, or a 0.88 mm × 0.88 mm 4-Ball WLCSP, the
MIC94310 has a junction operating temperature range
of -40°C to +125°C.
Package Types
MIC94310
SOT-23-5
(Top View)
MIC94310
1.2 mm x 1.6 mm TDFN
(Top View)
4 VIN
VOUT 1
EN GND VIN
1
2
3
EP
GND
2
3 EN
MIC94310
0.88 mm x 0.88 mm 4-Ball WLCSP
(Top View)
2018-2020 Microchip Technology Inc.
4
NC
5
VOUT
DS20006105B-page 1
MIC94310
Typical Application Circuit
MIC94310
1.2x1.6 TDFN
MIC94310xxYMT
4
DC/DC
CIN
1μF
EN
3
VIN
VOUT 1
EN
GND
LOAD
2
COUT
1μF
Functional Block Diagram
VIN
CHARGE
PUMP
EN
BIAS AND
THERMAL
SHUTDOWN
+
-
EA
VOUT
DRIVER
+
VREF
GND
DS20006105B-page 2
2018-2020 Microchip Technology Inc.
MIC94310
1.0
ELECTRICAL CHARACTERISTICS
Absolute Maximum Ratings †
Input Voltage, VIN ...................................................................................................................................... –0.3V to +4.0V
Output Voltage, VOUT ............................................................................................................ –0.3V to VIN+0.3V or +4.0V
Enable Voltage, VEN ............................................................................................................. –0.3V to VIN+0.3V or +4.0V
ESD Rating (Note 1) .................................................................................................................................................. 3 kV
Operating Ratings ††
Supply Voltage, VIN ................................................................................................................................... +1.8V to +3.6V
Enable Voltage, VEN ...........................................................................................................................................0V to VIN
† Notice:Exceeding the “Absolute Maximum Ratings †” may damage the device.
†† Notice:The device is not guaranteed to function outside its operating ratings.
Note 1: Devices are ESD-sensitive. Handling precautions are recommended. Human body model, 1.5 kΩ in series
with 100 pF.
ELECTRICAL CHARACTERISTICS (Note 1)
Electrical Characteristics: Unless otherwise indicated, VIN = VEN = VOUT + 500 mV (VIN = VEN = 3.6V for VOUT ≥
3.1V); IOUT = 1 mA; COUT = 1 µF (YMT), COUT = 10 µF (YM5); TA = 25°C, bold values indicate –40°C ≤ TJ ≤ +125°C.
Parameters
Input Voltage
Output Voltage Accuracy
Dropout Voltage
Sym.
Min.
Typ.
Max.
Units
VIN
1.8
—
3.6
V
—
VOUT
–3
±1
+3
%
Variation from nominal VOUT
—
20
50
mV
VIN to VOUT dropout at
100 mA output current
—
40
100
mV
VIN to VOUT dropout at
200 mA output current
IOUT = 1 mA to 100 mA
VDO
Conditions
Load Regulation
ΔVOUT
—
4
—
mV
Line Regulation
ΔVOUT/ΔVIN
—
0.01
0.5
%
VIN = VOUT + 500 mV to 3.6V
Ground Current
IGND
—
170
250
µA
No load to full load
Shutdown Current
ISHDN
—
0.2
5
µA
VEN = 0V
—
85
—
dB
f = 100 Hz, IOUT = 100 mA
—
68
—
dB
f = 100 kHz, IOUT = 100 mA
—
57
—
dB
f = 1 MHz, IOUT = 100 mA
—
50
—
dB
f = 10 MHz, IOUT = 100 mA
mA
VOUT = 0V
VIN Ripple Rejection
PSRR
Current Limit
ILIM
250
400
700
Total Output Noise
eno
—
83
—
Turn-on Time
tON
—
70
—
μs
—
Input Logic Low Level
VEN_LOW
—
—
0.4
V
—
Input Logic High Level
VEN_HIGH
1.0
—
—
V
—
IEN
—
0.01
1
μA
—
μVRMS f = 10 Hz to 100 kHz
Enable
Enable Input Current
Note 1:
Specification for packaged product only.
2018-2020 Microchip Technology Inc.
DS20006105B-page 3
MIC94310
TEMPERATURE SPECIFICATIONS
Parameters
Sym.
Min.
Typ.
Max.
Units
Conditions
TJ
–40
—
+125
°C
—
Temperature Ranges
Junction Operating Temperature
Lead Temperature
—
—
—
+260
°C
Soldering, 10 sec.
