0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
PIC12LF1501-I/P

PIC12LF1501-I/P

  • 厂商:

    ACTEL(微芯科技)

  • 封装:

    DIP8

  • 描述:

    PIC PIC® 12F Microcontroller IC 8-Bit 20MHz 1.75KB (1K x 14) FLASH 8-PDIP

  • 数据手册
  • 价格&库存
PIC12LF1501-I/P 数据手册
PIC12(L)F1501 8-Pin Flash, 8-Bit Microcontrollers High-Performance RISC CPU: • C Compiler Optimized Architecture • Only 49 Instructions • Operating Speed: - DC – 20 MHz clock input - DC – 200 ns instruction cycle • Interrupt Capability with Automatic Context Saving • 16-Level Deep Hardware Stack with Optional Overflow/Underflow Reset • Direct, Indirect and Relative Addressing modes: - Two full 16-bit File Select Registers (FSRs) - FSRs can read program and data memory Flexible Oscillator Structure: • 16 MHz Internal Oscillator Block: - Factory calibrated to ±1%, typical - Software selectable frequency range from 16 MHz to 31 kHz • 31 kHz Low-Power Internal Oscillator • Three External Clock modes up to 20 MHz Special Microcontroller Features: • Operating Voltage Range: - 1.8V to 3.6V (PIC12LF1501) - 2.3V to 5.5V (PIC12F1501) • Self-Programmable under Software Control • Power-on Reset (POR) • Power-up Timer (PWRT) • Programmable Low-Power Brown-out Reset (LPBOR) • Extended Watchdog Timer (WDT): - Programmable period from 1 ms to 256s • Programmable Code Protection • In-Circuit Serial Programming™ (ICSP™) via Two Pins • Enhanced Low-Voltage Programming (LVP) • In-Circuit Debug (ICD) via Two Pins • Power-Saving Sleep mode: - Low-Power Sleep mode - Low-Power BOR (LPBOR) • Integrated Temperature Indicator • 128 Bytes High-Endurance Flash - 100,000 write Flash endurance (minimum) Memory: eXtreme Low-Power (XLP) Features (PIC12LF1501): • Sleep Current: - 20 nA @ 1.8V, typical • Watchdog Timer Current: - 260 nA @ 1.8V, typical • Operating Current: - 30 A/MHz @ 1.8V, typical Peripheral Features: • Analog-to-Digital Converter (ADC): - 10-bit resolution - Four external channels - Three internal channels: - Fixed Voltage Reference - Digital-to-Analog Converter (DAC) - Temperature Indicator channel - Auto acquisition capability - Conversion available during Sleep • 5-Bit Digital-to-Analog Converter (DAC): - Output available externally - Positive reference selection - Internal connections to comparators and ADC • One Comparator: - Rail-to-rail inputs - Power mode control - Software controllable hysteresis • Voltage Reference: - 1.024V Fixed Voltage Reference (FVR) with 1x, 2x and 4x Gain output levels • Six I/O Pins (1 Input-only Pin): - High current sink/source 25 mA/25 mA - Individually programmable weak pull-ups - Individually programmable Interrupt-on-Change (IOC) pins • Timer0: 8-Bit Timer/Counter with 8-Bit Programmable Prescaler • Enhanced Timer1: - 16-bit timer/counter with prescaler - External Gate Input mode • Timer2: 8-Bit Timer/Counter with 8-Bit Period Register, Prescaler and Postscaler • Four 10-bit PWM modules • 1 Kwords Linear Program Memory Addressing • 64 bytes Linear Data Memory Addressing • High-Endurance Flash Data Memory (HEF) - 128 bytes if nonvolatile data storage - 100k erase/write cycles  2011-2015 Microchip Technology Inc. DS40001615C-page 1 PIC12(L)F1501 - True linear frequency control - High-speed clock input - Selectable Output modes - Fixed Duty Cycle (FDC) mode - Pulse Frequency (PF) mode • Complementary Waveform Generator (CWG): - Eight selectable signal sources - Selectable falling and rising edge dead-band control - Polarity control - Four auto-shutdown sources - Multiple input sources: PWM, CLC, NCO Peripheral Features (Continued): • Two Configurable Logic Cell (CLC) modules: - 16 selectable input source signals - Four inputs per module - Software control of combinational/sequential logic/state/clock functions - AND/OR/XOR/D Flop/D Latch/SR/JK - Inputs from external and internal sources - Output available to pins and peripherals - Operation while in Sleep • Numerically Controlled Oscillator (NCO): - 20-bit accumulator - 16-bit increment XLP Debug(1) NCO CLC CWG MSSP (I2C/SPI) EUSART PWM Timers (8/16-bit) DAC Comparators 10-bit ADC (ch) I/O’s(2) Data SRAM (bytes) Program Memory Flash (words) Device Data Sheet Index PIC12(L)F1501/PIC16(L)F150X FAMILY TYPES PIC12(L)F1501 (1) 1024 64 6 4 1 1 2/1 4 — — 1 2 1 H — PIC16(L)F1503 (2) 2048 128 12 8 2 1 2/1 4 — 1 1 2 1 H — PIC16(L)F1507 (3) 2048 128 18 12 — — 2/1 4 — — 1 2 1 H — PIC16(L)F1508 (4) 4096 256 18 12 2 1 2/1 4 1 1 1 4 1 I/H Y PIC16(L)F1509 (4) 8192 512 18 12 2 1 2/1 4 1 1 1 4 1 I/H Y Note 1: Debugging Methods: (I) - Integrated on Chip; (H) - using Debug Header; (E) - using Emulation Header. 2: One pin is input-only. Data Sheet Index: (Unshaded devices are described in this document.) PIC12(L)F1501 Data Sheet, 8-Pin Flash, 8-bit Microcontrollers. 1: DS40001615 2: DS40001607 PIC16(L)F1503 Data Sheet, 14-Pin Flash, 8-bit Microcontrollers. 3: DS40001586 PIC16(L)F1507 Data Sheet, 20-Pin Flash, 8-bit Microcontrollers. 4: DS40001609 PIC16(L)F1508/9 Data Sheet, 20-Pin Flash, 8-bit Microcontrollers. Note: For other small form-factor package availability and marking information, please visit http://www.microchip.com/packaging or contact your local sales office. DS40001615C-page 2  2011-2015 Microchip Technology Inc. PIC12(L)F1501 PIN DIAGRAMS VDD 1 RA5 2 RA4 3 MCLR/VPP/RA3 4 PIC12(L)F1501 8-pin PDIP, SOIC, MSOP, DFN, UDFN 8 VSS 7 RA0/ICSPDAT 6 RA1/ICSPCLK 5 RA2 Note: See Table 1 for location of all peripheral functions.  2011-2015 Microchip Technology Inc. DS40001615C-page 3 PIC12(L)F1501 PIN ALLOCATION TABLE AN1 VREF+ C1IN0- 5 AN2 DACOUT2 C1OUT RA3 4 — — — RA4 3 AN3 — C1IN1- RA5 2 — — — — — — NCO1 T0CKI CWG1A CWG1FLT — T1G(1) — — T1G CWG1B(1) T1CKI CWG1A(1) NCO1(1) NCO1CLK Basic 6 RA2 CWG1B Pull-Up RA1 — Interrupt C1IN+ PWM DACOUT1 CLC Comparator AN0 NCO Reference 7 CWG ADC RA0 Timer 8-Pin PDIP/SOIC/MSOP/DFN/UDFN 8-PIN ALLOCATION TABLE (PIC12(L)F1501) I/O TABLE 1: CLC2IN1 PWM2 IOC Y ICSPDAT CLC2IN0 — IOC Y ICSPCLK CLC1 PWM1 INT IOC Y — CLC1IN0 — IOC Y MCLR VPP CLC1(1) PWM3 IOC Y CLKOUT CLC1IN1 CLC2 PWM4 IOC Y CLKIN VDD 1 — — — — — — — — — — VDD VSS 8 — — — — — — — — — — VSS Note 1: Alternate pin function selected with the APFCON (Register 11-1) register. DS40001615C-page 4  2011-2015 Microchip Technology Inc. PIC12(L)F1501 TABLE OF CONTENTS 1.0 Device Overview .......................................................................................................................................................................... 7 2.0 Enhanced Mid-Range CPU ........................................................................................................................................................ 11 3.0 Memory Organization ................................................................................................................................................................. 13 4.0 Device Configuration .................................................................................................................................................................. 37 5.0 Oscillator Module........................................................................................................................................................................ 42 6.0 Resets ........................................................................................................................................................................................ 51 7.0 Interrupts .................................................................................................................................................................................... 59 8.0 Power-Down Mode (Sleep) ........................................................................................................................................................ 72 9.0 Watchdog Timer (WDT) ............................................................................................................................................................. 75 10.0 Flash Program Memory Control ................................................................................................................................................. 79 11.0 I/O Ports ..................................................................................................................................................................................... 95 12.0 Interrupt-On-Change ................................................................................................................................................................ 101 13.0 Fixed Voltage Reference (FVR) ............................................................................................................................................... 105 14.0 Temperature Indicator Module ................................................................................................................................................. 108 15.0 Analog-to-Digital Converter (ADC) Module .............................................................................................................................. 110 16.0 5-Bit Digital-to-Analog Converter (DAC) Module...................................................................................................................... 124 17.0 Comparator Module.................................................................................................................................................................. 127 18.0 Timer0 Module ......................................................................................................................................................................... 134 19.0 Timer1 Module with Gate Control............................................................................................................................................. 137 20.0 Timer2 Module ......................................................................................................................................................................... 148 21.0 Pulse-Width Modulation (PWM) Module .................................................................................................................................. 151 22.0 Configurable Logic Cell (CLC).................................................................................................................................................. 157 23.0 Numerically Controlled Oscillator (NCO) Module ..................................................................................................................... 173 24.0 Complementary Waveform Generator (CWG) Module ............................................................................................................ 180 25.0 In-Circuit Serial Programming™ (ICSP™) ............................................................................................................................... 192 26.0 Instruction Set Summary .......................................................................................................................................................... 194 27.0 Electrical Specifications............................................................................................................................................................ 209 28.0 DC and AC Characteristics Graphs and Charts ....................................................................................................................... 232 29.0 Development Support............................................................................................................................................................... 267 30.0 Packaging Information.............................................................................................................................................................. 271 Appendix A: Data Sheet Revision History.......................................................................................................................................... 288 The Microchip Website ...................................................................................................................................................................... 289 Customer Change Notification Service .............................................................................................................................................. 289 Customer Support .............................................................................................................................................................................. 289 Product Identification System ............................................................................................................................................................ 290  2011-2015 Microchip Technology Inc. DS40001615C-page 5 PIC12(L)F1501 TO OUR VALUED CUSTOMERS It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced. If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at docerrors@microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We welcome your feedback. Most Current Data Sheet To obtain the most up-to-date version of this data sheet, please register at our Worldwide Website at: http://www.microchip.com You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000). Errata An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies. To determine if an errata sheet exists for a particular device, please check with one of the following: • Microchip’s Worldwide Website; http://www.microchip.com • Your local Microchip sales office (see last page) When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using. Customer Notification System Register on our website at www.microchip.com to receive the most current information on all of our products. DS40001615C-page 6  2011-2015 Microchip Technology Inc. PIC12(L)F1501 1.0 DEVICE OVERVIEW The block diagram of these devices are shown in Figure 1-1, the available peripherals are shown in Table 1-1, and the pinout descriptions are shown in Table 1-2. Peripheral PIC16(L)F1503 PIC16(L)F1507 PIC16(L)F1508 PIC16(L)F1509 DEVICE PERIPHERAL SUMMARY PIC12(L)F1501 TABLE 1-1: Analog-to-Digital Converter (ADC) ● ● ● ● ● Complementary Wave Generator (CWG) ● ● ● ● ● Digital-to-Analog Converter (DAC) ● ● ● ● ● ● Enhanced Universal Synchronous/Asynchronous Receiver/ Transmitter (EUSART) Fixed Voltage Reference (FVR) ● ● ● ● ● Numerically Controlled Oscillator (NCO) ● ● ● ● ● Temperature Indicator ● ● ● ● ● ● ● ● ● ● ● ● Comparators C1 C2 Configurable Logic Cell (CLC) CLC1 ● ● ● ● ● CLC2 ● ● ● ● ● CLC3 ● ● CLC4 ● ● ● ● Master Synchronous Serial Ports MSSP1 ● PWM Modules PWM1 ● ● ● ● ● PWM2 ● ● ● ● ● PWM3 ● ● ● ● ● PWM4 ● ● ● ● ● Timer0 ● ● ● ● ● Timer1 ● ● ● ● ● Timer2 ● ● ● ● ● Timers  2011-2015 Microchip Technology Inc. DS40001615C-page 7 PIC12(L)F1501 FIGURE 1-1: PIC12(L)F1501 BLOCK DIAGRAM Rev. 10-000039C 12/16/2013 Program Flash Memory RAM PORTA CLKOUT Timing Generation CPU CLKIN INTRC Oscillator (Note 3) MCLR TMR2 CWG1 NCO1 Note 1: 2: 3: DS40001615C-page 8 TMR1 TMR0 CLC2 C1 CLC1 Temp Indicator PWM4 ADC 10-bit PWM3 DAC PWM2 FVR PWM1 See applicable chapters for more information on peripherals. See Table 1-1 for peripherals on specific devices. See Figure 2-1.  2011-2015 Microchip Technology Inc. PIC12(L)F1501 TABLE 1-2: PIC12(L)F1501 PINOUT DESCRIPTION Name RA0/AN0/C1IN+/DACOUT1/ CWG1B(1)/CLC2IN1/PWM2/ ICSPDAT RA1/AN1/VREF+/C1IN0-/ NCO1(1)/CLC2IN0/ICSPCLK RA2/AN2/C1OUT/DACOUT2/ T0CKI/INT/PWM1/CLC1(1)/ CWG1A(1)/CWG1FLT RA3/CLC1IN0/VPP/T1G(1)/MCLR RA4/AN3/C1IN1-/CWG1B(1)/ CLC1(1)/PWM3/CLKOUT/T1G(1) Function Input Type Output Type RA0 TTL AN0 AN — A/D Channel input. C1IN+ AN — Comparator positive input. DACOUT1 — AN Digital-to-Analog Converter output. CWG1B — CLC2IN1 ST PWM2 — Description CMOS General purpose I/O. CMOS CWG complementary output. — Configurable Logic Cell source input. CMOS Pulse Width Module source output. ICSPDAT ST CMOS ICSP™ Data I/O. RA1 TTL CMOS General purpose I/O. AN1 AN — A/D Channel input. VREF+ AN — A/D Positive Voltage Reference input. C1IN0- AN — Comparator negative input. NCO1 — CMOS Numerically Controlled Oscillator output. CLC2IN0 ST — Configurable Logic Cell source input. ICSPCLK ST — ICSP™ Programming Clock. RA2 ST AN2 AN C1OUT — DACOUT2 — CMOS General purpose I/O. — A/D Channel input. CMOS Comparator output. AN Digital-to-Analog Converter output. T0CKI ST — Timer0 clock input. INT ST — External interrupt. PWM1 — CMOS Pulse Width Module source output. CLC1 — CMOS Configurable Logic Cell source output. CMOS CWG complementary output. CWG1A — CWG1FLT ST — Complementary Waveform Generator Fault input. RA3 TTL — General purpose input. CLC1IN0 ST — Configurable Logic Cell source input. VPP HV — Programming voltage. T1G ST — Timer1 Gate input. MCLR ST — Master Clear with internal pull-up. RA4 TTL CMOS General purpose I/O. AN3 AN — A/D Channel input. C1IN1- AN — Comparator negative input. CWG1B — CMOS CWG complementary output. CLC1 — CMOS Configurable Logic Cell source output. PWM3 — CMOS Pulse Width Module source output. CLKOUT — CMOS FOSC/4 output. T1G ST — Timer1 Gate input. Legend: AN = Analog input or output CMOS = CMOS compatible input or output OD = Open Drain TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels I2C™ = Schmitt Trigger input with I2C HV = High Voltage XTAL = Crystal levels Note 1: Alternate pin function selected with the APFCON (Register 11-1) register.  2011-2015 Microchip Technology Inc. DS40001615C-page 9 PIC12(L)F1501 TABLE 1-2: PIC12(L)F1501 PINOUT DESCRIPTION (CONTINUED) Name RA5/CLKIN/T1CKI/CWG1A(1)/ NCO1(1)/NCO1CLK/CLC1IN1/ CLC2/PWM4 Function Input Type RA5 TTL CLKIN CMOS T1CKI ST CWG1A — Output Type Description CMOS General purpose I/O. — External clock input (EC mode). — Timer1 clock input. CMOS CWG complementary output. NCO1 ST — Numerically Controlled Oscillator output. NCO1CLK ST — Numerically Controlled Oscillator Clock source input. CLC1IN1 ST — Configurable Logic Cell source input. CLC2 — CMOS Configurable Logic Cell source output. CMOS Pulse Width Module source output. PWM4 — VDD VDD Power — Positive supply. VSS VSS Power — Ground reference. Legend: AN = Analog input or output CMOS = CMOS compatible input or output OD = Open Drain TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels I2C™ = Schmitt Trigger input with I2C HV = High Voltage XTAL = Crystal levels Note 1: Alternate pin function selected with the APFCON (Register 11-1) register. DS40001615C-page 10  2011-2015 Microchip Technology Inc. PIC12(L)F1501 2.0 ENHANCED MID-RANGE CPU This family of devices contain an enhanced mid-range 8-bit CPU core. The CPU has 49 instructions. Interrupt capability includes automatic context saving. The hardware stack is 16 levels deep and has Overflow and Underflow Reset capability. Direct, Indirect, and Relative addressing modes are available. Two File Select Registers (FSRs) provide the ability to read program and data memory. • • • • Automatic Interrupt Context Saving 16-level Stack with Overflow and Underflow File Select Registers Instruction Set FIGURE 2-1: CORE BLOCK DIAGRAM Rev. 10-000055A 7/30/2013 15 Configuration 15 MUX Flash Program Memory Data Bus 16-Level Stack (15-bit) RAM 14 Program Bus 8 Program Counter 12 Program Memory Read (PMR) RAM Addr Addr MUX Instruction Reg Direct Addr 7 5 Indirect Addr 12 12 BSR Reg 15 FSR0 Reg 15 FSR1 Reg STATUS Reg 8 Instruction Decode and Control CLKIN CLKOUT Timing Generation Internal Oscillator Block  2011-2015 Microchip Technology Inc. Power-up Timer Power-on Reset Watchdog Timer Brown-out Reset VDD 3 8 MUX ALU W Reg VSS DS40001615C-page 11 PIC12(L)F1501 2.1 Automatic Interrupt Context Saving During interrupts, certain registers are automatically saved in shadow registers and restored when returning from the interrupt. This saves stack space and user code. See Section 7.5 “Automatic Context Saving”, for more information. 2.2 16-Level Stack with Overflow and Underflow These devices have a hardware stack memory 15 bits wide and 16 words deep. A Stack Overflow or Underflow will set the appropriate bit (STKOVF or STKUNF) in the PCON register, and if enabled, will cause a software Reset. See Section 3.5 “Stack” for more details. 2.3 File Select Registers There are two 16-bit File Select Registers (FSR). FSRs can access all file registers and program memory, which allows one Data Pointer for all memory. When an FSR points to program memory, there is one additional instruction cycle in instructions using INDF to allow the data to be fetched. General purpose memory can now also be addressed linearly, providing the ability to access contiguous data larger than 80 bytes. There are also new instructions to support the FSRs. See Section 3.6 “Indirect Addressing” for more details. 2.4 Instruction Set There are 49 instructions for the enhanced mid-range CPU to support the features of the CPU. See Section 26.0 “Instruction Set Summary” for more details. DS40001615C-page 12  2011-2015 Microchip Technology Inc. PIC12(L)F1501 3.0 MEMORY ORGANIZATION These devices contain the following types of memory: • Program Memory - Configuration Words - Device ID - User ID - Flash Program Memory • Data Memory - Core Registers - Special Function Registers - General Purpose RAM - Common RAM The following features are associated with access and control of program memory and data memory: • PCL and PCLATH • Stack • Indirect Addressing 3.1 Program Memory Organization The enhanced mid-range core has a 15-bit program counter capable of addressing a 32K x 14 program memory space. Table 3-1 shows the memory sizes implemented. Accessing a location above these boundaries will cause a wrap-around within the implemented memory space. The Reset vector is at 0000h and the interrupt vector is at 0004h (See Figure 3-1). 3.2 High-Endurance Flash This device has a 128 byte section of high-endurance program Flash memory (PFM) in lieu of data EEPROM. This area is especially well suited for nonvolatile data storage that is expected to be updated frequently over the life of the end product. See Section 10.2 “Flash Program Memory Overview” for more information on writing data to PFM. See Section 3.2.1.2 “Indirect Read with FSR” for more information about using the FSR registers to read byte data stored in PFM. TABLE 3-1: Device DEVICE SIZES AND ADDRESSES Program Memory Space (Words) Last Program Memory Address High-Endurance Flash Memory Address Range (1) 1,024 03FFh 0380h-03FFh PIC12LF1501 PIC12F1501 Note 1: High-endurance Flash applies to low byte of each address in the range.  2011-2015 Microchip Technology Inc. DS40001615C-page 13 PIC12(L)F1501 FIGURE 3-1: PROGRAM MEMORY MAP AND STACK FOR PIC12(L)F1501 Rev. 10-000040D 7/30/2013 PC CALL, CALLW RETURN, RETLW Interrupt, RETFIE 3.2.1 There are two methods of accessing constants in program memory. The first method is to use tables of RETLW instructions. The second method is to set an FSR to point to the program memory. 3.2.1.1 15 READING PROGRAM MEMORY AS DATA RETLW Instruction The RETLW instruction can be used to provide access to tables of constants. The recommended way to create such a table is shown in Example 3-1. Stack Level 0 Stack Level 1 EXAMPLE 3-1: constants BRW Stack Level 15 On-chip Program Memory Reset Vector 0000h Interrupt Vector 0004h 0005h Page 0 Rollover to Page 0 03FFh 0400h RETLW RETLW RETLW RETLW DATA0 DATA1 DATA2 DATA3 RETLW INSTRUCTION ;Add Index in W to ;program counter to ;select data ;Index0 data ;Index1 data my_function ;… LOTS OF CODE… MOVLW DATA_INDEX call constants ;… THE CONSTANT IS IN W The BRW instruction makes this type of table very simple to implement. If your code must remain portable with previous generations of microcontrollers, then the BRW instruction is not available so the older table read method must be used. Rollover to Page 0 DS40001615C-page 14 7FFFh  2011-2015 Microchip Technology Inc. PIC12(L)F1501 3.2.1.2 Indirect Read with FSR The program memory can be accessed as data by setting bit 7 of the FSRxH register and reading the matching INDFx register. The MOVIW instruction will place the lower eight bits of the addressed word in the W register. Writes to the program memory cannot be performed via the INDF registers. Instructions that access the program memory via the FSR require one extra instruction cycle to complete. Example 3-2 demonstrates accessing the program memory via an FSR. The HIGH operator will set bit if a label points to a location in program memory. EXAMPLE 3-2: ACCESSING PROGRAM MEMORY VIA FSR constants DW DATA0 ;First constant DW DATA1 ;Second constant DW DATA2 DW DATA3 my_function ;… LOTS OF CODE… MOVLW DATA_INDEX ADDLW LOW constants MOVWF FSR1L MOVLW HIGH constants;MSb sets automatically MOVWF FSR1H BTFSC STATUS, C ;carry from ADDLW? INCF FSR1h, f ;yes MOVIW 0[FSR1] ;THE PROGRAM MEMORY IS IN W  2011-2015 Microchip Technology Inc. DS40001615C-page 15 PIC12(L)F1501 3.3 Data Memory Organization The data memory is partitioned in 32 memory banks with 128 bytes in a bank. Each bank consists of (Figure 3-2): • • • • 12 core registers 20 Special Function Registers (SFR) Up to 80 bytes of General Purpose RAM (GPR) 16 bytes of common RAM The active bank is selected by writing the bank number into the Bank Select Register (BSR). Unimplemented memory will read as ‘0’. All data memory can be accessed either directly (via instructions that use the file registers) or indirectly via the two File Select Registers (FSR). See Section 3.6 “Indirect Addressing” for more information. Data memory uses a 12-bit address. The upper five bits of the address define the Bank address and the lower seven bits select the registers/RAM in that bank. DS40001615C-page 16 3.3.1 CORE REGISTERS The core registers contain the registers that directly affect the basic operation. The core registers occupy the first 12 addresses of every data memory bank (addresses x00h/x08h through x0Bh/x8Bh). These registers are listed below in Table 3-2. For detailed information, see Table 3-4. TABLE 3-2: CORE REGISTERS Addresses BANKx x00h or x80h x01h or x81h x02h or x82h x03h or x83h x04h or x84h x05h or x85h x06h or x86h x07h or x87h x08h or x88h x09h or x89h x0Ah or x8Ah x0Bh or x8Bh INDF0 INDF1 PCL STATUS FSR0L FSR0H FSR1L FSR1H BSR WREG PCLATH INTCON  2011-2015 Microchip Technology Inc. PIC12(L)F1501 3.3.1.1 STATUS Register The STATUS register, shown in Register 3-1, contains: • the arithmetic status of the ALU • the Reset status The STATUS register can be the destination for any instruction, like any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended. REGISTER 3-1: U-0 It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect any Status bits. For other instructions not affecting any Status bits (Refer to Section 26.0 “Instruction Set Summary”). Note 1: The C and DC bits operate as Borrow and Digit Borrow out bits, respectively, in subtraction. STATUS: STATUS REGISTER U-0 — For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as ‘000u u1uu’ (where u = unchanged). U-0 — R-1/q — TO R-1/q PD R/W-0/u Z R/W-0/u (1) DC bit 7 R/W-0/u C(1) bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared q = Value depends on condition bit 7-5 Unimplemented: Read as ‘0’ bit 4 TO: Time-Out bit 1 = After power-up, CLRWDT instruction or SLEEP instruction 0 = A WDT time-out occurred bit 3 PD: Power-Down bit 1 = After power-up or by the CLRWDT instruction 0 = By execution of the SLEEP instruction bit 2 Z: Zero bit 1 = The result of an arithmetic or logic operation is zero 0 = The result of an arithmetic or logic operation is not zero bit 1 DC: Digit Carry/Digit Borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions)(1) 1 = A carry-out from the 4th low-order bit of the result occurred 0 = No carry-out from the 4th low-order bit of the result bit 0 C: Carry/Borrow bit(1) (ADDWF, ADDLW, SUBLW, SUBWF instructions)(1) 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred Note 1: For Borrow, the polarity is reversed. A subtraction is executed by adding the two’s complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high-order or low-order bit of the source register.  2011-2015 Microchip Technology Inc. DS40001615C-page 17 PIC12(L)F1501 3.3.2 SPECIAL FUNCTION REGISTER The Special Function Registers are registers used by the application to control the desired operation of peripheral functions in the device. The Special Function Registers occupy the 20 bytes after the core registers of every data memory bank (addresses x0Ch/x8Ch through x1Fh/x9Fh). The registers associated with the operation of the peripherals are described in the appropriate peripheral chapter of this data sheet. 3.3.3 GENERAL PURPOSE RAM There are up to 80 bytes of GPR in each data memory bank. The Special Function Registers occupy the 20 bytes after the core registers of every data memory bank (addresses x0Ch/x8Ch through x1Fh/x9Fh). 3.3.3.1 FIGURE 3-2: BANKED MEMORY PARTITIONING Rev. 10-000041A 7/30/2013 7-bit Bank Offset Memory Region 00h Core Registers (12 bytes) 0Bh 0Ch Special Function Registers (20 bytes maximum) 1Fh 20h Linear Access to GPR The general purpose RAM can be accessed in a non-banked method via the FSRs. This can simplify access to large memory structures. See Section 3.6.2 “Linear Data Memory” for more information. 3.3.4 General Purpose RAM (80 bytes maximum) COMMON RAM There are 16 bytes of common RAM accessible from all banks. 6Fh 70h Common RAM (16 bytes) 7Fh DS40001615C-page 18  2011-2015 Microchip Technology Inc.  2011-2015 Microchip Technology Inc. 3.3.5 DEVICE MEMORY MAPS The memory maps for Bank 0 through Bank 31 are shown in the tables in this section. TABLE 3-3: PIC12(L)F1501 MEMORY MAP BANK 0 000h BANK 1 080h Core Registers (Table 3-2) Status 00Bh 00Ch 00Dh 00Eh 00Fh 010h 011h 012h 013h 014h 015h 016h 017h 018h 019h 01Ah 01Bh 01Ch 01Dh 01Eh 01Fh 020h PORTA — — — — PIR1 PIR2 PIR3 — TMR0 TMR1L TMR1H T1CON T1GCON TMR2 PR2 T2CON — — — Core Registers (Table 3-2) 08Bh 08Ch 08Dh 08Eh 08Fh 090h 091h 092h 093h 094h 095h 096h 097h 098h 099h 09Ah 09Bh 09Ch 09Dh 09Eh 09Fh 0A0h General Purpose Register 48 Bytes Unimplemented Read as ‘0’ 06Fh 070h DS40001615C-page 19 07Fh ADCON0 ADCON1 ADCON2 Core Registers (Table 3-2) 10Bh 10Ch 10Dh 10Eh 10Fh 110h 111h 112h 113h 114h 115h 116h 117h 118h 119h 11Ah 11Bh 11Ch 11Dh 11Eh 11Fh 120h Unimplemented Read as ‘0’ 0EFh 0F0h Common RAM Legend: TRISA — — — — PIE1 PIE2 PIE3 — OPTION_REG PCON WDTCON — OSCCON OSCSTAT ADRESL ADRESH 0FFh Common RAM (Accesses 70h – 7Fh) BANK 3 180h LATA — — — — CM1CON0 CM1CON1 — — CMOUT BORCON FVRCON DACCON0 DACCON1 — — — APFCON — — Core Registers (Table 3-2) 18Bh 18Ch 18Dh 18Eh 18Fh 190h 191h 192h 193h 194h 195h 196h 197h 198h 199h 19Ah 19Bh 19Ch 19Dh 19Eh 19Fh 1A0h 17Fh Common RAM (Accesses 70h – 7Fh) = Unimplemented data memory locations, read as ‘0’ ANSELA — — — — PMADRL PMADRH PMDATL PMDATH PMCON1 PMCON2 VREGCON — — — — — — — — 1EFh 1F0h 1FFh Common RAM (Accesses 70h – 7Fh) BANK 5 280h Core Registers (Table 3-2) 20Bh 20Ch 20Dh 20Eh 20Fh 210h 211h 212h 213h 214h 215h 216h 217h 218h 219h 21Ah 21Bh 21Ch 21Dh 21Eh 21Fh 220h Unimplemented Read as ‘0’ Unimplemented Read as ‘0’ 16Fh 170h BANK 4 200h WPUA — — — — — — — — — — — — — — — — — — — Core Registers (Table 3-2) 28Bh 28Ch 28Dh 28Eh 28Fh 290h 291h 292h 293h 294h 295h 296h 297h 298h 299h 29Ah 29Bh 29Ch 29Dh 29Eh 29Fh 2A0h Unimplemented Read as ‘0’ 26Fh 270h 27Fh Common RAM (Accesses 70h – 7Fh) BANK 6 300h — — — — — — — — — — — — — — — — — — — — Core Registers (Table 3-2) 30Bh 30Ch 30Dh 30Eh 30Fh 310h 311h 312h 313h 314h 315h 316h 317h 318h 319h 31Ah 31Bh 31Ch 31Dh 31Eh 31Fh 320h Unimplemented Read as ‘0’ 2EFh 2F0h 2FFh Common RAM (Accesses 70h – 7Fh) BANK 7 380h — — — — — — — — — — — — — — — — — — — — Core Registers (Table 3-2) 38Bh 38Ch 38Dh 38Eh 38Fh 390h 391h 392h 393h 394h 395h 396h 397h 398h 399h 39Ah 39Bh 39Ch 39Dh 39Eh 39Fh 3A0h Unimplemented Read as ‘0’ 36Fh 370h 37Fh Common RAM (Accesses 70h – 7Fh) — — — — — IOCAP IOCAN IOCAF — — — — — — — — — — — — Unimplemented Read as ‘0’ 3EFh 3F0h 3FFh Common RAM (Accesses 70h – 7Fh) PIC12(L)F1501 04Fh 050h BANK 2 100h PIC12(L)F1501 MEMORY MAP (CONTINUED) BANK 8 BANK 9 BANK 10 BANK 11 BANK 12 BANK 13 BANK 14 BANK 15 400h Status 40Bh 40Ch 40Dh 40Eh 40Fh 410h 411h 412h 413h 414h 415h 416h 417h 418h 419h 41Ah 41Bh 41Ch 41Dh 41Eh 41Fh 420h Core Registers (Table 3-2) 480h Core Registers (Table 3-2) 500h Core Registers (Table 3-2) 580h Core Registers (Table 3-2) 600h Core Registers (Table 3-2) 680h Core Registers (Table 3-2) 700h Core Registers (Table 3-2) 780h Core Registers (Table 3-2) — — — — — — — — — — — — — — — — — — — — 48Bh 48Ch 48Dh 48Eh 48Fh 490h 491h 492h 493h 494h 495h 496h 497h 498h 499h 49Ah 49Bh 49Ch 49Dh 49Eh 49Fh 4A0h — — — — — — — — — — — — NCO1ACCL NCO1ACCH NCO1ACCU NCO1INCL NCO1INCH — NCO1CON NCO1CLK 50Bh 50Ch 50Dh 50Eh 50Fh 510h 511h 512h 513h 514h 515h 516h 517h 518h 519h 51Ah 51Bh 51Ch 51Dh 51Eh 51Fh 520h — — — — — — — — — — — — — — — — — — — — 58Bh 58Ch 58Dh 58Eh 58Fh 590h 591h 592h 593h 594h 595h 596h 597h 598h 599h 59Ah 59Bh 59Ch 59Dh 59Eh 59Fh 5A0h — — — — — — — — — — — — — — — — — — — — 60Bh 60Ch 60Dh 60Eh 60Fh 610h 611h 612h 613h 614h 615h 616h 617h 618h 619h 61Ah 61Bh 61Ch 61Dh 61Eh 61Fh 620h — — — — — PWM1DCL PWM1DCH PWM1CON PWM2DCL PWM2DCH PWM2CON PWM3DCL PWM3DCH PWM3CON PWM4DCL PWM4DCH PWM4CON — — — 68Bh 68Ch 68Dh 68Eh 68Fh 690h 691h 692h 693h 694h 695h 696h 697h 698h 699h 69Ah 69Bh 69Ch 69Dh 69Eh 69Fh 6A0h — — — — — CWG1DBR CWG1DBF CWG1CON0 CWG1CON1 CWG1CON2 — — — — — — — — — — 70Bh 70Ch 70Dh 70Eh 70Fh 710h 711h 712h 713h 714h 715h 716h 717h 718h 719h 71Ah 71Bh 71Ch 71Dh 71Eh 71Fh 720h — — — — — — — — — — — — — — — — — — — — 78Bh 78Ch 78Dh 78Eh 78Fh 790h 791h 792h 793h 794h 795h 796h 797h 798h 799h 79Ah 79Bh 79Ch 79Dh 79Eh 79Fh 7A0h — — — — — — — — — — — — — — — — — — — — Unimplemented Read as ‘0’ 46Fh 470h Common RAM (Accesses 70h – 7Fh) 47Fh Unimplemented Read as ‘0’ 4EFh 4F0h 4FFh  2011-2015 Microchip Technology Inc. BANK 16 800h Common RAM (Accesses 70h – 7Fh) Core Registers (Table 3-2 ) 87Fh Legend: 8FFh 5FFh 97Fh = Unimplemented data memory locations, read as ‘0’ 66Fh 670h 67Fh 6FFh A7Fh 77Fh AFFh 7EFh 7F0h 7FFh BANK 23 Core Registers (Table 3-2) Core Registers (Table 3-2) B8Bh B8Ch Unimplemented Read as ‘0’ B6Fh B70h B7Fh Common RAM (Accesses 70h – 7Fh) B80h B0Bh B0Ch Common RAM (Accesses 70h – 7Fh) Unimplemented Read as ‘0’ BANK 22 Unimplemented Read as ‘0’ AEFh AF0h Common RAM (Accesses 70h – 7Fh) B00h A8Bh A8Ch Common RAM (Accesses 70h – 7Fh) 76Fh 770h Core Registers (Table 3-2) Unimplemented Read as ‘0’ A6Fh A70h Common RAM (Accesses 70h – 7Fh) Unimplemented Read as ‘0’ BANK 21 Core Registers (Table 3-2) Unimplemented Read as ‘0’ 9FFh 6EFh 6F0h A80h A0Bh A0Ch Common RAM (Accesses 70h – 7Fh) Unimplemented Read as ‘0’ BANK 20 Core Registers (Table 3-2) 9EFh 9F0h Common RAM (Accesses 70h – 7Fh) A00h 98Bh 98Ch Common RAM (Accesses 70h – 7Fh) Unimplemented Read as ‘0’ BANK 19 Unimplemented Read as ‘0’ 96Fh 970h Common RAM (Accesses 70h – 7Fh) 980h 90Bh 90Ch Common RAM (Accesses 70h – 7Fh) 5EFh 5F0h Core Registers (Table 3-2) Unimplemented Read as ‘0’ 8EFh 8F0h Unimplemented Read as ‘0’ BANK 18 Core Registers (Table 3-2) Unimplemented Read as ‘0’ Common RAM (Accesses 70h – 7Fh) 57Fh Common RAM (Accesses 70h – 7Fh) 900h 88Bh 88Ch 86Fh 870h 56Fh 570h BANK 17 880h 80Bh 80Ch Unimplemented Read as ‘0’ Common RAM (Accesses 70h – 7Fh) Unimplemented Read as ‘0’ BEFh BF0h BFFh Common RAM (Accesses 70h – 7Fh) PIC12(L)F1501 DS40001615C-page 20 TABLE 3-3:  2011-2015 Microchip Technology Inc. TABLE 3-3: PIC12(L)F1501 MEMORY MAP (CONTINUED) BANK 24 C00h BANK 25 C80h Core Registers (Table 3-2) Status C0Bh C0Ch C0Dh C0Eh C0Fh C10h C11h C12h C13h C14h C15h C16h C17h C18h C19h C1Ah C1Bh C1Ch C1Dh C1Eh C1Fh C20h — — — — — — — — — — — — — — — — — — — — Core Registers (Table 3-2) C8Bh C8Ch C8Dh C8Eh C8Fh C90h C91h C92h C93h C94h C95h C96h C97h C98h C99h C9Ah C9Bh C9Ch C9Dh C9Eh C9Fh CA0h Unimplemented Read as ‘0’ C6Fh C70h Legend: — — — — — — — — — — — — — — — — — — — — Core Registers (Table 3-2) D0Bh D0Ch D0Dh D0Eh D0Fh D10h D11h D12h D13h D14h D15h D16h D17h D18h D19h D1Ah D1Bh D1Ch D1Dh D1Eh D1Fh D20h Unimplemented Read as ‘0’ CEFh CF0h CFFh Common RAM (Accesses 70h – 7Fh) BANK 27 D80h — — — — — — — — — — — — — — — — — — — — Core Registers (Table 3-2) D8Bh D8Ch D8Dh D8Eh D8Fh D90h D91h D92h D93h D94h D95h D96h D97h D98h D99h D9Ah D9Bh D9Ch D9Dh D9Eh D9Fh DA0h Unimplemented Read as ‘0’ D6Fh D70h D7Fh Common RAM (Accesses 70h – 7Fh) = Unimplemented data memory locations, read as ‘0’. BANK 28 E00h — — — — — — — — — — — — — — — — — — — — Core Registers (Table 3-2) E0Bh E0Ch E0Dh E0Eh E0Fh E10h E11h E12h E13h E14h E15h E16h E17h E18h E19h E1Ah E1Bh E1Ch E1Dh E1Eh E1Fh E20h Unimplemented Read as ‘0’ DEFh DF0h DFFh Common RAM (Accesses 70h – 7Fh) BANK 29 E80h — — — — — — — — — — — — — — — — — — — — Core Registers (Table 3-2) E8Bh E8Ch E8Dh E8Eh E8Fh E90h E91h E92h E93h E94h E95h E96h E97h E98h E99h E9Ah E9Bh E9Ch E9Dh E9Eh E9Fh EA0h Unimplemented Read as ‘0’ E6Fh E70h E7Fh Common RAM (Accesses 70h – 7Fh) BANK 30 F00h — — — — — — — — — — — — — — — — — — — — BANK 31 F80h Core Registers (Table 3-2) Core Registers (Table 3-2) F0Bh F0Ch F0Dh F0Eh F0Fh F10h F11h F12h F13h F14h F15h F16h F17h See Table 3-3 for F18h register mapping F19h details F1Ah F1Bh F1Ch F1Dh F1Eh F1Fh F20h F8Bh F8Ch F8Dh F8Eh F8Fh F90h F91h F92h F93h F94h F95h F96h F97h See Table 3-3 for F98h register mapping F99h details F9Ah F9Bh F9Ch F9Dh F9Eh F9Fh FA0h F6Fh F70h FEFh FF0h Unimplemented Read as ‘0’ EEFh EF0h EFFh Common RAM (Accesses 70h – 7Fh) F7Fh Common RAM (Accesses 70h – 7Fh) FFFh Common RAM (Accesses 70h – 7Fh) DS40001615C-page 21 PIC12(L)F1501 CFFh Common RAM (Accesses 70h – 7Fh) BANK 26 D00h PIC12(L)F1501 TABLE 3-3: PIC12(L)F1501 MEMORY MAP (CONTINUED) Bank 31 Bank 30 F0Ch F0Dh F0Eh F0Fh F10h F11h F12h F13h F14h F15h F16h F17h F18h F19h F1Ah F1Bh F1Ch F1Dh F1Eh F1Fh F20h F6Fh Legend: DS40001615C-page 22 — — — CLCDATA CLC1CON CLC1POL CLC1SEL0 CLC1SEL1 CLC1GLS0 CLC1GLS1 CLC1GLS2 CLC1GLS3 CLC2CON CLC2POL CLC2SEL0 CLC2SEL1 CLC2GLS0 CLC2GLS1 CLC2GLS2 CLC2GLS3 F8Ch Unimplemented Read as ‘0’ FE3h FE4h FE5h FE6h FE7h FE8h FE9h FEAh FEBh FECh FEDh FEEh FEFh STATUS_SHAD WREG_SHAD BSR_SHAD PCLATH_SHAD FSR0L_SHAD FSR0H_SHAD FSR1L_SHAD FSR1H_SHAD — STKPTR TOSL TOSH Unimplemented Read as ‘0’ = Unimplemented data memory locations, read as ‘0’.  2011-2015 Microchip Technology Inc. PIC12(L)F1501 3.3.6 CORE FUNCTION REGISTERS SUMMARY The Core Function registers listed in Table 3-4 can be addressed from any Bank. TABLE 3-4: Addr Name CORE FUNCTION REGISTERS SUMMARY Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on POR, BOR Value on all other Resets Bank 0-31 x00h or INDF0 x80h Addressing this location uses contents of FSR0H/FSR0L to address data memory (not a physical register) xxxx xxxx uuuu uuuu x01h or INDF1 x81h Addressing this location uses contents of FSR1H/FSR1L to address data memory (not a physical register) xxxx xxxx uuuu uuuu x02h or PCL x82h Program Counter (PC) Least Significant Byte 0000 0000 0000 0000 ---1 1000 ---q quuu x03h or STATUS x83h — — — TO PD Z DC C x04h or FSR0L x84h Indirect Data Memory Address 0 Low Pointer 0000 0000 uuuu uuuu x05h or FSR0H x85h Indirect Data Memory Address 0 High Pointer 0000 0000 0000 0000 x06h or FSR1L x86h Indirect Data Memory Address 1 Low Pointer 0000 0000 uuuu uuuu x07h or FSR1H x87h Indirect Data Memory Address 1 High Pointer 0000 0000 0000 0000 ---0 0000 ---0 0000 0000 0000 uuuu uuuu -000 0000 -000 0000 0000 0000 0000 0000 x08h or BSR x88h — x09h or WREG x89h — BSR Working Register x0Ah or PCLATH x8Ah — x0Bh or INTCON x8Bh GIE Legend: — Write Buffer for the upper 7 bits of the Program Counter PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as ‘0’, r = reserved. Shaded locations are unimplemented, read as ‘0’.  2011-2015 Microchip Technology Inc. DS40001615C-page 23 PIC12(L)F1501 TABLE 3-5: Address SPECIAL FUNCTION REGISTER SUMMARY Name Value on all other Resets Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on POR, BOR — — RA5 RA4 RA3 RA2 RA1 RA0 --xx xxxx --xx xxxx Bank 0 00Ch 00Dh to 010h PORTA — Unimplemented — — 011h PIR1 TMR1GIF ADIF — — — — TMR2IF TMR1IF 00-- --00 00-- --00 012h PIR2 — — C1IF — — NCO1IF — — --0- -0-- --0- -0-- 013h PIR3 — — — — — — CLC2IF CLC1IF ---- --00 ---- --00 014h — Unimplemented 015h TMR0 Holding Register for the 8-bit Timer0 Count xxxx xxxx uuuu uuuu 016h TMR1L Holding Register for the Least Significant Byte of the 16-bit TMR1 Count xxxx xxxx uuuu uuuu 017h TMR1H Holding Register for the Most Significant Byte of the 16-bit TMR1 Count 018h T1CON 019h T1GCON 01Ah TMR2 Timer2 Module Register 01Bh PR2 Timer2 Period Register 01Ch T2CON 01Dh to 01Fh — — TMR1CS TMR1GE T1GPOL — T1CKPS T1GTM T1GSPM — T1SYNC T1GGO/ DONE T1GVAL — xxxx xxxx uuuu uuuu — TMR1ON T1GSS 0000 -0-0 uuuu -u-u 0000 0x00 uuuu uxuu 0000 0000 0000 0000 1111 1111 1111 1111 T2OUTPS TMR2ON T2CKPS Unimplemented -000 0000 -000 0000 — — Bank 1 08Ch 08Dh to 090h TRISA — — — TRISA5 TRISA4 —(2) TRISA2 TRISA1 TRISA0 Unimplemented --11 1111 --11 1111 — — 091h PIE1 TMR1GIE ADIE — — — — TMR2IE TMR1IE 00-- --00 00-- --00 092h PIE2 — — C1IE — — NCO1IE — — --0- -0-- --0- -0-- — — — — — — CLC2IE CLC1IE ---- --00 ---- --00 PSA 093h PIE3 094h — 095h OPTION_REG WPUEN INTEDG TMR0CS TMR0SE STKOVF STKUNF — RWDT — — 096h PCON 097h WDTCON 098h — 099h OSCCON Unimplemented — RMCLR PS RI POR WDTPS BOR 00-1 11qq qq-q qquu SWDTEN --01 0110 --01 0110 Unimplemented — — IRCF 09Ah OSCSTAT 09Bh ADRESL ADC Result Register Low 09Ch ADRESH ADC Result Register High 09Dh ADCON0 — 09Eh ADCON1 ADFM 09Fh ADCON2 — — — HFIOFR — — — SCS LFIOFR — 1111 1111 1111 1111 — -011 1-00 -011 1-00 HFIOFS ---0 --00 ---q --qq xxxx xxxx uuuu uuuu xxxx xxxx uuuu uuuu CHS ADCS TRIGSEL GO/DONE — — — — ADON ADPREF — — -000 0000 -000 0000 0000 --00 0000 --00 0000 ---- 0000 ---- Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as ‘0’. Note 1: PIC12F1501 only. 2: Unimplemented, read as ‘1’. DS40001615C-page 24  2011-2015 Microchip Technology Inc. PIC12(L)F1501 TABLE 3-5: Address SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED) Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 — — LATA5 LATA4 — LATA2 LATA1 LATA0 Value on POR, BOR Value on all other Resets Bank 2 10Ch 10Dh to 110h 111h 112h to 114h LATA — CM1CON0 — Unimplemented C1ON --xx -xxx --uu -uuu — C1OUT C1OE C1POL — C1SP C1HYS C1SYNC Unimplemented — 0000 -100 0000 -100 — — 115h CMOUT — — — — — — — MC1OUT ---- --00 ---- --00 116h BORCON SBOREN BORFS — — — — — BORRDY 10-- ---q uu-- ---u 117h FVRCON FVREN FVRRDY TSEN TSRNG 118h DAC1CON0 DACEN — DACOE1 DACOE2 119h DAC1CON1 — — — 11Ah to 11Ch CDAFVR — ADFVR DACPSS — — DACR 0q00 0000 0q00 0000 0-00 -0-- 0-00 -0----0 0000 ---0 0000 — Unimplemented — 11Dh APFCON CWG1BSEL CWGA1SEL 11Eh — Unimplemented — — 11Fh — Unimplemented — — — — T1GSEL — CLC1SEL NCO1SEL — 00-- 0-00 00-- 0-00 Bank 3 18Ch 18Dh to 190h ANSELA — — — ANSA4 — Unimplemented 191h PMADRL Flash Program Memory Address Register Low Byte 192h PMADRH —(2) ANSA1 ANSA0 PMDATL PMDATH — — 195h PMCON1 —(2) CFGS 196h PMCON2 197h VREGCON(1) xxxx xxxx uuuu uuuu Flash Program Memory Read Data Register High Byte LWLO --xx xxxx --uu uuuu FREE WRERR WREN WR RD 1000 x000 1000 q000 — — — VREGPM Reserved ---- --01 ---- --01 Flash Program Memory Control Register 2 — Unimplemented — — 1000 0000 1000 0000 Flash Program Memory Read Data Register Low Byte — ---1 -111 ---1 -111 0000 0000 0000 0000 Flash Program Memory Address Register High Byte 194h — ANSA2 — 193h 198h to 19Fh — 0000 0000 0000 0000 — — Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as ‘0’. Note 1: PIC12F1501 only. 2: Unimplemented, read as ‘1’.  2011-2015 Microchip Technology Inc. DS40001615C-page 25 PIC12(L)F1501 TABLE 3-5: Address SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED) Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 — — WPUA5 WPUA4 WPUA3 WPUA2 WPUA1 WPUA0 Value on POR, BOR Value on all other Resets Bank 4 20Ch 20Dh to 21Fh WPUA --11 1111 --11 1111 — Unimplemented — — — Unimplemented — — — Unimplemented — — — Unimplemented — — Bank 5 28Ch to 29Fh Bank 6 30Ch to 31Fh Bank 7 38Ch to 390h 391h IOCAP — — IOCAP5 IOCAP4 IOCAP3 IOCAP2 IOCAP1 IOCAP0 --00 0000 --00 0000 392h IOCAN — — IOCAN5 IOCAN4 IOCAN3 IOCAN2 IOCAN1 IOCAN0 --00 0000 --00 0000 393h IOCAF — — IOCAF5 IOCAF4 IOCAF3 IOCAF2 IOCAF1 IOCAF0 --00 0000 --00 0000 394h to 39Fh — Unimplemented — — — Unimplemented — — — Unimplemented — — Bank 8 40Ch to 41Fh Bank 9 48Ch to 497h 498h NCO1ACCL NCO1ACC 0000 0000 0000 0000 499h NCO1ACCH NCO1ACC 0000 0000 0000 0000 49Ah NCO1ACCU NCO1ACC 0000 0000 0000 0000 49Bh NCO1INCL NCO1INC 0000 0001 0000 0001 49Ch NCO1INCH NCO1INC 0000 0000 0000 0000 49Dh — 49Eh NCO1CON 49Fh NCO1CLK Unimplemented N1EN — N1OE N1PWS N1OUT N1POL — — — — — — N1PFM N1CKS — 0000 ---0 0000 ---0 0000 --00 0000 --00 Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as ‘0’. Note 1: PIC12F1501 only. 2: Unimplemented, read as ‘1’. DS40001615C-page 26  2011-2015 Microchip Technology Inc. PIC12(L)F1501 TABLE 3-5: Address SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED) Name Value on POR, BOR Value on all other Resets Unimplemented — — Unimplemented — — Unimplemented — — Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Bank 10 50Ch to 51Fh — Bank 11 58Ch to 59Fh — Bank 12 60Ch to 610h — 611h PWM1DCL 612h PWM1DCH 613h PWM1CON0 614h PWM2DCL 615h PWM2DCH 616h PWM2CON0 617h PWM3DCL 618h PWM3DCH 619h PWM3CON0 61Ah PWM4DCL 61Bh PWM4DCH 61Ch PWM4CON0 61Dh to 61Fh — PWM1DCL — — — — — — — — — — 0000 ---- 0000 ---- — — — — 00-- ---- 00-- ---- — — — — 0000 ---- 0000 ---- — — — — 00-- ---- 00-- ---- — — — — 0000 ---- 0000 ---- — — — — 00-- ---- 00-- ---- — — — PWM1DCH PWM1EN PWM1OE PWM2DCL PWM1OUT PWM1POL — — xxxx xxxx uuuu uuuu PWM2DCH PWM2EN PWM2OE PWM3DCL PWM2OUT PWM2POL — — xxxx xxxx uuuu uuuu PWM3DCH PWM3EN PWM3OE PWM4DCL PWM3OUT PWM3POL — — xxxx xxxx uuuu uuuu PWM4DCH PWM4EN PWM4OE PWM4OUT PWM4POL — 00-- ---- 00-- ---- xxxx xxxx uuuu uuuu 0000 ---- 0000 ---- Unimplemented — — Unimplemented — — Bank 13 68Ch to 690h — 691h CWG1DBR — — CWG1DBR 692h CWG1DBF — — CWG1DBF 693h CWG1CON0 G1EN G1OEB 694h CWG1CON1 695h CWG1CON2 696h to 69Fh — G1ASDLB G1ASE G1ARSEN Unimplemented G1OEA G1POLB G1POLA G1ASDLA — — — — — --00 0000 --00 0000 --xx xxxx --xx xxxx — G1IS G1CS0 0000 0--0 0000 0--0 0000 -000 0000 -000 G1ASDSC1 G1ASDSFLT G1ASDSCLC2 00-- -000 00-- -000 — — Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as ‘0’. Note 1: PIC12F1501 only. 2: Unimplemented, read as ‘1’.  