0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
PIC12LF1552-I/MU

PIC12LF1552-I/MU

  • 厂商:

    ACTEL(微芯科技)

  • 封装:

    UFDFN8_EP

  • 描述:

    IC MCU 8BIT 3.5KB FLASH 8UDFN

  • 数据手册
  • 价格&库存
PIC12LF1552-I/MU 数据手册
PIC12LF1552 8-Pin Flash, 8-Bit Microcontrollers High-Performance RISC CPU eXtreme Low-Power (XLP) Features • • • • • • Sleep Current: - 20 nA @ 1.8V, typical • Watchdog Timer Current: - 200 nA @ 1.8V, typical • Operating Current: - 30 A/MHz @ 1.8V, typical C Compiler Optimized Architecture Only 49 Instructions 2K Words Linear Program Memory Addressing 256 bytes Linear Data Memory Addressing Operating Speed: - DC – 32 MHz clock input - DC – 125 ns instruction cycle • Interrupt Capability with Automatic Context Saving • 16-Level Deep Hardware Stack with Optional Overflow/Underflow Reset • Direct, Indirect and Relative Addressing modes: - Two full 16-bit File Select Registers (FSRs) - FSRs can read program and data memory Flexible Oscillator Structure • 16 MHz Internal Oscillator Block: - Factory calibrated to ±1%, typical - Software selectable frequency range from 32 MHz to 31 kHz • 4x Phase-Lock Loop (PLL), usable with 16 MHz internal oscillator - Allows 32 MHz software selectable clock frequency • 31 kHz Low-Power Internal Oscillator • Three External Clock modes up to 20 MHz Special Microcontroller Features • Operating Voltage Range: - 1.8V to 3.6V • Self-Programmable under Software Control • Power-on Reset (POR) • Power-up Timer (PWRT) • Programmable Low-Power Brown-Out Reset (LPBOR) • Extended Watchdog Timer (WDT): - Programmable period from 1 ms to 256s • Programmable Code Protection • In-Circuit Serial Programming™ (ICSP™) via Two Pins • Enhanced Low-Voltage Programming (LVP) • Power-Saving Sleep mode: - Low-Power Sleep mode - Low-Power BOR (LPBOR) • Integrated Temperature Indicator • 128 Bytes High-Endurance Flash: - 100,000 write Flash endurance (minimum)  2012-2016 Microchip Technology Inc. Peripheral Features • Analog-to-Digital Converter (ADC): - 10-bit resolution - 5 external channels - 2 internal channels: - Fixed Voltage Reference - Temperature Indicator channel - Auto acquisition capability - Conversion available during Sleep - Special Event Triggers • Hardware Capacitive Voltage Divider (CVD) - Double sample conversions - Two sets of result registers - Inverted acquisition - 7-bit pre-charge timer - 7-bit acquisition timer - Two guard ring output drives - Adjustable sample and hold capacitor array • Voltage Reference module: - Fixed Voltage Reference (FVR) with 1.024V and 2.048V output levels • 6 I/O Pins (1 Input-only Pin): - High current sink/source 25 mA/25 mA - Individually programmable weak pull-ups - Individually programmable interrupt-on-change (IOC) pins • Timer0: 8-Bit Timer/Counter with 8-Bit Programmable Prescaler • Master Synchronous Serial Port (MSSP) with SPI and I2C with: - 7-bit address masking - SMBus/PMBusTM compatibility DS40001674F-page 1 PIC12LF1552 Data EEPROM (bytes) SRAM (bytes) I/Os (1) 10-bit ADCs(4) Analog Channels(2)(3) CVD RX Channels CVD TX Channels(5) Timers 8/16-bit EUSART MSSP PWM Debug XLP PIC12LF1552 (A) 2048 0 256 6 1 4 1 1/0 - 1 - - Y PIC16LF1554 (B) 4096 0 256 12 2 10 2 2/1 1 1 2 I Y PIC16LF1559 (B) 8192 0 512 18 2 16 2 2/1 1 1 2 I Y PIC16LF1566 (C) 8192 0 1024 25 2 23 23 3/1 1 2 2 I Y PIC16LF1567 (C) 8192 0 1024 36 2 34 34 3/1 1 2 2 I Y Device Program Memory Flash (words) PIC12LF1552 Family Types Data Sheet Index TABLE 1: Note 1: 2: 3: 4: 5: The MCLR pin is input only. Analog channels are split between the available ADCs. Maximum usable analog channels assuming one pin must be assigned to output. If VDD > 2.4V, ADC may be overclocked 4x (TAD = 0.25 µs). Includes functionality of ADxGRDA output pin. Data Sheet Index (Unshaded devices are described in this document.) A: DS40001674 PIC12LF1552 Data Sheet, 8-Pin Flash, 8-Bit Microcontrollers B: DS40001761 PIC16LF1554/1559 Data Sheet, 20-Pin Flash, 8-Bit Microcontrollers with XLP Technology C: DS40001817 PIC16LF1566/1567 Data Sheet 28/40/44-Pin Flash, 8-Bit Microcontrollers with XLP Technology Note: For other small form-factor package availability and marking information, please visit http://www.microchip.com/packaging or contact your local sales office. DS40001674F-page 2  2012-2016 Microchip Technology Inc. PIC12LF1552 FIGURE 1: 8-PIN PDIP, SOIC, MSOP, UDFN RA5 2 RA4 3 MCLR/VPP/RA3 4 PIC12LF1552 VDD 1 8 VSS 7 RA0/ICSPDAT 6 RA1/ICSPCLK 5 RA2 Note: See Table 2 for location of all peripheral functions. 8-Pin PDIP/SOIC/MSOP/UDFN ADC/Hardware CVD Reference Timer MSSP Interrupt Pull-Up Basic 8-PIN ALLOCATION TABLE I/O TABLE 2: RA0 7 AN0 — — SDO(1) SS(2) IOC Y ICSPDAT RA1 6 AN1 VREF+ — SCK SCL IOC Y ICSPCLK RA2 5 AN2 ADOUT — T0CKI SDI(1) SDA(1) INT IOC Y — RA3 4 — — — SS(1) SDA(2) SDI(2) IOC Y MCLR VPP RA4 3 AN3 ADGRDA — — SDO(2) IOC Y CLKOUT RA5 2 AN4 ADGRDB — — — IOC Y CLKIN VDD 1 — — — — — — VDD VSS 8 — — — — — — VSS Note 1: 2: Default location for peripheral pin function. Alternate location can be selected using the APFCON register. Alternate location for peripheral pin function selected by the APFCON register.  2012-2016 Microchip Technology Inc. DS40001674F-page 3 PIC12LF1552 Table of Contents 1.0 Device Overview .......................................................................................................................................................................... 5 2.0 Enhanced Mid-Range CPU .......................................................................................................................................................... 8 3.0 Memory Organization ................................................................................................................................................................. 10 4.0 Device Configuration .................................................................................................................................................................. 31 5.0 Oscillator Module........................................................................................................................................................................ 36 6.0 Resets ........................................................................................................................................................................................ 44 7.0 Interrupts .................................................................................................................................................................................... 52 8.0 Power-down Mode (Sleep) ......................................................................................................................................................... 62 9.0 Watchdog Timer (WDT) ............................................................................................................................................................. 64 10.0 Flash Program Memory Control ................................................................................................................................................. 68 11.0 I/O Ports ..................................................................................................................................................................................... 84 12.0 Interrupt-on-Change ................................................................................................................................................................... 90 13.0 Fixed Voltage Reference (FVR) ................................................................................................................................................. 94 14.0 Temperature Indicator Module ................................................................................................................................................... 96 15.0 Analog-to-Digital Converter (ADC) Module ................................................................................................................................ 98 16.0 Hardware Capacitive Voltage Divider (CVD) Module ............................................................................................................... 111 17.0 Timer0 Module ......................................................................................................................................................................... 130 18.0 Master Synchronous Serial Port Module .................................................................................................................................. 133 19.0 In-Circuit Serial Programming™ (ICSP™) ............................................................................................................................... 186 20.0 Instruction Set Summary .......................................................................................................................................................... 188 21.0 Electrical Specifications............................................................................................................................................................ 202 22.0 DC and AC Characteristics Graphs and Charts ....................................................................................................................... 219 23.0 Development Support............................................................................................................................................................... 223 24.0 Packaging Information.............................................................................................................................................................. 227 Appendix A: “Data Sheet Revision History”.................................................................................................................................. 239 The Microchip Web Site ..................................................................................................................................................................... 240 Customer Change Notification Service .............................................................................................................................................. 240 Customer Support .............................................................................................................................................................................. 240 Product Identification System............................................................................................................................................................. 241 TO OUR VALUED CUSTOMERS It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced. If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at docerrors@microchip.com. We welcome your feedback. Most Current Data Sheet To obtain the most up-to-date version of this data sheet, please register at our Worldwide Website at: http://www.microchip.com You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000). Errata An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies. To determine if an errata sheet exists for a particular device, please check with one of the following: • Microchip’s Worldwide Website; http://www.microchip.com • Your local Microchip sales office (see last page) When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using. Customer Notification System Register on our website at www.microchip.com to receive the most current information on all of our products. DS40001674F-page 4  2012-2016 Microchip Technology Inc. PIC12LF1552 1.0 DEVICE OVERVIEW The PIC12LF1552 are described within this data sheet. They are available in 8-pin packages. Figure 1-1 shows a block diagram of the PIC12LF1552 devices. Table 1-2 shows the pinout descriptions. Reference Table 1-1 for peripherals available per device. DEVICE PERIPHERAL SUMMARY Peripheral PIC12LF1552 TABLE 1-1: Analog-to-Digital Converter (ADC) ● Hardware Capacitor Voltage Divider (CVD) ● Fixed Voltage Reference (FVR) ● Temperature Indicator ● Master Synchronous Serial Ports MSSP1 ● Timer0 ● Timers  2012-2016 Microchip Technology Inc. DS40001674F-page 5 PIC12LF1552 FIGURE 1-1: PIC12LF1552 BLOCK DIAGRAM Program Flash Memory RAM CLKOUT Timing Generation CLKIN INTRC Oscillator PORTA CPU (Figure 2-1) MCLR MSSP Timer0 Temp. Indicator Note 1: 2: DS40001674F-page 6 ADC 10-Bit Hardware CVD FVR See applicable chapters for more information on peripherals. See Table 1-1 for peripherals available on specific devices.  2012-2016 Microchip Technology Inc. PIC12LF1552 TABLE 1-2: PIC12LF1552 PINOUT DESCRIPTION Name RA0/AN0/SDO(1)/SS(2)/ ICSPDAT RA1/AN1/VREF+/SCK/SCL/ ICSPCLK RA2/AN2/ADOUT/T0CKI/ SDI(1)/SDA(1)/INT (1) (2) RA3/MCLR/VPP/SS /SDI / SDA(2) RA4/AN3/SDO(2)/CLKOUT/ ADGRDA RA5/AN4/CLKIN/ADGRDB Function Input Type RA0 TTL AN0 AN Output Type Description CMOS General purpose I/O. — ADC Channel input. SDO — SS ST CMOS SPI data output. ICSPDAT ST CMOS ICSP™ Data I/O. RA1 TTL CMOS General purpose I/O. — Slave Select input. AN1 AN — ADC Channel input. VREF+ AN — ADC Positive Voltage Reference input. SCK ST SCL I2C ICSPCLK ST RA2 ST CMOS SPI clock. OD I2C clock. — ICSP™ Programming Clock. CMOS General purpose I/O. AN2 AN — ADC Channel input. ADOUT CMOS — ADC with CVD output. T0CKI ST — Timer0 clock input. SDI ST — SPI data input. SDA I2C OD I2C data input/output. INT ST — External interrupt. General purpose input. RA3 TTL — MCLR ST — Master Clear with internal pull-up. VPP HV — Programming voltage. SS ST — Slave Select input. SDI ST — SPI data input. SDA I2C OD I2C data input/output. RA4 TTL AN3 AN CMOS General purpose I/O. — ADC Channel input. SDO — CMOS SPI data output. CLKOUT — CMOS FOSC/4 output. ADGRDA — CMOS Guard ring output A. RA5 TTL CMOS General purpose I/O. AN4 AN — ADC Channel input. CLKIN CMOS — External clock input (EC mode). ADGRDB — VDD VDD Power CMOS Guard ring output B. — Positive supply. VSS VSS Power — Ground reference. Legend: AN = Analog input or output CMOS = CMOS compatible input or output OD = Open-Drain TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels I2C = Schmitt Trigger input with I2C HV = High Voltage XTAL = Crystal levels Note 1: Default location for peripheral pin function. Alternate location can be selected using the APFCON register. 2: Alternate location for peripheral pin function selected by the APFCON register.  2012-2016 Microchip Technology Inc. DS40001674F-page 7 PIC12LF1552 2.0 • • • • ENHANCED MID-RANGE CPU This family of devices contain an enhanced mid-range 8-bit CPU core. The CPU has 49 instructions. Interrupt capability includes automatic context saving. The hardware stack is 16 levels deep and has Overflow and Underflow Reset capability. Direct, Indirect, and Relative addressing modes are available. Two File Select Registers (FSRs) provide the ability to read program and data memory. FIGURE 2-1: Automatic Interrupt Context Saving 16-level Stack with Overflow and Underflow File Select Registers Instruction Set CORE BLOCK DIAGRAM 15 Configuration 15 MUX Flash Program Memory Program Bus 16-Level 8 Level Stack Stack (13-bit) (15-bit) 14 Instruction Instruction Reg reg 8 Data Bus Program Counter RAM Program Memory Read (PMR) 12 RAM Addr Addr MUX Indirect Addr 12 12 Direct Addr 7 5 BSR FSR Reg reg 15 FSR0reg Reg FSR FSR1 Reg FSR reg 15 STATUS Reg reg STATUS 8 3 CLKIN CLKOUT Instruction Decodeand & Decode Control Timing Generation Internal Oscillator Block DS40001674F-page 8 MUX Power-up Timer Power-on Reset Watchdog Timer Brown-out Reset VDD ALU 8 W Reg VSS  2012-2016 Microchip Technology Inc. PIC12LF1552 2.1 Automatic Interrupt Context Saving During interrupts, certain registers are automatically saved in shadow registers and restored when returning from the interrupt. This saves stack space and user code. See Section 7.5 “Automatic Context Saving”, for more information. 2.2 16-Level Stack with Overflow and Underflow These devices have an external stack memory 15 bits wide and 16 words deep. A Stack Overflow or Underflow will set the appropriate bit (STKOVF or STKUNF) in the PCON register and, if enabled, will cause a software Reset. See section Section 3.5 “Stack” for more details. 2.3 File Select Registers There are two 16-bit File Select Registers (FSR). FSRs can access all file registers and program memory, which allows one Data Pointer for all memory. When an FSR points to program memory, there is one additional instruction cycle in instructions using INDF to allow the data to be fetched. General purpose memory can now also be addressed linearly, providing the ability to access contiguous data larger than 80 bytes. There are also new instructions to support the FSRs. See Section 3.6 “Indirect Addressing” for more details. 2.4 Instruction Set There are 49 instructions for the enhanced mid-range CPU to support the features of the CPU. See Section 20.0 “Instruction Set Summary” for more details.  2012-2016 Microchip Technology Inc. DS40001674F-page 9 PIC12LF1552 3.0 MEMORY ORGANIZATION These devices contain the following types of memory: • Program Memory - Configuration Words - Device ID - User ID - Flash Program Memory • Data Memory - Core Registers - Special Function Registers - General Purpose RAM - Common RAM TABLE 3-1: The following features are associated with access and control of program memory and data memory: • PCL and PCLATH • Stack • Indirect Addressing 3.1 Program Memory Organization The enhanced mid-range core has a 15-bit program counter capable of addressing a 32K x 14 program memory space. Table 3-1 shows the memory sizes implemented. Accessing a location above these boundaries will cause a wrap-around within the implemented memory space. The Reset vector is at 0000h and the interrupt vector is at 0004h (see Figure 3-1). DEVICE SIZES AND ADDRESSES Device PIC12LF1552 Program Memory Space (Words) Last Program Memory Address High-Endurance Flash Memory Address Range (1) 2,048 07FFh 0780h-07FFh Note 1: High-endurance Flash applies to the low byte of each address in the range. DS40001674F-page 10  2012-2016 Microchip Technology Inc. PIC12LF1552 FIGURE 3-1: PROGRAM MEMORY MAP AND STACK FOR PIC12LF1552 PC CALL, CALLW RETURN, RETLW Interrupt, RETFIE On-chip Program Memory 15 3.1.1 READING PROGRAM MEMORY AS DATA There are two methods of accessing constants in program memory. The first method is to use tables of RETLW instructions. The second method is to set an FSR to point to the program memory. 3.1.1.1 RETLW Instruction Stack Level 0 Stack Level 1 The RETLW instruction can be used to provide access to tables of constants. The recommended way to create such a table is shown in Example 3-1. Stack Level 15 EXAMPLE 3-1: Reset Vector 0000h Interrupt Vector 0004h 0005h Page 0 Rollover to Page 0 Wraps to Page 0 7FFFh 0800h DATA0 DATA1 DATA2 DATA3 ;Add Index in W to ;program counter to ;select data ;Index0 data ;Index1 data The BRW instruction makes this type of table very simple to implement. If your code must remain portable with previous generations of microcontrollers, then the BRW instruction is not available so the older table read method must be used. Wraps to Page 0  2012-2016 Microchip Technology Inc. RETLW RETLW RETLW RETLW RETLW INSTRUCTION my_function ;… LOTS OF CODE… MOVLW DATA_INDEX call constants ;… THE CONSTANT IS IN W Wraps to Page 0 Rollover to Page 0 constants BRW 7FFFh DS40001674F-page 11 PIC12LF1552 3.1.1.2 Indirect Read with FSR The program memory can be accessed as data by setting bit 7 of the FSRxH register and reading the matching INDFx register. The MOVIW instruction will place the lower eight bits of the addressed word in the W register. Writes to the program memory cannot be performed via the INDF registers. Instructions that access the program memory via the FSR require one extra instruction cycle to complete. Example 3-2 demonstrates accessing the program memory via an FSR. The High directive will set bit if a label points to a location in program memory. EXAMPLE 3-2: constants DW DW ACCESSING PROGRAM MEMORY VIA FSR DATA0 constant DATA1 constant DATA2 DATA3 ; First ; Second DW DW my_function ;… LOTS OF CODE… MOVLW DATA_INDEX ADDLW LOW constants MOVWF FSR1L MOVLW HIGH constants; MSb is set automatically MOVWF FSR1H BTFSC STATUS,C ; carry from ADDLW? INCF FSR1H,f ; yes MOVIW 0[FSR1] ;THE PROGRAM MEMORY IS IN W 3.2 Data memory uses a 12-bit address. The upper seven bits of the address define the Bank address and the lower five bits select the registers/RAM in that bank. 3.2.1 CORE REGISTERS The core registers contain the registers that directly affect the basic operation. The core registers occupy the first 12 addresses of every data memory bank (addresses x00h/x08h through x0Bh/x8Bh). These registers are listed below in Table 3-2. For detailed information, see Table 3-5. TABLE 3-2: CORE REGISTERS Addresses BANKx x00h or x80h x01h or x81h x02h or x82h x03h or x83h x04h or x84h x05h or x85h x06h or x86h x07h or x87h x08h or x88h x09h or x89h x0Ah or x8Ah x0Bh or x8Bh INDF0 INDF1 PCL STATUS FSR0L FSR0H FSR1L FSR1H BSR WREG PCLATH INTCON Data Memory Organization The data memory is partitioned into 32 memory banks with 128 bytes in a bank. Each bank consists of (Figure 3-2): • • • • 12 core registers 20 Special Function Registers (SFR) Up to 80 bytes of General Purpose RAM (GPR) 16 bytes of common RAM The active bank is selected by writing the bank number into the Bank Select Register (BSR). Unimplemented memory will read as ‘0’. All data memory can be accessed either directly (via instructions that use the file registers) or indirectly via the two File Select Registers (FSR). See Section 3.6 “Indirect Addressing” for more information. DS40001674F-page 12  2012-2016 Microchip Technology Inc. PIC12LF1552 3.2.1.1 STATUS Register The STATUS register, shown in Register 3-1, contains: • the arithmetic status of the ALU • the Reset status The STATUS register can be the destination for any instruction, like any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended. 3.3 For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as ‘000u u1uu’ (where u = unchanged). It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect any Status bits. For other instructions not affecting any Status bits (Refer to Section 20.0 “Instruction Set Summary”). Note 1: The C and DC bits operate as Borrow and Digit Borrow out bits, respectively, in subtraction. Register Definitions: Status REGISTER 3-1: U-0 STATUS: STATUS REGISTER U-0 — U-0 — R-1/q — TO R-1/q PD R/W-0/u R/W-0/u R/W-0/u Z DC(1) C(1) bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared q = Value depends on condition bit 7-5 Unimplemented: Read as ‘0’ bit 4 TO: Time-Out bit 1 = After power-up, CLRWDT instruction or SLEEP instruction 0 = A WDT time-out occurred bit 3 PD: Power-Down bit 1 = After power-up or by the CLRWDT instruction 0 = By execution of the SLEEP instruction bit 2 Z: Zero bit 1 = The result of an arithmetic or logic operation is zero 0 = The result of an arithmetic or logic operation is not zero bit 1 DC: Digit Carry/Digit Borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions)(1) 1 = A carry-out from the 4th low-order bit of the result occurred 0 = No carry-out from the 4th low-order bit of the result bit 0 C: Carry/Borrow bit(1) (ADDWF, ADDLW, SUBLW, SUBWF instructions)(1) 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred Note 1: For Borrow, the polarity is reversed. A subtraction is executed by adding the two’s complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high-order or low-order bit of the source register.  2012-2016 Microchip Technology Inc. DS40001674F-page 13 PIC12LF1552 3.3.1 SPECIAL FUNCTION REGISTER The Special Function Registers are registers used by the application to control the desired operation of peripheral functions in the device. The Special Function Registers occupy the 20 bytes after the core registers of every data memory bank (addresses x0Ch/x8Ch through x1Fh/x9Fh). The registers associated with the operation of the peripherals are described in the appropriate peripheral chapter of this data sheet. 3.3.2 FIGURE 3-2: 7-bit Bank Offset 0Bh 0Ch GENERAL PURPOSE RAM Core Registers (12 bytes) Special Function Registers (20 bytes maximum) 1Fh 20h Linear Access to GPR The general purpose RAM can be accessed in a non-banked method via the FSRs. This can simplify access to large memory structures. See Section 3.6.2 “Linear Data Memory” for more information. 3.3.3 Memory Region 00h There are up to 80 bytes of GPR in each data memory bank. The Special Function Registers occupy the 20 bytes after the core registers of every data memory bank (addresses x0Ch/x8Ch through x1Fh/x9Fh). 3.3.2.1 BANKED MEMORY PARTITIONING General Purpose RAM (80 bytes maximum) COMMON RAM There are 16 bytes of common RAM accessible from all banks. 6Fh 70h Common RAM (16 bytes) 7Fh 3.3.4 DEVICE MEMORY MAPS The memory maps for PIC12LF1552 are as shown in Table 3-3. DS40001674F-page 14  2012-2016 Microchip Technology Inc.  2012-2016 Microchip Technology Inc. TABLE 3-3: PIC12LF1552 MEMORY MAP BANK 0 000h BANK 1 080h Core Registers (Table 3-2) 00Bh 00Ch 00Dh 00Eh 00Fh 010h 011h 012h 013h 014h 015h 016h 017h 018h 019h 01Ah 01Bh 01Ch 01Dh 01Eh 01Fh 020h PORTA — — — — PIR1 PIR2 — — TMR0 — — — — — — — — — — General Purpose Register 48 Bytes Legend: Note 1: Core Registers (Table 3-2) 08Bh 08Ch 08Dh 08Eh 08Fh 090h 091h 092h 093h 094h 095h 096h 097h 098h 099h 09Ah 09Bh 09Ch 09Dh 09Eh 09Fh 0A0h TRISA — — — — PIE1 PIE2 — — OPTION_REG PCON WDTCON — OSCCON OSCSTAT ADRESL(1) ADRESH(1) ADCON0(1) ADCON1(1) ADCON2(1) Core Registers (Table 3-2) 10Bh 10Ch 10Dh 10Eh 10Fh 110h 111h 112h 113h 114h 115h 116h 117h 118h 119h 11Ah 11Bh 11Ch 11Dh 11Eh 11Fh 120h General Purpose Register 80 Bytes 0EFh 0F0h 0FFh Common RAM (Accesses 70h – 7Fh) BANK 3 180h LATA — — — — — — — — — BORCON FVRCON — — — — — APFCON — — Core Registers (Table 3-2) 18Bh 18Ch 18Dh 18Eh 18Fh 190h 191h 192h 193h 194h 195h 196h 197h 198h 199h 19Ah 19Bh 19Ch 19Dh 19Eh 19Fh 1A0h General Purpose Register 80 Bytes 16Fh 170h 17Fh Common RAM (Accesses 70h – 7Fh) = Unimplemented data memory locations, read as ‘0’ These ADC registers are the same as the registers in Bank 14. BANK 4 200h ANSELA — — — — PMADRL PMADRH PMDATL PMDATH PMCON1 PMCON2 — — — — — — — — — Core Registers (Table 3-2) 20Bh 20Ch 20Dh 20Eh 20Fh 210h 211h 212h 213h 214h 215h 216h 217h 218h 219h 21Ah 21Bh 21Ch 21Dh 21Eh 21Fh 220h Unimplemented Read as ‘0’ 1EFh 1F0h WPUA — — — — SSPBUF SSPADD SSPMSK SSPSTAT SSPCON1 SSPCON2 SSPCON3 — — — — — — — — 26Fh 270h 28Bh 28Ch 28Dh 28Eh 28Fh 290h 291h 292h 293h 294h 295h 296h 297h 298h 299h 29Ah 29Bh 29Ch 29Dh 29Eh 29Fh 2A0h — — — — — — — — — — — — — — — — — — — — 30Bh 30Ch 30Dh 30Eh 30Fh 310h 311h 312h 313h 314h 315h 316h 317h 318h 319h 31Ah 31Bh 31Ch 31Dh 31Eh 31Fh 320h Core Registers (Table 3-2) 38Bh 38Ch 38Dh 38Eh 38Fh 390h 391h 392h 393h 394h 395h 396h 397h 398h 399h 39Ah 39Bh 39Ch 39Dh 39Eh 39Fh 3A0h Unimplemented Read as ‘0’ Accesses 70h – 7Fh 2FFh — — — — — — — — — — — — — — — — — — — — 36Fh 370h 2EFh 2F0h BANK 7 380h Core Registers (Table 3-2) Unimplemented Read as ‘0’ Accesses 70h – 7Fh 27Fh BANK 6 300h Core Registers (Table 3-2) Unimplemented Read as ‘0’ Accesses 70h – 7Fh 1FFh BANK 5 280h — — — — — — — — — — — — Unimplemented Read as ‘0’ 3EFh 3F0h Accesses 70h – 7Fh 37Fh — — — — — IOCAP IOCAN IOCAF Accesses 70h – 7Fh 3FFh DS40001674F-page 15 PIC12LF1552 07Fh BANK 2 100h PIC12LF1552 MEMORY MAP (CONTINUED) BANK 8 400h BANK 9 480h Core Registers (Table 3-2) 40Bh 40Ch 40Dh 40Eh 40Fh 410h 411h 412h 413h 414h 415h 416h 417h 418h 419h 41Ah 41Bh 41Ch 41Dh 41Eh 41Fh 420h — — — — — — — — — — — — — — — — — — — — Core Registers (Table 3-2) 48Bh 48Ch 48Dh 48Eh 48Fh 490h 491h 492h 493h 494h 495h 496h 497h 498h 499h 49Ah 49Bh 49Ch 49Dh 49Eh 49Fh 4A0h Unimplemented Read as ‘0’ 46Fh 470h — — — — — — — — — — — — — — — — — — — — Accesses 70h – 7Fh  2012-2016 Microchip Technology Inc. 80Bh 80Ch Unimplemented Read as ‘0’ 86Fh 870h Unimplemented Read as ‘0’ 8EFh 8F0h Accesses 70h – 7Fh 87Fh Legend: Note 1: Unimplemented Read as ‘0’ 8FFh 9EFh 9F0h 96Fh 970h Accesses 70h – 7Fh Unimplemented Read as ‘0’ Accesses 70h – 7Fh 97Fh = Unimplemented data memory locations, read as ‘0’ These ADC registers are the same as the registers in Bank 1. Unimplemented Read as ‘0’ Accesses 70h – 7Fh 9FFh Core Registers (Table 3-2) B8Bh B8Ch Unimplemented Read as ‘0’ Unimplemented Read as ‘0’ BEFh BF0h B6Fh B70h Accesses 70h – 7Fh AFFh BANK 23 B80h Core Registers (Table 3-2) Unimplemented Read as ‘0’ Accesses 70h – 7Fh A7Fh BANK 22 B0Bh B0Ch AEFh AF0h A6Fh A70h Accesses 70h – 7Fh 7FFh B00h Core Registers (Table 3-2) Accesses 70h – 7Fh B7Fh — — — — — — — — — — — — — — — — — — — — Unimplemented Read as ‘0’ Accesses 70h – 7Fh BANK 21 A8Bh A8Ch 78Bh 78Ch 78Dh 78Eh 78Fh 790h 791h 792h 793h 794h 795h 796h 797h 798h 799h 79Ah 79Bh 79Ch 79Dh 79Eh 79Fh 7A0h 7EFh 7F0h 77Fh A80h Core Registers (Table 3-2) — — — — — AADCON0(1) AADCON1(1) AADCON2(1) AADCON3 AADSTAT AADPRE AADACQ AADGRD AADCAP AADRES0L(1) AADRES0H(1) AADRES1L AADRES1H — — Core Registers (Table 3-2) Unimplemented Read as ‘0’ Accesses 70h – 7Fh BANK 20 A0Bh A0Ch 70Bh 70Ch 70Dh 70Eh 70Fh 710h 711h 712h 713h 714h 715h 716h 717h 718h 719h 71Ah 71Bh 71Ch 71Dh 71Eh 71Fh 720h 76Fh 770h 6FFh A00h Core Registers (Table 3-2) — — — — — — — — — — — — — — — — — — — — BANK 15 780h Core Registers (Table 3-2) Unimplemented Read as ‘0’ Accesses 70h – 7Fh BANK 19 98Bh 98Ch 68Bh 68Ch 68Dh 68Eh 68Fh 690h 691h 692h 693h 694h 695h 696h 697h 698h 699h 69Ah 69Bh 69Ch 69Dh 69Eh 69Fh 6A0h 6EFh 6F0h 67Fh 980h Core Registers (Table 3-2) — — — — — — — — — — — — — — — — — — — — BANK 14 700h Core Registers (Table 3-2) Unimplemented Read as ‘0’ Accesses 70h – 7Fh BANK 18 90Bh 90Ch 60Bh 60Ch 60Dh 60Eh 60Fh 610h 611h 612h 613h 614h 615h 616h 617h 618h 619h 61Ah 61Bh 61Ch 61Dh 61Eh 61Fh 620h 66Fh 670h 5FFh 900h Core Registers (Table 3-2) — — — — — — — — — — — — — — — — — — — — BANK 13 680h Core Registers (Table 3-2) Unimplemented Read as ‘0’ Accesses 70h – 7Fh BANK 17 88Bh 88Ch 58Bh 58Ch 58Dh 58Eh 58Fh 590h 591h 592h 593h 594h 595h 596h 597h 598h 599h 59Ah 59Bh 59Ch 59Dh 59Eh 59Fh 5A0h 5EFh 5F0h 57Fh 880h Core Registers (Table 3-2 ) — — — — — — — — — — — — — — — — — — — — BANK 12 600h Core Registers (Table 3-2) Unimplemented Read as ‘0’ Accesses 70h – 7Fh BANK 16 800h 50Bh 50Ch 50Dh 50Eh 50Fh 510h 511h 512h 513h 514h 515h 516h 517h 518h 519h 51Ah 51Bh 51Ch 51Dh 51Eh 51Fh 520h 56Fh 570h 4FFh BANK 11 580h Core Registers (Table 3-2) Unimplemented Read as ‘0’ 4EFh 4F0h 47Fh BANK 10 500h Accesses 70h – 7Fh BFFh PIC12LF1552 DS40001674F-page 16 TABLE 3-3:  2012-2016 Microchip Technology Inc. TABLE 3-3: PIC12LF1552 MEMORY MAP (CONTINUED) BANK 24 C00h BANK 25 C80h Core Registers (Table 3-2) C0Bh C0Ch C0Dh C0Eh C0Fh C10h C11h C12h C13h C14h C15h C16h C17h C18h C19h C1Ah C1Bh C1Ch C1Dh C1Eh C1Fh C20h — — — — — — — — — — — — — — — — — — — — Core Registers (Table 3-2) C8Bh C8Ch C8Dh C8Eh C8Fh C90h C91h C92h C93h C94h C95h C96h C97h C98h C99h C9Ah C9Bh C9Ch C9Dh C9Eh C9Fh CA0h Unimplemented Read as ‘0’ C6Fh C70h D0Bh D0Ch D0Dh D0Eh D0Fh D10h D11h D12h D13h D14h D15h D16h D17h D18h D19h D1Ah D1Bh D1Ch D1Dh D1Eh D1Fh D20h CEFh CF0h Core Registers (Table 3-2) D8Bh D8Ch D8Dh D8Eh D8Fh D90h D91h D92h D93h D94h D95h D96h D97h D98h D99h D9Ah D9Bh D9Ch D9Dh D9Eh D9Fh DA0h Unimplemented Read as ‘0’ D6Fh D70h Accesses 70h – 7Fh CFFh — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — Accesses 70h – 7Fh D7Fh E0Bh E0Ch E0Dh E0Eh E0Fh E10h E11h E12h E13h E14h E15h E16h E17h E18h E19h E1Ah E1Bh E1Ch E1Dh E1Eh E1Fh E20h — — — — — — — — — — — — — — — — — — — — E6Fh E70h E8Bh E8Ch E8Dh E8Eh E8Fh E90h E91h E92h E93h E94h E95h E96h E97h E98h E99h E9Ah E9Bh E9Ch E9Dh E9Eh E9Fh EA0h — — — — — — — — — — — — — — — — — — — — EEFh EF0h F0Bh F0Ch F0Dh F0Eh F0Fh F10h F11h F12h F13h F14h F15h F16h F17h F18h F19h F1Ah F1Bh F1Ch F1Dh F1Eh F1Fh F20h — — — — — — — — — — — — — — — — — — — — Core Registers (Table 3-2) F8Bh F8Ch F8Dh F8Eh F8Fh F90h F91h F92h F93h F94h F95h F96h F97h See Table 3-4 for F98h register mapping F99h details F9Ah F9Bh F9Ch F9Dh F9Eh F9Fh FA0h Unimplemented Read as ‘0’ F6Fh F70h Accesses 70h – 7Fh EFFh BANK 31 F80h Core Registers (Table 3-2) Unimplemented Read as ‘0’ Accesses 70h – 7Fh E7Fh BANK 30 F00h Core Registers (Table 3-2) Unimplemented Read as ‘0’ Accesses 70h – 7Fh DFFh BANK 29 E80h Core Registers (Table 3-2) Unimplemented Read as ‘0’ DEFh DF0h = Unimplemented data memory locations, read as ‘0’ These ADC registers are the same as the registers in Bank 1. BANK 28 E00h FEFh FF0h Accesses 70h – 7Fh F7Fh Accesses 70h – 7Fh FFFh DS40001674F-page 17 PIC12LF1552 CFFh — — — — — — — — — — — — — — — — — — — — BANK 27 D80h Core Registers (Table 3-2) Unimplemented Read as ‘0’ Accesses 70h – 7Fh Legend: Note 1: BANK 26 D00h PIC12LF1552 TABLE 3-4: PIC12LF1552 MEMORY MAP DETAIL (BANK 31) Bank 31 F8Ch Unimplemented Read as ‘0’ FE3h FE4h FE5h FE6h FE7h FE8h FE9h FEAh FEBh FECh FEDh FEEh FEFh Legend: STATUS_SHAD WREG_SHAD BSR_SHAD PCLATH_SHAD FSR0L_SHAD FSR0H_SHAD FSR1L_SHAD FSR1H_SHAD — STKPTR TOSL TOSH = Unimplemented data memory locations, read as ‘0’. DS40001674F-page 18  2012-2016 Microchip Technology Inc. PIC12LF1552 3.3.5 CORE FUNCTION REGISTERS SUMMARY The Core Function registers listed in Table 3-5 can be addressed from any Bank. TABLE 3-5: Addr Name CORE FUNCTION REGISTERS SUMMARY Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on POR, BOR Value on all other Resets Bank 0-31 x00h or INDF0 x80h Addressing this location uses contents of FSR0H/FSR0L to address data memory (not a physical register) xxxx xxxx uuuu uuuu x01h or INDF1 x81h Addressing this location uses contents of FSR1H/FSR1L to address data memory (not a physical register) xxxx xxxx uuuu uuuu x02h or PCL x82h Program Counter (PC) Least Significant Byte 0000 0000 0000 0000 ---1 1000 ---q quuu x03h or STATUS x83h — — — TO PD Z DC C x04h or FSR0L x84h Indirect Data Memory Address 0 Low Pointer 0000 0000 uuuu uuuu x05h or FSR0H x85h Indirect Data Memory Address 0 High Pointer 0000 0000 0000 0000 x06h or FSR1L x86h Indirect Data Memory Address 1 Low Pointer 0000 0000 uuuu uuuu x07h or FSR1H x87h Indirect Data Memory Address 1 High Pointer 0000 0000 0000 0000 ---0 0000 ---0 0000 0000 0000 uuuu uuuu -000 0000 -000 0000 0000 0000 0000 0000 x08h or BSR x88h — x09h or WREG x89h — BSR Working Register x0Ah or PCLATH x8Ah — x0Bh or INTCON x8Bh GIE Legend: — Write Buffer for the upper 7 bits of the Program Counter PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as ‘0’, r = reserved. Shaded locations are unimplemented, read as ‘0’.  2012-2016 Microchip Technology Inc. DS40001674F-page 19 PIC12LF1552 TABLE 3-6: Address SPECIAL FUNCTION REGISTER SUMMARY Name Value on all other Resets Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on POR, BOR — — RA5 RA4 RA3 RA2 RA1 RA0 --xx xxxx --xx xxxx Bank 0 00Ch PORTA 00Eh to 010h — Unimplemented — — 011h PIR1 — ADIF — — SSPIF — — — -0-- 0--- -0-- 0--- 012h PIR2 — — — — BCLIF — — — ---- 0--- ---- 0--- 013h — Unimplemented — — 014h — Unimplemented — — 015h TMR0 Holding Register for the 8-bit Timer0 Count 016h to 01Fh — Unimplemented xxxx xxxx uuuu uuuu — — Bank 1 — — TRISA5 TRISA4 —(1) 08Ch TRISA 08Dh — Unimplemented TRISA2 TRISA1 TRISA0 — — 08Eh — Unimplemented — — 08Fh — Unimplemented — — 090h — Unimplemented — — 091h PIE1 092h PIE2 093h — Unimplemented — — 094h — Unimplemented — — 095h OPTION_REG WPUEN INTEDG TMR0CS TMR0SE 096h PCON STKOVF STKUNF — RWDT 097h WDTCON — — 098h — 099h OSCCON --11 1111 --11 1111 — ADIE — — SSPIE — — — -0-- 0--- -0-- 0--- — — — — BCLIE — — — ---- 0--- ---- 0--- PSA RMCLR PS RI POR WDTPS 1111 1111 1111 1111 BOR 00-1 11qq qq-q qquu SWDTEN --01 0110 --01 0110 Unimplemented — SPLLEN IRCF 09Ah OSCSTAT 09Bh ADRESL(2) ADC Result Register 0 Low 09Ch ADRESH(2) ADC Result Register 0 High 09Dh ADCON0(2) — 09Eh ADCON1(2) ADFM 09Fh ADCON2(2) — PLLR — — HFIOFR — — SCS LFIOFR — 0011 1-00 0011 1-00 HFIOFS -0-0 --00 -q-q --qq xxxx xxxx uuuu uuuu xxxx xxxx uuuu uuuu CHS ADCS TRIGSEL GO/DONE ADON ADPREF -000 0000 -000 0000 — — — — — — 0000 ---- 0000 ---- — LATA2 LATA1 LATA0 --xx -xxx --uu -uuu 0000 --00 0000 --00 Bank 2 10Ch LATA 10Dh to 115h — — — LATA5 LATA4 Unimplemented — 116h BORCON SBOREN BORFS — — — — 117h FVRCON FVREN FVRRDY TSEN TSRNG — — 118h to 11Ch — 11Dh APFCON 11Eh — 11Fh — — BORRDY ADFVR Unimplemented — SDOSEL Unimplemented 10-- ---q uu-- ---u 0q00 --00 0q00 --00 — SSSEL SDSEL — — — — — — -000 ---- -000 ---— — — — Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as ‘0’. Note 1: Unimplemented, read as ‘1’. 2: This register is available in Bank 1 and Bank 14 under similar register names. See Section 16.1.11 “Hardware CVD Register Mapping”. DS40001674F-page 20  2012-2016 Microchip Technology Inc. PIC12LF1552 TABLE 3-6: Address Name SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 — — ANSA5 ANSA4 — ANSA2 ANSA1 ANSA0 Value on POR, BOR Value on all other Resets Bank 3 18Ch ANSELA 18Dh — Unimplemented — — 18Eh — Unimplemented — — 18Fh — Unimplemented — — 190h — Unimplemented — — 191h PMADRL Flash Program Memory Address Register Low Byte 192h PMADRH 193h PMDATL 194h PMDATH —(1) 0000 0000 0000 0000 Flash Program Memory Address Register High Byte 1000 0000 1000 0000 Flash Program Memory Read Data Register Low Byte — — —(1) CFGS xxxx xxxx uuuu uuuu Flash Program Memory Read Data Register High Byte 195h PMCON1 196h PMCON2 Flash Program Memory Control Register 2 197h to 19Fh — Unimplemented LWLO FREE --11 -111 --11 -111 WRERR WREN --xx xxxx --uu uuuu WR RD 0000 x000 0000 q000 0000 0000 0000 0000 — — Bank 4 20Ch WPUA 20Dh to 210h — — WPUA5 WPUA4 WPUA3 WPUA2 WPUA1 WPUA0 — Unimplemented 211h SSPBUF Synchronous Serial Port Receive Buffer/Transmit Register xxxx xxxx uuuu uuuu 212h SSPADD ADD 0000 0000 0000 0000 213h SSPMSK MSK 214h SSPSTAT SMP CKE D/A P 215h SSPCON1 WCOL SSPOV SSPEN CKP 216h SSPCON2 GCEN ACKSTAT ACKDT ACKEN RCEN PEN RSEN SEN 0000 0000 0000 0000 217h SSPCON3 ACKTIM PCIE SCIE BOEN SDAHT SBCDE AHEN DHEN 0000 0000 0000 0000 218h to 21Fh — Unimplemented — — — Unimplemented — — — Unimplemented — — --11 1111 --11 1111 — S — 1111 1111 1111 1111 R/W UA BF SSPM 0000 0000 0000 0000 0000 0000 0000 0000 Bank 5 28Ch to 29Fh Bank 6 30Ch to 31Fh Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as ‘0’. Note 1: Unimplemented, read as ‘1’. 2: This register is available in Bank 1 and Bank 14 under similar register names. See Section 16.1.11 “Hardware CVD Register Mapping”.  