Storage Temperature Range
TS
–65
—
+150
°C
—
Thermal Resistance, TDFN
JA
—
173
—
°C/W
—
Thermal Resistance, SOT-23-5Ld
JA
—
120
—
°C/W
—
Thermal Resistance WLCSP
JA
—
250
—
°C/W
—
Package Thermal Resistances
Note 1:
The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable
junction temperature and the thermal resistance from junction to air (i.e., TA, TJ, JA). Exceeding the
maximum allowable power dissipation will cause the device operating junction temperature to exceed the
maximum +125°C rating. Sustained junction temperatures above +125°C can impact the device reliability.
DS20006105B-page 4
2018-2020 Microchip Technology Inc.
MIC94310
2.0
TYPICAL PERFORMANCE CURVES
Note:
The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.
0
0
-20
-20
VIN = VIN(NOM) + 40mVpp
LOAD = 100mA
VOUT = 1.8V
VIN = 2.0V
IOUT = 100mA
-40
PSRR (dB)
PSRR (dB)
-40
IOUT = 200mA
-60
-60
-80
-80
-100
-100
VIN = 3.6V
IOUT = 10mA
VIN = 2.5V + 40mVpp
VOUT = 1.8V
-120
1.E+01
10 1.E+02
100 1.E+03
1K 1.E+04
10K 1.E+05
100K 1.E+06
1M
10M
-120
1.E+01
10 1.E+02
100 1.E+03
1K 1.E+04
10K 1.E+05
100K 1.E+06
1M 1.E+07
10M
FREQUENCY (Hz)
FREQUENCY (Hz)
FIGURE 2-1:
PSRR COUT = 0.47 µF.
FIGURE 2-4:
0
-20
VIN = 2.5V
-40
-60
VIN = 3.6V
-80
VIN = VIN(NOM) + 40mVpp
LOAD = 100mA
VOUT = 1.8V
-120
1.E+01
10 1.E+02
100 1.E+03
1K 1.E+04
10K 1.E+05
100K 1.E+06
1M
-40
PSRR (dB)
PSRR (dB)
VIN = 2.0V
IOUT = 100mA
-80
10M
IOUT = 10mA
-120
1.E+01
10 1.E+02
100 1.E+03
1K 1.E+04
10K 1.E+05
100K 1.E+06
1M
FIGURE 2-5:
-20
-20
IOUT = 200mA
PSRR (dB)
PSRR (dB)
PSRR COUT = 0.47 µF.
IOUT = 100mA
-80
-100
IOUT = 10mA
VIN = 2.5V + 40mVpp
VOUT = 1.8V
-120
1.E+01
10 1.E+02
100 1.E+03
1K 1.E+04
10K 1.E+05
100K 1.E+06
1M
-40
VIN = VIN(NOM) + 40mVpp
LOAD = 100mA
VOUT = 1.8V
VIN = 2.0V
VIN = 2.5V
-80
VIN = 3.6V
-100
10M
PSRR COUT = 1 µF.
2018-2020 Microchip Technology Inc.
PSRR COUT = 2.2 µF.
-60
-120
1.E+01
10 1.E+02
100 1.E+03
1K 1.E+04
10K 1.E+05
100K 1.E+06
1M
FREQUENCY (Hz)
FIGURE 2-3:
10M
FREQUENCY (Hz)
0
-60
VIN = 2.5V + 40mVpp
VOUT = 1.8V
-100
0
-40
IOUT = 200mA
-60
FREQUENCY (Hz)
FIGURE 2-2:
PSRR COUT = 1 µF.
0
-20
-100
VIN = 2.5V
10M
FREQUENCY (Hz)
FIGURE 2-6:
PSRR COUT = 2.2 µF.
DS20006105B-page 5
MIC94310
.
0
0
-20
-20
VIN = 2.0V
IOUT = 200mA
-40
PSRR (dB)
PSRR (dB)
VIN = VIN(NOM) + 40mVpp
LOAD = 100mA
VOUT = 1.8V
IOUT = 100mA
-60
-80
-100
-120
1.E+01
10 1.E+02
100 1.E+03
1K 1.E+04
10K 1.E+05
100K 1.E+06
1M
-60
-80
PSRR COUT = 4.7 µF.
FIGURE 2-10:
PSRR COUT = 10 µF.