2011-2015 Microchip Technology Inc. DS40001615C-page 27 PIC12(L)F1501 TABLE 3-5: Address SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED) Value on POR, BOR Value on all other Resets Unimplemented — — Unimplemented — — Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Banks 14-29 x0Ch/ x8Ch — x1Fh/ x9Fh — Bank 30 F0Ch to F0Eh — F0Fh CLCDATA — — — — — F10h CLC1CON LC1EN LC1OE LC1OUT LC1INTP LC1INTN F11h CLC1POL LC1POL — — — F12h CLC1SEL0 — LC1D2S — LC1D1S F13h CLC1SEL1 — LC1D4S — LC1D3S F14h CLC1GLS0 LC1G1D4T LC1G1D4N LC1G1D3T LC1G1D3N LC1G1D2T LC1G1D2N LC1G1D1T LC1G1D1N xxxx xxxx uuuu uuuu F15h CLC1GLS1 LC1G2D4T LC1G2D4N LC1G2D3T LC1G2D3N LC1G2D2T LC1G2D2N LC1G2D1T LC1G2D1N xxxx xxxx uuuu uuuu F16h CLC1GLS2 LC1G3D4T LC1G3D4N LC1G3D3T LC1G3D3N LC1G3D2T LC1G3D2N LC1G3D1T LC1G3D1N xxxx xxxx uuuu uuuu F17h CLC1GLS3 LC1G4D4T LC1G4D4N LC1G4D3T LC1G4D3N LC1G4D2T LC1G4D2N LC1G4D1T LC1G4D1N xxxx xxxx uuuu uuuu F18h CLC2CON LC2EN LC2OE LC2OUT LC2INTP F19h CLC2POL LC2POL — — — F1Ah CLC2SEL0 — LC2D2S — LC2D1S F1Bh CLC2SEL1 — LC2D4S — LC2D3S F1Ch CLC2GLS0 LC2G1D4T LC2G1D4N LC2G1D3T LC2G1D3N LC2G1D2T LC2G1D2N LC2G1D1T LC2G1D1N xxxx xxxx uuuu uuuu F1Dh CLC2GLS1 LC2G2D4T LC2G2D4N LC2G2D3T LC2G2D3N LC2G2D2T LC2G2D2N LC2G2D1T LC2G2D1N xxxx xxxx uuuu uuuu F1Eh CLC2GLS2 LC2G3D4T LC2G3D4N LC2G3D3T LC2G3D3N LC2G3D2T LC2G3D2N LC2G3D1T LC2G3D1N xxxx xxxx uuuu uuuu F1Fh CLC2GLS3 LC2G4D4T LC2G4D4N LC2G4D3T LC2G4D3N LC2G4D2T LC2G4D2N LC2G4D1T LC2G4D1N xxxx xxxx uuuu uuuu — Unimplemented F20h to F6Fh — MLC2OUT LC1G4POL LC1G3POL LC1G2POL LC2INTN MLC1OUT LC1MODE LC1G1POL 0000 0000 0000 0000 0--- xxxx 0--- uuuu -xxx -xxx -uuu -uuu -xxx -xxx -uuu -uuu LC2MODE LC2G4POL LC2G3POL LC2G2POL ---- --00 ---- --00 LC2G1POL 0000 0000 0000 0000 0--- xxxx 0--- uuuu -xxx -xxx -uuu -uuu -xxx -xxx -uuu -uuu — — Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as ‘0’. Note 1: PIC12F1501 only. 2: Unimplemented, read as ‘1’. DS40001615C-page 28  2011-2015 Microchip Technology Inc. PIC12(L)F1501 TABLE 3-5: Address Name SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on POR, BOR Value on all other Resets — — Bank 31 F8Ch — FE3h — FE4h STATUS_ Unimplemented — — — — — Z_SHAD DC_SHAD C_SHAD ---- -xxx ---- -uuu SHAD FE5h WREG_ Working Register Shadow xxxx xxxx uuuu uuuu SHAD FE6h BSR_ — — — Bank Select Register Shadow ---x xxxx ---u uuuu SHAD FE7h PCLATH_ — Program Counter Latch High Register Shadow -xxx xxxx uuuu uuuu SHAD FE8h FSR0L_ Indirect Data Memory Address 0 Low Pointer Shadow xxxx xxxx uuuu uuuu Indirect Data Memory Address 0 High Pointer Shadow xxxx xxxx uuuu uuuu Indirect Data Memory Address 1 Low Pointer Shadow xxxx xxxx uuuu uuuu Indirect Data Memory Address 1 High Pointer Shadow xxxx xxxx uuuu uuuu SHAD FE9h FSR0H_ SHAD FEAh FSR1L_ SHAD FEBh FSR1H_ SHAD FECh — FEDh STKPTR FEEh TOSL FEFh TOSH Unimplemented — — — — Top-of-Stack Low byte — Top-of-Stack High byte Current Stack Pointer — ---1 1111 ---1 1111 xxxx xxxx uuuu uuuu -xxx xxxx -uuu uuuu Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as ‘0’. Note 1: PIC12F1501 only. 2: Unimplemented, read as ‘1’.  2011-2015 Microchip Technology Inc. DS40001615C-page 29 PIC12(L)F1501 3.4 3.4.2 PCL and PCLATH The Program Counter (PC) is 15 bits wide. The low byte comes from the PCL register, which is a readable and writable register. The high byte (PC) is not directly readable or writable and comes from PCLATH. On any Reset, the PC is cleared. Figure 3-3 shows the five situations for the loading of the PC. FIGURE 3-3: LOADING OF PC IN DIFFERENT SITUATIONS Rev. 10-000042A 7/30/2013 14 PCH PCL 0 PC 7 6 8 0 PCLATH Instruction with PCL as Destination PCH PCL 0 PC 6 4 0 PCLATH PCL 0 PC 6 7 14 PCH PCL 0 PCL 0 PC 3.4.4 BRW 15 PC + W 14 PCH PC BRA 15 PC + OPCODE 3.4.1 A computed function CALL allows programs to maintain tables of functions and provide another way to execute state machines or look-up tables. When performing a table read using a computed function CALL, care should be exercised if the table location crosses a PCL memory boundary (each 256-byte block). CALLW 8 W 0 PCLATH COMPUTED FUNCTION CALLS The CALLW instruction enables computed calls by combining PCLATH and W to form the destination address. A computed CALLW is accomplished by loading the W register with the desired address and executing CALLW. The PCL register is loaded with the value of W and PCH is loaded with PCLATH. 11 PCH 3.4.3 GOTO, CALL OPCODE 14 A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When performing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256-byte block). Refer to Application Note AN556, “Implementing a Table Read” (DS00556). If using the CALL instruction, the PCH and PCL registers are loaded with the operand of the CALL instruction. PCH is loaded with PCLATH. ALU result 14 COMPUTED GOTO BRANCHING The branching instructions add an offset to the PC. This allows relocatable code and code that crosses page boundaries. There are two forms of branching, BRW and BRA. The PC will have incremented to fetch the next instruction in both cases. When using either branching instruction, a PCL memory boundary may be crossed. If using BRW, load the W register with the desired unsigned address and execute BRW. The entire PC will be loaded with the address PC + 1 + W. If using BRA, the entire PC will be loaded with PC + 1 +, the signed value of the operand of the BRA instruction. MODIFYING PCL Executing any instruction with the PCL register as the destination simultaneously causes the Program Counter PC bits (PCH) to be replaced by the contents of the PCLATH register. This allows the entire contents of the program counter to be changed by writing the desired upper seven bits to the PCLATH register. When the lower eight bits are written to the PCL register, all 15 bits of the program counter will change to the values contained in the PCLATH register and those being written to the PCL register. DS40001615C-page 30  2011-2015 Microchip Technology Inc. PIC12(L)F1501 3.5 3.5.1 Stack All devices have a 16-level x 15-bit wide hardware stack (refer to Figures 3-4 through 3-7). The stack space is not part of either program or data space. The PC is PUSHed onto the stack when CALL or CALLW instructions are executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation. The stack operates as a circular buffer if the STVREN bit is programmed to ‘0‘ (Configuration Words). This means that after the stack has been PUSHed sixteen times, the seventeenth PUSH overwrites the value that was stored from the first PUSH. The eighteenth PUSH overwrites the second PUSH (and so on). The STKOVF and STKUNF flag bits will be set on an Overflow/Underflow, regardless of whether the Reset is enabled. Note 1: There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, CALLW, RETURN, RETLW and RETFIE instructions or the vectoring to an interrupt address. FIGURE 3-4: ACCESSING THE STACK The stack is available through the TOSH, TOSL and STKPTR registers. STKPTR is the current value of the Stack Pointer. TOSH:TOSL register pair points to the TOP of the stack. Both registers are read/writable. TOS is split into TOSH and TOSL due to the 15-bit size of the PC. To access the stack, adjust the value of STKPTR, which will position TOSH:TOSL, then read/write to TOSH:TOSL. STKPTR is 5 bits to allow detection of overflow and underflow. Note: Care should be taken when modifying the STKPTR while interrupts are enabled. During normal program operation, CALL, CALLW and Interrupts will increment STKPTR while RETLW, RETURN, and RETFIE will decrement STKPTR. At any time STKPTR can be inspected to see how much stack is left. The STKPTR always points at the currently used place on the stack. Therefore, a CALL or CALLW will increment the STKPTR and then write the PC, and a return will unload the PC and then decrement the STKPTR. Reference Figure 3-4 through Figure 3-7 for examples of accessing the stack. ACCESSING THE STACK EXAMPLE 1 Rev. 10-000043A 7/30/2013 TOSH:TOSL 0x0F STKPTR = 0x1F Stack Reset Disabled (STVREN = 0) 0x0E 0x0D 0x0C 0x0B Initial Stack Configuration: 0x0A After Reset, the stack is empty. The empty stack is initialized so the Stack Pointer is pointing at 0x1F. If the Stack Overflow/Underflow Reset is enabled, the TOSH/TOSL register will return ‘0’. If the Stack Overflow/Underflow Reset is disabled, the TOSH/TOSL register will return the contents of stack address 0x0F. 0x09 0x08 0x07 0x06 0x05 0x04 0x03 0x02 0x01 0x00 TOSH:TOSL  2011-2015 Microchip Technology Inc. 0x1F 0x0000 STKPTR = 0x1F Stack Reset Enabled (STVREN = 1) DS40001615C-page 31 PIC12(L)F1501 FIGURE 3-5: ACCESSING THE STACK EXAMPLE 2 Rev. 10-000043B 7/30/2013 0x0F 0x0E 0x0D 0x0C 0x0B 0x0A This figure shows the stack configuration after the first CALL or a single interrupt. If a RETURN instruction is executed, the return address will be placed in the Program Counter and the Stack Pointer decremented to the empty state (0x1F). 0x09 0x08 0x07 0x06 0x05 0x04 0x03 0x02 0x01 TOSH:TOSL FIGURE 3-6: 0x00 Return Address STKPTR = 0x00 ACCESSING THE STACK EXAMPLE 3 Rev. 10-000043C 7/30/2013 0x0F 0x0E 0x0D 0x0C After seven CALLs or six CALLs and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack. 0x0B 0x0A 0x09 0x08 0x07 TOSH:TOSL DS40001615C-page 32 0x06 Return Address 0x05 Return Address 0x04 Return Address 0x03 Return Address 0x02 Return Address 0x01 Return Address 0x00 Return Address STKPTR = 0x06  2011-2015 Microchip Technology Inc. PIC12(L)F1501 FIGURE 3-7: ACCESSING THE STACK EXAMPLE 4 Rev. 10-000043D 7/30/2013 TOSH:TOSL 3.5.2 0x0F Return Address 0x0E Return Address 0x0D Return Address 0x0C Return Address 0x0B Return Address 0x0A Return Address 0x09 Return Address 0x08 Return Address 0x07 Return Address 0x06 Return Address 0x05 Return Address 0x04 Return Address 0x03 Return Address 0x02 Return Address 0x01 Return Address 0x00 Return Address When the stack is full, the next CALL or an interrupt will set the Stack Pointer to 0x10. This is identical to address 0x00 so the stack will wrap and overwrite the return address at 0x00. If the Stack Overflow/Underflow Reset is enabled, a Reset will occur and location 0x00 will not be overwritten. STKPTR = 0x10 OVERFLOW/UNDERFLOW RESET If the STVREN bit in Configuration Words is programmed to ‘1’, the device will be reset if the stack is PUSHed beyond the sixteenth level or POPed beyond the first level, setting the appropriate bits (STKOVF or STKUNF, respectively) in the PCON register. 3.6 Indirect Addressing The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the File Select Registers (FSR). If the FSRn address specifies one of the two INDFn registers, the read will return ‘0’ and the write will not occur (though Status bits may be affected). The FSRn register value is created by the pair FSRnH and FSRnL. The FSR registers form a 16-bit address that allows an addressing space with 65536 locations. These locations are divided into three memory regions: • Traditional Data Memory • Linear Data Memory • Program Flash Memory  2011-2015 Microchip Technology Inc. DS40001615C-page 33 PIC12(L)F1501 FIGURE 3-8: INDIRECT ADDRESSING Rev. 10-000044A 7/30/2013 0x0000 0x0000 Traditional Data Memory 0x0FFF 0x1000 0x0FFF Reserved 0x1FFF 0x2000 Linear Data Memory 0x29AF 0x29B0 Reserved FSR Address Range 0x7FFF 0x8000 0x0000 Program Flash Memory 0xFFFF Note: 0x7FFF Not all memory regions are completely implemented. Consult device memory tables for memory limits. DS40001615C-page 34  2011-2015 Microchip Technology Inc. PIC12(L)F1501 3.6.1 TRADITIONAL DATA MEMORY The traditional data memory is a region from FSR address 0x000 to FSR address 0xFFF. The addresses correspond to the absolute addresses of all SFR, GPR and common registers. FIGURE 3-9: TRADITIONAL DATA MEMORY MAP Rev. 10-000056A 7/31/2013 Direct Addressing 4 BSR 0 Indirect Addressing From Opcode 6 0 Bank Select 7 FSRxH 0 0 0 0 Location Select 0x00 00000 Bank Select 00001 00010 11111 Bank 0 Bank 1 Bank 2 Bank 31 0 7 FSRxL 0 Location Select 0x7F  2011-2015 Microchip Technology Inc. DS40001615C-page 35 PIC12(L)F1501 3.6.2 LINEAR DATA MEMORY The linear data memory is the region from FSR address 0x2000 to FSR address 0x29AF. This region is a virtual region that points back to the 80-byte blocks of GPR memory in all the banks. Unimplemented memory reads as 0x00. Use of the linear data memory region allows buffers to be larger than 80 bytes because incrementing the FSR beyond one bank will go directly to the GPR memory of the next bank. The 16 bytes of common memory are not included in the linear data memory region. FIGURE 3-10: LINEAR DATA MEMORY MAP 3.6.3 PROGRAM FLASH MEMORY To make constant data access easier, the entire program Flash memory is mapped to the upper half of the FSR address space. When the MSb of FSRnH is set, the lower 15 bits are the address in program memory which will be accessed through INDF. Only the lower eight bits of each memory location is accessible via INDF. Writing to the program Flash memory cannot be accomplished via the FSR/INDF interface. All instructions that access program Flash memory via the FSR/INDF interface will require one additional instruction cycle to complete. FIGURE 3-11: PROGRAM FLASH MEMORY MAP Rev. 10-000057A 7/31/2013 7 FSRnH 0 0 1 0 7 FSRnL Rev. 10-000058A 7/31/2013 7 1 0 FSRnH 0 Location Select Location Select 0x2000 7 FSRnL 0 0x8000 0x0A0 Bank 1 0x0EF Program Flash Memory (low 8 bits) 0x120 Bank 2 0x16F 0x29AF DS40001615C-page 36 0x0000 0x020 Bank 0 0x06F 0xF20 Bank 30 0xF6F 0xFFFF 0x7FFF  2011-2015 Microchip Technology Inc. PIC12(L)F1501 4.0 DEVICE CONFIGURATION Device configuration consists of Configuration Words, Code Protection and Device ID. 4.1 Configuration Words There are several Configuration Word bits that allow different oscillator and memory protection options. These are implemented as Configuration Word 1 at 8007h and Configuration Word 2 at 8008h. Note: The DEBUG bit in Configuration Words is managed automatically by device development tools including debuggers and programmers. For normal device operation, this bit should be maintained as a ‘1’.  2011-2015 Microchip Technology Inc. DS40001615C-page 37 PIC12(L)F1501 4.2 Register Definitions: Configuration Words REGISTER 4-1: CONFIG1: CONFIGURATION WORD 1 U-1 U-1 R/P-1 — — CLKOUTEN R/P-1 R/P-1 U-1 BOREN(1) — bit 13 R/P-1 (2) CP R/P-1 R/P-1 MCLRE PWRTE bit 8 R/P-1 R/P-1 U-1 WDTE R/P-1 — R/P-1 FOSC bit 7 bit 0 Legend: R = Readable bit P = Programmable bit U = Unimplemented bit, read as ‘1’ ‘0’ = Bit is cleared ‘1’ = Bit is set -n = Value when blank or after Bulk Erase bit 13-12 Unimplemented: Read as ‘1’ bit 11 CLKOUTEN: Clock Out Enable bit 1 = CLKOUT function is disabled. I/O function on the CLKOUT pin 0 = CLKOUT function is enabled on the CLKOUT pin bit 10-9 BOREN: Brown-Out Reset Enable bits(1) 11 = BOR enabled 10 = BOR enabled during operation and disabled in Sleep 01 = BOR controlled by SBOREN bit of the BORCON register 00 = BOR disabled bit 8 Unimplemented: Read as ‘1’ bit 7 CP: Code Protection bit(2) 1 = Program memory code protection is disabled 0 = Program memory code protection is enabled bit 6 MCLRE: MCLR/VPP Pin Function Select bit If LVP bit = 1: This bit is ignored. If LVP bit = 0: 1 = MCLR/VPP pin function is MCLR; Weak pull-up enabled. 0 = MCLR/VPP pin function is digital input; MCLR internally disabled; Weak pull-up under control of WPUA3 bit. bit 5 PWRTE: Power-Up Timer Enable bit 1 = PWRT disabled 0 = PWRT enabled bit 4-3 WDTE: Watchdog Timer Enable bits 11 = WDT enabled 10 = WDT enabled while running and disabled in Sleep 01 = WDT controlled by the SWDTEN bit in the WDTCON register 00 = WDT disabled bit 2 Unimplemented: Read as ‘1’ bit 1-0 FOSC: Oscillator Selection bits 11 = ECH: External Clock, High-Power mode: on CLKIN pin 10 = ECM: External Clock, Medium Power mode: on CLKIN pin 01 = ECL: External Clock, Low-Power mode: on CLKIN pin 00 = INTOSC oscillator: I/O function on CLKIN pin Note 1: 2: Enabling Brown-out Reset does not automatically enable Power-up Timer. Once enabled, code-protect can only be disabled by bulk erasing the device. DS40001615C-page 38  2011-2015 Microchip Technology Inc. PIC12(L)F1501 REGISTER 4-2: CONFIG2: CONFIGURATION WORD 2 R/P-1 (1) LVP U-1 — R/P-1 R/P-1 R/P-1 U-1 LPBOR BORV(2) STVREN — bit 13 bit 8 U-1 U-1 U-1 U-1 U-1 U-1 — — — — — — R/P-1 R/P-1 WRT bit 7 bit 0 Legend: R = Readable bit P = Programmable bit U = Unimplemented bit, read as ‘1’ ‘0’ = Bit is cleared ‘1’ = Bit is set -n = Value when blank or after Bulk Erase bit 13 LVP: Low-Voltage Programming Enable bit(1) 1 = Low-voltage programming enabled 0 = High-voltage on MCLR must be used for programming bit 12 Unimplemented: Read as ‘1’ bit 11 LPBOR: Low-Power BOR Enable bit 1 = Low-Power Brown-out Reset is disabled 0 = Low-Power Brown-out Reset is enabled bit 10 BORV: Brown-Out Reset Voltage Selection bit(2) 1 = Brown-out Reset voltage (VBOR), low trip point selected 0 = Brown-out Reset voltage (VBOR), high trip point selected bit 9 STVREN: Stack Overflow/Underflow Reset Enable bit 1 = Stack Overflow or Underflow will cause a Reset 0 = Stack Overflow or Underflow will not cause a Reset bit 8-2 Unimplemented: Read as ‘1’ bit 1-0 WRT: Flash Memory Self-Write Protection bits 1 kW Flash memory (PIC12(L)F1501 only): 11 = Write protection off 10 = 000h to 0FFh write-protected, 100h to 3FFh may be modified 01 = 000h to 1FFh write-protected, 200h to 3FFh may be modified 00 = 000h to 3FFh write-protected, no addresses may be modified Note 1: 2: The LVP bit cannot be programmed to ‘0’ when Programming mode is entered via LVP. See VBOR parameter for specific trip point voltages.  2011-2015 Microchip Technology Inc. DS40001615C-page 39 PIC12(L)F1501 4.3 Code Protection Code protection allows the device to be protected from unauthorized access. Internal access to the program memory is unaffected by any code protection setting. 4.3.1 PROGRAM MEMORY PROTECTION The entire program memory space is protected from external reads and writes by the CP bit in Configuration Words. When CP = 0, external reads and writes of program memory are inhibited and a read will return all ‘0’s. The CPU can continue to read program memory, regardless of the protection bit settings. Writing the program memory is dependent upon the write protection setting. See Section 4.4 “Write Protection” for more information. 4.4 Write Protection Write protection allows the device to be protected from unintended self-writes. Applications, such as bootloader software, can be protected while allowing other regions of the program memory to be modified. The WRT bits in Configuration Words define the size of the program memory block that is protected. 4.5 User ID Four memory locations (8000h-8003h) are designated as ID locations where the user can store checksum or other code identification numbers. These locations are readable and writable during normal execution. See Section 10.4 “User ID, Device ID and Configuration Word Access” for more information on accessing these memory locations. For more information on checksum calculation, see the “PIC12(L)F1501/PIC16(L)F150X Memory Programming Specification” (DS41573). DS40001615C-page 40  2011-2015 Microchip Technology Inc. PIC12(L)F1501 4.6 Device ID and Revision ID The memory location 8006h is where the Device ID and Revision ID are stored. The upper nine bits hold the Device ID. The lower five bits hold the Revision ID. See Section 10.4 “User ID, Device ID and Configuration Word Access” for more information on accessing these memory locations. Development tools, such as device programmers and debuggers, may be used to read the Device ID and Revision ID. 4.7 Register Definitions: Device ID REGISTER 4-3: DEVID: DEVICE ID REGISTER R R R R R R DEV bit 13 R R bit 8 R R R DEV R R R REV bit 7 bit 0 Legend: R = Readable bit ‘1’ = Bit is set bit 13-5 ‘0’ = Bit is cleared DEV: Device ID bits DEVID Values Device bit 4-0 DEV REV PIC12LF1501 10 1101 100 x xxxx PIC12F1501 10 1100 110 x xxxx REV: Revision ID bits These bits are used to identify the revision (see Table under DEV above).  2011-2015 Microchip Technology Inc. DS40001615C-page 41 PIC12(L)F1501 5.0 OSCILLATOR MODULE The oscillator module can be configured in one of the following clock modes. 5.1 Overview 1. The oscillator module has a wide variety of clock sources and selection features that allow it to be used in a wide range of applications while maximizing performance and minimizing power consumption. Figure 5-1 illustrates a block diagram of the oscillator module. Clock sources can be supplied from an external clock or from one of two internal oscillators, with a choice of speeds selectable via software. Additional clock features include: • Selectable system clock source between external or internal sources via software. • Fast start-up oscillator allows internal circuits to power-up and stabilize before switching to the 16 MHz HFINTOSC DS40001615C-page 42 2. 3. 4. ECL – External Clock Low-Power mode (0 MHz to 0.5 MHz) ECM – External Clock Medium Power mode (0.5 MHz to 4 MHz) ECH – External Clock High-Power mode (4 MHz to 20 MHz) INTOSC – Internal oscillator (31 kHz to 16 MHz) Clock Source modes are selected by the FOSC bits in the Configuration Words. The FOSC bits determine the type of oscillator that will be used when the device is first powered. The ECH, ECM, and ECL clock modes rely on an external logic level signal as the device clock source. The INTOSC internal oscillator block produces a low and high-frequency clock source, designated LFINTOSC and HFINTOSC. (See Internal Oscillator Block, Figure 5-1). A wide selection of device clock frequencies may be derived from these two clock sources.  2011-2015 Microchip Technology Inc. PIC12(L)F1501 FIGURE 5-1: SIMPLIFIED PIC® MCU CLOCK SOURCE BLOCK DIAGRAM Rev. 10-000030C 7/30/2013 Sleep (2) EC CLKIN FOSC(1) to CPU and Peripherals INTOSC IRCF HFINTOSC 16 MHz Start-up Control Logic 4 8 MHz 4 MHz 16 MHz Oscillator (1) HFINTOSC Fast Start-up Oscillator Prescaler 2 MHz Clock Control 1 MHz *500 kHz 3 *250 kHz FOSC 2 SCS *125 kHz 62.5 kHz *31.25 kHz *31 kHz LFINTOSC LFINTOSC(1) 31 kHz Oscillator to WDT, PWRT, and other Peripherals FRC 600 kHz Oscillator FRC(1) to ADC and other Peripherals * Available with more than one IRCF selection Note 1: 2: See Section 5.2.2.4 “Peripheral Clock Sources”. ST Buffer is high speed type when using T1CKI.  2011-2015 Microchip Technology Inc. DS40001615C-page 43 PIC12(L)F1501 5.2 Clock Source Types FIGURE 5-2: EXTERNAL CLOCK (EC) MODE OPERATION Clock sources can be classified as external, internal or peripheral. External clock sources rely on external circuitry for the clock source to function. Examples are: oscillator modules (ECH, ECM, ECL modes). Internal clock sources are contained within the oscillator module. The internal oscillator block has two internal oscillators that are used to generate the internal system clock sources: the 16 MHz High-Frequency Internal Oscillator (HFINTOSC) and the 31 kHz Low-Frequency Internal Oscillator (LFINTOSC). The peripheral clock source is a nominal 600 kHz internal RC oscillator, FRC. The FRC is traditionally used with the ADC module, but is sometimes available to other peripherals. See Section 5.2.2.4 “Peripheral Clock Sources”. Rev. 10-000045A 7/30/2013 Clock from Ext. system OSC1/CLKIN PIC® MCU FOSC/4 or I/O(1) Note 1: OSC2/CLKOUT Output depends upon the CLKOUTEN bit of the Configuration Words. The system clock can be selected between external or internal clock sources via the System Clock Select (SCS) bits in the OSCCON register. See Section 5.3 “Clock Switching” for additional information. 5.2.1 EXTERNAL CLOCK SOURCES An external clock source can be used as the device system clock by performing one of the following actions: • Program the FOSC bits in the Configuration Words to select an external clock source that will be used as the default system clock upon a device Reset. • Write the SCS bits in the OSCCON register to switch the system clock source to: - Secondary oscillator during run-time, or - An external clock source determined by the value of the FOSC bits. See Section 5.3 “Clock Switching” for more information. 5.2.1.1 EC Mode The External Clock (EC) mode allows an externally generated logic level signal to be the system clock source. When operating in this mode, an external clock source is connected to the OSC1 input. OSC2/CLKOUT is available for general purpose I/O or CLKOUT. Figure 5-2 shows the pin connections for EC mode. EC mode has three power modes to select from through the FOSC bits in the Configuration Words: • ECH – High power, 4-20 MHz • ECM – Medium power, 0.5-4 MHz • ECL – Low power, 0-0.5 MHz DS40001615C-page 44  2011-2015 Microchip Technology Inc. PIC12(L)F1501 5.2.2 INTERNAL CLOCK SOURCES The device may be configured to use the internal oscillator block as the system clock by performing one of the following actions: • Program the FOSC bits in Configuration Words to select the INTOSC clock source, which will be used as the default system clock upon a device Reset. • Write the SCS bits in the OSCCON register to switch the system clock source to the internal oscillator during run-time. See Section 5.3 “Clock Switching”for more information. In INTOSC mode, CLKIN is available for general purpose I/O. CLKOUT is available for general purpose I/O or CLKOUT. 5.2.2.2 LFINTOSC The Low-Frequency Internal Oscillator (LFINTOSC) is a 31 kHz internal clock source. The output of the LFINTOSC connects to a multiplexer (see Figure 5-1). Select 31 kHz, via software, using the IRCF bits of the OSCCON register. See Section 5.2.2.6 “Internal Oscillator Clock Switch Timing” for more information. The LFINTOSC is also the frequency for the Power-up Timer (PWRT) and the, Watchdog Timer (WDT). The LFINTOSC is enabled by selecting 31 kHz (IRCF bits of the OSCCON register = 000) as the system clock source (SCS bits of the OSCCON register = 1x), or when any of the following are enabled: The internal oscillator block has two independent oscillators that provides the internal system clock source. • Configure the IRCF bits of the OSCCON register for the desired LF frequency, and • FOSC = 00, or • Set the System Clock Source (SCS) bits of the OSCCON register to ‘1x’. 1. Peripherals that use the LFINTOSC are: The function of the CLKOUT pin is determined by the CLKOUTEN bit in Configuration Words. 2. The HFINTOSC (High-Frequency Internal Oscillator) is factory calibrated and operates at 16 MHz. The LFINTOSC (Low-Frequency Internal Oscillator) operates at 31 kHz. 5.2.2.1 HFINTOSC The High-Frequency Internal Oscillator (HFINTOSC) is a factory calibrated 16 MHz internal clock source. The output of the HFINTOSC connects to a postscaler and multiplexer (see Figure 5-1). The frequency derived from the HFINTOSC can be selected via software using the IRCF bits of the OSCCON register. See Section 5.2.2.6 “Internal Oscillator Clock Switch Timing” for more information. • Power-up Timer (PWRT) • Watchdog Timer (WDT) The Low-Frequency Internal Oscillator Ready bit (LFIOFR) of the OSCSTAT register indicates when the LFINTOSC is running. 5.2.2.3 FRC The FRC clock is an uncalibrated, nominal 600 kHz peripheral clock source. The FRC is automatically turned on by the peripherals requesting the FRC clock. The FRC clock continues to run during Sleep. The HFINTOSC is enabled by: • Configure the IRCF bits of the OSCCON register for the desired HF frequency, and • FOSC = 00, or • Set the System Clock Source (SCS) bits of the OSCCON register to ‘1x’. A fast start-up oscillator allows internal circuits to power-up and stabilize before switching to HFINTOSC. The High-Frequency Internal Oscillator Ready bit (HFIOFR) of the OSCSTAT register indicates when the HFINTOSC is running. The High-Frequency Internal Oscillator Stable bit (HFIOFS) of the OSCSTAT register indicates when the HFINTOSC is running within 0.5% of its final value.  2011-2015 Microchip Technology Inc. DS40001615C-page 45 PIC12(L)F1501 5.2.2.4 Peripheral Clock Sources 5.2.2.5 The clock sources described in this chapter and the Timer’s are available to different peripherals. Table 5-1 lists the clocks and timers available for each peripheral. ● ● TMR2 CLC TMR1 ● TMR0 ● LFINTOSC ADC HFINTOSC FRC PERIPHERAL CLOCK SOURCES FOSC TABLE 5-1: ● ● ● ● ● COMP The system clock speed can be selected via software using the Internal Oscillator Frequency Select bits IRCF of the OSCCON register. The postscaled output of the 16 MHz HFINTOSC and 31 kHz LFINTOSC connect to a multiplexer (see Figure 5-1). The Internal Oscillator Frequency Select bits IRCF of the OSCCON register (Register 5-1) select the frequency output of the internal oscillators. Note: ● CWG ● ● NCO ● ● PWM ● PWRT ● ● TMR0 ● TMR1 ● TMR2 ● WDT ● Internal Oscillator Frequency Selection Following any Reset, the IRCF bits of the OSCCON register are set to ‘0111’ and the frequency selection is set to 500 kHz. The user can modify the IRCF bits to select a different frequency. The IRCF bits of the OSCCON register allow duplicate selections for some frequencies. These duplicate choices can offer system design trade-offs. Lower power consumption can be obtained when changing oscillator sources for a given frequency. Faster transition times can be obtained between frequency changes that use the same oscillator source. 5.2.2.6 ● Internal Oscillator Clock Switch Timing When switching between the HFINTOSC and the LFINTOSC, the new oscillator may already be shut down to save power (see Figure 5-3). If this is the case, there is a delay after the IRCF bits of the OSCCON register are modified before the frequency selection takes place. The OSCSTAT register will reflect the current active status of the HFINTOSC and LFINTOSC oscillators. The sequence of a frequency selection is as follows: 1. 2. 3. 4. 5. 6. 7. IRCF bits of the OSCCON register are modified. If the new clock is shut down, a clock start-up delay is started. Clock switch circuitry waits for a falling edge of the current clock. The current clock is held low and the clock switch circuitry waits for a rising edge in the new clock. The new clock is now active. The OSCSTAT register is updated as required. Clock switch is complete. See Figure 5-3 for more details. If the internal oscillator speed is switched between two clocks of the same source, there is no start-up delay before the new frequency is selected. Clock switching time delays are shown in Table 5-2. Start-up delay specifications are located in Table 27-8, “Oscillator Parameters”. DS40001615C-page 46  2011-2015 Microchip Technology Inc. PIC12(L)F1501 FIGURE 5-3: INTERNAL OSCILLATOR SWITCH TIMING HFINTOSC LFINTOSC (WDT disabled) HFINTOSC Oscillator Delay(1) 2-cycle Sync Running 2-cycle Sync Running LFINTOSC IRCF 0 0 System Clock LFINTOSC (WDT enabled) HFINTOSC HFINTOSC LFINTOSC 0 IRCF 0 System Clock LFINTOSC HFINTOSC LFINTOSC turns off unless WDT is enabled(2) LFINTOSC Oscillator Delay(1) 2-cycle Sync Running HFINTOSC IRCF =0 0 System Clock Note 1: 2: See Table 5-2, “Oscillator Switching Delays” for more information. LFINTOSC will continue to run if a peripheral has selected it as the clock source. See Section 5.2.2.4 “Peripheral Clock Sources”.  2011-2015 Microchip Technology Inc. DS40001615C-page 47 PIC12(L)F1501 5.3 Clock Switching The system clock source can be switched between external and internal clock sources via software using the System Clock Select (SCS) bits of the OSCCON register. The following clock sources can be selected using the SCS bits: • Default system oscillator determined by FOSC bits in Configuration Words • Internal Oscillator Block (INTOSC) 5.3.1 SYSTEM CLOCK SELECT (SCS) BITS The System Clock Select (SCS) bits of the OSCCON register selects the system clock source that is used for the CPU and peripherals. • When the SCS bits of the OSCCON register = 00, the system clock source is determined by value of the FOSC bits in the Configuration Words. • When the SCS bits of the OSCCON register = 01, the system clock source is the secondary oscillator. • When the SCS bits of the OSCCON register = 1x, the system clock source is chosen by the internal oscillator frequency selected by the IRCF TABLE 5-2: bits of the OSCCON register. After a Reset, the SCS bits of the OSCCON register are always cleared. When switching between clock sources, a delay is required to allow the new clock to stabilize. These oscillator delays are shown in Table 5-2. 5.3.2 CLOCK SWITCHING BEFORE SLEEP When clock switching from an old clock to a new clock is requested just prior to entering Sleep mode, it is necessary to confirm that the switch is complete before the SLEEP instruction is executed. Failure to do so may result in an incomplete switch and consequential loss of the system clock altogether. Clock switching is confirmed by monitoring the clock status bits in the OSCSTAT register. Switch confirmation can be accomplished by sensing that the ready bit for the new clock is set or the ready bit for the old clock is cleared. For example, when switching between the internal oscillator with the PLL and the internal oscillator without the PLL, monitor the PLLR bit. When PLLR is set, the switch to 32 MHz operation is complete. Conversely, when PPLR is cleared, the switch from 32 MHz operation to the selected internal clock is complete. OSCILLATOR SWITCHING DELAYS Switch From Any clock source DS40001615C-page 48 Switch To Oscillator Delay LFINTOSC 1 cycle of each clock source HFINTOSC 2 s (approx.) ECH, ECM, ECL 2 cycles  2011-2015 Microchip Technology Inc. PIC12(L)F1501 5.4 Register Definitions: Oscillator Control REGISTER 5-1: U-0 OSCCON: OSCILLATOR CONTROL REGISTER R/W-0/0 R/W-1/1 R/W-1/1 R/W-1/1 IRCF — U-0 R/W-0/0 — bit 7 R/W-0/0 SCS bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7 Unimplemented: Read as ‘0’ bit 6-3 IRCF: Internal Oscillator Frequency Select bits 1111 = 16 MHz 1110 = 8 MHz 1101 = 4 MHz 1100 = 2 MHz 1011 = 1 MHz 1010 = 500 kHz(1) 1001 = 250 kHz(1) 1000 = 125 kHz(1) 0111 = 500 kHz (default upon Reset) 0110 = 250 kHz 0101 = 125 kHz 0100 = 62.5 kHz 001x = 31.25 kHz 000x = 31 kHz LF bit 2 Unimplemented: Read as ‘0’ bit 1-0 SCS: System Clock Select bits 1x = Internal oscillator block 01 = Reserved 00 = Clock determined by FOSC in Configuration Words. Note 1: Duplicate frequency derived from HFINTOSC.  2011-2015 Microchip Technology Inc. DS40001615C-page 49 PIC12(L)F1501 REGISTER 5-2: OSCSTAT: OSCILLATOR STATUS REGISTER U-0 U-0 U-0 R-0/q U-0 U-0 R-0/q R-0/q — — — HFIOFR — — LFIOFR HFIOFS bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared q = Conditional bit 7-5 Unimplemented: Read as ‘0’ bit 4 HFIOFR: High-Frequency Internal Oscillator Ready bit 1 = HFINTOSC is ready 0 = HFINTOSC is not ready bit 3-2 Unimplemented: Read as ‘0’ bit 1 LFIOFR: Low-Frequency Internal Oscillator Ready bit 1 = LFINTOSC is ready 0 = LFINTOSC is not ready bit 0 HFIOFS: High-Frequency Internal Oscillator Stable bit 1 = HFINTOSC 16 MHz Oscillator is stable and is driving the INTOSC 0 = HFINTOSC 16 MHz is not stable, the Start-up Oscillator is driving INTOSC TABLE 5-3: Name SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK SOURCES Bit 7 OSCCON — OSCSTAT — Bit 6 Bit 5 Bit 4 Bit 3 IRCF — — Bit 2 Bit 1 — HFIOFR — Bit 0 SCS — LFIOFR Register on Page 49 HFIOFS 50 Legend: — = unimplemented location, read as ‘0’. Shaded cells are not used by clock sources. TABLE 5-4: Name CONFIG1 Legend: Bits SUMMARY OF CONFIGURATION WORD WITH CLOCK SOURCES Bit -/7 Bit -/6 Bit 13/5 Bit 12/4 Bit 11/3 — CLKOUTEN 13:8 — — — 7:0 CP MCLRE PWRTE WDTE Bit 10/2 Bit 9/1 BOREN — Bit 8/0 — FOSC Register on Page 38 — = unimplemented location, read as ‘0’. Shaded cells are not used by clock sources. DS40001615C-page 50  2011-2015 Microchip Technology Inc. PIC12(L)F1501 6.0 RESETS There are multiple ways to reset this device: • • • • • • • • • Power-on Reset (POR) Brown-out Reset (BOR) Low-Power Brown-out Reset (LPBOR) MCLR Reset WDT Reset RESET instruction Stack Overflow Stack Underflow Programming mode exit To allow VDD to stabilize, an optional power-up timer can be enabled to extend the Reset time after a BOR or POR event. A simplified block diagram of the On-chip Reset Circuit is shown in Figure 6-1. FIGURE 6-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT Rev. 10-000006A 8/14/2013 ICSP™ Programming Mode Exit RESET Instruction Stack Underflow Stack Overlfow MCLRE VPP/MCLR Sleep WDT Time-out Device Reset Power-on Reset VDD BOR Active(1) Brown-out Reset LPBOR Reset Note 1: R LFINTOSC Power-up Timer PWRTE See Table 6-1 for BOR active conditions.  2011-2015 Microchip Technology Inc. DS40001615C-page 51 PIC12(L)F1501 6.1 Power-On Reset (POR) 6.2 Brown-Out Reset (BOR) The POR circuit holds the device in Reset until VDD has reached an acceptable level for minimum operation. Slow rising VDD, fast operating speeds or analog performance may require greater than minimum VDD. The PWRT, BOR or MCLR features can be used to extend the start-up period until all device operation conditions have been met. The BOR circuit holds the device in Reset when VDD reaches a selectable minimum level. Between the POR and BOR, complete voltage range coverage for execution protection can be implemented. 6.1.1 • • • • POWER-UP TIMER (PWRT) The Power-up Timer provides a nominal 64 ms time-out on POR or Brown-out Reset. The device is held in Reset as long as PWRT is active. The PWRT delay allows additional time for the VDD to rise to an acceptable level. The Power-up Timer is enabled by clearing the PWRTE bit in Configuration Words. The Power-up Timer starts after the release of the POR and BOR. For additional information, refer to Application Note AN607, “Power-up Trouble Shooting” (DS00607). TABLE 6-1: The Brown-out Reset module has four operating modes controlled by the BOREN bits in Configuration Words. The four operating modes are: BOR is always on BOR is off when in Sleep BOR is controlled by software BOR is always off Refer to Table 6-1 for more information. The Brown-out Reset voltage level is selectable by configuring the BORV bit in Configuration Words. A VDD noise rejection filter prevents the BOR from triggering on small events. If VDD falls below Vpor for a duration greater than parameter TBORDC, the device will reset. See Figure 6-2 for more information. BOR OPERATING MODES Instruction Execution upon: Release of POR or Wake-up from Sleep BOREN SBOREN Device Mode BOR Mode 11 X X Active Waits for BOR ready(1) (BORRDY = 1) Awake Active 10 X Sleep Disabled Waits for BOR ready (BORRDY = 1) Active Waits for BOR ready(1) (BORRDY = 1) X Disabled X Disabled Begins immediately (BORRDY = x) 1 X 0 X 01 00 Note 1: In these specific cases, “release of POR” and “wake-up from Sleep,” there is no delay in start-up. The BOR ready flag, (BORRDY = 1), will be set before the CPU is ready to execute instructions because the BOR circuit is forced on by the BOREN bits. 6.2.1 BOR IS ALWAYS ON When the BOREN bits of Configuration Words are programmed to ‘11’, the BOR is always on. The device start-up will be delayed until the BOR is ready and VDD is higher than the BOR threshold. BOR protection is active during Sleep. The BOR does not delay wake-up from Sleep. 6.2.2 BOR IS OFF IN SLEEP When the BOREN bits of Configuration Words are programmed to ‘10’, the BOR is on, except in Sleep. The device start-up will be delayed until the BOR is ready and VDD is higher than the BOR threshold. DS40001615C-page 52 BOR protection is not active during Sleep. The device wake-up will be delayed until the BOR is ready. 6.2.3 BOR CONTROLLED BY SOFTWARE When the BOREN bits of Configuration Words are programmed to ‘01’, the BOR is controlled by the SBOREN bit of the BORCON register. The device start-up is not delayed by the BOR ready condition or the VDD level. BOR protection begins as soon as the BOR circuit is ready. The status of the BOR circuit is reflected in the BORRDY bit of the BORCON register. BOR protection is unchanged by Sleep.  2011-2015 Microchip Technology Inc. PIC12(L)F1501 FIGURE 6-2: BROWN-OUT SITUATIONS VDD VBOR Internal Reset TPWRT(1) VDD VBOR Internal Reset < TPWRT TPWRT(1) VDD VBOR Internal Reset Note 1: 6.3 TPWRT(1) TPWRT delay only if PWRTE bit is programmed to ‘0’. Register Definitions: BOR Control REGISTER 6-1: BORCON: BROWN-OUT RESET CONTROL REGISTER R/W-1/u R/W-0/u U-0 U-0 U-0 U-0 U-0 R-q/u SBOREN BORFS — — — — — BORRDY bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared q = Value depends on condition bit 7 SBOREN: Software Brown-Out Reset Enable bit If BOREN in Configuration Words = 01: 1 = BOR Enabled 0 = BOR Disabled If BOREN in Configuration Words  01: SBOREN is read/write, but has no effect on the BOR bit 6 BORFS: Brown-Out Reset Fast Start bit(1) If BOREN = 10 (Disabled in Sleep) or BOREN = 01 (Under software control): 1 = Band gap is forced on always (covers sleep/wake-up/operating cases) 0 = Band gap operates normally, and may turn off If BOREN = 11 (Always on) or BOREN = 00 (Always off) BORFS is Read/Write, but has no effect. bit 5-1 Unimplemented: Read as ‘0’ bit 0 BORRDY: Brown-Out Reset Circuit Ready Status bit 1 = The Brown-out Reset circuit is active 0 = The Brown-out Reset circuit is inactive Note 1: BOREN bits are located in Configuration Words.  2011-2015 Microchip Technology Inc. DS40001615C-page 53 PIC12(L)F1501 6.4 Low-Power Brown-Out Reset (LPBOR) The Low-Power Brown-out Reset (LPBOR) operates like the BOR to detect low voltage conditions on the VDD pin. When too low of a voltage is detected, the device is held in Reset. When this occurs, a register bit (BOR) is changed to indicate that a BOR Reset has occurred. The BOR bit in PCON is used for both BOR and the LPBOR. Refer to Register 6-2. The LPBOR voltage threshold (Lapboard) has a wider tolerance than the BOR (Vpor), but requires much less current (LPBOR current) to operate. The LPBOR is intended for use when the BOR is configured as disabled (BOREN = 00) or disabled in Sleep mode (BOREN = 10). Refer to Figure 6-1 to see how the LPBOR interacts with other modules. 6.4.1 ENABLING LPBOR The LPBOR is controlled by the LPBOR bit of Configuration Words. When the device is erased, the LPBOR module defaults to disabled. 6.5 MCLR The MCLR is an optional external input that can reset the device. The MCLR function is controlled by the MCLRE bit of Configuration Words and the LVP bit of Configuration Words (Table 6-2). TABLE 6-2: MCLR CONFIGURATION MCLRE LVP MCLR 0 0 Disabled 1 0 Enabled x 1 Enabled 6.5.1 MCLR ENABLED When MCLR is enabled and the pin is held low, the device is held in Reset. The MCLR pin is connected to VDD through an internal weak pull-up. The device has a noise filter in the MCLR Reset path. The filter will detect and ignore small pulses. Note: 6.5.2 A Reset does not drive the MCLR pin low. MCLR DISABLED When MCLR is disabled, the pin functions as a general purpose input and the internal weak pull-up is under software control. See Section 11.3 “PORTA Registers” for more information. DS40001615C-page 54 6.6 Watchdog Timer (WDT) Reset The Watchdog Timer generates a Reset if the firmware does not issue a CLRWDT instruction within the time-out period. The TO and PD bits in the STATUS register are changed to indicate the WDT Reset. See Section 9.0 “Watchdog Timer (WDT)” for more information. 6.7 RESET Instruction A RESET instruction will cause a device Reset. The RI bit in the PCON register will be set to ‘0’. See Table 6-4 for default conditions after a RESET instruction has occurred. 6.8 Stack Overflow/Underflow Reset The device can reset when the Stack Overflows or Underflows. The STKOVF or STKUNF bits of the PCON register indicate the Reset condition. These Resets are enabled by setting the STVREN bit in Configuration Words. See Section 3.5.2 “Overflow/Underflow Reset” for more information. 6.9 Programming Mode Exit Upon exit of Programming mode, the device will behave as if a POR had just occurred. 6.10 Power-Up Timer The Power-up Timer optionally delays device execution after a BOR or POR event. This timer is typically used to allow VDD to stabilize before allowing the device to start running. The Power-up Timer is controlled by the PWRTE bit of Configuration Words. 6.11 Start-up Sequence Upon the release of a POR or BOR, the following must occur before the device will begin executing: 1. 2. Power-up Timer runs to completion (if enabled). MCLR must be released (if enabled). The total time-out will vary based on oscillator configuration and Power-up Timer configuration. See Section 5.0 “Oscillator Module” for more information. The Power-up Timer runs independently of MCLR Reset. If MCLR is kept low long enough, the Power-up Timer will expire. Upon bringing MCLR high, the device will begin execution after 10 FOSS cycles (see Figure 6-3). This is useful for testing purposes or to synchronize more than one device operating in parallel.  2011-2015 Microchip Technology Inc. PIC12(L)F1501 FIGURE 6-3: RESET START-UP SEQUENCE Rev. 10-000032B 7/30/2013 VDD Internal POR TPWRT Power-up Timer MCLR Internal RESET Int. Oscillator FOSC Begin Execution code execution (1) Internal Oscillator, PWRTEN = 0 code execution (1) Internal Oscillator, PWRTEN = 1 VDD Internal POR TPWRT Power-up Timer MCLR Internal RESET Ext. Clock (EC) FOSC Begin Execution code execution (1) External Clock (EC modes), PWRTEN = 0 Note 1: code execution (1) External Clock (EC modes), PWRTEN = 1 Code execution begins 10 FOSC cycles after the FOSC clock is released.  2011-2015 Microchip Technology Inc. DS40001615C-page 55 PIC12(L)F1501 6.12 Determining the Cause of a Reset Upon any Reset, multiple bits in the STATUS and PCON registers are updated to indicate the cause of the Reset. Table 6-3 and Table 6-4 show the Reset conditions of these registers. TABLE 6-3: RESET STATUS BITS AND THEIR SIGNIFICANCE STKOVF STKUNF RWDT RMCLR RI POR BOR TO PD Condition 0 0 1 1 1 0 x 1 1 Power-on Reset 0 0 1 1 1 0 x 0 x Illegal, TO is set on POR 0 0 1 1 1 0 x x 0 Illegal, PD is set on POR 0 0 u 1 1 u 0 1 1 Brown-out Reset u u 0 u u u u 0 u WDT Reset u u u u u u u 0 0 WDT Wake-up from Sleep u u u u u u u 1 0 Interrupt Wake-up from Sleep u u u 0 u u u u u MCLR Reset during normal operation u u u 0 u u u 1 0 MCLR Reset during Sleep u u u u 0 u u u u RESET Instruction Executed 1 u u u u u u u u Stack Overflow Reset (STVREN = 1) u 1 u u u u u u u Stack Underflow Reset (STVREN = 1) TABLE 6-4: RESET CONDITION FOR SPECIAL REGISTERS Program Counter STATUS Register PCON Register Power-on Reset 0000h ---1 1000 00-- 110x MCLR Reset during normal operation 0000h ---u muumuu uu-- 0uuu MCLR Reset during Sleep 0000h ---1 0uuu uu-- 0uuu WDT Reset 0000h ---0 muumuu uu-- uuuu WDT Wake-up from Sleep PC + 1 ---0 0uuu uu-- uuuu Brown-out Reset 0000h ---1 1uuu 00-- 11u0 ---1 0uuu uu-- uuuu Condition Interrupt Wake-up from Sleep PC + 1 (1) RESET Instruction Executed 0000h ---u uuuu uu-- u0uu Stack Overflow Reset (STVREN = 1) 0000h ---u uuuu 1u-- uuuu Stack Underflow Reset (STVREN = 1) 0000h ---u uuuu u1-- uuuu Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as ‘0’. Note 1: When the wake-up is due to an interrupt and the Global Interrupt Enable bit (GIE) is set, the return address is pushed on the stack and PC is loaded with the interrupt vector (0004h) after execution of PC + 1. DS40001615C-page 56  2011-2015 Microchip Technology Inc. PIC12(L)F1501 6.13 Power Control (PCON) Register The Power Control (PCON) register contains flag bits to differentiate between a: • • • • • • • Power-on Reset (POR) Brown-out Reset (BOR) Reset Instruction Reset (RI) MCLR Reset (RMCLR) Watchdog Timer Reset (RWDT) Stack Underflow Reset (STKUNF) Stack Overflow Reset (STKOVF) The PCON register bits are shown in Register 6-2. 