2012-2016 Microchip Technology Inc. DS40001674F-page 21 PIC12LF1552 TABLE 3-6: Address SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED) Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on POR, BOR Value on all other Resets — — Bank 7 38Ch to 390h — Unimplemented 391h IOCAP — — IOCAP5 IOCAP4 IOCAP3 IOCAP2 IOCAP1 IOCAP0 --00 0000 --00 0000 392h IOCAN — — IOCAN5 IOCAN4 IOCAN3 IOCAN2 IOCAN1 IOCAN0 --00 0000 --00 0000 393h IOCAF — — IOCAF5 IOCAF4 IOCAF3 IOCAF2 IOCAF1 IOCAF0 --00 0000 --00 0000 394h to 39Fh — Unimplemented — — Unimplemented — — Unimplemented — — Bank 8-13 x0Ch/ x8Ch — x1Fh/ x9Fh — Bank 14 70Ch to 710h — 711h AADCON0(2) — 712h AADCON1(2) ADFM CHS ADCS GO/DONE — — ADON ADPREF -000 0000 -000 0000 0000 --00 0000 --00 713h AADCON2(2) — — — — -000 ---- -000 ---- 714h AADCON3 ADEPPOL ADIPPOL — ADOEN ADOOEN — ADIPEN ADDSEN 0000 0-00 0000 0-00 715h AADSTAT — — — — — ADCONV 716h AADPRE — ADPRE 717h AADACQ — ADACQ 718h AADGRD GRDBOE GRDAOE GRDPOL — — 719h AADCAP — — — — — 71Ah AADRES0L(2) ADC Result Register 0 Low xxxx xxxx uuuu uuuu 71Bh AADRES0H(2) ADC Result Register 0 High xxxx xxxx uuuu uuuu 71Ch AADRES1L(2) ADC Result Register 1 Low xxxx xxxx uuuu uuuu 71Dh AADRES1H(2) ADC Result Register 1 High xxxx xxxx uuuu uuuu 71Eh — Unimplemented — — 71Fh — Unimplemented — — — TRIGSEL ADSTG ---- -000 ---- -000 -000 0000 -000 0000 -000 0000 -000 0000 — — ADCAP — 000- ---- 000- ------- -000 ---- -000 Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as ‘0’. Note 1: Unimplemented, read as ‘1’. 2: This register is available in Bank 1 and Bank 14 under similar register names. See Section 16.1.11 “Hardware CVD Register Mapping”. DS40001674F-page 22  2012-2016 Microchip Technology Inc. PIC12LF1552 TABLE 3-6: Address Name SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED) Value on POR, BOR Value on all other Resets Unimplemented — — Unimplemented — — Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Banks 15-30 x0Ch/ x8Ch — x1Fh/ x9Fh — Bank 31 F8Ch — FE3h — FE4h STATUS_ — — — — — Z_SHAD DC_SHAD C_SHAD ---- -xxx ---- -uuu SHAD FE5h WREG_ Working Register Shadow xxxx xxxx uuuu uuuu SHAD FE6h BSR_ — — — Bank Select Register Shadow ---x xxxx ---u uuuu SHAD FE7h PCLATH_ — Program Counter Latch High Register Shadow -xxx xxxx uuuu uuuu SHAD FE8h FSR0L_ Indirect Data Memory Address 0 Low Pointer Shadow xxxx xxxx uuuu uuuu Indirect Data Memory Address 0 High Pointer Shadow xxxx xxxx uuuu uuuu Indirect Data Memory Address 1 Low Pointer Shadow xxxx xxxx uuuu uuuu Indirect Data Memory Address 1 High Pointer Shadow xxxx xxxx uuuu uuuu SHAD FE9h FSR0H_ SHAD FEAh FSR1L_ SHAD FEBh FSR1H_ SHAD FECh — FEDh STKPTR FEEh TOSL FEFh TOSH Unimplemented — — — — Top-of-Stack Low byte — Top-of-Stack High byte Current Stack Pointer — ---1 1111 ---1 1111 xxxx xxxx uuuu uuuu -xxx xxxx -uuu uuuu Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as ‘0’. Note 1: Unimplemented, read as ‘1’. 2: This register is available in Bank 1 and Bank 14 under similar register names. See Section 16.1.11 “Hardware CVD Register Mapping”.  2012-2016 Microchip Technology Inc. DS40001674F-page 23 PIC12LF1552 3.4 3.4.2 PCL and PCLATH The Program Counter (PC) is 15 bits wide. The low byte comes from the PCL register, which is a readable and writable register. The high byte (PC) is not directly readable or writable and comes from PCLATH. On any Reset, the PC is cleared. Figure 3-3 shows the five situations for the loading of the PC. FIGURE 3-3: PC LOADING OF PC IN DIFFERENT SITUATIONS 14 PCH 6 7 PCL 0 PCLATH PC Instruction with PCL as Destination 8 ALU Result PCH PCL 0 GOTO, CALL 6 PCLATH 4 0 11 OPCODE PC 14 PCH PCL 0 CALLW 6 PCLATH PC 14 0 14 7 0 PCH 8 PCL 0 BRW 15 PC + W PC 14 PCH PCL 0 BRA 15 PC + OPCODE 3.4.1 A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When performing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256-byte block). Refer to Application Note AN556, “Implementing a Table Read” (DS00556). 3.4.3 MODIFYING PCL COMPUTED FUNCTION CALLS A computed function CALL allows programs to maintain tables of functions and provide another way to execute state machines or look-up tables. When performing a table read using a computed function CALL, care should be exercised if the table location crosses a PCL memory boundary (each 256-byte block). If using the CALL instruction, the PCH and PCL registers are loaded with the operand of the CALL instruction. PCH is loaded with PCLATH. The CALLW instruction enables computed calls by combining PCLATH and W to form the destination address. A computed CALLW is accomplished by loading the W register with the desired address and executing CALLW. The PCL register is loaded with the value of W and PCH is loaded with PCLATH. 3.4.4 W COMPUTED GOTO BRANCHING The branching instructions add an offset to the PC. This allows relocatable code and code that crosses page boundaries. There are two forms of branching, BRW and BRA. The PC will have incremented to fetch the next instruction in both cases. When using either branching instruction, a PCL memory boundary may be crossed. If using BRW, load the W register with the desired unsigned address and execute BRW. The entire PC will be loaded with the address PC + 1 + W. If using BRA, the entire PC will be loaded with PC + 1 +, the signed value of the operand of the BRA instruction. Executing any instruction with the PCL register as the destination simultaneously causes the Program Counter PC bits (PCH) to be replaced by the contents of the PCLATH register. This allows the entire contents of the program counter to be changed by writing the desired upper seven bits to the PCLATH register. When the lower eight bits are written to the PCL register, all 15 bits of the program counter will change to the values contained in the PCLATH register and those being written to the PCL register. DS40001674F-page 24  2012-2016 Microchip Technology Inc. PIC12LF1552 3.5 3.5.1 Stack The stack is available through the TOSH, TOSL and STKPTR registers. STKPTR is the current value of the Stack Pointer. TOSH:TOSL register pair points to the TOP of the stack. Both registers are read/writable. TOS is split into TOSH and TOSL due to the 15-bit size of the PC. To access the stack, adjust the value of STKPTR, which will position TOSH:TOSL, then read/write to TOSH:TOSL. STKPTR is five bits to allow detection of overflow and underflow. All devices have a 16-level x 15-bit wide hardware stack (refer to Figures 3-4 through 3-7). The stack space is not part of either program or data space. The PC is PUSHed onto the stack when CALL or CALLW instructions are executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation. The stack operates as a circular buffer if the STVREN bit is programmed to ‘0‘ (Configuration Words). This means that after the stack has been PUSHed sixteen times, the seventeenth PUSH overwrites the value that was stored from the first PUSH. The eighteenth PUSH overwrites the second PUSH (and so on). The STKOVF and STKUNF flag bits will be set on an Overflow/Underflow, regardless of whether the Reset is enabled. Note: Care should be taken when modifying the STKPTR while interrupts are enabled. During normal program operation, CALL, CALLW and Interrupts will increment STKPTR while RETLW, RETURN, and RETFIE will decrement STKPTR. At any time, STKPTR can be inspected to see how much stack is left. The STKPTR always points at the currently used place on the stack. Therefore, a CALL or CALLW will increment the STKPTR and then write the PC, and a return will unload the PC and then decrement the STKPTR. Note 1: There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, CALLW, RETURN, RETLW and RETFIE instructions or the vectoring to an interrupt address. FIGURE 3-4: ACCESSING THE STACK Reference Figure 3-4 through Figure 3-7 for examples of accessing the stack. ACCESSING THE STACK EXAMPLE 1 TOSH:TOSL 0x0F STKPTR = 0x1F Stack Reset Disabled (STVREN = 0) 0x0E 0x0D 0x0C 0x0B 0x0A Initial Stack Configuration: 0x09 After Reset, the stack is empty. The empty stack is initialized so the Stack Pointer is pointing at 0x1F. If the Stack Overflow/Underflow Reset is enabled, the TOSH/TOSL registers will return ‘0’. If the Stack Overflow/Underflow Reset is disabled, the TOSH/TOSL registers will return the contents of stack address 0x0F. 0x08 0x07 0x06 0x05 0x04 0x03 0x02 0x01 0x00 TOSH:TOSL  2012-2016 Microchip Technology Inc. 0x1F 0x0000 STKPTR = 0x1F Stack Reset Enabled (STVREN = 1) DS40001674F-page 25 PIC12LF1552 FIGURE 3-5: ACCESSING THE STACK EXAMPLE 2 0x0F 0x0E 0x0D 0x0C 0x0B 0x0A 0x09 This figure shows the stack configuration after the first CALL or a single interrupt. If a RETURN instruction is executed, the return address will be placed in the Program Counter and the Stack Pointer decremented to the empty state (0x1F). 0x08 0x07 0x06 0x05 0x04 0x03 0x02 0x01 TOSH:TOSL FIGURE 3-6: 0x00 Return Address STKPTR = 0x00 ACCESSING THE STACK EXAMPLE 3 0x0F 0x0E 0x0D 0x0C After seven CALLs or six CALLs and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack. 0x0B 0x0A 0x09 0x08 0x07 TOSH:TOSL DS40001674F-page 26 0x06 Return Address 0x05 Return Address 0x04 Return Address 0x03 Return Address 0x02 Return Address 0x01 Return Address 0x00 Return Address STKPTR = 0x06  2012-2016 Microchip Technology Inc. PIC12LF1552 FIGURE 3-7: ACCESSING THE STACK EXAMPLE 4 TOSH:TOSL 3.5.2 0x0F Return Address 0x0E Return Address 0x0D Return Address 0x0C Return Address 0x0B Return Address 0x0A Return Address 0x09 Return Address 0x08 Return Address 0x07 Return Address 0x06 Return Address 0x05 Return Address 0x04 Return Address 0x03 Return Address 0x02 Return Address 0x01 Return Address 0x00 Return Address When the stack is full, the next CALL or an interrupt will set the Stack Pointer to 0x10. This is identical to address 0x00 so the stack will wrap and overwrite the return address at 0x00. If the Stack Overflow/Underflow Reset is enabled, a Reset will occur and location 0x00 will not be overwritten. STKPTR = 0x10 OVERFLOW/UNDERFLOW RESET If the STVREN bit in Configuration Words is programmed to ‘1’, the device will be reset if the stack is PUSHed beyond the sixteenth level or POPed beyond the first level, setting the appropriate bits (STKOVF or STKUNF, respectively) in the PCON register. 3.6 Indirect Addressing The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the File Select Registers (FSR). If the FSRn address specifies one of the two INDFn registers, the read will return ‘0’ and the write will not occur (though Status bits may be affected). The FSRn register value is created by the pair FSRnH and FSRnL. The FSR registers form a 16-bit address that allows an addressing space with 65536 locations. These locations are divided into three memory regions: • Traditional Data Memory • Linear Data Memory • Program Flash Memory  2012-2016 Microchip Technology Inc. DS40001674F-page 27 PIC12LF1552 FIGURE 3-8: INDIRECT ADDRESSING 0x0000 0x0000 Traditional Data Memory 0x0FFF 0x1000 0x1FFF 0x0FFF Reserved 0x2000 Linear Data Memory 0x29AF 0x29B0 FSR Address Range 0x7FFF 0x8000 Reserved 0x0000 Program Flash Memory 0xFFFF Note: 0x7FFF Not all memory regions are completely implemented. Consult device memory tables for memory limits. DS40001674F-page 28  2012-2016 Microchip Technology Inc. PIC12LF1552 3.6.1 TRADITIONAL DATA MEMORY The traditional data memory is a region from FSR address 0x000 to FSR address 0xFFF. The addresses correspond to the absolute addresses of all SFR, GPR and common registers. FIGURE 3-9: TRADITIONAL DATA MEMORY MAP Direct Addressing 4 BSR 0 6 Indirect Addressing From Opcode 0 7 0 Bank Select Location Select FSRxH 0 0 0 7 FSRxL 0 0 Bank Select 00000 00001 00010 11111 Bank 0 Bank 1 Bank 2 Bank 31 Location Select 0x00 0x7F  2012-2016 Microchip Technology Inc. DS40001674F-page 29 PIC12LF1552 3.6.2 3.6.3 LINEAR DATA MEMORY The linear data memory is the region from FSR address 0x2000 to FSR address 0x29AF. This region is a virtual region that points back to the 80-byte blocks of GPR memory in all the banks. Unimplemented memory reads as 0x00. Use of the linear data memory region allows buffers to be larger than 80 bytes because incrementing the FSR beyond one bank will go directly to the GPR memory of the next bank. The 16 bytes of common memory are not included in the linear data memory region. FIGURE 3-10: 7 FSRnH 0 0 1 LINEAR DATA MEMORY MAP 0 7 FSRnL 0 PROGRAM FLASH MEMORY To make constant data access easier, the entire program Flash memory is mapped to the upper half of the FSR address space. When the MSB of FSRnH is set, the lower 15 bits are the address in program memory which will be accessed through INDF. Only the lower eight bits of each memory location is accessible via INDF. Writing to the program Flash memory cannot be accomplished via the FSR/INDF interface. All instructions that access program Flash memory via the FSR/INDF interface will require one additional instruction cycle to complete. FIGURE 3-11: 7 1 FSRnH PROGRAM FLASH MEMORY MAP 0 Location Select Location Select 0x2000 7 FSRnL 0x8000 0 0x0000 0x020 Bank 0 0x06F 0x0A0 Bank 1 0x0EF 0x120 Program Flash Memory (low 8 bits) Bank 2 0x16F 0xF20 Bank 30 0x29AF DS40001674F-page 30 0xF6F 0xFFFF 0x7FFF  2012-2016 Microchip Technology Inc. PIC12LF1552 4.0 DEVICE CONFIGURATION Device configuration consists of Configuration Words, Code Protection and Device ID. 4.1 Configuration Words There are several Configuration Word bits that allow different oscillator and memory protection options. These are implemented as Configuration Word 1 at 8007h and Configuration Word 2 at 8008h.  2012-2016 Microchip Technology Inc. DS40001674F-page 31 PIC12LF1552 4.2 Register Definitions: Configuration Words REGISTER 4-1: CONFIG1: CONFIGURATION WORD 1 U-1 U-1 R/P-1 — — CLKOUTEN R/P-1 R/P-1 U-1 BOREN — bit 13 R/P-1 R/P-1 R/P-1 CP MCLRE PWRTE bit 8 R/P-1 R/P-1 U-1 WDTE R/P-1 R/P-1 FOSC — bit 7 bit 0 Legend: R = Readable bit P = Programmable bit U = Unimplemented bit, read as ‘1’ ‘0’ = Bit is cleared ‘1’ = Bit is set -n = Value when blank or after Bulk Erase bit 13-12 Unimplemented: Read as ‘1’ bit 11 CLKOUTEN: Clock Out Enable bit 1 = CLKOUT function is disabled. I/O function on the CLKOUT pin 0 = CLKOUT function is enabled on the CLKOUT pin bit 10-9 BOREN: Brown-out Reset Enable bits(1) 11 = BOR enabled 10 = BOR enabled during operation and disabled in Sleep 01 = BOR controlled by SBOREN bit of the BORCON register 00 = BOR disabled bit 8 Unimplemented: Read as ‘1’ bit 7 CP: Code Protection bit(2) 1 = Program memory code protection is disabled 0 = Program memory code protection is enabled bit 6 MCLRE: MCLR/VPP Pin Function Select bit If LVP bit = 1: This bit is ignored. If LVP bit = 0: 1 =MCLR/VPP pin function is MCLR; Weak pull-up enabled. 0 =MCLR/VPP pin function is digital input; MCLR internally disabled; Weak pull-up under control of WPUE3 bit. bit 5 PWRTE: Power-Up Timer Enable bit 1 = PWRT disabled 0 = PWRT enabled bit 4-3 WDTE: Watchdog Timer Enable bits 11 = WDT enabled 10 = WDT enabled while running and disabled in Sleep 01 = WDT controlled by the SWDTEN bit in the WDTCON register 00 = WDT disabled bit 2 Unimplemented: Read as ‘1’ bit 1-0 FOSC: Oscillator Selection bits 11 = ECH: External Clock, High-Power mode: on CLKIN pin 10 = ECM: External Clock, Medium-Power mode: on CLKIN pin 01 = ECL: External Clock, Low-Power mode: on CLKIN pin 00 = INTOSC oscillator: I/O function on CLKIN pin Note 1: 2: Enabling Brown-out Reset does not automatically enable Power-up Timer. Once enabled, code-protect can only be disabled by bulk erasing the device. DS40001674F-page 32  2012-2016 Microchip Technology Inc. PIC12LF1552 REGISTER 4-2: CONFIG2: CONFIGURATION WORD 2 R/P-1 U-1 R/P-1 R/P-1 R/P-1 U-1 LVP — LPBOR BORV STVREN — bit 13 bit 8 U-1 U-1 U-1 U-1 U-1 U-1 — — — — — — R/P-1 R/P-1 WRT bit 7 bit 0 Legend: R = Readable bit P = Programmable bit U = Unimplemented bit, read as ‘1’ ‘0’ = Bit is cleared ‘1’ = Bit is set -n = Value when blank or after Bulk Erase bit 13 LVP: Low-Voltage Programming Enable bit(1) 1 = Low-voltage programming enabled 0 = High-voltage on MCLR must be used for programming bit 12 Unimplemented: Read as ‘1’ bit 11 LPBOR: Low-Power BOR Enable bit 1 = Low-Power Brown-out Reset is disabled 0 = Low-Power Brown-out Reset is enabled bit 10 BORV: Brown-out Reset Voltage Selection bit(2) 1 = Brown-out Reset voltage (Vbor), low trip point selected 0 = Brown-out Reset voltage (Vbor), high trip point selected bit 9 STVREN: Stack Overflow/Underflow Reset Enable bit 1 = Stack Overflow or Underflow will cause a Reset 0 = Stack Overflow or Underflow will not cause a Reset bit 8-2 Unimplemented: Read as ‘1’ bit 1-0 WRT: Flash Memory Self-Write Protection bits 2 kW Flash memory: 11 = Write protection off 10 = 000h to 1FFh write-protected, 200h to 7FFh may be modified 01 = 000h to 3FFh write-protected, 400h to 7FFh may be modified 00 = 000h to 7FFh write-protected, no addresses may be modified Note 1: 2: The LVP bit cannot be programmed to ‘0’ when Programming mode is entered via LVP. See Vbor parameter for specific trip point voltages.  2012-2016 Microchip Technology Inc. DS40001674F-page 33 PIC12LF1552 4.3 Code Protection Code protection allows the device to be protected from unauthorized access. Internal access to the program memory is unaffected by any code protection setting. 4.3.1 PROGRAM MEMORY PROTECTION The entire program memory space is protected from external reads and writes by the CP bit in Configuration Words. When CP = 0, external reads and writes of program memory are inhibited and a read will return all ‘0’s. The CPU can continue to read program memory, regardless of the protection bit settings. Writing the program memory is dependent upon the write protection setting. See Section 4.4 “Write Protection” for more information. 4.4 Write Protection Write protection allows the device to be protected from unintended self-writes. Applications, such as bootloader software, can be protected while allowing other regions of the program memory to be modified. The WRT bits in Configuration Words define the size of the program memory block that is protected. 4.5 User ID Four memory locations (8000h-8003h) are designated as ID locations where the user can store checksum or other code identification numbers. These locations are readable and writable during normal execution. See Section 10.4 “User ID, Device ID and Configuration Word Access” for more information on accessing these memory locations. For more information on checksum calculation, see the “PIC12LF1552 Memory Programming Specification” (DS41642). DS40001674F-page 34  2012-2016 Microchip Technology Inc. PIC12LF1552 4.6 Device ID and Revision ID The memory location 8006h is where the Device ID and Revision ID are stored. The upper nine bits hold the Device ID. The lower five bits hold the Revision ID. See Section 10.4 “User ID, Device ID and Configuration Word Access” for more information on accessing these memory locations. Development tools, such as device programmers and debuggers, may be used to read the Device ID and Revision ID. 4.7 Register Definitions: Device REGISTER 4-3: DEVID: DEVICE ID REGISTER R R R R R R DEV bit 13 R R bit 8 R R R DEV R R R REV bit 7 bit 0 Legend: R = Readable bit ‘1’ = Bit is set bit 13-5 ‘0’ = Bit is cleared DEV: Device ID bits Device PIC12LF1552 bit 4-0 DEVID Values DEV REV 0010 1011 110 x xxxx REV: Revision ID bits These bits are used to identify the revision (see Table under DEV above).  2012-2016 Microchip Technology Inc. DS40001674F-page 35 PIC12LF1552 5.0 OSCILLATOR MODULE The oscillator module can be configured in one of the following clock modes. 5.1 Overview 1. The oscillator module has a wide variety of clock sources and selection features that allow it to be used in a wide range of applications while maximizing performance and minimizing power consumption. Figure 5-1 illustrates a block diagram of the oscillator module. ECL – External Clock Low-Power mode (0 MHz to 0.5 MHz) ECM – External Clock Medium-Power mode (0.5 MHz to 4 MHz) ECH – External Clock High-Power mode (4 MHz to 20 MHz) INTOSC – Internal oscillator (31 kHz to 32 MHz) 2. 3. 4. Clock Source modes are selected by the FOSC bits in the Configuration Words. The FOSC bits determine the type of oscillator that will be used when the device is first powered. Clock sources can be supplied from external clock oscillators. In addition, the system clock source can be supplied from one of two internal oscillators and PLL circuits, with a choice of speeds selectable via software. Additional clock features include: The EC clock mode relies on an external logic level signal as the device clock source. • Selectable system clock source between external or internal sources via software. The INTOSC internal oscillator block produces low and high-frequency clock sources, designated LFINTOSC and HFINTOSC. (see Internal Oscillator Block, Figure 5-1). A wide selection of device clock frequencies may be derived from these clock sources. SIMPLIFIED PIC® MCU CLOCK SOURCE BLOCK DIAGRAM FIGURE 5-1: CLKIN EC Sleep CPU and MUX 4x PLL IRCF Peripherals INTOSC 16 MHz Primary OSC 31 kHz Source DS40001674F-page 36 MUX Start-up Control Logic Postscaler 4 16 MHz 8 MHz 4 MHz 2 MHz 1 MHz 500 kHz 250 kHz 125 kHz 62.5 kHz 31.25 kHz 31 kHz Clock Control 2 FOSC 2 SCS WDT, PWRT and other Modules  2012-2016 Microchip Technology Inc. PIC12LF1552 5.2 5.2.1.1 Clock Source Types Clock sources can be classified as external or internal. External clock sources rely on external circuitry for the clock source to function. Examples are: oscillator modules (EC mode). Internal clock sources are contained within the oscillator module. The oscillator block has two internal oscillators that are used to generate two system clock sources: the 16 MHz High-Frequency Internal Oscillator (HFINTOSC) and the 31 kHz Low-Frequency Internal Oscillator (LFINTOSC). The system clock can be selected between external or internal clock sources via the System Clock Select (SCS) bits in the OSCCON register. See Section 5.3 “Clock Switching” for additional information. 5.2.1 EXTERNAL CLOCK SOURCES An external clock source can be used as the device system clock by performing one of the following actions: • Program the FOSC bits in the Configuration Words to select an external clock source that will be used as the default system clock upon a device Reset. • Clear the SCS bits in the OSCCON register to switch the system clock source to: - An external clock source determined by the value of the FOSC bits. See Section 5.3 information. “Clock Switching”  2012-2016 Microchip Technology Inc. for EC Mode The External Clock (EC) mode allows an externally generated logic level signal to be the system clock source. When operating in this mode, an external clock source is connected to the CLKIN input. CLKOUT is available for general purpose I/O or CLKOUT. Figure 5-2 shows the pin connections for EC mode. EC mode has three power modes to select from through Configuration Words: • High power, 4-20 MHz (FOSC = 11) • Medium power, 0.5-4 MHz (FOSC = 10) • Low power, 0-0.5 MHz (FOSC = 01) When EC mode is selected, there is no delay in operation after a Power-on Reset (POR) or wake-up from Sleep. Because the PIC® MCU design is fully static, stopping the external clock input will have the effect of halting the device while leaving all data intact. Upon restarting the external clock, the device will resume operation as if no time had elapsed. FIGURE 5-2: Clock from Ext. System FOSC/4 or I/O(1) EXTERNAL CLOCK (EC) MODE OPERATION CLKIN PIC® MCU CLKOUT more Note 1: Output depends upon CLKOUTEN bit of the Configuration Words. DS40001674F-page 37 PIC12LF1552 5.2.2 INTERNAL CLOCK SOURCES The device may be configured to use the internal oscillator block as the system clock by performing either of the following actions: • Program the FOSC bits in Configuration Words to select the INTOSC clock source, which will be used as the default system clock upon a device Reset. • Set the SCS bits in the OSCCON register to ‘1x’ to switch the system clock source to the internal oscillator during run-time. See Section 5.3 “Clock Switching” for more information. In INTOSC mode, the CLKIN pin is available for general purpose I/O. The CLKOUT pin is available for general purpose I/O or CLKOUT. The function of the CLKOUT pin is determined by the CLKOUTEN bit in Configuration Words. The internal oscillator block has two independent oscillators. 1. 2. The HFINTOSC (High-Frequency Internal Oscillator) is factory calibrated and operates at 16 MHz. The LFINTOSC (Low-Frequency Internal Oscillator) is uncalibrated and operates at 31 kHz. 5.2.2.1 HFINTOSC 5.2.2.2 LFINTOSC The Low-Frequency Internal Oscillator (LFINTOSC) is an uncalibrated 31 kHz internal clock source. The output of the LFINTOSC connects to a multiplexer (see Figure 5-1). Select 31 kHz, via software, using the IRCF bits of the OSCCON register. See Section 5.2.2.4 “Internal Oscillator Clock Switch Timing” for more information. The LFINTOSC is also the source for the Power-up Timer (PWRT) and Watchdog Timer (WDT). The LFINTOSC is enabled by selecting 31 kHz (IRCF bits of the OSCCON register = 000x) as the system clock source (SCS bits of the OSCCON register = 1x), or when any of the following are enabled: • Configure the IRCF bits of the OSCCON register for the LF frequency, and • FOSC = 00, or • Set the System Clock Source (SCS) bits of the OSCCON register to ‘1x’ Peripherals that use the LFINTOSC are: • Power-up Timer (PWRT) • Watchdog Timer (WDT) The Low-Frequency Internal Oscillator Ready bit (LFIOFR) of the OSCSTAT register indicates when the LFINTOSC is running. The High-Frequency Internal Oscillator (HFINTOSC) is a factory calibrated 16 MHz internal clock source. The outputs of the HFINTOSC connects to a prescaler and multiplexer (see Figure 5-1). One of multiple frequencies derived from the HFINTOSC can be selected via software using the IRCF bits of the OSCCON register. See Section 5.2.2.4 “Internal Oscillator Clock Switch Timing” for more information. The HFINTOSC is enabled by: • Configure the IRCF bits of the OSCCON register for the desired HF frequency, and • FOSC = 00, or • Set the System Clock Source (SCS) bits of the OSCCON register to ‘1x’. A fast start-up oscillator allows internal circuits to power-up and stabilize before switching to HFINTOSC. The High-Frequency Internal Oscillator Ready bit (HFIOFR) of the OSCSTAT register indicates when the HFINTOSC is running. The High-Frequency Internal Oscillator Stable bit (HFIOFS) of the OSCSTAT register indicates when the HFINTOSC is running within 0.5% of its final value. DS40001674F-page 38  2012-2016 Microchip Technology Inc. PIC12LF1552 5.2.2.3 Internal Oscillator Frequency Selection The system clock speed can be selected via software using the Internal Oscillator Frequency Select bits IRCF of the OSCCON register. The outputs of the 16 MHz HFINTOSC postscaler and the LFINTOSC connect to a multiplexer (see Figure 5-1). The Internal Oscillator Frequency Select bits IRCF of the OSCCON register select the frequency. One of the following frequencies can be selected via software: - 32 MHz (requires 4x PLL) 16 MHz 8 MHz 4 MHz 2 MHz 1 MHz 500 kHz (default after Reset) 250 kHz 125 kHz 62.5 kHz 31.25 kHz 31 kHz (LFINTOSC) Note: Following any Reset, the IRCF bits of the OSCCON register are set to ‘0111’ and the frequency selection is set to 500 kHz. The user can modify the IRCF bits to select a different frequency. The IRCF bits of the OSCCON register allow duplicate selections for some frequencies. These duplicate choices can offer system design trade-offs. Lower power consumption can be obtained when changing oscillator sources for a given frequency. Faster transition times can be obtained between frequency changes that use the same oscillator source. 5.2.2.4 Internal Oscillator Clock Switch Timing When switching between the HFINTOSC and the LFINTOSC, the new oscillator may already be shut down to save power (see Figure 5-3). If this is the case, there is a delay after the IRCF bits of the OSCCON register are modified before the frequency selection takes place. The OSCSTAT register will reflect the current active status of the HFINTOSC and LFINTOSC oscillators. The sequence of a frequency selection is as follows: 1. 2. 3. 4. IRCF bits of the OSCCON register are modified. If the new clock is shut down, a clock start-up delay is started. Clock switch circuitry waits for a falling edge of the current clock. Clock switch is complete. See Figure 5-3 for more details. If the internal oscillator speed is switched between two clocks of the same source, there is no start-up delay before the new frequency is selected. Start-up delay specifications are located in the oscillator tables of Section 21.0 “Electrical Specifications”. 5.2.2.5 32 MHz Internal Oscillator Frequency Selection The Internal Oscillator Block can be used with the 4x PLL to produce a 32 MHz internal system clock source. The following settings are required to use the 32 MHz internal clock source: • The FOSC bits in Configuration Word 1 must be set to use the INTOSC source as the device system clock (FOSC = 00). • The SCS bits in the OSCCON register must be cleared to use the clock determined by FOSC in Configuration Word 1 (SCS = 00). • The IRCF bits in the OSCCON register must be set to the 8 MHz HFINTOSC set to use (IRCF = 1110). • The SPLLEN bit in the OSCCON register must be set to enable the 4x PLL. The 4x PLL is not available for use with the internal oscillator when the SCS bits of the OSCCON register are set to ‘1x’. The SCS bits must be set to ‘00’ to use the 4x PLL with the internal oscillator.  2012-2016 Microchip Technology Inc. DS40001674F-page 39 PIC12LF1552 FIGURE 5-3: HFINTOSC INTERNAL OSCILLATOR SWITCH TIMING LFINTOSC (WDT disabled) HFINTOSC Start-up Time 2-cycle Sync Running 2-cycle Sync Running LFINTOSC 0 IRCF 0 System Clock HFINTOSC LFINTOSC (WDT enabled) HFINTOSC LFINTOSC 0 IRCF 0 System Clock LFINTOSC HFINTOSC LFINTOSC turns off unless WDT is enabled LFINTOSC Start-up Time 2-cycle Sync Running HFINTOSC IRCF =0 0 System Clock DS40001674F-page 40  2012-2016 Microchip Technology Inc. PIC12LF1552 5.3 Clock Switching The system clock source can be switched between external and internal clock sources via software using the System Clock Select (SCS) bits of the OSCCON register. The following clock sources can be selected using the SCS bits: • Default system oscillator determined by FOSC bits in Configuration Words • Internal Oscillator Block (INTOSC) 5.3.1 SYSTEM CLOCK SELECT (SCS) BITS The System Clock Select (SCS) bits of the OSCCON register selects the system clock source that is used for the CPU and peripherals. • When the SCS bits of the OSCCON register = 00, the system clock source is determined by value of the FOSC bits in the Configuration Words. • When the SCS bits of the OSCCON register = 1x, the system clock source is chosen by the internal oscillator frequency selected by the IRCF bits of the OSCCON register. After a Reset, the SCS bits of the OSCCON register are always cleared. TABLE 5-1: Switch From When switching between clock sources, a delay is required to allow the new clock to stabilize. These oscillator delays are shown in Table 5-2. 5.3.2 CLOCK SWITCHING BEFORE SLEEP When clock switching from an old clock to a new clock is requested just prior to entering Sleep mode, it is necessary to confirm that the switch is complete before the SLEEP instruction is executed. Failure to do so may result in an incomplete switch and consequential loss of the system clock altogether. Clock switching is confirmed by monitoring the Clock Status bits in the OSCSTAT register. Switch confirmation can be accomplished by sensing that the Ready bit for the new clock is set or the Ready bit for the old clock is cleared. For example, when switching between the internal oscillator with the PLL and the internal oscillator without the PLL, monitor the PLLR bit. When PLLR is set, the switch to 32 MHz operation is complete. Conversely, when PLLR is cleared, the switch from 32 MHz operation to the selected internal clock is complete. OSCILLATOR SWITCHING DELAYS Switch To (1) Frequency Oscillator Delay Oscillator Warm-Up Delay TWARM(2) Sleep LFINTOSC MFINTOSC(1) HFINTOSC(1) 31 kHz 31.25 kHz-500 kHz 31.25 kHz-16 MHz Sleep/POR EC(1) DC – 32 MHz 2 cycles LFINTOSC (1) EC DC – 32 MHz 1 cycle of each Any clock source MFINTOSC(1) HFINTOSC(1) 31.25 kHz-500 kHz 31.25 kHz-16 MHz 2 s (approx.) Any clock source LFINTOSC(1) 31 kHz 1 cycle of each PLL inactive PLL active 16-32 MHz 2 ms (approx.) Note 1: 2: PLL inactive. See Section 21.0 “Electrical Specifications”.  2012-2016 Microchip Technology Inc. DS40001674F-page 41 PIC12LF1552 5.4 Register Definitions: Oscillator Control REGISTER 5-1: R/W-0/0 OSCCON: OSCILLATOR CONTROL REGISTER R/W-0/0 SPLLEN R/W-1/1 R/W-1/1 R/W-1/1 IRCF U-0 R/W-0/0 — bit 7 R/W-0/0 SCS bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7 SPLLEN: Software PLL Enable bit 1 = 4x PLL Is enabled 0 = 4x PLL is disabled bit 6-3 IRCF: Internal Oscillator Frequency Select bits 1111 = 16 MHz 1110 = 8 MHz 1101 = 4 MHz 1100 = 2 MHz 1011 = 1 MHz 1010 = 500 kHz(1) 1001 = 250 kHz(1) 1000 = 125 kHz(1) 0111 = 500 kHz (default upon Reset) 0110 = 250 kHz 0101 = 125 kHz 0100 = 62.5 kHz 001x = 31.25 kHz 000x = 31 kHz (LFINTOSC) bit 2 Unimplemented: Read as ‘0’ bit 1-0 SCS: System Clock Select bits 1x = Internal oscillator block 01 = Reserved 00 = Clock determined by FOSC in Configuration Words Note 1: Duplicate frequency derived from HFINTOSC. DS40001674F-page 42  2012-2016 Microchip Technology Inc. PIC12LF1552 REGISTER 5-2: OSCSTAT: OSCILLATOR STATUS REGISTER U-0 R-0/q U-0 R-0/q U-0 U-0 R-0/q R-0/q — PLLR — HFIOFR — — LFIOFR HFIOFS bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared q = Conditional bit 7 Unimplemented: Read as ‘0’ bit 6 PLLR 4x PLL Ready bit 1 = 4x PLL is ready 0 = 4x PLL is not ready bit 5 Unimplemented: Read as ‘0’ bit 4 HFIOFR: High-Frequency Internal Oscillator Ready bit 1 = 16 MHz Internal Oscillator (HFINTOSC) is ready 0 = 16 MHz Internal Oscillator (HFINTOSC) is not ready bit 3-2 Unimplemented: Read as ‘0’ bit 1 LFIOFR: Low-Frequency Internal Oscillator Ready bit 1 = 31 kHz Internal Oscillator (LFINTOSC) is ready 0 = 31 kHz Internal Oscillator (LFINTOSC) is not ready bit 0 HFIOFS: High-Frequency Internal Oscillator Stable bit 1 = 16 MHz Internal Oscillator (HFINTOSC) is stable 0 = 16 MHz Internal Oscillator (HFINTOSC) is not yet stable TABLE 5-2: SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK SOURCES Name Bit 7 OSCCON SPLLEN OSCSTAT — Legend: CONFIG1 Legend: Bit 5 PLLR — Bit 4 Bit 3 IRCF Bit 2 Bit 1 — HFIOFR — Bit 0 SCS — LFIOFR Register on Page 42 HFIOFS 43 — = unimplemented location, read as ‘0’. Shaded cells are not used by clock sources. TABLE 5-3: Name Bit 6 Bits SUMMARY OF CONFIGURATION WORD WITH CLOCK SOURCES Bit -/7 Bit -/6 Bit 13/5 Bit 12/4 Bit 11/3 — CLKOUTEN 13:8 — — — 7:0 CP MCLRE PWRTE WDTE Bit 10/2 Bit 9/1 BOREN — Bit 8/0 — FOSC Register on Page 32 — = unimplemented location, read as ‘0’. Shaded cells are not used by clock sources.  2012-2016 Microchip Technology Inc. DS40001674F-page 43 PIC12LF1552 6.0 RESETS There are multiple ways to reset this device: • • • • • • • • • Power-on Reset (POR) Brown-out Reset (BOR) Low-Power Brown-out Reset (LPBOR) MCLR Reset WDT Reset RESET instruction Stack Overflow Stack Underflow Programming mode exit To allow VDD to stabilize, an optional Power-up Timer can be enabled to extend the Reset time after a BOR or POR event. A simplified block diagram of the On-chip Reset Circuit is shown in Figure 6-1. FIGURE 6-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT ICSP™ Programming Mode Exit RESET Instruction Stack Pointer MCLRE MCLR Sleep WDT Time-out Device Reset Power-on Reset VDD Brown-out Reset R PWRT Done LPBOR Reset PWRTE LFINTOSC BOR Active(1) Note 1: See Table 6-1 for BOR active conditions. DS40001674F-page 44  2012-2016 Microchip Technology Inc. PIC12LF1552 6.1 Power-on Reset (POR) 6.2 Brown-out Reset (BOR) The POR circuit holds the device in Reset until VDD has reached an acceptable level for minimum operation. Slow rising VDD, fast operating speeds or analog performance may require greater than minimum VDD. The PWRT, BOR or MCLR features can be used to extend the start-up period until all device operation conditions have been met. The BOR circuit holds the device in Reset when VDD reaches a selectable minimum level. Between the POR and BOR, complete voltage range coverage for execution protection can be implemented. 6.1.1 • • • • POWER-UP TIMER (PWRT) The Power-up Timer provides a nominal 64 ms time-out on POR or Brown-out Reset. The device is held in Reset as long as PWRT is active. The PWRT delay allows additional time for the VDD to rise to an acceptable level. The Power-up Timer is enabled by clearing the PWRTE bit in Configuration Words. The Power-up Timer starts after the release of the POR and BOR. For additional information, refer to Application Note AN607, “Power-up Trouble Shooting” (DS00607). TABLE 6-1: The Brown-out Reset module has four operating modes controlled by the BOREN bits in Configuration Words. The four operating modes are: BOR is always on BOR is off when in Sleep BOR is controlled by software BOR is always off Refer to Table 6-1 for more information. The Brown-out Reset voltage level is selectable by configuring the BORV bit in Configuration Words. A VDD noise rejection filter prevents the BOR from triggering on small events. If VDD falls below VBOR for a duration greater than parameter TBORDC, the device will reset. See Figure 6-2 for more information. BOR OPERATING MODES Instruction Execution upon: Release of POR or Wake-up from Sleep BOREN SBOREN Device Mode BOR Mode 11 X X Active Waits for BOR ready(1) (BORRDY = 1) Awake Active 10 X Sleep Disabled Waits for BOR ready (BORRDY = 1) Active Waits for BOR ready(1) (BORRDY = 1) X Disabled X Disabled Begins immediately (BORRDY = x) 1 X 0 X 01 00 Note 1: In these specific cases, “release of POR” and “wake-up from Sleep,” there is no delay in start-up. The BOR ready flag, (BORRDY = 1), will be set before the CPU is ready to execute instructions because the BOR circuit is forced on by the BOREN bits. 6.2.1 BOR IS ALWAYS ON When the BOREN bits of Configuration Words are programmed to ‘11’, the BOR is always on. The device start-up will be delayed until the BOR is ready and VDD is higher than the BOR threshold. BOR protection is active during Sleep. The BOR does not delay wake-up from Sleep. 