0
-20
-20
VIN = 2.0V
-60
-80
-40
-60
-80
VIN = 3.6V
-100
VIN = VIN(NOM) + 40mVpp
LOAD = 100mA
VOUT = 1.8V
-100
-120
1.E+01
10 1.E+02
100 1.E+03
1K 1.E+04
10K 1.E+05
100K 1.E+06
1M
COUT = 2.2μF
VIN = 2.5V + 40mVpp
LOAD = 100mA
VOUT = 1.8V
-120
1.E+01
10 1.E+02
100 1.E+03
1K 1.E+04
10K 1.E+05
100K 1.E+06
1M
10M
10M
FREQUENCY (Hz)
FREQUENCY (Hz)
FIGURE 2-8:
COUT = 0.47μF
COUT = 1μF
VIN = 2.5V
-40
PSRR (dB)
PSRR (dB)
10M
FREQUENCY (Hz)
0
PSRR COUT = 4.7 µF.
FIGURE 2-11:
PSRR (Varying COUT).
0
0
-20
-20
-40
-40
COUT = 2.2μF
IOUT = 200mA
PSRR (dB)
PSRR (dB)
VIN = 3.6V
-120
1.E+01
10 1.E+02
100 1.E+03
1K 1.E+04
10K 1.E+05
100K 1.E+06
1M
10M
FREQUENCY (Hz)
FIGURE 2-7:
VIN = 2.5V
-100
VIN = 2.5V + 40mVpp
VOUT = 1.8V
IOUT = 10mA
-40
IOUT = 100mA
-60
-100
-60
-80
-80
-100
VIN = 2.5V + 40mVpp
VOUT = 1.8V
IOUT = 10mA
-120
1.E+01
10 1.E+02
100 1.E+03
1K 1.E+04
10K 1.E+05
100K 1.E+06
1M
10M
DS20006105B-page 6
PSRR COUT = 10 µF.
COUT = 4.7μF
VIN = 2.5V + 40mVpp
LOAD = 100mA
VOUT = 1.8V
-120
10 1.E+02
100 1.E+03
1K 1.E+04
10K 1.E+05
100K 1.E+06
1M 1.E+07
10M
1.E+01
FREQUENCY (Hz)
FREQUENCY (Hz)
FIGURE 2-9:
COUT = 10μF
FIGURE 2-12:
PSRR (Varying COUT).
2018-2020 Microchip Technology Inc.
MIC94310
10.00
30
25
Noise μV/√Hz
DROPOUT VOLTAGE (mV)
35
20
15
10
1.00
VIN = VEN = 3.1V
0.10
CIN = COUT = 1μF
VOUT = 1.8V
NOISE (10Hz to 100kHz)
= 82.55μVRMS
5
0
0
25
50
75
100
125
150
175
0.01
10
1.E+01
200
100
1.E+02
OUTPUT CURRENT (mA)
FIGURE 2-13:
Current.
Drop Voltage vs. Output
FIGURE 2-16:
Density.
1.900
GROUND CURRENT (μA)
OUTPUT VOLTAGE (V)
10k
1.E+04
100k
1.E+05
1M
1.E+06
Output Noise Spectral
175
1.875
1.850
1.825
1.800
1.775
1.750
VIN = 3.6V
1.725
170
165
160
155
VIN =2.8V
CIN = COUT = 1μF
CIN = COUT =1μF
150
1.700
0
20
40
60
0
80 100 120 140 160 180 200
20
40
FIGURE 2-14:
Current.
60
80
100 120 140 160 180 200
OUTPUT CURRENT (mA)
OUTPUT CURRENT (mA)
Output Voltage vs. Output
FIGURE 2-17:
Current.
2.00
Ground Current vs. Output
190
GROUND CURRENT (μA)
1.95
OUTPUT VOLTAGE (V)
1k
1.E+03
FREQUENCY (Hz)
1.90
1.85
1.80
1.75
IOUT = 200mA
1.70
1.65
180
IOUT = 200mA
170
160
IOUT = 100mA
150
140
CIN = COUT =1μF
130
120
1.60
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
2
FIGURE 2-15:
Voltage.
Output Voltage vs. Input
2018-2020 Microchip Technology Inc.
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
INPUT VOLTAGE (V)
INPUT VOLTAGE (V)
FIGURE 2-18:
Voltage.
Ground Current vs. Input
DS20006105B-page 7
MIC94310
200mA
IOUT
(50mA/div)
VIN = 3.6V
VOUT = 1.8V
COUT = 1μF
0mA
VOUT
(AC-COUPLED)
(20mV/div)
VEN
(1V/div)
VOUT
(1V/div)
Time (40μs/div)
FIGURE 2-19:
200 mA).
Load Transient (0 mA to
Time (40μs/div)
FIGURE 2-21:
Enable Turn-On.