6.14 Register Definitions: Power Control REGISTER 6-2: PCON: POWER CONTROL REGISTER R/W/HS-0/q R/W/HS-0/q U-0 STKOVF STKUNF — R/W/HC-1/q R/W/HC-1/q RWDT R/W/HC-1/q R/W/HC-q/u R/W/HC-q/u RI POR BOR RMCLR bit 7 bit 0 Legend: HC = Bit is cleared by hardware HS = Bit is set by hardware R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared q = Value depends on condition bit 7 STKOVF: Stack Overflow Flag bit 1 = A Stack Overflow occurred 0 = A Stack Overflow has not occurred or cleared by firmware bit 6 STKUNF: Stack Underflow Flag bit 1 = A Stack Underflow occurred 0 = A Stack Underflow has not occurred or cleared by firmware bit 5 Unimplemented: Read as ‘0’ bit 4 RWDT: Watchdog Timer Reset Flag bit 1 = A Watchdog Timer Reset has not occurred or set by firmware 0 = A Watchdog Timer Reset has occurred (cleared by hardware) bit 3 RMCLR: MCLR Reset Flag bit 1 = A MCLR Reset has not occurred or set by firmware 0 = A MCLR Reset has occurred (cleared by hardware) bit 2 RI: RESET Instruction Flag bit 1 = A RESET instruction has not been executed or set by firmware 0 = A RESET instruction has been executed (cleared by hardware) bit 1 POR: Power-On Reset Status bit 1 = No Power-on Reset occurred 0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs) bit 0 BOR: Brown-Out Reset Status bit 1 = No Brown-out Reset occurred 0 = A Brown-out Reset occurred (must be set in software after a Power-on Reset or Brown-out Reset occurs)  2011-2015 Microchip Technology Inc. DS40001615C-page 57 PIC12(L)F1501 TABLE 6-5: SUMMARY OF REGISTERS ASSOCIATED WITH RESETS Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register on Page BORCON SBOREN BORFS — — — — — BORRDY 53 PCON STKOVF STKUNF — RWDT RMCLR RI POR BOR 57 STATUS — — — TO PD Z DC WDTCON — — WDTPS C 17 SWDTEN 77 Legend: — = unimplemented bit, reads as ‘0’. Shaded cells are not used by Resets. TABLE 6-6: Name CONFIG1 CONFIG2 SUMMARY OF CONFIGURATION WORD WITH RESETS Bits Bit -/7 Bit -/6 Bit 13/5 Bit 12/4 Bit 11/3 13:8 — — — — CLKOUTEN 7:0 CP 13:8 — — LVP DEBUG LPBOR BORV 7:0 — — — — — — MCLRE PWRTE WDTE Bit 10/2 Bit 9/1 BOREN Bit 8/0 — FOSC — STVREN — WRT Register on Page 38 39 Legend: — = unimplemented location, read as ‘0’. Shaded cells are not used by Resets. DS40001615C-page 58  2011-2015 Microchip Technology Inc. PIC12(L)F1501 7.0 INTERRUPTS The interrupt feature allows certain events to preempt normal program flow. Firmware is used to determine the source of the interrupt and act accordingly. Some interrupts can be configured to wake the MCU from Sleep mode. This chapter contains the following information for Interrupts: • • • • • Operation Interrupt Latency Interrupts During Sleep INT Pin Automatic Context Saving Many peripherals produce interrupts. Refer to the corresponding chapters for details. A block diagram of the interrupt logic is shown in Figure 7-1. FIGURE 7-1: INTERRUPT LOGIC Rev. 10-000010A 1/13/2014 TMR0IF TMR0IE Peripheral Interrupts (TMR1IF) PIR1 (TMR1IE) PIE1 Wake-up (If in Sleep mode) INTF INTE IOCIF IOCIE Interrupt to CPU PEIE PIRn PIEn  2011-2015 Microchip Technology Inc. GIE DS40001615C-page 59 PIC12(L)F1501 7.1 Operation Interrupts are disabled upon any device Reset. They are enabled by setting the following bits: • GIE bit of the INTCON register • Interrupt Enable bit(s) for the specific interrupt event(s) • PEIE bit of the INTCON register (if the Interrupt Enable bit of the interrupt event is contained in the PIE1, PIE2 and PIE3 registers) 7.2 Interrupt Latency Interrupt latency is defined as the time from when the interrupt event occurs to the time code execution at the interrupt vector begins. The latency for synchronous interrupts is three or four instruction cycles. For asynchronous interrupts, the latency is three to five instruction cycles, depending on when the interrupt occurs. See Figure 7-2 and Figure 7-3 for more details. The INTCON, PIR1, PIR2 and PIR3 registers record individual interrupts via interrupt flag bits. Interrupt flag bits will be set, regardless of the status of the GIE, PEIE and individual interrupt enable bits. The following events happen when an interrupt event occurs while the GIE bit is set: • Current prefetched instruction is flushed • GIE bit is cleared • Current Program Counter (PC) is pushed onto the stack • Critical registers are automatically saved to the shadow registers (See “Section 7.5 “Automatic Context Saving”.”) • PC is loaded with the interrupt vector 0004h The firmware within the Interrupt Service Routine (ISR) should determine the source of the interrupt by polling the interrupt flag bits. The interrupt flag bits must be cleared before exiting the ISR to avoid repeated interrupts. Because the GIE bit is cleared, any interrupt that occurs while executing the ISR will be recorded through its interrupt flag, but will not cause the processor to redirect to the interrupt vector. The RETFIE instruction exits the ISR by popping the previous address from the stack, restoring the saved context from the shadow registers and setting the GIE bit. For additional information on a specific interrupt’s operation, refer to its peripheral chapter. Note 1: Individual interrupt flag bits are set, regardless of the state of any other enable bits. 2: All interrupts will be ignored while the GIE bit is cleared. Any interrupt occurring while the GIE bit is clear will be serviced when the GIE bit is set again. DS40001615C-page 60  2011-2015 Microchip Technology Inc. PIC12(L)F1501 FIGURE 7-2: INTERRUPT LATENCY Fosc Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Interrupt Sampled during Q1 Interrupt GIE PC Execute PC-1 PC 1-Cycle Instruction at PC PC+1 0004h 0005h NOP NOP Inst(0004h) PC+1/FSR ADDR New PC/ PC+1 0004h 0005h Inst(PC) NOP NOP Inst(0004h) FSR ADDR PC+1 PC+2 0004h 0005h INST(PC) NOP NOP NOP Inst(0004h) Inst(0005h) FSR ADDR PC+1 0004h 0005h INST(PC) NOP NOP Inst(0004h) Inst(PC) Interrupt GIE PC Execute PC-1 PC 2-Cycle Instruction at PC Interrupt GIE PC Execute PC-1 PC 3-Cycle Instruction at PC Interrupt GIE PC Execute PC-1 PC 3-Cycle Instruction at PC  2011-2015 Microchip Technology Inc. PC+2 NOP NOP DS40001615C-page 61 PIC12(L)F1501 FIGURE 7-3: INT PIN INTERRUPT TIMING Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 FOSC CLKOUT (3) INT pin (1) (1) INTF Interrupt Latency (2) (4) GIE INSTRUCTION FLOW PC Instruction Fetched Instruction Executed Note 1: PC Inst (PC) Inst (PC – 1) PC + 1 Inst (PC + 1) Inst (PC) PC + 1 — Forced NOP 0004h 0005h Inst (0004h) Inst (0005h) Forced NOP Inst (0004h) INTF flag is sampled here (every Q1). 2: Asynchronous interrupt latency = 3-5 TCY. Synchronous latency = 3-4 TCY, where TCY = instruction cycle time. Latency is the same whether Inst (PC) is a single cycle or a 2-cycle instruction. 3: For minimum width of INT pulse, refer to AC specifications in Section 27.0 “Electrical Specifications”. 4: INTF is enabled to be set any time during the Q4-Q1 cycles. DS40001615C-page 62  2011-2015 Microchip Technology Inc. PIC12(L)F1501 7.3 Interrupts During Sleep Some interrupts can be used to wake from Sleep. To wake from Sleep, the peripheral must be able to operate without the system clock. The interrupt source must have the appropriate Interrupt Enable bit(s) set prior to entering Sleep. On waking from Sleep, if the GIE bit is also set, the processor will branch to the interrupt vector. Otherwise, the processor will continue executing instructions after the SLEEP instruction. The instruction directly after the SLEEP instruction will always be executed before branching to the ISR. Refer to Section 8.0 “PowerDown Mode (Sleep)” for more details. 7.4 INT Pin The INT pin can be used to generate an asynchronous edge-triggered interrupt. This interrupt is enabled by setting the INTE bit of the INTCON register. The INTEDG bit of the OPTION_REG register determines on which edge the interrupt will occur. When the INTEDG bit is set, the rising edge will cause the interrupt. When the INTEDG bit is clear, the falling edge will cause the interrupt. The INTF bit of the INTCON register will be set when a valid edge appears on the INT pin. If the GIE and INTE bits are also set, the processor will redirect program execution to the interrupt vector. 7.5 Automatic Context Saving Upon entering an interrupt, the return PC address is saved on the stack. Additionally, the following registers are automatically saved in the shadow registers: • • • • • W register STATUS register (except for TO and PD) BSR register FSR registers PCLATH register Upon exiting the Interrupt Service Routine, these registers are automatically restored. Any modifications to these registers during the ISR will be lost. If modifications to any of these registers are desired, the corresponding shadow register should be modified and the value will be restored when exiting the ISR. The shadow registers are available in Bank 31 and are readable and writable. Depending on the user’s application, other registers may also need to be saved.  2011-2015 Microchip Technology Inc. DS40001615C-page 63 PIC12(L)F1501 7.6 Register Definitions: Interrupt Control REGISTER 7-1: R/W-0/0 (1) GIE INTCON: INTERRUPT CONTROL REGISTER R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R-0/0 (2) TMR0IE INTE IOCIE TMR0IF INTF IOCIF(3) PEIE bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7 GIE: Global Interrupt Enable bit(1) 1 = Enables all active interrupts 0 = Disables all interrupts bit 6 PEIE: Peripheral Interrupt Enable bit(2) 1 = Enables all active peripheral interrupts 0 = Disables all peripheral interrupts bit 5 TMR0IE: Timer0 Overflow Interrupt Enable bit 1 = Enables the Timer0 interrupt 0 = Disables the Timer0 interrupt bit 4 INTE: INT External Interrupt Enable bit 1 = Enables the INT external interrupt 0 = Disables the INT external interrupt bit 3 IOCIE: Interrupt-on-Change Enable bit 1 = Enables the interrupt-on-change 0 = Disables the interrupt-on-change bit 2 TMR0IF: Timer0 Overflow Interrupt Flag bit 1 = TMR0 register has overflowed 0 = TMR0 register did not overflow bit 1 INTF: INT External Interrupt Flag bit 1 = The INT external interrupt occurred 0 = The INT external interrupt did not occur bit 0 IOCIF: Interrupt-on-Change Interrupt Flag bit(3) 1 = When at least one of the interrupt-on-change pins changed state 0 = None of the interrupt-on-change pins have changed state Note 1: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Interrupt Enable bit, GIE of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. 2: Bit PEIE of the INTCON register must be set to enable any peripheral interrupt. 3: The IOCIF Flag bit is read-only and cleared when all the interrupt-on-change flags in the IOCxF registers have been cleared by software. DS40001615C-page 64  2011-2015 Microchip Technology Inc. PIC12(L)F1501 REGISTER 7-2: PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1 R/W-0/0 R/W-0/0 U-0 U-0 U-0 U-0 R/W-0/0 R/W-0/0 TMR1GIE ADIE — — — — TMR2IE TMR1IE bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7 TMR1GIE: Timer1 Gate Interrupt Enable bit 1 = Enables the Timer1 gate acquisition interrupt 0 = Disables the Timer1 gate acquisition interrupt bit 6 ADIE: Analog-to-Digital Converter (ADC) Interrupt Enable bit 1 = Enables the ADC interrupt 0 = Disables the ADC interrupt bit 5-2 Unimplemented: Read as ‘0’ bit 1 TMR2IE: TMR2 to PR2 Match Interrupt Enable bit 1 = Enables the Timer2 to PR2 match interrupt 0 = Disables the Timer2 to PR2 match interrupt bit 0 TMR1IE: Timer1 Overflow Interrupt Enable bit 1 = Enables the Timer1 overflow interrupt 0 = Disables the Timer1 overflow interrupt Note: Bit PEIE of the INTCON register must be set to enable any peripheral interrupt.  2011-2015 Microchip Technology Inc. DS40001615C-page 65 PIC12(L)F1501 REGISTER 7-3: PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2 U-0 U-0 R/W-0/0 U-0 U-0 R/W-0/0 U-0 U-0 — — C1IE — — NCO1IE — — bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7-6 Unimplemented: Read as ‘0’ bit 5 C1IE: Comparator C1 Interrupt Enable bit 1 = Enables the Comparator C1 interrupt 0 = Disables the Comparator C1 interrupt bit 4-3 Unimplemented: Read as ‘0’ bit 2 NCO1IE: Numerically Controlled Oscillator Interrupt Enable bit 1 = Enables the NCO interrupt 0 = Disables the NCO interrupt bit 1-0 Unimplemented: Read as ‘0’ Note: Bit PEIE of the INTCON register must be set to enable any peripheral interrupt. DS40001615C-page 66  2011-2015 Microchip Technology Inc. PIC12(L)F1501 REGISTER 7-4: PIE3: PERIPHERAL INTERRUPT ENABLE REGISTER 3 U-0 U-0 U-0 U-0 U-0 U-0 R/W-0/0 R/W-0/0 — — — — — — CLC2IE CLC1IE bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7-2 Unimplemented: Read as ‘0’ bit 1 CLC2IE: Configurable Logic Block 2 Interrupt Enable bit 1 = Enables the CLC 2 interrupt 0 = Disables the CLC 2 interrupt bit 0 CLC1IE: Configurable Logic Block 1 Interrupt Enable bit 1 = Enables the CLC 1 interrupt 0 = Disables the CLC 1 interrupt Note: Bit PEIE of the INTCON register must be set to enable any peripheral interrupt.  2011-2015 Microchip Technology Inc. DS40001615C-page 67 PIC12(L)F1501 REGISTER 7-5: PIR1: PERIPHERAL INTERRUPT REQUEST REGISTER 1 R/W-0/0 R/W-0/0 U-0 U-0 U-0 U-0 R/W-0/0 R/W-0/0 TMR1GIF ADIF — — — — TMR2IF TMR1IF bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7 TMR1GIF: Timer1 Gate Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is not pending bit 6 ADIF: ADC Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is not pending bit 5-2 Unimplemented: Read as ‘0’ bit 1 TMR2IF: Timer2 to PR2 Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is not pending bit 0 TMR1IF: Timer1 Overflow Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is not pending Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Interrupt Enable bit, GIE of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. DS40001615C-page 68  2011-2015 Microchip Technology Inc. PIC12(L)F1501 REGISTER 7-6: PIR2: PERIPHERAL INTERRUPT REQUEST REGISTER 2 U-0 U-0 R/W-0/0 U-0 U-0 R/W-0/0 U-0 U-0 — — C1IF — — NCO1IF — — bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7-6 Unimplemented: Read as ‘0’ bit 5 C1IF: Comparator C1 Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is not pending bit 4-3 Unimplemented: Read as ‘0’ bit 2 NCO1IF: Numerically Controlled Oscillator Flag bit 1 = Interrupt is pending 0 = Interrupt is not pending bit 1-0 Unimplemented: Read as ‘0’ Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Interrupt Enable bit, GIE of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.  2011-2015 Microchip Technology Inc. DS40001615C-page 69 PIC12(L)F1501 REGISTER 7-7: PIR3: PERIPHERAL INTERRUPT REQUEST REGISTER 3 U-0 U-0 U-0 U-0 U-0 U-0 R/W-0/0 R/W-0/0 — — — — — — CLC2IF CLC1IF bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7-2 Unimplemented: Read as ‘0’ bit 1 CLC2IF: Configurable Logic Block 2 Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is not pending bit 0 CLC1IF: Configurable Logic Block 1 Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is not pending Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit, GIE of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. DS40001615C-page 70  2011-2015 Microchip Technology Inc. PIC12(L)F1501 TABLE 7-1: Name INTCON SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register on Page GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 64 OPTION_REG WPUEN INTEDG TMR0CS TMR0SE PSA ADIE — — — — TMR2IE TMR1IE 65 — — C1IE — — NCO1IE — — 66 PIE3 — — — — — — CLC2IE CLC1IE 67 PIR1 TMR1GIF ADIF — — — — TMR2IF TMR1IF 68 PIR2 — — C1IF — — NCO1IF — — 68 PIR3 — — — — — — CLC2IF CLC1IF 70 PIE1 TMR1GIE PIE2 PS 136 Legend: — = unimplemented location, read as ‘0’. Shaded cells are not used by interrupts.  2011-2015 Microchip Technology Inc. DS40001615C-page 71 PIC12(L)F1501 8.0 POWER-DOWN MODE (SLEEP) The Power-down mode is entered by executing a SLEEP instruction. Upon entering Sleep mode, the following conditions exist: 1. WDT will be cleared but keeps running, if enabled for operation during Sleep. 2. PD bit of the STATUS register is cleared. 3. TO bit of the STATUS register is set. 4. CPU clock is disabled. 5. 31 kHz LFINTOSC is unaffected and peripherals that operate from it may continue operation in Sleep. 6. Timer1 and peripherals that operate from Timer1 continue operation in Sleep when the Timer1 clock source selected is: • LFINTOSC • T1CKI 7. ADC is unaffected, if the dedicated FRC oscillator is selected. 8. I/O ports maintain the status they had before SLEEP was executed (driving high, low or highimpedance). 9. Resets other than WDT are not affected by Sleep mode. Refer to individual chapters for more details on peripheral operation during Sleep. To minimize current consumption, the following conditions should be considered: • I/O pins should not be floating • External circuitry sinking current from I/O pins • Internal circuitry sourcing current from I/O pins • Current draw from pins with internal weak pull-ups • Modules using 31 kHz LFINTOSC • CWG, NCO and CLC modules using HFINTOSC I/O pins that are high-impedance inputs should be pulled to VDD or VSS externally to avoid switching currents caused by floating inputs. Examples of internal circuitry that might be sourcing current include the FVR module. See Section 13.0 “Fixed Voltage Reference (FVR)” for more information on this module. 8.1 Wake-up from Sleep The device can wake-up from Sleep through one of the following events: 1. External Reset input on MCLR pin, if enabled 2. BOR Reset, if enabled 3. POR Reset 4. Watchdog Timer, if enabled 5. Any external interrupt 6. Interrupts by peripherals capable of running during Sleep (see individual peripheral for more information) DS40001615C-page 72 The first three events will cause a device Reset. The last three events are considered a continuation of program execution. To determine whether a device Reset or wake-up event occurred, refer to Section 6.12 “Determining the Cause of a Reset”. When the SLEEP instruction is being executed, the next instruction (PC + 1) is prefetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be enabled. Wake-up will occur regardless of the state of the GIE bit. If the GIE bit is disabled, the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is enabled, the device executes the instruction after the SLEEP instruction, the device will then call the Interrupt Service Routine. In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction. The WDT is cleared when the device wakes up from Sleep, regardless of the source of wake-up. 8.1.1 WAKE-UP USING INTERRUPTS When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur: • If the interrupt occurs before the execution of a SLEEP instruction - SLEEP instruction will execute as a NOP. - WDT and WDT prescaler will not be cleared - TO bit of the STATUS register will not be set - PD bit of the STATUS register will not be cleared. • If the interrupt occurs during or after the execution of a SLEEP instruction - SLEEP instruction will be completely executed - Device will immediately wake-up from Sleep - WDT and WDT prescaler will be cleared - TO bit of the STATUS register will be set - PD bit of the STATUS register will be cleared Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the PD bit. If the PD bit is set, the SLEEP instruction was executed as a NOP.  2011-2015 Microchip Technology Inc. PIC12(L)F1501 FIGURE 8-1: WAKE-UP FROM SLEEP THROUGH INTERRUPT Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 CLKIN(1) TOST(3) CLKOUT(2) Interrupt flag Interrupt Latency (4) GIE bit (INTCON reg.) Instruction Flow PC Instruction Fetched Instruction Executed Note 8.2 1: 2: 3: 4: Processor in Sleep PC Inst(PC) = Sleep Inst(PC - 1) PC + 1 PC + 2 PC + 2 Inst(PC + 1) Inst(PC + 2) Sleep Inst(PC + 1) PC + 2 Forced NOP 0004h 0005h Inst(0004h) Inst(0005h) Forced NOP Inst(0004h) External clock. High, Medium, Low mode assumed. CLKOUT is shown here for timing reference. TOST = 1024 TOSC. This delay does not apply to EC, RC and INTOSC Oscillator modes. GIE = 1 assumed. In this case after wake-up, the processor calls the ISR at 0004h. If GIE = 0, execution will continue in-line. Low-Power Sleep Mode 8.2.2 PERIPHERAL USAGE IN SLEEP This device contains an internal Low Dropout (LDO) voltage regulator, which allows the device I/O pins to operate at voltages up to 5.5V while the internal device logic operates at a lower voltage. The LDO and its associated reference circuitry must remain active when the device is in Sleep mode. Some peripherals that can operate in Sleep mode will not operate properly with the Low-Power Sleep mode selected. The LDO will remain in the Normal Power mode when those peripherals are enabled. The LowPower Sleep mode is intended for use with these peripherals: Low-Power Sleep mode allows the user to optimize the operating current in Sleep. Low-Power Sleep mode can be selected by setting the VREGPM bit of the VREGCON register, putting the LDO and reference circuitry in a low-power state whenever the device is in Sleep. • • • • 8.2.1 SLEEP CURRENT VS. WAKE-UP TIME In the Default Operating mode, the LDO and reference circuitry remain in the normal configuration while in Sleep. The device is able to exit Sleep mode quickly since all circuits remain active. In Low-Power Sleep mode, when waking up from Sleep, an extra delay time is required for these circuits to return to the normal configuration and stabilize. The Low-Power Sleep mode is beneficial for applications that stay in Sleep mode for long periods of time. The Normal mode is beneficial for applications that need to wake from Sleep quickly and frequently.  2011-2015 Microchip Technology Inc. Brown-out Reset (BOR) Watchdog Timer (WDT) External interrupt pin/Interrupt-on-change pins Timer1 (with external clock source) The Complementary Waveform Generator (CWG), the Numerically Controlled Oscillator (NCO) and the Configurable Logic Cell (CLC) modules can utilize the HFINTOSC oscillator as either a clock source or as an input source. Under certain conditions, when the HFINTOSC is selected for use with the CWG, NCO or CLC modules, the HFINTOSC will remain active during Sleep. This will have a direct effect on the Sleep mode current. Please refer to sections Section 22.5 “Operation During Sleep”, 23.7 “Operation In Sleep” and 24.10 “Operation During Sleep” for more information. Note: The PIC12LF1501 does not have a configurable Low-Power Sleep mode. PIC12LF1501 is an unregulated device and is always in the lowest power state when in Sleep, with no wake-up time penalty. This device has a lower maximum VDD and I/O voltage than the PIC12F1501. See Section 27.0 “Electrical Specifications” for more information. DS40001615C-page 73 PIC12(L)F1501 8.3 Register Definitions: Voltage Regulator Control VREGCON: VOLTAGE REGULATOR CONTROL REGISTER(1) REGISTER 8-1: U-0 U-0 U-0 U-0 U-0 U-0 R/W-0/0 R/W-1/1 — — — — — — VREGPM Reserved bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7-2 Unimplemented: Read as ‘0’ bit 1 VREGPM: Voltage Regulator Power Mode Selection bit 1 = Low-Power Sleep mode enabled in Sleep(2) Draws lowest current in Sleep, slower wake-up 0 = Normal Power mode enabled in Sleep(2) Draws higher current in Sleep, faster wake-up bit 0 Reserved: Read as ‘1’. Maintain this bit set. Note 1: 2: PIC12F1501 only. See Section 27.0 “Electrical Specifications”. TABLE 8-1: SUMMARY OF REGISTERS ASSOCIATED WITH POWER-DOWN MODE Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register on Page INTCON GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 64 IOCAF — — IOCAF5 IOCAF4 IOCAF3 IOCAF2 IOCAF1 IOCAF0 103 IOCAN — — IOCAN5 IOCAN4 IOCAN3 IOCAN2 IOCAN1 IOCAN0 103 IOCAP — — IOCAP5 IOCAP4 IOCAP3 IOCAP2 IOCAP1 IOCAP0 103 PIE1 TMR1GIE ADIE — — — — TMR2IE TMR1IE 65 PIE2 — — C1IE — — NCO1IE — — 66 PIE3 — — — — — — CLC2IE CLC1IE 67 PIR1 TMR1GIF ADIF — — — — TMR2IF TMR1IF 68 PIR2 — — C1IF — — NCO1IF — — 67 PIR3 — — — — — — CLC2IF CLC1IF 70 STATUS — — — TO PD Z DC C 17 WDTCON — — SWDTEN 77 WDTPS Legend: — = unimplemented, read as ‘0’. Shaded cells are not used in Power-Down mode. DS40001615C-page 74  2011-2015 Microchip Technology Inc. PIC12(L)F1501 9.0 WATCHDOG TIMER (WDT) The Watchdog Timer is a system timer that generates a Reset if the firmware does not issue a CLRWDT instruction within the time-out period. The Watchdog Timer is typically used to recover the system from unexpected events. The WDT has the following features: • Independent clock source • Multiple operating modes - WDT is always on - WDT is off when in Sleep - WDT is controlled by software - WDT is always off • Configurable time-out period is from 1 ms to 256 seconds (nominal) • Multiple Reset conditions • Operation during Sleep FIGURE 9-1: WATCHDOG TIMER BLOCK DIAGRAM Rev. 10-000141A 7/30/2013 WDTE = 01 SWDTEN WDTE = 11 LFINTOSC 23-%it Programmable Prescaler WDT WDT Time-out WDTE = 10 Sleep  2011-2015 Microchip Technology Inc. WDTPS DS40001615C-page 75 PIC12(L)F1501 9.1 Independent Clock Source 9.3 The WDT derives its time base from the 31 kHz LFINTOSC internal oscillator. Time intervals in this chapter are based on a nominal interval of 1 ms. See Section 27.0 “Electrical Specifications” for the LFINTOSC tolerances. The WDTPS bits of the WDTCON register set the time-out period from 1 ms to 256 seconds (nominal). After a Reset, the default time-out period is two seconds. 9.4 9.2 WDT Operating Modes The Watchdog Timer module has four operating modes controlled by the WDTE bits in Configuration Words. See Table 9-1. 9.2.1 WDT IS ALWAYS ON When the WDTE bits of Configuration Words are set to ‘11’, the WDT is always on. WDT protection is active during Sleep. 9.2.2 WDT protection is not active during Sleep. WDT CONTROLLED BY SOFTWARE When the WDTE bits of Configuration Words are set to ‘01’, the WDT is controlled by the SWDTEN bit of the WDTCON register. WDT protection is unchanged by Sleep. See Table 9-1 for more details. TABLE 9-1: WDT OPERATING MODES WDTE SWDTEN Device Mode WDT Mode 11 X X Active Awake Active 10 X Sleep Disabled 1 X Active 0 X Disabled X X Disabled 01 00 TABLE 9-2: Clearing the WDT The WDT is cleared when any of the following conditions occur: • • • • • • Any Reset CLRWDT instruction is executed Device enters Sleep Device wakes up from Sleep Oscillator fail WDT is disabled See Table 9-2 for more information. WDT IS OFF IN SLEEP When the WDTE bits of Configuration Words are set to ‘10’, the WDT is on, except in Sleep. 9.2.3 Time-Out Period 9.5 Operation During Sleep When the device enters Sleep, the WDT is cleared. If the WDT is enabled during Sleep, the WDT resumes counting. When the device exits Sleep, the WDT is cleared again. When a WDT time-out occurs while the device is in Sleep, no Reset is generated. Instead, the device wakes up and resumes operation. The TO and PD bits in the STATUS register are changed to indicate the event. The RWDT bit in the PCON register can also be used. See Section 3.0 “Memory Organization” for more information. WDT CLEARING CONDITIONS Conditions WDT WDTE = 00 WDTE = 01 and SWDTEN = 0 WDTE = 10 and enter Sleep CLRWDT Command Cleared Oscillator Fail Detected Exit Sleep + System Clock = INTOSC, EXTCLK Change INTOSC divider (IRCF bits) DS40001615C-page 76 Unaffected  2011-2015 Microchip Technology Inc. PIC12(L)F1501 9.6 Register Definitions: Watchdog Timer Control REGISTER 9-1: WDTCON: WATCHDOG TIMER CONTROL REGISTER U-0 U-0 — — R/W-0/0 R/W-1/1 R/W-0/0 R/W-1/1 R/W-1/1 WDTPS bit 7 R/W-0/0 SWDTEN bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7-6 Unimplemented: Read as ‘0’ bit 5-1 WDTPS: Watchdog Timer Period Select bits(1) Bit Value = Prescale Rate 11111 = Reserved. Results in minimum interval (1:32) • • • 10011 = Reserved. Results in minimum interval (1:32) 10010 10001 10000 01111 01110 01101 01100 01011 01010 01001 01000 00111 00110 00101 00100 00011 00010 00001 00000 bit 0 Note 1: = = = = = = = = = = = = = = = = = = = 1:8388608 (223) (Interval 256s nominal) 1:4194304 (222) (Interval 128s nominal) 1:2097152 (221) (Interval 64s nominal) 1:1048576 (220) (Interval 32s nominal) 1:524288 (219) (Interval 16s nominal) 1:262144 (218) (Interval 8s nominal) 1:131072 (217) (Interval 4s nominal) 1:65536 (Interval 2s nominal) (Reset value) 1:32768 (Interval 1s nominal) 1:16384 (Interval 512 ms nominal) 1:8192 (Interval 256 ms nominal) 1:4096 (Interval 128 ms nominal) 1:2048 (Interval 64 ms nominal) 1:1024 (Interval 32 ms nominal) 1:512 (Interval 16 ms nominal) 1:256 (Interval 8 ms nominal) 1:128 (Interval 4 ms nominal) 1:64 (Interval 2 ms nominal) 1:32 (Interval 1 ms nominal) SWDTEN: Software Enable/Disable for Watchdog Timer bit If WDTE = 1x: This bit is ignored. If WDTE = 01: 1 = WDT is turned on 0 = WDT is turned off If WDTE = 00: This bit is ignored. Times are approximate. WDT time is based on 31 kHz LFINTOSC.  2011-2015 Microchip Technology Inc. DS40001615C-page 77 PIC12(L)F1501 TABLE 9-3: Name SUMMARY OF REGISTERS ASSOCIATED WITH WATCHDOG TIMER Bit 7 OSCCON Bit 6 — Bit 5 Bit 4 Bit 3 IRCF Bit 2 Bit 1 — Bit 0 SCS Register on Page 49 STKOVF STKUNF — RWDT RMCLR RI POR BOR STATUS — — — TO PD Z DC C 17 WDTCON — — SWDTEN 77 PCON Legend: x = unknown, u = unchanged, – = unimplemented locations read as ‘0’. Shaded cells are not used by Watchdog Timer. TABLE 9-4: Name CONFIG1 Legend: WDTPS 57 Bits SUMMARY OF CONFIGURATION WORD WITH WATCHDOG TIMER Bit -/7 Bit -/6 Bit 13/5 Bit 12/4 Bit 11/3 — CLKOUTEN 13:8 — — — 7:0 CP MCLRE PWRTE WDTE Bit 10/2 Bit 9/1 BOREN — Bit 8/0 — FOSC Register on Page 38 — = unimplemented location, read as ‘0’. Shaded cells are not used by Watchdog Timer. DS40001615C-page 78  2011-2015 Microchip Technology Inc. PIC12(L)F1501 10.0 FLASH PROGRAM MEMORY CONTROL The Flash program memory is readable and writable during normal operation over the full VDD range. Program memory is indirectly addressed using Special Function Registers (SFRs). The SFRs used to access program memory are: • • • • • • PMCON1 PMCON2 PMDATL PMDATH PMADRL PMADRH When accessing the program memory, the PMDATH:PMDATL register pair forms a 2-byte word that holds the 14-bit data for read/write, and the PMADRH:PMADRL register pair forms a 2-byte word that holds the 15-bit address of the program memory location being read. The write time is controlled by an on-chip timer. The write/erase voltages are generated by an on-chip charge pump rated to operate over the operating voltage range of the device. The Flash program memory can be protected in two ways; by code protection (CP bit in Configuration Words) and write protection (WRT bits in Configuration Words). Code protection (CP = 0)(1), disables access, reading and writing, to the Flash program memory via external device programmers. Code protection does not affect the self-write and erase functionality. Code protection can only be reset by a device programmer performing a Bulk Erase to the device, clearing all Flash program memory, Configuration bits and User IDs. Write protection prohibits self-write and erase to a portion or all of the Flash program memory, as defined by the bits WRT. Write protection does not affect a device programmers ability to read, write or erase the device. Note 1: Code protection of the entire Flash program memory array is enabled by clearing the CP bit of Configuration Words. 10.1 PMADRL and PMADRH Registers The PMADRH:PMADRL register pair can address up to a maximum of 32K words of program memory. When selecting a program address value, the MSB of the address is written to the PMADRH register and the LSB is written to the PMADRL register. 10.1.1 PMCON1 AND PMCON2 REGISTERS Control bits RD and WR initiate read and write, respectively. These bits cannot be cleared, only set, in software. They are cleared by hardware at completion of the read or write operation. The inability to clear the WR bit in software prevents the accidental, premature termination of a write operation. The WREN bit, when set, will allow a write operation to occur. On power-up, the WREN bit is clear. The WRERR bit is set when a write operation is interrupted by a Reset during normal operation. In these situations, following Reset, the user can check the WRERR bit and execute the appropriate error handling routine. The PMCON2 register is a write-only register. Attempting to read the PMCON2 register will return all ‘0’s. To enable writes to the program memory, a specific pattern (the unlock sequence), must be written to the PMCON2 register. The required unlock sequence prevents inadvertent writes to the program memory write latches and Flash program memory. 10.2 Flash Program Memory Overview It is important to understand the Flash program memory structure for erase and programming operations. Flash program memory is arranged in rows. A row consists of a fixed number of 14-bit program memory words. A row is the minimum size that can be erased by user software. After a row has been erased, the user can reprogram all or a portion of this row. Data to be written into the program memory row is written to 14-bit wide data write latches. These write latches are not directly accessible to the user, but may be loaded via sequential writes to the PMDATH:PMDATL register pair. Note: If the user wants to modify only a portion of a previously programmed row, then the contents of the entire row must be read and saved in RAM prior to the erase. Then, new data and retained data can be written into the write latches to reprogram the row of Flash program memory. However, any unprogrammed locations can be written without first erasing the row. In this case, it is not necessary to save and rewrite the other previously programmed locations. See Table 10-1 for Erase Row size and the number of write latches for Flash program memory. TABLE 10-1: Device PIC12(L)F1501 FLASH MEMORY ORGANIZATION BY DEVICE Row Erase (words) Write Latches (words) 16 16 PMCON1 is the control register for Flash program memory accesses.  2011-2015 Microchip Technology Inc. DS40001615C-page 79 PIC12(L)F1501 10.2.1 READING THE FLASH PROGRAM MEMORY To read a program memory location, the user must: 1. 2. 3. Write the desired address to the PMADRH:PMADRL register pair. Clear the CFGS bit of the PMCON1 register. Then, set control bit RD of the PMCON1 register. Once the read control bit is set, the program memory Flash controller will use the second instruction cycle to read the data. This causes the second instruction immediately following the “BSF PMCON1,RD” instruction to be ignored. The data is available in the very next cycle, in the PMDATH:PMDATL register pair; therefore, it can be read as two bytes in the following instructions. PMDATH:PMDATL register pair will hold this value until another read or until it is written to by the user. Note: The two instructions following a program memory read are required to be NOPs. This prevents the user from executing a 2-cycle instruction on the next instruction after the RD bit is set. FIGURE 10-1: FLASH PROGRAM MEMORY READ FLOWCHART Rev. 10-000046A 7/30/2013 Start Read Operation Select Program or Configuration Memory (CFGS) Select Word Address (PMADRH:PMADRL) Initiate Read operation (RD = 1) Instruction fetched ignored NOP execution forced Instruction fetched ignored NOP execution forced Data read now in PMDATH:PMDATL End Read Operation DS40001615C-page 80  2011-2015 Microchip Technology Inc. PIC12(L)F1501 FIGURE 10-2: FLASH PROGRAM MEMORY READ CYCLE EXECUTION Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 PC Flash ADDR Flash Data PC + 1 INSTR (PC) INSTR(PC - 1) executed here PMADRH,PMADRL INSTR (PC + 1) BSF PMCON1,RD executed here PC +3 PC+3 PMDATH,PMDATL INSTR(PC + 1) instruction ignored Forced NOP executed here PC + 5 PC + 4 INSTR (PC + 3) INSTR(PC + 2) instruction ignored Forced NOP executed here INSTR (PC + 4) INSTR(PC + 3) executed here INSTR(PC + 4) executed here RD bit PMDATH PMDATL Register EXAMPLE 10-1: FLASH PROGRAM MEMORY READ * This code block will read 1 word of program * memory at the memory address: PROG_ADDR_HI : PROG_ADDR_LO * data will be returned in the variables; * PROG_DATA_HI, PROG_DATA_LO BANKSEL MOVLW MOVWF MOVLW MOVWF PMADRL PROG_ADDR_LO PMADRL PROG_ADDR_HI PMADRH ; Select Bank for PMCON registers ; ; Store LSB of address ; ; Store MSB of address BCF BSF NOP NOP PMCON1,CFGS PMCON1,RD ; ; ; ; Do not select Configuration Space Initiate read Ignored (Figure 10-2) Ignored (Figure 10-2) MOVF MOVWF MOVF MOVWF PMDATL,W PROG_DATA_LO PMDATH,W PROG_DATA_HI ; ; ; ; Get LSB of word Store in user location Get MSB of word Store in user location  2011-2015 Microchip Technology Inc. DS40001615C-page 81 PIC12(L)F1501 10.2.2 FLASH MEMORY UNLOCK SEQUENCE The unlock sequence is a mechanism that protects the Flash program memory from unintended self-write programming or erasing. The sequence must be executed and completed without interruption to successfully complete any of the following operations: • Row Erase • Load program memory write latches • Write of program memory write latches to program memory • Write of program memory write latches to User IDs FIGURE 10-3: FLASH PROGRAM MEMORY UNLOCK SEQUENCE FLOWCHART Rev. 10-000047A 7/30/2013 Start Unlock Sequence Write 0x55 to PMCON2 The unlock sequence consists of the following steps: 1. Write 55h to PMCON2 2. Write AAh to PMCON2 Write 0xAA to PMCON2 3. Set the WR bit in PMCON1 4. NOP instruction 5. NOP instruction Once the WR bit is set, the processor will always force two NOP instructions. When an Erase Row or Program Row operation is being performed, the processor will stall internal operations (typical 2 ms), until the operation is complete and then resume with the next instruction. When the operation is loading the program memory write latches, the processor will always force the two NOP instructions and continue uninterrupted with the next instruction. Since the unlock sequence must not be interrupted, global interrupts should be disabled prior to the unlock sequence and re-enabled after the unlock sequence is completed. DS40001615C-page 82 Initiate Write or Erase operation (WR = 1) Instruction fetched ignored NOP execution forced Instruction fetched ignored NOP execution forced End Unlock Sequence  2011-2015 Microchip Technology Inc. PIC12(L)F1501 10.2.3 ERASING FLASH PROGRAM MEMORY While executing code, program memory can only be erased by rows. To erase a row: 1. 2. 3. 4. 5. Load the PMADRH:PMADRL register pair with any address within the row to be erased. Clear the CFGS bit of the PMCON1 register. Set the FREE and WREN bits of the PMCON1 register. Write 55h, then AAh, to PMCON2 (Flash programming unlock sequence). Set control bit WR of the PMCON1 register to begin the erase operation. See Example 10-2. After the “BSF PMCON1,WR” instruction, the processor requires two cycles to set up the erase operation. The user must place two NOP instructions immediately following the WR bit set instruction. The processor will halt internal operations for the typical 2 ms erase time. This is not Sleep mode as the clocks and peripherals will continue to run. After the erase cycle, the processor will resume operation with the third instruction after the PMCON1 write instruction. FIGURE 10-4: FLASH PROGRAM MEMORY ERASE FLOWCHART Rev. 10-000048A 7/30/2013 Start Erase Operation Disable Interrupts (GIE = 0) Select Program or Configuration Memory (CFGS) Select Row Address (PMADRH:PMADRL) Select Erase Operation (FREE = 1) Enable Write/Erase Operation (WREN = 1) Unlock Sequence (See Note 1) CPU stalls while Erase operation completes (2 ms typical) Disable Write/Erase Operation (WREN = 0) Re-enable Interrupts (GIE = 1) End Erase Operation Note 1: See Figure 10-3.  2011-2015 Microchip Technology Inc. DS40001615C-page 83 PIC12(L)F1501 EXAMPLE 10-2: ERASING ONE ROW OF PROGRAM MEMORY Required Sequence ; This row erase routine assumes the following: ; 1. A valid address within the erase row is loaded in ADDRH:ADDRL ; 2. ADDRH and ADDRL are located in shared data memory 0x70 - 0x7F (common RAM) BCF BANKSEL MOVF MOVWF MOVF MOVWF BCF BSF BSF INTCON,GIE PMADRL ADDRL,W PMADRL ADDRH,W PMADRH PMCON1,CFGS PMCON1,FREE PMCON1,WREN MOVLW MOVWF MOVLW MOVWF BSF NOP NOP 55h PMCON2 0AAh PMCON2 PMCON1,WR BCF BSF DS40001615C-page 84 PMCON1,WREN INTCON,GIE ; Disable ints so required sequences will execute properly ; Load lower 8 bits of erase address boundary ; Load upper 6 bits of erase address boundary ; Not configuration space ; Specify an erase operation ; Enable writes ; ; ; ; ; ; ; ; ; ; Start of required sequence to initiate erase Write 55h Write AAh Set WR bit to begin erase NOP instructions are forced as processor starts row erase of program memory. The processor stalls until the erase process is complete after erase processor continues with 3rd instruction ; Disable writes ; Enable interrupts  2011-2015 Microchip Technology Inc. PIC12(L)F1501 10.2.4 WRITING TO FLASH PROGRAM MEMORY Program memory is programmed using the following steps: 1. 2. 3. 4. Load the address in PMADRH:PMADRL of the row to be programmed. Load each write latch with data. Initiate a programming operation. Repeat steps 1 through 3 until all data is written. The following steps should be completed to load the write latches and program a row of program memory. These steps are divided into two parts. First, each write latch is loaded with data from the PMDATH:PMDATL using the unlock sequence with LWLO = 1. When the last word to be loaded into the write latch is ready, the LWLO bit is cleared and the unlock sequence executed. This initiates the programming operation, writing all the latches into Flash program memory. Note: Before writing to program memory, the word(s) to be written must be erased or previously unwritten. Program memory can only be erased one row at a time. No automatic erase occurs upon the initiation of the write. Program memory can be written one or more words at a time. The maximum number of words written at one time is equal to the number of write latches. See Figure 10-5 (row writes to program memory with 16 write latches) for more details. The write latches are aligned to the Flash row address boundary defined by the upper 10-bits of PMADRH:PMADRL, (PMADRH:PMADRL) with the lower five bits of PMADRL, (PMADRL) determining the write latch being loaded. Write operations do not cross these boundaries. At the completion of a program memory write operation, the data in the write latches is reset to contain 0x3FFF. The special unlock sequence is required to load a write latch with data or initiate a Flash programming operation. If the unlock sequence is interrupted, writing to the latches or program memory will not be initiated. 1. 2. 3. Set the WREN bit of the PMCON1 register. Clear the CFGS bit of the PMCON1 register. Set the LWLO bit of the PMCON1 register. When the LWLO bit of the PMCON1 register is ‘1’, the write sequence will only load the write latches and will not initiate the write to Flash program memory. 4. Load the PMADRH:PMADRL register pair with the address of the location to be written. 5. Load the PMDATH:PMDATL register pair with the program memory data to be written. 6. Execute the unlock sequence (Section 10.2.2 “Flash Memory Unlock Sequence”). The write latch is now loaded. 7. Increment the PMADRH:PMADRL register pair to point to the next location. 8. Repeat steps 5 through 7 until all but the last write latch has been loaded. 9. Clear the LWLO bit of the PMCON1 register. When the LWLO bit of the PMCON1 register is ‘0’, the write sequence will initiate the write to Flash program memory. 10. Load the PMDATH:PMDATL register pair with the program memory data to be written. 11. Execute the unlock sequence (Section 10.2.2 “Flash Memory Unlock Sequence”). The entire program memory latch content is now written to Flash program memory. Note: The program memory write latches are reset to the blank state (0x3FFF) at the completion of every write or erase operation. As a result, it is not necessary to load all the program memory write latches. Unloaded latches will remain in the blank state. An example of the complete write sequence is shown in Example 10-3. The initial address is loaded into the PMADRH:PMADRL register pair; the data is loaded using indirect addressing.  2011-2015 Microchip Technology Inc. DS40001615C-page 85  2011-2015 Microchip Technology Inc. FIGURE 10-5: 7 BLOCK WRITES TO FLASH PROGRAM MEMORY WITH 16 WRITE LATCHES 6 0 7 4 PMADRH - rA r9 r8 r7 r6 3 0 7 PMADRL r5 r4 r3 r2 r1 r0 c3 c2 c1 - 5 - 0 7 PMDATH PMDATL 6 c0 Rev. 10-000004B 7/25/2013 0 8 14 11 Program Memory Write Latches 4 14 Write Latch #0 00h 14 14 14 Write Latch #14 0Eh Write Latch #1 01h Write Latch #15 0Fh PMADRL 14 Status CFGS = 0 14 14 Row Addr Addr Addr Addr 000h 0000h 0001h 000Eh 000Fh 001h 0010h 0011h 001Eh 001Fh 002h 0020h 0021h 002Eh 002Fh 7FEh 7FE0h 7FE1h 7FEEh 7FEFh 7FFh 7FF0h 7FF1h 7FFEh 7FFFh Flash Program Memory 800h CFGS = 1 8000h - 8003h 8004h – 8005h 8006h 8007h – 8008h 8009h - 801Fh USER ID 0 - 3 reserved DEVICE ID Dev / Rev Configuration Words reserved Configuration Memory PIC12(L)F1501 DS40001615C-page 86 PMADRH: PMADRL Row Address Decode 14 PIC12(L)F1501 FIGURE 10-6: FLASH MEMORY WRITE FLOWCHART Rev. 10-000049A 7/30/2013 Start Write Operation Determine number of words to be written into Program or Configuration Memory. The number of words cannot exceed the number of words per row (word_cnt) Enable Write/Erase Operation (WREN = 1) Load the value to write (PMDATH:PMDATL) Disable Interrupts (GIE = 0) Update the word counter (word_cnt--) Write Latches to Flash (LWLO = 0) Select Program or Config. Memory (CFGS) Last word to write ? Yes Unlock Sequence (See Note 1) Select Row Address (PMADRH:PMADRL) No Select Write Operation (FREE = 0) Load Write Latches Only (LWLO = 1) Unlock Sequence (See Note 1) No delay when writing to Program Memory Latches CPU stalls while Write operation completes (2 ms typical) Disable Write/Erase Operation (WREN = 0) Re-enable Interrupts (GIE = 1) Increment Address (PMADRH:PMADRL++) End Write Operation Note 1: See Figure 10-3.  2011-2015 Microchip Technology Inc. DS40001615C-page 87 PIC12(L)F1501 EXAMPLE 10-3: ; ; ; ; ; ; ; WRITING TO FLASH PROGRAM MEMORY (16 WRITE LATCHES) This write routine assumes the following: 1. 