6.2.2 BOR IS OFF IN SLEEP When the BOREN bits of Configuration Words are programmed to ‘10’, the BOR is on, except in Sleep. The device start-up will be delayed until the BOR is ready and VDD is higher than the BOR threshold.  2012-2016 Microchip Technology Inc. BOR protection is not active during Sleep. The device wake-up will be delayed until the BOR is ready. 6.2.3 BOR CONTROLLED BY SOFTWARE When the BOREN bits of Configuration Words are programmed to ‘01’, the BOR is controlled by the SBOREN bit of the BORCON register. The device start-up is not delayed by the BOR ready condition or the VDD level. BOR protection begins as soon as the BOR circuit is ready. The status of the BOR circuit is reflected in the BORRDY bit of the BORCON register. BOR protection is unchanged by Sleep. DS40001674F-page 45 PIC12LF1552 FIGURE 6-2: BROWN-OUT SITUATIONS VDD VBOR Internal Reset TPWRT(1) VDD VBOR Internal < TPWRT Reset TPWRT(1) VDD VBOR Internal Reset TPWRT delay only if PWRTE bit is programmed to ‘0’. Note 1: 6.3 TPWRT(1) Register Definitions: BOR Control REGISTER 6-1: BORCON: BROWN-OUT RESET CONTROL REGISTER R/W-1/u R/W-0/u U-0 U-0 U-0 U-0 U-0 R-q/u SBOREN BORFS — — — — — BORRDY bit 7 bit 0 Legend: R = Readable bit W = Writable bit u = Bit is unchanged x = Bit is unknown U = Unimplemented bit, read as ‘0’ -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared q = Value depends on condition bit 7 SBOREN: Software Brown-out Reset Enable bit If BOREN in Configuration Words = 01: 1 = BOR Enabled 0 = BOR Disabled If BOREN in Configuration Words  00: SBOREN is read/write, but has no effect on the BOR. bit 6 BORFS: Brown-out Reset Fast Start bit(1) If BOREN = 10 (Disabled in Sleep) or BOREN = 01 (Under software control): 1 = Band gap is forced on always (covers sleep/wake-up/operating cases) 0 = Band gap operates normally, and may turn off If BOREN = 11 (Always on) or BOREN = 00 (Always off) BORFS is Read/Write, but has no effect. bit 5-1 Unimplemented: Read as ‘0’ bit 0 BORRDY: Brown-out Reset Circuit Ready Status bit 1 = The Brown-out Reset circuit is active 0 = The Brown-out Reset circuit is inactive Note 1: BOREN bits are located in Configuration Words. DS40001674F-page 46  2012-2016 Microchip Technology Inc. PIC12LF1552 6.4 Low-Power Brown-out Reset (LPBOR) The Low-Power Brown-Out Reset (LPBOR) is an essential part of the Reset subsystem. Refer to Figure 6-1 to see how the BOR interacts with other modules. The LPBOR is used to monitor the external VDD pin. When too low of a voltage is detected, the device is held in Reset. When this occurs, a register bit (BOR) is changed to indicate that a BOR Reset has occurred. The same bit is set for both the BOR and the LPBOR. Refer to Register 6-2. 6.4.1 ENABLING LPBOR The LPBOR is controlled by the LPBOR bit of Configuration Words. When the device is erased, the LPBOR module defaults to disabled. 6.4.1.1 LPBOR Module Output The output of the LPBOR module is a signal indicating whether or not a Reset is to be asserted. This signal is OR’d together with the Reset signal of the BOR module to provide the generic BOR signal which goes to the PCON register and to the power control block. 6.5 MCLR 6.6 Watchdog Timer (WDT) Reset The Watchdog Timer generates a Reset if the firmware does not issue a CLRWDT instruction within the time-out period. The TO and PD bits in the STATUS register are changed to indicate the WDT Reset. See Section 9.0 “Watchdog Timer (WDT)” for more information. 6.7 RESET Instruction A RESET instruction will cause a device Reset. The RI bit in the PCON register will be set to ‘0’. See Table 6-4 for default conditions after a RESET instruction has occurred. 6.8 Stack Overflow/Underflow Reset The device can reset when the Stack Overflows or Underflows. The STKOVF or STKUNF bits of the PCON register indicate the Reset condition. These Resets are enabled by setting the STVREN bit in Configuration Words. See Section 3.5.2 “Overflow/Underflow Reset” for more information. 6.9 Programming Mode Exit Upon exit of Programming mode, the device will behave as if a POR had just occurred. The MCLR is an optional external input that can reset the device. The MCLR function is controlled by the MCLRE bit of Configuration Words and the LVP bit of Configuration Words (Table 6-2). 6.10 TABLE 6-2: The Power-up Timer is controlled by the PWRTE bit of Configuration Words. MCLR CONFIGURATION MCLRE LVP MCLR 0 0 Disabled 1 0 Enabled x 1 Enabled 6.5.1 MCLR ENABLED When MCLR is enabled and the pin is held low, the device is held in Reset. The MCLR pin is connected to VDD through an internal weak pull-up. The device has a noise filter in the MCLR Reset path. The filter will detect and ignore small pulses. Note: 6.5.2 A Reset does not drive the MCLR pin low. MCLR DISABLED When MCLR is disabled, the pin functions as a general purpose input and the internal weak pull-up is under software control. See Section 11.3 “PORTA Registers” for more information.  2012-2016 Microchip Technology Inc. Power-up Timer The Power-up Timer optionally delays device execution after a BOR or POR event. This timer is typically used to allow VDD to stabilize before allowing the device to start running. 6.11 Start-up Sequence Upon the release of a POR or BOR, the following must occur before the device will begin executing: 1. 2. Power-up Timer runs to completion (if enabled). MCLR must be released (if enabled). The total time-out will vary based on oscillator configuration and Power-up Timer configuration. See Section 5.0 “Oscillator Module” for more information. The Power-up Timer runs independently of MCLR Reset. If MCLR is kept low long enough, the Power-up Timer will expire. Upon bringing MCLR high, the device will begin execution immediately (see Figure 6-3). This is useful for testing purposes or to synchronize more than one device operating in parallel. DS40001674F-page 47 PIC12LF1552 FIGURE 6-3: RESET START-UP SEQUENCE VDD Internal POR TPWRT Power-Up Timer MCLR TMCLR Internal RESET Internal Oscillator Oscillator FOSC External Clock (EC) CLKIN FOSC DS40001674F-page 48  2012-2016 Microchip Technology Inc. PIC12LF1552 6.12 Determining the Cause of a Reset Upon any Reset, multiple bits in the STATUS and PCON registers are updated to indicate the cause of the Reset. Table 6-3 and Table 6-4 show the Reset conditions of these registers. TABLE 6-3: RESET STATUS BITS AND THEIR SIGNIFICANCE STKOVF STKUNF RWDT RMCLR RI POR BOR TO PD Condition 0 0 1 1 1 0 x 1 1 Power-on Reset 0 0 1 1 1 0 x 0 x Illegal, TO is set on POR 0 0 1 1 1 0 x x 0 Illegal, PD is set on POR 0 0 u 1 1 u 0 1 1 Brown-out Reset u u 0 u u u u 0 u WDT Reset u u u u u u u 0 0 WDT Wake-up from Sleep u u u u u u u 1 0 Interrupt Wake-up from Sleep u u u 0 u u u u u MCLR Reset during normal operation u u u 0 u u u 1 0 MCLR Reset during Sleep u u u u 0 u u u u RESET Instruction Executed 1 u u u u u u u u Stack Overflow Reset (STVREN = 1) u 1 u u u u u u u Stack Underflow Reset (STVREN = 1) TABLE 6-4: RESET CONDITION FOR SPECIAL REGISTERS Program Counter STATUS Register PCON Register Power-on Reset 0000h ---1 1000 00-- 110x MCLR Reset during normal operation 0000h ---u uuuu uu-- 0uuu MCLR Reset during Sleep 0000h ---1 0uuu uu-- 0uuu WDT Reset 0000h ---0 uuuu uu-- uuuu WDT Wake-up from Sleep PC + 1 ---0 0uuu uu-- uuuu Brown-out Reset 0000h ---1 1uuu 00-- 11u0 ---1 0uuu uu-- uuuu ---u uuuu uu-- u0uu Condition Interrupt Wake-up from Sleep RESET Instruction Executed PC + 1 (1) 0000h Stack Overflow Reset (STVREN = 1) 0000h ---u uuuu 1u-- uuuu Stack Underflow Reset (STVREN = 1) 0000h ---u uuuu u1-- uuuu Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as ‘0’. Note 1: When the wake-up is due to an interrupt and the Global Interrupt Enable bit (GIE) is set, the return address is pushed on the stack and PC is loaded with the interrupt vector (0004h) after execution of PC + 1.  2012-2016 Microchip Technology Inc. DS40001674F-page 49 PIC12LF1552 6.13 Power Control (PCON) Register The Power Control (PCON) register contains flag bits to differentiate between a: • • • • • • • Power-on Reset (POR) Brown-out Reset (BOR) Reset Instruction Reset (RI) MCLR Reset (RMCLR) Watchdog Timer Reset (RWDT) Stack Underflow Reset (STKUNF) Stack Overflow Reset (STKOVF) The PCON register bits are shown in Register 6-2. 6.14 Register Definitions: Power Control REGISTER 6-2: PCON: POWER CONTROL REGISTER R/W/HS-0/q R/W/HS-0/q U-0 STKOVF STKUNF — R/W/HC-1/q R/W/HC-1/q RWDT R/W/HC-1/q R/W/HC-q/u R/W/HC-q/u RI POR BOR RMCLR bit 7 bit 0 Legend: HC = Bit is cleared by hardware HS = Bit is set by hardware R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared q = Value depends on condition bit 7 STKOVF: Stack Overflow Flag bit 1 = A Stack Overflow occurred 0 = A Stack Overflow has not occurred or cleared by firmware bit 6 STKUNF: Stack Underflow Flag bit 1 = A Stack Underflow occurred 0 = A Stack Underflow has not occurred or cleared by firmware bit 5 Unimplemented: Read as ‘0’ bit 4 RWDT: Watchdog Timer Reset Flag bit 1 = A Watchdog Timer Reset has not occurred or set by firmware 0 = A Watchdog Timer Reset has occurred (cleared by hardware) bit 3 RMCLR: MCLR Reset Flag bit 1 = A MCLR Reset has not occurred or set by firmware 0 = A MCLR Reset has occurred (cleared by hardware) bit 2 RI: RESET Instruction Flag bit 1 = A RESET instruction has not been executed or set by firmware 0 = A RESET instruction has been executed (cleared by hardware) bit 1 POR: Power-on Reset Status bit 1 = No Power-on Reset occurred 0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs) bit 0 BOR: Brown-out Reset Status bit 1 = No Brown-out Reset occurred 0 = A Brown-out Reset occurred (must be set in software after a Power-on Reset or Brown-out Reset occurs) DS40001674F-page 50  2012-2016 Microchip Technology Inc. PIC12LF1552 TABLE 6-5: SUMMARY OF REGISTERS ASSOCIATED WITH RESETS Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register on Page BORCON SBOREN BORFS — — — — — BORRDY 46 PCON STKOVF STKUNF — RWDT RMCLR RI POR BOR 50 STATUS — — — TO PD Z DC C 13 WDTCON — — SWDTEN 66 WDTPS Legend: — = unimplemented bit, reads as ‘0’. Shaded cells are not used by Resets. TABLE 6-6: Name CONFIG1 CONFIG2 SUMMARY OF CONFIGURATION WORD WITH RESETS Bits Bit -/7 Bit -/6 Bit 13/5 Bit 12/4 Bit 11/3 13:8 — — — — CLKOUTEN 7:0 CP 13:8 — — LVP — LPBOR BORV 7:0 — — — — — — MCLRE PWRTE WDTE Bit 10/2 Bit 9/1 BOREN — Bit 8/0 — FOSC STVREN — WRT Register on Page 32 33 Legend: — = unimplemented location, read as ‘0’. Shaded cells are not used by Resets.  2012-2016 Microchip Technology Inc. DS40001674F-page 51 PIC12LF1552 7.0 INTERRUPTS The interrupt feature allows certain events to preempt normal program flow. Firmware is used to determine the source of the interrupt and act accordingly. Some interrupts can be configured to wake the MCU from Sleep mode. This chapter contains the following information for Interrupts: • • • • • Operation Interrupt Latency Interrupts During Sleep INT Pin Automatic Context Saving Many peripherals produce interrupts. Refer to the corresponding chapters for details. A block diagram of the interrupt logic is shown in Figure 7-1. FIGURE 7-1: INTERRUPT LOGIC TMR0IF TMR0IE Peripheral Interrupts ADIF ADIE Wake-up (If in Sleep mode) INTF INTE IOCIF IOCIE Interrupt to CPU PEIE SSPIF SSPIE DS40001674F-page 52 GIE  2012-2016 Microchip Technology Inc. PIC12LF1552 7.1 Operation Interrupts are disabled upon any device Reset. They are enabled by setting the following bits: • GIE bit of the INTCON register • Interrupt Enable bit(s) for the specific interrupt event(s) • PEIE bit of the INTCON register (if the Interrupt Enable bit of the interrupt event is contained in the PIE1 and PIE2 registers) 7.2 Interrupt Latency Interrupt latency is defined as the time from when the interrupt event occurs to the time code execution at the interrupt vector begins. The latency for synchronous interrupts is three or four instruction cycles. For asynchronous interrupts, the latency is three to five instruction cycles, depending on when the interrupt occurs. See Figure 7-2 and Figure 7-3 for more details. The INTCON, PIR1, and PIR2 registers record individual interrupts via interrupt flag bits. Interrupt flag bits will be set, regardless of the status of the GIE, PEIE and individual interrupt enable bits. The following events happen when an interrupt event occurs while the GIE bit is set: • Current prefetched instruction is flushed • GIE bit is cleared • Current Program Counter (PC) is pushed onto the stack • Critical registers are automatically saved to the shadow registers (See “Section 7.5 “Automatic Context Saving”.”) • PC is loaded with the interrupt vector 0004h The firmware within the Interrupt Service Routine (ISR) should determine the source of the interrupt by polling the interrupt flag bits. The interrupt flag bits must be cleared before exiting the ISR to avoid repeated interrupts. Because the GIE bit is cleared, any interrupt that occurs while executing the ISR will be recorded through its interrupt flag, but will not cause the processor to redirect to the interrupt vector. The RETFIE instruction exits the ISR by popping the previous address from the stack, restoring the saved context from the shadow registers and setting the GIE bit. For additional information on a specific interrupt’s operation, refer to its peripheral chapter. Note 1: Individual interrupt flag bits are set, regardless of the state of any other enable bits. 2: All interrupts will be ignored while the GIE bit is cleared. Any interrupt occurring while the GIE bit is clear will be serviced when the GIE bit is set again.  2012-2016 Microchip Technology Inc. DS40001674F-page 53 PIC12LF1552 FIGURE 7-2: INTERRUPT LATENCY Fosc Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 CLKR Interrupt Sampled during Q1 Interrupt GIE PC Execute PC-1 PC 1 Cycle Instruction at PC PC+1 0004h 0005h NOP NOP Inst(0004h) PC+1/FSR ADDR New PC/ PC+1 0004h 0005h Inst(PC) NOP NOP Inst(0004h) FSR ADDR PC+1 PC+2 0004h 0005h INST(PC) NOP NOP NOP Inst(0004h) Inst(0005h) FSR ADDR PC+1 0004h 0005h INST(PC) NOP NOP Inst(0004h) Inst(PC) Interrupt GIE PC Execute PC-1 PC 2 Cycle Instruction at PC Interrupt GIE PC Execute PC-1 PC 3 Cycle Instruction at PC Interrupt GIE PC Execute PC-1 PC 3 Cycle Instruction at PC DS40001674F-page 54 PC+2 NOP NOP  2012-2016 Microchip Technology Inc. PIC12LF1552 FIGURE 7-3: INT PIN INTERRUPT TIMING Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 FOSC CLKOUT (3) INT pin (1) (1) INTF Interrupt Latency (2) (4) GIE INSTRUCTION FLOW PC Instruction Fetched Instruction Executed Note 1: PC Inst (PC) Inst (PC – 1) PC + 1 Inst (PC + 1) Inst (PC) PC + 1 — Forced NOP 0004h 0005h Inst (0004h) Inst (0005h) Forced NOP Inst (0004h) INTF flag is sampled here (every Q1). 2: Asynchronous interrupt latency = 3-5 TCY. Synchronous latency = 3-4 TCY, where TCY = instruction cycle time. Latency is the same whether Inst (PC) is a single cycle or a 2-cycle instruction. 3: For minimum width of INT pulse, refer to AC specifications in Section 21.0 “Electrical Specifications””. 4: INTF is enabled to be set any time during the Q4-Q1 cycles.  2012-2016 Microchip Technology Inc. DS40001674F-page 55 PIC12LF1552 7.3 Interrupts During Sleep Some interrupts can be used to wake from Sleep. To wake from Sleep, the peripheral must be able to operate without the system clock. The interrupt source must have the appropriate Interrupt Enable bit(s) set prior to entering Sleep. On waking from Sleep, if the GIE bit is also set, the processor will branch to the interrupt vector. Otherwise, the processor will continue executing instructions after the SLEEP instruction. The instruction directly after the SLEEP instruction will always be executed before branching to the ISR. Refer to Section 8.0 “Power-down Mode (Sleep)” for more details. 7.4 INT Pin The INT pin can be used to generate an asynchronous edge-triggered interrupt. This interrupt is enabled by setting the INTE bit of the INTCON register. The INTEDG bit of the OPTION_REG register determines on which edge the interrupt will occur. When the INTEDG bit is set, the rising edge will cause the interrupt. When the INTEDG bit is clear, the falling edge will cause the interrupt. The INTF bit of the INTCON register will be set when a valid edge appears on the INT pin. If the GIE and INTE bits are also set, the processor will redirect program execution to the interrupt vector. 7.5 Automatic Context Saving Upon entering an interrupt, the return PC address is saved on the stack. Additionally, the following registers are automatically saved in the Shadow registers: • • • • • W register STATUS register (except for TO and PD) BSR register FSR registers PCLATH register Upon exiting the Interrupt Service Routine, these registers are automatically restored. Any modifications to these registers during the ISR will be lost. If modifications to any of these registers are desired, the corresponding shadow register should be modified and the value will be restored when exiting the ISR. The shadow registers are available in Bank 31 and are readable and writable. Depending on the user’s application, other registers may also need to be saved. DS40001674F-page 56  2012-2016 Microchip Technology Inc. PIC12LF1552 7.6 Register Definitions: Interrupt Control REGISTER 7-1: INTCON: INTERRUPT CONTROL REGISTER R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R-0/0 GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF(1) bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7 GIE: Global Interrupt Enable bit 1 = Enables all active interrupts 0 = Disables all interrupts bit 6 PEIE: Peripheral Interrupt Enable bit 1 = Enables all active peripheral interrupts 0 = Disables all peripheral interrupts bit 5 TMR0IE: Timer0 Overflow Interrupt Enable bit 1 = Enables the Timer0 interrupt 0 = Disables the Timer0 interrupt bit 4 INTE: INT External Interrupt Enable bit 1 = Enables the INT external interrupt 0 = Disables the INT external interrupt bit 3 IOCIE: Interrupt-on-Change Enable bit 1 = Enables the interrupt-on-change 0 = Disables the interrupt-on-change bit 2 TMR0IF: Timer0 Overflow Interrupt Flag bit 1 = TMR0 register has overflowed 0 = TMR0 register did not overflow bit 1 INTF: INT External Interrupt Flag bit 1 = The INT external interrupt occurred 0 = The INT external interrupt did not occur bit 0 IOCIF: Interrupt-on-Change Interrupt Flag bit(1) 1 = When at least one of the interrupt-on-change pins changed state 0 = None of the interrupt-on-change pins have changed state Note 1: Note: The IOCIF Flag bit is read-only and cleared when all the interrupt-on-change flags in the IOCBF register have been cleared by software. Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Interrupt Enable bit, GIE, of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.  2012-2016 Microchip Technology Inc. DS40001674F-page 57 PIC12LF1552 REGISTER 7-2: PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1 U-0 R/W-0/0 U-0 U-0 R/W-0/0 U-0 U-0 U-0 — ADIE — — SSPIE — — — bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7 Unimplemented: Read as ‘0’ bit 6 ADIE: Analog-to-Digital Converter (ADC) Interrupt Enable bit 1 = Enables the ADC interrupt 0 = Disables the ADC interrupt bit 5-4 Unimplemented: Read as ‘0’ bit 3 SSPIE: Synchronous Serial Port (MSSP) Interrupt Enable bit 1 = Enables the MSSP interrupt 0 = Disables the MSSP interrupt bit 2-0 Unimplemented: Read as ‘0’ Note: Bit PEIE of the INTCON register must be set to enable any peripheral interrupt. DS40001674F-page 58  2012-2016 Microchip Technology Inc. PIC12LF1552 REGISTER 7-3: PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2 U-0 U-0 U-0 U-0 R/W-0/0 U-0 U-0 U-0 — — — — BCLIE — — — bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7-4 Unimplemented: Read as ‘0’ bit 3 BCLIE: MSSP Bus Collision Interrupt Enable bit 1 = Enables the MSSP Bus Collision Interrupt 0 = Disables the MSSP Bus Collision Interrupt bit 2-0 Unimplemented: Read as ‘0’ Note: Bit PEIE of the INTCON register must be set to enable any peripheral interrupt.  2012-2016 Microchip Technology Inc. DS40001674F-page 59 PIC12LF1552 REGISTER 7-4: PIR1: PERIPHERAL INTERRUPT REQUEST REGISTER 1 U-0 R/W-0/0 U-0 U-0 R/W-0/0 U-0 U-0 U-0 — ADIF — — SSPIF — — — bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7 Unimplemented: Read as ‘0’ bit 6 ADIF: ADC Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is not pending bit 5-4 Unimplemented: Read as ‘0’ bit 3 SSPIF: Synchronous Serial Port (MSSP) Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is not pending bit 2-0 Unimplemented: Read as ‘0’ Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Interrupt Enable bit, GIE, of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. DS40001674F-page 60  2012-2016 Microchip Technology Inc. PIC12LF1552 REGISTER 7-5: PIR2: PERIPHERAL INTERRUPT REQUEST REGISTER 2 U-0 U-0 U-0 U-0 R/W-0/0 U-0 U-0 U-0 — — — — BCLIF — — — bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7-4 Unimplemented: Read as ‘0’ bit 3 BCLIF: MSSP Bus Collision Interrupt Flag bit 1 = Interrupt is pending 0 = Interrupt is not pending bit 2-0 Unimplemented: Read as ‘0’ Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Interrupt Enable bit, GIE, of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. TABLE 7-1: Name INTCON SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register on Page GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 57 OPTION_REG WPUEN INTEDG TMR0CS TMR0SE PSA PS 132 PIE1 — ADIE — — SSPIE — — — 58 PIE2 — — — — BCLIE — — — 59 PIR1 — ADIF — — SSPIF — — — 60 PIR2 — — — — BCLIF — — — 61 Legend: — = unimplemented location, read as ‘0’. Shaded cells are not used by Interrupts.  2012-2016 Microchip Technology Inc. DS40001674F-page 61 PIC12LF1552 8.0 POWER-DOWN MODE (SLEEP) 8.1 Wake-up from Sleep The Power-Down mode is entered by executing a SLEEP instruction. The device can wake-up from Sleep through one of the following events: Upon entering Sleep mode, the following conditions exist: 1. 2. 3. 4. 5. 6. 1. 2. 3. 4. 5. 6. 7. 8. WDT will be cleared but keeps running, if enabled for operation during Sleep. PD bit of the STATUS register is cleared. TO bit of the STATUS register is set. CPU clock is disabled. 31 kHz LFINTOSC is unaffected and peripherals that operate from it may continue operation in Sleep. ADC is unaffected, if the dedicated FRC clock is selected. I/O ports maintain the status they had before SLEEP was executed (driving high, low or high-impedance). Resets other than WDT are not affected by Sleep mode. Refer to individual chapters for more details on peripheral operation during Sleep. To minimize current consumption, the following conditions should be considered: • • • • • I/O pins should not be floating External circuitry sinking current from I/O pins Internal circuitry sourcing current from I/O pins Current draw from pins with internal weak pull-ups Modules using 31 kHz LFINTOSC External Reset input on MCLR pin, if enabled BOR Reset, if enabled POR Reset Watchdog Timer, if enabled Any external interrupt Interrupts by peripherals capable of running during Sleep (see individual peripheral for more information) The first three events will cause a device Reset. The last three events are considered a continuation of program execution. To determine whether a device Reset or wake-up event occurred, refer to Section 6.12 “Determining the Cause of a Reset”. When the SLEEP instruction is being executed, the next instruction (PC + 1) is prefetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be enabled. Wake-up will occur regardless of the state of the GIE bit. If the GIE bit is disabled, the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is enabled, the device executes the instruction after the SLEEP instruction, the device will then call the Interrupt Service Routine. In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction. The WDT is cleared when the device wakes up from Sleep, regardless of the source of wake-up. I/O pins that are high-impedance inputs should be pulled to VDD or VSS externally to avoid switching currents caused by floating inputs. Examples of internal circuitry that might be sourcing current include the FVR module. See Section 13.0 “Fixed Voltage Reference (FVR)” for more information on this module. DS40001674F-page 62  2012-2016 Microchip Technology Inc. PIC12LF1552 8.1.1 WAKE-UP USING INTERRUPTS • If the interrupt occurs during or after the execution of a SLEEP instruction - SLEEP instruction will be completely executed - Device will immediately wake-up from Sleep - WDT and WDT prescaler will be cleared - TO bit of the STATUS register will be set - PD bit of the STATUS register will be cleared. When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur: • If the interrupt occurs before the execution of a SLEEP instruction - SLEEP instruction will execute as a NOP. - WDT and WDT prescaler will not be cleared - TO bit of the STATUS register will not be set - PD bit of the STATUS register will not be cleared. FIGURE 8-1: Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the PD bit. If the PD bit is set, the SLEEP instruction was executed as a NOP. WAKE-UP FROM SLEEP THROUGH INTERRUPT Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 CLKIN(1) TOST(3) CLKOUT(2) Interrupt flag Interrupt Latency (4) GIE bit (INTCON reg.) Processor in Sleep Instruction Flow PC Instruction Fetched Instruction Executed Note 1: 2: 3: 4: PC PC + 1 Inst(PC) = Sleep Inst(PC - 1) PC + 2 Inst(PC + 1) Inst(PC + 2) Sleep Inst(PC + 1) 0005h Inst(0004h) Inst(0005h) Forced NOP Inst(0004h) SUMMARY OF REGISTERS ASSOCIATED WITH POWER-DOWN MODE Name Bit 7 Bit 6 Bit 5 INTCON GIE PEIE TMR0IE — IOCAF5 — IOCAN5 IOCAN Forced NOP 0004h External clock. High, Medium, Low mode assumed. CLKOUT is not available in XT, HS, or LP Oscillator modes, but shown here for timing reference. TOST = 1024 TOSC (drawing not to scale). This delay applies only to XT, HS or LP Oscillator modes. GIE = 1 assumed. In this case after wake-up, the processor calls the ISR at 0004h. If GIE = 0, execution will continue in-line. TABLE 8-1: IOCAF PC + 2 PC + 2 — — Bit 4 Bit 0 Register on Page INTF IOCIF 57 IOCAF1 IOCAF0 92 IOCAN1 IOCAN0 92 IOCAP2 IOCAP1 IOCAP0 92 Bit 3 Bit 2 INTE IOCIE TMR0IF IOCAF4 IOCAF3 IOCAF2 IOCAN4 IOCAN3 IOCAN2 IOCAP4 IOCAP3 Bit 1 IOCAP — — IOCAP5 PIE1 — ADIE — — SSPIE — — — 58 PIE2 — — — — BCLIE — — — 59 PIR1 — ADIF — — SSPIF — — — 60 PIR2 — — — — BCLIF — — — 61 STATUS — — — TO PD Z DC C 13 WDTCON — — SWDTEN 66 WDTPS Legend: — = unimplemented, read as ‘0’. Shaded cells are not used in Power-Down mode.  2012-2016 Microchip Technology Inc. DS40001674F-page 63 PIC12LF1552 9.0 WATCHDOG TIMER (WDT) The Watchdog Timer is a system timer that generates a Reset if the firmware does not issue a CLRWDT instruction within the time-out period. The Watchdog Timer is typically used to recover the system from unexpected events. The WDT has the following features: • Independent clock source • Multiple operating modes - WDT is always on - WDT is off when in Sleep - WDT is controlled by software - WDT is always off • Configurable time-out period is from 1 ms to 256 seconds (nominal) • Multiple Reset conditions • Operation during Sleep FIGURE 9-1: WATCHDOG TIMER BLOCK DIAGRAM WDTE = 01 SWDTEN WDTE = 11 LFINTOSC 23-bit Programmable Prescaler WDT WDT Time-out WDTE = 10 Sleep DS40001674F-page 64 WDTPS  2012-2016 Microchip Technology Inc. PIC12LF1552 9.1 Independent Clock Source 9.3 The WDT derives its time base from the 31 kHz LFINTOSC internal oscillator. Time intervals in this chapter are based on a nominal interval of 1 ms. See Section 21.0 “Electrical Specifications” for the LFINTOSC tolerances. The WDTPS bits of the WDTCON register set the time-out period from 1 ms to 256 seconds (nominal). After a Reset, the default time-out period is two seconds. 9.4 9.2 WDT Operating Modes The Watchdog Timer module has four operating modes controlled by the WDTE bits in Configuration Words. See Table 9-1. 9.2.1 WDT IS ALWAYS ON When the WDTE bits of Configuration Words are set to ‘11’, the WDT is always on. WDT protection is active during Sleep. 9.2.2 WDT protection is not active during Sleep. WDT CONTROLLED BY SOFTWARE When the WDTE bits of Configuration Words are set to ‘01’, the WDT is controlled by the SWDTEN bit of the WDTCON register. WDT protection is unchanged by Sleep. See Table 9-1 for more details. TABLE 9-1: WDT OPERATING MODES WDTE SWDTEN Device Mode WDT Mode 11 X X Active Awake Active 10 X Sleep Disabled 1 X Active 0 X Disabled X X Disabled 01 00 TABLE 9-2: Clearing the WDT The WDT is cleared when any of the following conditions occur: • • • • • • Any Reset CLRWDT instruction is executed Device enters Sleep Device wakes up from Sleep Oscillator fail WDT is disabled See Table 9-2 for more information. WDT IS OFF IN SLEEP When the WDTE bits of Configuration Words are set to ‘10’, the WDT is on, except in Sleep. 9.2.3 Time-out Period 9.5 Operation During Sleep When the device enters Sleep, the WDT is cleared. If the WDT is enabled during Sleep, the WDT resumes counting. When the device exits Sleep, the WDT is cleared again. When a WDT time-out occurs while the device is in Sleep, no Reset is generated. Instead, the device wakes up and resumes operation. The TO and PD bits in the STATUS register are changed to indicate the event. The RWDT bit in the PCON register can also be used. See Section 3.0 “Memory Organization” for more information. WDT CLEARING CONDITIONS Conditions WDT WDTE = 00 WDTE = 01 and SWDTEN = 0 WDTE = 10 and enter Sleep CLRWDT Command Cleared Oscillator Fail Detected Exit Sleep + System Clock = INTOSC, EXTCLK Change INTOSC divider (IRCF bits)  2012-2016 Microchip Technology Inc. Unaffected DS40001674F-page 65 PIC12LF1552 9.6 Register Definitions: Watchdog Control REGISTER 9-1: WDTCON: WATCHDOG TIMER CONTROL REGISTER U-0 U-0 — — R/W-0/0 R/W-1/1 R/W-0/0 R/W-1/1 R/W-1/1 WDTPS R/W-0/0 SWDTEN bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7-6 Unimplemented: Read as ‘0’ bit 5-1 WDTPS: Watchdog Timer Period Select bits(1) Bit Value = Prescale Rate 11111 = Reserved. Results in minimum interval (1:32) • • • 10011 = Reserved. Results in minimum interval (1:32) 10010 10001 10000 01111 01110 01101 01100 01011 01010 01001 01000 00111 00110 00101 00100 00011 00010 00001 00000 bit 0 Note 1: = = = = = = = = = = = = = = = = = = = 1:8388608 (223) (Interval 256s nominal) 1:4194304 (222) (Interval 128s nominal) 1:2097152 (221) (Interval 64s nominal) 1:1048576 (220) (Interval 32s nominal) 1:524288 (219) (Interval 16s nominal) 1:262144 (218) (Interval 8s nominal) 1:131072 (217) (Interval 4s nominal) 1:65536 (Interval 2s nominal) (Reset value) 1:32768 (Interval 1s nominal) 1:16384 (Interval 512 ms nominal) 1:8192 (Interval 256 ms nominal) 1:4096 (Interval 128 ms nominal) 1:2048 (Interval 64 ms nominal) 1:1024 (Interval 32 ms nominal) 1:512 (Interval 16 ms nominal) 1:256 (Interval 8 ms nominal) 1:128 (Interval 4 ms nominal) 1:64 (Interval 2 ms nominal) 1:32 (Interval 1 ms nominal) SWDTEN: Software Enable/Disable for Watchdog Timer bit If WDTE = 1x: This bit is ignored. If WDTE = 01: 1 = WDT is turned on 0 = WDT is turned off If WDTE = 00: This bit is ignored. Times are approximate. WDT time is based on 31 kHz LFINTOSC. DS40001674F-page 66  2012-2016 Microchip Technology Inc. PIC12LF1552 TABLE 9-3: Name SUMMARY OF REGISTERS ASSOCIATED WITH WATCHDOG TIMER Bit 7 OSCCON Bit 6 PLLEN PCON Bit 5 Bit 4 Bit 3 IRCF STKUNF — RWDT STATUS — — — TO WDTCON — — CONFIG1 Legend: Bit 0 SCS RMCLR RI POR PD Z DC WDTPS Register on Page 42 BOR 50 C 13 SWDTEN 66 x = unknown, u = unchanged, – = unimplemented locations read as ‘0’. Shaded cells are not used by Watchdog Timer. TABLE 9-4: Name Bit 1 — STKOVF Legend: Bit 2 SUMMARY OF CONFIGURATION WORD WITH WATCHDOG TIMER Bits Bit -/7 Bit -/6 Bit 13/5 Bit 12/4 Bit 11/3 13:8 — — — — CLKOUTEN 7:0 CP MCLRE PWRTE WDTE Bit 10/2 Bit 9/1 BOREN — Bit 8/0 — FOSC Register on Page 32 — = unimplemented location, read as ‘0’. Shaded cells are not used by Watchdog Timer.  2012-2016 Microchip Technology Inc. DS40001674F-page 67 PIC12LF1552 10.0 FLASH PROGRAM MEMORY CONTROL The Flash program memory is readable and writable during normal operation over the full VDD range. Program memory is indirectly addressed using Special Function Registers (SFRs). The SFRs used to access program memory are: • • • • • • PMCON1 PMCON2 PMDATL PMDATH PMADRL PMADRH When accessing the program memory, the PMDATH:PMDATL register pair forms a 2-byte word that holds the 14-bit data for read/write, and the PMADRH:PMADRL register pair forms a 2-byte word that holds the 15-bit address of the program memory location being read. The write time is controlled by an on-chip timer. The write/ erase voltages are generated by an on-chip charge pump. The Flash program memory can be protected in two ways; by code protection (CP bit in Configuration Words) and write protection (WRT bits in Configuration Words). Code protection (CP = 0)(1), disables access, reading and writing, to the Flash program memory via external device programmers. Code protection does not affect the self-write and erase functionality. Code protection can only be reset by a device programmer performing a Bulk Erase to the device, clearing all Flash program memory, Configuration bits and User IDs. 10.1 PMADRL and PMADRH Registers The PMADRH:PMADRL register pair can address up to a maximum of 16K words of program memory. When selecting a program address value, the MSB of the address is written to the PMADRH register and the LSB is written to the PMADRL register. 10.1.1 PMCON1 AND PMCON2 REGISTERS PMCON1 is the control register for Flash program memory accesses. Control bits RD and WR initiate read and write, respectively. These bits cannot be cleared, only set, in software. They are cleared by hardware at completion of the read or write operation. The inability to clear the WR bit in software prevents the accidental, premature termination of a write operation. The WREN bit, when set, will allow a write operation to occur. On power-up, the WREN bit is clear. The WRERR bit is set when a write operation is interrupted by a Reset during normal operation. In these situations, following Reset, the user can check the WRERR bit and execute the appropriate error handling routine. The PMCON2 register is a write-only register. Attempting to read the PMCON2 register will return all ‘0’s. To enable writes to the program memory, a specific pattern (the unlock sequence), must be written to the PMCON2 register. The required unlock sequence prevents inadvertent writes to the program memory write latches and Flash program memory. Write protection prohibits self-write and erase to a portion or all of the Flash program memory as defined by the bits WRT. Write protection does not affect a device programmers ability to read, write or erase the device. Note 1: Code protection of the entire Flash program memory array is enabled by clearing the CP bit of Configuration Words. DS40001674F-page 68  2012-2016 Microchip Technology Inc. PIC12LF1552 10.2 Flash Program Memory Overview It is important to understand the Flash program memory structure for erase and programming operations. Flash program memory is arranged in rows. A row consists of a fixed number of 14-bit program memory words. A row is the minimum size that can be erased by user software. After a row has been erased, the user can reprogram all or a portion of this row. Data to be written into the program memory row is written to 14-bit wide data write latches. These write latches are not directly accessible to the user, but may be loaded via sequential writes to the PMDATH:PMDATL register pair. Note: If the user wants to modify only a portion of a previously programmed row, then the contents of the entire row must be read and saved in RAM prior to the erase. Then, new data and retained data can be written into the write latches to reprogram the row of Flash program memory. However, any unprogrammed locations can be written without first erasing the row. In this case, it is not necessary to save and rewrite the other previously programmed locations. PMDATH:PMDATL register pair will hold this value until another read or until it is written to by the user. Note: The two instructions following a program memory read are required to be NOPs. This prevents the user from executing a two-cycle instruction on the next instruction after the RD bit is set. FIGURE 10-1: FLASH PROGRAM MEMORY READ FLOWCHART Start Read Operation Select Program or Configuration Memory (CFGS) Select Word Address (PMADRH:PMADRL) See Table 10-1 for Erase Row size and the number of write latches for Flash program memory. TABLE 10-1: Device PIC12LF1552 10.2.1 FLASH MEMORY ORGANIZATION BY DEVICE Row Erase (words) Write Latches (words) 16 16 READING THE FLASH PROGRAM MEMORY To read a program memory location, the user must: 1. 2. 3. Write the desired address to the PMADRH:PMADRL register pair. Clear the CFGS bit of the PMCON1 register. Then, set control bit RD of the PMCON1 register. Once the read control bit is set, the program memory Flash controller will use the second instruction cycle to read the data. This causes the second instruction immediately following the “BSF PMCON1,RD” instruction to be ignored. The data is available in the very next cycle, in the PMDATH:PMDATL register pair; therefore, it can be read as two bytes in the following instructions.  