VOUT
(1V/div)
3.6V
VIN
(1V/div)
VIN = 3.6V
VOUT = 1.8V
IOUT = 200mA
COUT = 1μF
VIN = 3.6V
VOUT = 1.8V
IOUT = 200mA
COUT = 1μF
2.3V
VOUT = 1.8V
IOUT = 200mA
COUT = 1μF
VEN
(1V/div)
VOUT
(AC-COUPLED)
(5mV/div)
Time (40μs/div)
FIGURE 2-22:
Enable Turn-Off.
Time (100μs/div)
FIGURE 2-20:
3.6V).
DS20006105B-page 8
Line Transient (2.6V to
2018-2020 Microchip Technology Inc.
MIC94310
3.0
PIN DESCRIPTIONS
The descriptions of the pins are listed in Table 3-1.
TABLE 3-1:
PIN FUNCTION TABLE
MIC94310
TDFN
MIC94310
SOT-23
MIC94310
WLCSP
Symbol
1
5
A2
VOUT
Power Switch Output
2
2
B2
GND
Ground
3
3
B1
EN
Enable Input
A logic HIGH signal on this pin enables the part. Logic
LOW disables the part. Do not leave floating.
4
1
A1
VIN
Power switch input and chip supply
—
4
—
NC
No Connect, not internally connected
EP
—
—
EPAD
2018-2020 Microchip Technology Inc.
Description
Exposed Heatsink Pad
Connect to ground for best thermal performance.
DS20006105B-page 9
MIC94310
4.0
APPLICATION INFORMATION
The MIC94310 is a very-high PSRR, fixed-output,
200 mA LDO utilizing Ripple Blocker technology. The
MIC94310 is fully protected from damage due to fault
conditions, offering linear current limiting and thermal
shutdown.
4.1
Input Capacitor
The MIC94310 is a high-performance, high-bandwidth
device. An input capacitor of 0.47 µF is required from
the input to ground to provide stability. Low-ESR
ceramic capacitors provide optimal performance at a
minimum of space. Additional high-frequency
capacitors, such as small-valued NPO dielectric-type
capacitors, help filter out high-frequency noise and are
good practice in any RF-based circuit. X5R or X7R
dielectrics are recommended for the input capacitor.
Y5V dielectrics lose most of their capacitance over
temperature and are therefore, not recommended.
4.2
Output Capacitance
In order to maintain stability, the MIC94310 requires an
output capacitor of 0.47 µF or greater for the Thin DFN
package and 10 µF or greater for the SOT-23 package.
For optimal ripple rejection performance, a 1 µF
capacitor is recommended for the Thin DFN package.
A 10 µF capacitor is recommended for the SOT-23
package. The design is optimized for use with low-ESR
ceramic chip capacitors. High-ESR capacitors are not
recommended
because
they
may
cause
high-frequency oscillation. The output capacitor can be
increased, but performance has been optimized for a
1 µF ceramic output capacitor and does not improve
significantly with larger capacitance.
X7R/X5R dielectric type ceramic capacitors are
recommended because of their temperature
performance. X7R type capacitors change capacitance
by 15% over their operating temperature range and are
the most stable type of ceramic capacitors. Z5U and
Y5V dielectric capacitors change their value by as
much as 50% and 60%, respectively, over their
operating temperature ranges. To use a ceramic chip
capacitor with the Y5V dielectric, the value must be
much higher than an X7R ceramic capacitor to ensure
the same minimum capacitance over the equivalent
operating temperature range.
4.3
No Load Stability
The MIC94310 will remain stable and in regulation with
no load. This is especially important in CMOS RAM
keep-alive applications.
DS20006105B-page 10
4.4
Enable/Shutdown
Forcing the enable (EN) pin low disables the MIC94310
and sends it into a “zero” off mode current state. In this
state, current consumed by the MIC94310 goes nearly
to zero. Forcing EN high enables the output voltage.
The EN pin uses CMOS technology and cannot be left
floating as it could cause an indeterminate state on the
output.
4.5
Thermal Considerations
The MIC94310 is designed to provide 200 mA of
continuous current in a very small package. Maximum
ambient operating temperature can be calculated
based on the output current and the voltage drop
across the part. For example if the input voltage is 2.5V,
the output voltage is 1.8V, and the output current
equals 200 mA. The actual power dissipation of the
Ripple Blocker can be determined using Equation 4-1:
EQUATION 4-1:
P D = V IN – V OUT1 I OUT + V IN I GND
Because this device is CMOS and the ground current
is typically
很抱歉,暂时无法提供与“MIC94310-JYMT-T5”相匹配的价格&库存,您可以联系我们找货
免费人工找货