32 bytes of data are loaded, starting at the address in DATA_ADDR 2. Each word of data to be written is made up of two adjacent bytes in DATA_ADDR, stored in little endian format 3. A valid starting address (the least significant bits = 00000) is loaded in ADDRH:ADDRL 4. ADDRH and ADDRL are located in shared data memory 0x70 - 0x7F (common RAM) BCF BANKSEL MOVF MOVWF MOVF MOVWF MOVLW MOVWF MOVLW MOVWF BCF BSF BSF INTCON,GIE PMADRH ADDRH,W PMADRH ADDRL,W PMADRL LOW DATA_ADDR FSR0L HIGH DATA_ADDR FSR0H PMCON1,CFGS PMCON1,WREN PMCON1,LWLO ; ; ; ; ; ; ; ; ; ; ; ; ; Disable ints so required sequences will execute properly Bank 3 Load initial address MOVIW MOVWF MOVIW MOVWF FSR0++ PMDATL FSR0++ PMDATH ; Load first data byte into lower ; ; Load second data byte into upper ; MOVF XORLW ANDLW BTFSC GOTO PMADRL,W 0x0F 0x0F STATUS,Z START_WRITE ; Check if lower bits of address are '00000' ; Check if we're on the last of 16 addresses ; ; Exit if last of 16 words, ; MOVLW MOVWF MOVLW MOVWF BSF NOP 55h PMCON2 0AAh PMCON2 PMCON1,WR ; ; ; ; ; ; ; ; PMADRL,F LOOP ; Still loading latches Increment address ; Write next latches PMCON1,LWLO ; No more loading latches - Actually start Flash program ; memory write 55h PMCON2 0AAh PMCON2 PMCON1,WR ; ; ; ; ; ; ; ; ; ; ; ; ; Load initial data address Load initial data address Not configuration space Enable writes Only Load Write Latches LOOP NOP INCF GOTO Required Sequence START_WRITE BCF MOVLW MOVWF MOVLW MOVWF BSF NOP NOP BCF BSF DS40001615C-page 88 PMCON1,WREN INTCON,GIE Start of required write sequence: Write 55h Write AAh Set WR bit to begin write NOP instructions are forced as processor loads program memory write latches Start of required write sequence: Write 55h Write AAh Set WR bit to begin write NOP instructions are forced as processor writes all the program memory write latches simultaneously to program memory. After NOPs, the processor stalls until the self-write process in complete after write processor continues with 3rd instruction Disable writes Enable interrupts  2011-2015 Microchip Technology Inc. PIC12(L)F1501 10.3 Modifying Flash Program Memory When modifying existing data in a program memory row, and data within that row must be preserved, it must first be read and saved in a RAM image. Program memory is modified using the following steps: 1. 2. 3. 4. 5. 6. 7. Load the starting address of the row to be modified. Read the existing data from the row into a RAM image. Modify the RAM image to contain the new data to be written into program memory. Load the starting address of the row to be rewritten. Erase the program memory row. Load the write latches with data from the RAM image. Initiate a programming operation. FIGURE 10-7: FLASH PROGRAM MEMORY MODIFY FLOWCHART Rev. 10-000050A 7/30/2013 Start Modify Operation Read Operation (See Note 1) An image of the entire row read must be stored in RAM Modify Image The words to be modified are changed in the RAM image Erase Operation (See Note 2) Write Operation Use RAM image (See Note 3) End Modify Operation Note 1: See Figure 10-2. 2: See Figure 10-4. 3: See Figure 10-5.  2011-2015 Microchip Technology Inc. DS40001615C-page 89 PIC12(L)F1501 10.4 User ID, Device ID and Configuration Word Access Instead of accessing program memory, the User ID’s, Device ID/Revision ID and Configuration Words can be accessed when CFGS = 1 in the PMCON1 register. This is the region that would be pointed to by PC = 1, but not all addresses are accessible. Different access may exist for reads and writes. Refer to Table 10-2. When read access is initiated on an address outside the parameters listed in Table 10-2, the PMDATH:PMDATL register pair is cleared, reading back ‘0’s. TABLE 10-2: USER ID, DEVICE ID AND CONFIGURATION WORD ACCESS (CFGS = 1) Address Function Read Access Write Access 8000h-8003h 8006h 8007h-8008h User IDs Device ID/Revision ID Configuration Words 1 and 2 Yes Yes Yes Yes No No EXAMPLE 10-4: CONFIGURATION WORD AND DEVICE ID ACCESS * This code block will read 1 word of program memory at the memory address: * PROG_ADDR_LO (must be 00h-08h) data will be returned in the variables; * PROG_DATA_HI, PROG_DATA_LO BANKSEL MOVLW MOVWF CLRF PMADRL PROG_ADDR_LO PMADRL PMADRH ; Select correct Bank ; ; Store LSB of address ; Clear MSB of address BSF BCF BSF NOP NOP BSF PMCON1,CFGS INTCON,GIE PMCON1,RD INTCON,GIE ; ; ; ; ; ; Select Configuration Space Disable interrupts Initiate read Executed (See Figure 10-2) Ignored (See Figure 10-2) Restore interrupts MOVF MOVWF MOVF MOVWF PMDATL,W PROG_DATA_LO PMDATH,W PROG_DATA_HI ; ; ; ; Get LSB of word Store in user location Get MSB of word Store in user location DS40001615C-page 90  2011-2015 Microchip Technology Inc. PIC12(L)F1501 10.5 Write Verify It is considered good programming practice to verify that program memory writes agree with the intended value. Since program memory is stored as a full page then the stored program memory contents are compared with the intended data stored in RAM after the last write is complete. FIGURE 10-8: FLASH PROGRAM MEMORY VERIFY FLOWCHART Rev. 10-000051A 7/30/2013 Start Verify Operation This routine assumes that the last row of data written was from an image saved on RAM. This image will be used to verify the data currently stored in Flash Program Memory Read Operation (See Note 1) PMDAT = RAM image ? No Yes Fail Verify Operation No Last word ? Yes End Verify Operation Note 1: See Figure 10-2.  2011-2015 Microchip Technology Inc. DS40001615C-page 91 PIC12(L)F1501 10.6 Register Definitions: Flash Program Memory Control REGISTER 10-1: R/W-x/u PMDATL: PROGRAM MEMORY DATA LOW BYTE REGISTER R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u PMDAT bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7-0 PMDAT: Read/write value for Least Significant bits of program memory REGISTER 10-2: PMDATH: PROGRAM MEMORY DATA HIGH BYTE REGISTER U-0 U-0 — — R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u PMDAT bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7-6 Unimplemented: Read as ‘0’ bit 5-0 PMDAT: Read/write value for Most Significant bits of program memory REGISTER 10-3: R/W-0/0 PMADRL: PROGRAM MEMORY ADDRESS LOW BYTE REGISTER R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 PMADR bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7-0 PMADR: Specifies the Least Significant bits for program memory address REGISTER 10-4: U-1 PMADRH: PROGRAM MEMORY ADDRESS HIGH BYTE REGISTER R/W-0/0 R/W-0/0 —(1) R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 PMADR bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7 Unimplemented: Read as ‘1’ bit 6-0 PMADR: Specifies the Most Significant bits for program memory address Note 1: Unimplemented, read as ‘1’. DS40001615C-page 92  2011-2015 Microchip Technology Inc. PIC12(L)F1501 REGISTER 10-5: U-1 (1) — PMCON1: PROGRAM MEMORY CONTROL 1 REGISTER R/W-0/0 R/W-0/0 R/W/HC-0/0 R/W/HC-x/q(2) R/W-0/0 R/S/HC-0/0 R/S/HC-0/0 CFGS LWLO FREE WRERR WREN WR RD bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ S = Bit can only be set x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared HC = Bit is cleared by hardware bit 7 Unimplemented: Read as ‘1’ bit 6 CFGS: Configuration Select bit 1 = Access Configuration, User ID and Device ID Registers 0 = Access Flash program memory bit 5 LWLO: Load Write Latches Only bit(3) 1 = Only the addressed program memory write latch is loaded/updated on the next WR command 0 = The addressed program memory write latch is loaded/updated and a write of all program memory write latches will be initiated on the next WR command bit 4 FREE: Program Flash Erase Enable bit 1 = Performs an erase operation on the next WR command (hardware cleared upon completion) 0 = Performs a write operation on the next WR command bit 3 WRERR: Program/Erase Error Flag bit 1 = Condition indicates an improper program or erase sequence attempt or termination (bit is set automatically on any set attempt (write ‘1’) of the WR bit). 0 = The program or erase operation completed normally. bit 2 WREN: Program/Erase Enable bit 1 = Allows program/erase cycles 0 = Inhibits programming/erasing of program Flash bit 1 WR: Write Control bit 1 = Initiates a program Flash program/erase operation. The operation is self-timed and the bit is cleared by hardware once operation is complete. The WR bit can only be set (not cleared) in software. 0 = Program/erase operation to the Flash is complete and inactive. bit 0 RD: Read Control bit 1 = Initiates a program Flash read. Read takes one cycle. RD is cleared in hardware. The RD bit can only be set (not cleared) in software. 0 = Does not initiate a program Flash read. Note 1: 2: 3: Unimplemented bit, read as ‘1’. The WRERR bit is automatically set by hardware when a program memory write or erase operation is started (WR = 1). The LWLO bit is ignored during a program memory erase operation (FREE = 1).  2011-2015 Microchip Technology Inc. DS40001615C-page 93 PIC12(L)F1501 REGISTER 10-6: W-0/0 PMCON2: PROGRAM MEMORY CONTROL 2 REGISTER W-0/0 W-0/0 W-0/0 W-0/0 W-0/0 W-0/0 W-0/0 Program Memory Control Register 2 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ S = Bit can only be set x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7-0 Flash Memory Unlock Pattern bits To unlock writes, a 55h must be written first, followed by an AAh, before setting the WR bit of the PMCON1 register. The value written to this register is used to unlock the writes. There are specific timing requirements on these writes. TABLE 10-3: SUMMARY OF REGISTERS ASSOCIATED WITH FLASH PROGRAM MEMORY Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register on Page INTCON GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 64 CFGS LWLO FREE WRERR WREN WR RD 93 PMCON1 (1) — PMCON2 Program Memory Control Register 2 94 PMADRL 92 PMADRL —(1) PMADRH PMADRH PMDATL PMDATL PMDATH Legend: Note 1: — CONFIG1 CONFIG2 Legend: — 92 PMDATH 92 — = unimplemented location, read as ‘0’. Shaded cells are not used by Flash program memory. Unimplemented, read as ‘1’. TABLE 10-4: Name 92 Bits SUMMARY OF CONFIGURATION WORD WITH RESETS Bit -/7 Bit -/6 Bit 13/5 Bit 12/4 Bit 11/3 — CLKOUTEN Bit 10/2 13:8 — — — 7:0 CP MCLRE PWRTE 13:8 — — LVP DEBUG LPBOR BORV 7:0 — — — — — — WDTE Bit 9/1 BOREN — Bit 8/0 — FOSC STVREN — WRT Register on Page 38 39 — = unimplemented location, read as ‘0’. Shaded cells are not used by Resets. DS40001615C-page 94  2011-2015 Microchip Technology Inc. PIC12(L)F1501 11.0 I/O PORTS FIGURE 11-1: GENERIC I/O PORT OPERATION Each port has three standard registers for its operation. These registers are: Rev. 10-000052A 7/30/2013 • TRISx registers (data direction) • PORTx registers (reads the levels on the pins of the device) • LATx registers (output latch) Some ports may have one or more of the following additional registers. These registers are: • ANSELx (analog select) • WPUx (weak pull-up) Read LATx TRISx D Q Write LATx Write PORTx VDD CK Data Register In general, when a peripheral is enabled on a port pin, that pin cannot be used as a general purpose output. However, the pin can still be read. Data bus I/O pin Read PORTx To digital peripherals PIC12(L)F1501 ● ANSELx To analog peripherals PORTC Device PORTB PORT AVAILABILITY PER DEVICE PORTA TABLE 11-1: VSS The Data Latch (LATx registers) is useful for read-modify-write operations on the value that the I/O pins are driving. A write operation to the LATx register has the same effect as a write to the corresponding PORTx register. A read of the LATx register reads of the values held in the I/O PORT latches, while a read of the PORTx register reads the actual I/O pin value. Ports that support analog inputs have an associated ANSELx register. When an ANSEL bit is set, the digital input buffer associated with that bit is disabled. Disabling the input buffer prevents analog signal levels on the pin between a logic high and low from causing excessive current in the logic input circuitry. A simplified model of a generic I/O port, without the interfaces to other peripherals, is shown in Figure 11-1.  2011-2015 Microchip Technology Inc. DS40001615C-page 95 PIC12(L)F1501 11.1 Alternate Pin Function The Alternate Pin Function Control (APFCON) register is used to steer specific peripheral input and output functions between different pins. The APFCON register is shown in Register 11-1. For this device family, the following functions can be moved between different pins. • • • • • These bits have no effect on the values of any TRIS register. PORT and TRIS overrides will be routed to the correct pin. The unselected pin will be unaffected. T1G CLC1 NCO1 CWG1A CWG1B 11.2 Register Definitions: Alternate Pin Function Control REGISTER 11-1: APFCON: ALTERNATE PIN FUNCTION CONTROL REGISTER R/W-0/0 R/W-0/0 U-0 U-0 R/W-0/0 U-0 R/W-0/0 R/W-0/0 CWG1BSEL CWG1ASEL — — T1GSEL — CLC1SEL NCO1SEL bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7 CWG1BSEL: Pin Selection bit 1 = CWG1B function is on RA4 0 = CWG1B function is on RA0 bit 6 CWG1ASEL: Pin Selection bit 1 = CWG1A function is on RA5 0 = CWG1A function is on RA2 bit 5-4 Unimplemented: Read as ‘0’ bit 3 T1GSEL: Pin Selection bit 1 = T1G function is on RA3 0 = T1G function is on RA4 bit 2 Unimplemented: Read as ‘0’ bit 1 CLC1SEL: Pin Selection bit 1 = CLC1 function is on RA4 0 = CLC1 function is on RA2 bit 0 NCO1SEL: Pin Selection bit 1 = NCO1 function is on RA5 0 = NCO1 function is on RA1 DS40001615C-page 96  2011-2015 Microchip Technology Inc. PIC12(L)F1501 11.3 PORTA Registers 11.3.1 DATA REGISTER PORTA is a 6-bit wide, bidirectional port. The corresponding data direction register is TRISA (Register 11-3). Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., disable the output driver). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., enables output driver and puts the contents of the output latch on the selected pin). The exception is RA3, which is input-only and its TRIS bit will always read as ‘1’. Example 11-1 shows how to initialize an I/O port. Reading the PORTA register (Register 11-2) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATA). 11.3.2 11.3.4 Each PORTA pin is multiplexed with other functions. The pins, their combined functions and their output priorities are shown in Table 11-2. When multiple outputs are enabled, the actual pin control goes to the peripheral with the highest priority. Analog input functions, such as ADC and comparator inputs, are not shown in the priority lists. These inputs are active when the I/O pin is set for Analog mode using the ANSELx registers. Digital output functions may control the pin when it is in Analog mode with the priority shown below in Table 11-2. TABLE 11-2: Function Priority(1) RA0 ICSPDAT DACOUT1 CWG1B(2) PWM2 RA0 RA1 NCO1(2) RA1 RA2 DACOUT2 CWG1A(2) CLC1(2) C1OUT PWM1 RA2 RA3 None RA4 CLKOUT CWG1B(3) CLC1(3) PWM3 RA4 RA5 CWG1A(3) CLC2 NCO1(3) PWM4 RA5 DIRECTION CONTROL ANALOG CONTROL The ANSELA register (Register 11-5) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELA bit high will cause all digital reads on the pin to be read as ‘0’ and allow analog functions on the pin to operate correctly. The state of the ANSELA bits has no effect on digital output functions. A pin with TRIS clear and ANSEL set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port. Note: The ANSELA bits default to the Analog mode after Reset. To use any pins as digital general purpose or peripheral inputs, the corresponding ANSEL bits must be initialized to ‘0’ by user software. EXAMPLE 11-1: BANKSEL CLRF BANKSEL CLRF BANKSEL CLRF BANKSEL MOVLW MOVWF PORTA OUTPUT PRIORITY Pin Name The TRISA register (Register 11-3) controls the PORTA pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISA register are maintained set when using them as analog inputs. I/O pins configured as analog input always read ‘0’. 11.3.3 PORTA FUNCTIONS AND OUTPUT PRIORITIES Note 1: 2: 3: Priority listed from highest to lowest. Default pin (see APFCON register). Alternate pin (see APFCON register). INITIALIZING PORTA PORTA PORTA LATA LATA ANSELA ANSELA TRISA B'00111000' TRISA ; ;Init PORTA ;Data Latch ; ; ;digital I/O ; ;Set RA as inputs ;and set RA as ;outputs  2011-2015 Microchip Technology Inc. DS40001615C-page 97 PIC12(L)F1501 11.4 Register Definitions: PORTA REGISTER 11-2: PORTA: PORTA REGISTER U-0 U-0 R/W-x/x R/W-x/x R-x/x R/W-x/x R/W-x/x R/W-x/x — — RA5 RA4 RA3 RA2 RA1 RA0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7-6 Unimplemented: Read as ‘0’ bit 5-0 RA: PORTA I/O Value bits(1) 1 = Port pin is > VIH 0 = Port pin is < VIL Note 1: Writes to PORTA are actually written to corresponding LATA register. Reads from PORTA register is return of actual I/O pin values. REGISTER 11-3: U-0 TRISA: PORTA TRI-STATE REGISTER U-0 — — R/W-1/1 TRISA5 R/W-1/1 U-1 R/W-1/1 R/W-1/1 R/W-1/1 TRISA4 —(1) TRISA2 TRISA1 TRISA0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7-6 Unimplemented: Read as ‘0’ bit 5-4 TRISA: PORTA Tri-State Control bit 1 = PORTA pin configured as an input (tri-stated) 0 = PORTA pin configured as an output bit 3 Unimplemented: Read as ‘1’ bit 2-0 TRISA: PORTA Tri-State Control bit 1 = PORTA pin configured as an input (tri-stated) 0 = PORTA pin configured as an output Note 1: Unimplemented, read as ‘1’. DS40001615C-page 98  2011-2015 Microchip Technology Inc. PIC12(L)F1501 REGISTER 11-4: LATA: PORTA DATA LATCH REGISTER U-0 U-0 R/W-x/u R/W-x/u U-0 R/W-x/u R/W-x/u R/W-x/u — — LATA5 LATA4 — LATA2 LATA1 LATA0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7-6 Unimplemented: Read as ‘0’ bit 5-4 LATA: RA Output Latch Value bits(1) bit 3 Unimplemented: Read as ‘0’ bit 2-0 LATA: RA Output Latch Value bits(1) Note 1: Writes to PORTA are actually written to corresponding LATA register. Reads from PORTA register is return of actual I/O pin values. REGISTER 11-5: ANSELA: PORTA ANALOG SELECT REGISTER U-0 U-0 U-0 R/W-1/1 U-0 R/W-1/1 R/W-1/1 R/W-1/1 — — — ANSA4 — ANSA2 ANSA1 ANSA0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7-5 Unimplemented: Read as ‘0’ bit 4 ANSA4: Analog Select between Analog or Digital Function on pins RA4, respectively 1 = Analog input. Pin is assigned as analog input(1). Digital input buffer disabled. 0 = Digital I/O. Pin is assigned to port or digital special function. bit 3 Unimplemented: Read as ‘0’ bit 2-0 ANSA: Analog Select between Analog or Digital Function on pins RA, respectively 1 = Analog input. Pin is assigned as analog input(1). Digital input buffer disabled. 0 = Digital I/O. Pin is assigned to port or digital special function. Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.  2011-2015 Microchip Technology Inc. DS40001615C-page 99 PIC12(L)F1501 REGISTER 11-6: WPUA: WEAK PULL-UP PORTA REGISTER U-0 U-0 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 — — WPUA5 WPUA4 WPUA3 WPUA2 WPUA1 WPUA0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7-6 Unimplemented: Read as ‘0’ bit 5-0 WPUA: Weak Pull-up Register bits(3) 1 = Pull-up enabled 0 = Pull-up disabled Note 1: 2: 3: Global WPUEN bit of the OPTION_REG register must be cleared for individual pull-ups to be enabled. The weak pull-up device is automatically disabled if the pin is configured as an output. For the WPUA3 bit, when MCLRE = 1, weak pull-up is internally enabled, but not reported here. TABLE 11-3: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA Name Bit 7 Bit 3 Bit 2 Bit 1 Bit 0 Register on Page ANSA4 — ANSA2 ANSA1 ANSA0 99 — CLC1SEL NCO1SEL 96 LATA2 LATA1 LATA0 99 Bit 6 Bit 5 Bit 4 — ANSELA — — APFCON CWG1BSEL CWG1ASEL — — T1GSEL — — LATA5 LATA4 — WPUEN INTEDG TMR0CS TMR0SE PSA PORTA — — RA5 RA4 RA3 RA2 RA1 RA0 98 TRISA — — TRISA5 TRISA4 —(1) TRISA2 TRISA1 TRISA0 98 — — WPUA5 WPUA4 WPUA3 WPUA2 WPUA1 WPUA0 100 LATA OPTION_REG WPUA Legend: Note 1: CONFIG1 Legend: 136 x = unknown, u = unchanged, – = unimplemented locations read as ‘0’. Shaded cells are not used by PORTA. Unimplemented, read as ‘1’. TABLE 11-4: Name PS Bits SUMMARY OF CONFIGURATION WORD WITH PORTA Bit -/7 Bit -/6 Bit 13/5 Bit 12/4 Bit 11/3 — CLKOUTEN 13:8 — — — 7:0 CP MCLRE PWRTE Bit 10/2 WDTE Bit 9/1 BOREN — Bit 8/0 — FOSC Register on Page 38 — = unimplemented location, read as ‘0’. Shaded cells are not used by PORTA. DS40001615C-page 100  2011-2015 Microchip Technology Inc. PIC12(L)F1501 12.0 INTERRUPT-ON-CHANGE The PORTA pins can be configured to operate as Interrupt-on-Change (IOC) pins. An interrupt can be generated by detecting a signal that has either a rising edge or a falling edge. Any individual port pin, or combination of port pins, can be configured to generate an interrupt. The interrupt-on-change module has the following features: • • • • Interrupt-on-Change enable (Master Switch) Individual pin configuration Rising and falling edge detection Individual pin interrupt flags Figure 12-1 is a block diagram of the IOC module. 12.1 Enabling the Module To allow individual port pins to generate an interrupt, the IOCIE bit of the INTCON register must be set. If the IOCIE bit is disabled, the edge detection on the pin will still occur, but an interrupt will not be generated. 12.3 Interrupt Flags The IOCAFx bits located in the IOCAF register are status flags that correspond to the interrupt-on-change pins of the associated port. If an expected edge is detected on an appropriately enabled pin, then the status flag for that pin will be set, and an interrupt will be generated if the IOCIE bit is set. The IOCIF bit of the INTCON register reflects the status of all IOCAFx bits. 12.4 Clearing Interrupt Flags The individual status flags, (IOCAFx bits), can be cleared by resetting them to zero. If another edge is detected during this clearing operation, the associated status flag will be set at the end of the sequence, regardless of the value actually being written. In order to ensure that no detected edge is lost while clearing flags, only AND operations masking out known changed bits should be performed. The following sequence is an example of what should be performed. EXAMPLE 12-1: 12.2 Individual Pin Configuration For each port pin, a rising edge detector and a falling edge detector are present. To enable a pin to detect a rising edge, the associated bit of the IOCxP register is set. To enable a pin to detect a falling edge, the associated bit of the IOCxN register is set. A pin can be configured to detect rising and falling edges simultaneously by setting both associated bits of the IOCxP and IOCxN registers, respectively. MOVLW XORWF ANDWF 12.5 CLEARING INTERRUPT FLAGS (PORTA EXAMPLE) 0xff IOCAF, W IOCAF, F Operation in Sleep The interrupt-on-change interrupt sequence will wake the device from Sleep mode, if the IOCIE bit is set. If an edge is detected while in Sleep mode, the IOCxF register will be updated prior to the first instruction executed out of Sleep.  2011-2015 Microchip Technology Inc. DS40001615C-page 101 PIC12(L)F1501 FIGURE 12-1: INTERRUPT-ON-CHANGE BLOCK DIAGRAM (PORTA EXAMPLE) Rev. 10-000 037A 6/2/201 4 IOCANx D Q R Q4Q1 edge detect RAx IOCAPx D data bus = 0 or 1 Q D S to data bus IOCAFx Q write IOCAFx R IOCIE Q2 IOC interrupt to CPU core from all other IOCnFx individual pin detectors FOSC Q1 Q1 Q2 Q2 Q2 Q3 Q3 Q4 Q4Q1 Q1 Q3 Q4 Q4Q1 DS40001615C-page 102 Q4 Q4Q1 Q4Q1  2011-2015 Microchip Technology Inc. PIC12(L)F1501 12.6 Register Definitions: Interrupt-on-Change Control REGISTER 12-1: IOCAP: INTERRUPT-ON-CHANGE PORTA POSITIVE EDGE REGISTER U-0 U-0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 — — IOCAP5 IOCAP4 IOCAP3 IOCAP2 IOCAP1 IOCAP0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7-6 Unimplemented: Read as ‘0’ bit 5-0 IOCAP: Interrupt-on-Change PORTA Positive Edge Enable bits 1 = Interrupt-on-Change enabled on the pin for a positive going edge. IOCAFx bit and IOCIF flag will be set upon detecting an edge. 0 = Interrupt-on-Change disabled for the associated pin. REGISTER 12-2: IOCAN: INTERRUPT-ON-CHANGE PORTA NEGATIVE EDGE REGISTER U-0 U-0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 — — IOCAN5 IOCAN4 IOCAN3 IOCAN2 IOCAN1 IOCAN0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7-6 Unimplemented: Read as ‘0’ bit 5-0 IOCAN: Interrupt-on-Change PORTA Negative Edge Enable bits 1 = Interrupt-on-Change enabled on the pin for a negative going edge. IOCAFx bit and IOCIF flag will be set upon detecting an edge. 0 = Interrupt-on-Change disabled for the associated pin. REGISTER 12-3: IOCAF: INTERRUPT-ON-CHANGE PORTA FLAG REGISTER U-0 U-0 R/W/HS-0/0 R/W/HS-0/0 R/W/HS-0/0 R/W/HS-0/0 R/W/HS-0/0 R/W/HS-0/0 — — IOCAF5 IOCAF4 IOCAF3 IOCAF2 IOCAF1 IOCAF0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit u = Bit is unchanged x = Bit is unknown U = Unimplemented bit, read as ‘0’ -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared HS - Bit is set in hardware bit 7-6 Unimplemented: Read as ‘0’ bit 5-0 IOCAF: Interrupt-on-Change PORTA Flag bits 1 = An enabled change was detected on the associated pin. Set when IOCAPx = 1 and a rising edge was detected on RAx, or when IOCANx = 1 and a falling edge was detected on RAx. 0 = No change was detected, or the user cleared the detected change.  2011-2015 Microchip Technology Inc. DS40001615C-page 103 PIC12(L)F1501 TABLE 12-1: Name SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPT-ON-CHANGE Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register on Page ANSELA — — — ANSA4 — ANSA2 ANSA1 ANSA0 99 INTCON GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 64 IOCAF — — IOCAF5 IOCAF4 IOCAF3 IOCAF2 IOCAF1 IOCAF0 103 IOCAN — — IOCAN5 IOCAN4 IOCAN3 IOCAN2 IOCAN1 IOCAN0 103 IOCAP — — IOCAP5 IOCAP4 IOCAP3 IOCAP2 IOCAP1 IOCAP0 103 TRISA — — TRISA5 TRISA4 —(1) TRISA2 TRISA1 TRISA0 98 Legend: Note 1: — = unimplemented location, read as ‘0’. Shaded cells are not used by interrupt-on-change. Unimplemented, read as ‘1’. DS40001615C-page 104  2011-2015 Microchip Technology Inc. PIC12(L)F1501 13.0 FIXED VOLTAGE REFERENCE (FVR) The Fixed Voltage Reference (FVR) is a stable voltage reference, independent of VDD, with a nominal output level (VFVR) of 1.024V. The output of the FVR can be configured to supply a reference voltage to the following: • ADC input channel • Comparator positive input • Comparator negative input The FVR can be enabled by setting the FVREN bit of the FVRCON register. 13.1 The CDAFVR bits of the FVRCON register are used to enable and configure the gain amplifier settings for the reference supplied to the comparator modules. Reference Section 17.0 “Comparator Module” for additional information. To minimize current consumption when the FVR is disabled, the FVR buffers should be turned off by clearing the Buffer Gain Selection bits. 13.2 Independent Gain Amplifier The output of the FVR supplied to the peripherals, (listed above), is routed through a programmable gain amplifier. Each amplifier can be programmed for a gain of 1x, 2x or 4x, to produce the three possible voltage levels. FIGURE 13-1: The ADFVR bits of the FVRCON register are used to enable and configure the gain amplifier settings for the reference supplied to the ADC module. Reference Section 15.0 “Analog-to-Digital Converter (ADC) Module” for additional information. FVR Stabilization Period When the Fixed Voltage Reference module is enabled, it requires time for the reference and amplifier circuits to stabilize. Once the circuits stabilize and are ready for use, the FVRRDY bit of the FVRCON register will be set. See the FVR Stabilization Period characterization graph, Figure 28-52. VOLTAGE REFERENCE BLOCK DIAGRAM Rev. 10-000053A 8/6/2013 ADFVR CDAFVR FVREN Note 1 2 1x 2x 4x FVR_buffer1 (To ADC Module) 1x 2x 4x FVR_buffer2 (To Comparators) 2 +_ FVRRDY Note 1: Any peripheral requiring the Fixed Reference (see Table 13-1).  2011-2015 Microchip Technology Inc. DS40001615C-page 105 PIC12(L)F1501 TABLE 13-1: PERIPHERALS REQUIRING THE FIXED VOLTAGE REFERENCE (FVR) Peripheral Conditions Description HFINTOSC FOSC = 010 and IRCF = 000x INTOSC is active and device is not in Sleep. BOREN = 11 BOR always enabled. BOR BOREN = 10 and BORFS = 1 BOR disabled in Sleep mode, BOR Fast Start enabled. BOREN = 01 and BORFS = 1 BOR under software control, BOR Fast Start enabled. All PIC12F1501 devices, when VREGPM = 1 and not in Sleep The device runs off of the Low-Power Regulator when in Sleep mode. LDO DS40001615C-page 106  2011-2015 Microchip Technology Inc. PIC12(L)F1501 13.3 Register Definitions: FVR Control REGISTER 13-1: FVRCON: FIXED VOLTAGE REFERENCE CONTROL REGISTER R/W-0/0 R-q/q R/W-0/0 R/W-0/0 FVREN(1) FVRRDY(2) TSEN(3) TSRNG(3) R/W-0/0 R/W-0/0 R/W-0/0 CDAFVR(1) R/W-0/0 ADFVR(1) bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared q = Value depends on condition bit 7 FVREN: Fixed Voltage Reference Enable bit(1) 1 = Fixed Voltage Reference is enabled 0 = Fixed Voltage Reference is disabled bit 6 FVRRDY: Fixed Voltage Reference Ready Flag bit(2) 1 = Fixed Voltage Reference output is ready for use 0 = Fixed Voltage Reference output is not ready or not enabled bit 5 TSEN: Temperature Indicator Enable bit(3) 1 = Temperature Indicator is enabled 0 = Temperature Indicator is disabled bit 4 TSRNG: Temperature Indicator Range Selection bit(3) 1 = VOUT = VDD - 4VT (High Range) 0 = VOUT = VDD - 2VT (Low Range) bit 3-2 CDAFVR: Comparator FVR Buffer Gain Selection bits(1) 11 = Comparator FVR Buffer Gain is 4x, with output voltage = 4x VFVR (4.096V nominal)(4) 10 = Comparator FVR Buffer Gain is 2x, with output voltage = 2x VFVR (2.048V nominal)(4) 01 = Comparator FVR Buffer Gain is 1x, with output voltage = 1x VFVR (1.024V nominal) 00 = Comparator FVR Buffer is off bit 1-0 ADFVR: ADC FVR Buffer Gain Selection bit(1) 11 = ADC FVR Buffer Gain is 4x, with output voltage = 4x VFVR (4.096V nominal)(4) 10 = ADC FVR Buffer Gain is 2x, with output voltage = 2x VFVR (2.048V nominal)(4) 01 = ADC FVR Buffer Gain is 1x, with output voltage = 1x VFVR (1.024V nominal) 00 = ADC FVR Buffer is off Note 1: 2: 3: 4: To minimize current consumption when the FVR is disabled, the FVR buffers should be turned off by clearing the Buffer Gain Selection bits. FVRRDY is always ‘1’ for the PIC12F1501 devices. See Section 14.0 “Temperature Indicator Module” for additional information. Fixed Voltage Reference output cannot exceed VDD. TABLE 13-2: Name FVRCON Legend: SUMMARY OF REGISTERS ASSOCIATED WITH THE FIXED VOLTAGE REFERENCE Bit 7 Bit 6 Bit 5 Bit 4 FVREN FVRRDY TSEN TSRNG Bit 3 Bit 2 CDAFVR>1:0> Bit 1 Bit 0 ADFVR Register on page 107 Shaded cells are unused by the Fixed Voltage Reference module.  2011-2015 Microchip Technology Inc. DS40001615C-page 107 PIC12(L)F1501 14.0 TEMPERATURE INDICATOR MODULE FIGURE 14-1: This family of devices is equipped with a temperature circuit designed to measure the operating temperature of the silicon die. The circuit’s range of operating temperature falls between -40°C and +85°C. The output is a voltage that is proportional to the device temperature. The output of the temperature indicator is internally connected to the device ADC. Rev. 10-000069A 7/31/2013 VDD TSEN The circuit may be used as a temperature threshold detector or a more accurate temperature indicator, depending on the level of calibration performed. A onepoint calibration allows the circuit to indicate a temperature closely surrounding that point. A two-point calibration allows the circuit to sense the entire range of temperature more accurately. Reference Application Note AN1333, “Use and Calibration of the Internal Temperature Indicator” (DS01333) for more details regarding the calibration process. 14.1 TEMPERATURE CIRCUIT DIAGRAM TSRNG VOUT Temp. Indicator To ADC Circuit Operation Figure 14-1 shows a simplified block diagram of the temperature circuit. The proportional voltage output is achieved by measuring the forward voltage drop across multiple silicon junctions. Equation 14-1 describes the output characteristics of the temperature indicator. EQUATION 14-1: VOUT RANGES High Range: VOUT = VDD - 4VT Low Range: VOUT = VDD - 2VT 14.2 Minimum Operating VDD When the temperature circuit is operated in low range, the device may be operated at any operating voltage that is within specifications. When the temperature circuit is operated in high range, the device operating voltage, VDD, must be high enough to ensure that the temperature circuit is correctly biased. Table 14-1 shows the recommended minimum VDD vs. range setting. TABLE 14-1: The temperature sense circuit is integrated with the Fixed Voltage Reference (FVR) module. See Section 13.0 “Fixed Voltage Reference (FVR)” for more information. The circuit is enabled by setting the TSEN bit of the FVRCON register. When disabled, the circuit draws no current. The circuit operates in either high or low range. The high range, selected by setting the TSRNG bit of the FVRCON register, provides a wider output voltage. This provides more resolution over the temperature range, but may be less consistent from part to part. This range requires a higher bias voltage to operate and thus, a higher VDD is needed. The low range is selected by clearing the TSRNG bit of the FVRCON register. The low range generates a lower voltage drop and thus, a lower bias voltage is needed to operate the circuit. The low range is provided for low voltage operation. DS40001615C-page 108 RECOMMENDED VDD VS. RANGE Min. VDD, TSRNG = 1 Min. VDD, TSRNG = 0 3.6V 1.8V 14.3 Temperature Output The output of the circuit is measured using the internal Analog-to-Digital Converter. A channel is reserved for the temperature circuit output. Refer to Section 15.0 “Analog-to-Digital Converter (ADC) Module” for detailed information. 14.4 ADC Acquisition Time To ensure accurate temperature measurements, the user must wait at least 200 s after the ADC input multiplexer is connected to the temperature indicator output before the conversion is performed. In addition, the user must wait 200 s between sequential conversions of the temperature indicator output.  2011-2015 Microchip Technology Inc. PIC12(L)F1501 TABLE 14-2: Name FVRCON Legend: SUMMARY OF REGISTERS ASSOCIATED WITH THE TEMPERATURE INDICATOR Bit 7 Bit 6 Bit 5 Bit 4 FVREN FVRRDY TSEN TSRNG Bit 3 Bit 2 CDAFVR>1:0> Bit 1 Bit 0 ADFVR Register on page 107 Shaded cells are unused by the temperature indicator module.  2011-2015 Microchip Technology Inc. DS40001615C-page 109 PIC12(L)F1501 15.0 approximation and stores the conversion result into the ADC result registers (ADRESH:ADRESL register pair). Figure 15-1 shows the block diagram of the ADC. ANALOG-TO-DIGITAL CONVERTER (ADC) MODULE The Analog-to-Digital Converter (ADC) allows conversion of an analog input signal to a 10-bit binary representation of that signal. This device uses analog inputs, which are multiplexed into a single sample and hold circuit. The output of the sample and hold is connected to the input of the converter. The converter generates a 10-bit binary result via successive FIGURE 15-1: The ADC voltage reference is software selectable to be either internally generated or externally supplied. The ADC can generate an interrupt upon completion of a conversion. This interrupt can be used to wake-up the device from Sleep. ADC BLOCK DIAGRAM VDD ADPREF Rev. 10-000033A 7/30/2013 Positive Reference Select VDD VREF+ pin External Channel Inputs ANa VRNEG VRPOS . . . ADC_clk sampled input ANz Internal Channel Inputs ADCS VSS AN0 ADC Clock Select FOSC/n Fosc Divider FRC FOSC FRC Temp Indicator DACx_output ADC CLOCK SOURCE FVR_buffer1 ADC Sample Circuit CHS ADFM set bit ADIF Write to bit GO/DONE 10 complete 10-bit Result GO/DONE Q1 Q4 ADRESH Q2 TRIGSEL 16 start ADRESL Enable Trigger Select ADON . . . VSS Trigger Sources AUTO CONVERSION TRIGGER DS40001615C-page 110  2011-2015 Microchip Technology Inc. PIC12(L)F1501 15.1 ADC Configuration When configuring and using the ADC the following functions must be considered: • • • • • • Port configuration Channel selection ADC voltage reference selection ADC conversion clock source Interrupt control Result formatting 15.1.1 PORT CONFIGURATION The ADC can be used to convert both analog and digital signals. When converting analog signals, the I/O pin should be configured for analog by setting the associated TRIS and ANSEL bits. Refer to Section 11.0 “I/O Ports” for more information. Note: 15.1.2 Analog voltages on any pin that is defined as a digital input may cause the input buffer to conduct excess current. CHANNEL SELECTION There are 7 channel selections available: • • • • AN pins Temperature Indicator DAC1_output FVR_buffer1 15.1.4 CONVERSION CLOCK The source of the conversion clock is software selectable via the ADCS bits of the ADCON1 register. There are seven possible clock options: • • • • • • • FOSC/2 FOSC/4 FOSC/8 FOSC/16 FOSC/32 FOSC/64 FRC (internal RC oscillator) The time to complete one bit conversion is defined as TAD. One full 10-bit conversion requires 11.5 TAD periods as shown in Figure 15-2. For correct conversion, the appropriate TAD specification must be met. Refer to the ADC conversion requirements in Section 27.0 “Electrical Specifications” for more information. Table 15-1 gives examples of appropriate ADC clock selections. Note: Unless using the FRC, any changes in the system clock frequency will change the ADC clock frequency, which may adversely affect the ADC result. The CHS bits of the ADCON0 register determine which channel is connected to the sample and hold circuit. When changing channels, a delay (TACQ) is required before starting the next conversion. Refer to Section 15.2.6 “ADC Conversion Procedure” for more information. 15.1.3 ADC VOLTAGE REFERENCE The ADC module uses a positive and a negative voltage reference. The positive reference is labeled ref+ and the negative reference is labeled ref-. The positive voltage reference (ref+) is selected by the ADPREF bits in the ADCON1 register. The positive voltage reference source can be: • VREF+ pin • VDD The negative voltage reference (ref-) source is: • VSS  2011-2015 Microchip Technology Inc. DS40001615C-page 111 PIC12(L)F1501 TABLE 15-1: ADC CLOCK PERIOD (TAD) VS. DEVICE OPERATING FREQUENCIES ADC Clock Period (TAD) ADC Clock Source Device Frequency (FOSC) ADCS 20 MHz 16 MHz 8 MHz 4 MHz 1 MHz Fosc/2 000 100 ns 125 ns 250 ns 500 ns 2.0 s Fosc/4 100 200 ns 250 ns 500 ns 1.0 s 4.0 s Fosc/8 001 400 ns 500 ns 1.0 s 2.0 s 8.0 s Fosc/16 101 800 ns 1.0 s 2.0 s 4.0 s 16.0 s Fosc/32 010 1.6 s 2.0 s 4.0 s 8.0 s 32.0 s Fosc/64 110 3.2 s 4.0 s 8.0 s 16.0 s 64.0 s FRC x11 1.0-6.0 s 1.0-6.0 s 1.0-6.0 s 1.0-6.0 s 1.0-6.0 s Legend: Shaded cells are outside of recommended range. Note: The TAD period when using the FRC clock source can fall within a specified range, (see TAD parameter). The TAD period when using the FOSC-based clock source can be configured for a more precise TAD period. However, the FRC clock source must be used when conversions are to be performed with the device in Sleep mode. ANALOG-TO-DIGITAL CONVERSION TAD CYCLES FIGURE 15-2: Rev. 10-000035A 7/30/2013 TAD1 TAD2 TAD3 TAD4 TAD5 TAD6 TAD7 TAD8 TAD9 TAD10 TAD11 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0 THCD Conversion Starts TACQ Holding capacitor disconnected from analog input (THCD). Set GO bit On the following cycle: ADRESH:ADRESL is loaded, GO bit is cleared, ADIF bit is set, holding capacitor is reconnected to analog input. Enable ADC (ADON bit) and Select channel (ACS bits) DS40001615C-page 112  2011-2015 Microchip Technology Inc. PIC12(L)F1501 15.1.5 INTERRUPTS 15.1.6 The ADC module allows for the ability to generate an interrupt upon completion of an Analog-to-Digital conversion. The ADC Interrupt Flag is the ADIF bit in the PIR1 register. The ADC Interrupt Enable is the ADIE bit in the PIE1 register. The ADIF bit must be cleared in software. RESULT FORMATTING The 10-bit ADC conversion result can be supplied in two formats, left justified or right justified. The ADFM bit of the ADCON1 register controls the output format. Figure 15-3 shows the two output formats. Note 1: The ADIF bit is set at the completion of every conversion, regardless of whether or not the ADC interrupt is enabled. 2: The ADC operates during Sleep only when the FRC oscillator is selected. This interrupt can be generated while the device is operating or while in Sleep. If the device is in Sleep, the interrupt will wake-up the device. Upon waking from Sleep, the next instruction following the SLEEP instruction is always executed. If the user is attempting to wake-up from Sleep and resume in-line code execution, the GIE and PEIE bits of the INTCON register must be disabled. If the GIE and PEIE bits of the INTCON register are enabled, execution will switch to the Interrupt Service Routine. FIGURE 15-3: 10-BIT ADC CONVERSION RESULT FORMAT Rev. 10-000054A 7/30/2013 ADRESH ADRESL (ADFM = 0) MSB LSB bit 7 bit 0 bit 7 10-bit ADC Result (ADFM = 1) bit 0 Unimplemented: Read as ‘0’ MSB bit 7 Unimplemented: Read as ‘0’  2011-2015 Microchip Technology Inc. LSB bit 0 bit 7 bit 0 10-bit ADC Result DS40001615C-page 113 PIC12(L)F1501 15.2 15.2.1 ADC Operation STARTING A CONVERSION To enable the ADC module, the ADON bit of the ADCON0 register must be set to a ‘1’. Setting the GO/ DONE bit of the ADCON0 register to a ‘1’ will start the Analog-to-Digital conversion. Note: 15.2.2 The GO/DONE bit should not be set in the same instruction that turns on the ADC. Refer to Section 15.2.6 “ADC Conversion Procedure”. COMPLETION OF A CONVERSION 15.2.4 ADC OPERATION DURING SLEEP The ADC module can operate during Sleep. This requires the ADC clock source to be set to the FRC option. Performing the ADC conversion during Sleep can reduce system noise. If the ADC interrupt is enabled, the device will wake-up from Sleep when the conversion completes. If the ADC interrupt is disabled, the ADC module is turned off after the conversion completes, although the ADON bit remains set. When the ADC clock source is something other than FRC, a SLEEP instruction causes the present conversion to be aborted and the ADC module is turned off, although the ADON bit remains set. When the conversion is complete, the ADC module will: 15.2.5 • Clear the GO/DONE bit • Set the ADIF Interrupt Flag bit • Update the ADRESH and ADRESL registers with new conversion result The auto-conversion trigger allows periodic ADC measurements without software intervention. When a rising edge of the selected source occurs, the GO/DONE bit is set by hardware. 15.2.3 The auto-conversion trigger source is selected with the TRIGSEL bits of the ADCON2 register. TERMINATING A CONVERSION If a conversion must be terminated before completion, the GO/DONE bit can be cleared in software. The ADRESH and ADRESL registers will be updated with the partially complete Analog-to-Digital conversion sample. Incomplete bits will match the last bit converted. Note: A device Reset forces all registers to their Reset state. Thus, the ADC module is turned off and any pending conversion is terminated. DS40001615C-page 114 AUTO-CONVERSION TRIGGER Using the auto-conversion trigger does not assure proper ADC timing. It is the user’s responsibility to ensure that the ADC timing requirements are met. See Table 15-2 for auto-conversion sources. TABLE 15-2: AUTO-CONVERSION SOURCES Source Peripheral Signal Name Timer0 T0_overflow Timer1 T1_overflow Timer2 T2_match Comparator C1 C1OUT_sync CLC1 LC1_out CLC2 LC2_out  2011-2015 Microchip Technology Inc. PIC12(L)F1501 15.2.6 ADC CONVERSION PROCEDURE This is an example procedure for using the ADC to perform an Analog-to-Digital conversion: 1. 2. 3. 4. 5. 6. 7. 8. Configure Port: • Disable pin output driver (Refer to the TRIS register) • Configure pin as analog (Refer to the ANSEL register) • Disable weak pull-ups either globally (Refer to the OPTION_REG register) or individually (Refer to the appropriate WPUx register). Configure the ADC module: • Select ADC conversion clock • Configure voltage reference • Select ADC input channel • Turn on ADC module Configure ADC interrupt (optional): • Clear ADC interrupt flag • Enable ADC interrupt • Enable peripheral interrupt • Enable global interrupt(1) Wait the required acquisition time(2). Start conversion by setting the GO/DONE bit. Wait for ADC conversion to complete by one of the following: • Polling the GO/DONE bit • Waiting for the ADC interrupt (interrupts enabled) Read ADC Result. Clear the ADC interrupt flag (required if interrupt is enabled). EXAMPLE 15-1: ADC CONVERSION ;This code block configures the ADC ;for polling, Vdd and Vss references, FRC ;oscillator and AN0 input. ; ;Conversion start & polling for completion ; are included. ; BANKSEL ADCON1 ; MOVLW B’11110000’ ;Right justify, FRC ;oscillator MOVWF ADCON1 ;Vdd and Vss Vref+ BANKSEL TRISA ; BSF TRISA,0 ;Set RA0 to input BANKSEL ANSEL ; BSF ANSEL,0 ;Set RA0 to analog BANKSEL WPUA BCF WPUA,0 ;Disable weak pull-up on RA0 BANKSEL ADCON0 ; MOVLW B’00000001’ ;Select channel AN0 MOVWF ADCON0 ;Turn ADC On CALL SampleTime ;Acquisiton delay BSF ADCON0,ADGO ;Start conversion BTFSC ADCON0,ADGO ;Is conversion done? GOTO $-1 ;No, test again BANKSEL ADRESH ; MOVF ADRESH,W ;Read upper 2 bits MOVWF RESULTHI ;store in GPR space BANKSEL ADRESL ; MOVF ADRESL,W ;Read lower 8 bits MOVWF RESULTLO ;Store in GPR space Note 1: The global interrupt can be disabled if the user is attempting to wake-up from Sleep and resume in-line code execution. 2: Refer to Section 15.4 “ADC Acquisition Requirements”.  2011-2015 Microchip Technology Inc. DS40001615C-page 115 PIC12(L)F1501 15.3 Register Definitions: ADC Control REGISTER 15-1: U-0 ADCON0: ADC CONTROL REGISTER 0 R/W-0/0 R/W-0/0 — R/W-0/0 R/W-0/0 CHS R/W-0/0 R/W-0/0 R/W-0/0 GO/DONE ADON bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7 Unimplemented: Read as ‘0’ bit 6-2 CHS: Analog Channel Select bits 00000 = AN0 00001 = AN1 00010 = AN2 00011 = AN3 00100 = Reserved. No channel connected. • • • 11100 = Reserved. No channel connected. 11101 = Temperature Indicator(1) 11110 = DAC (Digital-to-Analog Converter)(3) 11111 = FVR (Fixed Voltage Reference) Buffer 1 Output(2) bit 1 GO/DONE: ADC Conversion Status bit 1 = ADC conversion cycle in progress. Setting this bit starts an ADC conversion cycle. This bit is automatically cleared by hardware when the ADC conversion has completed. 0 = ADC conversion completed/not in progress bit 0 ADON: ADC Enable bit 1 = ADC is enabled 0 = ADC is disabled and consumes no operating current Note 1: 2: 3: See Section 14.0 “Temperature Indicator Module” for more information. See Section 13.0 “Fixed Voltage Reference (FVR)” for more information. See Section 16.0 “5-Bit Digital-to-Analog Converter (DAC) Module” for more information. DS40001615C-page 116  2011-2015 Microchip Technology Inc. PIC12(L)F1501 REGISTER 15-2: R/W-0/0 ADCON1: ADC CONTROL REGISTER 1 R/W-0/0 ADFM R/W-0/0 R/W-0/0 ADCS U-0 U-0 — — R/W-0/0 bit 7 R/W-0/0 ADPREF bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7 ADFM: ADC Result Format Select bit 1 = Right justified. Six Most Significant bits of ADRESH are set to ‘0’ when the conversion result is loaded. 0 = Left justified. Six Least Significant bits of ADRESL are set to ‘0’ when the conversion result is loaded. bit 6-4 ADCS: ADC Conversion Clock Select bits 000 = FOSC/2 001 = FOSC/8 010 = FOSC/32 011 = FRC (clock supplied from an internal RC oscillator) 100 = FOSC/4 101 = FOSC/16 110 = FOSC/64 111 = FRC (clock supplied from an internal RC oscillator) bit 3-2 Unimplemented: Read as ‘0’ bit 1-0 ADPREF: ADC Positive Voltage Reference Configuration bits 00 = VRPOS is connected to VDD 01 = Reserved 10 = VRPOS is connected to external VREF+ pin(1) 11 = Reserved Note 1: When selecting the VREF+ pin as the source of the positive reference, be aware that a minimum voltage specification exists. See Section 27.0 “Electrical Specifications” for details.  