2012-2016 Microchip Technology Inc. Initiate Read operation (RD = 1) Instruction Fetched ignored NOP execution forced Instruction Fetched ignored NOP execution forced Data read now in PMDATH:PMDATL End Read Operation DS40001674F-page 69 PIC12LF1552 FIGURE 10-2: FLASH PROGRAM MEMORY READ CYCLE EXECUTION Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 PC Flash ADDR Flash Data PC + 1 INSTR (PC) INSTR(PC - 1) executed here PC +3 PC+3 PMADRH,PMADRL INSTR (PC + 1) BSF PMCON1,RD executed here PMDATH,PMDATL INSTR(PC + 1) instruction ignored Forced NOP executed here PC + 4 INSTR (PC + 3) INSTR(PC + 2) instruction ignored Forced NOP executed here PC + 5 INSTR (PC + 4) INSTR(PC + 3) executed here INSTR(PC + 4) executed here RD bit PMDATH PMDATL Register EXAMPLE 10-1: FLASH PROGRAM MEMORY READ * This code block will read 1 word of program * memory at the memory address: PROG_ADDR_HI: PROG_ADDR_LO * data will be returned in the variables; * PROG_DATA_HI, PROG_DATA_LO BANKSEL MOVLW MOVWF MOVLW MOVWF PMADRL PROG_ADDR_LO PMADRL PROG_ADDR_HI PMADRH ; Select Bank for PMCON registers ; ; Store LSB of address ; ; Store MSB of address BCF BSF NOP NOP PMCON1,CFGS PMCON1,RD ; ; ; ; Do not select Configuration Space Initiate read Ignored (Figure 10-2) Ignored (Figure 10-2) MOVF MOVWF MOVF MOVWF PMDATL,W PROG_DATA_LO PMDATH,W PROG_DATA_HI ; ; ; ; Get LSB of word Store in user location Get MSB of word Store in user location DS40001674F-page 70  2012-2016 Microchip Technology Inc. PIC12LF1552 10.2.2 FLASH MEMORY UNLOCK SEQUENCE The unlock sequence is a mechanism that protects the Flash program memory from unintended self-write programming or erasing. The sequence must be executed and completed without interruption to successfully complete any of the following operations: • Row Erase • Load program memory write latches • Write of program memory write latches to program memory • Write of program memory write latches to User IDs The unlock sequence consists of the following steps: FIGURE 10-3: FLASH PROGRAM MEMORY UNLOCK SEQUENCE FLOWCHART Start Unlock Sequence Write 055h to PMCON2 Write 0AAh to PMCON2 1. Write 55h to PMCON2 2. Write AAh to PMCON2 3. Set the WR bit in PMCON1 Initiate Write or Erase operation (WR = 1) 4. NOP instruction 5. NOP instruction Once the WR bit is set, the processor will always force two NOP instructions. When an Erase Row or Program Row operation is being performed, the processor will stall internal operations (typical 2 ms), until the operation is complete and then resume with the next instruction. When the operation is loading the program memory write latches, the processor will always force the two NOP instructions and continue uninterrupted with the next instruction. Instruction Fetched ignored NOP execution forced Instruction Fetched ignored NOP execution forced End Unlock Sequence Since the unlock sequence must not be interrupted, global interrupts should be disabled prior to the unlock sequence and re-enabled after the unlock sequence is completed.  2012-2016 Microchip Technology Inc. DS40001674F-page 71 PIC12LF1552 10.2.3 ERASING FLASH PROGRAM MEMORY While executing code, program memory can only be erased by rows. To erase a row: 1. 2. 3. 4. 5. Load the PMADRH:PMADRL register pair with any address within the row to be erased. Clear the CFGS bit of the PMCON1 register. Set the FREE and WREN bits of the PMCON1 register. Write 55h, then AAh, to PMCON2 (Flash programming unlock sequence). Set control bit WR of the PMCON1 register to begin the erase operation. See Example 10-2. After the “BSF PMCON1,WR” instruction, the processor requires two cycles to set up the erase operation. The user must place two NOP instructions after the WR bit is set. The processor will halt internal operations for the typical 2 ms erase time. This is not Sleep mode as the clocks and peripherals will continue to run. After the erase cycle, the processor will resume operation with the third instruction after the PMCON1 write instruction. FIGURE 10-4: FLASH PROGRAM MEMORY ERASE FLOWCHART Start Erase Operation Disable Interrupts (GIE = 0) Select Program or Configuration Memory (CFGS) Select Row Address (PMADRH:PMADRL) Select Erase Operation (FREE = 1) Enable Write/Erase Operation (WREN = 1) Unlock Sequence Figure 10-3 (FIGURE x-x) CPU stalls while Erase operation completes (2ms typical) Disable Write/Erase Operation (WREN = 0) Re-enable Interrupts (GIE = 1) End Erase Operation DS40001674F-page 72  2012-2016 Microchip Technology Inc. PIC12LF1552 EXAMPLE 10-2: ERASING ONE ROW OF PROGRAM MEMORY Required Sequence ; This row erase routine assumes the following: ; 1. A valid address within the erase row is loaded in ADDRH:ADDRL ; 2. ADDRH and ADDRL are located in shared data memory 0x70 - 0x7F (common RAM) BCF BANKSEL MOVF MOVWF MOVF MOVWF BCF BSF BSF INTCON,GIE PMADRL ADDRL,W PMADRL ADDRH,W PMADRH PMCON1,CFGS PMCON1,FREE PMCON1,WREN MOVLW MOVWF MOVLW MOVWF BSF NOP NOP 55h PMCON2 0AAh PMCON2 PMCON1,WR BCF BSF PMCON1,WREN INTCON,GIE  2012-2016 Microchip Technology Inc. ; Disable ints so required sequences will execute properly ; Load lower 8 bits of erase address boundary ; Load upper 6 bits of erase address boundary ; Not configuration space ; Specify an erase operation ; Enable writes ; ; ; ; ; ; ; ; ; ; Start of required sequence to initiate erase Write 55h Write AAh Set WR bit to begin erase NOP instructions are forced as processor starts row erase of program memory. The processor stalls until the erase process is complete after erase processor continues with 3rd instruction ; Disable writes ; Enable interrupts DS40001674F-page 73 PIC12LF1552 10.2.4 WRITING TO FLASH PROGRAM MEMORY Program memory is programmed using the following steps: 1. 2. 3. 4. Load the address in PMADRH:PMADRL of the row to be programmed. Load each write latch with data. Initiate a programming operation. Repeat steps 1 through 3 until all data is written. The following steps should be completed to load the write latches and program a row of program memory. These steps are divided into two parts. First, each write latch is loaded with data from the PMDATH:PMDATL using the unlock sequence with LWLO = 1. When the last word to be loaded into the write latch is ready, the LWLO bit is cleared and the unlock sequence executed. This initiates the programming operation, writing all the latches into Flash program memory. Note: Before writing to program memory, the word(s) to be written must be erased or previously unwritten. Program memory can only be erased one row at a time. No automatic erase occurs upon the initiation of the write. Program memory can be written one or more words at a time. The maximum number of words written at one time is equal to the number of write latches. See Figure 10-5 (row writes to program memory with 16 write latches) for more details. The write latches are aligned to the Flash row address boundary defined by the upper eleven bits of PMADRH:PMADRL, (PMADRH:PMADRL) with the lower four bits of PMADRL, (PMADRL) determining the write latch being loaded. Write operations do not cross these boundaries. At the completion of a program memory write operation, the data in the write latches is reset to contain 0x3FFF. The special unlock sequence is required to load a write latch with data or initiate a Flash programming operation. If the unlock sequence is interrupted, writing to the latches or program memory will not be initiated. 1. 2. 3. Set the WREN bit of the PMCON1 register. Clear the CFGS bit of the PMCON1 register. Set the LWLO bit of the PMCON1 register. When the LWLO bit of the PMCON1 register is ‘1’, the write sequence will only load the write latches and will not initiate the write to Flash program memory. 4. Load the PMADRH:PMADRL register pair with the address of the location to be written. 5. Load the PMDATH:PMDATL register pair with the program memory data to be written. 6. Execute the unlock sequence (Section 10.2.2 “Flash Memory Unlock Sequence”). The write latch is now loaded. 7. Increment the PMADRH:PMADRL register pair to point to the next location. 8. Repeat steps 5 through 7 until all but the last write latch has been loaded. 9. Clear the LWLO bit of the PMCON1 register. When the LWLO bit of the PMCON1 register is ‘0’, the write sequence will initiate the write to Flash program memory. 10. Load the PMDATH:PMDATL register pair with the program memory data to be written. 11. Execute the unlock sequence (Section 10.2.2 “Flash Memory Unlock Sequence”). The entire program memory latch content is now written to Flash program memory. Note: The program memory write latches are reset to the blank state (0x3FFF) at the completion of every write or erase operation. As a result, it is not necessary to load all the program memory write latches. Unloaded latches will remain in the blank state. An example of the complete write sequence is shown in Example 10-3. The initial address is loaded into the PMADRH:PMADRL register pair; the data is loaded using indirect addressing. DS40001674F-page 74  2012-2016 Microchip Technology Inc.  2012-2016 Microchip Technology Inc. FIGURE 10-5: 7 BLOCK WRITES TO FLASH PROGRAM MEMORY WITH 16 WRITE LATCHES 6 0 7 5 4 PMADRH - r10 r9 r8 r7 r6 0 7 PMADRL r5 r4 r3 r2 r1 r0 c3 c2 c1 c0 5 - 0 7 PMDATH 6 0 PMDATL 8 14 11 Program Memory Write Latches 4 14 Write Latch #0 00h PMADRL 14 CFGS = 0 Row Address Decode 14 Write Latch #1 01h 14 Write Latch #14 0Eh 14 Write Latch #15 0Fh 14 14 Row Addr Addr Addr Addr 000h 0000h 0001h 000Eh 001Fh 001h 0010h 0011h 001Eh 001Fh 002h 0020h 0021h 002Eh 002Fh 7FEh 7FE0h 7FE1h 7FEEh 7FEFh 7FFh 7FF0h 7FF1h 7FFEh 7FFFh Flash Program Memory DS40001674F-page 75 800h CFGS = 1 8000h - 8003h 8004h - 8005h 8006h 8007h – 8008h 8009h - 801Fh USER ID 0 - 3 reserved DEVICEID REVID Configuration Words reserved Configuration Memory PIC12LF1552 PMADRH :PMADRL 14 PIC12LF1552 FIGURE 10-6: FLASH PROGRAM MEMORY WRITE FLOWCHART Start Write Operation Determine number of words to be written into Program or Configuration Memory. The number of words cannot exceed the number of words per row. (word_cnt) Disable Interrupts (GIE = 0) Select Program or Config. Memory (CFGS) Select Row Address (PMADRH:PMADRL) Enable Write/Erase Operation (WREN = 1) Load the value to write (PMDATH:PMDATL) Update the word counter (word_cnt--) Last word to write ? Yes No Unlock Sequence (Figure10-3 x-x) Figure Select Write Operation (FREE = 0) No delay when writing to Program Memory Latches Load Write Latches Only (LWLO = 1) Increment Address (PMADRH:PMADRL++) Write Latches to Flash (LWLO = 0) Unlock Sequence (Figure10-3 x-x) Figure CPU stalls while Write operation completes (2ms typical) Disable Write/Erase Operation (WREN = 0) Re-enable Interrupts (GIE = 1) End Write Operation DS40001674F-page 76  2012-2016 Microchip Technology Inc. PIC12LF1552 EXAMPLE 10-3: ; ; ; ; ; ; ; WRITING TO FLASH PROGRAM MEMORY This write routine assumes the following: 1. 32 bytes of data are loaded, starting at the address in DATA_ADDR 2. Each word of data to be written is made up of two adjacent bytes in DATA_ADDR, stored in little endian format 3. A valid starting address (the least significant bits = 00000) is loaded in ADDRH:ADDRL 4. ADDRH and ADDRL are located in shared data memory 0x70 - 0x7F (common RAM) BCF BANKSEL MOVF MOVWF MOVF MOVWF MOVLW MOVWF MOVLW MOVWF BCF BSF BSF INTCON,GIE PMADRH ADDRH,W PMADRH ADDRL,W PMADRL LOW DATA_ADDR FSR0L HIGH DATA_ADDR FSR0H PMCON1,CFGS PMCON1,WREN PMCON1,LWLO ; ; ; ; ; ; ; ; ; ; ; ; ; Disable ints so required sequences will execute properly Bank 3 Load initial address MOVIW MOVWF MOVIW MOVWF FSR0++ PMDATL FSR0++ PMDATH ; Load first data byte into lower ; ; Load second data byte into upper ; MOVF XORLW ANDLW BTFSC GOTO PMADRL,W 0x0F 0x0F STATUS,Z START_WRITE ; Check if lower bits of address are '00000' ; Check if we're on the last of 16 addresses ; ; Exit if last of 16 words, ; MOVLW MOVWF MOVLW MOVWF BSF NOP 55h PMCON2 0AAh PMCON2 PMCON1,WR ; ; ; ; ; ; ; ; PMADRL,F LOOP ; Still loading latches Increment address ; Write next latches PMCON1,LWLO ; No more loading latches - Actually start Flash program ; memory write 55h PMCON2 0AAh PMCON2 PMCON1,WR ; ; ; ; ; ; ; ; ; ; ; ; ; Load initial data address Load initial data address Not configuration space Enable writes Only Load Write Latches Required Sequence LOOP NOP INCF GOTO Required Sequence START_WRITE BCF MOVLW MOVWF MOVLW MOVWF BSF NOP NOP BCF BSF PMCON1,WREN INTCON,GIE  2012-2016 Microchip Technology Inc. Start of required write sequence: Write 55h Write AAh Set WR bit to begin write NOP instructions are forced as processor loads program memory write latches Start of required write sequence: Write 55h Write AAh Set WR bit to begin write NOP instructions are forced as processor writes all the program memory write latches simultaneously to program memory. After NOPs, the processor stalls until the self-write process in complete after write processor continues with 3rd instruction Disable writes Enable interrupts DS40001674F-page 77 PIC12LF1552 10.3 Modifying Flash Program Memory When modifying existing data in a program memory row, and data within that row must be preserved, it must first be read and saved in a RAM image. Program memory is modified using the following steps: 1. 2. 3. 4. 5. 6. 7. Load the starting address of the row to be modified. Read the existing data from the row into a RAM image. Modify the RAM image to contain the new data to be written into program memory. Load the starting address of the row to be rewritten. Erase the program memory row. Load the write latches with data from the RAM image. Initiate a programming operation. FIGURE 10-7: FLASH PROGRAM MEMORY MODIFY FLOWCHART Start Modify Operation Read Operation (Figure10-2 x.x) Figure An image of the entire row read must be stored in RAM Modify Image The words to be modified are changed in the RAM image Erase Operation (Figure10-4 x.x) Figure Write Operation use RAM image (Figure10-5 x.x) Figure End Modify Operation DS40001674F-page 78  2012-2016 Microchip Technology Inc. PIC12LF1552 10.4 User ID, Device ID and Configuration Word Access Instead of accessing program memory, the User ID’s, Device ID/Revision ID and Configuration Words can be accessed when CFGS = 1 in the PMCON1 register. This is the region that would be pointed to by PC = 1, but not all addresses are accessible. Different access may exist for reads and writes. Refer to Table 10-2. When read access is initiated on an address outside the parameters listed in Table 10-2, the PMDATH:PMDATL register pair is cleared, reading back ‘0’s. TABLE 10-2: USER ID, DEVICE ID AND CONFIGURATION WORD ACCESS (CFGS = 1) Address Function 8000h-8003h 8006h 8007h-8008h Read Access Write Access Yes Yes Yes Yes No No User IDs Device ID/Revision ID Configuration Words 1 and 2 EXAMPLE 10-4: CONFIGURATION WORD AND DEVICE ID ACCESS * This code block will read 1 word of program memory at the memory address: * PROG_ADDR_LO (must be 00h-08h) data will be returned in the variables; * PROG_DATA_HI, PROG_DATA_LO BANKSEL MOVLW MOVWF CLRF PMADRL PROG_ADDR_LO PMADRL PMADRH ; Select correct Bank ; ; Store LSB of address ; Clear MSB of address BSF BCF BSF NOP NOP BSF PMCON1,CFGS INTCON,GIE PMCON1,RD INTCON,GIE ; ; ; ; ; ; Select Configuration Space Disable interrupts Initiate read Executed (See Figure 10-2) Ignored (See Figure 10-2) Restore interrupts MOVF MOVWF MOVF MOVWF PMDATL,W PROG_DATA_LO PMDATH,W PROG_DATA_HI ; ; ; ; Get LSB of word Store in user location Get MSB of word Store in user location  2012-2016 Microchip Technology Inc. DS40001674F-page 79 PIC12LF1552 10.5 Write Verify It is considered good programming practice to verify that program memory writes agree with the intended value. Since program memory is stored as a full page then the stored program memory contents are compared with the intended data stored in RAM after the last write is complete. FIGURE 10-8: FLASH PROGRAM MEMORY VERIFY FLOWCHART Start Verify Operation This routine assumes that the last row of data written was from an image saved in RAM. This image will be used to verify the data currently stored in Flash Program Memory. Read Operation (Figure x.x) Figure 10-2 PMDAT = RAM image ? Yes No No Fail Verify Operation Last Word ? Yes End Verify Operation DS40001674F-page 80  2012-2016 Microchip Technology Inc. PIC12LF1552 10.6 Register Definitions: Flash Program Memory Control REGISTER 10-1: R/W-x/u PMDATL: PROGRAM MEMORY DATA LOW BYTE REGISTER R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u PMDAT bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared PMDAT: Read/write value for Least Significant bits of program memory bit 7-0 REGISTER 10-2: PMDATH: PROGRAM MEMORY DATA HIGH BYTE REGISTER U-0 U-0 — — R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u PMDAT bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7-6 Unimplemented: Read as ‘0’ bit 5-0 PMDAT: Read/write value for Most Significant bits of program memory REGISTER 10-3: R/W-0/0 PMADRL: PROGRAM MEMORY ADDRESS LOW BYTE REGISTER R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 PMADR bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared PMADR: Specifies the Least Significant bits for program memory address bit 7-0 REGISTER 10-4: U-1 PMADRH: PROGRAM MEMORY ADDRESS HIGH BYTE REGISTER R/W-0/0 R/W-0/0 —(1) R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 PMADR bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7 Unimplemented: Read as ‘1’ bit 6-0 PMADR: Specifies the Most Significant bits for program memory address Note 1: Unimplemented bit, read as ‘1’.  2012-2016 Microchip Technology Inc. DS40001674F-page 81 PIC12LF1552 REGISTER 10-5: PMCON1: PROGRAM MEMORY CONTROL 1 REGISTER U-1 R/W-0/0 R/W-0/0 R/W/HC-0/0 R/W/HC-x/q(2) R/W-0/0 R/S/HC-0/0 R/S/HC-0/0 —(1) CFGS LWLO FREE WRERR WREN WR RD bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ S = Bit can only be set x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared HC = Bit is cleared by hardware bit 7 Unimplemented: Read as ‘1’ bit 6 CFGS: Configuration Select bit 1 = Access Configuration, User ID and Device ID Registers 0 = Access Flash program memory bit 5 LWLO: Load Write Latches Only bit(3) 1 = Only the addressed program memory write latch is loaded/updated on the next WR command 0 = The addressed program memory write latch is loaded/updated and a write of all program memory write latches will be initiated on the next WR command bit 4 FREE: Program Flash Erase Enable bit 1 = Performs an erase operation on the next WR command (hardware cleared upon completion) 0 = Performs an write operation on the next WR command bit 3 WRERR: Program/Erase Error Flag bit 1 = Condition indicates an improper program or erase sequence attempt or termination (bit is set automatically on any set attempt (write ‘1’) of the WR bit). 0 = The program or erase operation completed normally bit 2 WREN: Program/Erase Enable bit 1 = Allows program/erase cycles 0 = Inhibits programming/erasing of program Flash bit 1 WR: Write Control bit 1 = Initiates a program Flash program/erase operation. The operation is self-timed and the bit is cleared by hardware once operation is complete. The WR bit can only be set (not cleared) in software. 0 = Program/erase operation to the Flash is complete and inactive bit 0 RD: Read Control bit 1 = Initiates a program Flash read. Read takes one cycle. RD is cleared in hardware. The RD bit can only be set (not cleared) in software. 0 = Does not initiate a program Flash read Note 1: 2: 3: Unimplemented bit, read as ‘1’. The WRERR bit is automatically set by hardware when a program memory write or erase operation is started (WR = 1). The LWLO bit is ignored during a program memory erase operation (FREE = 1). DS40001674F-page 82  2012-2016 Microchip Technology Inc. PIC12LF1552 REGISTER 10-6: W-0/0 PMCON2: PROGRAM MEMORY CONTROL 2 REGISTER W-0/0 W-0/0 W-0/0 W-0/0 W-0/0 W-0/0 W-0/0 Program Memory Control Register 2 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ S = Bit can only be set x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7-0 Flash Memory Unlock Pattern bits To unlock writes, a 55h must be written first, followed by an AAh, before setting the WR bit of the PMCON1 register. The value written to this register is used to unlock the writes. There are specific timing requirements on these writes. TABLE 10-3: SUMMARY OF REGISTERS ASSOCIATED WITH FLASH PROGRAM MEMORY Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register on Page INTCON GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 57 CFGS LWLO FREE WRERR WREN WR RD 82 PMCON1 (1) — PMCON2 Program Memory Control Register 2 83 PMADRL PMADRL 81 (1) — PMADRH PMADRH PMDATL — PMDATH Legend: Note 1: CONFIG1 CONFIG2 Legend: — 81 PMDATH 81 — = unimplemented location, read as ‘0’. Shaded cells are not used by Flash program memory module. Unimplemented, read as ‘1’. TABLE 10-4: Name 81 PMDATL Bits SUMMARY OF CONFIGURATION WORD WITH FLASH PROGRAM MEMORY Bit -/7 Bit -/6 Bit 13/5 Bit 12/4 Bit 11/3 — CLKOUTEN Bit 10/2 13:8 — — — 7:0 CP MCLRE PWRTE 13:8 — — LVP — LPBOR BORV 7:0 — — — — — — WDTE Bit 9/1 Bit 8/0 BOREN — — FOSC STVREN — WRT Register on Page 32 33 — = unimplemented location, read as ‘0’. Shaded cells are not used by Flash program memory.  2012-2016 Microchip Technology Inc. DS40001674F-page 83 PIC12LF1552 11.0 I/O PORTS FIGURE 11-1: GENERIC I/O PORT OPERATION Each port has three standard registers for its operation. These registers are: • TRISx registers (data direction) • PORTx registers (reads the levels on the pins of the device) • LATx registers (output latch) Some ports may have one or more of the following additional registers. These registers are: Read LATx D Write LATx Write PORTx • ANSELx (analog select) • WPUx (weak pull-up) CK VDD Data Bus I/O pin Read PORTx PORT AVAILABILITY PER DEVICE EXAMPLE 11-1: Device PORTA To digital peripherals To analog peripherals PIC12LF1552 ● The Data Latch (LATx registers) is useful for read-modify-write operations on the value that the I/O pins are driving. A write operation to the LATx register has the same effect as a write to the corresponding PORTx register. A read of the LATx register reads of the values held in the I/O PORT latches, while a read of the PORTx register reads the actual I/O pin value. Ports that support analog inputs have an associated ANSELx register. When an ANSEL bit is set, the digital input buffer associated with that bit is disabled. Disabling the input buffer prevents analog signal levels on the pin between a logic high and low from causing excessive current in the logic input circuitry. A simplified model of a generic I/O port, without the interfaces to other peripherals, is shown in Figure 11-1. DS40001674F-page 84 Q Data Register In general, when a peripheral is enabled on a port pin, that pin cannot be used as a general purpose output. However, the pin can still be read. TABLE 11-1: TRISx ; ; ; ; ANSELx VSS INITIALIZING PORTA This code example illustrates initializing the PORTA register. The other ports are initialized in the same manner. BANKSEL CLRF BANKSEL CLRF BANKSEL CLRF BANKSEL MOVLW MOVWF PORTA PORTA LATA LATA ANSELA ANSELA TRISA B'00111000' TRISA ; ;Init PORTA ;Data Latch ; ; ;digital I/O ; ;Set RA as inputs ;and set RA as ;outputs  2012-2016 Microchip Technology Inc. PIC12LF1552 11.1 Alternate Pin Function The Alternate Pin Function Control (APFCON) register is used to steer specific peripheral input and output functions between different pins. The APFCON register is shown in Register 11-1. For this device family, the following functions can be moved between different pins. • SDO • SS • SDA/SDI These bits have no effect on the values of any TRIS register. PORT and TRIS overrides will be routed to the correct pin. The unselected pin will be unaffected. 11.2 Register Definitions: Alternate Pin Function Control REGISTER 11-1: APFCON: ALTERNATE PIN FUNCTION CONTROL REGISTER R/W-0/0 R/W-0/0 U-0 U-0 R/W-0/0 U-0 R/W-0/0 R/W-0/0 — SDOSEL SSSEL SDSEL — — — — bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7 Unimplemented: Read as ‘0’ bit 6 SDOSEL: Pin Selection bit 1 = SDO function is on RA4 0 = SDO function is on RA0 bit 5 SSSEL: Pin Selection bit 1 = SS function is on RA0 0 = SS function is on RA3 bit 4 SDSEL: Pin Selection bit 1 = SDA/SDI function is on RA3(1) 0 = SDA/SDI function is on RA2 bit 3-0 Unimplemented: Read as ‘0’ Note 1: The MSSP module has the ability to output low on RA3 when it is used as SDA/SDI.  2012-2016 Microchip Technology Inc. DS40001674F-page 85 PIC12LF1552 11.3 11.3.1 PORTA Registers DATA REGISTER PORTA is a 6-bit wide, bidirectional port. The corresponding data direction register is TRISA (Register 11-3). Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., disable the output driver). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., enables output driver and puts the contents of the output latch on the selected pin). The exception is RA3, which is input-only and its TRIS bit will always read as ‘1’. Example 11-1 shows how to initialize an I/O port. Reading the PORTA register (Register 11-2) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATA). 11.3.2 11.3.4 Each PORTA pin is multiplexed with other functions. The pins, their combined functions and their output priorities are shown in Table 11-2. When multiple outputs are enabled, the actual pin control goes to the peripheral with the highest priority. Analog input functions, such as ADC inputs, are not shown in the priority lists. These inputs are active when the I/O pin is set for Analog mode using the ANSELx registers. Digital output functions may control the pin when it is in Analog mode with the priority shown in Table 11-2. TABLE 11-2: ANSELA REGISTER The ANSELA register (Register 11-5) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELA bit high will cause all digital reads on the pin to be read as ‘0’ and allow analog functions on the pin to operate correctly. Note: The ANSELA bits default to the Analog mode after Reset. To use any pins as digital general purpose or peripheral inputs, the corresponding ANSEL bits must be initialized to ‘0’ by user software. DS40001674F-page 86 Function Priority(1) RA0 ICSPDAT SDO(2) SS(3) RA0 RA1 SCL SCK RA1 RA2 ADOUT SDA(2) SDI(2) RA2 RA3 SDA(3) SDI(3) SS(2) RA3 RA4 CLKOUT SDO(3) ADGRDA RA4 RA5 ADGRDB RA5 DIRECTION CONTROL The state of the ANSELA bits has no effect on digital output functions. A pin with TRIS clear and ANSEL set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port. PORTA OUTPUT PRIORITY Pin Name The TRISA register (Register 11-3) controls the PORTA pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISA register are maintained set when using them as analog inputs. I/O pins configured as analog input always read ‘0’. 11.3.3 PORTA FUNCTIONS AND OUTPUT PRIORITIES Note 1: 2: 3: Priority listed from highest to lowest. Default pin (see APFCON register). Alternate pin (see APFCON register).  2012-2016 Microchip Technology Inc. PIC12LF1552 11.4 Register Definitions: PORTA REGISTER 11-2: PORTA: PORTA REGISTER U-0 U-0 R/W-x/x R/W-x/x R-x/x R/W-x/x R/W-x/x R/W-x/x — — RA5 RA4 RA3 RA2 RA1 RA0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7-6 Unimplemented: Read as ‘0’ bit 5-0 RA: PORTA I/O Value bits(1) 1 = Port pin is > VIH 0 = Port pin is < VIL Note 1: Writes to PORTA are actually written to corresponding LATA register. Reads from PORTA register is return of actual I/O pin values. REGISTER 11-3: TRISA: PORTA TRI-STATE REGISTER U-0 U-0 R/W-1/1 R/W-1/1 U-1 R/W-1/1 R/W-1/1 R/W-1/1 — — TRISA5 TRISA4 —(1) TRISA2 TRISA1 TRISA0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7-6 Unimplemented: Read as ‘0’ bit 5-4 TRISA: PORTA Tri-State Control bit 1 = PORTA pin configured as an input (tri-stated) 0 = PORTA pin configured as an output bit 3 Unimplemented: Read as ‘1’ bit 2-0 TRISA: PORTA Tri-State Control bit 1 = PORTA pin configured as an input (tri-stated) 0 = PORTA pin configured as an output Note 1: Unimplemented, read as ‘1’.  2012-2016 Microchip Technology Inc. DS40001674F-page 87 PIC12LF1552 REGISTER 11-4: LATA: PORTA DATA LATCH REGISTER U-0 U-0 R/W-x/u R/W-x/u U-0 R/W-x/u R/W-x/u R/W-x/u — — LATA5 LATA4 — LATA2 LATA1 LATA0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7-6 Unimplemented: Read as ‘0’ bit 5-4 LATA: RA Output Latch Value bits(1) bit 3 Unimplemented: Read as ‘0’ bit 2-0 LATA: RA Output Latch Value bits(1) Note 1: Writes to PORTA are actually written to corresponding LATA register. Reads from PORTA register is return of actual I/O pin values. REGISTER 11-5: ANSELA: PORTA ANALOG SELECT REGISTER U-0 U-0 R/W-1/1 R/W-1/1 U-0 R/W-1/1 R/W-1/1 R/W-1/1 — — ANSA5 ANSA4 — ANSA2 ANSA1 ANSA0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7-6 Unimplemented: Read as ‘0’ bit 5-4 ANSA: Analog Select between Analog or Digital Function on pins RA, respectively 1 = Analog input. Pin is assigned as analog input(1). Digital input buffer disabled. 0 = Digital I/O. Pin is assigned to port or digital special function. bit 3 Unimplemented: Read as ‘0’ bit 2-0 ANSA: Analog Select between Analog or Digital Function on pins RA, respectively 1 = Analog input. Pin is assigned as analog input(1). Digital input buffer disabled. 0 = Digital I/O. Pin is assigned to port or digital special function. Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin. DS40001674F-page 88  2012-2016 Microchip Technology Inc. PIC12LF1552 WPUA: WEAK PULL-UP PORTA REGISTER(1,2) REGISTER 11-6: U-0 U-0 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 — — WPUA5 WPUA4 WPUA3 WPUA2 WPUA1 WPUA0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7-6 Unimplemented: Read as ‘0’ bit 5-0 WPUA: Weak Pull-up Register bits(3) 1 = Pull-up enabled 0 = Pull-up disabled Note 1: 2: 3: Global WPUEN bit of the OPTION_REG register must be cleared for individual pull-ups to be enabled. The weak pull-up device is automatically disabled if the pin is in configured as an output. For the WPUA3 bit, when MCLRE = 1, weak pull-up is internally enabled, but not reported here. TABLE 11-3: Name SUMMARY OF REGISTERS ASSOCIATED WITH PORTA Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register on Page ANSELA — — ANSA5 ANSA4 — ANSA2 ANSA1 ANSA0 88 APFCON — SDOSEL SSSEL SDSEL — — — — 85 LATA — — LATA5 LATA4 — LATA2 LATA1 LATA0 WPUEN INTEDG TMR0CS TMR0SE PSA PORTA — — RA5 RA4 RA3 RA2 RA1 RA0 87 TRISA — — TRISA5 TRISA4 —(1) TRISA2 TRISA1 TRISA0 87 — — WPUA5 WPUA4 WPUA3 WPUA2 WPUA1 WPUA0 89 OPTION_REG WPUA Legend: Note 1: CONFIG1 Legend: 88 132 x = unknown, u = unchanged, – = unimplemented locations read as ‘0’. Shaded cells are not used by PORTA. Unimplemented, read as ‘1’. TABLE 11-4: Name PS Bits SUMMARY OF CONFIGURATION WORD WITH PORTA Bit -/7 Bit -/6 Bit 13/5 Bit 12/4 Bit 11/3 — CLKOUTEN 13:8 — — — 7:0 CP MCLRE PWRTE Bit 10/2 WDTE Bit 9/1 BOREN — Bit 8/0 — FOSC Register on Page 32 — = unimplemented location, read as ‘0’. Shaded cells are not used by PORTA.  2012-2016 Microchip Technology Inc. DS40001674F-page 89 PIC12LF1552 12.0 INTERRUPT-ON-CHANGE The PORTA pins can be configured to operate as Interrupt-On-Change (IOC) pins. An interrupt can be generated by detecting a signal that has either a rising edge or a falling edge. Any individual port pin, or combination of port pins, can be configured to generate an interrupt. The interrupt-on-change module has the following features: • • • • Interrupt-on-Change enable (Master Switch) Individual pin configuration Rising and falling edge detection Individual pin interrupt flags Figure 12-1 is a block diagram of the IOC module. 12.1 Enabling the Module 12.3 Interrupt Flags The IOCAFx bits located in the IOCAF register, respectively, are status flags that correspond to the interrupt-on-change pins of the associated port. If an expected edge is detected on an appropriately enabled pin, then the status flag for that pin will be set, and an interrupt will be generated if the IOCIE bit is set. The IOCIF bit of the INTCON register reflects the status of all IOCAFx bits. 12.4 Clearing Interrupt Flags The individual status flags, (IOCAFx bits), can be cleared by resetting them to zero. If another edge is detected during this clearing operation, the associated status flag will be set at the end of the sequence, regardless of the value actually being written. To allow individual port pins to generate an interrupt, the IOCIE bit of the INTCON register must be set. If the IOCIE bit is disabled, the edge detection on the pin will still occur, but an interrupt will not be generated. In order to ensure that no detected edge is lost while clearing flags, only AND operations masking out known changed bits should be performed. The following sequence is an example of what should be performed. 12.2 Individual Pin Configuration EXAMPLE 12-1: For each port pin, a rising edge detector and a falling edge detector are present. To enable a pin to detect a rising edge, the associated bit of the IOCxP register is set. To enable a pin to detect a falling edge, the associated bit of the IOCxN register is set. MOVLW XORWF ANDWF A pin can be configured to detect rising and falling edges simultaneously by setting both associated bits of the IOCxP and IOCxN registers, respectively. 12.5 CLEARING INTERRUPT FLAGS (PORTA EXAMPLE) 0xff IOCAF, W IOCAF, F Operation in Sleep The interrupt-on-change interrupt sequence will wake the device from Sleep mode, if the IOCIE bit is set. If an edge is detected while in Sleep mode, the IOCxF register will be updated prior to the first instruction executed out of Sleep. DS40001674F-page 90  2012-2016 Microchip Technology Inc. PIC12LF1552 FIGURE 12-1: INTERRUPT-ON-CHANGE BLOCK DIAGRAM (PORTA EXAMPLE) IOCANx D Q4Q1 Q CK Edge Detect R RAx IOCAPx D Data Bus = 0 or 1 Q Write IOCAFx CK D S Q To Data Bus IOCAFx CK IOCIE R Q2 From all other IOCAFx individual pin detectors Q1 Q2 Q3 Q4 Q4Q1 Q1 Q1 Q2 Q2 Q3 Q4 Q4Q1  2012-2016 Microchip Technology Inc. IOC interrupt to CPU core Q3 Q4 Q4 Q4Q1 Q4Q1 DS40001674F-page 91 PIC12LF1552 12.6 Register Definitions: Interrupt-on-Change Control REGISTER 12-1: IOCAP: INTERRUPT-ON-CHANGE PORTA POSITIVE EDGE REGISTER U-0 U-0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 — — IOCAP5 IOCAP4 IOCAP3 IOCAP2 IOCAP1 IOCAP0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7-6 Unimplemented: Read as ‘0’ bit 5-0 IOCAP: Interrupt-on-Change PORTA Positive Edge Enable bits 1 = Interrupt-on-Change enabled on the pin for a positive going edge. IOCAFx bit and IOCIF flag will be set upon detecting an edge. 0 = Interrupt-on-Change disabled for the associated pin. REGISTER 12-2: IOCAN: INTERRUPT-ON-CHANGE PORTA NEGATIVE EDGE REGISTER U-0 U-0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 — — IOCAN5 IOCAN4 IOCAN3 IOCAN2 IOCAN1 IOCAN0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7-6 Unimplemented: Read as ‘0’ bit 5-0 IOCAN: Interrupt-on-Change PORTA Negative Edge Enable bits 1 = Interrupt-on-Change enabled on the pin for a negative going edge. IOCAFx bit and IOCIF flag will be set upon detecting an edge. 0 = Interrupt-on-Change disabled for the associated pin. REGISTER 12-3: IOCAF: INTERRUPT-ON-CHANGE PORTA FLAG REGISTER U-0 U-0 R/W/HS-0/0 R/W/HS-0/0 R/W/HS-0/0 R/W/HS-0/0 R/W/HS-0/0 R/W/HS-0/0 — — IOCAF5 IOCAF4 IOCAF3 IOCAF2 IOCAF1 IOCAF0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared HS - Bit is set in hardware bit 7-6 Unimplemented: Read as ‘0’ bit 5-0 IOCAF: Interrupt-on-Change PORTA Flag bits 1 = An enabled change was detected on the associated pin. Set when IOCAPx = 1 and a rising edge was detected on RAx, or when IOCANx = 1 and a falling edge was detected on RAx. 0 = No change was detected, or the user cleared the detected change DS40001674F-page 92  2012-2016 Microchip Technology Inc. PIC12LF1552 TABLE 12-1: SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPT-ON-CHANGE Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register on Page ANSELA — — ANSA5 ANSA4 — ANSA2 ANSA1 ANSA0 88 INTCON Name GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 57 IOCAF — — IOCAF5 IOCAF4 IOCAF3 IOCAF2 IOCAF1 IOCAF0 92 IOCAN — — IOCAN5 IOCAN4 IOCAN3 IOCAN2 IOCAN1 IOCAN0 92 IOCAP — — IOCAP5 IOCAP4 IOCAP3 IOCAP2 IOCAP1 IOCAP0 92 TRISA4 —(1) TRISA2 TRISA1 TRISA0 87 TRISA Legend: Note 1: — — TRISA5 — = unimplemented location, read as ‘0’. Shaded cells are not used by interrupt-on-change. Unimplemented, read as ‘1’.  2012-2016 Microchip Technology Inc. DS40001674F-page 93 PIC12LF1552 13.0 FIXED VOLTAGE REFERENCE (FVR) 13.1 Independent Gain Amplifier The output of the FVR supplied to the ADC is routed through a programmable gain amplifier. Each amplifier can be programmed for a gain of 1x or 2x, to produce the two possible voltage levels. The Fixed Voltage Reference, or FVR, is a stable voltage reference, independent of VDD, with 1.024V and 2.048V selectable output levels. The output of the FVR can be configured as the FVR input channel on the ADC. The ADFVR bits of the FVRCON register are used to enable and configure the gain amplifier settings for the reference supplied to the ADC module. Reference Section 16.0 “Hardware Capacitive Voltage Divider (CVD) Module” for additional information. The FVR can be enabled by setting the FVREN bit of the FVRCON register. 13.2 FVR Stabilization Period When the Fixed Voltage Reference module is enabled, it requires time for the reference and amplifier circuits to stabilize. Once the circuits stabilize and are ready for use, the FVRRDY bit of the FVRCON register will be set. See Section 21.0 “Electrical Specifications” for the minimum delay requirement. FIGURE 13-1: VOLTAGE REFERENCE BLOCK DIAGRAM ADFVR 2 x1 x2 FVR BUFFER1 (To ADC Module) 1.024V Fixed Reference + FVREN FVRRDY - Any peripheral requiring the Fixed Reference (See Table 13-1) TABLE 13-1: PERIPHERALS REQUIRING THE FIXED VOLTAGE REFERENCE (FVR) Peripheral Conditions Description HFINTOSC FOSC = 00 and IRCF = 000x BOREN = 11 BOR always enabled. BOR BOREN = 10 and BORFS = 1 BOR disabled in Sleep mode, BOR Fast Start enabled. BOREN = 01 and BORFS = 1 BOR under software control, BOR Fast Start enabled. DS40001674F-page 94 INTOSC is active and device is not in Sleep.  2012-2016 Microchip Technology Inc. PIC12LF1552 13.3 Register Definitions: FVR Control REGISTER 13-1: FVRCON: FIXED VOLTAGE REFERENCE CONTROL REGISTER R/W-0/0 R-q/q R/W-0/0 R/W-0/0 U-0 U-0 FVREN FVRRDY(1) TSEN TSRNG — — R/W-0/0 R/W-0/0 ADFVR bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared q = Value depends on condition bit 7 FVREN: Fixed Voltage Reference Enable bit 1 = Fixed Voltage Reference is enabled 0 = Fixed Voltage Reference is disabled bit 6 FVRRDY: Fixed Voltage Reference Ready Flag bit(1) 1 = Fixed Voltage Reference output is ready for use 0 = Fixed Voltage Reference output is not ready or not enabled bit 5 TSEN: Temperature Indicator Enable bit(3) 1 = Temperature Indicator is enabled 0 = Temperature Indicator is disabled bit 4 TSRNG: Temperature Indicator Range Selection bit(3) 1 = VOUT = VDD - 4VT (High Range) 0 = VOUT = VDD - 2VT (Low Range) bit 3-2 Unimplemented: Read as ‘0’ bit 1-0 ADFVR: ADC Fixed Voltage Reference Selection bit 11 = ADC Fixed Voltage Reference Peripheral output is off 10 = ADC Fixed Voltage Reference Peripheral output is 2x (2.048V)(2) 01 = ADC Fixed Voltage Reference Peripheral output is 1x (1.024V) 00 = ADC Fixed Voltage Reference Peripheral output is off Note 1: 2: 3: FVRRDY is always ‘1’ for the PIC12LF1552 devices. Fixed Voltage Reference output cannot exceed VDD. See Section 14.0 “Temperature Indicator Module” for additional information. TABLE 13-2: Name FVRCON Legend: SUMMARY OF REGISTERS ASSOCIATED WITH THE FIXED VOLTAGE REFERENCE Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 FVREN FVRRDY TSEN TSRNG — — Bit 1 Bit 0 ADFVR Register on page 95 Shaded cells are unused by the Fixed Voltage Reference module.  2012-2016 Microchip Technology Inc. DS40001674F-page 95 PIC12LF1552 14.0 TEMPERATURE INDICATOR MODULE FIGURE 14-1: This family of devices is equipped with a temperature circuit designed to measure the operating temperature of the silicon die. The circuit’s range of operating temperature falls between -40°C and +85°C. The output is a voltage that is proportional to the device temperature. The output of the temperature indicator is internally connected to the device ADC. TEMPERATURE CIRCUIT DIAGRAM VDD TSEN TSRNG The circuit may be used as a temperature threshold detector or a more accurate temperature indicator, depending on the level of calibration performed. A onepoint calibration allows the circuit to indicate a temperature closely surrounding that point. A two-point calibration allows the circuit to sense the entire range of temperature more accurately. Reference Application Note AN1333, “Use and Calibration of the Internal Temperature Indicator” (DS01333) for more details regarding the calibration process. 14.1 Circuit Operation Figure 14-1 shows a simplified block diagram of the temperature circuit. The proportional voltage output is achieved by measuring the forward voltage drop across multiple silicon junctions. Equation 14-1 describes the output characteristics of the temperature indicator. EQUATION 14-1: VOUT RANGES VOUT 14.2 To ADC Minimum Operating VDD When the temperature circuit is operated in low range, the device may be operated at any operating voltage that is within specifications. When the temperature circuit is operated in high range, the device operating voltage, VDD, must be high enough to ensure that the temperature circuit is correctly biased. Table 14-1 shows the recommended minimum VDD vs. range setting. High Range: VOUT = VDD - 4VT TABLE 14-1: Low Range: VOUT = VDD - 2VT The temperature sense circuit is integrated with the Fixed Voltage Reference (FVR) module. See Section 13.0 “Fixed Voltage Reference (FVR)” for more information. The circuit is enabled by setting the TSEN bit of the FVRCON register. When disabled, the circuit draws no current. The circuit operates in either high or low range. The high range, selected by setting the TSRNG bit of the FVRCON register, provides a wider output voltage. This provides more resolution over the temperature range, but may be less consistent from part to part. This range requires a higher bias voltage to operate and thus, a higher VDD is needed. The low range is selected by clearing the TSRNG bit of the FVRCON register. The low range generates a lower voltage drop and thus, a lower bias voltage is needed to operate the circuit. The low range is provided for low voltage operation. DS40001674F-page 96 RECOMMENDED VDD VS. RANGE Min. VDD, TSRNG = 1 Min. VDD, TSRNG = 0 3.6V 1.8V 14.3 Temperature Output The output of the circuit is measured using the internal Analog-to-Digital Converter. A channel is reserved for the temperature circuit output. Refer to Section 16.0 “Hardware Capacitive Voltage Divider (CVD) Module” for detailed information. 14.4 ADC Acquisition Time To ensure accurate temperature measurements, the user must wait at least 200 s after the ADC input multiplexer is connected to the temperature indicator output before the conversion is performed. In addition, the user must wait 200 s between sequential conversions of the temperature indicator output.  2012-2016 Microchip Technology Inc. PIC12LF1552 TABLE 14-2: Name FVRCON Legend: SUMMARY OF REGISTERS ASSOCIATED WITH THE TEMPERATURE INDICATOR Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 FVREN FVRRDY TSEN TSRNG — Bit 2 Bit 1 Bit 0 ADFVR Register on page 118 Shaded cells are unused by the temperature indicator module.  2012-2016 Microchip Technology Inc. DS40001674F-page 97 PIC12LF1552 15.0 ANALOG-TO-DIGITAL CONVERTER (ADC) MODULE The Analog-to-Digital Converter (ADC) allows conversion of an analog input signal to a 10-bit binary representation of that signal. This device uses analog inputs, which are multiplexed into a single sample and hold circuit. The output of the sample and hold is connected to the input of the converter. The converter generates a 10-bit binary result via successive approximation and stores the conversion result into the ADC result registers (ADRESH:ADRESL register pair). Figure 15-1 shows the block diagram of the ADC. The ADC voltage reference is software selectable to be either internally generated or externally supplied. The ADC can generate an interrupt upon completion of a conversion. This interrupt can be used to wake-up the device from Sleep. FIGURE 15-1: ADC BLOCK DIAGRAM VDD ADPREF = 0x FVR ADPREF = 11 VREF+ AN0 00000 AN1 00001 AN2 00010 VREF+/AN3 00011 AN4 00100 Reserved ADPREF = 10 ADC 00101 10 GO/DONE Reserved 11001 VREFH (ADC positive reference) 11010 Reserved 11011 Reserved 11100 Temp Indicator 11101 Reserved 11110 FVR Buffer1 11111 ADFM 0 = Left Justify 1 = Right Justify ADON(1) 16 VSS ADRESxH(3) ADRESxL(4) CHS(2) Note 1: When ADON = 0, all multiplexer inputs are disconnected. 2: See AADCON0 register (Register 16-1) for detailed analog channel selection per device. 3: ADRES0H and AADRES0H are the same register in two locations, Bank 1 and Bank 14. See Table 3-3. 4: ADRES0L and AADRES0L are the same register in two locations, Bank 1 and Bank 14. See Table 3-3. DS40001674F-page 98  2012-2016 Microchip Technology Inc. PIC12LF1552 15.1 ADC Configuration When configuring and using the ADC, the following functions must be considered: • • • • • • Port configuration Channel selection ADC voltage reference selection ADC conversion clock source Interrupt control Result formatting 15.1.1 PORT CONFIGURATION The ADC can be used to convert both analog and digital signals. When converting analog signals, the I/O pin should be configured for analog by setting the associated TRIS and ANSEL bits. Refer to Section 11.0 “I/O Ports” for more information. Note: 15.1.2 Analog voltages on any pin that is defined as a digital input may cause the input buffer to conduct excess current. CHANNEL SELECTION There are up to eight channel selections available: • • • • AN pins VREF+ (ADC positive reference) Temperature Indicator FVR (Fixed Voltage Reference) Output 15.1.4 CONVERSION CLOCK The source of the conversion clock is software selectable via the ADCS bits of the ADCON1 register. There are seven possible clock options: • • • • • • • FOSC/2 FOSC/4 FOSC/8 FOSC/16 FOSC/32 FOSC/64 FRC (dedicated internal oscillator) The time to complete one bit conversion is defined as TAD. One full 10-bit conversion requires 11.5 TAD periods as shown in Figure 15-2. For correct conversion, the appropriate TAD specification must be met. Refer to the ADC conversion Section 21.0 “Electrical requirements in Specifications” for more information. Table 15-1 gives examples of appropriate ADC clock selections. Note: Unless using the FRC, any changes in the system clock frequency will change the ADC clock frequency, which may adversely affect the ADC result. Refer to Section 13.0 “Fixed Voltage Reference (FVR)” and Section 14.0 “Temperature Indicator Module” for more information on these channel selections. The CHS bits of the ADCON0 register determine which channel is connected to the sample and hold circuit. When changing channels, a delay is required before starting the next conversion. Refer to Section 16.1 “Hardware CVD Operation” for more information. 15.1.3 ADC VOLTAGE REFERENCE The ADPREF bits of the ADCON1 register provides control of the positive voltage reference. The positive voltage reference can be: • VREF+ pin • VDD • FVR (Fixed Voltage Reference) See Section 13.0 “Fixed Voltage Reference (FVR)” for more details on the fixed voltage reference.  2012-2016 Microchip Technology Inc. DS40001674F-page 99 PIC12LF1552 TABLE 15-1: ADC CLOCK PERIOD (TAD) VS. DEVICE OPERATING FREQUENCIES ADC Clock Period (TAD) Device Frequency (FOSC) ADC Clock Source ADCS 20 MHz 16 MHz 8 MHz 4 MHz 1 MHz Fosc/2 000 100 ns(2) 125 ns(2) 250 ns(2) 500 ns(2) 2.0 s 100 200 ns (2) 250 ns (2) (2) 1.0 s 4.0 s 400 ns (2) 0.5 s 1.0 s 2.0 s 8.0 s(3) Fosc/4 (2) 500 ns Fosc/8 001 Fosc/16 101 800 ns 1.0 s 2.0 s 4.0 s 16.0 s(3) Fosc/32 010 1.6 s 2.0 s 4.0 s 8.0 s(3) 32.0 s(3) Fosc/64 110 3.2 s 4.0 s 16.0 s 64.0 s(3) FRC x11 1.0-6.0 s(1,4) 1.0-6.0 s(1,4) Legend: Note 1: 2: 3: 4: 8.0 s (3) (3) 1.0-6.0 s(1,4) 1.0-6.0 s(1,4) 1.0-6.0 s(1,4) Shaded cells are outside of recommended range. The FRC source has a typical TAD time of 1.6 s for VDD. These values violate the minimum required TAD time. For faster conversion times, the selection of another clock source is recommended. The ADC clock period (TAD) and total ADC conversion time can be minimized when the ADC clock is derived from the system clock FOSC. However, the FRC clock source must be used when conversions are to be performed with the device in Sleep mode. ANALOG-TO-DIGITAL CONVERSION TAD CYCLES FIGURE 15-2: TCY - TAD TAD1 TAD2 TAD3 TAD4 TAD5 TAD6 TAD7 TAD8 TAD9 TAD10 TAD11 b4 b1 b0 b6 b7 b2 b8 b3 b9 b5 Conversion starts Holding capacitor is disconnected from analog input (typically 100 ns) Set GO bit On the following cycle: ADRESH:ADRESL is loaded, GO bit is cleared, ADIF bit is set, holding capacitor is connected to analog input. DS40001674F-page 100  2012-2016 Microchip Technology Inc. PIC12LF1552 15.1.5 INTERRUPTS 15.1.6 The ADC module allows for the ability to generate an interrupt upon completion of an Analog-to-Digital conversion. The ADC Interrupt Flag is the ADIF bit in the PIR1 register. The ADC Interrupt Enable is the ADIE bit in the PIE1 register. The ADIF bit must be cleared in software. RESULT FORMATTING The 10-bit ADC conversion result can be supplied in two formats, left justified or right justified. The ADFM bit of the ADCON1 register controls the output format. Figure 15-3 shows the two output formats. Note 1: The ADIF bit is set at the completion of every conversion, regardless of whether or not the ADC interrupt is enabled. 2: The ADC operates during Sleep only when the FRC oscillator is selected. This interrupt can be generated while the device is operating or while in Sleep. If the device is in Sleep, the interrupt will wake-up the device. Upon waking from Sleep, the next instruction following the SLEEP instruction is always executed. If the user is attempting to wake-up from Sleep and resume in-line code execution, the GIE and PEIE bits of the INTCON register must be disabled. If the GIE and PEIE bits of the INTCON register are enabled, execution will switch to the Interrupt Service Routine. FIGURE 15-3: 10-BIT ADC CONVERSION RESULT FORMAT ADRESH (ADFM = 0) ADRESL MSB LSB bit 7 bit 0 bit 7 Unimplemented: Read as ‘0’ 10-bit ADC Result (ADFM = 1) bit 0 MSB bit 7 Unimplemented: Read as ‘0’  2012-2016 Microchip Technology Inc. LSB bit 0 bit 7 bit 0 10-bit ADC Result DS40001674F-page 101 PIC12LF1552 15.2 15.2.1 ADC Operation STARTING A CONVERSION To enable the ADC module, the ADON bit of the ADCON0 register must be set to a ‘1’. Setting the GO/ DONE bit of the ADCON0 register to a ‘1’ will start the Analog-to-Digital conversion. Note: 15.2.2 The GO/DONE bit should not be set in the same instruction that turns on the ADC. Refer to Section 15.2.6 “ADC Conversion Procedure”. COMPLETION OF A CONVERSION When the conversion is complete, the ADC module will: • Clear the GO/DONE bit • Set the ADIF Interrupt Flag bit • Update the ADRESH and ADRESL registers with new conversion result 15.2.3 TERMINATING A CONVERSION If a conversion must be terminated before completion, the GO/DONE bit can be cleared in software. The ADRESH and ADRESL registers will be updated with the partially complete Analog-to-Digital conversion sample. Incomplete bits will match the last bit converted. Note: A device Reset forces all registers to their Reset state. Thus, the ADC module is turned off and any pending conversion is terminated. 15.2.4 ADC OPERATION DURING SLEEP The ADC module can operate during Sleep. This requires the ADC clock source to be set to the FRC option. When the FRC clock source is selected, the ADC waits one additional instruction before starting the conversion. This allows the SLEEP instruction to be executed, which can reduce system noise during the conversion. If the ADC interrupt is enabled, the device will wake-up from Sleep when the conversion completes. If the ADC interrupt is disabled, the ADC module is turned off after the conversion completes, although the ADON bit remains set. When the ADC clock source is something other than FRC, a SLEEP instruction causes the present conversion to be aborted and the ADC module is turned off, although the ADON bit remains set. 15.2.5 SPECIAL EVENT TRIGGER The Special Event Trigger allows periodic ADC measurements without software intervention, using the TRIGSEL bits of the AADCON2 register. When this trigger occurs, the GO/DONE bit is set by hardware from the Timer0 Overflow. TABLE 15-2: Device PIC12LF1552 SPECIAL EVENT TRIGGER Source TMR0 Using the Special Event Trigger does not assure proper ADC timing. It is the user’s responsibility to ensure that the ADC timing requirements are met. Refer to Section 17.0 “Timer0 Module” for more information. DS40001674F-page 102  2012-2016 Microchip Technology Inc. PIC12LF1552 15.2.6 ADC CONVERSION PROCEDURE This is an example procedure for using the ADC to perform an Analog-to-Digital conversion: 1. 2. 3. 4. 5. 6. 7. 8. Configure Port: • Disable pin output driver (Refer to the TRIS register) • Configure pin as analog (Refer to the ANSEL register) • Disable weak pull-ups either globally (Refer to the OPTION_REG register) or individually (Refer to the appropriate WPUx register). Configure the ADC module: • Select ADC conversion clock • Configure voltage reference • Select ADC input channel • Turn on ADC module Configure ADC interrupt (optional): • Clear ADC interrupt flag • Enable ADC interrupt • Enable peripheral interrupt • Enable global interrupt(1) Wait the required acquisition time(2). Start conversion by setting the GO/DONE bit. Wait for ADC conversion to complete by one of the following: • Polling the GO/DONE bit • Waiting for the ADC interrupt (interrupts enabled) Read ADC Result in ADRES0H and ADRES0L. Clear the ADC interrupt flag (required if interrupt is enabled). EXAMPLE 15-1: ADC CONVERSION ;This code block configures the ADC ;for polling, Vdd and Vss references, Frc ;clock and AN0 input. ; ;Conversion start & polling for completion ; are included. ; BANKSEL ADCON1 ; MOVLW B’11110000’ ;Right justify, Frc ;clock MOVWF ADCON1 ;Vdd and Vss Vref BANKSEL TRISA ; BSF TRISA,0 ;Set RA0 to input BANKSEL ANSEL ; BSF ANSEL,0 ;Set RA0 to analog BANKSEL WPUA BCF WPUA,0 ;Disable RA0 weak pull-up BANKSEL ADCON0 ; MOVLW B’00000001’ ;Select channel AN0 MOVWF ADCON0 ;Turn ADC On CALL SampleTime ;Acquisiton delay BSF ADCON0,ADGO ;Start conversion BTFSC ADCON0,ADGO ;Is conversion done? GOTO $-1 ;No, test again BANKSEL ADRES0H ; MOVF ADRES0H,W ;Read upper 2 bits MOVWF RESULTHI ;store in GPR space Note 1: The global interrupt can be disabled if the user is attempting to wake-up from Sleep and resume in-line code execution. 2: Refer to Section 15.4 “ADC Acquisition Requirements”.  2012-2016 Microchip Technology Inc. DS40001674F-page 103 PIC12LF1552 15.3 ADC Register Definitions The following registers are used to control the operation of the ADC. REGISTER 15-1: U-0 ADCON0: ADC CONTROL REGISTER 0 R/W-0/0 R/W-0/0 — R/W-0/0 R/W-0/0 R/W-0/0 CHS R/W-0/0 R/W-0/0 GO/DONE ADON bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7 Unimplemented: Read as ‘0’ bit 6-2 CHS: Analog Channel Select bits 11111 = FVR (Fixed Voltage Reference) Buffer 1 Output(1) 11110 = Reserved. No channel connected. 11101 = Temperature Indicator(2). 11100 = Reserved. No channel connected. 11011 = Reserved. No channel connected. 11010 = VREFH (ADC Positive Reference) 11001 = Reserved. No channel connected. • • • 00101 = Reserved. No channel connected. 00100 = AN4 00011 = AN3 00010 = AN2 00001 = AN1 00000 = AN0 bit 1 GO/DONE: ADC Conversion Status bit 1 = ADC conversion cycle in progress. Setting this bit starts an ADC conversion cycle. This bit is automatically cleared by hardware when the ADC conversion has completed. 0 = ADC conversion completed/not in progress bit 0 ADON: ADC Enable bit 1 = ADC is enabled 0 = ADC is disabled and consumes no operating current Note 1: 2: See Section 13.0 “Fixed Voltage Reference (FVR)” for more information. See Section 14.0 “Temperature Indicator Module” for more information. DS40001674F-page 104  2012-2016 Microchip Technology Inc. PIC12LF1552 REGISTER 15-2: R/W-0/0 ADCON1: ADC CONTROL REGISTER 1 R/W-0/0 ADFM R/W-0/0 R/W-0/0 ADCS U-0 U-0 — — R/W-0/0 R/W-0/0 ADPREF bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7 ADFM: ADC Result Format Select bit 1 = Right justified. Six Most Significant bits of ADRESH are set to ‘0’ when the conversion result is loaded. 0 = Left justified. Six Least Significant bits of ADRESL are set to ‘0’ when the conversion result is loaded. bit 6-4 ADCS: ADC Conversion Clock Select bits 000 = FOSC/2 001 = FOSC/8 010 = FOSC/32 011 = FRC (clock supplied from a dedicated RC oscillator) 100 = FOSC/4 101 = FOSC/16 110 = FOSC/64 111 = FRC (clock supplied from a dedicated RC oscillator) bit 3-2 Unimplemented: Read as ‘0’ bit 1-0 ADPREF: ADC Positive Voltage Reference Configuration bits 00 = VREF is connected to VDD 01 = Reserved 10 = VREF is connected to external VREF+ pin(1) 11 = VREF is connected to internal Fixed Voltage Reference (FVR) module(1) Note 1: When selecting the FVR or the VREF+ pin as the source of the positive reference, be aware that a minimum voltage specification exists. See Section 21.0 “Electrical Specifications” for details.  2012-2016 Microchip Technology Inc. DS40001674F-page 105 PIC12LF1552 REGISTER 15-3: R/W-x/u ADRES0H: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 0 R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u ADRES bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7-0 ADRES: ADC Result Register bits Upper eight bits of 10-bit conversion result REGISTER 15-4: R/W-x/u ADRES0L: ADC RESULT REGISTER LOW (ADRESL) ADFM = 0 R/W-x/u ADRES R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u — — — — — — bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7-6 ADRES: ADC Result Register bits Lower two bits of 10-bit conversion result bit 5-0 Reserved: Do not use. DS40001674F-page 106  2012-2016 Microchip Technology Inc. PIC12LF1552 REGISTER 15-5: ADRES0H: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 1 R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u — — — — — — R/W-x/u R/W-x/u ADRES bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7-2 Reserved: Do not use. bit 1-0 ADRES: ADC Result Register bits Upper two bits of 10-bit conversion result REGISTER 15-6: R/W-x/u ADRES0L: ADC RESULT REGISTER LOW (ADRESL) ADFM = 1 R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u ADRES bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7-0 ADRES: ADC Result Register bits Lower eight bits of 10-bit conversion result  2012-2016 Microchip Technology Inc. DS40001674F-page 107 PIC12LF1552 15.4 ADC Acquisition Requirements For the ADC to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The Analog Input model is shown in Figure 15-4. The source impedance (RS) and the internal sampling switch (RSS) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (RSS) impedance varies over the device voltage (VDD), refer to Figure 15-4. The maximum recommended impedance for analog sources is 10 k. As the EQUATION 15-1: source impedance is decreased, the acquisition time may be decreased. After the analog input channel is selected (or changed), an ADC acquisition must be done before the conversion can be started. To calculate the minimum acquisition time, Equation 15-1 may be used. This equation assumes that 1/2 LSb error is used (1,024 steps for the ADC). The 1/2 LSb error is the maximum error allowed for the ADC to meet its specified resolution. ACQUISITION TIME EXAMPLE Temperature = 50°C and external impedance of 10k  3.3V V DD Assumptions: T ACQ = Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient = T AMP + T C + T COFF = 2µs + T C +   Temperature - 25°C   0.05µs/°C   The value for TC can be approximated with the following equations: 1  = V CHOLD V AP P LI ED  1 – -------------------------n+1   2 –1 ;[1] VCHOLD charged to within 1/2 LSB –TC ----------  RC V AP P LI ED  1 – e  = V CHOLD   ;[2] VCHOLD charge response to VAPPLIED – Tc ---------  1 RC  ;combining [1] and [2] V AP P LI ED  1 – e  = V A PP LIE D  1 – -------------------------n+1    2 –1 Note: Where n = number of bits of the ADC. Solving for TC: T C = – C HOLD  R IC + R SS + R S  ln(1/511) = – 10pF  1k  + 7k  + 10k   ln(0.001957) = 1.12 µs Therefore: T A CQ = 2µs + 1.12µs +   50°C- 25°C   0.05 µs/°C   = 4.42µs Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out. 2: The charge holding capacitor (CHOLD) is not discharged after each conversion. 3: The maximum recommended impedance for analog sources is 10 k. This is required to meet the pin leakage specification. DS40001674F-page 108  2012-2016 Microchip Technology Inc. PIC12LF1552 FIGURE 15-4: ANALOG INPUT MODEL VDD Analog Input pin Rs VT  0.6V CPIN 5 pF VA RIC  1k Sampling Switch SS Rss I LEAKAGE(1) VT  0.6V CHOLD = 10 pF Ref- Legend: CHOLD CPIN 6V 5V VDD 4V 3V 2V = Sample/Hold Capacitance = Input Capacitance RSS I LEAKAGE = Leakage current at the pin due to various junctions RIC = Interconnect Resistance RSS = Resistance of Sampling Switch SS = Sampling Switch VT = Threshold Voltage 5 6 7 8 9 10 11 Sampling Switch (k) Note 1: Refer to Section 21.0 “Electrical Specifications”. FIGURE 15-5: ADC TRANSFER FUNCTION Full-Scale Range 3FFh 3FEh ADC Output Code 3FDh 3FCh 3FBh 03h 02h 01h 00h Analog Input Voltage 0.5 LSB Ref-  2012-2016 Microchip Technology Inc. Zero-Scale Transition 1.5 LSB Full-Scale Transition Ref+ DS40001674F-page 109 PIC12LF1552 TABLE 15-3: Name SUMMARY OF REGISTERS ASSOCIATED WITH ADC Bit 7 ADCON0 — ADCON1 ADFM Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 — — CHS ADCS ADRES0H ADC Result Register High ADRES0L ADC Result Register Low Bit 1 Bit 0 GO/DONE ADON ADPREF Register on Page 104 105 106, 107 106, 107 ANSELA — — ANSA5 ANSA4 — ANSA2 FVRCON FVREN FVRRDY TSEN TSRNG — — INTCON ANSA1 ANSA0 ADFVR 88 95 GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 57 PIE1 — ADIE — — SSPIE — — — 58 PIR1 — ADIF — — SSPIF — — — 60 TRISA — — TRISA5 TRISA4 —(1) TRISA2 TRISA1 TRISA0 87 Legend: Note 1: — = unimplemented read as ‘0’. Shaded cells are not used for ADC module. Unimplemented, read as ‘1’. DS40001674F-page 110  2012-2016 Microchip Technology Inc. PIC12LF1552 16.0 HARDWARE CAPACITIVE VOLTAGE DIVIDER (CVD) MODULE The hardware Capacitive Voltage Divider (CVD) module is a peripheral, which allows the user to perform a relative capacitance measurement on any ADC channel using the internal ADC sample and hold capacitance as a reference. This relative capacitance measurement can be used to implement capacitive touch or proximity sensing applications. The CVD operation begins with the ADC’s internal sample and hold capacitor (CHOLD) being disconnected from the path which connects it to the external capacitive sensor node. While disconnected, CHOLD is pre-charged to VDD or VSS, while the path to the sensor node is also discharged to VDD or VSS. Typically, this node is discharged to the level opposite that of CHOLD. When the pre-charge phase is complete, the VDD/VSS bias paths for the two nodes are shut off and CHOLD and the path to the external sensor node are reconnected, at which time the acquisition phase of the CVD operation begins. During acquisition, a capacitive voltage divider is formed between the pre-charged CHOLD the and sensor nodes, which results in a final voltage level settling on CHOLD, which is determined by the capacitances and pre-charge levels of the two nodes involved. After acquisition, the ADC converts the voltage level held on CHOLD. This process is then FIGURE 16-1: Precharge usually repeated with the selected pre-charge levels for both the CHOLD and the inverted sensor nodes. Figure 16-1 shows the waveform for two inverted CVD measurements, which is also known is differential CVD measurement. In a typical application, an Analog-to-Digital Converter (ADC) channel is attached to a pad on a Printed Circuit Board (PCB), which is electrically isolated from the end user. A capacitive change is detected on the ADC channel using the CVD conversion method when the end user places a finger over the PCB pad, the developer then can implement software to detect a touch or proximity event. Key features of this module include: • • • • • • • Automated double sample conversions Two result registers Inversion of second sample 7-bit pre-charge timer 7-bit acquisition timer Two guard ring output drives Adjustable sample and hold capacitor array Note: For more information on capacitive voltage divider sensing method refer to the Application Note AN1478, “mTouchTM Sensing Solution Acquisition Methods Capacitive Voltage Divider” (DS01478). DIFFERENTIAL CVD MEASUREMENT WAVEFORM Acquisition Conversion Precharge Acquisition Conversion VSS External Capacitive Sensor ADC Sample and Hold Capacitor Voltage VDD First Sample Second Sample Time  2012-2016 Microchip Technology Inc. DS40001674F-page 111 PIC12LF1552 FIGURE 16-2: HARDWARE CAPACITIVE VOLTAGE DIVIDER BLOCK DIAGRAM ADOUT Pad ADOUT ADOEN VDD ADIPPOL = 1 ADC Conversion Bus ANx ANx Pads ADIPPOL = 0 VGND ADDCAP Additional Sample and Hold Cap VGND DS40001674F-page 112 VGND VGND  2012-2016 Microchip Technology Inc. PIC12LF1552 16.1 Hardware CVD Operation Capacitive Voltage Divider is a charge averaging capacitive sensing method. The hardware CVD module will automate the process of charging, averaging between the external sensor and the internal ADC sample and hold capacitor, and then initiating the ADC conversions. The whole process can be expanded into three stages: pre-charge, acquisition, and conversion. See Figure 16-5 for basic information on the timing of three stages. 16.1.1 PRE-CHARGE TIMER The pre-charge stage is an optional 1-127 instruction cycle time delay used to put the external ADC channel and the internal sample and hold capacitor (CHOLD) into pre-conditioned states. The pre-charge stage of conversion is enabled by writing a non-zero value to the ADPRE bits of the AADPRE register. This stage is initiated when a conversion sequence is started by either the GO/DONE bit or a Special Event Trigger. When initiating an ADC conversion, if the ADPRE bits are cleared, this stage is skipped. During the pre-charge time, CHOLD is disconnected from the outer portion of the sample path that leads to the external capacitive sensor and is connected to either VDD or VSS, depending on the value of the ADIPPOL bit of the AADCON3 register. At the same time, the port pin logic of the selected analog channel is overridden to drive a digital high or low out, in order to pre-charge the outer portion of the ADC’s sample path, which includes the external sensor. The output polarity of this override is determined by the ADEPPOL bit of the AADCON3 register. When both the ADOEN and ADOOEN bits of the AADCON3 register are set, the ADOUT pin is overridden during pre-charge. See Section 16.1.9 “Analog Bus Visibility” for more information. This override functions the same as the channel pin overrides, but the polarity is selected by the ADIPPOL bit of the AADCON3 register. See Figure 16-2. Even though the analog channel of the pin is selected, the analog multiplexer is forced open during the precharge stage. The ADC multiplex or logic is overridden and disabled only during the pre-charge time. 16.1.2 ACQUISITION TIMER The acquisition timer controls the time allowed to acquire the signal to be sampled. The acquisition delay time is from 1 to 127 instruction cycles and is used to allow the voltage on the internal sample and hold capacitor (CHOLD) to settle to a final value through charge averaging. The acquisition time of conversion is enabled by writing a non-zero value to the ADACQ bits of the AADACQ register. When the acquisition time is enabled, the time starts immediately following the pre-charge stage. If the ADPRE bits of the AADPRE register are set to zero, the acquisition time is initiated by either setting the GO/DONE bit or a Special Event Trigger. At the start of the acquisition stage, the port pin logic of the selected analog channel is again overridden to turn off the digital high/low output drivers so that they do not affect the final result of charge averaging. Also, the selected ADC channel is connected to CHOLD. This allows charge averaging to proceed between the precharged channel and the CHOLD capacitor. It is noted that the port pin logic override that occurs during acquisition related to the selected sample channel does not occur on the ADOUT pin (see Section 16.1.9 “Analog Bus Visibility”) for more information. 16.1.3 STARTING A CONVERSION To enable the ADC module, the ADON bit of the AADCON0 register must be set. Setting the GO/ DONE bit of the AADCON0 register or by the Special Event Trigger inputs will start the Analog-to-Digital conversion. Once a conversion begins, it proceeds until complete, while the ADON bit is set. If the ADON bit is cleared, the conversion is halted. The GO/DONE bit of the AADCON0 register indicates that a conversion is occurring, regardless of the starting trigger. Note: 16.1.4 The GO/DONE bit should not be set in the same instruction that turns on the ADC. Refer to Section Section 16.1.10 “Hardware CVD Double Conversion Procedure” COMPLETION OF A CONVERSION When the conversion is complete, the ADC module will: • Clear the GO/DONE bit of the AADCON0 register. • Set the ADIF Interrupt Flag bit of the PIR1 register. • Update the AADRESxH and AADRESxL registers with new conversion results. 16.1.5 TERMINATING A CONVERSION If a conversion must be terminated before completion, clear the GO/DONE bit. The AADRESxH and AADRESxL registers will be updated with the partially complete Analog-to-Digital conversion sample. Incomplete bits will match the last bit converted.  2012-2016 Microchip Technology Inc. DS40001674F-page 113 PIC12LF1552 The AADSTAT register can be used to track the status of the hardware CVD module during a conversion. Note: 16.1.6 A device Reset forces all registers to their reset state. Thus, the ADC module is turned off and any pending conversion is terminated. DOUBLE SAMPLE CONVERSION Double sampling can be enabled by setting the ADDSEN bit of the AADCON3 register. When this bit is set, two conversions are completed each time the GO/ DONE bit is set or a Special Event Trigger occurs. The GO/DONE bit remains set for the duration of both conversions and is used to signal the end of the conversion. Without setting the ADIPEN bit, the double conversion will have identical charge/discharge on the internal and external capacitor for these two conversions. Setting the ADIPEN bit prior to a double conversion will allow the user to perform a pseudo-differential CVD measurement by subtracting the results from the double conversion. This is highly recommended for noise immunity purposes. The result of the first conversion is written to the AADRES0H and AADRES0L registers. The second conversion starts two clock cycles after the first has completed, while the GO/DONE bit remains set. When the ADIPEN bit of AADCON3 is set, the value used by the ADC for the ADEPPOL, ADIPPOL, and GRDPOL bits are inverted. The value stored in those bit locations is unchanged. All other control signals remain unchanged from the first conversion. The result of the second conversion is stored in the AADRES1H and AADRES1L registers. See Figure 16-4 and Figure 16-5 for more information. 16.1.7 GUARD RING OUTPUTS The guard ring outputs consist of a pair of digital outputs from the hardware CVD module. This function is enabled by the GRDAOE and GRDBOE bits of the AADGRD register. Polarity of the output is controlled by the GRDPOL bit. Once enabled and while ADON = 1, the guard ring outputs of the ADC are active at all times. The outputs are initialized at the start of the pre-charge stage to match the polarity of the GRDPOL bit. The guard output signal changes polarity at the start of the acquisition phase. The value stored by the GRDPOL bit does not change. When in double sampling mode, the ring output levels are inverted during the second precharge and acquisition phases if ADDSEN = 1 and ADIPEN = 1. For more information on the timing of the guard ring output, refer to Figure 16-4 and Figure 16-5. A typical guard ring circuit is displayed in Figure 16-2. CGUARD represents the capacitance of the guard ring trace placed on a PCB board. The user selects values for RA and RB that will create a voltage profile on CGUARD, which will match the selected channel during acquisition. The purpose of the guard ring is to generate a signal in phase with the CVD sensing signal to minimize the effects of the parasitic capacitance on sensing electrodes. It also can be used as a mutual drive for mutual capacitive sensing. For more information about active guard and mutual drive, see Application Note AN1478, “mTouchTM Sensing Solution Acquisition Methods Capacitive Voltage Divider” (DS01478). FIGURE 16-3: GUARD RING CIRCUIT ADGRDA RA RB CGUARD ADGRDB DS40001674F-page 114  2012-2016 Microchip Technology Inc. PIC12LF1552 FIGURE 16-4: DIFFERENTIAL CVD WITH GUARD RING OUTPUT WAVEFORM Voltage Guard Ring Output External Capacitive Sensor VDD VSS First Sample Second Sample Time 16.1.8 ADDITIONAL SAMPLE AND HOLD CAPACITOR Additional capacitance can be added in parallel with the sample and hold capacitor (CHOLD) by setting the ADDCAP bits of the AADCAP register. This bit connects a digitally programmable capacitance to the ADC conversion bus, increasing the effective internal capacitance of the sample and hold capacitor in the ADC module. This is used to improve the match between internal and external capacitance for a better sensing performance. The additional capacitance does not affect analog performance of the ADC because it is not connected during conversion. See Figure 16-1. FIGURE 16-5: Pre-Charge Time 1-127 TINST (TPRE) ANALOG BUS VISIBILITY The ADOEN of the AADCON3 register can be used to connect the ADC conversion bus to the ADOUT pin. This connection can be used to monitor the state and behavior of the internal analog bus and it also can be used to improve the match between internal and external capacitance by connecting a external capacitor to increase the effective internal capacitance. The ADOEN bit provides the connection via a standard channel pass gate. The ADOUT pin function can be overridden during the pre-charge stage of conversion. This override function is controlled by ADOOEN. The polarity of the override is set by the ADIPPOL bit. It should be noted that, outside of the pre-charge phase, no ADOUT override is in effect. Therefore, the user must manage the state of the ADOUT pin via the relevant TRIS bit in order to avoid unintended affects on conversion results. If the user wishes to have the ADOUT path active during conversions, then the relevant TRIS bit should be set to ensure that the ADOUT pin logic is in the Input mode during the acquisition phase of conversions. HARDWARE CVD SEQUENCE TIMING DIAGRAM Acquisition/ Sharing Time 1-127 TINST (TACQ) External and Internal External and Internal Channels share Channels are charged/discharged charge If ADPRE  0 16.1.9 If ADACQ 0 Set GO/DONE bit  2012-2016 Microchip Technology Inc. Conversion Time (Traditional Timing of ADC Conversion) TCY - TAD TAD1 TAD2 TAD3 TAD4 TAD5 TAD6 TAD7 TAD8 TAD9 TAD10 TAD11 b4 b1 b0 b6 b9 b8 b7 b3 b2 b5 Conversion starts Holding capacitor CHOLD is disconnected from analog input (typically 100 ns) If ADPRE = 0 If ADACQ = 0 (Traditional Operation Start) On the following cycle: AADRES0H:AADRES0L is loaded, ADIF bit is set, GO/DONE bit is cleared DS40001674F-page 115 DOUBLE SAMPLE CONVERSION SEQUENCE (ADDSEN = 1 AND ADIPEN = 0) Pre-charge Acquisition AADPRE AADACQ PIC12LF1552 DS40001674F-page 116 FIGURE 16-6: Pre-charge Acquisition AADPRE AADACQ Conversion Clock TAD 1-127 TINST 1-127 TINST (1) (1) 2INST1-127 TINST 1-127 TINST (1) (1) (2) AADRESxL/H 10'h000 (3) 10th 9th 8th 7th 10'h000 6th 5th 4th 3rd 2nd 1st TPRE TACQ TCONV 3'b001 3'b010 3'b011 First result written to AADRES0L/H TPRE 10th 9th 8th 7th 6th TACQ TCONV 3'b110 3'b111 5th 4th 3rd 2nd 1st Second result written to AADRES1L/H ADGRDA (GRDPOL = 0) ADGRDB Internal CHOLD Charging (ADIPPOL = 1) External Channel Charging (ADEPPOL = 0) External Channel Connected To Internal CHOLD  2012-2016 Microchip Technology Inc. GO/DONE ADIF ADSTAT 3'b101 Note 1: When the conversion clock is ADCRC, the pre-charge and acquisition timers are clocked by ADCRC. 2: The AADRES0L/H registers are set to zero during this period. 3: The AADRES1L/H registers are set to zero during this period. 3'b000  2012-2016 Microchip Technology Inc. FIGURE 16-7: DOUBLE SAMPLE CONVERSION SEQUENCE (ADDSEN = 1 AND ADIPEN = 1) Pre-charge Acquisition AADPRE AADACQ Pre-charge Acquisition AADPRE AADACQ Conversion Clock 1-127 TINST 1-127 TINST (1) (1) TAD 2INST1-127 TINST 1-127 TINST (1) (1) (2) AADRESxL/H 10'h000 (3) 10th 9th 8th 7th 10'h000 6th 5th 4th 3rd 2nd 1st TPRE TACQ TCONV 3'b001 3'b010 3'b011 First result written to AADRES0L/H TPRE 10th 9th 8th 7th 6th TACQ TCONV 3'b110 3'b111 5th 4th 3rd 2nd 1st Second result written to AADRES1L/H ADGRDA (GRDPOL = 0) ADGRDB Internal CHOLD Charging (ADIPPOL = 1) External Channel Charging (ADEPPOL = 0) External Channel Connected To Internal CHOLD ADIF DS40001674F-page 117 ADSTAT 3'b101 Note 1: When the conversion clock is ADCRC, the pre-charge and acquisition timers are clocked by ADCRC. 2: The AADRES0L/H registers are set to zero during this period. 3: The AADRES1L/H registers are set to zero during this period. 3'b000 PIC12LF1552 GO/DONE PIC12LF1552 16.1.10 HARDWARE CVD DOUBLE CONVERSION PROCEDURE This is an example procedure for using hardware CVD to perform a double conversion for differential CVD measurement with active guard drive. 1. 2. 3. 4. 5. 6. 7. 