2011-2015 Microchip Technology Inc. DS40001615C-page 117 PIC12(L)F1501 REGISTER 15-3: R/W-0/0 ADCON2: ADC CONTROL REGISTER 2 R/W-0/0 R/W-0/0 TRIGSEL R/W-0/0 (1) U-0 U-0 U-0 U-0 — — — — bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7-4 TRIGSEL: Auto-Conversion Trigger Selection bits(1) 0000 = No auto-conversion trigger selected 0001 = Reserved 0010 = Reserved 0011 = Timer0 – T0_overflow(2) 0100 = Timer1 – T1_overflow(2) 0101 = Timer2 – T2_match 0110 = Comparator C1 – C1OUT_sync 0111 = Reserved 1000 = CLC1 – LC1_out 1001 = CLC2 – LC2_out 1010 = Reserved 1011 = Reserved 1100 = Reserved 1101 = Reserved 1110 = Reserved 1111 = Reserved bit 3-0 Unimplemented: Read as ‘0’ Note 1: 2: This is a rising edge sensitive input for all sources. Signal also sets its corresponding interrupt flag. DS40001615C-page 118  2011-2015 Microchip Technology Inc. PIC12(L)F1501 REGISTER 15-4: R/W-x/u ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 0 R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u ADRES bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7-0 ADRES: ADC Result Register bits Upper eight bits of 10-bit conversion result REGISTER 15-5: R/W-x/u ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 0 R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u — — — — — — ADRES bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7-6 ADRES: ADC Result Register bits Lower two bits of 10-bit conversion result bit 5-0 Reserved: Do not use.  2011-2015 Microchip Technology Inc. DS40001615C-page 119 PIC12(L)F1501 REGISTER 15-6: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 1 R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u — — — — — — R/W-x/u R/W-x/u ADRES bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7-2 Reserved: Do not use. bit 1-0 ADRES: ADC Result Register bits Upper two bits of 10-bit conversion result REGISTER 15-7: R/W-x/u ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 1 R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u ADRES bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7-0 ADRES: ADC Result Register bits Lower eight bits of 10-bit conversion result DS40001615C-page 120  2011-2015 Microchip Technology Inc. PIC12(L)F1501 15.4 ADC Acquisition Requirements For the ADC to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The Analog Input model is shown in Figure 15-4. The source impedance (RS) and the internal sampling switch (RSS) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (RSS) impedance varies over the device voltage (VDD), refer to Figure 15-4. The maximum recommended impedance for analog sources is 10 k. As the EQUATION 15-1: Assumptions: source impedance is decreased, the acquisition time may be decreased. After the analog input channel is selected (or changed), an ADC acquisition must be done before the conversion can be started. To calculate the minimum acquisition time, Equation 15-1 may be used. This equation assumes that 1/2 LSb error is used (1,024 steps for the ADC). The 1/2 LSb error is the maximum error allowed for the ADC to meet its specified resolution. ACQUISITION TIME EXAMPLE Temperature = 50°C and external impedance of 10k  5.0V V DD T ACQ = Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient = T AMP + T C + T COFF = 2µs + T C +   Temperature - 25°C   0.05µs/°C   The value for TC can be approximated with the following equations: 1  = V CHOLD V AP P LI ED  1 – -------------------------n+1  2 –1 ;[1] VCHOLD charged to within 1/2 lsb –TC ----------  RC V AP P LI ED  1 – e  = V CHOLD   ;[2] VCHOLD charge response to VAPPLIED – Tc ---------  1 RC  ;combining [1] and [2] V AP P LI ED  1 – e  = V A PP LIE D  1 – -------------------------n+1     2 –1 Note: Where n = number of bits of the ADC. Solving for TC: T C = – C HOLD  R IC + R SS + R S  ln(1/2047) = – 12.5pF  1k  + 7k  + 10k   ln(0.0004885) = 1.72 µs Therefore: T A CQ = 2µs + 1.72 µs +   50°C- 25°C   0.05 µs/°C   = 4.97µs Note 1: The reference voltage (VRPOS) has no effect on the equation, since it cancels itself out. 2: The charge holding capacitor (CHOLD) is not discharged after each conversion. 3: The maximum recommended impedance for analog sources is 10 k. This is required to meet the pin leakage specification.  2011-2015 Microchip Technology Inc. DS40001615C-page 121 PIC12(L)F1501 FIGURE 15-4: ANALOG INPUT MODEL Rev. 10-000070A 8/2/2013 VDD RS Analog Input pin VT § 0.6V RIC ” 1K Sampling switch SS RSS ILEAKAGE(1) VA Legend: CHOLD CPIN ILEAKAGE RIC RSS SS VT Note 1: CPIN 5pF CHOLD = 10 pF VT § 0.6V Ref- = Sample/Hold Capacitance = Input Capacitance = Leakage Current at the pin due to varies injunctions = Interconnect Resistance = Resistance of Sampling switch = Sampling Switch = Threshold Voltage 6V 5V 4V 3V 2V VDD RSS 5 6 7 8 9 10 11 Sampling Switch (kŸ ) Refer to Section 27.0 “Electrical Specifications”. FIGURE 15-5: ADC TRANSFER FUNCTION Full-Scale Range 3FFh 3FEh ADC Output Code 3FDh 3FCh 3FBh 03h 02h 01h 00h Analog Input Voltage 0.5 LSB Ref- DS40001615C-page 122 Zero-Scale Transition 1.5 LSB Full-Scale Transition Ref+  2011-2015 Microchip Technology Inc. PIC12(L)F1501 TABLE 15-3: Name SUMMARY OF REGISTERS ASSOCIATED WITH ADC Bit 7 ADCON0 — ADCON1 ADFM ADCON2 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 CHS ADCS TRIGSEL Bit 1 Bit 0 Register on Page GO/DONE ADON 116 — — ADPREF 117 — — — 118 — ADRESH ADC Result Register High 119, 120 ADRESL ADC Result Register Low 119, 120 ANSELA — — — ANSA4 — ANSA2 ANSA1 ANSA0 99 INTCON GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 64 PIE1 TMR1GIE ADIE — — — — TMR2IE TMR1IE 65 PIR1 TMR1GIF ADIF — — — — TMR2IF TMR1IF 68 — — TRISA5 TRISA4 —(1) TRISA2 TRISA1 TRISA0 FVREN FVRRDY TSEN TSRNG TRISA FVRCON Legend: Note 1: CDAFVR ADFVR 98 107 x = unknown, u = unchanged, — = unimplemented read as ‘0’, q = value depends on condition. Shaded cells are not used for ADC module. Unimplemented, read as ‘1’.  2011-2015 Microchip Technology Inc. DS40001615C-page 123 PIC12(L)F1501 16.0 5-BIT DIGITAL-TO-ANALOG CONVERTER (DAC) MODULE The Digital-to-Analog Converter supplies a variable voltage reference, ratiometric with the input source, with 32 selectable output levels. The positive input source (VSOURCE+) of the DAC can be connected to: • External VREF+ pin • VDD supply voltage The output of the DAC (DACx_output) can be selected as a reference voltage to the following: • • • • Comparator positive input ADC input channel DACxOUT1 pin DACxOUT2 pin The Digital-to-Analog Converter (DAC) can be enabled by setting the DACEN bit of the DACxCON0 register. The negative input source (VSOURCE-) of the DAC can be connected to: • Vss FIGURE 16-1: DIGITAL-TO-ANALOG CONVERTER BLOCK DIAGRAM Rev. 10-000026A 7/30/2013 VDD 0 VSOURCE+ 1 VREF+ DACR 5 R DACPSS R DACEN R 32-to-1 MUX R 32 Steps DACx_output To Peripherals R R DACxOUT1 (1) DACOE1 R DACxOUT2 (1) VSS VSOURCE- DACOE2 Note 1: The unbuffered DACx_output is provided on the DACxOUT pin(s). DS40001615C-page 124  2011-2015 Microchip Technology Inc. PIC12(L)F1501 16.1 Output Voltage Selection The DAC has 32 voltage level ranges. The 32 levels are set with the DACR bits of the DACxCON1 register. The DAC output voltage can be determined by using Equation 16-1. 16.2 Ratiometric Output Level The DAC output value is derived using a resistor ladder with each end of the ladder tied to a positive and negative voltage reference input source. If the voltage of either input source fluctuates, a similar fluctuation will result in the DAC output value. The value of the individual resistors within the ladder can be found in Table 27-14. 16.3 DAC Voltage Reference Output The unbuffered DAC voltage can be output to the DACxOUTn pin(s) by setting the respective DACOEn bit(s) of the DACxCON0 register. Selecting the DAC reference voltage for output on either DACxOUTn pin automatically overrides the digital output buffer, the weak pull-up and digital input threshold detector functions of that pin. EQUATION 16-1: Reading the DACxOUTn pin when it has been configured for DAC reference voltage output will always return a ‘0’. The unbuffered DAC output (DACxOUTn) is not intended to drive an external load. Note: 16.4 Operation During Sleep When the device wakes up from Sleep through an interrupt or a Watchdog Timer time-out, the contents of the DACxCON0 register are not affected. To minimize current consumption in Sleep mode, the voltage reference should be disabled. 16.5 Effects of a Reset A device Reset affects the following: • DACx is disabled. • DACX output voltage is removed from the DACxOUTn pin(s). • The DACR range select bits are cleared. DAC OUTPUT VOLTAGE IF DACEN = 1 DACR  4:0  DACx_output =   VSOURCE+ – VSOURCE-   ----------------------------5  + VSOURCE2 Note: See the DACxCON0 register for the available VSOURCE+ and VSOURCE- selections.  2011-2015 Microchip Technology Inc. DS40001615C-page 125 PIC12(L)F1501 16.6 Register Definitions: DAC Control REGISTER 16-1: DACxCON0: VOLTAGE REFERENCE CONTROL REGISTER 0 R/W-0/0 U-0 R/W-0/0 R/W-0/0 U-0 R/W-0/0 U-0 U-0 DACEN — DACOE1 DACOE2 — DACPSS — — bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7 DACEN: DAC Enable bit 1 = DACx is enabled 0 = DACx is disabled bit 6 Unimplemented: Read as ‘0’ bit 5 DACOE1: DAC Voltage Output Enable bit 1 = DACx voltage level is output on the DACxOUT1 pin 0 = DACx voltage level is disconnected from the DACxOUT1 pin bit 4 DACOE2: DAC Voltage Output Enable bit 1 = DACx voltage level is output on the DACxOUT2 pin 0 = DACx voltage level is disconnected from the DACxOUT2 pin bit 3 Unimplemented: Read as ‘0’ bit 2 DACPSS: DAC Positive Source Select bit 1= VREF+ pin 0= VDD bit 1-0 Unimplemented: Read as ‘0’ REGISTER 16-2: DACxCON1: VOLTAGE REFERENCE CONTROL REGISTER 1 U-0 U-0 U-0 — — — R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 DACR bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7-5 Unimplemented: Read as ‘0’ bit 4-0 DACR: DAC Voltage Output Select bits TABLE 16-1: Name SUMMARY OF REGISTERS ASSOCIATED WITH THE DAC MODULE Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 DAC1CON0 DACEN — DACOE1 DACOE2 — DAC1CON1 — — — Legend: Bit 2 Bit 1 Bit 0 Register on page DACPSS — — 126 DACR 126 — = Unimplemented location, read as ‘0’. Shaded cells are not used with the DAC module. DS40001615C-page 126  2011-2015 Microchip Technology Inc. PIC12(L)F1501 17.0 COMPARATOR MODULE 17.1 Comparator Overview Comparators are used to interface analog circuits to a digital circuit by comparing two analog voltages and providing a digital indication of their relative magnitudes. Comparators are very useful mixed signal building blocks because they provide analog functionality independent of program execution. The analog comparator module includes the following features: A single comparator is shown in Figure 17-2 along with the relationship between the analog input levels and the digital output. When the analog voltage at VIN+ is less than the analog voltage at VIN-, the output of the comparator is a digital low level. When the analog voltage at VIN+ is greater than the analog voltage at VIN-, the output of the comparator is a digital high level. • • • • • • • • • The comparators available for this device are listed in Table 17-1. Independent comparator control Programmable input selection Comparator output is available internally/externally Programmable output polarity Interrupt-on-change Wake-up from Sleep Programmable Speed/Power optimization PWM shutdown Programmable and fixed voltage reference FIGURE 17-1: TABLE 17-1: AVAILABLE COMPARATORS Device C1 PIC12(L)F1501 C2 ● COMPARATOR MODULE SIMPLIFIED BLOCK DIAGRAM Rev. 10-000027B 8/5/2013 CxNCH 3 CxON(1) CxIN0- 000 CxIN1- 001 Reserved 010 Reserved 011 FVR_buffer2 100 CxVN CxVP CxON(1) Interrupt Rising Edge CxINTP Interrupt Falling Edge CxINTN set bit CxIF - D CxOUT Q MCxOUT Cx CxIN+ 00 DAC_out 01 FVR_buffer2 10 + Q1 CxSP CxHYS CxPOL CxOUT_async to peripherals CxOUT_sync to peripherals 11 CxPCH 2 CxON(1) CxSYNC CxOE 0 TRIS bit CxOUT D Q 1 (From Timer1 Module) T1CLK Note 1: When CxON = 0, all multiplexer inputs are disconnected and the Comparator will produce a ‘0’ at the output.  2011-2015 Microchip Technology Inc. DS40001615C-page 127 PIC12(L)F1501 FIGURE 17-2: SINGLE COMPARATOR VIN+ + VIN- – Output VINVIN+ • • • • CxIN+ analog pin DAC1_output FVR_buffer2 VSS See Section 13.0 “Fixed Voltage Reference (FVR)” for more information on the Fixed Voltage Reference module. See Section 16.0 “5-Bit Digital-to-Analog Converter (DAC) Module” for more information on the DAC input signal. Any time the comparator is disabled (CxON = 0), all comparator inputs are disabled. 17.2.3 Output Note: 17.2 The black areas of the output of the comparator represents the uncertainty due to input offsets and response time. The CMxCON0 registers (see Register 17-1) contain Control and Status bits for the following: • • • • • • Enable Output selection Output polarity Speed/Power selection Hysteresis enable Output synchronization The CMxCON1 registers (see Register 17-2) contain Control bits for the following: • • • • Interrupt enable Interrupt edge polarity Positive input channel selection Negative input channel selection 17.2.1 COMPARATOR ENABLE Setting the CxON bit of the CMxCON0 register enables the comparator for operation. Clearing the CxON bit disables the comparator resulting in minimum current consumption. 17.2.2 The CxNCH bits of the CMxCON0 register direct one of the input sources to the comparator inverting input. Note: Comparator Control Each comparator has two control registers: CMxCON0 and CMxCON1. COMPARATOR POSITIVE INPUT SELECTION Configuring the CxPCH bits of the CMxCON1 register directs an internal voltage reference or an analog pin to the non-inverting input of the comparator: DS40001615C-page 128 COMPARATOR NEGATIVE INPUT SELECTION 17.2.4 To use CxIN+ and CxINx- pins as analog input, the appropriate bits must be set in the ANSEL register and the corresponding TRIS bits must also be set to disable the output drivers. COMPARATOR OUTPUT SELECTION The output of the comparator can be monitored by reading either the CxOUT bit of the CMxCON0 register or the MCxOUT bit of the CMOUT register. In order to make the output available for an external connection, the following conditions must be true: • CxOE bit of the CMxCON0 register must be set • Corresponding TRIS bit must be cleared • CxON bit of the CMxCON0 register must be set The synchronous comparator output signal (CxOUT_sync) is available to the following peripheral(s): • Configurable Logic Cell (CLC) • Analog-to-Digital Converter (ADC) • Timer1 The asynchronous comparator output signal (CxOUT_async) is available to the following peripheral(s): • Complementary Waveform Generator (CWG) Note 1: The CxOE bit of the CMxCON0 register overrides the PORT data latch. Setting the CxON bit of the CMxCON0 register has no impact on the port override. 2: The internal output of the comparator is latched with each instruction cycle. Unless otherwise specified, external outputs are not latched.  2011-2015 Microchip Technology Inc. PIC12(L)F1501 17.2.5 COMPARATOR OUTPUT POLARITY Inverting the output of the comparator is functionally equivalent to swapping the comparator inputs. The polarity of the comparator output can be inverted by setting the CxPOL bit of the CMxCON0 register. Clearing the CxPOL bit results in a non-inverted output. Table 17-2 shows the output state versus input conditions, including polarity control. TABLE 17-2: COMPARATOR OUTPUT STATE VS. INPUT CONDITIONS Input Condition CxPOL CxOUT CxVN > CxVP 0 0 CxVN < CxVP 0 1 CxVN > CxVP 1 1 CxVN < CxVP 1 0 17.2.6 17.3 A simplified circuit for an analog input is shown in Figure 17-3. Since the analog input pins share their connection with a digital input, they have reverse biased ESD protection diodes to VDD and VSS. The analog input, therefore, must be between VSS and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up may occur. A maximum source impedance of 10 k is recommended for the analog sources. Also, any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current to minimize inaccuracies introduced. COMPARATOR SPEED/POWER SELECTION The trade-off between speed or power can be optimized during program execution with the CxSP control bit. The default state for this bit is ‘1’ which selects the Normal-Speed mode. Device power consumption can be optimized at the cost of slower comparator propagation delay by clearing the CxSP bit to ‘0’. FIGURE 17-3: Analog Input Connection Considerations Note 1: When reading a PORT register, all pins configured as analog inputs will read as a ‘0’. Pins configured as digital inputs will convert as an analog input, according to the input specification. 2: Analog levels on any pin defined as a digital input, may cause the input buffer to consume more current than is specified. ANALOG INPUT MODEL Rev. 10-000071A 8/2/2013 VDD RS < 10K Analog Input pin VT § 0.6V RIC To Comparator ILEAKAGE(1) CPIN 5pF VA VT § 0.6V VSS Legend: CPIN ILEAKAGE RIC RS VA VT Note 1: = Input Capacitance = Leakage Current at the pin due to various junctions = Interconnect Resistance = Source Impedance = Analog Voltage = Threshold Voltage See Section 27.0 “Electrical Specifications”.  2011-2015 Microchip Technology Inc. DS40001615C-page 129 PIC12(L)F1501 17.4 Comparator Hysteresis A selectable amount of separation voltage can be added to the input pins of each comparator to provide a hysteresis function to the overall operation. Hysteresis is enabled by setting the CxHYS bit of the CMxCON0 register. The associated interrupt flag bit, CxIF bit of the PIR2 register, must be cleared in software. If another edge is detected while this flag is being cleared, the flag will still be set at the end of the sequence. Note: See Section 27.0 “Electrical Specifications” for more information. 17.5 Timer1 Gate Operation The output resulting from a comparator operation can be used as a source for gate control of Timer1. See Section 19.5 “Timer1 Gate” for more information. This feature is useful for timing the duration or interval of an analog event. It is recommended that the comparator output be synchronized to Timer1. This ensures that Timer1 does not increment while a change in the comparator is occurring. 17.5.1 COMPARATOR OUTPUT SYNCHRONIZATION 17.7 Although a comparator is disabled, an interrupt can be generated by changing the output polarity with the CxPOL bit of the CMxCON0 register, or by switching the comparator on or off with the CxON bit of the CMxCON0 register. Comparator Response Time The comparator output is indeterminate for a period of time after the change of an input source or the selection of a new reference voltage. This period is referred to as the response time. The response time of the comparator differs from the settling time of the voltage reference. Therefore, both of these times must be considered when determining the total response time to a comparator input change. See the Comparator and Voltage Reference Specifications in Section 27.0 “Electrical Specifications” for more details. The output from the Cx comparator can be synchronized with Timer1 by setting the CxSYNC bit of the CMxCON0 register. Once enabled, the comparator output is latched on the falling edge of the Timer1 source clock. If a prescaler is used with Timer1, the comparator output is latched after the prescaling function. To prevent a race condition, the comparator output is latched on the falling edge of the Timer1 clock source and Timer1 increments on the rising edge of its clock source. See the Comparator Block Diagram (Figure 17-2) and the Timer1 Block Diagram (Figure 19-2) for more information. 17.6 Comparator Interrupt An interrupt can be generated upon a change in the output value of the comparator for each comparator, a rising edge detector and a falling edge detector are present. When either edge detector is triggered and its associated enable bit is set (CxINTP and/or CxINTN bits of the CMxCON1 register), the Corresponding Interrupt Flag bit (CxIF bit of the PIR2 register) will be set. To enable the interrupt, you must set the following bits: • CxON, CxPOL and CxSP bits of the CMxCON0 register • CxIE bit of the PIE2 register • CxINTP bit of the CMxCON1 register (for a rising edge detection) • CxINTN bit of the CMxCON1 register (for a falling edge detection) • PEIE and GIE bits of the INTCON register DS40001615C-page 130  2011-2015 Microchip Technology Inc. PIC12(L)F1501 17.8 Register Definitions: Comparator Control REGISTER 17-1: CMxCON0: COMPARATOR Cx CONTROL REGISTER 0 R/W-0/0 R-0/0 R/W-0/0 R/W-0/0 U-0 R/W-1/1 R/W-0/0 R/W-0/0 CxON CxOUT CxOE CxPOL — CxSP CxHYS CxSYNC bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7 CxON: Comparator Enable bit 1 = Comparator is enabled 0 = Comparator is disabled and consumes no active power bit 6 CxOUT: Comparator Output bit If CxPOL = 1 (inverted polarity): 1 = CxVP < CxVN 0 = CxVP > CxVN If CxPOL = 0 (non-inverted polarity): 1 = CxVP > CxVN 0 = CxVP < CxVN bit 5 CxOE: Comparator Output Enable bit 1 = CxOUT is present on the CxOUT pin. Requires that the associated TRIS bit be cleared to actually drive the pin. Not affected by CxON. 0 = CxOUT is internal only bit 4 CxPOL: Comparator Output Polarity Select bit 1 = Comparator output is inverted 0 = Comparator output is not inverted bit 3 Unimplemented: Read as ‘0’ bit 2 CxSP: Comparator Speed/Power Select bit 1 = Comparator mode in normal power, higher speed 0 = Comparator mode in low-power, low-speed bit 1 CxHYS: Comparator Hysteresis Enable bit 1 = Comparator hysteresis enabled 0 = Comparator hysteresis disabled bit 0 CxSYNC: Comparator Output Synchronous Mode bit 1 = Comparator output to Timer1 and I/O pin is synchronous to changes on Timer1 clock source. Output updated on the falling edge of Timer1 clock source. 0 = Comparator output to Timer1 and I/O pin is asynchronous  2011-2015 Microchip Technology Inc. DS40001615C-page 131 PIC12(L)F1501 REGISTER 17-2: CMxCON1: COMPARATOR Cx CONTROL REGISTER 1 R/W-0/0 R/W-0/0 CxINTP CxINTN R/W-0/0 R/W-0/0 CxPCH U-0 R/W-0/0 R/W-0/0 R/W-0/0 CxNCH — bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7 CxINTP: Comparator Interrupt on Positive Going Edge Enable bits 1 = The CxIF interrupt flag will be set upon a positive going edge of the CxOUT bit 0 = No interrupt flag will be set on a positive going edge of the CxOUT bit bit 6 CxINTN: Comparator Interrupt on Negative Going Edge Enable bits 1 = The CxIF interrupt flag will be set upon a negative going edge of the CxOUT bit 0 = No interrupt flag will be set on a negative going edge of the CxOUT bit bit 5-4 CxPCH: Comparator Positive Input Channel Select bits 11 = CxVP connects to VSS 10 = CxVP connects to FVR Voltage Reference 01 = CxVP connects to DAC Voltage Reference 00 = CxVP connects to CxIN+ pin bit 3 Unimplemented: Read as ‘0’ bit 2-0 CxNCH: Comparator Negative Input Channel Select bits 111 = Reserved 110 = Reserved 101 = Reserved 100 = CxVN connects to FVR Voltage reference 011 = Reserved 010 = Reserved 001 = CxVN connects to CxIN1- pin 000 = CxVN connects to CxIN0- pin REGISTER 17-3: CMOUT: COMPARATOR OUTPUT REGISTER U-0 U-0 U-0 U-0 U-0 U-0 U-0 R-0/0 — — — — — — — MC1OUT bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7-1 Unimplemented: Read as ‘0’ bit 0 MC1OUT: Mirror Copy of C1OUT bit DS40001615C-page 132  2011-2015 Microchip Technology Inc. PIC12(L)F1501 TABLE 17-3: Name SUMMARY OF REGISTERS ASSOCIATED WITH COMPARATOR MODULE Bit 7 ANSELA Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register on Page — — — ANSA4 — ANSA2 ANSA1 ANSA0 99 CM1CON0 C1ON C1OUT C1OE C1POL — C1SP C1HYS C1SYNC 131 CM1CON1 C1NTP C1INTN — — — — — — — MC1OUT 132 DACEN — DACOE1 DACOE2 — DACPSS — — 126 CMOUT DAC1CON0 C1PCH — — — FVRCON FVREN FVRRDY TSEN TSRNG INTCON DAC1CON1 — C1NCH 132 DACR CDAFVR 126 ADFVR 107 GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 64 PIE2 — — C1IE — — NCO1IE — — 66 PIR2 — — C1IF — — NCO1IF — — 69 PORTA — — RA5 RA4 RA3 RA2 RA1 RA0 98 LATA — — LATA5 LATA4 — LATA2 LATA1 LATA0 99 TRISA — — TRISA5 TRISA4 —(1) TRISA2 TRISA1 TRISA0 98 Legend: Note 1: — = unimplemented location, read as ‘0’. Shaded cells are unused by the comparator module. Unimplemented, read as ‘1’.  2011-2015 Microchip Technology Inc. DS40001615C-page 133 PIC12(L)F1501 18.0 18.1.2 TIMER0 MODULE 8-BIT COUNTER MODE The Timer0 module is an 8-bit timer/counter with the following features: In 8-Bit Counter mode, the Timer0 module will increment on every rising or falling edge of the T0CKI pin. • • • • • • 8-Bit Counter mode using the T0CKI pin is selected by setting the TMR0CS bit in the OPTION_REG register to ‘1’. 8-bit timer/counter register (TMR0) 3-bit prescaler (independent of Watchdog Timer) Programmable internal or external clock source Programmable external clock edge selection Interrupt on overflow TMR0 can be used to gate Timer1 The rising or falling transition of the incrementing edge for either input source is determined by the TMR0SE bit in the OPTION_REG register. Figure 18-1 is a block diagram of the Timer0 module. 18.1 Timer0 Operation The Timer0 module can be used as either an 8-bit timer or an 8-bit counter. 18.1.1 8-BIT TIMER MODE The Timer0 module will increment every instruction cycle, if used without a prescaler. 8-bit Timer mode is selected by clearing the TMR0CS bit of the OPTION_REG register. When TMR0 is written, the increment is inhibited for two instruction cycles immediately following the write. Note: The value written to the TMR0 register can be adjusted, in order to account for the two instruction cycle delay when TMR0 is written. FIGURE 18-1: TIMER0 BLOCK DIAGRAM Rev. 10-000017A 8/5/2013 TMR0CS Fosc/4 T0CKI(1) PSA 0 1 TMR0SE 1 write to TMR0 Prescaler R 0 FOSC/2 T0CKI Sync Circuit PS T0_overflow TMR0 Q1 set bit TMR0IF Note 1: The T0CKI prescale output frequency should not exceed FOSC/8. DS40001615C-page 134  2011-2015 Microchip Technology Inc. PIC12(L)F1501 18.1.3 SOFTWARE PROGRAMMABLE PRESCALER A software programmable prescaler is available for exclusive use with Timer0. The prescaler is enabled by clearing the PSA bit of the OPTION_REG register. Note: The Watchdog Timer (WDT) uses its own independent prescaler. There are eight prescaler options for the Timer0 module ranging from 1:2 to 1:256. The prescale values are selectable via the PS bits of the OPTION_REG register. In order to have a 1:1 prescaler value for the Timer0 module, the prescaler must be disabled by setting the PSA bit of the OPTION_REG register. The prescaler is not readable or writable. All instructions writing to the TMR0 register will clear the prescaler. 18.1.4 TIMER0 INTERRUPT Timer0 will generate an interrupt when the TMR0 register overflows from FFh to 00h. The TMR0IF interrupt flag bit of the INTCON register is set every time the TMR0 register overflows, regardless of whether or not the Timer0 interrupt is enabled. The TMR0IF bit can only be cleared in software. The Timer0 interrupt enable is the TMR0IE bit of the INTCON register. Note: 18.1.5 The Timer0 interrupt cannot wake the processor from Sleep since the timer is frozen during Sleep. 8-BIT COUNTER MODE SYNCHRONIZATION When in 8-Bit Counter mode, the incrementing edge on the T0CKI pin must be synchronized to the instruction clock. Synchronization can be accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the instruction clock. The high and low periods of the external clocking source must meet the timing requirements as shown in Section 27.0 “Electrical Specifications”. 18.1.6 OPERATION DURING SLEEP Timer0 cannot operate while the processor is in Sleep mode. The contents of the TMR0 register will remain unchanged while the processor is in Sleep mode.  2011-2015 Microchip Technology Inc. DS40001615C-page 135 PIC12(L)F1501 18.2 Register Definitions: Option Register REGISTER 18-1: OPTION_REG: OPTION REGISTER R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 WPUEN INTEDG TMR0CS TMR0SE PSA R/W-1/1 R/W-1/1 R/W-1/1 PS bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7 WPUEN: Weak Pull-Up Enable bit 1 = All weak pull-ups are disabled (except MCLR, if it is enabled) 0 = Weak pull-ups are enabled by individual WPUx latch values bit 6 INTEDG: Interrupt Edge Select bit 1 = Interrupt on rising edge of INT pin 0 = Interrupt on falling edge of INT pin bit 5 TMR0CS: Timer0 Clock Source Select bit 1 = Transition on T0CKI pin 0 = Internal instruction cycle clock (FOSC/4) bit 4 TMR0SE: Timer0 Source Edge Select bit 1 = Increment on high-to-low transition on T0CKI pin 0 = Increment on low-to-high transition on T0CKI pin bit 3 PSA: Prescaler Assignment bit 1 = Prescaler is not assigned to the Timer0 module 0 = Prescaler is assigned to the Timer0 module bit 2-0 PS: Prescaler Rate Select bits TABLE 18-1: Name Bit 7 OPTION_REG Legend: * Note 1: 000 001 010 011 100 101 110 111 1:2 1:4 1:8 1 : 16 1 : 32 1 : 64 1 : 128 1 : 256 Bit 6 Bit 5 Bit 4 TRIGSEL INTCON TRISA Timer0 Rate SUMMARY OF REGISTERS ASSOCIATED WITH TIMER0 ADCON2 TMR0 Bit Value Bit 3 Bit 2 Bit 1 Bit 0 Register on Page — — — — 118 TMR0IF INTF IOCIF GIE PEIE TMR0IE INTE IOCIE WPUEN INTEDG TMR0CS TMR0SE PSA PS Holding Register for the 8-bit Timer0 Count — — TRISA5 TRISA4 64 136 134* —(1) TRISA2 TRISA1 TRISA0 98 — = Unimplemented location, read as ‘0’. Shaded cells are not used by the Timer0 module. Page provides register information. Unimplemented, read as ‘1’. DS40001615C-page 136  2011-2015 Microchip Technology Inc. PIC12(L)F1501 19.0 • Interrupt on overflow • Wake-up on overflow (external clock, Asynchronous mode only) • ADC Auto-Conversion Trigger(s) • Selectable Gate Source Polarity • Gate Toggle mode • Gate Single-Pulse mode • Gate Value Status • Gate Event Interrupt TIMER1 MODULE WITH GATE CONTROL The Timer1 module is a 16-bit timer/counter with the following features: • • • • • 16-bit timer/counter register pair (TMR1H:TMR1L) Programmable internal or external clock source 2-bit prescaler Optionally synchronized comparator out Multiple Timer1 gate (count enable) sources FIGURE 19-1: Figure 19-1 is a block diagram of the Timer1 module. TIMER1 BLOCK DIAGRAM T1GSS Rev. 10-000018D 8/5/2013 T1G 00 T0_overflow 01 C1OUT_sync 10 Reserved 11 T1GSPM 0 1 D 1 Single Pulse Acq. Control D 0 T1GVAL Q Q1 Q T1GGO/DONE T1GPOL CK Q Interrupt TMR1ON R set bit TMR1GIF det T1GTM TMR1GE set flag bit TMR1IF TMR1ON EN T1_overflow TMR1 TMR1H (2) TMR1L Q Synchronized Clock Input 0 D 1 T1CLK T1SYNC TMR1CS LFINTOSC (1) 11 10 T1CKI Fosc Internal Clock 01 00 Fosc/4 Internal Clock Prescaler 1,2,4,8 Synchronize(3) det 2 T1CKPS Fosc/2 Internal Clock Sleep Input Note 1: ST Buffer is high speed type when using T1CKI. 2: Timer1 register increments on rising edge. 3: Synchronize does not operate while in Sleep.  2011-2015 Microchip Technology Inc. DS40001615C-page 137 PIC12(L)F1501 19.1 Timer1 Operation 19.2 The Timer1 module is a 16-bit incrementing counter which is accessed through the TMR1H:TMR1L register pair. Writes to TMR1H or TMR1L directly update the counter. When used with an internal clock source, the module is a timer and increments on every instruction cycle. When used with an external clock source, the module can be used as either a timer or counter and increments on every selected edge of the external source. Timer1 is enabled by configuring the TMR1ON and TMR1GE bits in the T1CON and T1GCON registers, respectively. Table 19-1 displays the Timer1 enable selections. TABLE 19-1: TIMER1 ENABLE SELECTIONS Clock Source Selection The TMR1CS bits of the T1CON register are used to select the clock source for Timer1. Table 19-2 displays the clock source selections. 19.2.1 INTERNAL CLOCK SOURCE When the internal clock source is selected, the TMR1H:TMR1L register pair will increment on multiples of FOSC as determined by the Timer1 prescaler. When the FOSC internal clock source is selected, the Timer1 register value will increment by four counts every instruction clock cycle. Due to this condition, a 2 LSB error in resolution will occur when reading the Timer1 value. To utilize the full resolution of Timer1, an asynchronous input signal must be used to gate the Timer1 clock input. The following asynchronous sources may be used: Timer1 Operation • Asynchronous event on the T1G pin to Timer1 gate • C1 or C2 comparator input to Timer1 gate TMR1ON TMR1GE 0 0 Off 0 1 Off 19.2.2 When the external clock source is selected, the Timer1 module may work as a timer or a counter. 1 0 Always On 1 1 Count Enabled EXTERNAL CLOCK SOURCE When enabled to count, Timer1 is incremented on the rising edge of the external clock input T1CKI. The external clock source can be synchronized to the microcontroller system clock or it can run asynchronously. Note: In Counter mode, a falling edge must be registered by the counter prior to the first incrementing rising edge after any one or more of the following conditions: • • • • TABLE 19-2: Timer1 enabled after POR Write to TMR1H or TMR1L Timer1 is disabled Timer1 is disabled (TMR1ON = 0) when T1CKI is high then Timer1 is enabled (TMR1ON=1) when T1CKI is low. CLOCK SOURCE SELECTIONS TMR1CS Clock Source 11 LFINTOSC 10 External Clocking on T1CKI Pin 01 System Clock (FOSC) 00 Instruction Clock (FOSC/4) DS40001615C-page 138  2011-2015 Microchip Technology Inc. PIC12(L)F1501 19.3 Timer1 Prescaler Timer1 has four prescaler options allowing 1, 2, 4 or 8 divisions of the clock input. The T1CKPS bits of the T1CON register control the prescale counter. The prescale counter is not directly readable or writable; however, the prescaler counter is cleared upon a write to TMR1H or TMR1L. 19.4 Timer1 Operation in Asynchronous Counter Mode If control bit T1SYNC of the T1CON register is set, the external clock input is not synchronized. The timer increments asynchronously to the internal phase clocks. If the external clock source is selected then the timer will continue to run during Sleep and can generate an interrupt on overflow, which will wake-up the processor. However, special precautions in software are needed to read/write the timer (see Section 19.4.1 “Reading and Writing Timer1 in Asynchronous Counter Mode”). Note: 19.4.1 When switching from synchronous to asynchronous operation, it is possible to skip an increment. When switching from asynchronous to synchronous operation, it is possible to produce an additional increment. READING AND WRITING TIMER1 IN ASYNCHRONOUS COUNTER MODE Reading TMR1H or TMR1L while the timer is running from an external asynchronous clock will ensure a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself, poses certain problems, since the timer may overflow between the reads. When Timer1 Gate Enable mode is enabled, Timer1 will increment on the rising edge of the Timer1 clock source. When Timer1 Gate Enable mode is disabled, no incrementing will occur and Timer1 will hold the current count. See Figure 19-3 for timing details. TABLE 19-3: TIMER1 GATE ENABLE SELECTIONS T1CLK T1GPOL T1G  0 0 Counts  0 1 Holds Count  1 0 Holds Count  1 1 Counts 19.5.2 Timer1 Operation TIMER1 GATE SOURCE SELECTION Timer1 gate source selections are shown in Table 19-4. Source selection is controlled by the T1GSS bits of the T1GCON register. The polarity for each available source is also selectable. Polarity selection is controlled by the T1GPOL bit of the T1GCON register. TABLE 19-4: TIMER1 GATE SOURCES T1GSS Timer1 Gate Source 00 Timer1 Gate pin (T1G) 01 Overflow of Timer0 (T0_overflow) (TMR0 increments from FFh to 00h) 10 Comparator 1 Output (C1OUT_sync)(1) 11 Reserved Note 1: Optionally synchronized comparator output. For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers, while the register is incrementing. This may produce an unpredictable value in the TMR1H:TMR1L register pair. 19.5 Timer1 Gate Timer1 can be configured to count freely or the count can be enabled and disabled using Timer1 gate circuitry. This is also referred to as Timer1 Gate Enable. Timer1 gate can also be driven by multiple selectable sources. 19.5.1 TIMER1 GATE ENABLE The Timer1 Gate Enable mode is enabled by setting the TMR1GE bit of the T1GCON register. The polarity of the Timer1 Gate Enable mode is configured using the T1GPOL bit of the T1GCON register.  2011-2015 Microchip Technology Inc. DS40001615C-page 139 PIC12(L)F1501 19.5.2.1 T1G Pin Gate Operation The T1G pin is one source for Timer1 gate control. It can be used to supply an external source to the Timer1 gate circuitry. 19.5.2.2 Timer0 Overflow Gate Operation When Timer0 increments from FFh to 00h, a low-tohigh pulse will automatically be generated and internally supplied to the Timer1 gate circuitry. 19.5.3 TIMER1 GATE TOGGLE MODE When Timer1 Gate Toggle mode is enabled, it is possible to measure the full-cycle length of a Timer1 gate signal, as opposed to the duration of a single level pulse. The Timer1 gate source is routed through a flip-flop that changes state on every incrementing edge of the signal. See Figure 19-4 for timing details. 19.5.5 TIMER1 GATE VALUE STATUS When Timer1 Gate Value Status is utilized, it is possible to read the most current level of the gate control value. The value is stored in the T1GVAL bit in the T1GCON register. The T1GVAL bit is valid even when the Timer1 gate is not enabled (TMR1GE bit is cleared). 19.5.6 TIMER1 GATE EVENT INTERRUPT When Timer1 Gate Event Interrupt is enabled, it is possible to generate an interrupt upon the completion of a gate event. When the falling edge of T1GVAL occurs, the TMR1GIF flag bit in the PIR1 register will be set. If the TMR1GIE bit in the PIE1 register is set, then an interrupt will be recognized. The TMR1GIF flag bit operates even when the Timer1 gate is not enabled (TMR1GE bit is cleared). Timer1 Gate Toggle mode is enabled by setting the T1GTM bit of the T1GCON register. When the T1GTM bit is cleared, the flip-flop is cleared and held clear. This is necessary in order to control which edge is measured. Note: 19.5.4 Enabling Toggle mode at the same time as changing the gate polarity may result in indeterminate operation. TIMER1 GATE SINGLE-PULSE MODE When Timer1 Gate Single-Pulse mode is enabled, it is possible to capture a single pulse gate event. Timer1 Gate Single-Pulse mode is first enabled by setting the T1GSPM bit in the T1GCON register. Next, the T1GGO/ DONE bit in the T1GCON register must be set. The Timer1 will be fully enabled on the next incrementing edge. On the next trailing edge of the pulse, the T1GGO/ DONE bit will automatically be cleared. No other gate events will be allowed to increment Timer1 until the T1GGO/DONE bit is once again set in software. See Figure 19-5 for timing details. If the Single Pulse Gate mode is disabled by clearing the T1GSPM bit in the T1GCON register, the T1GGO/DONE bit should also be cleared. Enabling the Toggle mode and the Single-Pulse mode simultaneously will permit both sections to work together. This allows the cycle times on the Timer1 gate source to be measured. See Figure 19-6 for timing details. DS40001615C-page 140  2011-2015 Microchip Technology Inc. PIC12(L)F1501 19.6 Timer1 Interrupt The Timer1 register pair (TMR1H:TMR1L) increments to FFFFh and rolls over to 0000h. When Timer1 rolls over, the Timer1 interrupt flag bit of the PIR1 register is set. To enable the interrupt on rollover, you must set these bits: • • • • TMR1ON bit of the T1CON register TMR1IE bit of the PIE1 register PEIE bit of the INTCON register GIE bit of the INTCON register 19.7.1 ALTERNATE PIN LOCATIONS This module incorporates I/O pins that can be moved to other locations with the use of the alternate pin function register, APFCON. To determine which pins can be moved and what their default locations are upon a Reset, see Section 11.1 “Alternate Pin Function” for more information. The interrupt is cleared by clearing the TMR1IF bit in the Interrupt Service Routine. The TMR1H:TMR1L register pair and the TMR1IF bit should be cleared before enabling interrupts. Note: 19.7 Timer1 Operation During Sleep Timer1 can only operate during Sleep when setup in Asynchronous Counter mode. In this mode, an external crystal or clock source can be used to increment the counter. To set up the timer to wake the device: • • • • • TMR1ON bit of the T1CON register must be set TMR1IE bit of the PIE1 register must be set PEIE bit of the INTCON register must be set T1SYNC bit of the T1CON register must be set TMR1CS bits of the T1CON register must be configured The device will wake-up on an overflow and execute the next instructions. If the GIE bit of the INTCON register is set, the device will call the Interrupt Service Routine. Timer1 oscillator will continue to operate in Sleep regardless of the T1SYNC bit setting. FIGURE 19-2: TIMER1 INCREMENTING EDGE T1CKI = 1 when TMR1 Enabled T1CKI = 0 when TMR1 Enabled Note 1: 2: Arrows indicate counter increments. In Counter mode, a falling edge must be registered by the counter prior to the first incrementing rising edge of the clock.  2011-2015 Microchip Technology Inc. DS40001615C-page 141 PIC12(L)F1501 FIGURE 19-3: TIMER1 GATE ENABLE MODE TMR1GE T1GPOL t1g_in T1CKI T1GVAL Timer1 N FIGURE 19-4: N+1 N+2 N+3 N+4 TIMER1 GATE TOGGLE MODE TMR1GE T1GPOL T1GTM t1g_in T1CKI T1GVAL Timer1 N DS40001615C-page 142 N+1 N+2 N+3 N+4 N+5 N+6 N+7 N+8  2011-2015 Microchip Technology Inc. PIC12(L)F1501 FIGURE 19-5: TIMER1 GATE SINGLE-PULSE MODE TMR1GE T1GPOL T1GSPM T1GGO/ Cleared by hardware on falling edge of T1GVAL Set by software DONE Counting enabled on rising edge of T1G t1g_in T1CKI T1GVAL Timer1 TMR1GIF N Cleared by software  2011-2015 Microchip Technology Inc. N+1 N+2 Set by hardware on falling edge of T1GVAL Cleared by software DS40001615C-page 143 PIC12(L)F1501 FIGURE 19-6: TIMER1 GATE SINGLE-PULSE AND TOGGLE COMBINED MODE TMR1GE T1GPOL T1GSPM T1GTM T1GGO/ Cleared by hardware on falling edge of T1GVAL Set by software DONE Counting enabled on rising edge of T1G t1g_in T1CKI T1GVAL Timer1 TMR1GIF DS40001615C-page 144 N Cleared by software N+1 N+2 N+3 Set by hardware on falling edge of T1GVAL N+4 Cleared by software  2011-2015 Microchip Technology Inc. PIC12(L)F1501 19.8 Register Definitions: Timer1 Control REGISTER 19-1: R/W-0/u T1CON: TIMER1 CONTROL REGISTER R/W-0/u R/W-0/u TMR1CS R/W-0/u T1CKPS U-0 R/W-0/u U-0 R/W-0/u — T1SYNC — TMR1ON bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7-6 TMR1CS: Timer1 Clock Source Select bits 11 = Timer1 clock source is LFINTOSC 10 = Timer1 clock source is T1CKI pin (on the rising edge) 01 = Timer1 clock source is system clock (FOSC) 00 = Timer1 clock source is instruction clock (FOSC/4) bit 5-4 T1CKPS: Timer1 Input Clock Prescale Select bits 11 = 1:8 Prescale value 10 = 1:4 Prescale value 01 = 1:2 Prescale value 00 = 1:1 Prescale value bit 3 Unimplemented: Read as ‘0’ bit 2 T1SYNC: Timer1 Synchronization Control bit 1 = Do not synchronize asynchronous clock input 0 = Synchronize asynchronous clock input with system clock (FOSC) bit 1 Unimplemented: Read as ‘0’ bit 0 TMR1ON: Timer1 On bit 1 = Enables Timer1 0 = Stops Timer1 and clears Timer1 gate flip-flop  2011-2015 Microchip Technology Inc. DS40001615C-page 145 PIC12(L)F1501 REGISTER 19-2: T1GCON: TIMER1 GATE CONTROL REGISTER R/W-0/u R/W-0/u R/W-0/u R/W-0/u R/W/HC-0/u R-x/x TMR1GE T1GPOL T1GTM T1GSPM T1GGO/ DONE T1GVAL R/W-0/u R/W-0/u T1GSS bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared HC = Bit is cleared by hardware bit 7 TMR1GE: Timer1 Gate Enable bit If TMR1ON = 0: This bit is ignored If TMR1ON = 1: 1 = Timer1 counting is controlled by the Timer1 gate function 0 = Timer1 counts regardless of Timer1 gate function bit 6 T1GPOL: Timer1 Gate Polarity bit 1 = Timer1 gate is active-high (Timer1 counts when gate is high) 0 = Timer1 gate is active-low (Timer1 counts when gate is low) bit 5 T1GTM: Timer1 Gate Toggle Mode bit 1 = Timer1 Gate Toggle mode is enabled 0 = Timer1 Gate Toggle mode is disabled and toggle flip-flop is cleared Timer1 gate flip-flop toggles on every rising edge. bit 4 T1GSPM: Timer1 Gate Single-Pulse Mode bit 1 = Timer1 gate Single-Pulse mode is enabled and is controlling Timer1 gate 0 = Timer1 gate Single-Pulse mode is disabled bit 3 T1GGO/DONE: Timer1 Gate Single-Pulse Acquisition Status bit 1 = Timer1 gate single-pulse acquisition is ready, waiting for an edge 0 = Timer1 gate single-pulse acquisition has completed or has not been started bit 2 T1GVAL: Timer1 Gate Value Status bit Indicates the current state of the Timer1 gate that could be provided to TMR1H:TMR1L. Unaffected by Timer1 Gate Enable (TMR1GE). bit 1-0 T1GSS: Timer1 Gate Source Select bits 11 = Reserved 10 = Comparator 1 optionally synchronized output (C1OUT_sync) 01 = Timer0 overflow output (T0_overflow) 00 = Timer1 gate pin (T1G) DS40001615C-page 146  2011-2015 Microchip Technology Inc. PIC12(L)F1501 TABLE 19-5: Name SUMMARY OF REGISTERS ASSOCIATED WITH TIMER1 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register on Page ANSELA — — — ANSA4 — ANSA2 ANSA1 ANSA0 99 APFCON CWG1BSEL CWGA1SEL — — T1GSEL — CLC1SEL NCO1SEL 96 INTCON PIE1 PIR1 GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 64 TMR1GIE ADIE — — — — TMR2IE TMR1IE 65 TMR1GIF ADIF — — — — TMR2IF TMR1IF TMR1H Holding Register for the Most Significant Byte of the 16-bit TMR1 Count TMR1L Holding Register for the Least Significant Byte of the 16-bit TMR1 Count TRISA — T1CON TMR1CS T1GCON Legend: * Note 1: TMR1GE — T1GPOL TRISA5 TRISA4 T1CKPS T1GTM T1GSPM 68 141* 141* —(1) TRISA2 TRISA1 TRISA0 98 — T1SYNC — TMR1ON 145 T1GGO/ DONE T1GVAL T1GSS 146 — = unimplemented location, read as ‘0’. Shaded cells are not used by the Timer1 module. Page provides register information. Unimplemented, read as ‘1’.  2011-2015 Microchip Technology Inc. DS40001615C-page 147 PIC12(L)F1501 20.0 TIMER2 MODULE The Timer2 module incorporates the following features: • 8-bit Timer and Period registers (TMR2 and PR2, respectively) • Readable and writable (both registers) • Software programmable prescaler (1:1, 1:4, 1:16, and 1:64) • Software programmable postscaler (1:1 to 1:16) • Interrupt on TMR2 match with PR2 See Figure 20-1 for a block diagram of Timer2. FIGURE 20-1: TIMER2 BLOCK DIAGRAM Rev. 10-000019A 7/30/2013 T2_match Prescaler 1:1, 1:4, 1:16, 1:64 Fosc/4 R TMR2 To Peripherals 2 T2CKPS Postscaler 1:1 to 1:16 Comparator set bit TMR2IF 4 T2OUTPS PR2 FIGURE 20-2: TIMER2 TIMING DIAGRAM Rev. 10-000020A 7/30/2013 FOSC/4 1:4 Prescale 0x03 PR2 TMR2 0x00 0x01 0x02 0x03 0x00 0x01 0x02 Pulse Width(1) T2_match Note 1: The Pulse Width of T2_match is equal to the scaled input of TMR2. DS40001615C-page 148  2011-2015 Microchip Technology Inc. PIC12(L)F1501 20.1 Timer2 Operation 20.3 Timer2 Output The clock input to the Timer2 module is the system instruction clock (FOSC/4). The output of TMR2 is T2_match. T2_match is available to the following peripherals: TMR2 increments from 00h on each clock edge. • Configurable Logic Cell (CLC) • Numerically Controlled Oscillator (NCO) • Pulse Width Modulator (PWM) A 4-bit counter/prescaler on the clock input allows direct input, divide-by-4 and divide-by-16 prescale options. These options are selected by the prescaler control bits, T2CKPS of the T2CON register. The value of TMR2 is compared to that of the Period register, PR2, on each clock cycle. When the two values match, the comparator generates a match signal as the timer output. This signal also resets the value of TMR2 to 00h on the next cycle and drives the output counter/ postscaler (see Section 20.2 “Timer2 Interrupt”). The TMR2 and PR2 registers are both directly readable and writable. The TMR2 register is cleared on any device Reset, whereas the PR2 register initializes to FFh. Both the prescaler and postscaler counters are cleared on the following events: • • • • • • • • • a write to the TMR2 register a write to the T2CON register Power-on Reset (POR) Brown-out Reset (BOR) MCLR Reset Watchdog Timer (WDT) Reset Stack Overflow Reset Stack Underflow Reset RESET Instruction Note: TMR2 is not cleared when T2CON is written. The T2_match signal is synchronous with the system clock. Figure 20-3 shows two examples of the timing of the T2_match signal relative to FOSC and prescale value, T2CKPS. The upper diagram illustrates 1:1 prescale timing and the lower diagram, 1:X prescale timing. FIGURE 20-3: Rev. 10-000021A 7/30/2013 Q1 A range of 16 postscale options (from 1:1 through 1:16 inclusive) can be selected with the postscaler control bits, T2OUTPS, of the T2CON register.  2011-2015 Microchip Technology Inc. Q3 Q4 Q1 TCY1 FOSC/4 T2_match TMR2 = 0 TMR2 = PR2 match PRESCALE = 1:1 (T2CKPS = 00) TCY1 TCY2 ... TCYX ... FOSC/4 ... Timer2 Interrupt Timer2 can also generate an optional device interrupt. The Timer2 output signal (T2_match) provides the input for the 4-bit counter/postscaler. This counter generates the TMR2 match interrupt flag which is latched in TMR2IF of the PIR1 register. The interrupt is enabled by setting the TMR2 Match Interrupt Enable bit, TMR2IE of the PIE1 register. Q2 FOSC T2_match 20.2 T2_MATCH TIMING DIAGRAM TMR2 = PR2 match TMR2 = 0 PRESCALE = 1:X (T2CKPS = 01,10,11) 20.4 Timer2 Operation During Sleep Timer2 cannot be operated while the processor is in Sleep mode. The contents of the TMR2 and PR2 registers will remain unchanged while the processor is in Sleep mode. DS40001615C-page 149 PIC12(L)F1501 20.5 Register Definitions: Timer2 Control REGISTER 20-1: U-0 T2CON: TIMER2 CONTROL REGISTER R/W-0/0 R/W-0/0 — R/W-0/0 R/W-0/0 T2OUTPS R/W-0/0 R/W-0/0 TMR2ON R/W-0/0 T2CKPS bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7 Unimplemented: Read as ‘0’ bit 6-3 T2OUTPS: Timer2 Output Postscaler Select bits 0000 = 1:1 Postscaler 0001 = 1:2 Postscaler 0010 = 1:3 Postscaler 0011 = 1:4 Postscaler 0100 = 1:5 Postscaler 0101 = 1:6 Postscaler 0110 = 1:7 Postscaler 0111 = 1:8 Postscaler 1000 = 1:9 Postscaler 1001 = 1:10 Postscaler 1010 = 1:11 Postscaler 1011 = 1:12 Postscaler 1100 = 1:13 Postscaler 1101 = 1:14 Postscaler 1110 = 1:15 Postscaler 1111 = 1:16 Postscaler bit 2 TMR2ON: Timer2 On bit 1 = Timer2 is on 0 = Timer2 is off bit 1-0 T2CKPS: Timer2 Clock Prescale Select bits 00 = Prescaler is 1 01 = Prescaler is 4 10 = Prescaler is 16 11 = Prescaler is 64 TABLE 20-1: Name INTCON PIE1 PIR1 PR2 T2CON TMR2 Legend: * SUMMARY OF REGISTERS ASSOCIATED WITH TIMER2 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register on Page GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 64 TMR1GIE ADIE — — — — TMR2IE TMR1IE 65 TMR1GIF ADIF — — — — TMR2IF TMR1IF Timer2 Module Period Register — T2OUTPS 68 148* TMR2ON Holding Register for the 8-bit TMR2 Count T2CKPS 150 148* — = unimplemented location, read as ‘0’. Shaded cells are not used for Timer2 module. Page provides register information. DS40001615C-page 150  2011-2015 Microchip Technology Inc. PIC12(L)F1501 21.0 Figure 21-1 shows a simplified block diagram of PWM operation. PULSE-WIDTH MODULATION (PWM) MODULE For a step-by-step procedure on how to set up this module for PWM operation, refer to Section 21.1.9 “Setup for PWM Operation using PWMx Pins”. The PWM module generates a Pulse-Width Modulated signal determined by the duty cycle, period, and resolution that are configured by the following registers: • • • • • PR2 T2CON PWMxDCH PWMxDCL PWMxCON FIGURE 21-1: SIMPLIFIED PWM BLOCK DIAGRAM Rev. 10-000022A 8/5/2013 PWMxDCL Duty cycle registers PWMxDCH PWMx_out 10-bit Latch (Not visible to user) To Peripherals PWMxOE R Comparator Q 0 1 S PWMx Q TMR2 Module TMR2 R PWMxPOL (1) Comparator TRIS Control T2_match PR2 Note 1: 8-bit timer is concatenated with two bits generated by Fosc or two bits of the internal prescaler to create 10-bit time-base.  2011-2015 Microchip Technology Inc. DS40001615C-page 151 PIC12(L)F1501 21.1 PWMx Pin Configuration All PWM outputs are multiplexed with the PORT data latch. The user must configure the pins as outputs by clearing the associated TRIS bits. Note: 21.1.1 Clearing the PWMxOE bit will relinquish control of the PWMx pin. FUNDAMENTAL OPERATION The PWM module produces a 10-bit resolution output. Timer2 and PR2 set the period of the PWM. The PWMxDCL and PWMxDCH registers configure the duty cycle. The period is common to all PWM modules, whereas the duty cycle is independently controlled. Note: The Timer2 postscaler is not used in the determination of the PWM frequency. The postscaler could be used to have a servo update rate at a different frequency than the PWM output. All PWM outputs associated with Timer2 are set when TMR2 is cleared. Each PWMx is cleared when TMR2 is equal to the value specified in the corresponding PWMxDCH (8 MSb) and PWMxDCL (2 LSb) registers. When the value is greater than or equal to PR2, the PWM output is never cleared (100% duty cycle). Note: 21.1.2 The PWMxDCH and PWMxDCL registers are double buffered. The buffers are updated when Timer2 matches PR2. Care should be taken to update both registers before the timer match occurs. • TMR2 is cleared • The PWM output is active. (Exception: When the PWM duty cycle = 0%, the PWM output will remain inactive.) • The PWMxDCH and PWMxDCL register values are latched into the buffers. Note: 21.1.4 The Timer2 postscaler has no effect on the PWM operation. PWM DUTY CYCLE The PWM duty cycle is specified by writing a 10-bit value to the PWMxDCH and PWMxDCL register pair. The PWMxDCH register contains the eight MSbs and the PWMxDCL, the two LSbs. The PWMxDCH and PWMxDCL registers can be written to at any time. Equation 21-2 is used to calculate the PWM pulse width. Equation 21-3 is used to calculate the PWM duty cycle ratio. EQUATION 21-2: PULSE WIDTH Pulse Width =  PWMxDCH:PWMxDCL   T OS C  (TMR2 Prescale Value) Note: TOSC = 1/FOSC EQUATION 21-3: DUTY CYCLE RATIO PWM OUTPUT POLARITY The output polarity is inverted by setting the PWMxPOL bit of the PWMxCON register. 21.1.3 When TMR2 is equal to PR2, the following three events occur on the next increment cycle: PWM PERIOD  PWMxDCH:PWMxDCL  Duty Cycle Ratio = ----------------------------------------------------------------------------------4  PR2 + 1  The PWM period is specified by the PR2 register of Timer2. The PWM period can be calculated using the formula of Equation 21-1. The 8-bit timer TMR2 register is concatenated with the two Least Significant bits of 1/FOSC, adjusted by the Timer2 prescaler to create the 10-bit time base. The system clock is used if the Timer2 prescaler is set to 1:1. EQUATION 21-1: Figure 21-2 shows a waveform of the PWM signal when the duty cycle is set for the smallest possible pulse. PWM PERIOD PWM Period =   PR2  + 1   4  T OSC  FIGURE 21-2: PWM OUTPUT (TMR2 Prescale Value) Q1 Note: Q2 Q3 Q4 Rev. 10-000023A 7/30/2013 TOSC = 1/FOSC FOSC PWM Pulse Width TMR2 = 0 TMR2 = PWMxDC TMR2 = PR2 DS40001615C-page 152  2011-2015 Microchip Technology Inc. PIC12(L)F1501 21.1.5 PWM RESOLUTION The resolution determines the number of available duty cycles for a given period. For example, a 10-bit resolution will result in 1024 discrete duty cycles, whereas an 8-bit resolution will result in 256 discrete duty cycles. The maximum PWM resolution is ten bits when PR2 is 255. The resolution is a function of the PR2 register value as shown by Equation 21-4. EQUATION 21-4: PWM RESOLUTION log  4  PR2 + 1   Resolution = ------------------------------------------ bits log  2  Note: If the pulse width value is greater than the period the assigned PWM pin(s) will remain unchanged. TABLE 21-1: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (FOSC = 20 MHz) PWM Frequency 0.31 kHz Timer Prescale PR2 Value 78.12 kHz 156.3 kHz 208.3 kHz 64 4 1 1 1 1 0xFF 0xFF 0x3F 0x1F 0x17 10 10 10 8 7 6.6 EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (FOSC = 8 MHz) PWM Frequency 0.31 kHz Timer Prescale PR2 Value 4.90 kHz 19.61 kHz 76.92 kHz 153.85 kHz 200.0 kHz 64 4 1 1 1 1 0x65 0x65 0x65 0x19 0x0C 0x09 8 8 8 6 5 5 Maximum Resolution (bits) 21.1.6 19.53 kHz 0xFF Maximum Resolution (bits) TABLE 21-2: 4.88 kHz OPERATION IN SLEEP MODE In Sleep mode, the TMR2 register will not increment and the state of the module will not change. If the PWMx pin is driving a value, it will continue to drive that value. When the device wakes up, TMR2 will continue from its previous state. 21.1.7 CHANGES IN SYSTEM CLOCK FREQUENCY The PWM frequency is derived from the system clock frequency (FOSC). Any changes in the system clock frequency will result in changes to the PWM frequency. Refer to Section 5.0 “Oscillator Module” for additional details. 21.1.8 EFFECTS OF RESET Any Reset will force all ports to Input mode and the PWM registers to their Reset states.  2011-2015 Microchip Technology Inc. DS40001615C-page 153 PIC12(L)F1501 21.1.9 SETUP FOR PWM OPERATION USING PWMx PINS The following steps should be taken when configuring the module for PWM operation using the PWMx pins: 1. 2. 3. 4. 5. 6. 7. 8. Disable the PWMx pin output driver(s) by setting the associated TRIS bit(s). Clear the PWMxCON register. Load the PR2 register with the PWM period value. Clear the PWMxDCH register and bits of the PWMxDCL register. Configure and start Timer2: • Clear the TMR2IF interrupt flag bit of the PIR1 register. See note below. • Configure the T2CKPS bits of the T2CON register with the Timer2 prescale value. • Enable Timer2 by setting the TMR2ON bit of the T2CON register. Enable PWM output pin and wait until Timer2 overflows, TMR2IF bit of the PIR1 register is set. See note below. Enable the PWMx pin output driver(s) by clearing the associated TRIS bit(s) and setting the PWMxOE bit of the PWMxCON register. Configure the PWM module by loading the PWMxCON register with the appropriate values. Note 1: In order to send a complete duty cycle and period on the first PWM output, the above steps must be followed in the order given. If it is not critical to start with a complete PWM signal, then move Step 8 to replace Step 4. 2: For operation with other peripherals only, disable PWMx pin outputs. DS40001615C-page 154  2011-2015 Microchip Technology Inc. PIC12(L)F1501 21.2 Register Definitions: PWM Control REGISTER 21-1: PWMxCON: PWM CONTROL REGISTER R/W-0/0 R/W-0/0 R-0/0 R/W-0/0 U-0 U-0 U-0 U-0 PWMxEN PWMxOE PWMxOUT PWMxPOL — — — — bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7 PWMxEN: PWM Module Enable bit 1 = PWM module is enabled 0 = PWM module is disabled bit 6 PWMxOE: PWM Module Output Enable bit 1 = Output to PWMx pin is enabled 0 = Output to PWMx pin is disabled bit 5 PWMxOUT: PWM Module Output Value bit bit 4 PWMxPOL: PWMx Output Polarity Select bit 1 = PWM output is active-low 0 = PWM output is active-high bit 3-0 Unimplemented: Read as ‘0’  2011-2015 Microchip Technology Inc. DS40001615C-page 155 PIC12(L)F1501 REGISTER 21-2: R/W-x/u PWMxDCH: PWM DUTY CYCLE HIGH BITS R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u PWMxDCH bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7-0 PWMxDCH: PWM Duty Cycle Most Significant bits These bits are the MSbs of the PWM duty cycle. The two LSbs are found in the PWMxDCL register. REGISTER 21-3: R/W-x/u PWMxDCL: PWM DUTY CYCLE LOW BITS R/W-x/u PWMxDCL U-0 U-0 U-0 U-0 U-0 U-0 — — — — — — bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7-6 PWMxDCL: PWM Duty Cycle Least Significant bits These bits are the LSbs of the PWM duty cycle. The MSbs are found in the PWMxDCH register. bit 5-0 Unimplemented: Read as ‘0’ TABLE 21-3: Name SUMMARY OF REGISTERS ASSOCIATED WITH PWM Bit 7 Bit 6 Bit 5 PWM1EN PWM1OE PWM1OUT PR2 Bit 3 Bit 2 Bit 1 Bit 0 — — — Timer2 module Period Register PWM1CON PWM1DCH PWM1DCL PWM2CON PWM2DCL PWM3CON PWM1DCL PWM4CON — PWM2EN PWM2OE 148* PWM3EN PWM3OE 156 — — — — 156 PWM2OUT PWM2POL — — — — 155 156 — — — — — — 156 PWM3OUT PWM3POL — — — — 155 PWM3DCH PWM3DCL PWM4EN PWM4OE 156 — — — — — — 156 PWM4OUT PWM4POL — — — — 155 — — — PWM4DCH PWM4DCH PWM4DCL PWM4DCL T2CON — — — — T2OUTPS TMR2 156 TMR2ON T2CKPS Timer2 module Register — TRISA Legend: * 1: — 155 — PWM2DCH PWM2DCL Register on Page — PWM3DCH PWM3DCL PWM1POL PWM1DCH PWM2DCH Note Bit 4 TRISA5 TRISA4 —(1) 156 150 148* TRISA2 TRISA1 TRISA0 98 - = Unimplemented locations, read as ‘0’, u = unchanged, x = unknown. Shaded cells are not used by the PWM. Page provides register information. Unimplemented, read as ‘1’. DS40001615C-page 156  2011-2015 Microchip Technology Inc. PIC12(L)F1501 22.0 CONFIGURABLE LOGIC CELL (CLC) The Configurable Logic Cell (CLCx) provides programmable logic that operates outside the speed limitations of software execution. The logic cell takes up to 16 input signals, and through the use of configurable gates, reduces the 16 inputs to four logic lines that drive one of eight selectable single-output logic functions. Input sources are a combination of the following: • • • • I/O pins Internal clocks Peripherals Register bits The output can be directed internally to peripherals and to an output pin. FIGURE 22-1: Refer to Figure 22-1 for a simplified diagram showing signal flow through the CLCx. Possible configurations include: • Combinatorial Logic - AND - NAND - AND-OR - AND-OR-INVERT - OR-XOR - OR-XNOR • Latches - S-R - Clocked D with Set and Reset - Transparent D with Set and Reset - Clocked J-K with Reset CONFIGURABLE LOGIC CELL BLOCK DIAGRAM Rev. 10-000025A 8/1/2013 D LCxOUT MLCxOUT Q Q1 to Peripherals Input Data Selection Gates(1) LCx_in[0] LCx_in[1] LCx_in[2] LCx_in[3] LCx_in[4] LCx_in[5] LCx_in[6] LCx_in[7] LCx_in[8] LCx_in[9] LCx_in[10] LCx_in[11] LCx_in[12] LCx_in[13] LCx_in[14] LCx_in[15] lcxg2 lcxg3 LCxOE LCxEN lcxg1 TRIS Control Logic Function LCx_out lcxq CLCx (2) lcxg4 LCxPOL LCxMODE Interrupt det LCXINTP LCXINTN set bit CLCxIF Interrupt det Note 1: See Figure 22-2. 2: See Figure 22-3.  2011-2015 Microchip Technology Inc. DS40001615C-page 157 PIC12(L)F1501 22.1 each case, paired with a different group. This arrangement makes possible selection of up to two from a group without precluding a selection from another group. CLCx Setup Programming the CLCx module is performed by configuring the four stages in the logic signal flow. The four stages are: • • • • Data selection is through four multiplexers as indicated on the left side of Figure 22-2. Data inputs in the figure are identified by a generic numbered input name. Data selection Data gating Logic function selection Output polarity Table 22-1 correlates the generic input name to the actual signal for each CLC module. The columns labeled lcxd1 through lcxd4 indicate the MUX output for the selected data input. D1S through D4S are abbreviations for the MUX select input codes: LCxD1S through LCxD4S, respectively. Selecting a data input in a column excludes all other inputs in that column. Each stage is setup at run time by writing to the corresponding CLCx Special Function Registers. This has the added advantage of permitting logic reconfiguration on-the-fly during program execution. 22.1.1 DATA SELECTION Data inputs are selected with CLCxSEL0 and CLCxSEL1 registers (Register 22-3 and Register 22-5, respectively). There are 16 signals available as inputs to the configurable logic. Four 8-input multiplexers are used to select the inputs to pass on to the next stage. The 16 inputs to the multiplexers are arranged in groups of four. Each group is available to two of the four multiplexers, in TABLE 22-1: Data Input Note: Data selections are undefined at power-up. CLCx DATA INPUT SELECTION lcxd1 D1S lcxd2 D2S lcxd3 D3S lcxd4 D4S CLC 1 CLC 2 LCx_in[0] 000 — — 100 CLC1IN0 CLC2IN0 LCx_in[1] 001 — — 101 CLC1IN1 CLC2IN1 LCx_in[2] 010 — — 110 C1OUT_sync C1OUT_sync LCx_in[3] 011 — — 111 Reserved Reserved LCx_in[4] 100 000 — — FOSC FOSC LCx_in[5] 101 001 — — T0_overflow T0_overflow LCx_in[6] 110 010 — — T1_overflow T1_overflow LCx_in[7] 111 011 — — T2_match T2_match LCx_in[8] — 100 000 — LC1_out LC1_out LCx_in[9] — 101 001 — LC2_out LC2_out LCx_in[10] — 110 010 — Reserved Reserved LCx_in[11] — 111 011 — Reserved Reserved LCx_in[12] — — 100 000 NCO1_out LFINTOSC LCx_in[13] — — 101 001 HFINTOSC FRC LCx_in[14] — — 110 010 PWM3_out PWM1_out LCx_in[15] — — 111 011 PWM4_out PWM2_out DS40001615C-page 158  2011-2015 Microchip Technology Inc. PIC12(L)F1501 22.1.2 DATA GATING Outputs from the input multiplexers are directed to the desired logic function input through the data gating stage. Each data gate can direct any combination of the four selected inputs. Note: Data gating is undefined at power-up. The gate stage is more than just signal direction. The gate can be configured to direct each input signal as inverted or non-inverted data. Directed signals are ANDed together in each gate. The output of each gate can be inverted before going on to the logic function stage. The gating is in essence a 1-to-4 input AND/NAND/OR/NOR gate. When every input is inverted and the output is inverted, the gate is an OR of all enabled data inputs. When the inputs and output are not inverted, the gate is an AND or all enabled inputs. Table 22-2 summarizes the basic logic that can be obtained in gate 1 by using the gate logic select bits. The table shows the logic of four input variables, but each gate can be configured to use less than four. If no inputs are selected, the output will be zero or one, depending on the gate output polarity bit. TABLE 22-2: DATA GATING LOGIC CLCxGLS0 LCxG1POL Gate Logic 0x55 1 AND 0x55 0 NAND 0xAA 1 NOR 0xAA 0 OR 0x00 0 Logic 0 0x00 1 Logic 1 Data gating is indicated in the right side of Figure 22-2. Only one gate is shown in detail. The remaining three gates are configured identically with the exception that the data enables correspond to the enables for that gate. 22.1.3 LOGIC FUNCTION There are eight available logic functions including: • • • • • • • • AND-OR OR-XOR AND S-R Latch D Flip-Flop with Set and Reset D Flip-Flop with Reset J-K Flip-Flop with Reset Transparent Latch with Set and Reset Logic functions are shown in Figure 22-3. Each logic function has four inputs and one output. The four inputs are the four data gate outputs of the previous stage. The output is fed to the inversion stage and from there to other peripherals, an output pin, and back to the CLCx itself. 22.1.4 OUTPUT POLARITY The last stage in the configurable logic cell is the output polarity. Setting the LCxPOL bit of the CLCxCON register inverts the output signal from the logic stage. Changing the polarity while the interrupts are enabled will cause an interrupt for the resulting output transition. It is possible (but not recommended) to select both the true and negated values of an input. When this is done, the gate output is zero, regardless of the other inputs, but may emit logic glitches (transient-induced pulses). If the output of the channel must be zero or one, the recommended method is to set all gate bits to zero and use the gate polarity bit to set the desired level. Data gating is configured with the logic gate select registers as follows: • • • • Gate 1: CLCxGLS0 (Register 22-5) Gate 2: CLCxGLS1 (Register 22-6) Gate 3: CLCxGLS2 (Register 22-7) Gate 4: CLCxGLS3 (Register 22-8) Register number suffixes are different than the gate numbers because other variations of this module have multiple gate selections in the same register.  2011-2015 Microchip Technology Inc. DS40001615C-page 159 PIC12(L)F1501 22.1.5 CLCx SETUP STEPS The following steps should be followed when setting up the CLCx: • Disable CLCx by clearing the LCxEN bit. • Select desired inputs using CLCxSEL0 and CLCxSEL1 registers (See Table 22-3). • Clear any associated ANSEL bits. • Set all TRIS bits associated with inputs. • Clear all TRIS bits associated with outputs. • Enable the chosen inputs through the four gates using CLCxGLS0, CLCxGLS1, CLCxGLS2, and CLCxGLS3 registers. • Select the gate output polarities with the LCxPOLy bits of the CLCxPOL register. • Select the desired logic function with the LCxMODE bits of the CLCxCON register. • Select the desired polarity of the logic output with the LCxPOL bit of the CLCxPOL register. (This step may be combined with the previous gate output polarity step). • If driving a device, set the LCxOE bit in the CLCxCON register and also clear the TRIS bit corresponding to that output. • If interrupts are desired, configure the following bits: - Set the LCxINTP bit in the CLCxCON register for rising event. - Set the LCxINTN bit in the CLCxCON register or falling event. - Set the CLCxIE bit of the associated PIE registers. - Set the GIE and PEIE bits of the INTCON register. • Enable the CLCx by setting the LCxEN bit of the CLCxCON register. 22.2 CLCx Interrupts An interrupt will be generated upon a change in the output value of the CLCx when the appropriate interrupt enables are set. A rising edge detector and a falling edge detector are present in each CLC for this purpose. The CLCxIF bit of the associated PIR registers will be set when either edge detector is triggered and its associated enable bit is set. The LCxINTP enables rising edge interrupts and the LCxINTN bit enables falling edge interrupts. Both are located in the CLCxCON register. To fully enable the interrupt, set the following bits: • LCxON bit of the CLCxCON register • CLCxIE bit of the associated PIE registers • LCxINTP bit of the CLCxCON register (for a rising edge detection) • LCxINTN bit of the CLCxCON register (for a falling edge detection) • PEIE and GIE bits of the INTCON register The CLCxIF bit of the associated PIR registers, must be cleared in software as part of the interrupt service. If another edge is detected while this flag is being cleared, the flag will still be set at the end of the sequence. 22.3 Output Mirror Copies Mirror copies of all LCxCON output bits are contained in the CLCxDATA register. Reading this register reads the outputs of all CLCs simultaneously. This prevents any reading skew introduced by testing or reading the CLCxOUT bits in the individual CLCxCON registers. 22.4 Effects of a Reset The CLCxCON register is cleared to zero as the result of a Reset. All other selection and gating values remain unchanged. 22.5 Operation During Sleep The CLC module operates independently from the system clock and will continue to run during Sleep, provided that the input sources selected remain active. The HFINTOSC remains active during Sleep when the CLC module is enabled and the HFINTOSC is selected as an input source, regardless of the system clock source selected. In other words, if the HFINTOSC is simultaneously selected as the system clock and as a CLC input source, when the CLC is enabled, the CPU will go idle during Sleep, but the CLC will continue to operate and the HFINTOSC will remain active. This will have a direct effect on the Sleep mode current. DS40001615C-page 160  2011-2015 Microchip Technology Inc. PIC12(L)F1501 FIGURE 22-2: LCx_in[0] INPUT DATA SELECTION AND GATING Data Selection 00000 Data GATE 1 LCx_in[31] lcxd1T LCxD1G1T lcxd1N LCxD1G1N 11111 LCxD2G1T LCxD1S LCxD2G1N LCx_in[0] lcxg1 00000 LCxD3G1T lcxd2T LCxG1POL LCxD3G1N lcxd2N LCx_in[31] LCxD4G1T 11111 LCxD2S LCx_in[0] LCxD4G1N 00000 Data GATE 2 lcxg2 lcxd3T (Same as Data GATE 1) lcxd3N LCx_in[31] Data GATE 3 11111 lcxg3 LCxD3S LCx_in[0] (Same as Data GATE 1) Data GATE 4 00000 lcxg4 lcxd4T (Same as Data GATE 1) lcxd4N LCx_in[31] 11111 LCxD4S Note: All controls are undefined at power-up.  2011-2015 Microchip Technology Inc. DS40001615C-page 161 PIC12(L)F1501 FIGURE 22-3: PROGRAMMABLE LOGIC FUNCTIONS Rev. 10-000122A 7/30/2013 AND-OR OR-XOR lcxg1 lcxg1 lcxg2 lcxg2 lcxq lcxq lcxg3 lcxg3 lcxg4 lcxg4 LCxMODE = 000 LCxMODE = 001 4-input AND S-R Latch lcxg1 lcxg1 S Q lcxq Q lcxq lcxg2 lcxg2 lcxq lcxg3 lcxg3 R lcxg4 lcxg4 LCxMODE = 010 LCxMODE = 011 1-Input D Flip-Flop with S and R 2-Input D Flip-Flop with R lcxg4 lcxg2 D S lcxg4 Q lcxq D lcxg2 lcxg1 lcxg1 R R lcxg3 lcxg3 LCxMODE = 100 LCxMODE = 101 J-K Flip-Flop with R 1-Input Transparent Latch with S and R lcxg4 lcxg2 J Q lcxq lcxg2 D lcxg3 LE S Q lcxq lcxg1 lcxg4 K R lcxg3 R lcxg1 LCxMODE = 110 DS40001615C-page 162 LCxMODE = 111  2011-2015 Microchip Technology Inc. PIC12(L)F1501 22.6 Register Definitions: CLC Control REGISTER 22-1: CLCxCON: CONFIGURABLE LOGIC CELL CONTROL REGISTER R/W-0/0 R/W-0/0 R-0/0 R/W-0/0 R/W-0/0 LCxEN LCxOE LCxOUT LCxINTP LCxINTN R/W-0/0 R/W-0/0 R/W-0/0 LCxMODE bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7 LCxEN: Configurable Logic Cell Enable bit 1 = Configurable logic cell is enabled and mixing input signals 0 = Configurable logic cell is disabled and has logic zero output bit 6 LCxOE: Configurable Logic Cell Output Enable bit 1 = Configurable logic cell port pin output enabled 0 = Configurable logic cell port pin output disabled bit 5 LCxOUT: Configurable Logic Cell Data Output bit Read-only: logic cell output data, after LCxPOL; sampled from lcx_out wire. bit 4 LCxINTP: Configurable Logic Cell Positive Edge Going Interrupt Enable bit 1 = CLCxIF will be set when a rising edge occurs on lcx_out 0 = CLCxIF will not be set bit 3 LCxINTN: Configurable Logic Cell Negative Edge Going Interrupt Enable bit 1 = CLCxIF will be set when a falling edge occurs on lcx_out 0 = CLCxIF will not be set bit 2-0 LCxMODE: Configurable Logic Cell Functional Mode bits 111 = Cell is 1-input transparent latch with S and R 110 = Cell is J-K flip-flop with R 101 = Cell is 2-input D flip-flop with R 100 = Cell is 1-input D flip-flop with S and R 011 = Cell is S-R latch 010 = Cell is 4-input AND 001 = Cell is OR-XOR 000 = Cell is AND-OR  2011-2015 Microchip Technology Inc. DS40001615C-page 163 PIC12(L)F1501 REGISTER 22-2: CLCxPOL: SIGNAL POLARITY CONTROL REGISTER R/W-0/0 U-0 U-0 U-0 R/W-x/u R/W-x/u R/W-x/u R/W-x/u LCxPOL — — — LCxG4POL LCxG3POL LCxG2POL LCxG1POL bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7 LCxPOL: LCOUT Polarity Control bit 1 = The output of the logic cell is inverted 0 = The output of the logic cell is not inverted bit 6-4 Unimplemented: Read as ‘0’ bit 3 LCxG4POL: Gate 4 Output Polarity Control bit 1 = The output of gate 4 is inverted when applied to the logic cell 0 = The output of gate 4 is not inverted bit 2 LCxG3POL: Gate 3 Output Polarity Control bit 1 = The output of gate 3 is inverted when applied to the logic cell 0 = The output of gate 3 is not inverted bit 1 LCxG2POL: Gate 2 Output Polarity Control bit 1 = The output of gate 2 is inverted when applied to the logic cell 0 = The output of gate 2 is not inverted bit 0 LCxG1POL: Gate 1 Output Polarity Control bit 1 = The output of gate 1 is inverted when applied to the logic cell 0 = The output of gate 1 is not inverted DS40001615C-page 164  2011-2015 Microchip Technology Inc. PIC12(L)F1501 REGISTER 22-3: U-0 CLCxSEL0: MULTIPLEXER DATA 1 AND 2 SELECT REGISTER R/W-x/u R/W-x/u R/W-x/u LCxD2S(1) — U-0 — R/W-x/u R/W-x/u R/W-x/u LCxD1S(1) bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7 Unimplemented: Read as ‘0’ bit 6-4 LCxD2S: Input Data 2 Selection Control bits(1) 111 = LCx_in[11] is selected for lcxd2 110 = LCx_in[10] is selected for lcxd2 101 = LCx_in[9] is selected for lcxd2 100 = LCx_in[8] is selected for lcxd2 011 = LCx_in[7] is selected for lcxd2 010 = LCx_in[6] is selected for lcxd2 001 = LCx_in[5] is selected for lcxd2 000 = LCx_in[4] is selected for lcxd2 bit 3 Unimplemented: Read as ‘0’ bit 2-0 LCxD1S: Input Data 1 Selection Control bits(1) 111 = LCx_in[7] is selected for lcxd1 110 = LCx_in[6] is selected for lcxd1 101 = LCx_in[5] is selected for lcxd1 100 = LCx_in[4] is selected for lcxd1 011 = LCx_in[3] is selected for lcxd1 010 = LCx_in[2] is selected for lcxd1 001 = LCx_in[1] is selected for lcxd1 000 = LCx_in[0] is selected for lcxd1 Note 1: See Table 22-1 for signal names associated with inputs.  2011-2015 Microchip Technology Inc. DS40001615C-page 165 PIC12(L)F1501 REGISTER 22-4: U-0 CLCxSEL1: MULTIPLEXER DATA 3 AND 4 SELECT REGISTER R/W-x/u R/W-x/u R/W-x/u (1) — LCxD4S U-0 — R/W-x/u R/W-x/u R/W-x/u (1) LCxD3S bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7 Unimplemented: Read as ‘0’ bit 6-4 LCxD4S: Input Data 4 Selection Control bits(1) 111 = LCx_in[3] is selected for lcxd4 110 = LCx_in[2] is selected for lcxd4 101 = LCx_in[1] is selected for lcxd4 100 = LCx_in[0] is selected for lcxd4 011 = LCx_in[15] is selected for lcxd4 010 = LCx_in[14] is selected for lcxd4 001 = LCx_in[13] is selected for lcxd4 000 = LCx_in[12] is selected for lcxd4 bit 3 Unimplemented: Read as ‘0’ bit 2-0 LCxD3S: Input Data 3 Selection Control bits(1) 111 = LCx_in[15] is selected for lcxd3 110 = LCx_in[14] is selected for lcxd3 101 = LCx_in[13] is selected for lcxd3 100 = LCx_in[12] is selected for lcxd3 011 = LCx_in[11] is selected for lcxd3 010 = LCx_in[10] is selected for lcxd3 001 = LCx_in[9] is selected for lcxd3 000 = LCx_in[8] is selected for lcxd3 Note 1: See Table 22-1 for signal names associated with inputs. DS40001615C-page 166  2011-2015 Microchip Technology Inc. PIC12(L)F1501 REGISTER 22-5: CLCxGLS0: GATE 1 LOGIC SELECT REGISTER R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u LCxG1D4T LCxG1D4N LCxG1D3T LCxG1D3N LCxG1D2T LCxG1D2N LCxG1D1T LCxG1D1N bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7 LCxG1D4T: Gate 1 Data 4 True (non-inverted) bit 1 = lcxd4T is gated into lcxg1 0 = lcxd4T is not gated into lcxg1 bit 6 LCxG1D4N: Gate 1 Data 4 Negated (inverted) bit 1 = lcxd4N is gated into lcxg1 0 = lcxd4N is not gated into lcxg1 bit 5 LCxG1D3T: Gate 1 Data 3 True (non-inverted) bit 1 = lcxd3T is gated into lcxg1 0 = lcxd3T is not gated into lcxg1 bit 4 LCxG1D3N: Gate 1 Data 3 Negated (inverted) bit 1 = lcxd3N is gated into lcxg1 0 = lcxd3N is not gated into lcxg1 bit 3 LCxG1D2T: Gate 1 Data 2 True (non-inverted) bit 1 = lcxd2T is gated into lcxg1 0 = lcxd2T is not gated into lcxg1 bit 2 LCxG1D2N: Gate 1 Data 2 Negated (inverted) bit 1 = lcxd2N is gated into lcxg1 0 = lcxd2N is not gated into lcxg1 bit 1 LCxG1D1T: Gate 1 Data 1 True (non-inverted) bit 1 = lcxd1T is gated into lcxg1 0 = lcxd1T is not gated into lcxg1 bit 0 LCxG1D1N: Gate 1 Data 1 Negated (inverted) bit 1 = lcxd1N is gated into lcxg1 0 = lcxd1N is not gated into lcxg1  2011-2015 Microchip Technology Inc. DS40001615C-page 167 PIC12(L)F1501 REGISTER 22-6: CLCxGLS1: GATE 2 LOGIC SELECT REGISTER R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u LCxG2D4T LCxG2D4N LCxG2D3T LCxG2D3N LCxG2D2T LCxG2D2N LCxG2D1T LCxG2D1N bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7 LCxG2D4T: Gate 2 Data 4 True (non-inverted) bit 1 = lcxd4T is gated into lcxg2 0 = lcxd4T is not gated into lcxg2 bit 6 LCxG2D4N: Gate 2 Data 4 Negated (inverted) bit 1 = lcxd4N is gated into lcxg2 0 = lcxd4N is not gated into lcxg2 bit 5 LCxG2D3T: Gate 2 Data 3 True (non-inverted) bit 1 = lcxd3T is gated into lcxg2 0 = lcxd3T is not gated into lcxg2 bit 4 LCxG2D3N: Gate 2 Data 3 Negated (inverted) bit 1 = lcxd3N is gated into lcxg2 0 = lcxd3N is not gated into lcxg2 bit 3 LCxG2D2T: Gate 2 Data 2 True (non-inverted) bit 1 = lcxd2T is gated into lcxg2 0 = lcxd2T is not gated into lcxg2 bit 2 LCxG2D2N: Gate 2 Data 2 Negated (inverted) bit 1 = lcxd2N is gated into lcxg2 0 = lcxd2N is not gated into lcxg2 bit 1 LCxG2D1T: Gate 2 Data 1 True (non-inverted) bit 1 = lcxd1T is gated into lcxg2 0 = lcxd1T is not gated into lcxg2 bit 0 LCxG2D1N: Gate 2 Data 1 Negated (inverted) bit 1 = lcxd1N is gated into lcxg2 0 = lcxd1N is not gated into lcxg2 DS40001615C-page 168  2011-2015 Microchip Technology Inc. PIC12(L)F1501 REGISTER 22-7: CLCxGLS2: GATE 3 LOGIC SELECT REGISTER R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u LCxG3D4T LCxG3D4N LCxG3D3T LCxG3D3N LCxG3D2T LCxG3D2N LCxG3D1T LCxG3D1N bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7 LCxG3D4T: Gate 3 Data 4 True (non-inverted) bit 1 = lcxd4T is gated into lcxg3 0 = lcxd4T is not gated into lcxg3 bit 6 LCxG3D4N: Gate 3 Data 4 Negated (inverted) bit 1 = lcxd4N is gated into lcxg3 0 = lcxd4N is not gated into lcxg3 bit 5 LCxG3D3T: Gate 3 Data 3 True (non-inverted) bit 1 = lcxd3T is gated into lcxg3 0 = lcxd3T is not gated into lcxg3 bit 4 LCxG3D3N: Gate 3 Data 3 Negated (inverted) bit 1 = lcxd3N is gated into lcxg3 0 = lcxd3N is not gated into lcxg3 bit 3 LCxG3D2T: Gate 3 Data 2 True (non-inverted) bit 1 = lcxd2T is gated into lcxg3 0 = lcxd2T is not gated into lcxg3 bit 2 LCxG3D2N: Gate 3 Data 2 Negated (inverted) bit 1 = lcxd2N is gated into lcxg3 0 = lcxd2N is not gated into lcxg3 bit 1 LCxG3D1T: Gate 3 Data 1 True (non-inverted) bit 1 = lcxd1T is gated into lcxg3 0 = lcxd1T is not gated into lcxg3 bit 0 LCxG3D1N: Gate 3 Data 1 Negated (inverted) bit 1 = lcxd1N is gated into lcxg3 0 = lcxd1N is not gated into lcxg3  2011-2015 Microchip Technology Inc. DS40001615C-page 169 PIC12(L)F1501 REGISTER 22-8: CLCxGLS3: GATE 4 LOGIC SELECT REGISTER R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u LCxG4D4T LCxG4D4N LCxG4D3T LCxG4D3N LCxG4D2T LCxG4D2N LCxG4D1T LCxG4D1N bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7 LCxG4D4T: Gate 4 Data 4 True (non-inverted) bit 1 = lcxd4T is gated into lcxg4 0 = lcxd4T is not gated into lcxg4 bit 6 LCxG4D4N: Gate 4 Data 4 Negated (inverted) bit 1 = lcxd4N is gated into lcxg4 0 = lcxd4N is not gated into lcxg4 bit 5 LCxG4D3T: Gate 4 Data 3 True (non-inverted) bit 1 = lcxd3T is gated into lcxg4 0 = lcxd3T is not gated into lcxg4 bit 4 LCxG4D3N: Gate 4 Data 3 Negated (inverted) bit 1 = lcxd3N is gated into lcxg4 0 = lcxd3N is not gated into lcxg4 bit 3 LCxG4D2T: Gate 4 Data 2 True (non-inverted) bit 1 = lcxd2T is gated into lcxg4 0 = lcxd2T is not gated into lcxg4 bit 2 LCxG4D2N: Gate 4 Data 2 Negated (inverted) bit 1 = lcxd2N is gated into lcxg4 0 = lcxd2N is not gated into lcxg4 bit 1 LCxG4D1T: Gate 4 Data 1 True (non-inverted) bit 1 = lcxd1T is gated into lcxg4 0 = lcxd1T is not gated into lcxg4 bit 0 LCxG4D1N: Gate 4 Data 1 Negated (inverted) bit 1 = lcxd1N is gated into lcxg4 0 = lcxd1N is not gated into lcxg4 DS40001615C-page 170  2011-2015 Microchip Technology Inc. PIC12(L)F1501 REGISTER 22-9: CLCDATA: CLC DATA OUTPUT U-0 U-0 U-0 U-0 U-0 U-0 R-0 R-0 — — — — — — MLC2OUT MLC1OUT bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7-2 Unimplemented: Read as ‘0’ bit 1 MLC2OUT: Mirror copy of LC2OUT bit bit 0 MLC1OUT: Mirror copy of LC1OUT bit  2011-2015 Microchip Technology Inc. DS40001615C-page 171 PIC12(L)F1501 TABLE 22-3: SUMMARY OF REGISTERS ASSOCIATED WITH CLCx Bit7 Bit6 Bit5 Bit4 BIt3 Bit2 Bit1 Bit0 Register on Page — — — ANSA4 — ANSA2 ANSA1 ANSA0 99 CLC1CON LC1EN LC1OE LC1OUT LC1INTP LC1INTN CLCDATA — — — — — MLC3OUT MLC2OUT MLC1OUT 171 CLC1GLS0 LC1G1D4T LC1G1D4N LC1G1D3T LC1G1D3N LC1G1D2T LC1G1D2N LC1G1D1T LC1G1D1N 167 CLC1GLS1 LC1G2D4T LC1G2D4N LC1G2D3T LC1G2D3N LC1G2D2T LC1G2D2N LC1G2D1T LC1G2D1N 168 CLC1GLS2 LC1G3D4T LC1G3D4N LC1G3D3T LC1G3D3N LC1G3D2T LC1G3D2N LC1G3D1T LC1G3D1N 169 CLC1GLS3 LC1G4D4T LC1G4D4N LC1G4D3T LC1G4D3N LC1G4D2T LC1G4D2N LC1G4D1T LC1G4D1N 170 CLC1POL LC1POL — — — LC1G4POL LC1G3POL LC1G2POL LC1G1POL CLC1SEL0 — LC1D2S — LC1D1S 165 CLC1SEL1 — LC1D4S — LC1D3S 166 CLC2CON LC2EN LC2OE LC2OUT LC2INTP LC2INTN LC2MODE CLC2GLS0 LC2G1D4T LC2G1D4N LC2G1D3T LC2G1D3N LC2G1D2T LC2G1D2N LC2G1D1T LC2G1D1N 167 CLC2GLS1 LC2G2D4T LC2G2D4N LC2G2D3T LC2G2D3N LC2G2D2T LC2G2D2N LC2G2D1T LC2G2D1N 168 CLC2GLS2 LC2G3D4T LC2G3D4N LC2G3D3T LC2G3D3N LC2G3D2T LC2G3D2N LC2G3D1T LC2G3D1N 169 CLC2GLS3 LC2G4D4T LC2G4D4N LC2G4D3T LC2G4D3N LC2G4D2T LC2G4D2N LC2G4D1T LC2G4D1N 170 CLC2POL LC2POL — — — LC2G4POL LC2G3POL LC2G2POL LC2G1POL CLC2SEL0 — LC2D2S — LC2D1S CLC2SEL1 — LC2D4S — LC2D3S Name ANSELA LC1MODE 163 164 163 164 165 166 GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 64 PIE3 — — — — — — CLC2IE CLC1IE 67 PIR3 — — — — — — CLC2IF CLC1IF 70 TRISA — — TRISA5 TRISA4 —(1) TRISA2 TRISA1 TRISA0 98 INTCON Legend: Note 1: — = unimplemented read as ‘0’,. Shaded cells are not used for CLC module. Unimplemented, read as ‘1’. DS40001615C-page 172  2011-2015 Microchip Technology Inc. PIC12(L)F1501 23.0 NUMERICALLY CONTROLLED OSCILLATOR (NCO) MODULE The Numerically Controlled Oscillator (NCOx) module is a timer that uses the overflow from the addition of an increment value to divide the input frequency. The advantage of the addition method over simple counter driven timer is that the resolution of division does not vary with the divider value. The NCOx is most useful for applications that require frequency accuracy and fine resolution at a fixed duty cycle. Features of the NCOx include: • • • • • • • 16-bit increment function Fixed Duty Cycle (FDC) mode Pulse Frequency (PF) mode Output pulse width control Multiple clock input sources Output polarity control Interrupt capability Figure 23-1 is a simplified block diagram of the NCOx module. 23.1 NCOx Operation The NCOx operates by repeatedly adding a fixed value to an accumulator. Additions occur at the input clock rate. The accumulator will overflow with a carry periodically, which is the raw NCOx output (NCO_overflow). This effectively reduces the input clock by the ratio of the addition value to the maximum accumulator value. See Equation 23-1. The NCOx output can be further modified by stretching the pulse or toggling a flip-flop. The modified NCOx output is then distributed internally to other peripherals and optionally output to a pin. The accumulator overflow also generates an interrupt (NCO_interrupt). 23.1.2 ACCUMULATOR The accumulator is a 20-bit register. Read and write access to the accumulator is available through three registers: • NCOxACCL • NCOxACCH • NCOxACCU 23.1.3 ADDER The NCOx adder is a full adder, which operates independently from the system clock. The addition of the previous result and the increment value replaces the accumulator value on the rising edge of each input clock. 23.1.4 INCREMENT REGISTERS The increment value is stored in two 8-bit registers making up a 16-bit increment. In order of LSB to MSB they are: • NCOxINCL • NCOxINCH When the NCO module is enabled, the NCOxINCH should be written first, then the NCOxINCL register. Writing to the NCOxINCL register initiates the increment buffer registers to be loaded simultaneously on the second rising edge of the NCOx_clk signal. The registers are readable and writable. The increment registers are double-buffered to allow value changes to be made without first disabling the NCOx module. When the NCO module is disabled, the increment buffers are loaded immediately after a write to the increment registers. Note: The increment buffer registers are not user-accessible. The NCOx period changes in discrete steps to create an average frequency. This output depends on the ability of the receiving circuit (i.e., CWG or external resonant converter circuitry) to average the NCOx output to reduce uncertainty. 23.1.1 NCOx CLOCK SOURCES Clock sources available to the NCOx include: • HFINTOSC • FOSC • LC1_out • CLKIN pin The NCOx clock source is selected by configuring the NxCKS bits in the NCOxCLK register. EQUATION 23-1: NCO Clock Frequency  Increment Value F OVERFLOW = --------------------------------------------------------------------------------------------------------------n 2 n = Accumulator width in bits  2011-2015 Microchip Technology Inc. DS40001615C-page 173 NUMERICALLY CONTROLLED OSCILLATOR (NCOx) MODULE SIMPLIFIED BLOCK DIAGRAM NCOxINCH NCOxINCL Rev. 10-000028A 7/30/2013 16 (1) INCBUFH INCBUFL 16 NCO_overflow HFINTOSC 00 FOSC 01 LCx_out 10 20 Adder 20 NCOx_clk NCOxACCU NCOxACCH NCOxACCL 20 11 NCO1CLK NxCKS NCO_interrupt set bit NCOxIF 2 Fixed Duty Cycle Mode Circuitry D Q D Status Q 0 _ 1 Q NxPFM NxOE TRIS bit NCOx NxPOL NCOx_out  2011-2015 Microchip Technology Inc. EN S Q Ripple Counter R Q R 3 NxPWS Note 1: D _ Pulse Frequency Mode Circuitry Q To Peripherals NxOUT Q1 The increment registers are double-buffered to allow for value changes to be made without first disabling the NCO module. The full increment value is loaded into the buffer registers on the second rising edge of the NCOx_clk signal that occurs immediately after a write to NCOxINCL register. The buffers are not user-accessible and are shown here for reference. PIC12(L)F1501 DS40001615C-page 174 FIGURE 23-1: PIC12(L)F1501 23.2 Fixed Duty Cycle (FDC) Mode In Fixed Duty Cycle (FDC) mode, every time the accumulator overflows (NCO_overflow), the output is toggled. This provides a 50% duty cycle, provided that the increment value remains constant. For more information, see Figure 23-2. The FDC mode is selected by clearing the NxPFM bit in the NCOxCON register. 23.3 Pulse Frequency (PF) Mode In Pulse Frequency (PF) mode, every time the accumulator overflows (NCO_overflow), the output becomes active for one or more clock periods. Once the clock period expires, the output returns to an inactive state. This provides a pulsed output. The output becomes active on the rising clock edge immediately following the overflow event. For more information, see Figure 23-2. The value of the active and inactive states depends on the polarity bit, NxPOL in the NCOxCON register. The PF mode is selected by setting the NxPFM bit in the NCOxCON register. 23.3.1 OUTPUT PULSE WIDTH CONTROL When operating in PF mode, the active state of the output can vary in width by multiple clock periods. Various pulse widths are selected with the NxPWS bits in the NCOxCLK register. When the selected pulse width is greater than the accumulator overflow time frame, the output of the NCOx operation is indeterminate. 23.4 Output Polarity Control The last stage in the NCOx module is the output polarity. The NxPOL bit in the NCOxCON register selects the output polarity. Changing the polarity while the interrupts are enabled will cause an interrupt for the resulting output transition. The NCOx output can be used internally by source code or other peripherals. Accomplish this by reading the NxOUT (read-only) bit of the NCOxCON register. 23.5 Interrupts When the accumulator overflows (NCO_overflow), the NCOx Interrupt Flag bit, NCOxIF, of the PIRx register is set. To enable the interrupt event (NCO_interrupt), the following bits must be set: • • • • NxEN bit of the NCOxCON register NCOxIE bit of the PIEx register PEIE bit of the INTCON register GIE bit of the INTCON register The interrupt must be cleared by software by clearing the NCOxIF bit in the Interrupt Service Routine. 23.6 Effects of a Reset All of the NCOx registers are cleared to zero as the result of a Reset. 23.7 Operation In Sleep The NCO module operates independently from the system clock and will continue to run during Sleep, provided that the clock source selected remains active. The HFINTOSC remains active during Sleep when the NCO module is enabled and the HFINTOSC is selected as the clock source, regardless of the system clock source selected. In other words, if the HFINTOSC is simultaneously selected as the system clock and the NCO clock source, when the NCO is enabled, the CPU will go idle during Sleep, but the NCO will continue to operate and the HFINTOSC will remain active. This will have a direct effect on the Sleep mode current. 23.8 Alternate Pin Locations This module incorporates I/O pins that can be moved to other locations with the use of the alternate pin function register, APFCON. To determine which pins can be moved and what their default locations are upon a Reset, see Section 11.1 “Alternate Pin Function” for more information. The NCOx output signal is available to the following peripherals: • CLC • CWG  2011-2015 Microchip Technology Inc. DS40001615C-page 175 NCO – FIXED DUTY CYCLE (FDC) AND PULSE FREQUENCY MODE (PFM) OUTPUT OPERATION DIAGRAM Rev. 10-000029A 11/7/2013 x k e x ent e x ator e erflow Status errupt  2011-2015 Microchip Technology Inc. utput ode utput de WS = utput de WS = 4000h 00000h 04000h 08000h 4000h FC000h 00000h 04000h 08000h 4000h FC000h 00000h 04000h 08000h PIC12(L)F1501 DS40001615C-page 176 FIGURE 23-2: PIC12(L)F1501 23.9 Register Definitions: NCOx Control Registers REGISTER 23-1: NCOxCON: NCOx CONTROL REGISTER R/W-0/0 R/W-0/0 R-0/0 R/W-0/0 U-0 U-0 U-0 R/W-0/0 NxEN NxOE NxOUT NxPOL — — — NxPFM bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7 NxEN: NCOx Enable bit 1 = NCOx module is enabled 0 = NCOx module is disabled bit 6 NxOE: NCOx Output Enable bit 1 = NCOx output pin is enabled 0 = NCOx output pin is disabled bit 5 NxOUT: NCOx Output bit 1 = NCOx output is high 0 = NCOx output is low bit 4 NxPOL: NCOx Polarity bit 1 = NCOx output signal is active low (inverted) 0 = NCOx output signal is active high (non-inverted) bit 3-1 Unimplemented: Read as ‘0’ bit 0 NxPFM: NCOx Pulse Frequency Mode bit 1 = NCOx operates in Pulse Frequency mode 0 = NCOx operates in Fixed Duty Cycle mode REGISTER 23-2: R/W-0/0 NCOxCLK: NCOx INPUT CLOCK CONTROL REGISTER R/W-0/0 R/W-0/0 NxPWS(1, 2) U-0 U-0 U-0 — — — R/W-0/0 R/W-0/0 NxCKS bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7-5 NxPWS: NCOx Output Pulse Width Select bits(1, 2) 111 = 128 NCOx clock periods 110 = 64 NCOx clock periods 101 = 32 NCOx clock periods 100 = 16 NCOx clock periods 011 = 8 NCOx clock periods 010 = 4 NCOx clock periods 001 = 2 NCOx clock periods 000 = 1 NCOx clock periods bit 4-2 Unimplemented: Read as ‘0’ bit 1-0 NxCKS: NCOx Clock Source Select bits 11 = NCO1CLK pin 10 = LC1_out 01 = FOSC 00 = HFINTOSC (16 MHz) Note 1: NxPWS applies only when operating in Pulse Frequency mode. 2: If NCOx pulse width is greater than NCO_overflow period, operation is indeterminate.  2011-2015 Microchip Technology Inc. DS40001615C-page 177 PIC12(L)F1501 REGISTER 23-3: R/W-0/0 NCOxACCL: NCOx ACCUMULATOR REGISTER – LOW BYTE R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 NCOxACC bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7-0 NCOxACC: NCOx Accumulator, Low Byte REGISTER 23-4: R/W-0/0 NCOxACCH: NCOx ACCUMULATOR REGISTER – HIGH BYTE R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 NCOxACC bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7-0 NCOxACC: NCOx Accumulator, High Byte REGISTER 23-5: NCOxACCU: NCOx ACCUMULATOR REGISTER – UPPER BYTE U-0 U-0 U-0 U-0 — — — — R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 NCOxACC bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7-4 Unimplemented: Read as ‘0’ bit 3-0 NCOxACC: NCOx Accumulator, Upper Byte DS40001615C-page 178  2011-2015 Microchip Technology Inc. PIC12(L)F1501 REGISTER 23-6: R/W-0/0 NCOxINCL: NCOx INCREMENT REGISTER – LOW BYTE(1) R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-1/1 NCOxINC bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7-0 NCOxINC: NCOx Increment, Low Byte Note 1: Write the NCOxINCH register first, then the NCOxINCL register. See 23.1.4 “Increment Registers” for more information. REGISTER 23-7: R/W-0/0 NCOxINCH: NCOx INCREMENT REGISTER – HIGH BYTE(1) R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 NCOxINC bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7-0 NCOxINC: NCOx Increment, High Byte Note 1: Write the NCOxINCH register first, then the NCOxINCL register. See 23.1.4 “Increment Registers” for more information. TABLE 23-1: Name SUMMARY OF REGISTERS ASSOCIATED WITH NCOx Bit 7 Bit 6 APFCON CWG1BSEL CWGA1SEL INTCON GIE PEIE Bit 5 Bit 4 Bit 3 — — TMR0IE INTE Bit 1 Bit 0 T1GSEL — CLC1SEL NCO1SEL 96 IOCIE TMR0IF INTF IOCIF 64 NCO1ACCH NCO1ACC NCO1ACCL NCO1ACC — NCO1ACCU NCO1CLK NCO1CON N1EN N1OE 178 178 NCO1ACC N1PWS N1OUT Register on Page Bit 2 — — — N1POL — — NCO1INCH NCO1INC NCO1INCL NCO1INC 178 N1CKS — N1PFM 177 177 179 179 PIE2 — — C1IE — — NCO1IE — — 66 PIR2 — — C1IF — — NCO1IF — — 69 TRISA — — TRISA5 TRISA4 —(1) TRISA2 TRISA1 TRISA0 98 Legend: Note 1: x = unknown, u = unchanged, — = unimplemented read as ‘0’, q = value depends on condition. Shaded cells are not used for NCOx module. Unimplemented, read as ‘1’.  