8. Configure Port: • Enable pin output driver (Refer to the TRIS register). • Configure pin output low (Refer to the LAT register). • Disable weak pull-up (Refer to the WPU register). Configure the ADC module: • Select an appropriate ADC conversion clock for your oscillator frequency. • Configure voltage reference. • Select ADC input channel. • Turn on the ADC module. Configure the hardware CVD module: • Configure charge polarity and double conversion. • Configure pre-charge and acquisition timer. • Configure guard ring (optional). • Select additional capacitance (optional). Configure ADC interrupt (optional): • Clear ADC interrupt flag • Enable ADC interrupt • Enable peripheral interrupt • Enable global interrupt(1) Start conversion by setting the GO/DONE bit or by enabling the Special Event Trigger in the ADDCON2 register. Wait for the ADC conversion to complete by one of the following: • Polling the GO/DONE bit. • Waiting for the ADC interrupt (interrupts enabled). Read ADC result: • Conversion 1 result in ADDRES0H and ADDRES0L • Conversion 2 result in ADDRES1H and ADDRES1L Clear the ADC interrupt flag (required if interrupt is enabled). Note 1: The global interrupt can be disabled if the user is attempting to wake-up from Sleep and resume in-line code execution. DS40001674F-page 118 EXAMPLE 16-1: HARDWARE CVD DOUBLE CONVERSION ;This code block configures the ADC ;for polling, Vdd and Vss references, Fosc/16 ;clock and AN0 input. ; ; The Hardware CVD will perform an inverted ; double conversion, Guard A and B drive are ; both enabled. ;Conversion start & polling for completion are included. ; BANKSEL TRISA BCF TRISA,0 ;Set RA0 to output BANKSEL LATA BCF LATA,0 ;RA0 output low BANKSEL ANSELA BCF ANSELA,0 ;Set RA0 to digital BANKSEL WPUA BCF WPUA,0 ;Disable pull-up on RA0 ; Initialize ADC and Hardware CVD BANKSEL MOVLW MOVWF BANKSEL MOVLW MOVWF AADCON0 B'00000001' AADCON0 AADCON1 B'11010000' AADCON1 BANKSEL MOVLW MOVWF BANKSEL MOVLW MOVWF BANKSEL MOVLW MOVWF BANKSEL MOVLW MOVWF BANKSEL MOVLW MOVWF AADCON3 B'01000011' AADCON3 AADPRE .10 AADPRE AADACQ .10 AADACQ AADGRD B'11000000' AADGRD AADCAP B'00000000' AADCAP BANKSEL BSF BTFSC GOTO ADCON0 ADCON0, GO ADCON0, GO $-1 ;Select channel AN0 ;Vdd and Vss Vref ;Double and inverted ;ADOUT disabled ;Pre-charge Timer ;Acquisition Timer ;Guard on A and B ;No additional ;Capacitor ;No, test again ;RESULTS OF CONVERIONS 1. BANKSEL AADRES0H ; MOVF AADRES0H,W ;Read upper 2 MOVWF RESULT0H ;store in GPR MOVF AADRES0L,W ;Read lower 8 MOVWF RESULT0L ;Store in GPR bits space bits space ;RESULTS OF CONVERIONS 2. BANKSEL AADRES1H ; MOVF AADRES1H,W ;Read upper 2 MOVWF RESULT1H ;store in GPR MOVF AADRES1L,W ;Read lower 8 MOVWF RESULT1L ;Store in GPR bits space bits space  2012-2016 Microchip Technology Inc. PIC12LF1552 16.1.11 HARDWARE CVD REGISTER MAPPING The hardware CVD module is an enhanced expansion of the standard ADC module as stated in Section 15.0 “Analog-to-Digital Converter (ADC) Module” and is backward compatible with the other devices in this family. Control of the standard ADC module uses Bank 1 registers, see Table 16-1. This set of registers is mapped into Bank 14 with the control registers for the hardware CVD module. Although this subset of registers has different names, they are identical. Since the registers for the standard ADC are mapped into the Bank 14 address space, any changes to registers in Bank 1 will be reflected in Bank 14 and vice-versa. TABLE 16-1: HARDWARE CVD REGISTER MAPPING [Bank 14 Address] [Bank 1 Address] Hardware CVD ADC [711h] AADCON0(1) [09Dh] ADCON0(1) [712h] AADCON1(1) [09Eh] ADCON1(1) [713h] AADCON2 [09Fh] ADCON2(1) [714h] AADCON3 [715h] AADSTAT [716h] AADPRE [717h] AADACQ [718h] AADGRD [719h] AADCAP [71Ah] AADRES0L(1) [09Bh] ADRES0L(1) [71Bh] AADRES0H(1) [09Ch] ADRES0H(1) [71Ch] AADRES1L [71Dh] AADRES1H Note 1: Register is mapped in Bank 1 and Bank 14, using different names in each bank.  2012-2016 Microchip Technology Inc. DS40001674F-page 119 PIC12LF1552 16.2 Register Definitions: Hardware CVD Control REGISTER 16-1: U-0 AADCON0: HARDWARE CVD CONTROL REGISTER 0(1) R/W-0/0 R/W-0/0 — R/W-0/0 R/W-0/0 CHS R/W-0/0 R/W-0/0 R/W-0/0 GO/DONE ADON bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7 Unimplemented: Read as ‘0’ bit 6-2 CHS: Analog Channel Select bits 11111 = FVR (Fixed Voltage Reference) Buffer 1 Output(2) 11110 = Reserved. No channel connected. 11101 = Temperature Indicator(3) 11100 = Reserved. No channel connected. 11011 = Reserved. No channel connected. 11010 = VREFH (ADC Positive Reference) 11001 = Reserved. No channel connected. • • • 00101 = Reserved. No channel connected. 00100 = AN4 00011 = AN3 00010 = AN2 00001 = AN1 00000 = AN0 bit 1 GO/DONE: ADC Conversion Status bit 1 = ADC conversion cycle in progress. Setting this bit starts an ADC conversion cycle. This bit is automatically cleared by hardware when the ADC conversion has completed. 0 = ADC conversion completed/not in progress bit 0 ADON: ADC Enable bit 1 = ADC is enabled 0 = ADC is disabled and consumes no operating current Note 1: 2: 3: See Section 16.1.11 “Hardware CVD Register Mapping” for more information. See Section 13.0 “Fixed Voltage Reference (FVR)” for more information. See Section 14.0 “Temperature Indicator Module” for more information. DS40001674F-page 120  2012-2016 Microchip Technology Inc. PIC12LF1552 REGISTER 16-2: R/W-0/0 AADCON1: HARDWARE CVD CONTROL REGISTER 1(1) R/W-0/0 ADFM R/W-0/0 R/W-0/0 ADCS U-0 U-0 — — R/W-0/0 bit 7 R/W-0/0 ADPREF bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7 ADFM: ADC Result Format Select bit 1 = Right justified. Six Most Significant bits of AADRESxH are set to ‘0’ when the conversion result is loaded. 0 = Left justified. Six Least Significant bits of AADRESxL are set to ‘0’ when the conversion result is loaded. bit 6-4 ADCS: ADC Conversion Clock Select bits 111 = FRC (clock supplied from a dedicated RC oscillator)(3) 110 = FOSC/64 101 = FOSC/16 100 = FOSC/4 011 = FRC (clock supplied from a dedicated RC oscillator)(3) 010 = FOSC/32 001 = FOSC/8 000 = FOSC/2 bit 3-2 Unimplemented: Read as ‘0’ bit 1-0 ADPREF: ADC Positive Voltage Reference Configuration bits 11 = VREF is connected to internal Fixed Voltage Reference (FVR) module(2) 10 = VREF is connected to external VREF+ pin 01 = Reserved 00 = VREF is connected to VDD Note 1: 2: 3: See Section 16.1.11 “Hardware CVD Register Mapping” for more information. When selecting the FVR or the VREF+ pin as the source of the positive reference, be aware that a minimum voltage specification exists. See Section 21.0 “Electrical Specifications” for details. The Hardware CVD module only supports the FRC conversion clock while in Sleep. When the internal oscillator is running, ADCS should be set to an Fosc option.  2012-2016 Microchip Technology Inc. DS40001674F-page 121 PIC12LF1552 REGISTER 16-3: U-0 AADCON2: HARDWARE CVD CONTROL REGISTER 2(1) R/W-0/0 — R/W-0/0 R/W-0/0 TRIGSEL U-0 U-0 U-0 U-0 — — — — bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7 Unimplemented: Read as ‘0’ bit 6-4 TRIGSEL: ADC Special Event Trigger Source Selection bits 111 = Reserved. Auto-conversion Trigger disabled. 110 = Reserved. Auto-conversion Trigger disabled. 101 = Reserved. Auto-conversion Trigger disabled. 100 = Reserved. Auto-conversion Trigger disabled. 011 = TMR0 Overflow 010 = Reserved. Auto-conversion Trigger disabled. 001 = Reserved. Auto-conversion Trigger disabled. 000 = No Auto Conversion Trigger Selection bits(2,3) bit 3-0 Unimplemented: Read as ‘0’ Note 1: 2: 3: See Section 16.1.11 “Hardware CVD Register Mapping” for more information. This is a rising edge sensitive input for all sources. Signal used to set the corresponding interrupt flag. DS40001674F-page 122  2012-2016 Microchip Technology Inc. PIC12LF1552 REGISTER 16-4: AADCON3: HARDWARE CVD CONTROL REGISTER 3 R/W-0/0 R/W-0/0 U-0 R/W-0/0 R/W-0/0 U-0 R/W-0/0 R/W-0/0 ADEPPOL ADIPPOL — ADOEN ADOOEN — ADIPEN ADDSEN bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7 ADEPPOL: External Pre-charge Polarity bit(1) 1 = Selected channel is shorted to VDDIO during pre-charge time 0 = Selected channel is shorted to VSS during pre-charge time bit 6 ADIPPOL: Internal Pre-charge Polarity bit(1) 1 = CHOLD is shorted to VREFH during pre-charge time 0 = CHOLD is shorted to VREFL during pre-charge time bit 5 Unimplemented: Read as ‘0’ bit 4 ADOEN: ADOUT Output Enable bit 1 = ADOUT pin is connected to ADC bus (normal passgate) 0 = No external connection to ADC bus bit 3 ADOOEN: ADOUT Override Enable bit 1 = ADOUT pin is overridden during pre-charge with internal polarity value 0 = ADOUT pin is not overridden bit 2 Unimplemented: Read as ‘0’ bit 1 ADIPEN: ADC Invert Polarity Enable bit If ADDSEN = 1: 1 = The output value of the ADEPPOL, ADIPPOL, and GRDPOL bits used by the ADC are inverted for the second conversion 0 = The second ADC conversion proceeds like the first If ADDSEN = 0: This bit has no effect. bit 0 ADDSEN: ADC Double Sample Enable bit 1 = The ADC immediately starts a new conversion after completing a conversion. GO/DONE bit is not automatically clear at end of conversion 0 = ADC operates in the traditional, single conversion mode Note 1: When the ADDSEN = 1 and ADIPEN = 1; the polarity of this output is inverted for the second conversion time. The stored bit value does not change.  2012-2016 Microchip Technology Inc. DS40001674F-page 123 PIC12LF1552 REGISTER 16-5: AADSTAT: HARDWARE CVD STATUS REGISTER U-0 U-0 U-0 U-0 U-0 R/W-0/0 — — — — — ADCONV R/W-0/0 R/W-0/0 ADSTG bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7-3 Unimplemented: Read as ‘0’ bit 2 ADCONV: ADC Conversion Status bit 1 = Indicates ADC in Conversion Sequence for AADRES1H:AADRES1L 0 = Indicates ADC in Conversion Sequence for AADRES0H:AADRES0L (Also reads ‘0’ when GO/DONE = 0) bit 1-0 ADSTG: ADC Stage Status bit 11 = ADC module is in conversion stage 10 = ADC module is in acquisition stage 01 = ADC module is in pre-charge stage 00 = ADC module is not converting (same as GO/DONE = 0) REGISTER 16-6: U-0 AADPRE: HARDWARE CVD PRE-CHARGE CONTROL REGISTER R/W-0/0 R/W-0/0 R/W-0/0 — R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 ADPRE bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7 Unimplemented: Read as ‘0’ bit 6-0 ADPRE: Pre-charge Time Select bits(1) 111 1111 = Pre-charge for 127 instruction cycles 111 1110 = Pre-charge for 126 instruction cycles • • • 000 0001 = Pre-charge for 1 instruction cycle (Fosc/4) 000 0000 = ADC pre-charge time is disabled Note 1: When the FRC clock is selected as the conversion clock source, it is also the clock used for the pre-charge and acquisition times. DS40001674F-page 124  2012-2016 Microchip Technology Inc. PIC12LF1552 REGISTER 16-7: U-0 AADACQ: HARDWARE CVD ACQUISITION TIME CONTROL REGISTER R/W-0/0 R/W-0/0 R/W-0/0 — R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 ADACQ bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7 Unimplemented: Read as ‘0’ bit 6-0 ADACQ: Acquisition/Charge Share Time Select bits(1) 111 1111 = Acquisition/charge share for 127 instruction cycles 111 1110 = Acquisition/charge share for 126 instruction cycles • • • 000 0001 = Acquisition/charge share for one instruction cycle (Fosc/4) 000 0000 = ADC Acquisition/charge share time is disabled Note 1: When the FRC clock is selected as the conversion clock source, it is also the clock used for the pre-charge and acquisition times. REGISTER 16-8: AADGRD: HARDWARE CVD GUARD RING CONTROL REGISTER R/W-0/0 R/W-0/0 R/W-0/0 GRDBOE(2) GRDAOE(2) GRDPOL(1,2) U-0 U-0 U-0 U-0 U-0 — — — bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7 GRDBOE: Guard Ring B Output Enable bit(2) 1 = ADC guard ring output is enabled to ADGRDB pin. Its corresponding TRISx bit must be clear. 0 = No ADC guard ring function to this pin is enabled bit 6 GRDAOE: Guard Ring A Output Enable bit(2) 1 = ADC Guard Ring Output is enabled to ADGRDA pin. Its corresponding TRISx, x bit must be clear. 0 = No ADC Guard Ring function is enabled bit 5 GRDPOL: Guard Ring Polarity selection bit(1,2) 1 = ADC guard ring outputs start as digital high during pre-charge stage 0 = ADC guard ring outputs start as digital low during pre-charge stage bit 4-0 Unimplemented: Read as ‘0’ Note 1: 2: When the ADDSEN = 1 and ADIPEN = 1; the polarity of this output is inverted for the second conversion time. The stored bit value does not change. Guard Ring outputs are maintained while ADON = 1. The ADGRDA output switches polarity at the start of the acquisition time.  2012-2016 Microchip Technology Inc. DS40001674F-page 125 PIC12LF1552 REGISTER 16-9: U-0 AADCAP: HARDWARE CVD ADDITIONAL SAMPLE CAPACITOR SELECTION REGISTER U-0 U-0 U-0 U-0 — R/W-0/0 R/W-0/0 R/W-0/0 ADDCAP bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7-3 Unimplemented: Read as ‘0’ bit 2-0 ADDCAP: ADC Additional Sample Capacitor Selection bits 111 = Nominal additional sample capacitor of 28 pF 110 = Nominal additional sample capacitor of 24 pF 101 = Nominal additional sample capacitor of 20 pF 100 = Nominal additional sample capacitor of 16 pF 011 = Nominal additional sample capacitor of 12 pF 010 = Nominal additional sample capacitor of 8 pF 001 = Nominal additional sample capacitor of 4 pF 000 = Additional sample capacitor is disabled DS40001674F-page 126  2012-2016 Microchip Technology Inc. PIC12LF1552 REGISTER 16-10: AADRESxH: HARDWARE CVD RESULT REGISTER MSB ADFM = 0(1) R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u ADRESx bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7-0 AD: Most Significant ADC results Note 1: See Section 16.1.11 “Hardware CVD Register Mapping” for more information. REGISTER 16-11: AADRESxL: HARDWARE CVD RESULT REGISTER LSL ADFM = 0(1) R/W-x/u R/W-x/u U-0 U-0 U-0 U-0 U-0 U-0 — — — — — — ADRESx bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7-6 AD: ADC Result Register bits Lower two bits of 10-bit conversion result bit 5-0 Reserved: Do not use. Note 1: See Section 16.1.11 “Hardware CVD Register Mapping” for more information.  2012-2016 Microchip Technology Inc. DS40001674F-page 127 PIC12LF1552 REGISTER 16-12: AADRESxH: HARDWARE CVD RESULT REGISTER MSB ADFM = 1(1) U-0 U-0 U-0 U-0 U-0 U-0 — — — — — — R/W-x/u R/W-x/u ADRESx bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7-2 Reserved: Do not use. bit 1-0 AD: Most Significant ADC results Note 1: See Section 16.1.11 “Hardware CVD Register Mapping” for more information. REGISTER 16-13: AADRESxL: HARDWARE CVD RESULT REGISTER LSB ADFM = 1(1) R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u ADRESx bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7-0 Note 1: AD: ADC Result Register bits Lower two bits of 10-bit conversion result See Section 16.1.11 “Hardware CVD Register Mapping” for more information. DS40001674F-page 128  2012-2016 Microchip Technology Inc. PIC12LF1552 TABLE 16-2: Name SUMMARY OF REGISTERS ASSOCIATED WITH HARDWARE CVD Bit 7 Bit 6 Bit 5 — — AADCAP — AADCON0 — Bit 4 Bit 3 — — Bit 2 Bit 1 Bit 0 Register on Page ADON 120 ADDCAP CHS GO/DONE 126 AADCON1 ADFM ADCS — — AADCON2 — TRIGSEL — — — — AADCON3 ADEPPOL ADIPPOL — ADOEN ADOOEN — ADIPEN ADDSEN 123 AADGRD GRDBOE GRDAOE GRDPOL — — — — — 125 AADPRE — ADPREF ADPRE 121 122 124 AADRES0H ADC Result 0 Register High 127 AADRES0L ADC Result 0 Register Low 127 AADRES1H ADC Result 1 Register High 128 AADRES1L ADC Result 1 Register Low AADSTAT — AADACQ — ANSELA 128 — — — — — ANSA5 ANSA4 FVRCON FVREN FVRRDY TSEN TSRNG — — INTCON GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 57 PIE1 — ADIE — — SSPIE — — — 58 PIR1 — ADIF — — SSPIF — — — 60 TRISA4 —(1) TRISA2 TRISA1 TRISA0 87 TRISA Legend: Note 1: — — ADCONV ADSTG ADACQ — TRISA5 — 124 125 ANSA2 ANSA1 ANSA0 ADFVR 88 95 — = unimplemented read as ‘0’. Shaded cells are not used for hardware CVD module. Unimplemented, read as ‘1’.  2012-2016 Microchip Technology Inc. DS40001674F-page 129 PIC12LF1552 17.0 17.1.2 TIMER0 MODULE 8-BIT COUNTER MODE The Timer0 module is an 8-bit timer/counter with the following features: In 8-Bit Counter mode, the Timer0 module will increment on every rising or falling edge of the T0CKI pin. • • • • • 8-Bit Counter mode using the T0CKI pin is selected by setting the TMR0CS bit in the OPTION_REG register to ‘1’. 8-bit timer/counter register (TMR0) 8-bit prescaler (independent of Watchdog Timer) Programmable internal or external clock source Programmable external clock edge selection Interrupt on overflow The rising or falling transition of the incrementing edge for either input source is determined by the TMR0SE bit in the OPTION_REG register. Figure 17-1 is a block diagram of the Timer0 module. 17.1 Timer0 Operation The Timer0 module can be used as either an 8-bit timer or an 8-bit counter. 17.1.1 8-BIT TIMER MODE The Timer0 module will increment every instruction cycle, if used without a prescaler. 8-bit Timer mode is selected by clearing the TMR0CS bit of the OPTION_REG register. When TMR0 is written, the increment is inhibited for two instruction cycles immediately following the write. Note: The value written to the TMR0 register can be adjusted, in order to account for the two instruction cycle delay when TMR0 is written. FIGURE 17-1: BLOCK DIAGRAM OF THE TIMER0 FOSC/4 Data Bus 0 8 T0CKI 1 Sync 2 TCY 1 TMR0 0 TMR0SE TMR0CS 8-bit Prescaler PSA Set Flag bit TMR0IF on Overflow 8 PS DS40001674F-page 130  2012-2016 Microchip Technology Inc. PIC12LF1552 17.1.3 SOFTWARE PROGRAMMABLE PRESCALER A software programmable prescaler is available for exclusive use with Timer0. The prescaler is enabled by clearing the PSA bit of the OPTION_REG register. Note: The Watchdog Timer (WDT) uses its own independent prescaler. There are eight prescaler options for the Timer0 module ranging from 1:2 to 1:256. The prescale values are selectable via the PS bits of the OPTION_REG register. In order to have a 1:1 prescaler value for the Timer0 module, the prescaler must be disabled by setting the PSA bit of the OPTION_REG register. The prescaler is not readable or writable. All instructions writing to the TMR0 register will clear the prescaler. 17.1.4 TIMER0 INTERRUPT Timer0 will generate an interrupt when the TMR0 register overflows from FFh to 00h. The TMR0IF interrupt flag bit of the INTCON register is set every time the TMR0 register overflows, regardless of whether or not the Timer0 interrupt is enabled. The TMR0IF bit can only be cleared in software. The Timer0 interrupt enable is the TMR0IE bit of the INTCON register. Note: 17.1.5 The Timer0 interrupt cannot wake the processor from Sleep since the timer is frozen during Sleep. 8-BIT COUNTER MODE SYNCHRONIZATION When in 8-Bit Counter mode, the incrementing edge on the T0CKI pin must be synchronized to the instruction clock. Synchronization can be accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the instruction clock. The high and low periods of the external clocking source must meet the timing requirements as shown in Section 21.0 “Electrical Specifications”. 17.1.6 OPERATION DURING SLEEP Timer0 cannot operate while the processor is in Sleep mode. The contents of the TMR0 register will remain unchanged while the processor is in Sleep mode.  2012-2016 Microchip Technology Inc. DS40001674F-page 131 PIC12LF1552 17.2 Register Definitions: Option Register REGISTER 17-1: OPTION_REG: OPTION REGISTER R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 WPUEN INTEDG TMR0CS TMR0SE PSA R/W-1/1 R/W-1/1 R/W-1/1 PS bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7 WPUEN: Weak Pull-Up Enable bit 1 = All weak pull-ups are disabled (except MCLR, if it is enabled) 0 = Weak pull-ups are enabled by individual WPUx latch values bit 6 INTEDG: Interrupt Edge Select bit 1 = Interrupt on rising edge of INT pin 0 = Interrupt on falling edge of INT pin bit 5 TMR0CS: Timer0 Clock Source Select bit 1 = Transition on T0CKI pin 0 = Internal instruction cycle clock (FOSC/4) bit 4 TMR0SE: Timer0 Source Edge Select bit 1 = Increment on high-to-low transition on T0CKI pin 0 = Increment on low-to-high transition on T0CKI pin bit 3 PSA: Prescaler Assignment bit 1 = Prescaler is not assigned to the Timer0 module 0 = Prescaler is assigned to the Timer0 module bit 2-0 PS: Prescaler Rate Select bits TABLE 17-1: Name Bit Value Timer0 Rate 000 001 010 011 100 101 110 111 1:2 1:4 1:8 1 : 16 1 : 32 1 : 64 1 : 128 1 : 256 SUMMARY OF REGISTERS ASSOCIATED WITH TIMER0 Bit 7 Bit 6 INTCON OPTION_REG TRISA Legend: * Note 1: Bit 4 TRIGSEL AADCON2 TMR0 Bit 5 Bit 3 Bit 2 Bit 1 Bit 0 Register on Page — — — — 122 TMR0IF INTF IOCIF GIE PEIE TMR0IE INTE IOCIE WPUEN INTEDG TMR0CS TMR0SE PSA PS Holding Register for the 8-bit Timer0 Count — — TRISA5 TRISA4 57 132 130* —(1) TRISA2 TRISA1 TRISA0 87 — = Unimplemented location, read as ‘0’. Shaded cells are not used by the Timer0 module. Page provides register information. Unimplemented, read as ‘1’. DS40001674F-page 132  2012-2016 Microchip Technology Inc. PIC12LF1552 18.0 18.1 MASTER SYNCHRONOUS SERIAL PORT MODULE Note: Master SSP (MSSP1) Module Overview Register names, I/O pins, and bit names may use the generic designator ‘x’ to indicate the use of a numeral to distinguish a particular module, when required. The Master Synchronous Serial Port (MSSP1) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be Serial EEPROMs, shift registers, display drivers, A/D converters, etc. The MSSP1 module can operate in one of two modes: • Serial Peripheral Interface (SPI) • Inter-Integrated Circuit (I2C) The SPI interface supports the following modes and features: • • • • • Master mode Slave mode Clock Parity Slave Select Synchronization (Slave mode only) Daisy-chain connection of slave devices Figure 18-1 is a block diagram of the SPI interface module. FIGURE 18-1: MSSP1 BLOCK DIAGRAM (SPI MODE) Data Bus Read Write SSPBUF Reg SDI SDO_out SSPSR Reg SDO bit 0 SS SS Control Enable Shift Clock 2 (CKP, CKE) Clock Select Edge Select SCK_out SSPM 4 SCK Edge Select Prescaler TOSC 4, 16, 64 Baud Rate Generator (SSPADD) TRIS bit  2012-2016 Microchip Technology Inc. DS40001674F-page 133 PIC12LF1552 The I2C interface supports the following modes and features: Master mode Slave mode Byte NACKing (Slave mode) Limited Multi-master support 7-bit and 10-bit addressing Start and Stop interrupts Interrupt masking Clock stretching Bus collision detection Figure 18-2 is a block diagram of the I2C interface module in Master mode. Figure 18-3 is a diagram of the I2C interface module in Slave mode. The PIC12LF1552 has one MSSP module. MSSP1 BLOCK DIAGRAM (I2C MASTER MODE) Internal data bus Read [SSPM] Write SSPBUF Baud Rate Generator (SSPADD) SDA Shift Clock SDA in Receive Enable (RCEN) SCL SCL in Bus Collision DS40001674F-page 134 LSb Start bit, Stop bit, Acknowledge Generate (SSPCON2) Start bit detect, Stop bit detect Write collision detect Clock arbitration State counter for end of XMIT/RCV Address Match detect Clock Cntl SSPSR MSb (Hold off clock source) FIGURE 18-2: General call address matching Address masking Address Hold and Data Hold modes Selectable SDA hold times Clock arbitrate/BCOL detect • • • • • • • • • • • • • Set/Reset: S, P, SSPSTAT, WCOL, SSPOV Reset SEN, PEN (SSPCON2) Set SSPIF, BCLIF  2012-2016 Microchip Technology Inc. PIC12LF1552 FIGURE 18-3: MSSP1 BLOCK DIAGRAM (I2C SLAVE MODE) Internal Data Bus Read Write SSPBUF Reg SCL Shift Clock SSPSR Reg SDA LSb MSb SSPMSK Reg Match Detect Addr Match SSPADD Reg Start and Stop bit Detect  2012-2016 Microchip Technology Inc. Set, Reset S, P bits (SSPSTAT Reg) DS40001674F-page 135 PIC12LF1552 18.2 SPI Mode Overview The Serial Peripheral Interface (SPI) bus is a synchronous serial data communication bus that operates in Full-Duplex mode. Devices communicate in a master/slave environment where the master device initiates the communication. A slave device is controlled through a Chip Select known as Slave Select. The SPI bus specifies four signal connections: • • • • Serial Clock (SCK) Serial Data Out (SDO) Serial Data In (SDI) Slave Select (SS) Figure 18-1 shows the block diagram of the MSSP1 module when operating in SPI mode. The SPI bus operates with a single master device and one or more slave devices. When multiple slave devices are used, an independent Slave Select connection is required from the master device to each slave device. Figure 18-4 shows a typical connection between a master device and multiple slave devices. The master selects only one slave at a time. Most slave devices have tri-state outputs so their output signal appears disconnected from the bus when they are not selected. Transmissions involve two shift registers, eight bits in size, one in the master and one in the slave. With either the master or the slave device, data is always shifted out one bit at a time, with the Most Significant bit (MSb) shifted out first. At the same time, a new Least Significant bit (LSb) is shifted into the same register. During each SPI clock cycle, a full-duplex data transmission occurs. This means that while the master device is sending out the MSb from its shift register (on its SDO pin) and the slave device is reading this bit and saving it as the LSb of its shift register, that the slave device is also sending out the MSb from its shift register (on its SDO pin) and the master device is reading this bit and saving it as the LSb of its shift register. After eight bits have been shifted out, the master and slave have exchanged register values. If there is more data to exchange, the shift registers are loaded with new data and the process repeats itself. Whether the data is meaningful or not (dummy data), depends on the application software. This leads to three scenarios for data transmission: • Master sends useful data and slave sends dummy data. • Master sends useful data and slave sends useful data. • Master sends dummy data and slave sends useful data. Transmissions may involve any number of clock cycles. When there is no more data to be transmitted, the master stops sending the clock signal and it deselects the slave. Every slave device connected to the bus that has not been selected through its slave select line must disregard the clock and transmission signals and must not transmit out any data of its own. Figure 18-5 shows a typical connection between two processors configured as master and slave devices. Data is shifted out of both shift registers on the programmed clock edge and latched on the opposite edge of the clock. The master device transmits information out on its SDO output pin which is connected to, and received by, the slave’s SDI input pin. The slave device transmits information out on its SDO output pin, which is connected to, and received by, the master’s SDI input pin. To begin communication, the master device first sends out the clock signal. Both the master and the slave devices should be configured for the same clock polarity. The master device starts a transmission by sending out the MSb from its shift register. The slave device reads this bit from that same line and saves it into the LSb position of its shift register. DS40001674F-page 136  2012-2016 Microchip Technology Inc. PIC12LF1552 FIGURE 18-4: SPI MASTER AND MULTIPLE SLAVE CONNECTION SPI Master SCK SCK SDO SDI SDI SDO General I/O General I/O SS General I/O SCK SDI SDO SPI Slave #1 SPI Slave #2 SS SCK SDI SDO SPI Slave #3 SS 18.2.1 SPI MODE REGISTERS The MSSP1 module has five registers for SPI mode operation. These are: • • • • • • MSSP1 STATUS register (SSPSTAT) MSSP1 Control Register 1 (SSPCON1) MSSP1 Control Register 3 (SSPCON3) MSSP1 Data Buffer register (SSPBUF) MSSP1 Address register (SSPADD) MSSP1 Shift register (SSPSR) (Not directly accessible) SSPCON1 and SSPSTAT are the control and STATUS registers in SPI mode operation. The SSPCON1 register is readable and writable. The lower six bits of the SSPSTAT are read-only. The upper two bits of the SSPSTAT are read/write. In SPI master mode, SSPADD can be loaded with a value used in the Baud Rate Generator. More information on the Baud Rate Generator is available in Section 18.7 “Baud Rate Generator” SSPSR is the shift register used for shifting data in and out. SSPBUF provides indirect access to the SSPSR register. SSPBUF is the buffer register to which data bytes are written, and from which data bytes are read. In receive operations, SSPSR and SSPBUF together create a buffered receiver. When SSPSR receives a complete byte, it is transferred to SSPBUF and the SSPIF interrupt is set. During transmission, the SSPBUF is not buffered. A write to SSPBUF will write to both SSPBUF and SSPSR. 18.2.2 SPI MODE OPERATION When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits (SSPCON1 and SSPSTAT). These control bits allow the following to be specified: • • • • Master mode (SCK is the clock output) Slave mode (SCK is the clock input) Clock Polarity (Idle state of SCK) Data Input Sample Phase (middle or end of data output time) • Clock Edge (output data on rising/falling edge of SCK) • Clock Rate (Master mode only) • Slave Select mode (Slave mode only) To enable the serial port, SSP Enable bit, SSPEN of the SSPCON1 register, must be set. To reset or reconfigure SPI mode, clear the SSPEN bit, re-initialize the SSPCONx registers and then set the SSPEN bit. This configures the SDI, SDO, SCK and SS pins as serial port pins. For the pins to behave as the serial port function, some must have their data direction bits (in the TRIS register) appropriately programmed as follows: • SDI must have corresponding TRIS bit set • SDO must have corresponding TRIS bit cleared • SCK (Master mode) must have corresponding TRIS bit cleared • SCK (Slave mode) must have corresponding TRIS bit set • SS must have corresponding TRIS bit set Any serial port function that is not desired may be overridden by programming the corresponding data direction (TRIS) register to the opposite value.  2012-2016 Microchip Technology Inc. DS40001674F-page 137 PIC12LF1552 The MSSP1 consists of a transmit/receive shift register (SSPSR) and a buffer register (SSPBUF). The SSPSR shifts the data in and out of the device, MSb first. The SSPBUF holds the data that was written to the SSPSR until the received data is ready. Once the eight bits of data have been received, that byte is moved to the SSPBUF register. Then, the Buffer Full Detect bit, BF of the SSPSTAT register, and the interrupt flag bit, SSPIF, are set. This double-buffering of the received data (SSPBUF) allows the next byte to start reception before reading the data that was just received. Any write to the SSPBUF register during transmission/reception of data will be ignored and the write collision detect bit WCOL of the SSPCON1 register, will be set. User software must clear the WCOL bit to allow the following write(s) to the SSPBUF register to complete successfully. FIGURE 18-5: When the application software is expecting to receive valid data, the SSPBUF should be read before the next byte of data to transfer is written to the SSPBUF. The Buffer Full bit, BF of the SSPSTAT register, indicates when SSPBUF has been loaded with the received data (transmission is complete). When the SSPBUF is read, the BF bit is cleared. This data may be irrelevant if the SPI is only a transmitter. Generally, the MSSP1 interrupt is used to determine when the transmission/reception has completed. If the interrupt method is not going to be used, then software polling can be done to ensure that a write collision does not occur. The SSPSR is not directly readable or writable and can only be accessed by addressing the SSPBUF register. Additionally, the SSPSTAT register indicates the various Status conditions. SPI MASTER/SLAVE CONNECTION SPI Master SSPM = 00xx = 1010 SPI Slave SSPM = 010x SDI SDO Serial Input Buffer (BUF) SDI Shift Register (SSPSR) MSb Serial Input Buffer (SSPBUF) LSb SCK General I/O Processor 1 DS40001674F-page 138 SDO Serial Clock Slave Select (optional) Shift Register (SSPSR) MSb LSb SCK SS Processor 2  2012-2016 Microchip Technology Inc. PIC12LF1552 18.2.3 SPI MASTER MODE The master can initiate the data transfer at any time because it controls the SCK line. The master determines when the slave (Processor 2, Figure 18-5) is to broadcast data by the software protocol. In Master mode, the data is transmitted/received as soon as the SSPBUF register is written to. If the SPI is only going to receive, the SDO output could be disabled (programmed as an input). The SSPSR register will continue to shift in the signal present on the SDI pin at the programmed clock rate. As each byte is received, it will be loaded into the SSPBUF register as if a normal received byte (interrupts and Status bits appropriately set). FIGURE 18-6: The clock polarity is selected by appropriately programming the CKP bit of the SSPCON1 register and the CKE bit of the SSPSTAT register. This then, would give waveforms for SPI communication as shown in Figure 18-6, Figure 18-8, Figure 18-9 and Figure 18-10, where the MSb is transmitted first. In Master mode, the SPI clock rate (bit rate) is user programmable to be one of the following: • • • • FOSC/4 (or TCY) FOSC/16 (or 4 * TCY) FOSC/64 (or 16 * TCY) Fosc/(4 * (SSPADD + 1)) Figure 18-6 shows the waveforms for Master mode. When the CKE bit is set, the SDO data is valid before there is a clock edge on SCK. The change of the input sample is shown based on the state of the SMP bit. The time when the SSPBUF is loaded with the received data is shown. SPI MODE WAVEFORM (MASTER MODE) Write to SSPBUF SCK (CKP = 0 CKE = 0) SCK (CKP = 1 CKE = 0) 4 Clock Modes SCK (CKP = 0 CKE = 1) SCK (CKP = 1 CKE = 1) SDO (CKE = 0) bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 SDO (CKE = 1) bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 SDI (SMP = 0) bit 0 bit 7 Input Sample (SMP = 0) SDI (SMP = 1) bit 7 bit 0 Input Sample (SMP = 1) SSPIF SSPSR to SSPBUF  2012-2016 Microchip Technology Inc. DS40001674F-page 139 PIC12LF1552 18.2.4 SPI SLAVE MODE In Slave mode, the data is transmitted and received as external clock pulses appear on SCK. When the last bit is latched, the SSPIF interrupt flag bit is set. Before enabling the module in SPI Slave mode, the clock line must match the proper Idle state. The clock line can be observed by reading the SCK pin. The Idle state is determined by the CKP bit of the SSPCON1 register. While in Slave mode, the external clock is supplied by the external clock source on the SCK pin. This external clock must meet the minimum high and low times as specified in the electrical specifications. While in Sleep mode, the slave can transmit/receive data. The shift register is clocked from the SCK pin input and when a byte is received, the device will generate an interrupt. If enabled, the device will wake-up from Sleep. 18.2.4.1 Daisy-Chain Configuration The SPI bus can sometimes be connected in a daisy-chain configuration. The first slave output is connected to the second slave input, the second slave output is connected to the third slave input, and so on. The final slave output is connected to the master input. Each slave sends out, during a second group of clock pulses, an exact copy of what was received during the first group of clock pulses. The whole chain acts as one large communication shift register. The daisy-chain feature only requires a single Slave Select line from the master device. Figure 18-7 shows the block diagram of a typical daisy-chain connection when operating in SPI mode. In a daisy-chain configuration, only the most recent byte on the bus is required by the slave. Setting the BOEN bit of the SSPCON3 register will enable writes to the SSPBUF register, even if the previous byte has not been read. This allows the software to ignore data that may not apply to it. 18.2.5 SLAVE SELECT SYNCHRONIZATION The Slave Select can also be used to synchronize communication. The Slave Select line is held high until the master device is ready to communicate. When the Slave Select line is pulled low, the slave knows that a new transmission is starting. If the slave fails to receive the communication properly, it will be reset at the end of the transmission, when the Slave Select line returns to a high state. The slave is then ready to receive a new transmission when the Slave Select line is pulled low again. If the Slave Select line is not used, there is a risk that the slave will eventually become out of sync with the master. If the slave misses a bit, it will always be one bit off in future transmissions. Use of the Slave Select line allows the slave and master to align themselves at the beginning of each transmission. The SS pin allows a Synchronous Slave mode. The SPI must be in Slave mode with SS pin control enabled (SSPCON1 = 0100). When the SS pin is low, transmission and reception are enabled and the SDO pin is driven. When the SS pin goes high, the SDO pin is no longer driven, even if in the middle of a transmitted byte and becomes a floating output. External pull-up/pull-down resistors may be desirable depending on the application. Note 1: When the SPI is in Slave mode with SS pin control enabled (SSPCON1 = 0100), the SPI module will reset if the SS pin is set to VDD. 2: When the SPI is used in Slave mode with CKE set; the user must enable SS pin control. 3: While operated in SPI Slave mode the SMP bit of the SSPSTAT register must remain clear. When the SPI module resets, the bit counter is forced to ‘0’. This can be done by either forcing the SS pin to a high level or clearing the SSPEN bit. DS40001674F-page 140  2012-2016 Microchip Technology Inc. PIC12LF1552 FIGURE 18-7: SPI DAISY-CHAIN CONNECTION SPI Master SCK SCK SDO SDI SDI SPI Slave #1 SDO General I/O SS SCK SDI SPI Slave #2 SDO SS SCK SDI SPI Slave #3 SDO SS FIGURE 18-8: SLAVE SELECT SYNCHRONOUS WAVEFORM SS SCK (CKP = 0 CKE = 0) SCK (CKP = 1 CKE = 0) Write to SSPBUF Shift register SSPSR and bit count are reset SSPBUF to SSPSR SDO bit 7 bit 6 bit 7 SDI bit 6 bit 0 bit 0 bit 7 bit 7 Input Sample SSPIF Interrupt Flag SSPSR to SSPBUF  2012-2016 Microchip Technology Inc. DS40001674F-page 141 PIC12LF1552 FIGURE 18-9: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 0) SS Optional SCK (CKP = 0 CKE = 0) SCK (CKP = 1 CKE = 0) Write to SSPBUF Valid SDO bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 SDI bit 0 bit 7 Input Sample SSPIF Interrupt Flag SSPSR to SSPBUF Write Collision detection active FIGURE 18-10: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1) SS Not Optional SCK (CKP = 0 CKE = 1) SCK (CKP = 1 CKE = 1) Write to SSPBUF Valid SDO bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 SDI bit 7 bit 0 Input Sample SSPIF Interrupt Flag SSPSR to SSPBUF Write Collision detection active DS40001674F-page 142  2012-2016 Microchip Technology Inc. PIC12LF1552 18.2.6 SPI OPERATION IN SLEEP MODE In SPI Master mode, module clocks may be operating at a different speed than when in Full-Power mode; in the case of the Sleep mode, all clocks are halted. Special care must be taken by the user when the MSSP1 clock is much faster than the system clock. In Slave mode, when MSSP1 interrupts are enabled, after the master completes sending data, an MSSP1 interrupt will wake the controller from Sleep. If an exit from Sleep mode is not desired, MSSP1 interrupts should be disabled. TABLE 18-1: In SPI Master mode, when the Sleep mode is selected, all module clocks are halted and the transmission/reception will remain in that state until the device wakes. After the device returns to Run mode, the module will resume transmitting and receiving data. In SPI Slave mode, the SPI Transmit/Receive Shift register operates asynchronously to the device. This allows the device to be placed in Sleep mode and data to be shifted into the SPI Transmit/Receive Shift register. When all eight bits have been received, the MSSP1 interrupt flag bit will be set and if enabled, will wake the device. SUMMARY OF REGISTERS ASSOCIATED WITH SPI OPERATION Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register on Page ANSELA — — ANSA5 ANSA4 — ANSA2 ANSA1 ANSA0 85 APFCON — SDOSEL SSSEL SDSEL — — — — 85 INTCON GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 57 PIE1 — ADIE — — SSPIE — — — 58 PIR1 — ADIF — — SSPIF — — — 60 Name SSPBUF SSPCON1 Synchronous Serial Port Receive Buffer/Transmit Register SSPOV SSPEN CKP SSPCON3 ACKTIM PCIE SCIE BOEN SSPSTAT SMP CKE D/A P S R/W — — TRISA5 TRISA4 —(1) TRISA2 TRISA WCOL 137* SSPM SDAHT SBCDE AHEN 182 DHEN 184 UA BF 181 TRISA1 TRISA0 87 Legend: — = Unimplemented location, read as ‘0’. Shaded cells are not used by the MSSP1 in SPI mode. * Page provides register information. Note 1: Unimplemented, read as ‘1’.  2012-2016 Microchip Technology Inc. DS40001674F-page 143 PIC12LF1552 18.3 I2C MODE OVERVIEW The Inter-Integrated Circuit Bus (I2C) is a multi-master serial data communication bus. Devices communicate in a master/slave environment where the master devices initiate the communication. A Slave device is controlled through addressing. The I2C bus specifies two signal connections: • Serial Clock (SCL) • Serial Data (SDA) Figure 18-2 and Figure 18-3 show the block diagrams of the MSSP1 module when operating in I2C mode. Both the SCL and SDA connections are bidirectional open-drain lines, each requiring pull-up resistors for the supply voltage. Pulling the line to ground is considered a logical zero and letting the line float is considered a logical one. Figure 18-11 shows a typical connection between two processors configured as master and slave devices. The I2C bus can operate with one or more master devices and one or more slave devices. There are four potential modes of operation for a given device: • Master Transmit mode (master is transmitting data to a slave) • Master Receive mode (master is receiving data from a slave) • Slave Transmit mode (slave is transmitting data to a master) • Slave Receive mode (slave is receiving data from the master) To begin communication, a master device starts out in Master Transmit mode. The master device sends out a Start bit followed by the address byte of the slave it intends to communicate with. This is followed by a single Read/Write bit, which determines whether the master intends to transmit to or receive data from the slave device. If the requested slave exists on the bus, it will respond with an Acknowledge bit, otherwise known as an ACK. The master then continues in either Transmit mode or Receive mode and the slave continues in the complement, either in Receive mode or Transmit mode, respectively. A Start bit is indicated by a high-to-low transition of the SDA line while the SCL line is held high. Address and data bytes are sent out, Most Significant bit (MSb) first. The Read/Write bit is sent out as a logical one when the master intends to read data from the slave, and is sent out as a logical zero when it intends to write data to the slave. DS40001674F-page 144 I2C MASTER/ SLAVE CONNECTION FIGURE 18-11: VDD SCL SCL VDD Master Slave SDA SDA The Acknowledge bit (ACK) is an active-low signal, which holds the SDA line low to indicate to the transmitter that the slave device has received the transmitted data and is ready to receive more. The transition of a data bit is always performed while the SCL line is held low. Transitions that occur while the SCL line is held high are used to indicate Start and Stop bits. If the master intends to write to the slave, then it repeatedly sends out a byte of data, with the slave responding after each byte with an ACK bit. In this example, the master device is in Master Transmit mode and the slave is in Slave Receive mode. If the master intends to read from the slave, then it repeatedly receives a byte of data from the slave, and responds after each byte with an ACK bit. In this example, the master device is in Master Receive mode and the slave is Slave Transmit mode. On the last byte of data communicated, the master device may end the transmission by sending a Stop bit. If the master device is in Receive mode, it first sends a not ACK bit in place of an ACK and then terminates the transfer with a Stop bit. In some cases, the master may want to maintain control of the bus and re-initiate another transmission. If so, the master device may send another Start bit in place of the Stop bit or last ACK bit when it is in receive mode. The I2C bus specifies three message protocols; • Single message where a master writes data to a slave. • Single message where a master reads data from a slave. • Combined message where a master initiates a minimum of two writes, or two reads, or a combination of writes and reads, to one or more slaves. When one device is transmitting a logical one, or letting the line float, and a second device is transmitting a logical zero, or holding the line low, the first device can detect that the line is not a logical one. This detection, when used on the SCL line, is called clock stretching. Clock stretching gives slave devices a mechanism to control the flow of data. When this detection is used on  2012-2016 Microchip Technology Inc. PIC12LF1552 the SDA line, it is called arbitration. Arbitration ensures that there is only one master device communicating at any single time. 18.3.1 CLOCK STRETCHING When a slave device has not completed processing data, it can delay the transfer of more data through the process of clock stretching. An addressed slave device may hold the SCL clock line low after receiving or sending a bit, indicating that it is not yet ready to continue. The master that is communicating with the slave will attempt to raise the SCL line in order to transfer the next bit, but will detect that the clock line has not yet been released. Because the SCL connection is open-drain, the slave has the ability to hold that line low until it is ready to continue communicating. Clock stretching allows receivers that cannot keep up with a transmitter to control the flow of incoming data. 18.3.2 ARBITRATION Each master device must monitor the bus for Start and Stop bits. If the device detects that the bus is busy, it cannot begin a new message until the bus returns to an Idle state. However, there are three conditions under which a collision can occur: a) Two master devices may try to initiate a transmission on or about the same time b) A device acting as multiple devices on the bus (one of which is acting as a master) may collide with another master which is trying to access a slave address on the first device c) Two slaves may respond to a general call read at the same time 18.3.2.1 Multi-Master Collision In the first condition each master transmitter checks the level of the SDA data line and compares it to the level that it expects to find. The first transmitter to observe that the two levels do not match loses arbitration and must stop transmitting on the SDA line. For example, if one transmitter holds the SDA line to a logical one (lets it float) and a second transmitter holds it to a logical zero (pulls it low), the result is that the SDA line will be low. The first transmitter then observes that the level of the line is different than expected and concludes that another transmitter is communicating. The first transmitter to notice this difference is the one that loses arbitration and must stop driving the SDA line. If this transmitter is also a master device, it must also stop driving the SCL line. Then it can monitor the lines for a Stop condition before trying to reissue its transmission. In the meantime, the other device that has not noticed any difference between the expected  2012-2016 Microchip Technology Inc. and actual levels on the SDA line continues with its original transmission. It can do so without any complications because, so far, the transmission appears exactly as expected with no other transmitter disturbing the message. 18.3.2.2 Multi-Master with Slave Recovery In the second condition there are essentially three entities on the bus: a master and a slave that reside within the same device, and a second master attempting to access the slave. If the master coupled to the slave loses the arbitration, then the slave must be able to recover and correctly respond to the second master. To accomplish this, the master which shares a device with the slave must use the I2C Firmware Controller Master mode of operation. This mode utilizes software to perform the master function, while the slave monitors the bus as a separate entity allowing it to respond to the second master. To detect a collision, each device transmitting on the bus must check the level of the SDA data line and compare it to the level that it expects to find. The first transmitter to observe that the two levels do not match loses arbitration, and it must drop off the bus as well as stop transmitting on the SDA line if it is acting as a master. For example, if one transmitter holds the SDA line to a logical one (lets it float) and a second transmitter holds it to a logical zero (pulls it low), the result is that the SDA line will be low. If two master devices send a message to two different slave devices at the address stage, the master sending the lower slave address always wins arbitration. When two master devices send messages to the same slave address, and addresses can sometimes refer to multiple slaves, the arbitration process must continue into the data stage. 18.3.2.3 Multi-Slave Collision When a system attempts a slave read from the General Call address, there is the possibility that more than one slave devices may attempt to return data to the master. When this happens, a read collision occurs and the slaves which fail the arbitration must fall off the bus and allow the winning device to continue its data transmission. Once the winning device has completed its data transfer, the master can then initiate an additional read from the General Call address to retrieve the second slave’s data. In large systems this may require multiple reads by the master. Several protocols use this feature and the MSSP hardware incorporates a detection mechanism in the slave read to detect the condition and respond appropriately. In most designs, arbitration usually occurs very rarely, but it is a necessary process for proper multi-master support or even multi-slave systems that use General Call address reads. DS40001674F-page 145 PIC12LF1552 18.4 I2C MODE OPERATION All MSSP1 I2C communication is byte oriented and shifted out MSb first. Six SFR registers and two interrupt flags interface the module with the PIC® microcontroller and user software. Two pins, SDA and SCL, are exercised by the module to communicate with other external I2C devices. 18.4.1 BYTE FORMAT All communication in I2C is done in 9-bit segments. A byte is sent from a master to a slave or vice-versa, followed by an Acknowledge bit sent back. After the 8th falling edge of the SCL line, the device outputting data on the SDA changes that pin to an input and reads in an acknowledge value on the next clock pulse. The clock signal, SCL, is provided by the master. Data is valid to change while the SCL signal is low, and sampled on the rising edge of the clock. Changes on the SDA line while the SCL line is high define special conditions on the bus, explained below. 18.4.2 DEFINITION OF I2C TERMINOLOGY There is language and terminology in the description of I2C communication that have definitions specific to I2C. That word usage is defined below and may be used in the rest of this document without explanation. This table was adapted from the Philips I2C specification. 18.4.3 SDA AND SCL PINS Selection of any I2C mode with the SSPEN bit set, forces the SCL and SDA pins to be open-drain. These pins should be set by the user to inputs by setting the appropriate TRIS bits. Note: Data is tied to output zero when an I2C mode is enabled. 18.4.4 SDA HOLD TIME The hold time of the SDA pin is selected by the SDAHT bit of the SSPCON3 register. Hold time is the time SDA is held valid after the falling edge of SCL. Setting the SDAHT bit selects a longer 300 ns minimum hold time and may help on buses with large capacitance. DS40001674F-page 146 TABLE 18-2: TERM I2C BUS TERMS Description Transmitter The device which shifts data out onto the bus. Receiver The device which shifts data in from the bus. Master The device that initiates a transfer, generates clock signals and terminates a transfer. Slave The device addressed by the master. Multi-master A bus with more than one device that can initiate data transfers. Arbitration Procedure to ensure that only one master at a time controls the bus. Winning arbitration ensures that the message is not corrupted. Synchronization Procedure to synchronize the clocks of two or more devices on the bus. Idle No master is controlling the bus, and both SDA and SCL lines are high. Active Any time one or more master devices are controlling the bus. Addressed Slave device that has received a Slave matching address and is actively being clocked by a master. Matching Address byte that is clocked into a Address slave that matches the value stored in SSPADD. Write Request Slave receives a matching address with R/W bit clear, and is ready to clock in data. Read Request Master sends an address byte with the R/W bit set, indicating that it wishes to clock data out of the slave. This data is the next and all following bytes until a Restart or Stop. Clock Stretching When a device on the bus hold SCL low to stall communication. Bus Collision Any time the SDA line is sampled low by the module while it is outputting and expected high state.  2012-2016 Microchip Technology Inc. PIC12LF1552 18.4.5 START CONDITION 18.4.7 2 The I C specification defines a Start condition as a transition of SDA from a high to a low state while SCL line is high. A Start condition is always generated by the master and signifies the transition of the bus from an Idle to an Active state. Figure 18-12 shows wave forms for Start and Stop conditions. A Restart is valid any time that a Stop would be valid. A master can issue a Restart if it wishes to hold the bus after terminating the current transfer. A Restart has the same effect on the slave that a Start would, resetting all slave logic and preparing it to clock in an address. The master may want to address the same or another slave. Figure 18-13 shows the wave form for a Restart condition. A bus collision can occur on a Start condition if the module samples the SDA line low before asserting it low. This does not conform to the I2C Specification that states no bus collision can occur on a Start. 18.4.6 RESTART CONDITION In 10-bit Addressing Slave mode a Restart is required for the master to clock data out of the addressed slave. Once a slave has been fully addressed, matching both high and low address bytes, the master can issue a Restart and the high address byte with the R/W bit set. The slave logic will then hold the clock and prepare to clock out data. STOP CONDITION A Stop condition is a transition of the SDA line from low-to-high state while the SCL line is high. Note: At least one SCL low time must appear before a Stop is valid, therefore, if the SDA line goes low then high again while the SCL line stays high, only the Start condition is detected. After a full match with R/W clear in 10-bit mode, a prior match flag is set and maintained. Until a Stop condition, a high address with R/W clear, or high address match fails. 18.4.8 START/STOP CONDITION INTERRUPT MASKING The SCIE and PCIE bits of the SSPCON3 register can enable the generation of an interrupt in Slave modes that do not typically support this function. Slave modes where interrupt on Start and Stop detect are already enabled, these bits will have no effect. FIGURE 18-12: I2C START AND STOP CONDITIONS SDA SCL S Start P Change of Change of Data Allowed Data Allowed Condition FIGURE 18-13: Stop Condition I2C RESTART CONDITION Sr Change of Change of Data Allowed Restart Data Allowed Condition  2012-2016 Microchip Technology Inc. DS40001674F-page 147 PIC12LF1552 18.4.9 ACKNOWLEDGE SEQUENCE The 9th SCL pulse for any transferred byte in I2C is dedicated as an Acknowledge. It allows receiving devices to respond back to the transmitter by pulling the SDA line low. The transmitter must release control of the line during this time to shift in the response. The Acknowledge (ACK) is an active-low signal, pulling the SDA line low indicated to the transmitter that the device has received the transmitted data and is ready to receive more. The result of an ACK is placed in the ACKSTAT bit of the SSPCON2 register. Slave software, when the AHEN and DHEN bits are set, allow the user to set the ACK value sent back to the transmitter. The ACKDT bit of the SSPCON2 register is set/cleared to determine the response. Slave hardware will generate an ACK response if the AHEN and DHEN bits of the SSPCON3 register are clear. There are certain conditions where an ACK will not be sent by the slave. If the BF bit of the SSPSTAT register or the SSPOV bit of the SSPCON1 register are set when a byte is received. When the module is addressed, after the 8th falling edge of SCL on the bus, the ACKTIM bit of the SSPCON3 register is set. The ACKTIM bit indicates the acknowledge time of the active bus. The ACKTIM Status bit is only active when the AHEN bit or DHEN bit is enabled. 18.5 I2C SLAVE MODE OPERATION The MSSP1 Slave mode operates in one of four modes selected in the SSPM bits of SSPCON1 register. The modes can be divided into 7-bit and 10-bit Addressing mode. 10-bit Addressing modes operate the same as 7-bit with some additional overhead for handling the larger addresses. Modes with Start and Stop bit interrupts operate the same as the other modes with SSPIF additionally getting set upon detection of a Start, Restart, or Stop condition. 18.5.1 SLAVE MODE ADDRESSES The SSPADD register (Register 18-6) contains the Slave mode address. The first byte received after a Start or Restart condition is compared against the value stored in this register. If the byte matches, the value is loaded into the SSPBUF register and an interrupt is generated. If the value does not match, the module goes idle and no indication is given to the software that anything happened. The SSP Mask register (Register 18-5) affects the address matching process. See Section 18.5.9 “SSP Mask Register” for more information. 18.5.1.1 I2C Slave 7-Bit Addressing Mode In 7-bit Addressing mode, the LSb of the received data byte is ignored when determining if there is an address match. 18.5.1.2 I2C Slave 10-Bit Addressing Mode In 10-bit Addressing mode, the first received byte is compared to the binary value of ‘1 1 1 1 0 A9 A8 0’. A9 and A8 are the two MSb of the 10-bit address and stored in bits 2 and 1 of the SSPADD register. After the acknowledge of the high byte the UA bit is set and SCL is held low until the user updates SSPADD with the low address. The low address byte is clocked in and all eight bits are compared to the low address value in SSPADD. Even if there is not an address match; SSPIF and UA are set, and SCL is held low until SSPADD is updated to receive a high byte again. When SSPADD is updated the UA bit is cleared. This ensures the module is ready to receive the high address byte on the next communication. A high and low address match as a write request is required at the start of all 10-bit addressing communication. A transmission can be initiated by issuing a Restart once the slave is addressed, and clocking in the high address with the R/W bit set. The slave hardware will then acknowledge the read request and prepare to clock out data. This is only valid for a slave after it has received a complete high and low address byte match. DS40001674F-page 148  2012-2016 Microchip Technology Inc. PIC12LF1552 18.5.2 SLAVE RECEPTION When the R/W bit of a matching received address byte is clear, the R/W bit of the SSPSTAT register is cleared. The received address is loaded into the SSPBUF register and acknowledged. When the overflow condition exists for a received address, then not Acknowledge is given. An overflow condition is defined as either bit BF of the SSPSTAT register is set, or bit SSPOV of the SSPCON1 register is set. The BOEN bit of the SSPCON3 register modifies this operation. For more information see Register 18-4. An MSSP1 interrupt is generated for each transferred data byte. Flag bit, SSPIF, must be cleared by software. When the SEN bit of the SSPCON2 register is set, SCL will be held low (clock stretch) following each received byte. The clock must be released by setting the CKP bit of the SSPCON1 register, except sometimes in 10-bit mode. See Section 18.2.3 “SPI Master Mode” for more detail. 18.5.2.1 7-Bit Addressing Reception This section describes a standard sequence of events for the MSSP1 module configured as an I2C Slave in 7-bit Addressing mode. Figure 18-14 and Figure 18-15 are used as visual references for this description. This is a step by step process of what typically must be done to accomplish I2C communication. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. Start bit detected. S bit of SSPSTAT is set; SSPIF is set if interrupt on Start detect is enabled. Matching address with R/W bit clear is received. The slave pulls SDA low sending an ACK to the master, and sets SSPIF bit. Software clears the SSPIF bit. Software reads received address from SSPBUF clearing the BF flag. If SEN = 1; Slave software sets CKP bit to release the SCL line. The master clocks out a data byte. Slave drives SDA low sending an ACK to the master, and sets SSPIF bit. Software clears SSPIF. Software reads the received byte from SSPBUF clearing BF. Steps 8-12 are repeated for all received bytes from the Master. Master sends Stop condition, setting P bit of SSPSTAT, and the bus goes idle.  2012-2016 Microchip Technology Inc. 18.5.2.2 7-Bit Reception with AHEN and DHEN Slave device reception with AHEN and DHEN set operate the same as without these options with extra interrupts and clock stretching added after the 8th falling edge of SCL. These additional interrupts allow the slave software to decide whether it wants to ACK the receive address or data byte, rather than the hardware. This functionality adds support for PMBus™ that was not present on previous versions of this module. This list describes the steps that need to be taken by slave software to use these options for I2C communication. Figure 18-16 displays a module using both address and data holding. Figure 18-17 includes the operation with the SEN bit of the SSPCON2 register set. 1. S bit of SSPSTAT is set; SSPIF is set if interrupt on Start detect is enabled. 2. Matching address with R/W bit clear is clocked in. SSPIF is set and CKP cleared after the 8th falling edge of SCL. 3. Slave clears the SSPIF. 4. Slave can look at the ACKTIM bit of the SSPCON3 register to determine if the SSPIF was after or before the ACK. 5. Slave reads the address value from SSPBUF, clearing the BF flag. 6. Slave sets ACK value clocked out to the master by setting ACKDT. 7. Slave releases the clock by setting CKP. 8. SSPIF is set after an ACK, not after a NACK. 9. If SEN = 1 the slave hardware will stretch the clock after the ACK. 10. Slave clears SSPIF. Note: SSPIF is still set after the 9th falling edge of SCL even if there is no clock stretching and BF has been cleared. Only if NACK is sent to Master is SSPIF not set 11. SSPIF set and CKP cleared after 8th falling edge of SCL for a received data byte. 12. Slave looks at ACKTIM bit of SSPCON3 to determine the source of the interrupt. 13. Slave reads the received data from SSPBUF clearing BF. 14. Steps 7-14 are the same for each received data byte. 15. Communication is ended by either the slave sending an ACK = 1, or the master sending a Stop condition. If a Stop is sent and Interrupt-on-Stop Detect is disabled, the slave will only know by polling the P bit of the SSPSTAT register. DS40001674F-page 149 I2C SLAVE, 7-BIT ADDRESS, RECEPTION (SEN = 0, AHEN = 0, DHEN = 0) Bus Master sends Stop condition From Slave to Master Receiving Address SDA SCL S Receiving Data A7 A6 A5 A4 A3 A2 A1 1 2 3 4 5 6 7 ACK 8 9 Receiving Data D7 D6 D5 D4 D3 D2 D1 1 2 3 4 5 6 7 D0 ACK D7 8 9 1 ACK = 1 D6 D5 D4 D3 D2 D1 D0 2 3 4 5 6 7 8 9 P SSPIF Cleared by software Cleared by software BF SSPBUF is read First byte of data is available in SSPBUF SSPOV SSPOV set because SSPBUF is still full. ACK is not sent. SSPIF set on 9th falling edge of SCL PIC12LF1552 DS40001674F-page 150 FIGURE 18-14:  2012-2016 Microchip Technology Inc.  2012-2016 Microchip Technology Inc. I2C SLAVE, 7-BIT ADDRESS, RECEPTION (SEN = 1, AHEN = 0, DHEN = 0) FIGURE 18-15: Bus Master sends Stop condition Receive Address SDA SCL S Receive Data A7 A6 A5 A4 A3 A2 A1 1 2 3 4 5 6 7 R/W=0 ACK 8 9 SEN Receive Data D7 D6 D5 D4 D3 D2 D1 D0 ACK 1 2 3 4 5 6 7 8 9 SEN ACK D7 D6 D5 D4 D3 D2 D1 D0 1 2 3 4 5 6 7 8 9 P Clock is held low until CKP is set to ‘1’ SSPIF Cleared by software BF SSPBUF is read Cleared by software SSPIF set on 9th falling edge of SCL First byte of data is available in SSPBUF SSPOV SSPOV set because SSPBUF is still full. ACK is not sent. CKP CKP is written to 1 in software, releasing SCL SCL is not held low because ACK= 1 DS40001674F-page 151 PIC12LF1552 CKP is written to ‘1’ in software, releasing SCL I2C SLAVE, 7-BIT ADDRESS, RECEPTION (SEN = 0, AHEN = 1, DHEN = 1) Master sends Stop condition Master Releases SDA to slave for ACK sequence Receiving Address SDA Receiving Data ACK D7 D6 D5 D4 D3 D2 D1 D0 A7 A6 A5 A4 A3 A2 A1 Received Data ACK ACK=1 D7 D6 D5 D4 D3 D2 D1 D0 SCL S 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 P SSPIF If AHEN = 1: SSPIF is set BF ACKDT SSPIF is set on 9th falling edge of SCL, after ACK Address is read from SSBUF Data is read from SSPBUF Slave software clears ACKDT to CKP Slave software sets ACKDT to not ACK ACK the received byte When AHEN=1: CKP is cleared by hardware and SCL is stretched No interrupt after not ACK from Slave Cleared by software When DHEN=1: CKP is cleared by hardware on 8th falling edge of SCL CKP set by software, SCL is released ACKTIM  2012-2016 Microchip Technology Inc. ACKTIM set by hardware on 8th falling edge of SCL S P ACKTIM cleared by hardware in 9th rising edge of SCL ACKTIM set by hardware on 8th falling edge of SCL PIC12LF1552 DS40001674F-page 152 FIGURE 18-16:  2012-2016 Microchip Technology Inc. FIGURE 18-17: I2C SLAVE, 7-BIT ADDRESS, RECEPTION (SEN = 1, AHEN = 1, DHEN = 1) R/W = 0 Receiving Address SDA ACK A7 A6 A5 A4 A3 A2 A1 SCL S 1 2 3 4 5 6 7 Master sends Stop condition Master releases SDA to slave for ACK sequence 8 9 Receive Data 1 2 3 4 5 6 7 ACK Receive Data D7 D6 D5 D4 D3 D2 D1 D0 8 ACK 9 D7 D6 D5 D4 D3 D2 D1 D0 1 2 3 4 5 6 7 8 9 P SSPIF No interrupt after if not ACK from Slave Cleared by software BF Received address is loaded into SSPBUF Received data is available on SSPBUF ACKDT Slave software clears ACKDT to ACK the received byte SSPBUF can be read any time before next byte is loaded Slave sends not ACK CKP When AHEN = 1; on the 8th falling edge of SCL of an address byte, CKP is cleared ACKTIM ACKTIM is set by hardware on 8th falling edge of SCL DS40001674F-page 153 S P ACKTIM is cleared by hardware on 9th rising edge of SCL Set by software, release SCL CKP is not cleared if not ACK PIC12LF1552 When DHEN = 1; on the 8th falling edge of SCL of a received data byte, CKP is cleared PIC12LF1552 18.5.3 SLAVE TRANSMISSION 18.5.3.2 7-Bit Transmission When the R/W bit of the incoming address byte is set and an address match occurs, the R/W bit of the SSPSTAT register is set. The received address is loaded into the SSPBUF register, and an ACK pulse is sent by the slave on the ninth bit. A master device can transmit a read request to a slave, and then clock data out of the slave. The list below outlines what software for a slave will need to do to accomplish a standard transmission. Figure 18-18 can be used as a reference to this list. Following the ACK, slave hardware clears the CKP bit and the SCL pin is held low (see Section 18.5.6 “Clock Stretching” for more detail). By stretching the clock, the master will be unable to assert another clock pulse until the slave is done preparing the transmit data. 1. The transmit data must be loaded into the SSPBUF register which also loads the SSPSR register. Then the SCL pin should be released by setting the CKP bit of the SSPCON1 register. The eight data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SCL high time. The ACK pulse from the master-receiver is latched on the rising edge of the ninth SCL input pulse. This ACK value is copied to the ACKSTAT bit of the SSPCON2 register. If ACKSTAT is set (not ACK), then the data transfer is complete. In this case, when the not ACK is latched by the slave, the slave goes idle and waits for another occurrence of the Start bit. If the SDA line was low (ACK), the next transmit data must be loaded into the SSPBUF register. Again, the SCL pin must be released by setting bit CKP. An MSSP1 interrupt is generated for each data transfer byte. The SSPIF bit must be cleared by software and the SSPSTAT register is used to determine the status of the byte. The SSPIF bit is set on the falling edge of the ninth clock pulse. 18.5.3.1 Slave Mode Bus Collision A slave receives a Read request and begins shifting data out on the SDA line. If a bus collision is detected and the SBCDE bit of the SSPCON3 register is set, the BCLIF bit of the PIRx register is set. Once a bus collision is detected, the slave goes Idle and waits to be addressed again. User software can use the BCLIF bit to handle a slave bus collision. DS40001674F-page 154 Master sends a Start condition on SDA and SCL. 2. S bit of SSPSTAT is set; SSPIF is set if interrupt on Start detect is enabled. 3. Matching address with R/W bit set is received by the Slave setting SSPIF bit. 4. Slave hardware generates an ACK and sets SSPIF. 5. SSPIF bit is cleared by user. 6. Software reads the received address from SSPBUF, clearing BF. 7. R/W is set so CKP was automatically cleared after the ACK. 8. The slave software loads the transmit data into SSPBUF. 9. CKP bit is set releasing SCL, allowing the master to clock the data out of the slave. 10. SSPIF is set after the ACK response from the master is loaded into the ACKSTAT register. 11. SSPIF bit is cleared. 12. The slave software checks the ACKSTAT bit to see if the master wants to clock out more data. Note 1: If the master ACKs the clock will be stretched. 2: ACKSTAT is the only bit updated on the rising edge of SCL (9th) rather than the falling. 13. Steps 9-13 are repeated for each transmitted byte. 14. If the master sends a not ACK; the clock is not held, but SSPIF is still set. 15. The master sends a Restart condition or a Stop. 16. The slave is no longer addressed.  2012-2016 Microchip Technology Inc.  2012-2016 Microchip Technology Inc. FIGURE 18-18: I2C SLAVE, 7-BIT ADDRESS, TRANSMISSION (AHEN = 0) Master sends Stop condition Receiving Address SDA SCL S D7 D6 D5 D4 D3 D2 D1 D0 ACK D7 D6 D5 D4 D3 D2 D1 D0 1 1 1 2 3 4 5 6 7 8 9 Transmitting Data 2 3 4 5 6 Automatic ACK R/W = 1 Automatic A7 A6 A5 A4 A3 A2 A1 ACK 7 8 9 Transmitting Data 2 3 4 5 6 7 8 9 P SSPIF Cleared by software BF Received address is read from SSPBUF Data to transmit is loaded into SSPBUF BF is automatically cleared after 8th falling edge of SCL CKP When R/W is set SCL is always held low after 9th SCL falling edge Set by software CKP is not held for not ACK ACKSTAT Masters not ACK is copied to ACKSTAT R/W D/A DS40001674F-page 155 Indicates an address has been received S P PIC12LF1552 R/W is copied from the matching address byte PIC12LF1552 18.5.3.3 7-Bit Transmission with Address Hold Enabled Setting the AHEN bit of the SSPCON3 register enables additional clock stretching and interrupt generation after the 8th falling edge of a received matching address. Once a matching address has been clocked in, CKP is cleared and the SSPIF interrupt is set. Figure 18-19 displays a standard waveform of a 7-bit Address Slave Transmission with AHEN enabled. 1. 2. Bus starts Idle. Master sends Start condition; the S bit of SSPSTAT is set; SSPIF is set if interrupt on Start detect is enabled. 3. Master sends matching address with R/W bit set. After the 8th falling edge of the SCL line the CKP bit is cleared and SSPIF interrupt is generated. 4. Slave software clears SSPIF. 5. Slave software reads ACKTIM bit of SSPCON3 register, and R/W and D/A of the SSPSTAT register to determine the source of the interrupt. 6. Slave reads the address value from the SSPBUF register clearing the BF bit. 7. Slave software decides from this information if it wishes to ACK or not ACK and sets the ACKDT bit of the SSPCON2 register accordingly. 8. Slave sets the CKP bit releasing SCL. 9. Master clocks in the ACK value from the slave. 10. Slave hardware automatically clears the CKP bit and sets SSPIF after the ACK if the R/W bit is set. 11. Slave software clears SSPIF. 12. Slave loads value to transmit to the master into SSPBUF setting the BF bit. Note: SSPBUF cannot be loaded until after the ACK. 13. Slave sets CKP bit releasing the clock. 14. Master clocks out the data from the slave and sends an ACK value on the 9th SCL pulse. 15. Slave hardware copies the ACK value into the ACKSTAT bit of the SSPCON2 register. 16. Steps 10-15 are repeated for each byte transmitted to the master from the slave. 17. If the master sends a not ACK the slave releases the bus allowing the master to send a Stop and end the communication. Note: Master must send a not ACK on the last byte to ensure that the slave releases the SCL line to receive a Stop. DS40001674F-page 156  2012-2016 Microchip Technology Inc.  2012-2016 Microchip Technology Inc. FIGURE 18-19: I2C SLAVE, 7-BIT ADDRESS, TRANSMISSION (AHEN = 1) Master sends Stop condition Master releases SDA to slave for ACK sequence Receiving Address SDA SCL S 1 2 3 4 5 6 Automatic R/W = 1 ACK A7 A6 A5 A4 A3 A2 A1 7 8 9 Transmitting Data Automatic D7 D6 D5 D4 D3 D2 D1 D0 ACK D7 D6 D5 D4 D3 D2 D1 D0 1 1 2 3 4 5 6 7 8 9 Transmitting Data 2 3 4 5 6 7 ACK 8 9 P SSPIF Cleared by software BF Received address is read from SSPBUF Data to transmit is loaded into SSPBUF BF is automatically cleared after 8th falling edge of SCL ACKDT Slave clears ACKDT to ACK address ACKSTAT Master’s ACK response is copied to SSPSTAT CKP ACKTIM DS40001674F-page 157 R/W D/A ACKTIM is set on 8th falling edge of SCL When R/W = 1; CKP is always cleared after ACK Set by software, releases SCL ACKTIM is cleared on 9th rising edge of SCL CKP not cleared after not ACK PIC12LF1552 When AHEN = 1; CKP is cleared by hardware after receiving matching address. PIC12LF1552 18.5.4 SLAVE MODE 10-BIT ADDRESS RECEPTION This section describes a standard sequence of events for the MSSP1 module configured as an I2C Slave in 10-bit Addressing mode. Figure 18-20 is used as a visual reference for this description. This is a step by step process of what must be done by slave software to accomplish I2C communication. 1. 2. 3. 4. 5. 6. 7. 8. Bus starts Idle. Master sends Start condition; S bit of SSPSTAT is set; SSPIF is set if interrupt on Start detect is enabled. Master sends matching high address with R/W bit clear; UA bit of the SSPSTAT register is set. Slave sends ACK and SSPIF is set. Software clears the SSPIF bit. Software reads received address from SSPBUF clearing the BF flag. Slave loads low address into SSPADD, releasing SCL. Master sends matching low address byte to the Slave; UA bit is set. 18.5.5 10-BIT ADDRESSING WITH ADDRESS OR DATA HOLD Reception using 10-bit addressing with AHEN or DHEN set is the same as with 7-bit modes. The only difference is the need to update the SSPADD register using the UA bit. All functionality, specifically when the CKP bit is cleared and SCL line is held low are the same. Figure 18-21 can be used as a reference of a slave in 10-bit addressing with AHEN set. Figure 18-22 shows a standard waveform for a slave transmitter in 10-bit Addressing mode. Note: Updates to the SSPADD register are not allowed until after the ACK sequence. 9. Slave sends ACK and SSPIF is set. Note: If the low address does not match, SSPIF and UA are still set so that the slave software can set SSPADD back to the high address. BF is not set because there is no match. CKP is unaffected. 10. Slave clears SSPIF. 11. Slave reads the received matching address from SSPBUF clearing BF. 12. Slave loads high address into SSPADD. 13. Master clocks a data byte to the slave and clocks out the slaves ACK on the 9th SCL pulse; SSPIF is set. 14. If SEN bit of SSPCON2 is set, CKP is cleared by hardware and the clock is stretched. 15. Slave clears SSPIF. 