2011-2015 Microchip Technology Inc. DS40001615C-page 179 PIC12(L)F1501 24.0 COMPLEMENTARY WAVEFORM GENERATOR (CWG) MODULE The Complementary Waveform Generator (CWG) produces a complementary waveform with dead-band delay from a selection of input sources. 24.3 Selectable Input Sources The CWG generates the output waveforms from the input sources in Table 24-1. TABLE 24-1: The CWG module has the following features: • • • • • Selectable dead-band clock source control Selectable input sources Output enable control Output polarity control Dead-band control with independent 6-bit rising and falling edge dead-band counters • Auto-shutdown control with: - Selectable shutdown sources - Auto-restart enable - Auto-shutdown pin override control 24.1 Source Peripheral Signal Name Comparator C1 C1OUT_sync PWM1 PWM1_out PWM2 PWM2_out PWM3 PWM3_out PWM4 PWM4_out NCO1 NCO1_out CLC1 LC1_out The input sources are selected using the GxIS bits in the CWGxCON1 register (Register 24-2). Fundamental Operation The CWG generates two output waveforms from the selected input source. The off-to-on transition of each output can be delayed from the on-to-off transition of the other output, thereby, creating a time delay immediately where neither output is driven. This is referred to as dead time and is covered in Section 24.5 “Dead-Band Control”. A typical operating waveform, with dead band, generated from a single input signal is shown in Figure 24-2. It may be necessary to guard against the possibility of circuit faults or a feedback event arriving too late or not at all. In this case, the active drive must be terminated before the Fault condition causes damage. This is referred to as auto-shutdown and is covered in Section 24.9 “Auto-Shutdown Control”. 24.2 SELECTABLE INPUT SOURCES Clock Source The CWG module allows the following clock sources to be selected: • Fosc (system clock) • HFINTOSC (16 MHz only) The clock sources are selected using the G1CS0 bit of the CWGxCON0 register (Register 24-1). DS40001615C-page 180 24.4 Output Control Immediately after the CWG module is enabled, the complementary drive is configured with both CWGxA and CWGxB drives cleared. 24.4.1 OUTPUT ENABLES Each CWG output pin has individual output enable control. Output enables are selected with the GxOEA and GxOEB bits of the CWGxCON0 register. When an output enable control is cleared, the module asserts no control over the pin. When an output enable is set, the override value or active PWM waveform is applied to the pin per the port priority selection. The output pin enables are dependent on the module enable bit, GxEN. When GxEN is cleared, CWG output enables and CWG drive levels have no effect. 24.4.2 POLARITY CONTROL The polarity of each CWG output can be selected independently. When the output polarity bit is set, the corresponding output is active-high. Clearing the output polarity bit configures the corresponding output as active-low. However, polarity does not affect the override levels. Output polarity is selected with the GxPOLA and GxPOLB bits of the CWGxCON0 register.  2011-2015 Microchip Technology Inc. SIMPLIFIED CWG BLOCK DIAGRAM Rev. 10-000123B 7/10/2015 GxASDLA 2 00 GxCS 1 FOSC 10 ‘1' 11 CWGxDBR cwg_clock GxASDLA = 01 6 HFINTOSC GxIS ‘0' Status C1OUT_async Reserved PWM1_out PWM2_out PWM3_out PWM4_out NCO1_out LC1_out = 0 R S TRISx Q GxOEA GxPOLA Input Source CWGxDBF R 6 Q GxOEB EN = 0 R 1 GxPOLB 00 CWG1FLT (INT pin) GxASDSFLT  2011-2015 Microchip Technology Inc. C1OUT_async GxASDSC1 S Q D S R GxARSEN 10 ‘1' 11 shutdown Q GxASDLB GxASE Data Bit WRITE ‘0' GxASE Auto-Shutdown Source LC2_out GxASDSCLC2 x = CWG module number CWGxA 1 EN 3 Q set dominate 2 GxASDLB = 01 TRISx CWGxB PIC12(L)F1501 DS40001615C-page 181 FIGURE 24-1: PIC12(L)F1501 FIGURE 24-2: TYPICAL CWG OPERATION WITH PWM1 (NO AUTO-SHUTDOWN) cwg_clock PWM1 CWGxA Rising Edge Dead Band Falling Edge Dead Band Rising Edge Dead Band Falling Edge Dead Band Rising Edge Dead Band CWGxB 24.5 Dead-Band Control Dead-band control provides for non-overlapping output signals to prevent shoot-through current in power switches. The CWG contains two 6-bit dead-band counters. One dead-band counter is used for the rising edge of the input source control. The other is used for the falling edge of the input source control. Dead band is timed by counting CWG clock periods from zero up to the value in the rising or falling deadband counter registers. See CWGxDBR and CWGxDBF registers (Register 24-4 and Register 24-5, respectively). 24.6 Rising Edge Dead Band The rising edge dead-band delays the turn-on of the CWGxA output from when the CWGxB output is turned off. The rising edge dead-band time starts when the rising edge of the input source signal goes true. When this happens, the CWGxB output is immediately turned off and the rising edge dead-band delay time starts. When the rising edge dead-band delay time is reached, the CWGxA output is turned on. 24.7 Falling Edge Dead Band The falling edge dead band delays the turn-on of the CWGxB output from when the CWGxA output is turned off. The falling edge dead-band time starts when the falling edge of the input source goes true. When this happens, the CWGxA output is immediately turned off and the falling edge dead-band delay time starts. When the falling edge dead-band delay time is reached, the CWGxB output is turned on. The CWGxDBF register sets the duration of the deadband interval on the falling edge of the input source signal. This duration is from 0 to 64 counts of dead band. Dead band is always counted off the edge on the input source signal. A count of 0 (zero), indicates that no dead band is present. If the input source signal is not present for enough time for the count to be completed, no output will be seen on the respective output. Refer to Figure 24-3 and Figure 24-4 for examples. The CWGxDBR register sets the duration of the deadband interval on the rising edge of the input source signal. This duration is from 0 to 64 counts of dead band. Dead band is always counted off the edge on the input source signal. A count of 0 (zero), indicates that no dead band is present. If the input source signal is not present for enough time for the count to be completed, no output will be seen on the respective output. DS40001615C-page 182  2011-2015 Microchip Technology Inc.  2011-2015 Microchip Technology Inc. FIGURE 24-3: DEAD-BAND OPERATION, CWGxDBR = 01H, CWGxDBF = 02H cwg_clock Input Source CWGxA CWGxB FIGURE 24-4: DEAD-BAND OPERATION, CWGxDBR = 03H, CWGxDBF = 04H, SOURCE SHORTER THAN DEAD BAND Status cwg_clock Input Source CWGxA CWGxB DS40001615C-page 183 PIC12(L)F1501 source shorter than dead band PIC12(L)F1501 24.8 Dead-Band Uncertainty 24.9 Auto-Shutdown Control When the rising and falling edges of the input source triggers the dead-band counters, the input may be asynchronous. This will create some uncertainty in the deadband time delay. The maximum uncertainty is equal to one CWG clock period. Refer to Equation 24-1 for more detail. Auto-shutdown is a method to immediately override the CWG output levels with specific overrides that allow for safe shutdown of the circuit. The shutdown state can be either cleared automatically or held until cleared by software. EQUATION 24-1: The shutdown state can be entered by either of the following two methods: DEAD-BAND UNCERTAINTY 1 TDEADBAND_UNCERTAINTY = ----------------------------Fcwg_clock 24.9.1 SHUTDOWN • Software generated • External Input 24.9.1.1 Software Generated Shutdown Setting the GxASE bit of the CWGxCON2 register will force the CWG into the shutdown state. When auto-restart is disabled, the shutdown state will persist as long as the GxASE bit is set. Example: Fcwg_clock = 16 MHz When auto-restart is enabled, the GxASE bit will clear automatically and resume operation on the next rising edge event. See Figure 24-6. 24.9.1.2 Therefore: 1 TDEADBAND_UNCERTAINTY = ----------------------------Fcwg_clock External shutdown inputs provide the fastest way to safely suspend CWG operation in the event of a Fault condition. When any of the selected shutdown inputs goes active, the CWG outputs will immediately go to the selected override levels without software delay. Any combination of two input sources can be selected to cause a shutdown condition. The sources are: 1 = ------------------16 MHz • Comparator C1 – C1OUT_async • CLC2 – LC2_out • CWG1FLT = 62.5ns Shutdown inputs are selected in the CWGxCON2 register. (Register 24-3). Note: DS40001615C-page 184 External Input Source Shutdown inputs are level sensitive, not edge sensitive. The shutdown state cannot be cleared, except by disabling autoshutdown, as long as the shutdown input level persists.  2011-2015 Microchip Technology Inc. PIC12(L)F1501 24.10 Operation During Sleep The CWG module operates independently from the system clock and will continue to run during Sleep, provided that the clock and input sources selected remain active. The HFINTOSC remains active during Sleep, provided that the CWG module is enabled, the input source is active, and the HFINTOSC is selected as the clock source, regardless of the system clock source selected. In other words, if the HFINTOSC is simultaneously selected as the system clock and the CWG clock source, when the CWG is enabled and the input source is active, the CPU will go idle during Sleep, but the CWG will continue to operate and the HFINTOSC will remain active. 24.11.1 PIN OVERRIDE LEVELS The levels driven to the output pins, while the shutdown input is true, are controlled by the GxASDLA and GxASDLB bits of the CWGxCON1 register (Register 24-3). GxASDLA controls the CWG1A override level and GxASDLB controls the CWG1B override level. The control bit logic level corresponds to the output logic drive level while in the shutdown state. The polarity control does not apply to the override level. 24.11.2 AUTO-SHUTDOWN RESTART After an auto-shutdown event has occurred, there are two ways to have resume operation: • Software controlled • Auto-restart This will have a direct effect on the Sleep mode current. The restart method is selected with the GxARSEN bit of the CWGxCON2 register. Waveforms of software controlled and automatic restarts are shown in Figure 24-5 and Figure 24-6. 24.11 Configuring the CWG 24.11.2.1 The following steps illustrate how to properly configure the CWG to ensure a synchronous start: When the GxARSEN bit of the CWGxCON2 register is cleared, the CWG must be restarted after an auto-shutdown event by software. 1. 2. 3. 4. 5. 6. 7. 8. 9. Ensure that the TRIS control bits corresponding to CWGxA and CWGxB are set so that both are configured as inputs. Clear the GxEN bit, if not already cleared. Set desired dead-band times with the CWGxDBR and CWGxDBF registers. Setup the following controls in CWGxCON2 auto-shutdown register: • Select desired shutdown source. • Select both output overrides to the desired levels (this is necessary even if not using auto-shutdown because start-up will be from a shutdown state). • Set the GxASE bit and clear the GxARSEN bit. Select the desired input source using the CWGxCON1 register. Configure the following controls in CWGxCON0 register: • Select desired clock source. • Select the desired output polarities. • Set the output enables for the outputs to be used. Set the GxEN bit. Clear TRIS control bits corresponding to CWGxA and CWGxB to be used to configure those pins as outputs. If auto-restart is to be used, set the GxARSEN bit and the GxASE bit will be cleared automatically. Otherwise, clear the GxASE bit to start the CWG.  2011-2015 Microchip Technology Inc. Software Controlled Restart Clearing the shutdown state requires all selected shutdown inputs to be low, otherwise the GxASE bit will remain set. The overrides will remain in effect until the first rising edge event after the GxASE bit is cleared. The CWG will then resume operation. 24.11.2.2 Auto-Restart When the GxARSEN bit of the CWGxCON2 register is set, the CWG will restart from the auto-shutdown state automatically. The GxASE bit will clear automatically when all shutdown sources go low. The overrides will remain in effect until the first rising edge event after the GxASE bit is cleared. The CWG will then resume operation. DS40001615C-page 185 SHUTDOWN FUNCTIONALITY, AUTO-RESTART DISABLED (GxARSEN = 0,GxASDLA = 01, GxASDLB = 01) Shutdown Event Ceases GxASE Cleared by Software CWG Input Source Shutdown Source GxASE CWG1A Tri-State (No Pulse) CWG1B Tri-State (No Pulse) No Shutdown Output Resumes Shutdown Status FIGURE 24-6: SHUTDOWN FUNCTIONALITY, AUTO-RESTART ENABLED (GxARSEN = 1,GxASDLA = 01, GxASDLB = 01) Shutdown Event Ceases GxASE auto-cleared by hardware CWG Input Source  2011-2015 Microchip Technology Inc. Shutdown Source GxASE CWG1A Tri-State (No Pulse) CWG1B Tri-State (No Pulse) No Shutdown Shutdown Output Resumes PIC12(L)F1501 DS40001615C-page 186 FIGURE 24-5: PIC12(L)F1501 24.12 Register Definitions: CWG Control REGISTER 24-1: CWGxCON0: CWG CONTROL REGISTER 0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 U-0 U-0 R/W-0/0 GxEN GxOEB GxOEA GxPOLB GxPOLA — — GxCS0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared q = Value depends on condition bit 7 GxEN: CWGx Enable bit 1 = Module is enabled 0 = Module is disabled bit 6 GxOEB: CWGxB Output Enable bit 1 = CWGxB is available on appropriate I/O pin 0 = CWGxB is not available on appropriate I/O pin bit 5 GxOEA: CWGxA Output Enable bit 1 = CWGxA is available on appropriate I/O pin 0 = CWGxA is not available on appropriate I/O pin bit 4 GxPOLB: CWGxB Output Polarity bit 1 = Output is inverted polarity 0 = Output is normal polarity bit 3 GxPOLA: CWGxA Output Polarity bit 1 = Output is inverted polarity 0 = Output is normal polarity bit 2-1 Unimplemented: Read as ‘0’ bit 0 GxCS0: CWGx Clock Source Select bit 1 = HFINTOSC 0 = FOSC  2011-2015 Microchip Technology Inc. DS40001615C-page 187 PIC12(L)F1501 REGISTER 24-2: R/W-x/u CWGxCON1: CWG CONTROL REGISTER 1 R/W-x/u GxASDLB R/W-x/u R/W-x/u U-0 GxASDLA — R/W-0/0 R/W-0/0 R/W-0/0 GxIS bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared q = Value depends on condition bit 7-6 GxASDLB: CWGx Shutdown State for CWGxB When an auto shutdown event is present (GxASE = 1): 11 = CWGxB pin is driven to ‘1’, regardless of the setting of the GxPOLB bit. 10 = CWGxB pin is driven to ‘0’, regardless of the setting of the GxPOLB bit. 01 = CWGxB pin is tri-stated 00 = CWGxB pin is driven to its inactive state after the selected dead-band interval. GxPOLB still will control the polarity of the output. bit 5-4 GxASDLA: CWGx Shutdown State for CWGxA When an auto shutdown event is present (GxASE = 1): 11 = CWGxA pin is driven to ‘1’, regardless of the setting of the GxPOLA bit. 10 = CWGxA pin is driven to ‘0’, regardless of the setting of the GxPOLA bit. 01 = CWGxA pin is tri-stated 00 = CWGxA pin is driven to its inactive state after the selected dead-band interval. GxPOLA still will control the polarity of the output. bit 3 Unimplemented: Read as ‘0’ bit 2-0 GxIS: CWGx Input Source Select bits 111 = CLC1 – LC1_out 110 = NCO1 – NCO1_out 101 = PWM4 – PWM4_out 100 = PWM3 – PWM3_out 011 = PWM2 – PWM2_out 010 = PWM1 – PWM1_out 001 = Reserved 000 = Comparator C1 – C1OUT_async DS40001615C-page 188  2011-2015 Microchip Technology Inc. PIC12(L)F1501 REGISTER 24-3: CWGxCON2: CWG CONTROL REGISTER 2 R/W-0/0 R/W-0/0 U-0 U-0 U-0 R/W-0/0 GxASE GxARSEN — — — GxASDSC1 R/W-0/0 R/W-0/0 GxASDSFLT GxASDSCLC2 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared q = Value depends on condition bit 7 GxASE: Auto-Shutdown Event Status bit 1 = An auto-shutdown event has occurred 0 = No auto-shutdown event has occurred bit 6 GxARSEN: Auto-Restart Enable bit 1 = Auto-restart is enabled 0 = Auto-restart is disabled bit 5-3 Unimplemented: Read as ‘0’ bit 2 GxASDSC1: CWG Auto-shutdown on Comparator C1 Enable bit 1 = Shutdown when Comparator C1 output (C1OUT_async) is high 0 = Comparator C1 output has no effect on shutdown bit 1 GxASDSFLT: CWG Auto-shutdown on FLT Enable bit 1 = Shutdown when CWG1FLT input is low 0 = CWG1FLT input has no effect on shutdown bit 0 GxASDSCLC2: CWG Auto-shutdown on CLC2 Enable bit 1 = Shutdown when CLC2 output (LC2_out) is high 0 = CLC2 output has no effect on shutdown  2011-2015 Microchip Technology Inc. DS40001615C-page 189 PIC12(L)F1501 REGISTER 24-4: CWGxDBR: COMPLEMENTARY WAVEFORM GENERATOR (CWGx) RISING DEAD-BAND COUNT REGISTER U-0 U-0 — — R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u CWGxDBR bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared q = Value depends on condition bit 7-6 Unimplemented: Read as ‘0’ bit 5-0 CWGxDBR: Complementary Waveform Generator (CWGx) Rising Counts 11 1111 = 63-64 counts of dead band 11 1110 = 62-63 counts of dead band    00 0010 = 2-3 counts of dead band 00 0001 = 1-2 counts of dead band 00 0000 = 0 counts of dead band CWGxDBF: COMPLEMENTARY WAVEFORM GENERATOR (CWGx) FALLING DEAD-BAND COUNT REGISTER REGISTER 24-5: U-0 U-0 — — R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u CWGxDBF bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared q = Value depends on condition bit 7-6 Unimplemented: Read as ‘0’ bit 5-0 CWGxDBF: Complementary Waveform Generator (CWGx) Falling Counts 11 1111 = 63-64 counts of dead band 11 1110 = 62-63 counts of dead band    00 0010 = 2-3 counts of dead band 00 0001 = 1-2 counts of dead band 00 0000 = 0 counts of dead band. Dead-band generation is bypassed. DS40001615C-page 190  2011-2015 Microchip Technology Inc. PIC12(L)F1501 TABLE 24-2: Name SUMMARY OF REGISTERS ASSOCIATED WITH CWG Bit 7 ANSELA CWG1CON0 CWG1CON1 Bit 6 Bit 3 Bit 2 Bit 1 Bit 0 Register on Page — — — ANSA4 — ANSA2 ANSA1 ANSA0 99 G1OEB G1OEA G1POLB G1POLA — — G1CS0 187 G1ASDSCLC2 189 G1ASE G1ARSEN CWG1DBF — — CWG1DBR — — TRISA — — Legend: Note 1: Bit 4 G1EN G1ASDLB CWG1CON2 Bit 5 G1ASDLA — — — — G1ASDSC1 — G1IS G1ASDSFLT CWG1DBF 190 CWG1DBR TRISA5 TRISA4 —(1) TRISA2 188 190 TRISA1 TRISA0 98 x = unknown, u = unchanged, – = unimplemented locations read as ‘0’. Shaded cells are not used by CWG. Unimplemented, read as ‘1’.  2011-2015 Microchip Technology Inc. DS40001615C-page 191 PIC12(L)F1501 25.0 IN-CIRCUIT SERIAL PROGRAMMING™ (ICSP™) ICSP™ programming allows customers to manufacture circuit boards with unprogrammed devices. Programming can be done after the assembly process allowing the device to be programmed with the most recent firmware or a custom firmware. Five pins are needed for ICSP™ programming: • ICSPCLK • ICSPDAT • MCLR/VPP • VDD • VSS In Program/Verify mode the program memory, user IDs and the Configuration Words are programmed through serial communications. The ICSPDAT pin is a bidirectional I/O used for transferring the serial data and the ICSPCLK pin is the clock input. For more information on ICSP™ refer to the “PIC12(L)F1501/PIC16(L)F150X Memory Programming Specification” (DS41573). 25.1 High-Voltage Programming Entry Mode The device is placed into High-Voltage Programming Entry mode by holding the ICSPCLK and ICSPDAT pins low then raising the voltage on MCLR/VPP to VIHH. 25.2 Low-Voltage Programming Entry Mode The Low-Voltage Programming Entry mode allows the PIC® Flash MCUs to be programmed using VDD only, without high voltage. When the LVP bit of Configuration Words is set to ‘1’, the ICSP Low-Voltage Programming Entry mode is enabled. To disable the Low-Voltage ICSP mode, the LVP bit must be programmed to ‘0’. 25.3 Common Programming Interfaces Connection to a target device is typically done through an ICSP™ header. A commonly found connector on development tools is the RJ-11 in the 6P6C (6-pin, 6-connector) configuration. See Figure 25-1. FIGURE 25-1: VDD ICD RJ-11 STYLE CONNECTOR INTERFACE ICSPDAT NC 2 4 6 ICSPCLK 1 3 5 VPP/MCLR VSS Target PC Board Bottom Side Pin Description* 1 = VPP/MCLR 2 = VDD Target 3 = VSS (ground) 4 = ICSPDAT 5 = ICSPCLK 6 = No Connect Another connector often found in use with the PICkit™ programmers is a standard 6-pin header with 0.1 inch spacing. Refer to Figure 25-2. Entry into the Low-Voltage Programming Entry mode requires the following steps: 1. 2. MCLR is brought to VIL. A 32-bit key sequence is presented on ICSPDAT, while clocking ICSPCLK. Once the key sequence is complete, MCLR must be held at VIL for as long as Program/Verify mode is to be maintained. If low-voltage programming is enabled (LVP = 1), the MCLR Reset function is automatically enabled and cannot be disabled. See Section 6.5 “MCLR” for more information. The LVP bit can only be reprogrammed to ‘0’ by using the High-Voltage Programming mode. DS40001615C-page 192  2011-2015 Microchip Technology Inc. PIC12(L)F1501 FIGURE 25-2: PICkit™ PROGRAMMER STYLE CONNECTOR INTERFACE Rev. 10-000128A 7/30/2013 Pin 1 Indicator Pin Description* 1 = VPP/MCLR 1 2 3 4 5 6 2 = VDD Target 3 = VSS (ground) 4 = ICSPDAT 5 = ICSPCLK 6 = No connect * The 6-pin header (0.100" spacing) accepts 0.025" square pins For additional interface recommendations, refer to your specific device programmer manual prior to PCB design. FIGURE 25-3: It is recommended that isolation devices be used to separate the programming pins from other circuitry. The type of isolation is highly dependent on the specific application and may include devices such as resistors, diodes, or even jumpers. See Figure 25-3 for more information. TYPICAL CONNECTION FOR ICSP™ PROGRAMMING Rev. 10-000129A 7/30/2013 External Programming Signals Device to be Programmed VDD VDD VDD VPP MCLR/VPP VSS VSS Data ICSPDAT Clock ICSPCLK * * * To Normal Connections * Isolation devices (as required).  2011-2015 Microchip Technology Inc. DS40001615C-page 193 PIC12(L)F1501 26.0 INSTRUCTION SET SUMMARY 26.1 Read-Modify-Write Operations • Byte Oriented • Bit Oriented • Literal and Control Any instruction that specifies a file register as part of the instruction performs a Read-Modify-Write (R-M-W) operation. The register is read, the data is modified, and the result is stored according to either the instruction, or the destination designator ‘d’. A read operation is performed on a register even if the instruction writes to that register. The literal and control category contains the most varied instruction word format. TABLE 26-1: Each instruction is a 14-bit word containing the operation code (opcode) and all required operands. The opcodes are broken into three broad categories. Table 26-3 lists the instructions recognized by the MPASMTM assembler. All instructions are executed within a single instruction cycle, with the following exceptions, which may take two or three cycles: • Subroutine takes two cycles (CALL, CALLW) • Returns from interrupts or subroutines take two cycles (RETURN, RETLW, RETFIE) • Program branching takes two cycles (GOTO, BRA, BRW, BTFSS, BTFSC, DECFSZ, INCSFZ) • One additional instruction cycle will be used when any instruction references an indirect file register and the file select register is pointing to program memory. One instruction cycle consists of 4 oscillator cycles; for an oscillator frequency of 4 MHz, this gives a nominal instruction execution rate of 1 MHz. All instruction examples use the format ‘0xhh’ to represent a hexadecimal number, where ‘h’ signifies a hexadecimal digit. OPCODE FIELD DESCRIPTIONS Field f Description Register file address (0x00 to 0x7F) W Working register (accumulator) b Bit address within an 8-bit file register k Literal field, constant data or label x Don’t care location (= 0 or 1). The assembler will generate code with x = 0. It is the recommended form of use for compatibility with all Microchip software tools. d Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1. n FSR or INDF number. (0-1) mm Pre-post increment-decrement mode selection TABLE 26-2: ABBREVIATION DESCRIPTIONS Field PC Program Counter TO Time-Out bit C DC Z PD DS40001615C-page 194 Description Carry bit Digit Carry bit Zero bit Power-Down bit  2011-2015 Microchip Technology Inc. PIC12(L)F1501 FIGURE 26-1: GENERAL FORMAT FOR INSTRUCTIONS Byte-oriented file register operations 13 8 7 6 OPCODE d f (FILE #) 0 d = 0 for destination W d = 1 for destination f f = 7-bit file register address Bit-oriented file register operations 13 10 9 7 6 OPCODE b (BIT #) f (FILE #) 0 b = 3-bit bit address f = 7-bit file register address Literal and control operations General 13 OPCODE 8 7 0 k (literal) k = 8-bit immediate value CALL and GOTO instructions only 13 11 10 OPCODE 0 k (literal) k = 11-bit immediate value MOVLP instruction only 13 OPCODE 7 6 0 k (literal) k = 7-bit immediate value MOVLB instruction only 13 5 4 OPCODE 0 k (literal) k = 5-bit immediate value BRA instruction only 13 9 8 0 OPCODE k (literal) k = 9-bit immediate value FSR Offset instructions 13 OPCODE 7 6 n 5 0 k (literal) n = appropriate FSR k = 6-bit immediate value FSR Increment instructions 13 OPCODE 3 2 1 0 n m (mode) n = appropriate FSR m = 2-bit mode value OPCODE only 13 0 OPCODE  2011-2015 Microchip Technology Inc. DS40001615C-page 195 PIC12(L)F1501 TABLE 26-3: ENHANCED MID-RANGE INSTRUCTION SET 14-Bit Opcode Mnemonic, Operands Description Cycles MSb LSb Status Affected Notes BYTE-ORIENTED FILE REGISTER OPERATIONS ADDWF ADDWFC ANDWF ASRF LSLF LSRF CLRF CLRW COMF DECF INCF IORWF MOVF MOVWF RLF RRF SUBWF SUBWFB SWAPF XORWF f, d f, d f, d f, d f, d f, d f – f, d f, d f, d f, d f, d f f, d f, d f, d f, d f, d f, d Add W and f Add with Carry W and f AND W with f Arithmetic Right Shift Logical Left Shift Logical Right Shift Clear f Clear W Complement f Decrement f Increment f Inclusive OR W with f Move f Move W to f Rotate Left f through Carry Rotate Right f through Carry Subtract W from f Subtract with Borrow W from f Swap nibbles in f Exclusive OR W with f 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 00 11 00 11 11 11 00 00 00 00 00 00 00 00 00 00 00 11 00 00 0111 1101 0101 0111 0101 0110 0001 0001 1001 0011 1010 0100 1000 0000 1101 1100 0010 1011 1110 0110 dfff dfff dfff dfff dfff dfff lfff 0000 dfff dfff dfff dfff dfff 1fff dfff dfff dfff dfff dfff dfff ffff ffff ffff ffff ffff ffff ffff 00xx ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff C, DC, Z C, DC, Z Z C, Z C, Z C, Z Z Z Z Z Z Z Z C C C, DC, Z C, DC, Z Z 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 BYTE ORIENTED SKIP OPERATIONS DECFSZ INCFSZ f, d f, d Decrement f, Skip if 0 Increment f, Skip if 0 BCF BSF f, b f, b Bit Clear f Bit Set f 1(2) 1(2) 00 00 1, 2 1, 2 1011 dfff ffff 1111 dfff ffff BIT-ORIENTED FILE REGISTER OPERATIONS 1 1 00bb bfff ffff 01bb bfff ffff 2 2 01 01 10bb bfff ffff 11bb bfff ffff 1, 2 1, 2 11 11 11 00 11 11 11 11 1110 1001 1000 0000 0001 0000 1100 1010 01 01 BIT-ORIENTED SKIP OPERATIONS BTFSC BTFSS f, b f, b Bit Test f, Skip if Clear Bit Test f, Skip if Set ADDLW ANDLW IORLW MOVLB MOVLP MOVLW SUBLW XORLW k k k k k k k k Add literal and W AND literal with W Inclusive OR literal with W Move literal to BSR Move literal to PCLATH Move literal to W Subtract W from literal Exclusive OR literal with W 1 (2) 1 (2) LITERAL OPERATIONS 1 1 1 1 1 1 1 1 kkkk kkkk kkkk 001k 1kkk kkkk kkkk kkkk kkkk kkkk kkkk kkkk kkkk kkkk kkkk kkkk C, DC, Z Z Z C, DC, Z Z Note 1: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP. 2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one additional instruction cycle. DS40001615C-page 196  2011-2015 Microchip Technology Inc. PIC12(L)F1501 TABLE 26-3: ENHANCED MID-RANGE INSTRUCTION SET (CONTINUED) 14-Bit Opcode Mnemonic, Operands Description Cycles MSb LSb Status Affected Notes CONTROL OPERATIONS BRA BRW CALL CALLW GOTO RETFIE RETLW RETURN k – k – k k k – Relative Branch Relative Branch with W Call Subroutine Call Subroutine with W Go to address Return from interrupt Return with literal in W Return from Subroutine CLRWDT NOP OPTION RESET SLEEP TRIS – – – – – f Clear Watchdog Timer No Operation Load OPTION_REG register with W Software device Reset Go into Standby mode Load TRIS register with W ADDFSR MOVIW n, k n mm MOVWI k[n] n mm Add Literal k to FSRn Move Indirect FSRn to W with pre/post inc/dec modifier, mm Move INDFn to W, Indexed Indirect. Move W to Indirect FSRn with pre/post inc/dec modifier, mm Move W to INDFn, Indexed Indirect. 2 2 2 2 2 2 2 2 11 00 10 00 10 00 11 00 001k 0000 0kkk 0000 1kkk 0000 0100 0000 kkkk 0000 kkkk 0000 kkkk 0000 kkkk 0000 kkkk 1011 kkkk 1010 kkkk 1001 kkkk 1000 00 00 00 00 00 00 0000 0000 0000 0000 0000 0000 0110 0000 0110 0000 0110 0110 0100 TO, PD 0000 0010 0001 0011 TO, PD 0fff INHERENT OPERATIONS 1 1 1 1 1 1 C-COMPILER OPTIMIZED k[n] 1 1 11 00 1 1 11 00 0001 0nkk kkkk 0000 0001 0nmm Z kkkk 1111 0nkk 1nmm Z 0000 0001 kkkk 1 11 1111 1nkk 2, 3 2 2, 3 2 Note 1: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP. 2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one additional instruction cycle. 3: See Table in the MOVIW and MOVWI instruction descriptions.  2011-2015 Microchip Technology Inc. DS40001615C-page 197 PIC12(L)F1501 26.2 Instruction Descriptions ADDFSR Add Literal to FSRn ANDLW AND literal with W Syntax: [ label ] ADDFSR FSRn, k Syntax: [ label ] ANDLW Operands: -32  k  31 n  [ 0, 1] k Operands: 0  k  255 Operation: (W) .AND. (k)  (W) Operation: FSR(n) + k  FSR(n) Status Affected: Z Status Affected: None Description: Description: The signed 6-bit literal ‘k’ is added to the contents of the FSRnH:FSRnL register pair. The contents of W register are AND’ed with the 8-bit literal ‘k’. The result is placed in the W register. Add literal and W ANDWF AND W with f Syntax: [ label ] ADDLW Syntax: [ label ] ANDWF Operands: 0  k  255 Operands: Operation: (W) + k  (W) 0  f  127 d 0,1 Status Affected: C, DC, Z Operation: (W) .AND. (f)  (destination) Description: The contents of the W register are added to the 8-bit literal ‘k’ and the result is placed in the W register. FSRn is limited to the range 0000h FFFFh. Moving beyond these bounds will cause the FSR to wrap-around. ADDLW k f,d Status Affected: Z Description: AND the W register with register ‘f’. If ‘d’ is ‘0’, the result is stored in the W register. If ‘d’ is ‘1’, the result is stored back in register ‘f’. ASRF Arithmetic Right Shift Syntax: [ label ] ASRF ADDWF Add W and f Syntax: [ label ] ADDWF Operands: 0  f  127 d 0,1 Operands: 0  f  127 d [0,1] Operation: (W) + (f)  (destination) Operation: (f) dest (f)  dest, (f)  C, Status Affected: C, Z Description: The contents of register ‘f’ are shifted one bit to the right through the Carry flag. The MSb remains unchanged. If ‘d’ is ‘0’, the result is placed in W. If ‘d’ is ‘1’, the result is stored back in register ‘f’. f,d Status Affected: C, DC, Z Description: Add the contents of the W register with register ‘f’. If ‘d’ is ‘0’, the result is stored in the W register. If ‘d’ is ‘1’, the result is stored back in register ‘f’. ADDWFC ADD W and CARRY bit to f Syntax: [ label ] ADDWFC Operands: 0  f  127 d [0,1] Operation: (W) + (f) + (C)  dest register f C f {,d} Status Affected: C, DC, Z Description: Add W, the Carry flag and data memory location ‘f’. If ‘d’ is ‘0’, the result is placed in W. If ‘d’ is ‘1’, the result is placed in data memory location ‘f’. DS40001615C-page 198 f {,d}  2011-2015 Microchip Technology Inc. PIC12(L)F1501 BCF Bit Clear f Syntax: [ label ] BCF BTFSC f,b Bit Test f, Skip if Clear Syntax: [ label ] BTFSC f,b 0  f  127 0b7 Operands: 0  f  127 0b7 Operands: Operation: 0  (f) Operation: skip if (f) = 0 Status Affected: None Status Affected: None Description: Bit ‘b’ in register ‘f’ is cleared. Description: If bit ‘b’ in register ‘f’ is ‘1’, the next instruction is executed. If bit ‘b’, in register ‘f’, is ‘0’, the next instruction is discarded, and a NOP is executed instead, making this a 2-cycle instruction. BRA Relative Branch BTFSS Bit Test f, Skip if Set Syntax: [ label ] BRA label [ label ] BRA $+k Syntax: [ label ] BTFSS f,b Operands: 0  f  127 0b VDD) ................................................................................................... 20 mA Total power dissipation(2) ............................................................................................................................... 800 mW Note 1: 2: Maximum current rating requires even load distribution across I/O pins. Maximum current rating may be limited by the device package power dissipation characterizations, see Table 27-6 to calculate device specifications. Power dissipation is calculated as follows: PDIS = VDD x {IDD –  IOH} +  {(VDD – VOH) x IOH} + (VOl x IOL). † NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for extended periods may affect device reliability.  2011-2015 Microchip Technology Inc. DS40001615C-page 209 PIC12(L)F1501 27.2 Standard Operating Conditions The standard operating conditions for any device are defined as: Operating Voltage: Operating Temperature: VDDMIN VDD VDDMAX TA_MIN TA TA_MAX VDD — Operating Supply Voltage(1) PIC12LF1501 VDDMIN (Fosc  16 MHz).......................................................................................................... +1.8V VDDMIN (16 MHz < Fosc  20 MHz) ......................................................................................... +2.5V VDDMAX .................................................................................................................................... +3.6V PIC12F1501 VDDMIN (Fosc  16 MHz).......................................................................................................... +2.3V VDDMIN (16 MHz < Fosc  20 MHz) ......................................................................................... +2.5V VDDMAX .................................................................................................................................... +5.5V TA — Operating Ambient Temperature Range Industrial Temperature TA_MIN ...................................................................................................................................... -40°C TA_MAX .................................................................................................................................... +85°C Extended Temperature TA_MIN ...................................................................................................................................... -40°C TA_MAX .................................................................................................................................. +125°C Note 1: See Parameter D001, DC Characteristics: Supply Voltage. DS40001615C-page 210  2011-2015 Microchip Technology Inc. PIC12(L)F1501 FIGURE 27-1: VOLTAGE FREQUENCY GRAPH, -40°C  TA +125°C, PIC12F1501 ONLY Rev. 10-000130A 8/6/2013 VDD (V) 5.5 2.5 2.3 0 16 20 Frequency (MHz) Note 1: The shaded region indicates the permissible combinations of voltage and frequency. 2: Refer to Table 27-8 for each Oscillator mode’s supported frequencies. FIGURE 27-2: VOLTAGE FREQUENCY GRAPH, -40°C  TA +125°C, PIC12LF1501 ONLY Rev. 10-000131A 8/5/2013 VDD (V) 3.6 2.5 1.8 0 16 20 Frequency (MHz) Note 1: The shaded region indicates the permissible combinations of voltage and frequency. 2: Refer to Table 27-8 for each Oscillator mode’s supported frequencies.  2011-2015 Microchip Technology Inc. DS40001615C-page 211 PIC12(L)F1501 27.3 DC Characteristics TABLE 27-1: SUPPLY VOLTAGE Standard Operating Conditions (unless otherwise stated) PIC12LF1501 PIC12F1501 Param. No. D001 Sym. VDD Characteristic Min. Typ† Max. Units VDDMIN 1.8 2.5 — — VDDMAX 3.6 3.6 V V FOSC  16 MHz FOSC  20 MHz 2.3 2.5 — — 5.5 5.5 V V FOSC  16 MHz FOSC  20 MHz 1.5 — — V Device in Sleep mode 1.7 — — V Device in Sleep mode — 1.6 — V — 1.6 — V — 0.8 — V — 1.5 — V -11 — +7 % 0.05 — — V/ms Supply Voltage D001 D002* VDR RAM Data Retention Voltage(1) D002* D002A* VPOR Power-on Reset Release Voltage(2) D002A* D002B* VPORR* (2) Power-on Reset Rearm Voltage D002B* D003 VFVR Fixed Voltage Reference Voltage 1x gain (1.024V nominal) 2x gain (2.048V nominal) 4x gain (4.096V nominal) D004* SVDD Conditions VDD Rise Rate(2) VDD 2.5V, -40°C  TA  +85°C VDD 2.5V, -40°C  TA  +85°C VDD 4.75V, -40°C  TA  +85°C Ensures that the Power-on Reset signal is released properly. * † These parameters are characterized but not tested. Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data. 2: See Figure 27-3, POR and POR REARM with Slow Rising VDD. DS40001615C-page 212  2011-2015 Microchip Technology Inc. PIC12(L)F1501 FIGURE 27-3: POR AND POR REARM WITH SLOW RISING VDD VDD VPOR VPORR SVDD VSS NPOR(1) POR REARM VSS TVLOW(3) Note 1: 2: 3: TPOR(2) When NPOR is low, the device is held in Reset. TPOR 1 s typical. TVLOW 2.7 s typical.  2011-2015 Microchip Technology Inc. DS40001615C-page 213 PIC12(L)F1501 TABLE 27-2: SUPPLY CURRENT (IDD)(1,2) PIC12LF1501 Standard Operating Conditions (unless otherwise stated) PIC12F1501 Param. No. Device Characteristics D013 D013 D014 D014 D015 D015 Conditions Min. Typ† Max. Units VDD Note FOSC = 1 MHz, External Clock (ECM), Medium Power mode — 30 65 A 1.8 — 55 100 A 3.0 — 65 110 A 2.3 — 85 140 A 3.0 — 115 190 A 5.0 — 115 190 A 1.8 — 210 310 A 3.0 — 180 270 A 2.3 — 240 365 A 3.0 — 295 460 A 5.0 — 3.2 12 A 1.8 — 5.4 20 A 3.0 — 13 28 A 2.3 — 15 30 A 3.0 — 17 36 A 5.0 D016 — 215 360 A 1.8 — 275 480 A 3.0 D016 — 270 450 A 2.3 — 300 500 A 3.0 — 350 620 A 5.0 — 410 660 A 1.8 — 630 970 A 3.0 — 530 750 A 2.3 — 660 1100 A 3.0 D017* D017* — 730 1200 A 5.0 D018 — 600 940 A 1.8 — 970 1400 A 3.0 D018 — 780 1200 A 2.3 — 1000 1550 A 3.0 — 1090 1700 A 5.0 FOSC = 1 MHz, External Clock (ECM), Medium Power mode FOSC = 4 MHz, External Clock (ECM), Medium Power mode FOSC = 4 MHz, External Clock (ECM), Medium Power mode FOSC = 31 kHz, LFINTOSC, -40°C  TA  +85°C FOSC = 31 kHz, LFINTOSC, -40°C  TA  +85°C FOSC = 500 kHz, HFINTOSC FOSC = 500 kHz, HFINTOSC FOSC = 8 MHz, HFINTOSC FOSC = 8 MHz, HFINTOSC FOSC = 16 MHz, HFINTOSC FOSC = 16 MHz, HFINTOSC * † These parameters are characterized but not tested. Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VSS; MCLR = VDD; WDT disabled. 2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. DS40001615C-page 214  2011-2015 Microchip Technology Inc. PIC12(L)F1501 TABLE 27-2: SUPPLY CURRENT (IDD)(1,2) (CONTINUED) PIC12LF1501 Standard Operating Conditions (unless otherwise stated) PIC12F1501 Param. No. Device Characteristics Conditions Min. Typ† Max. Units VDD Note D019C — 1030 1500 A 3.0 FOSC = 20 MHz, External Clock (ECH), High-Power mode D019C — 1060 1600 A 3.0 — 1220 1800 A 5.0 FOSC = 20 MHz, External Clock (ECH), High-Power mode — 6 16 A 1.8 — 8 22 A 3.0 — 13 28 A 2.3 — 15 31 A 3.0 — 16 36 A 5.0 — 19 35 A 1.8 — 32 55 A 3.0 — 31 52 A 2.3 — 38 65 A 3.0 — 44 74 A 5.0 D019A D019A D019B D019B FOSC = 32 kHz, External Clock (ECL), Low-Power mode FOSC = 32 kHz, External Clock (ECL), Low-Power mode FOSC = 500 kHz, External Clock (ECL), Low-Power mode FOSC = 500 kHz, External Clock (ECL), Low-Power mode * † These parameters are characterized but not tested. Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VSS; MCLR = VDD; WDT disabled. 2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.  2011-2015 Microchip Technology Inc. DS40001615C-page 215 PIC12(L)F1501 TABLE 27-3: POWER-DOWN CURRENTS (IPD)(1,2) PIC12LF1501 Operating Conditions: (unless otherwise stated) Low-Power Sleep Mode PIC12F1501 Low-Power Sleep Mode, VREGPM = 1 Param. No. Device Characteristics Conditions Min. Typ† Max. +85°C Max. +125°C Units 0.020 1.0 8.0 A VDD D022 Base IPD — — 0.03 2.0 9.0 A 3.0 D022 Base IPD — 0.25 3.0 10 A 2.3 — 0.30 4.0 12 A 3.0 — 0.40 6.0 15 A 5.0 — 10 16 18 A 2.3 — 11 18 20 A 3.0 — 12 21 26 A 5.0 D023 — 0.26 2.0 9.0 A 1.8 — 0.44 3.0 10 A 3.0 D023 — 0.43 6.0 15 A 2.3 — 0.53 7.0 20 A 3.0 — 0.64 8.0 22 A 5.0 — 15 28 30 A 1.8 — 18 30 33 A 3.0 — 18 33 35 A 2.3 — 19 35 37 A 3.0 5.0 D022A Base IPD D023A D023A 1.8 Note WDT, BOR, FVR and SOSC disabled, all Peripherals inactive WDT, BOR, FVR and SOSC disabled, all Peripherals inactive, Low-Power Sleep mode WDT, BOR, FVR and SOSC disabled, all Peripherals inactive, Normal Power Sleep mode, VREGPM = 0 WDT Current WDT Current FVR Current FVR Current — 20 37 39 A D024 — 6.0 17 20 A 3.0 BOR Current D024 — 7.0 17 30 A 3.0 BOR Current — 8.0 20 40 A 5.0 D24A — 0.1 4.0 10 A 3.0 LPBOR Current D24A — 0.35 5.0 14 A 3.0 LPBOR Current — 0.45 8.0 17 A 5.0 * † Note 1: 2: 3: These parameters are characterized but not tested. Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. The peripheral  current can be determined by subtracting the base IPD current from this limit. Max. values should be used when calculating total current consumption. The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VSS. ADC clock source is FRC. DS40001615C-page 216  2011-2015 Microchip Technology Inc. PIC12(L)F1501 TABLE 27-3: POWER-DOWN CURRENTS (IPD)(1,2) (CONTINUED) PIC12LF1501 Operating Conditions: (unless otherwise stated) Low-Power Sleep Mode PIC12F1501 Low-Power Sleep Mode, VREGPM = 1 Param. No. Device Characteristics D026 D026 Min. Typ† Conditions Max. +85°C Max. +125°C Units VDD — 0.11 1.5 9.0 A 1.8 — 0.12 2.7 12 A 3.0 — 0.30 4.0 11 A 2.3 — 0.35 5.0 13 A 3.0 — 0.45 8.0 16 A 5.0 D026A* — 250 — — A 1.8 — 250 — — A 3.0 D026A* — 280 — — A 2.3 — 280 — — A 3.0 — 280 — — A 5.0 — 7 22 25 A 1.8 — 8 23 27 A 3.0 — 17 35 37 A 2.3 — 18 37 38 A 3.0 — 19 38 40 A 5.0 D027 D027 * † Note 1: 2: 3: Note ADC Current (Note 3), No conversion in progress ADC Current (Note 3), No conversion in progress ADC Current (Note 3), Conversion in progress ADC Current (Note 3), Conversion in progress Comparator, CxSP = 0 Comparator, CxSP = 0 These parameters are characterized but not tested. Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. The peripheral  current can be determined by subtracting the base IPD current from this limit. Max. values should be used when calculating total current consumption. The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VSS. ADC clock source is FRC.  2011-2015 Microchip Technology Inc. DS40001615C-page 217 PIC12(L)F1501 TABLE 27-4: I/O PORTS Standard Operating Conditions (unless otherwise stated) Param. No. Sym. VIL Characteristic Min. Typ† Max. Units — — Conditions — 0.8 V 4.5V  VDD  5.5V — 0.15 VDD V 1.8V  VDD  4.5V — — 0.2 VDD V Input Low Voltage I/O PORT: D030 with TTL buffer D030A D032 MCLR VIH Input High Voltage I/O PORT: D040 with TTL buffer D040A D042 MCLR IIL D060 MCLR(2) IPUR D080 — V 4.5V  VDD 5.5V — — V 1.8V  VDD  4.5V 0.8 VDD — — V — ±5 ± 125 nA VSS  VPIN  VDD, Pin at high-impedance, 85°C — ±5 ± 1000 nA VSS  VPIN  VDD, Pin at high-impedance, 125°C — ± 50 ± 200 nA VSS  VPIN  VDD, Pin at high-impedance, 85°C 25 100 200 A VDD = 3.3V, VPIN = VSS 25 140 300 A VDD = 5.0V, VPIN = VSS — — 0.6 V IOL = 8 mA, VDD = 5V IOL = 6 mA, VDD = 3.3V IOL = 1.8 mA, VDD = 1.8V VDD - 0.7 — — V IOH = 3.5 mA, VDD = 5V IOH = 3 mA, VDD = 3.3V IOH = 1 mA, VDD = 1.8V 50 pF Weak Pull-up Current D070* VOL — Input Leakage Current(1) I/O Ports D061 2.0 0.25 VDD + 0.8 Output Low Voltage I/O Ports VOH D090 Output High Voltage I/O Ports Capacitive Loading Specifications on Output Pins D101A* CIO All I/O pins — — * † These parameters are characterized but not tested. Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1: Negative current is defined as current sourced by the pin. 2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages. DS40001615C-page 218  2011-2015 Microchip Technology Inc. PIC12(L)F1501 TABLE 27-5: MEMORY PROGRAMMING SPECIFICATIONS Standard Operating Conditions (unless otherwise stated) Param. No. Sym. Characteristic Min. Typ† Max. Units Conditions Program Memory Programming Specifications D110 VIHH Voltage on MCLR/VPP pin 8.0 — 9.0 V D112 VPBE VDD for Bulk Erase 2.7 — VDDMAX V D113 VPEW VDD for Write or Row Erase VDDMIN — VDDMAX V D114 IPPPGM Current on MCLR/VPP during Erase/Write — 1.0 — mA D115 IDDPGM Current on VDD during Erase/Write — 5.0 — mA 10K — — E/W (Note 2) Program Flash Memory D121 EP Cell Endurance -40C  TA  +85C (Note 1) D122 VPRW VDD for Read/Write VDDMIN — VDDMAX V D123 TIW Self-timed Write Cycle Time — 2 2.5 ms D124 TRETD Characteristic Retention — 40 — Year Provided no other specifications are violated D125 EHEFC High-Endurance Flash Cell 100K — — E/W 0C  TA  +60°C, lower byte last 128 addresses † Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1: Self-write and Block Erase. 2: Required only if single-supply programming is disabled. TABLE 27-6: THERMAL CONSIDERATIONS Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C  TA  +125°C Param No. TH01 TH02 Sym. Characteristic JA Thermal Resistance Junction to Ambient JC TH03 TJMAX TH04 PD TH05 Thermal Resistance Junction to Case Maximum Junction Temperature Power Dissipation PINTERNAL Internal Power Dissipation Typ. Units Conditions 89.3 C/W 8-pin PDIP package 149.5 C/W 8-pin SOIC package 211 C/W 8-pin MSOP package 56.7 C/W 8-pin DFN 3X3mm package 68 C/W 8-pin DFN 2X3mm package 60 C/W 8-pin UDFN 2X3mm package 43.1 C/W 8-pin PDIP package 39.9 C/W 8-pin SOIC package 39 C/W 8-pin MSOP package 10.7 C/W 8-pin DFN 3X3mm package 12.7 C/W 8-pin DFN 2X3mm package 11 C/W 8-pin UDFN 2X3mm package 150 C — W PD = PINTERNAL + PI/O — W PINTERNAL = IDD x VDD(1) TH06 PI/O I/O Power Dissipation — W PI/O =  (IOL * VOL) +  (IOH * (VDD - VOH)) TH07 PDER Derated Power — W PDER = PDMAX (TJ - TA)/JA(2) Note 1:IDD is current to run the chip alone without driving any load on the output pins. 2: TA = Ambient Temperature. 3: TJ = Junction Temperature.  2011-2015 Microchip Technology Inc. DS40001615C-page 219 PIC12(L)F1501 27.4 AC Characteristics Timing Parameter Symbology has been created with one of the following formats: 1. TppS2ppS 2. TppS T F Frequency Lowercase letters (pp) and their meanings: pp cc CCP1 ck CLKOUT cs CS di SDIx do SDO dt Data in io I/O PORT mc MCLR Uppercase letters and their meanings: S F Fall H High I Invalid (High-impedance) L Low FIGURE 27-4: T Time osc rd rw sc ss t0 t1 wr CLKIN RD RD or WR SCKx SS T0CKI T1CKI WR P R V Z Period Rise Valid High-impedance LOAD CONDITIONS Rev. 10-000133A 8/1/2013 Load Condition Pin CL VSS Legend: CL=50 pF for all pins DS40001615C-page 220  2011-2015 Microchip Technology Inc. PIC12(L)F1501 FIGURE 27-5: CLOCK TIMING Q4 Q1 Q2 Q3 Q4 Q1 CLKIN OS12 OS02 OS11 OS03 CLKOUT (CLKOUT mode) Note: TABLE 27-7: See Table 27-9. CLOCK OSCILLATOR TIMING REQUIREMENTS Standard Operating Conditions (unless otherwise stated) Param. No. OS01 Sym. FOSC Characteristic External CLKIN Frequency(1) Min. Typ† Max. Units Conditions DC — 0.5 MHz External Clock (ECL) DC — 4 MHz External Clock (ECM) DC — 20 MHz External Clock (ECH) OS02 TOSC External CLKIN Period(1) 50 —  ns External Clock (EC) OS03 TCY Instruction Cycle Time(1) 200 TCY DC ns TCY = 4/FOSC * † These parameters are characterized but not tested. Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at “min” values with an external clock applied to CLKIN pin. When an external clock input is used, the “max” cycle time limit is “DC” (no clock) for all devices.  2011-2015 Microchip Technology Inc. DS40001615C-page 221 PIC12(L)F1501 TABLE 27-8: OSCILLATOR PARAMETERS Standard Operating Conditions (unless otherwise stated) Param. No. OS08 Sym. Characteristic Freq. Tolerance Min. Typ† Max. Units — MHz VDD = 3.0V, TA = 25°C, (Note 2) (Note 3) HFOSC Internal Calibrated HFINTOSC Frequency(1) ±2% — 16.0 OS09 LFOSC Internal LFINTOSC Frequency — — 31 — kHz OS10* TIOSC ST HFINTOSC Wake-up from Sleep Start-up Time — — 5 15 s OS10A* TLFOSC ST LFINTOSC Wake-up from Sleep Start-up Time — — 0.5 — ms Conditions -40°C  TA  +125°C * † These parameters are characterized but not tested. Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1: To ensure these oscillator frequency tolerances, VDD and VSS must be capacitively decoupled as close to the device as possible. 0.1 F and 0.01 F values in parallel are recommended. 2: See Figure 27-6: “HFINTOSC Frequency Accuracy over Device VDD and Temperature”, Figure 28-60: “HFINTOSC Accuracy Over Temperature, VDD = 1.8V, PIC12LF1501 Only”, and Figure 28-61: “HFINTOSC Accuracy Over Temperature, 2.3V  VDD 5.5V”. 3: See Figure 28-58: “LFINTOSC Frequency over VDD and Temperature, PIC12LF1501 Only”, and Figure 28-59: “LFINTOSC Frequency over VDD and Temperature, PIC12F1501”. HFINTOSC FREQUENCY ACCURACY OVER VDD AND TEMPERATURE FIGURE 27-6: Rev. 10-000135C 12/18/2013 125 ±12% Temperature (°C) 85 60 -4.5% to +7% 25 0 ±12% -40 1.8 2.3 5.5 VDD (V) Note: See Figure 28-60: “HFINTOSC Accuracy Over Temperature, VDD = 1.8V, PIC12LF1501 Only”, and Figure 28-61: “HFINTOSC Accuracy Over Temperature, 2.3V VDD  5.5V”. DS40001615C-page 222  2011-2015 Microchip Technology Inc. PIC12(L)F1501 FIGURE 27-7: CLKOUT AND I/O TIMING Cycle Write Fetch Read Execute Q4 Q1 Q2 Q3 FOSC OS12 OS11 OS20 OS21 CLKOUT OS19 OS18 OS16 OS13 OS17 I/O pin (Input) OS14 OS15 I/O pin (Output) New Value Old Value OS18, OS19 TABLE 27-9: CLKOUT AND I/O TIMING PARAMETERS Standard Operating Conditions (unless otherwise stated) Param. No. Sym. Characteristic Min. Typ† Max. Units Conditions TosH2ckL FOSC to CLKOUT(1) — — 70 ns 3.3V  VDD 5.0V OS12 TosH2ckH FOSC to — — 72 ns 3.3V  VDD 5.0V OS13 TckL2ioV CLKOUT to Port out valid(1) — — 20 ns OS14 TioV2ckH Port input valid before CLKOUT(1) TOSC + 200 ns — — ns OS15 TosH2ioV Fosc (Q1 cycle) to Port out valid — 50 70* ns 3.3V  VDD 5.0V OS16 TosH2ioI Fosc (Q2 cycle) to Port input invalid (I/O in setup time) 50 — — ns 3.3V  VDD 5.0V OS17 TioV2osH Port input valid to Fosc(Q2 cycle) (I/O in setup time) 20 — — ns OS18* TioR Port output rise time — — 40 15 72 32 ns VDD = 1.8V 3.3V  VDD 5.0V OS19* TioF Port output fall time — — 28 15 55 30 ns VDD = 1.8V 3.3V  VDD 5.0V OS11 CLKOUT(1) OS20* Tinp INT pin input high or low time 25 — — ns OS21* Tioc Interrupt-on-change new input level time 25 — — ns * These parameters are characterized but not tested. † Data in “Typ” column is at 3.0V, 25C unless otherwise stated. Note 1: Measurements are taken in EXTRC mode where CLKOUT output is 4 x TOSC.  2011-2015 Microchip Technology Inc. DS40001615C-page 223 PIC12(L)F1501 FIGURE 27-8: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING VDD MCLR 30 Internal POR PWRT Time-out 33 Internal Reset(1) Watchdog Timer Reset(1) 34 31 34 I/O pins Note 1:Asserted low. DS40001615C-page 224  2011-2015 Microchip Technology Inc. PIC12(L)F1501 TABLE 27-10: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER AND BROWN-OUT RESET PARAMETERS Standard Operating Conditions (unless otherwise stated) Param. No. Sym. Characteristic Min. Typ† Max. Units Conditions 2 — — s 10 16 27 ms VDD = 3.3V-5V, 1:512 Prescaler used Power-up Timer Period 40 65 140 ms PWRTE = 0 TIOZ I/O high-impedance from MCLR Low or Watchdog Timer Reset — — 2.0 s VBOR Brown-out Reset Voltage(1) 2.55 2.70 2.85 V BORV = 0 2.35 1.80 2.45 1.90 2.58 2.05 V V BORV = 1 (PIC12F1501) BORV = 1 (PIC12LF1501) 30 TMCL 31 TWDTLP Low-Power Watchdog Timer Time-out Period 33* TPWRT 34* 35 MCLR Pulse Width (low) 36* VHYST Brown-out Reset Hysteresis 0 25 75 mV -40°C  TA  +85°C 37* TBORDC Brown-out Reset DC Response Time 1 16 35 s VDD  VBOR VLPBOR Low-Power Brown-Out Reset Voltage 1.8 2.1 2.5 V LPBOR = 1 38 * † These parameters are characterized but not tested. Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1: To ensure these voltage tolerances, VDD and VSS must be capacitively decoupled as close to the device as possible. 0.1 F and 0.01 F values in parallel are recommended. FIGURE 27-9: BROWN-OUT RESET TIMING AND CHARACTERISTICS VDD VBOR and VHYST VBOR (Device in Brown-out Reset) (Device not in Brown-out Reset) 37 Reset (due to BOR)  2011-2015 Microchip Technology Inc. 33 DS40001615C-page 225 PIC12(L)F1501 FIGURE 27-10: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS T0CKI 40 41 42 T1CKI 45 46 49 47 TMR0 or TMR1 TABLE 27-11: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS Standard Operating Conditions (unless otherwise stated) Param. No. 40* Sym. TT0H Characteristic T0CKI High Pulse Width Min. No Prescaler With Prescaler TT0L 41* T0CKI Low Pulse Width No Prescaler With Prescaler Typ† Max. Units 0.5 TCY + 20 — — ns 10 — — ns 0.5 TCY + 20 — — ns 10 — — ns Greater of: 20 or TCY + 40 N — — ns 42* TT0P T0CKI Period 45* TT1H T1CKI High Synchronous, No Prescaler Time Synchronous, with Prescaler 0.5 TCY + 20 — — ns 15 — — ns Asynchronous 30 — — ns Synchronous, No Prescaler 0.5 TCY + 20 — — ns Synchronous, with Prescaler 15 — — ns Asynchronous 30 — — ns Greater of: 30 or TCY + 40 N — — ns 46* TT1L T1CKI Low Time 47* TT1P T1CKI Input Synchronous Period 49* TCKEZTMR1 Delay from External Clock Edge to Timer Increment Asynchronous * † 60 — — ns 2 TOSC — 7 TOSC — Conditions N = prescale value N = prescale value Timers in Sync mode These parameters are characterized but not tested. Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. DS40001615C-page 226  2011-2015 Microchip Technology Inc. PIC12(L)F1501 FIGURE 27-11: CLC PROPAGATION TIMING Rev. 10-000031A 7/30/2013 CLCxINn CLC Input time CLCxINn CLC Input time LCx_in[n](1) LCx_in[n](1) CLC Module LCx_out(1) CLC Output time CLCx CLC Module LCx_out(1) CLC Output time CLCx CLC01 CLC02 CLC03 Note 1: See FIGURE 22-1:, Configurable Logic Cell Block Diagram, to identify specific CLC signals. TABLE 27-12: CONFIGURATION LOGIC CELL (CLC) CHARACTERISTICS Standard Operating Conditions (unless otherwise stated) Param. No. Sym. Characteristic Min. Typ† Max. Units Conditions CLC01* TCLCIN CLC input time — 7 — ns CLC02* TCLC CLC module input to output propagation time — — 24 12 — — ns ns VDD = 1.8V VDD > 3.6V CLC03* TCLCOUT CLC output time Rise Time — OS18 — — (Note 1) Fall Time — OS19 — — (Note 1) — 45 — MHz CLC04* FCLCMAX CLC maximum switching frequency * † These parameters are characterized but not tested. Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1:See Table 27-9 for OS18 and OS19 rise and fall times.  2011-2015 Microchip Technology Inc. DS40001615C-page 227 PIC12(L)F1501 TABLE 27-13: ANALOG-TO-DIGITAL CONVERTER (ADC) CHARACTERISTICS(1,2,3) Operating Conditions (unless otherwise stated) VDD = 3.0V, TA = 25°C Param. Sym. No. Characteristic Min. Typ† Max. AD01 NR Resolution — — 10 AD02 EIL Integral Error — ±1 ±1.7 AD03 EDL Differential Error — ±1 ±1 AD04 EOFF Offset Error AD05 EGN Gain Error AD06 VREF Reference Voltage AD07 VAIN Full-Scale Range AD08 ZAIN Recommended Impedance of Analog Voltage Source Units Conditions bit LSb VREF = 3.0V LSb No missing codes VREF = 3.0V — ±1 ±2.5 LSb VREF = 3.0V — ±1 ±2.0 LSb VREF = 3.0V 1.8 — VDD V VSS — VREF V — — 10 k VREF = (VRPOS - VRNEG) (Note 4) Can go higher if external 0.01F capacitor is present on input pin. * † These parameters are characterized but not tested. Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1:Total Absolute Error includes integral, differential, offset and gain errors. 2: The ADC conversion result never decreases with an increase in the input voltage and has no missing codes. 3: See Section 28.0 “DC and AC Characteristics Graphs and Charts” for operating characterization. 4: ADC VREF is selected by ADPREF bit. DS40001615C-page 228  2011-2015 Microchip Technology Inc. PIC12(L)F1501 FIGURE 27-12: ADC CONVERSION TIMING (ADC CLOCK FOSC-BASED) BSF ADCON0, GO AD133 1 TCY AD131 Q4 AD130 ADC_clk 9 ADC Data 8 6 7 3 2 1 0 NEW_DATA OLD_DATA ADRES 1 TCY ADIF GO Sample DONE Sampling Stopped AD132 FIGURE 27-13: ADC CONVERSION TIMING (ADC CLOCK FROM FRC) BSF ADCON0, GO AD133 1 TCY AD131 Q4 AD130 ADC_clk 9 ADC Data 8 7 6 OLD_DATA ADRES 3 2 1 0 NEW_DATA ADIF 1 TCY GO DONE Sample AD132 Sampling Stopped Note 1:If the ADC clock source is selected as FRC, a time of TCY is added before the ADC clock starts. This allows the SLEEP instruction to be executed.  2011-2015 Microchip Technology Inc. DS40001615C-page 229 PIC12(L)F1501 TABLE 27-14: ADC CONVERSION REQUIREMENTS Standard Operating Conditions (unless otherwise stated) Param. Sym. No. AD130* TAD AD131 TCNV Characteristic Min. Typ† Max. Units ADC Clock Period (TADC) 1.0 — 6.0 ADC Internal FRC Oscillator Period (TFRC) 1.0 2.0 Conversion Time (not including Acquisition Time)(1) — 11 Conditions s FOSC-based 6.0 s ADCS = x11 (ADC FRC mode) — TAD Set GO/DONE bit to conversion complete s AD132* TACQ Acquisition Time — 5.0 — AD133* THCD Holding Capacitor Disconnect Time — — 1/2 TAD 1/2 TAD + 1TCY — — FOSC-based ADCS = x11 (ADC FRC mode) * † These parameters are characterized but not tested. Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1: The ADRES register may be read on the following TCY cycle. TABLE 27-15: COMPARATOR SPECIFICATIONS(1) Operating Conditions (unless otherwise stated) VDD = 3.0V, TA = 25°C Param. No. Sym. Characteristics Min. Typ. Max. Units — ±7.5 ±60 mV Comments VIOFF Input Offset Voltage CM02 VICM Input Common Mode Voltage 0 — VDD V CM03 CMRR Common Mode Rejection Ration — 50 — dB CM04A Response Time Rising Edge — 400 800 ns CxSP = 1 CM04B Response Time Falling Edge — 200 400 ns CxSP = 1 CM01 CM04C TRESP(2) CM04D Response Time Rising Edge — 1200 — ns CxSP = 0 Response Time Falling Edge — 550 — ns CxSP = 0 Comparator Mode Change to Output Valid — — 10 s — 25 — mV CM05* TMC2OV CM06 CHYSTER Comparator Hysteresis * Note 1: 2: CxSP = 1, VICM = VDD/2 CxHYS = 1, CxSP = 1 These parameters are characterized but not tested. See Section 28.0 “DC and AC Characteristics Graphs and Charts” for operating characterization. Response time measured with one comparator input at VDD/2, while the other input transitions from VSS to VDD. DS40001615C-page 230  2011-2015 Microchip Technology Inc. PIC12(L)F1501 TABLE 27-16: DIGITAL-TO-ANALOG CONVERTER (DAC) SPECIFICATIONS(1) Operating Conditions (unless otherwise stated) VDD = 3.0V, TA = 25°C Param. No. Sym. Characteristics Min. Typ. Max. Units — VDD/32 — V DAC01* CLSB Step Size DAC02* CACC Absolute Accuracy — —  1/2 LSb DAC03* CR Unit Resistor Value (R) — 5K —  CST Time(2) — — 10 s DAC04* * Note 1: 2: Settling Comments These parameters are characterized but not tested. See Section 28.0 “DC and AC Characteristics Graphs and Charts” for operating characterization. Settling time measured while DACR transitions from ‘00000’ to ‘01111’.  2011-2015 Microchip Technology Inc. DS40001615C-page 231 PIC12(L)F1501 28.0 DC AND AC CHARACTERISTICS GRAPHS AND CHARTS The graphs and tables provided in this section are for design guidance and are not tested. In some graphs or tables, the data presented are outside specified operating range (i.e., outside specified VDD range). This is for information only and devices are ensured to operate properly only within the specified range. Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range. “Typical” represents the mean of the distribution at 25C. “MAXIMUM”, “Max.”, “MINIMUM” or “Min.” represents (mean + 3) or (mean - 3) respectively, where  is a standard deviation, over each temperature range. DS40001615C-page 232  2011-2015 Microchip Technology Inc. PIC12(L)F1501 FIGURE 28-1: IDD, EXTERNAL CLOCK (ECL), LOW-POWER MODE, FOSC = 32 kHz, PIC12LF1501 ONLY 14 Max. 12 10 IDD (µA) Typical 8 6 4 Max: 85°C + 3ı Typical: 25°C 2 0 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 VDD (V) FIGURE 28-2: IDD, EXTERNAL CLOCK (ECL), LOW-POWER MODE, FOSC = 32 kHz, PIC12F1501 ONLY 25 Max. 20 IDD (µA) Typical 15 10 Max: 85°C + 3ı Typical: 25°C 5 0 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 VDD (V)  2011-2015 Microchip Technology Inc. DS40001615C-page 233 PIC12(L)F1501 FIGURE 28-3: IDD, EXTERNAL CLOCK (ECL), LOW-POWER MODE, FOSC = 500 kHz, PIC12LF1501 ONLY 50 45 Max: 85°C + 3ı Typical: 25°C 40 Max. 35 IDD (µA) 30 Typical 25 20 15 10 5 0 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 VDD (V) FIGURE 28-4: IDD, EXTERNAL CLOCK (ECL), LOW-POWER MODE, FOSC = 500 kHz, PIC12F1501 ONLY 60 Max. 50 IDD (µA) 40 Typical 30 20 Max: 85°C + 3ı Typical: 25°C 10 0 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 VDD (V) DS40001615C-page 234  2011-2015 Microchip Technology Inc. PIC12(L)F1501 FIGURE 28-5: IDD TYPICAL, EXTERNAL CLOCK (ECM), MEDIUM POWER MODE, PIC12LF1501 ONLY 300 Typical: 25°C 250 4 MHz IDD (µA) 200 150 100 1 MHz 50 0 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 VDD (V) FIGURE 28-6: IDD MAXIMUM, EXTERNAL CLOCK (ECM), MEDIUM POWER MODE, PIC12LF1501 ONLY 350 Max: 85°C + 3ı 300 IDD (µA) 250 4 MHz 200 150 100 1 MHz 50 0 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 VDD (V)  2011-2015 Microchip Technology Inc. DS40001615C-page 235 PIC12(L)F1501 FIGURE 28-7: IDD TYPICAL, EXTERNAL CLOCK (ECM), MEDIUM POWER MODE, PIC12F1501 ONLY 350 4 MHz Typical: 25°C 300 IDD (µA) 250 200 150 1 MHz 100 50 0 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 VDD (V) FIGURE 28-8: IDD MAXIMUM, EXTERNAL CLOCK (ECM), MEDIUM POWER MODE, PIC12F1501 ONLY 400 4 MHz Max: 85°C + 3ı 350 300 IDD (µA) 250 200 1 MHz 150 100 50 0 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 VDD (V) DS40001615C-page 236  2011-2015 Microchip Technology Inc. PIC12(L)F1501 FIGURE 28-9: IDD TYPICAL, EXTERNAL CLOCK (ECH), HIGH-POWER MODE, PIC12LF1501 ONLY 1.4 20 MHz Typical: 25°C 1.2 16 MHz IDD (mA) 1.0 0.8 0.6 8 MHz 0.4 0.2 0.0 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 VDD (V) FIGURE 28-10: IDD MAXIMUM, EXTERNAL CLOCK (ECH), HIGH-POWER MODE, PIC12LF1501 ONLY ( ) 1.6 1.4 20 MHz Max: 85°C + 3ı 1.2 16 MHz IDD (mA) 1.0 0.8 8 MHz 0.6 0.4 0.2 0.0 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 VDD (V)  2011-2015 Microchip Technology Inc. DS40001615C-page 237 PIC12(L)F1501 FIGURE 28-11: IDD TYPICAL, EXTERNAL CLOCK (ECH), HIGH-POWER MODE, PIC12F1501 ONLY 1.4 20 MHz Typical: 25°C 1.2 16 MHz IDD (mA) 1.0 0.8 8 MHz 0.6 0.4 0.2 0.0 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 VDD (V) FIGURE 28-12: IDD MAXIMUM, EXTERNAL CLOCK (ECH), HIGH-POWER MODE, PIC12F1501 ONLY 1.6 20 MHz Max: 85°C + 3ı 1.4 16 MHz 1.2 IDD (mA) 1.0 0.8 8 MHz 0.6 0.4 0.2 0.0 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 VDD (V) DS40001615C-page 238  2011-2015 Microchip Technology Inc. PIC12(L)F1501 FIGURE 28-13: IDD, LFINTOSC, FOSC = 31 kHz, PIC12LF1501 ONLY 12 Max. Max: 85°C + 3ı Typical: 25°C 10 IDD (µA) 8 Typical 6 4 2 0 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 VDD (V) FIGURE 28-14: IDD, LFINTOSC, FOSC = 31 kHz, PIC12F1501 ONLY 25 Max. 20 IDD (µA) Typical 15 10 Max: 85°C + 3ı Typical: 25°C 5 0 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 VDD (V)  2011-2015 Microchip Technology Inc. DS40001615C-page 239 PIC12(L)F1501 FIGURE 28-15: IDD, MFINTOSC, FOSC = 500 kHz, PIC12LF1501 ONLY 400 Max: 85°C + 3ı Typical: 25°C 350 Max. 300 IDD (µA) 250 Typical 200 150 100 50 0 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 VDD (V) FIGURE 28-16: IDD, MFINTOSC, FOSC = 500 kHz, PIC12F1501 ONLY 450 Max: 85°C + 3ı Typical: 25°C 400 Max. 350 Typical IDD (µA) 300 250 200 150 100 50 0 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 VDD (V) DS40001615C-page 240  2011-2015 Microchip Technology Inc. PIC12(L)F1501 FIGURE 28-17: IDD TYPICAL, HFINTOSC, PIC12LF1501 ONLY 1.4 Typical: 25°C 1.2 16 MHz IDD (mA) 1.0 0.8 8 MHz 0.6 4 MHz 0.4 0.2 0.0 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 VDD (V) FIGURE 28-18: IDD MAXIMUM, HFINTOSC, PIC12LF1501 ONLY 1.6 Max: 85°C + 3ı 1.4 16 MHz IDD (mA) 1.2 1.0 8 MHz 0.8 4 MHz 0.6 0.4 0.2 0.0 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 VDD (V)  2011-2015 Microchip Technology Inc. DS40001615C-page 241 PIC12(L)F1501 FIGURE 28-19: IDD TYPICAL, HFINTOSC, PIC12F1501 ONLY 1.2 16 MHz 1.0 IDD (mA) 0.8 8 MHz 0.6 4 MHz 0.4 Typical: 25°C 0.2 0.0 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 VDD (V) FIGURE 28-20: IDD MAXIMUM, HFINTOSC, PIC12F1501 ONLY 1.4 1.2 16 MHz IDD (mA) 1.0 0.8 8 MHz 0.6 4 MHz 0.4 Max: 85°C + 3ı 0.2 0.0 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 VDD (V) DS40001615C-page 242  2011-2015 Microchip Technology Inc. PIC12(L)F1501 FIGURE 28-21: IPD BASE, LOW-POWER SLEEP MODE, PIC12LF1501 ONLY 450 Max: 85°C + 3 M 3ı Typical: 25°C 400 Max. 350 IPD D (nA) 300 250 200 150 100 Typical 50 0 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 VDD (V) FIGURE 28-22: IPD BASE, LOW-POWER SLEEP MODE, VREGPM = 1, PIC12F1501 ONLY 600 Max. Max: 85°C + 3ı Typical: 25°C 500 IPD (nA) 400 300 Typical 200 100 0 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 VDD (V)  2011-2015 Microchip Technology Inc. DS40001615C-page 243 PIC12(L)F1501 FIGURE 28-23: IPD, WATCHDOG TIMER (WDT), PIC12LF1501 ONLY 2.0 1.8 Max: 85°C + 3ı Typical: 25°C 1.6 Max. IPD (µA (µA) 1.4 1.2 1.0 0.8 08 0.6 Typical 0.4 0.2 0.0 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 VDD (V) FIGURE 28-24: IPD, WATCHDOG TIMER (WDT), PIC12F1501 ONLY 1.4 Max Max. 1.2 IPD (µA A) 1.0 0.8 Typical 0.6 0.4 Max: 85°C + 3ı Typical: 25°C 0.2 0.0 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 VDD (V) DS40001615C-page 244  2011-2015 Microchip Technology Inc. PIC12(L)F1501 FIGURE 28-25: IPD, FIXED VOLTAGE REFERENCE (FVR), PIC12LF1501 ONLY 45 Max: 85°C + 3ı Typical: 25°C 40 35 Max. IPD (µA A) 30 Typical 25 20 15 10 5 0 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 VDD (V) FIGURE 28-26: IPD, FIXED VOLTAGE REFERENCE (FVR), PIC12F1501 ONLY 30 Max. 25 IPD (µA) 20 Typical 15 10 Max: 85°C + 3ı Typical: 25°C 5 0 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 VDD (V)  2011-2015 Microchip Technology Inc. DS40001615C-page 245 PIC12(L)F1501 FIGURE 28-27: IPD, BROWN-OUT RESET (BOR), BORV = 0, PIC12LF1501 ONLY 10 Max. 9 Max: 85°C + 3ı Typical: 25°C 8 7 Typical IPD D (µA) 6 5 4 3 2 1 0 16 1.6 1 1.8 8 2 2.0 0 2 2.2 2 2 2.4 4 2 2.6 6 2 2.8 8 3 3.0 0 3 3.2 2 3 3.4 4 3 3.6 6 3 3.8 8 VDD (V) FIGURE 28-28: IPD, BROWN-OUT RESET (BOR), BORV = 1, PIC12LF1501 ONLY 12 Max. Max: 85°C + 3ı Typical: 25°C 10 8 IPD (µA) Typical 6 4 2 0 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 VDD (V) DS40001615C-page 246  2011-2015 Microchip Technology Inc. PIC12(L)F1501 FIGURE 28-29: IPD, BROWN-OUT RESET (BOR), BORV = 0, PIC12F1501 ONLY 12 M Max. Max: 85°C + 3ı Typical: 25°C 10 8 IPD (µA) Typical 6 4 2 0 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 5.5 6.0 VDD (V) FIGURE 28-30: IPD, BROWN-OUT RESET (BOR), BORV = 1, PIC12F1501 ONLY 14 Max Max. Max: 85°C + 3ı Typical: 25°C 12 IPD (µA) 10 Typical 8 6 4 2 0 2.0 2.5 3.0 3.5 4.0 4.5 5.0 VDD (V)  2011-2015 Microchip Technology Inc. DS40001615C-page 247 PIC12(L)F1501 FIGURE 28-31: IPD, COMPARATOR, LOW-POWER MODE (CxSP = 0), PIC12LF1501 ONLY 14 12 Max. IPD (µA) 10 8 Typical 6 4 Max: 85°C + 3ı Typical: 25°C 2 0 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 VDD (V) FIGURE 28-32: IPD, COMPARATOR, LOW-POWER MODE (CxSP = 0), PIC12F1501 ONLY 30 25 Max. IPD (µA) 20 Typical yp 15 10 Max: 85°C + 3ı Typical: 25°C 5 0 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 VDD (V) DS40001615C-page 248  2011-2015 Microchip Technology Inc. PIC12(L)F1501 FIGURE 28-33: IPD, COMPARATOR, NORMAL POWER MODE (CxSP = 1), PIC12LF1501 ONLY 40 35 Max. 30 IPD (µA A) 25 20 Typical 15 10 Max: 85°C + 3ı Typical: 25 C 25°C 5 0 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 VDD (V) FIGURE 28-34: IPD, COMPARATOR, NORMAL POWER MODE (CxSP = 1), PIC12F1501 ONLY 60 50 Max. IPD (µA A) 40 30 Typical 20 Max: 85°C + 3ı Typical: 25°C 10 0 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 VDD (V)  2011-2015 Microchip Technology Inc. DS40001615C-page 249 PIC12(L)F1501 FIGURE 28-35: VOH vs. IOH OVER TEMPERATURE, VDD = 5.5V, PIC12F1501 ONLY 6 Max: 125°C + 3ı Typical: 25°C Min: -40°C - 3ı 5 VOH (V) 4 Min. (-40°C) 3 Typical (25°C) 2 Max. (125°C) 1 0 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 IOH (mA) FIGURE 28-36: VOL vs. IOL OVER TEMPERATURE, VDD = 5.5V, PIC12F1501 ONLY 5 Max: 125°C + 3ı Typical: 25°C Min: -40°C - 3ı 4 Max. (125°C) VOL (V) Typical (25°C) 3 Min. (-40°C) 2 1 0 0 10 DS40001615C-page 250 20 30 40 50 IOL (mA) 60 70 80 90 100  2011-2015 Microchip Technology Inc. PIC12(L)F1501 FIGURE 28-37: VOH vs. IOH OVER TEMPERATURE, VDD = 3.0V 3.5 Max: 125°C + 3ı Typical: 25°C Min: -40°C - 3ı 3.0 VOH (V) 2.5 2.0 1.5 1.0 Min. (-40°C) Typical (25°C) Max. (125°C) 0.5 0.0 -15 -13 -11 -9 -7 -5 -3 -1 IOH (mA) FIGURE 28-38: VOL vs. IOL OVER TEMPERATURE, VDD = 3.0V 3.0 Max: 125°C + 3ı Typical: 25°C Min: -40°C - 3ı 2.5 VOL (V) 2.0 Max. (125°C) Typical (25°C) Min. (-40°C) 1.5 1.0 0.5 0.0 0 5 10 15 20 25 30 35 40 IOL (mA)  2011-2015 Microchip Technology Inc. DS40001615C-page 251 PIC12(L)F1501 FIGURE 28-39: VOH vs. IOH OVER TEMPERATURE, VDD = 1.8V, PIC12LF1501 ONLY 2.0 1.8 Max: 125°C + 3ı Typical: 25°C Min: -40°C - 3ı 1.6 VOH (V) 1.4 1.2 Min. (-40°C) Max. (125°C) Typical (25°C) 1.0 0.8 0.6 0.4 0.2 0.0 -4.5 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 IOH (mA) FIGURE 28-40: VOL vs. IOL OVER TEMPERATURE, VDD = 1.8V, PIC12LF1501 ONLY 1.8 Max: 125°C + 3ı Typical: 25°C Min: -40°C - 3ı 1.6 1.4 VOL (V) 1.2 1.0 0.8 Max. (125°C) Min. (-40°C) Typical (25°C) 0.6 0.4 0.2 0.0 0 1 2 3 4 5 6 7 8 9 10 IOL (mA) DS40001615C-page 252  2011-2015 Microchip Technology Inc. PIC12(L)F1501 FIGURE 28-41: POR RELEASE VOLTAGE 1.70 1.68 Max. 1.66 Voltage (V) 1.64 Typical 1.62 Min. 1.60 1.58 1.56 Max: Typical + 3ı Typical: 25°C Min: Typical - 3ı 1.54 1.52 1.50 -60 -40 -20 0 20 40 60 80 100 120 140 120 140 Temperature (°C) FIGURE 28-42: POR REARM VOLTAGE, PIC12F1501 ONLY 1.54 Max: Typical + 3ı Typical: 25°C Min: Typical - 3ı 1.52 1.50 Max. Voltage (V) 1.48 1.46 1.44 Typical 1.42 1.40 Min. 1.38 1.36 1.34 -60 -40 -20 0 20 40 60 80 100 Temperature (°C)  2011-2015 Microchip Technology Inc. DS40001615C-page 253 PIC12(L)F1501 FIGURE 28-43: BROWN-OUT RESET VOLTAGE, BORV = 1, PIC12LF1501 ONLY 2.00 Max. Voltage (V) 1.95 Typical 1.90 1.85 Min. Max: Typical + 3ı Min: Typical - 3ı 1.80 -60 -40 -20 0 20 40 60 80 100 120 140 Temperature (°C) FIGURE 28-44: BROWN-OUT RESET HYSTERESIS, BORV = 1, PIC12LF1501 ONLY 60 50 Max. Max: Typical + 3ı Typical: 25°C Min: Typical - 3ı Voltage (mV) 40 Typical 30 20 Min. 10 0 -60 -40 -20 0 20 40 60 80 100 120 140 Temperature (°C) DS40001615C-page 254  2011-2015 Microchip Technology Inc. PIC12(L)F1501 FIGURE 28-45: BROWN-OUT RESET VOLTAGE, BORV = 1, PIC12F1501 ONLY 2.60 Max. 2.55 Voltage (V) 2.50 Typical 2.45 Min. 2.40 Max: Typical + 3ı Min: Typical - 3ı 2.35 2.30 -60 -40 -20 0 20 40 60 80 100 120 140 Temperature (°C) FIGURE 28-46: BROWN-OUT RESET HYSTERESIS, BORV = 1, PIC12F1501 ONLY 70 Max. 60 Max: Typical + 3ı Typical: 25°C Min: Typical - 3ı Voltage (mV) 50 40 Typical 30 20 Min. 10 0 -60 -40 -20 0 20 40 60 80 100 120 140 Temperature (°C)  2011-2015 Microchip Technology Inc. DS40001615C-page 255 PIC12(L)F1501 FIGURE 28-47: BROWN-OUT RESET VOLTAGE, BORV = 0 2.80 2.75 Voltage (V) Max. 2.70 Typical 2.65 Min. Max: Typical + 3ı Min: Typical - 3ı 2.60 2.55 -60 -40 -20 0 20 40 60 80 100 120 140 Temperature (°C) DS40001615C-page 256  2011-2015 Microchip Technology Inc. PIC12(L)F1501 FIGURE 28-48: LOW-POWER BROWN-OUT RESET VOLTAGE, LPBOR = 0 2.50 Max. Max: Typical + 3ı Min: Typical - 3ı 2.40 Voltage (V) 2.30 Typical 2.20 2.10 2.00 Min. 1.90 1.80 -60 -40 -20 0 20 40 60 80 100 120 140 120 140 Temperature (°C) FIGURE 28-49: LOW-POWER BROWN-OUT RESET HYSTERESIS, LPBOR = 0 45 Max: Typical + 3ı Typical: 25°C Min: Typical - 3ı 40 35 Max. Typical Voltage (mV) 30 25 Min. 20 15 10 5 0 -60 -40 -20 0 20 40 60 80 100 Temperature (°C)  2011-2015 Microchip Technology Inc. DS40001615C-page 257 PIC12(L)F1501 FIGURE 28-50: WDT TIME-OUT PERIOD 24 22 Max. Time (ms) 20 18 Typical 16 Min. 14 Max: Typical + 3ı (-40°C to +125°C) Typical: statistical mean @ 25°C Min: Typical - 3ı (-40°C to +125°C) 12 10 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 VDD (V) FIGURE 28-51: PWRT PERIOD 100 Max: Typical + 3ı (-40°C to +125°C) Typical: statistical mean @ 25°C Min: Typical - 3ı (-40°C to +125°C) 90 Max. Time (ms) 80 70 Typical 60 Min. 50 40 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 VDD (V) DS40001615C-page 258  2011-2015 Microchip Technology Inc. PIC12(L)F1501 FIGURE 28-52: FVR STABILIZATION PERIOD 60 Max: Typical + 3ı Typical: statistical mean @ 25°C 50 Max. Time (us) 40 Typical 30 20 Note: The FVR Stabilization Period applies when: 1) coming out of RESET or exiting Sleep mode for PIC12/16LFxxxx devices. 2) when exiting sleep mode with VREGPM = 1 for PIC12/16Fxxxx devices In all other cases, the FVR is stable when released from RESET. 10 0 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 VDD (V)  2011-2015 Microchip Technology Inc. DS40001615C-page 259 PIC12(L)F1501 FIGURE 28-53: COMPARATOR HYSTERESIS, NORMAL POWER MODE (CxSP = 1, CxHYS = 1) 40 35 Max. Hysteresis (mV) 30 25 Typical 20 15 Min. 10 Max: Typical + 3ı Typical: 25°C Min: Typical - 3ı 5 0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 VDD (V) FIGURE 28-54: COMPARATOR HYSTERESIS, LOW-POWER MODE (CxSP = 0, CxHYS = 1) 8 7 Max. Hysteresis (mV) 6 5 Typical 4 3 2 Max: Typical + 3ı Typical: 25°C Min: Typical - 3ı 1 Min. 0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 VDD (V) DS40001615C-page 260  2011-2015 Microchip Technology Inc. PIC12(L)F1501 FIGURE 28-55: COMPARATOR RESPONSE TIME, NORMAL POWER MODE (CxSP = 1) 350 300 Time (ns) 250 Max. 200 Typical 150 100 Max: Typical + 3ı Typical: 25°C 50 0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 VDD (V) FIGURE 28-56: COMPARATOR RESPONSE TIME OVER TEMPERATURE, NORMAL POWER MODE (CxSP = 1) 400 Max: 125°C + 3ı Typical: 25°C Min: -45°C - 3ı 350 Time (ns) 300 250 Max. (125°C) 200 150 Typical (25°C) 100 Min. (-40°C) 50 0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 VDD (V)  2011-2015 Microchip Technology Inc. DS40001615C-page 261 PIC12(L)F1501 FIGURE 28-57: COMPARATOR INPUT OFFSET AT 25°C, NORMAL POWER MODE (CxSP = 1), PIC12F1501 ONLY 50 40 30 Max. Offset Voltage (mV) 20 10 Typical 0 Min. -10 -20 Max: Typical + 3ı Typical: 25°C Min: Typical - 3ı -30 -40 -50 0.0 1.0 2.0 3.0 4.0 5.0 Common Mode Voltage (V) DS40001615C-page 262  2011-2015 Microchip Technology Inc. PIC12(L)F1501 FIGURE 28-58: LFINTOSC FREQUENCY OVER VDD AND TEMPERATURE, PIC12LF1501 ONLY 36 34 Max. Frequency (kHz) 32 30 Typical 28 Min. 26 24 Max: Typical + 3ı (-40°C to +125°C) Typical: statistical mean @ 25°C Min: Typical - 3ı (-40°C to +125°C) 22 20 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 VDD (V) FIGURE 28-59: LFINTOSC FREQUENCY OVER VDD AND TEMPERATURE, PIC12F1501 ONLY 36 34 Max. Frequency (kHz) 32 30 Typical 28 26 Min. 24 Max: Typical + 3ı (-40°C to +125°C) Typical: statistical mean @ 25°C Min: Typical - 3ı (-40°C to +125°C) 22 20 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 VDD (V)  2011-2015 Microchip Technology Inc. DS40001615C-page 263 PIC12(L)F1501 FIGURE 28-60: HFINTOSC ACCURACY OVER TEMPERATURE, VDD = 1.8V, PIC12LF1501 ONLY 8% 6% Max: Typical + 3ı Typical: statistical mean Min: Typical - 3ı Accuracy (%) 4% Max. 2% 0% Typical -2% -4% Min. -6% -8% -10% -60 -40 -20 0 20 40 60 80 100 120 140 Temperature (°C) HFINTOSC ACCURACY OVER TEMPERATURE, 2.3V  VDD 5.5V FIGURE 28-61: 8% 6% Max: Typical + 3ı Typical: statistical mean Min: Typical - 3ı Accuracy (%) 4% Max. 2% Typical 0% -2% Min. -4% -6% -8% -10% -60 -40 -20 0 20 40 60 80 100 120 140 Temperature (°C) DS40001615C-page 264  2011-2015 Microchip Technology Inc. PIC12(L)F1501 FIGURE 28-62: SLEEP MODE, WAKE PERIOD WITH HFINTOSC SOURCE, PIC12LF1501 ONLY 5.0 4.5 Max. 4.0 Time (us) 3.5 Typical 3.0 2.5 2.0 1.5 Max: 85°C + 3ı Typical: 25°C 1.0 0.5 0.0 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 VDD (V)  2011-2015 Microchip Technology Inc. DS40001615C-page 265 PIC12(L)F1501 FIGURE 28-63: LOW-POWER SLEEP MODE, WAKE PERIOD WITH HFINTOSC SOURCE, VREGPM = 1, PIC12F1501 ONLY 35 Max. 30 Typical Time (us) 25 20 15 10 Max: 85°C + 3ı Typical: 25°C 5 0 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 VDD (V) FIGURE 28-64: SLEEP MODE, WAKE PERIOD WITH HFINTOSC SOURCE, VREGPM = 0, PIC12F1501 ONLY 12 Max. 10 Time (us) 8 Typical 6 4 Max: 85°C + 3ı Typical: 25°C 2 0 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 VDD (V) DS40001615C-page 266  2011-2015 Microchip Technology Inc. PIC12(L)F1501 29.0 DEVELOPMENT SUPPORT The PIC® microcontrollers (MCU) and dsPIC® digital signal controllers (DSC) are supported with a full range of software and hardware development tools: • Integrated Development Environment - MPLAB® X IDE Software • Compilers/Assemblers/Linkers - MPLAB XC Compiler - MPASMTM Assembler - MPLINKTM Object Linker/ MPLIBTM Object Librarian - MPLAB Assembler/Linker/Librarian for Various Device Families • Simulators - MPLAB X SIM Software Simulator • Emulators - MPLAB REAL ICE™ In-Circuit Emulator • In-Circuit Debuggers/Programmers - MPLAB ICD 3 - PICkit™ 3 • Device Programmers - MPLAB PM3 Device Programmer • Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits • Third-party development tools 29.1 MPLAB X Integrated Development Environment Software The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows®, Linux and Mac OS® X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for highperformance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface. With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users. Feature-Rich Editor: • Color syntax highlighting • Smart code completion makes suggestions and provides hints as you type • Automatic code formatting based on user-defined rules • Live parsing User-Friendly, Customizable Interface: • Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc. • Call graph window Project-Based Workspaces: • • • • Multiple projects Multiple tools Multiple configurations Simultaneous debugging sessions File History and Bug Tracking: • Local file history feature • Built-in support for Bugzilla issue tracker  2011-2015 Microchip Technology Inc. DS40001615C-page 267 PIC12(L)F1501 29.2 MPLAB XC Compilers The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip’s 8, 16, and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X. For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE. The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications. MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include: • • • • • • Support for the entire device instruction set Support for fixed-point and floating-point data Command-line interface Rich directive set Flexible macro language MPLAB X IDE compatibility 29.3 MPASM Assembler The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs. The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel® standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging. The MPASM Assembler features include: 29.4 MPLINK Object Linker/ MPLIB Object Librarian The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script. The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications. The object linker/library features include: • Efficient linking of single libraries instead of many smaller files • Enhanced code maintainability by grouping related modules together • Flexible creation of libraries with easy module listing, replacement, deletion and extraction 29.5 MPLAB Assembler, Linker and Librarian for Various Device Families MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include: • • • • • • Support for the entire device instruction set Support for fixed-point and floating-point data Command-line interface Rich directive set Flexible macro language MPLAB X IDE compatibility • Integration into MPLAB X IDE projects • User-defined macros to streamline assembly code • Conditional assembly for multipurpose source files • Directives that allow complete control over the assembly process DS40001615C-page 268  2011-2015 Microchip Technology Inc. PIC12(L)F1501 29.6 MPLAB X SIM Software Simulator The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers. The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool. 29.7 MPLAB REAL ICE In-Circuit Emulator System The MPLAB REAL ICE In-Circuit Emulator System is Microchip’s next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE. The emulator is connected to the design engineer’s PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, LowVoltage Differential Signal (LVDS) interconnection (CAT5). The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.  2011-2015 Microchip Technology Inc. 29.8 MPLAB ICD 3 In-Circuit Debugger System The MPLAB ICD 3 In-Circuit Debugger System is Microchip’s most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE. The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer’s PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers. 29.9 PICkit 3 In-Circuit Debugger/ Programmer The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer’s PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming™ (ICSP™). 29.10 MPLAB PM3 Device Programmer The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications. DS40001615C-page 269 PIC12(L)F1501 29.11 Demonstration/Development Boards, Evaluation Kits, and Starter Kits A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification. The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory. 29.12 Third-Party Development Tools Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality. • Device Programmers and Gang Programmers from companies, such as SoftLog and CCS • Software Tools from companies, such as Gimpel and Trace Systems • Protocol Analyzers from companies, such as Saleae and Total Phase • Demonstration Boards from companies, such as MikroElektronika, Digilent® and Olimex • Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika® The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications. In addition to the PICDEM™ and dsPICDEM™ demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ® security ICs, CAN, IrDA®, PowerSmart battery management, SEEVAL® evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more. Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board. Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits. DS40001615C-page 270  2011-2015 Microchip Technology Inc. PIC12(L)F1501 30.0 PACKAGING INFORMATION 30.1 Package Marking Information 8-Lead PDIP (300 mil) XXXXXXXX XXXXXNNN YYWW 8-Lead SOIC (3.90 mm) e3 * Note: * 12F1501 I/P e3 017 1110 Example 12F1501 I/SN1110 017 NNN Legend: XX...X Y YY WW NNN Example Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week ‘01’) Alphanumeric traceability code Pb-free JEDEC® designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ( e3 ) can be found on the outer packaging for this package. In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information. Standard PICmicro® device marking consists of Microchip part number, year code, week code and traceability code. For PICmicro device marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.  2011-2015 Microchip Technology Inc. DS40001615C-page 271 PIC12(L)F1501 Package Marking Information (Continued) 8-Lead MSOP (3x3 mm) Example F1501I 110017 8-Lead DFN (2x3x0.9 mm) 8-Lead UDFN (2x3x0.5 mm) Example BAK 110 10 8-Lead DFN (3x3x0.9 mm) Example XXXX YYWW NNN MFB1 1110 017 PIN 1 DS40001615C-page 272 PIN 1  2011-2015 Microchip Technology Inc. PIC12(L)F1501 TABLE 30-1: 8-LEAD 2x3 DFN (MC) TOP MARKING Part Number PIC12F1501-E/MC Marking BAK PIC12F1501-I/MC BAL PIC12LF1501-E/MC BAM PIC12LF1501-I/MC BAP TABLE 30-2: 8-LEAD 3x3 DFN (MF) TOP MARKING Part Number PIC12F1501-E/MF Marking MFA1 PIC12F1501-I/MF MFB1 PIC12LF1501-E/MF MFC1 PIC12LF1501-I/MF MFD1 TABLE 30-3: 8-LEAD 2X3 UDFN (MU) TOP MARKING Part Number Marking PIC12F1501-E/MU BAR PIC12F1501-I/MU BAQ PIC12LF1501-E/MU BAT PIC12LF1501-I/MU BAS  2011-2015 Microchip Technology Inc. DS40001615C-page 273 PIC12(L)F1501 30.2 Package Details The following sections give the technical details of the packages.            4 ' ( "'# ' 5$ +") ""'    5 &'  '$' '' 366+++(    (6 5 N NOTE 1 E1 1 3 2 D E A2 A L A1 c e eB b1 b 7'" (" :('" 8#(*  &" 8-9/ 8 8 8; < = '  ' '  > >   $$5 5""   .  2"' '   > >  #$ '  #$ ?$' /  . .  $$5?$' /   = ;! :'  .= .@   ' ' :  .  :$ 5""  =   *  @  *  =  2 > > 7  :$?$' : + :$?$' ;!  + , 2- .     !"#$%&'# (! )*#'(#"'* '$+' '  ' $   ,&'-  ' "' . (" "$/$  '#$( $&"   ' #" " $&"   ' #" ""  '%$0  "$  (" $'    /1 2-32"("   '%'!#" ++' #''  "         + -=2 DS40001615C-page 274  2011-2015 Microchip Technology Inc. PIC12(L)F1501 Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging  2011-2015 Microchip Technology Inc. DS40001615C-page 275 PIC12(L)F1501 Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging DS40001615C-page 276  2011-2015 Microchip Technology Inc. PIC12(L)F1501     !  ""#$%& !'   4 ' ( "'# ' 5$ +") ""'    5 &'  '$' '' 366+++(    (6 5  2011-2015 Microchip Technology Inc. DS40001615C-page 277 PIC12(L)F1501 Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging DS40001615C-page 278  2011-2015 Microchip Technology Inc. PIC12(L)F1501 Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging  2011-2015 Microchip Technology Inc. DS40001615C-page 279 PIC12(L)F1501 Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging DS40001615C-page 280  2011-2015 Microchip Technology Inc. PIC12(L)F1501    (  $ )*+',--%&(   4 ' ( "'# ' 5$ +") ""'    5 &'  '$' '' 366+++(    (6 5 e D b N N L K E2 E EXPOSED PAD NOTE 1 NOTE 1 2 1 2 1 D2 BOTTOM VIEW TOP VIEW A A3 A1 NOTE 2 7'" (" :('" 8#(*  &" ::/ / 8 8 8; < = '  ;! 9 '  =   '$ &&     - '' 5"" . /4 ;! :'  2- ;! ?$' / /% "$$:'  . > /% "$$?$' /  >  *   . - '':' : .   - ''' /% "$$ W  > > - ''?$' 2- .2     !"#$%&'# (! )*#'(#"'* '$+' '  ' $   5( !  ( % "$'* "'$" . 5""+"#'$  (" $'    /1 2-3 2"("   '%'!#" ++' #''  " /43 & (" )#"#+' #''  )& & ('  # ""          + -.-  2011-2015 Microchip Technology Inc. DS40001615C-page 281 PIC12(L)F1501 Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging DS40001615C-page 282  2011-2015 Microchip Technology Inc. PIC12(L)F1501 Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging  2011-2015 Microchip Technology Inc. DS40001615C-page 283 PIC12(L)F1501 Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging DS40001615C-page 284  2011-2015 Microchip Technology Inc. PIC12(L)F1501 Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging  2011-2015 Microchip Technology Inc. DS40001615C-page 285 PIC12(L)F1501    (  $ )*+.,--%/.(   4 ' ( "'# ' 5$ +") ""'    5 &'  '$' '' 366+++(    (6 5 DS40001615C-page 286  2011-2015 Microchip Technology Inc. PIC12(L)F1501    (  $ )*+.,--%/.(   4 ' ( "'# ' 5$ +") ""'    5 &'  '$' '' 366+++(    (6 5  2011-2015 Microchip Technology Inc. DS40001615C-page 287 PIC12(L)F1501 APPENDIX A: DATA SHEET REVISION HISTORY Revision A (11/2011) Original release. Revision B (04/2014) Updated Electrical Specifications and added Characterization Data; Added UDFN package. Revision C (10/2015) Added Section 3.2 High Endurance Flash. Updated Equation 15-1; Figure 24-1; Register 24-3; Sections 22.1.5, 24.9.1.2, 24.11.1, and 27.1; and Tables 1-2, 3-5, and 24-2. Updated Product Identification System section. DS40001615C-page 288  2011-2015 Microchip Technology Inc. PIC12(L)F1501 THE MICROCHIP WEBSITE CUSTOMER SUPPORT Microchip provides online support via our website at www.microchip.com. This website is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the website contains the following information: Users of Microchip products can receive assistance through several channels: • Product Support – Data sheets and errata, application notes and sample programs, design resources, user’s guides and hardware support documents, latest software releases and archived software • General Technical Support – Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing • Business of Microchip – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives • • • • Distributor or Representative Local Sales Office Field Application Engineer (FAE) Technical Support Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document. Technical support is available through the website at: http://www.microchip.com/support CUSTOMER CHANGE NOTIFICATION SERVICE Microchip’s customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest. To register, access the Microchip website at www.microchip.com. Under “Support”, click on “Customer Change Notification” and follow the registration instructions.  2011-2015 Microchip Technology Inc. DS40001615C-page 289 PIC12(L)F1501 PRODUCT IDENTIFICATION SYSTEM To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office. [X](1) PART NO. Device - X Tape and Reel Temperature Option Range /XX XXX Package Pattern Examples: a) b) Device: PIC12LF1501, PIC12F1501 Tape and Reel Option: Blank T = Standard packaging (tube or tray) = Tape and Reel(1) Temperature Range: I E = -40C to +85C = -40C to +125C Package: MC MF MS MU P SN Pattern: = = = = = = (Industrial) (Extended) Micro Lead Frame (DFN) 2x3 Micro Lead Frame (DFN) 3x3 MSOP Micro Lead Frame (UDFN) 2x3 Plastic DIP SOIC QTP, SQTP, Code or Special Requirements (blank otherwise) DS40001615C-page 290 c) PIC12LF1501T - I/SN Tape and Reel, Industrial temperature, SOIC package PIC12F1501 - I/P Industrial temperature PDIP package PIC12F1501 - E/MF Extended temperature, DFN package Note 1: 2: Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option. For other small form-factor package availability and marking information, please visit www.microchip.com/packaging or contact your local sales office.  2011-2015 Microchip Technology Inc. PIC12(L)F1501 Note the following details of the code protection feature on Microchip devices: • Microchip products meet the specification contained in their particular Microchip Data Sheet. • Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions. • There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property. • Microchip is willing to work with the customer who is concerned about the integrity of their code. • Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.” Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act. Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated. Trademarks The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, flexPWR, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC32 logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. The Embedded Control Solutions Company and mTouch are registered trademarks of Microchip Technology Incorporated in the U.S.A. Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. SQTP is a service mark of Microchip Technology Incorporated in the U.S.A. Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries. GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries. All other trademarks mentioned herein are property of their respective companies. © 2011-2015, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved. ISBN: 978-1-63277-915-1 QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV == ISO/TS 16949 ==  2011-2015 Microchip Technology Inc. Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified. DS40001615C-page 291 Worldwide Sales and Service AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130 Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829 India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123 France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632 Germany - Dusseldorf Tel: 49-2129-3766400 Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455 Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431 Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104 Austin, TX Tel: 512-257-3370 China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889 Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088 China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500 Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075 Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643 Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924 Detroit Novi, MI Tel: 248-848-4000 Houston, TX Tel: 281-894-5983 Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 New York, NY Tel: 631-435-6000 San Jose, CA Tel: 408-735-9110 Canada - Toronto Tel: 905-673-0699 Fax: 905-673-6509 China - Dongguan Tel: 86-769-8702-9880 China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116 Germany - Karlsruhe Tel: 49-721-625370 India - Pune Tel: 91-20-3019-1500 Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44 Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310 Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781 Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771 Italy - Venice Tel: 39-049-7625286 Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302 Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340 China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431 Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934 China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470 Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205 Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068 China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066 Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069 China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393 Singapore Tel: 65-6334-8870 Fax: 65-6334-8850 China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760 Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955 China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118 Taiwan - Kaohsiung Tel: 886-7-213-7828 China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256 Poland - Warsaw Tel: 48-22-3325737 Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91 Sweden - Stockholm Tel: 46-8-5090-4654 UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820 Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102 Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350 07/14/15 DS40001615C-page 292  2011-2015 Microchip Technology Inc.
PIC12LF1501-I/P 价格&库存

很抱歉,暂时无法提供与“PIC12LF1501-I/P”相匹配的价格&库存,您可以联系我们找货

免费人工找货