16. Slave reads the received byte from SSPBUF clearing BF. 17. If SEN is set the slave sets CKP to release the SCL. 18. Steps 13-17 repeat for each received byte. 19. Master sends Stop to end the transmission. DS40001674F-page 158  2012-2016 Microchip Technology Inc.  2012-2016 Microchip Technology Inc. I2C SLAVE, 10-BIT ADDRESS, RECEPTION (SEN = 1, AHEN = 0, DHEN = 0) FIGURE 18-20: Master sends Stop condition Receive Second Address Byte Receive First Address Byte SDA SCL S 1 1 1 1 0 A9 A8 1 2 3 4 5 6 7 ACK 8 9 A7 A6 A5 A4 A3 A2 A1 A0 ACK 1 2 3 4 5 6 7 8 Receive Data Receive Data 9 D7 D6 D5 D4 D3 D2 D1 D0 ACK 1 2 3 4 5 6 7 8 9 D7 D6 D5 D4 D3 D2 D1 D0 ACK 1 2 3 4 5 6 7 8 9 P SCL is held low while CKP = 0 SSPIF Set by hardware on 9th falling edge Cleared by software If address matches SSPADD it is loaded into SSPBUF Receive address is read from SSPBUF BF Data is read from SSPBUF UA When UA = 1; SCL is held low Software updates SSPADD and releases SCL CKP DS40001674F-page 159 PIC12LF1552 Set by software, When SEN = 1; releasing SCL CKP is cleared after 9th falling edge of received byte Receive First Address Byte SDA SCL S Receive Second Address Byte R/W = 0 1 1 1 1 0 A9 A8 1 2 3 4 5 6 7 ACK 8 9 UA Receive Data A7 A6 A5 A4 A3 A2 A1 A0 ACK 1 2 3 4 5 6 7 8 9 UA Receive Data D7 D6 D5 D4 D3 D2 D1 1 2 3 4 5 6 7 D0 ACK D7 8 9 1 D6 D5 2 SSPIF Set by hardware on 9th falling edge Cleared by software Cleared by software BF SSPBUF can be read anytime before the next received byte Received data is read from SSPBUF ACKDT Slave software clears ACKDT to ACK the received byte UA  2012-2016 Microchip Technology Inc. Update to SSPADD is not allowed until 9th falling edge of SCL CKP If when AHEN = 1; on the 8th falling edge of SCL of an address byte, CKP is cleared ACKTIM ACKTIM is set by hardware on 8th falling edge of SCL Update of SSPADD, clears UA and releases SCL Set CKP with software releases SCL PIC12LF1552 DS40001674F-page 160 I2C SLAVE, 10-BIT ADDRESS, RECEPTION (SEN = 0, AHEN = 1, DHEN = 0) FIGURE 18-21:  2012-2016 Microchip Technology Inc. I2C SLAVE, 10-BIT ADDRESS, TRANSMISSION (SEN = 0, AHEN = 0, DHEN = 0) FIGURE 18-22: Master sends Restart event Receiving Address R/W = 0 1 1 1 1 0 A9 A8 ACK SDA SCL S 1 2 3 4 5 6 7 8 9 Master sends not ACK Receiving Second Address Byte Receive First Address Byte A7 A6 A5 A4 A3 A2 A1 A0 ACK 1 1 1 1 0 A9 A8 1 2 3 4 5 6 7 8 1 9 2 3 4 5 6 7 8 Transmitting Data Byte ACK 9 Master sends Stop condition ACK = 1 D7 D6 D5 D4 D3 D2 D1 D0 1 2 3 4 5 6 7 8 9 P Sr SSPIF Set by hardware Cleared by software Set by hardware BF SSPBUF loaded with received address Received address is read from SSPBUF Data to transmit is loaded into SSPBUF UA UA indicates SSPADD must be updated CKP After SSPADD is updated, UA is cleared and SCL is released High address is loaded back into SSPADD Set by software releases SCL Masters not ACK is copied DS40001674F-page 161 R/W R/W is copied from the matching address byte D/A Indicates an address has been received PIC12LF1552 When R/W = 1; CKP is cleared on 9th falling edge of SCL ACKSTAT PIC12LF1552 18.5.6 CLOCK STRETCHING 18.5.6.2 Clock stretching occurs when a device on the bus holds the SCL line low, effectively pausing communication. The slave may stretch the clock to allow more time to handle data or prepare a response for the master device. A master device is not concerned with stretching as anytime it is active on the bus and not transferring data, it is stretching. Any stretching done by a slave is invisible to the master software and handled by the hardware that generates SCL. The CKP bit of the SSPCON1 register is used to control stretching in software. Any time the CKP bit is cleared, the module will wait for the SCL line to go low and then hold it. Setting CKP will release SCL and allow more communication. 18.5.6.1 Normal Clock Stretching Following an ACK if the R/W bit of SSPSTAT is set, a read request, the slave hardware will clear CKP. This allows the slave time to update SSPBUF with data to transfer to the master. If the SEN bit of SSPCON2 is set, the slave hardware will always stretch the clock after the ACK sequence. Once the slave is ready; CKP is set by software and communication resumes. Note 1: The BF bit has no effect on if the clock will be stretched or not. This is different than previous versions of the module that would not stretch the clock, clear CKP, if SSPBUF was read before the 9th falling edge of SCL. 2: Previous versions of the module did not stretch the clock for a transmission if SSPBUF was loaded before the 9th falling edge of SCL. It is now always cleared for read requests. FIGURE 18-23: 10-Bit Addressing Mode In 10-bit Addressing mode, when the UA bit is set, the clock is always stretched. This is the only time the SCL is stretched without CKP being cleared. SCL is released immediately after a write to SSPADD. Note: Previous versions of the module did not stretch the clock if the second address byte did not match. 18.5.6.3 Byte NACKing When AHEN bit of SSPCON3 is set; CKP is cleared by hardware after the 8th falling edge of SCL for a received matching address byte. When DHEN bit of SSPCON3 is set; CKP is cleared after the 8th falling edge of SCL for received data. Stretching after the 8th falling edge of SCL allows the slave to look at the received address or data and decide if it wants to ACK the received data. 18.5.7 CLOCK SYNCHRONIZATION AND THE CKP BIT Any time the CKP bit is cleared, the module will wait for the SCL line to go low and then hold it. However, clearing the CKP bit will not assert the SCL output low until the SCL output is already sampled low. Therefore, the CKP bit will not assert the SCL line until an external I2C master device has already asserted the SCL line. The SCL output will remain low until the CKP bit is set and all other devices on the I2C bus have released SCL. This ensures that a write to the CKP bit will not violate the minimum high time requirement for SCL (see Figure 18-23). CLOCK SYNCHRONIZATION TIMING Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 SDA DX ‚ – 1 DX SCL CKP Master device asserts clock Master device releases clock WR SSPCON1 DS40001674F-page 162  2012-2016 Microchip Technology Inc. PIC12LF1552 18.5.8 GENERAL CALL ADDRESS SUPPORT software can read SSPBUF Figure 18-24 shows a general sequence. The addressing procedure for the I2C bus is such that the first byte after the Start condition usually determines which device will be the slave addressed by the master device. The exception is the general call address which can address all devices. When this address is used, all devices should, in theory, respond with an acknowledge. respond. reception In 10-bit Address mode, the UA bit will not be set on the reception of the general call address. The slave will prepare to receive the second byte as data, just as it would in 7-bit mode. If the AHEN bit of the SSPCON3 register is set, just as with any other address reception, the slave hardware will stretch the clock after the 8th falling edge of SCL. The slave must then set its ACKDT value and release the clock with communication progressing as it would normally. The general call address is a reserved address in the I2C protocol, defined as address 0x00. When the GCEN bit of the SSPCON2 register is set, the slave module will automatically ACK the reception of this address regardless of the value stored in SSPADD. After the slave clocks in an address of all zeros with the R/W bit clear, an interrupt is generated and slave FIGURE 18-24: and call SLAVE MODE GENERAL CALL ADDRESS SEQUENCE Address is compared to General Call Address after ACK, set interrupt R/W = 0 ACK D7 General Call Address SDA SCL S 1 2 3 4 5 6 7 8 9 1 Receiving Data ACK D6 D5 D4 D3 D2 D1 D0 2 3 4 5 6 7 8 9 SSPIF BF (SSPSTAT) Cleared by software GCEN (SSPCON2) SSPBUF is read ’1’ 18.5.9 SSP MASK REGISTER An SSP Mask (SSPMSK) register (Register 18-5) is available in I2C Slave mode as a mask for the value held in the SSPSR register during an address comparison operation. A zero (‘0’) bit in the SSPMSK register has the effect of making the corresponding bit of the received address a “don’t care”. This register is reset to all ‘1’s upon any Reset condition and, therefore, has no effect on standard SSP operation until written with a mask value. The SSP Mask register is active during: • 7-bit Address mode: address compare of A. • 10-bit Address mode: address compare of A only. The SSP mask has no effect during the reception of the first (high) byte of the address.  2012-2016 Microchip Technology Inc. DS40001674F-page 163 PIC12LF1552 18.6 I2C MASTER MODE Master mode is enabled by setting and clearing the appropriate SSPM bits in the SSPCON1 register and by setting the SSPEN bit. In Master mode, the SDA and SCK pins must be configured as inputs. The MSSP peripheral hardware will override the output driver TRIS controls when necessary to drive the pins low. Master mode of operation is supported by interrupt generation on the detection of the Start and Stop conditions. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSP1 module is disabled. Control of the I 2C bus may be taken when the P bit is set, or the bus is Idle. In Firmware Controlled Master mode, user code conducts all I 2C bus operations based on Start and Stop bit condition detection. Start and Stop condition detection is the only active circuitry in this mode. All other communication is done by the user software directly manipulating the SDA and SCL lines. The following events will cause the SSP Interrupt Flag bit, SSPIF, to be set (SSP interrupt, if enabled): • • • • • Start condition detected Stop condition detected Data transfer byte transmitted/received Acknowledge transmitted/received Repeated Start generated Note 1: The MSSP1 module, when configured in I2C Master mode, does not allow queueing of events. For instance, the user is not allowed to initiate a Start condition and immediately write the SSPBUF register to initiate transmission before the Start condition is complete. In this case, the SSPBUF will not be written to and the WCOL bit will be set, indicating that a write to the SSPBUF did not occur 2: When in Master mode, Start/Stop detection is masked and an interrupt is generated when the SEN/PEN bit is cleared and the generation is complete. DS40001674F-page 164 18.6.1 I2C MASTER MODE OPERATION The master device generates all of the serial clock pulses and the Start and Stop conditions. A transfer is ended with a Stop condition or with a Repeated Start condition. Since the Repeated Start condition is also the beginning of the next serial transfer, the I2C bus will not be released. In Master Transmitter mode, serial data is output through SDA, while SCL outputs the serial clock. The first byte transmitted contains the slave address of the receiving device (7 bits) and the Read/Write (R/W) bit. In this case, the R/W bit will be logic ‘0’. Serial data is transmitted eight bits at a time. After each byte is transmitted, an Acknowledge bit is received. Start and Stop conditions are output to indicate the beginning and the end of a serial transfer. In Master Receive mode, the first byte transmitted contains the slave address of the transmitting device (7 bits) and the R/W bit. In this case, the R/W bit will be logic ‘1’. Thus, the first byte transmitted is a 7-bit slave address followed by a ‘1’ to indicate the receive bit. Serial data is received via SDA, while SCL outputs the serial clock. Serial data is received eight bits at a time. After each byte is received, an Acknowledge bit is transmitted. Start and Stop conditions indicate the beginning and end of transmission. A Baud Rate Generator is used to set the clock frequency output on SCL. See Section 18.7 “Baud Rate Generator” for more detail. 18.6.2 CLOCK ARBITRATION Clock arbitration occurs when the master, during any receive, transmit or Repeated Start/Stop condition, releases the SCL pin (SCL allowed to float high). When the SCL pin is allowed to float high, the Baud Rate Generator (BRG) is suspended from counting until the SCL pin is actually sampled high. When the SCL pin is sampled high, the Baud Rate Generator is reloaded with the contents of SSPADD and begins counting. This ensures that the SCL high time will always be at least one BRG rollover count in the event that the clock is held low by an external device (Figure 18-25).  2012-2016 Microchip Technology Inc. PIC12LF1552 FIGURE 18-25: BAUD RATE GENERATOR TIMING WITH CLOCK ARBITRATION SDA DX ‚ – 1 DX SCL allowed to transition high SCL deasserted but slave holds SCL low (clock arbitration) SCL BRG decrements on Q2 and Q4 cycles BRG Value 03h 02h 01h 00h (hold off) 03h 02h SCL is sampled high, reload takes place and BRG starts its count BRG Reload 18.6.3 WCOL STATUS FLAG Start condition and causes the S bit of the SSPSTAT1 register to be set. Following this, the Baud Rate Generator is reloaded with the contents of SSPADD and resumes its count. When the Baud Rate Generator times out (TBRG), the SEN bit of the SSPCON2 register will be automatically cleared by hardware; the Baud Rate Generator is suspended, leaving the SDA line held low and the Start condition is complete. If the user writes the SSPBUF when a Start, Restart, Stop, Receive or Transmit sequence is in progress, the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur). Any time the WCOL bit is set it indicates that an action on SSPBUF was attempted while the module was not Idle. Note: 18.6.4 Because queuing of events is not allowed, writing to the lower five bits of SSPCON2 is disabled until the Start condition is complete. Note 1: If at the beginning of the Start condition, the SDA and SCL pins are already sampled low, or if during the Start condition, the SCL line is sampled low before the SDA line is driven low, a bus collision occurs, the Bus Collision Interrupt Flag, BCLIF, is set, the Start condition is aborted and the I2C module is reset into its Idle state. I2C MASTER MODE START CONDITION TIMING To initiate a Start condition (Figure 18-26), the user sets the Start Enable bit, SEN bit of the SSPCON2 register. If the SDA and SCL pins are sampled high, the Baud Rate Generator is reloaded with the contents of SSPADD and starts its count. If SCL and SDA are both sampled high when the Baud Rate Generator times out (TBRG), the SDA pin is driven low. The action of the SDA being driven low while SCL is high is the FIGURE 18-26: 2: The Philips I2C Specification states that a bus collision cannot occur on a Start. FIRST START BIT TIMING Write to SEN bit occurs here Set S bit (SSPSTAT) At completion of Start bit, hardware clears SEN bit and sets SSPIF bit SDA = 1, SCL = 1 TBRG TBRG Write to SSPBUF occurs here SDA 1st bit 2nd bit TBRG SCL S  2012-2016 Microchip Technology Inc. TBRG DS40001674F-page 165 PIC12LF1552 18.6.5 I2C MASTER MODE REPEATED START CONDITION TIMING SSPCON2 register will be automatically cleared and the Baud Rate Generator will not be reloaded, leaving the SDA pin held low. As soon as a Start condition is detected on the SDA and SCL pins, the S bit of the SSPSTAT register will be set. The SSPIF bit will not be set until the Baud Rate Generator has timed out. A Repeated Start condition (Figure 18-27) occurs when the RSEN bit of the SSPCON2 register is programmed high and the master state machine is no longer active. When the RSEN bit is set, the SCL pin is asserted low. When the SCL pin is sampled low, the Baud Rate Generator is loaded and begins counting. The SDA pin is released (brought high) for one Baud Rate Generator count (TBRG). When the Baud Rate Generator times out, if SDA is sampled high, the SCL pin will be deasserted (brought high). When SCL is sampled high, the Baud Rate Generator is reloaded and begins counting. SDA and SCL must be sampled high for one TBRG. This action is then followed by assertion of the SDA pin (SDA = 0) for one TBRG while SCL is high. SCL is asserted low. Following this, the RSEN bit of the FIGURE 18-27: Note 1: If RSEN is programmed while any other event is in progress, it will not take effect. 2: A bus collision during the Repeated Start condition occurs if: • SDA is sampled low when SCL goes from low-to-high. • SCL goes low before SDA is asserted low. This may indicate that another master is attempting to transmit a data ‘1’. REPEAT START CONDITION WAVEFORM S bit set by hardware Write to SSPCON2 occurs here SDA = 1, SCL (no change) At completion of Start bit, hardware clears RSEN bit and sets SSPIF SDA = 1, SCL = 1 TBRG TBRG TBRG 1st bit SDA Write to SSPBUF occurs here TBRG SCL Sr TBRG Repeated Start 18.6.6 I2C MASTER MODE TRANSMISSION Transmission of a data byte, a 7-bit address or the other half of a 10-bit address is accomplished by simply writing a value to the SSPBUF register. This action will set the Buffer Full flag bit, BF and allow the Baud Rate Generator to begin counting and start the next transmission. Each bit of address/data will be shifted out onto the SDA pin after the falling edge of SCL is asserted. SCL is held low for one Baud Rate Generator rollover count (TBRG). Data should be valid before SCL is released high. When the SCL pin is released high, it is held that way for TBRG. The data on the SDA pin must remain stable for that duration and some hold time after the next falling edge of SCL. After the eighth bit is shifted out (the falling edge of the eighth clock), the BF flag is cleared and the master releases SDA. This allows the slave device being addressed to respond with an ACK bit during the ninth bit time if an address match occurred, or if data was received properly. The status of ACK is written into the DS40001674F-page 166 ACKSTAT bit on the rising edge of the ninth clock. If the master receives an Acknowledge, the Acknowledge Status bit, ACKSTAT, is cleared. If not, the bit is set. After the ninth clock, the SSPIF bit is set and the master clock (Baud Rate Generator) is suspended until the next data byte is loaded into the SSPBUF, leaving SCL low and SDA unchanged (Figure 18-28). After the write to the SSPBUF, each bit of the address will be shifted out on the falling edge of SCL until all seven address bits and the R/W bit are completed. On the falling edge of the eighth clock, the master will release the SDA pin, allowing the slave to respond with an Acknowledge. On the falling edge of the ninth clock, the master will sample the SDA pin to see if the address was recognized by a slave. The status of the ACK bit is loaded into the ACKSTAT Status bit of the SSPCON2 register. Following the falling edge of the ninth clock transmission of the address, the SSPIF is set, the BF flag is cleared and the Baud Rate Generator is turned off until another write to the SSPBUF takes place, holding SCL low and allowing SDA to float.  2012-2016 Microchip Technology Inc. PIC12LF1552 18.6.6.1 BF Status Flag In Transmit mode, the BF bit of the SSPSTAT register is set when the CPU writes to SSPBUF and is cleared when all eight bits are shifted out. 18.6.6.2 WCOL Status Flag If the user writes the SSPBUF when a transmit is already in progress (i.e., SSPSR is still shifting out a data byte), the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur). WCOL must be cleared by software before the next transmission. 18.6.6.3 ACKSTAT Status Flag In Transmit mode, the ACKSTAT bit of the SSPCON2 register is cleared when the slave has sent an Acknowledge (ACK = 0) and is set when the slave does not Acknowledge (ACK = 1). A slave sends an Acknowledge when it has recognized its address (including a general call), or when the slave has properly received its data. 18.6.6.4 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. Typical Transmit Sequence The user generates a Start condition by setting the SEN bit of the SSPCON2 register. SSPIF is set by hardware on completion of the Start. SSPIF is cleared by software. The MSSP1 module will wait the required start time before any other operation takes place. The user loads the SSPBUF with the slave address to transmit. Address is shifted out the SDA pin until all eight bits are transmitted. Transmission begins as soon as SSPBUF is written to. The MSSP1 module shifts in the ACK bit from the slave device and writes its value into the ACKSTAT bit of the SSPCON2 register. The MSSP1 module generates an interrupt at the end of the ninth clock cycle by setting the SSPIF bit. The user loads the SSPBUF with eight bits of data. Data is shifted out the SDA pin until all eight bits are transmitted. The MSSP1 module shifts in the ACK bit from the slave device and writes its value into the ACKSTAT bit of the SSPCON2 register. Steps 8-11 are repeated for all transmitted data bytes. The user generates a Stop or Restart condition by setting the PEN or RSEN bits of the SSPCON2 register. Interrupt is generated once the Stop/Restart condition is complete.  2012-2016 Microchip Technology Inc. DS40001674F-page 167 I2C MASTER MODE WAVEFORM (TRANSMISSION, 7 OR 10-BIT ADDRESS) Write SSPCON2 SEN = 1 Start condition begins SEN = 0 Transmit Address to Slave SDA A7 A6 A5 A4 ACKSTAT in SSPCON2 = 1 From slave, clear ACKSTAT bit SSPCON2 A3 A2 Transmitting Data or Second Half of 10-bit Address R/W = 0 A1 ACK = 0 ACK D7 D6 D5 D4 D3 D2 D1 D0 1 SCL held low while CPU responds to SSPIF 2 3 4 5 6 7 8 SSPBUF written with 7-bit address and R/W start transmit SCL S 1 2 3 4 5 6 7 8 9 9 P SSPIF Cleared by software Cleared by software service routine from SSP interrupt BF (SSPSTAT) SSPBUF written SEN After Start condition, SEN cleared by hardware PEN R/W SSPBUF is written by software Cleared by software PIC12LF1552 DS40001674F-page 168 FIGURE 18-28:  2012-2016 Microchip Technology Inc. PIC12LF1552 18.6.7 I2C MASTER MODE RECEPTION Master mode reception (Figure 18-29) is enabled by programming the Receive Enable bit, RCEN bit of the SSPCON2 register. Note: The MSSP1 module must be in an Idle state before the RCEN bit is set or the RCEN bit will be disregarded. The Baud Rate Generator begins counting and on each rollover, the state of the SCL pin changes (high-to-low/low-to-high) and data is shifted into the SSPSR. After the falling edge of the eighth clock, the receive enable flag is automatically cleared, the contents of the SSPSR are loaded into the SSPBUF, the BF flag bit is set, the SSPIF flag bit is set and the Baud Rate Generator is suspended from counting, holding SCL low. The MSSP1 is now in Idle state awaiting the next command. When the buffer is read by the CPU, the BF flag bit is automatically cleared. The user can then send an Acknowledge bit at the end of reception by setting the Acknowledge Sequence Enable, ACKEN bit of the SSPCON2 register. 18.6.7.1 BF Status Flag In receive operation, the BF bit is set when an address or data byte is loaded into SSPBUF from SSPSR. It is cleared when the SSPBUF register is read. 18.6.7.2 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. SSPOV Status Flag In receive operation, the SSPOV bit is set when eight bits are received into the SSPSR and the BF flag bit is already set from a previous reception. 18.6.7.3 18.6.7.4 WCOL Status Flag If the user writes the SSPBUF when a receive is already in progress (i.e., SSPSR is still shifting in a data byte), the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur).  2012-2016 Microchip Technology Inc. 12. 13. 14. 15. Typical Receive Sequence The user generates a Start condition by setting the SEN bit of the SSPCON2 register. SSPIF is set by hardware on completion of the Start. SSPIF is cleared by software. User writes SSPBUF with the slave address to transmit and the R/W bit set. Address is shifted out the SDA pin until all eight bits are transmitted. Transmission begins as soon as SSPBUF is written to. The MSSP1 module shifts in the ACK bit from the slave device and writes its value into the ACKSTAT bit of the SSPCON2 register. The MSSP1 module generates an interrupt at the end of the ninth clock cycle by setting the SSPIF bit. User sets the RCEN bit of the SSPCON2 register and the Master clocks in a byte from the slave. After the 8th falling edge of SCL, SSPIF and BF are set. User clears SSPIF and reads the received byte from SSPBUF, which clears the BF flag. User either clears the SSPCON2 ACKDT bit to receive another byte or sets the ACKDT bit to suppress further data and then initiates the acknowledge sequence by setting the ACKEN bit. Master’s ACK or not ACK is clocked out to the slave and SSPIF is set. User clears SSPIF. Steps 8-13 are repeated for each received byte from the slave. If the ACKDT bit was set in step 11, then the user can send a Stop to release the bus. DS40001674F-page 169 Write to SSPCON2 to start Acknowledge sequence SDA = ACKDT (SSPCON2) = 0 Write to SSPCON2 (SEN = 1), begin Start condition SEN = 0 Write to SSPBUF occurs here, start XMIT Transmit Address to Slave A7 SDA A6 A5 A4 A3 A2 RCEN = 1, start next receive RCEN cleared automatically ACK from Slave ACK PEN bit = 1 written here RCEN cleared automatically Receiving Data from Slave Receiving Data from Slave A1 R/W Set ACKEN, start Acknowledge sequence SDA = ACKDT = 1 ACK from Master SDA = ACKDT = 0 Master configured as a receiver by programming SSPCON2 (RCEN = 1) D7 D6 D5 D4 D3 D2 D1 ACK D0 D7 D6 D5 D4 D3 D2 D1 D0 ACK Bus master terminates transfer ACK is not sent SCL S 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 Data shifted in on falling edge of CLK Set SSPIF interrupt at end of receive Cleared by software Cleared by software Cleared by software BF (SSPSTAT) P Set SSPIF at end of receive Set SSPIF interrupt at end of Acknowledge sequence SSPIF SDA = 0, SCL = 1 while CPU responds to SSPIF 9 8 Cleared by software Cleared in software Last bit is shifted into SSPSR and contents are unloaded into SSPBUF SSPOV SSPOV is set because SSPBUF is still full  2012-2016 Microchip Technology Inc. ACKEN RCEN Master configured as a receiver by programming SSPCON2 (RCEN = 1) RCEN cleared automatically ACK from Master SDA = ACKDT = 0 RCEN cleared automatically Set SSPIF interrupt at end of Acknowledge sequence Set P bit (SSPSTAT) and SSPIF PIC12LF1552 DS40001674F-page 170 I2C MASTER MODE WAVEFORM (RECEPTION, 7-BIT ADDRESS) FIGURE 18-29: PIC12LF1552 18.6.8 ACKNOWLEDGE SEQUENCE TIMING 18.6.9 A Stop bit is asserted on the SDA pin at the end of a receive/transmit by setting the Stop Sequence Enable bit, PEN bit of the SSPCON2 register. At the end of a receive/transmit, the SCL line is held low after the falling edge of the ninth clock. When the PEN bit is set, the master will assert the SDA line low. When the SDA line is sampled low, the Baud Rate Generator is reloaded and counts down to ‘0’. When the Baud Rate Generator times out, the SCL pin will be brought high and one TBRG (Baud Rate Generator rollover count) later, the SDA pin will be deasserted. When the SDA pin is sampled high while SCL is high, the P bit of the SSPSTAT register is set. A TBRG later, the PEN bit is cleared and the SSPIF bit is set (Figure 18-31). An Acknowledge sequence is enabled by setting the Acknowledge Sequence Enable bit, ACKEN bit of the SSPCON2 register. When this bit is set, the SCL pin is pulled low and the contents of the Acknowledge data bit are presented on the SDA pin. If the user wishes to generate an Acknowledge, then the ACKDT bit should be cleared. If not, the user should set the ACKDT bit before starting an Acknowledge sequence. The Baud Rate Generator then counts for one rollover period (TBRG) and the SCL pin is deasserted (pulled high). When the SCL pin is sampled high (clock arbitration), the Baud Rate Generator counts for TBRG. The SCL pin is then pulled low. Following this, the ACKEN bit is automatically cleared, the Baud Rate Generator is turned off and the MSSP1 module then goes into Idle mode (Figure 18-30). 18.6.8.1 18.6.9.1 WCOL Status Flag If the user writes the SSPBUF when a Stop sequence is in progress, then the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur). WCOL Status Flag If the user writes the SSPBUF when an Acknowledge sequence is in progress, then the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur). FIGURE 18-30: STOP CONDITION TIMING ACKNOWLEDGE SEQUENCE WAVEFORM Acknowledge sequence starts here, write to SSPCON2 ACKEN = 1, ACKDT = 0 ACKEN automatically cleared TBRG TBRG SDA D0 SCL ACK 8 9 SSPIF SSPIF set at the end of receive Cleared in software Cleared in software SSPIF set at the end of Acknowledge sequence Note: TBRG = one Baud Rate Generator period.  2012-2016 Microchip Technology Inc. DS40001674F-page 171 PIC12LF1552 FIGURE 18-31: STOP CONDITION RECEIVE OR TRANSMIT MODE SCL = 1 for TBRG, followed by SDA = 1 for TBRG after SDA sampled high. P bit (SSPSTAT) is set. Write to SSPCON2, set PEN PEN bit (SSPCON2) is cleared by hardware and the SSPIF bit is set Falling edge of 9th clock TBRG SCL SDA ACK P TBRG TBRG TBRG SCL brought high after TBRG SDA asserted low before rising edge of clock to setup Stop condition Note: TBRG = one Baud Rate Generator period. 18.6.10 SLEEP OPERATION 2 While in Sleep mode, the I C slave module can receive addresses or data and when an address match or complete byte transfer occurs, wake the processor from Sleep (if the MSSP1 interrupt is enabled). 18.6.11 EFFECTS OF A RESET A Reset disables the MSSP1 module and terminates the current transfer. 18.6.12 MULTI-MASTER MODE In Multi-Master mode, the interrupt generation on the detection of the Start and Stop conditions allows the determination of when the bus is free. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSP1 module is disabled. Control of the I 2C bus may be taken when the P bit of the SSPSTAT register is set, or the bus is Idle, with both the S and P bits clear. When the bus is busy, enabling the SSP interrupt will generate the interrupt when the Stop condition occurs. In multi-master operation, the SDA line must be monitored for arbitration to see if the signal level is the expected output level. This check is performed by hardware with the result placed in the BCLIF bit. The states where arbitration can be lost are: • • • • • Address Transfer Data Transfer A Start Condition A Repeated Start Condition An Acknowledge Condition 18.6.13 MULTI-MASTER COMMUNICATION, BUS COLLISION AND BUS ARBITRATION Multi-Master mode support is achieved by bus arbitration. When the master outputs address/data bits onto the SDA pin, arbitration takes place when the master outputs a ‘1’ on SDA, by letting SDA float high and another master asserts a ‘0’. When the SCL pin floats high, data should be stable. If the expected data on SDA is a ‘1’ and the data sampled on the SDA pin is ‘0’, then a bus collision has taken place. The master will set the Bus Collision Interrupt Flag, BCLIF and reset the I2C port to its Idle state (Figure 18-32). If a transmit was in progress when the bus collision occurred, the transmission is halted, the BF flag is cleared, the SDA and SCL lines are deasserted and the SSPBUF can be written to. When the user services the bus collision Interrupt Service Routine and if the I2C bus is free, the user can resume communication by asserting a Start condition. If a Start, Repeated Start, Stop or Acknowledge condition was in progress when the bus collision occurred, the condition is aborted, the SDA and SCL lines are deasserted and the respective control bits in the SSPCON2 register are cleared. When the user services the bus collision Interrupt Service Routine and if the I2C bus is free, the user can resume communication by asserting a Start condition. The master will continue to monitor the SDA and SCL pins. If a Stop condition occurs, the SSPIF bit will be set. A write to the SSPBUF will start the transmission of data at the first data bit, regardless of where the transmitter left off when the bus collision occurred. In Multi-Master mode, the interrupt generation on the detection of Start and Stop conditions allows the determination of when the bus is free. Control of the I2C bus can be taken when the P bit is set in the SSPSTAT register, or the bus is Idle and the S and P bits are cleared. DS40001674F-page 172  2012-2016 Microchip Technology Inc. PIC12LF1552 FIGURE 18-32: BUS COLLISION TIMING FOR TRANSMIT AND ACKNOWLEDGE Data changes while SCL = 0 SDA line pulled low by another source SDA released by master Sample SDA. While SCL is high, data does not match what is driven by the master. Bus collision has occurred. SDA SCL Set bus collision interrupt (BCLIF) BCLIF 18.6.13.1 Bus Collision During a Start Condition During a Start condition, a bus collision occurs if: a) b) SDA or SCL are sampled low at the beginning of the Start condition (Figure 18-33). SCL is sampled low before SDA is asserted low (Figure 18-34). During a Start condition, both the SDA and the SCL pins are monitored. If the SDA pin is already low, or the SCL pin is already low, then all of the following occur: • the Start condition is aborted, • the BCLIF flag is set and • the MSSP1 module is reset to its Idle state (Figure 18-33). counts down to zero; if the SCL pin is sampled as ‘0’ during this time, a bus collision does not occur. At the end of the BRG count, the SCL pin is asserted low. Note: The reason that bus collision is not a factor during a Start condition is that no two bus masters can assert a Start condition at the exact same time. Therefore, one master will always assert SDA before the other. This condition does not cause a bus collision because the two masters must be allowed to arbitrate the first address following the Start condition. If the address is the same, arbitration must be allowed to continue into the data portion, Repeated Start or Stop conditions. The Start condition begins with the SDA and SCL pins deasserted. When the SDA pin is sampled high, the Baud Rate Generator is loaded and counts down. If the SCL pin is sampled low while SDA is high, a bus collision occurs because it is assumed that another master is attempting to drive a data ‘1’ during the Start condition. If the SDA pin is sampled low during this count, the BRG is reset and the SDA line is asserted early (Figure 18-35). If, however, a ‘1’ is sampled on the SDA pin, the SDA pin is asserted low at the end of the BRG count. The Baud Rate Generator is then reloaded and  2012-2016 Microchip Technology Inc. DS40001674F-page 173 PIC12LF1552 FIGURE 18-33: BUS COLLISION DURING START CONDITION (SDA ONLY) SDA goes low before the SEN bit is set. Set BCLIF, S bit and SSPIF set because SDA = 0, SCL = 1. SDA SCL Set SEN, enable Start condition if SDA = 1, SCL = 1 SEN cleared automatically because of bus collision. SSP module reset into Idle state. SEN SDA sampled low before Start condition. Set BCLIF. S bit and SSPIF set because SDA = 0, SCL = 1. BCLIF SSPIF and BCLIF are cleared by software S SSPIF SSPIF and BCLIF are cleared by software FIGURE 18-34: BUS COLLISION DURING START CONDITION (SCL = 0) SDA = 0, SCL = 1 TBRG TBRG SDA Set SEN, enable Start sequence if SDA = 1, SCL = 1 SCL SCL = 0 before SDA = 0, bus collision occurs. Set BCLIF. SEN SCL = 0 before BRG time-out, bus collision occurs. Set BCLIF. BCLIF Interrupt cleared by software S ’0’ ’0’ SSPIF ’0’ ’0’ DS40001674F-page 174  2012-2016 Microchip Technology Inc. PIC12LF1552 FIGURE 18-35: BRG RESET DUE TO SDA ARBITRATION DURING START CONDITION SDA = 0, SCL = 1 Set S Less than TBRG SDA Set SSPIF TBRG SDA pulled low by other master. Reset BRG and assert SDA. SCL S SCL pulled low after BRG time-out SEN BCLIF Set SEN, enable Start sequence if SDA = 1, SCL = 1 ’0’ S SSPIF SDA = 0, SCL = 1, set SSPIF  2012-2016 Microchip Technology Inc. Interrupts cleared by software DS40001674F-page 175 PIC12LF1552 18.6.13.2 Bus Collision During a Repeated Start Condition If SDA is low, a bus collision has occurred (i.e., another master is attempting to transmit a data ‘0’, Figure 18-36). If SDA is sampled high, the BRG is reloaded and begins counting. If SDA goes from high-to-low before the BRG times out, no bus collision occurs because no two masters can assert SDA at exactly the same time. During a Repeated Start condition, a bus collision occurs if: a) b) A low level is sampled on SDA when SCL goes from low level to high level (Case 1). SCL goes low before SDA is asserted low, indicating that another master is attempting to transmit a data ‘1’ (Case 2). If SCL goes from high-to-low before the BRG times out and SDA has not already been asserted, a bus collision occurs. In this case, another master is attempting to transmit a data ‘1’ during the Repeated Start condition, see Figure 18-37. When the user releases SDA and the pin is allowed to float high, the BRG is loaded with SSPADD and counts down to zero. The SCL pin is then deasserted and when sampled high, the SDA pin is sampled. FIGURE 18-36: If, at the end of the BRG time-out, both SCL and SDA are still high, the SDA pin is driven low and the BRG is reloaded and begins counting. At the end of the count, regardless of the status of the SCL pin, the SCL pin is driven low and the Repeated Start condition is complete. BUS COLLISION DURING A REPEATED START CONDITION (CASE 1) SDA SCL Sample SDA when SCL goes high. If SDA = 0, set BCLIF and release SDA and SCL. RSEN BCLIF Cleared by software S ’0’ SSPIF ’0’ FIGURE 18-37: BUS COLLISION DURING REPEATED START CONDITION (CASE 2) TBRG TBRG SDA SCL BCLIF SCL goes low before SDA, set BCLIF. Release SDA and SCL. Interrupt cleared by software RSEN S ’0’ SSPIF DS40001674F-page 176  2012-2016 Microchip Technology Inc. PIC12LF1552 18.6.13.3 Bus Collision During a Stop Condition The Stop condition begins with SDA asserted low. When SDA is sampled low, the SCL pin is allowed to float. When the pin is sampled high (clock arbitration), the Baud Rate Generator is loaded with SSPADD and counts down to 0. After the BRG times out, SDA is sampled. If SDA is sampled low, a bus collision has occurred. This is due to another master attempting to drive a data ‘0’ (Figure 18-38). If the SCL pin is sampled low before SDA is allowed to float high, a bus collision occurs. This is another case of another master attempting to drive a data ‘0’ (Figure 18-39). Bus collision occurs during a Stop condition if: a) b) After the SDA pin has been deasserted and allowed to float high, SDA is sampled low after the BRG has timed out (Case 1). After the SCL pin is deasserted, SCL is sampled low before SDA goes high (Case 2). FIGURE 18-38: BUS COLLISION DURING A STOP CONDITION (CASE 1) TBRG TBRG TBRG SDA SDA sampled low after TBRG, set BCLIF SDA asserted low SCL PEN BCLIF P ’0’ SSPIF ’0’ FIGURE 18-39: BUS COLLISION DURING A STOP CONDITION (CASE 2) TBRG TBRG TBRG SDA Assert SDA SCL SCL goes low before SDA goes high, set BCLIF PEN BCLIF P ’0’ SSPIF ’0’  2012-2016 Microchip Technology Inc. DS40001674F-page 177 PIC12LF1552 TABLE 18-3: Name SUMMARY OF REGISTERS ASSOCIATED WITH I2C OPERATION Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset Values on Page: GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 57 PIE1 — ADIE — — SSPIE — — — 58 PIE2 — — — — BCLIE — — — 59 PIR1 — ADIF — — SSPIF — — — 60 PIR2 — — — — BCLIF — — — INTCON SSPADD SSPBUF SSPCON1 ADD 61 185 MSSP1 Receive Buffer/Transmit Register 137* WCOL SSPOV SSPEN CKP SSPCON2 GCEN ACKSTAT ACKDT ACKEN RCEN PEN RSEN SEN 183 SSPCON3 ACKTIM PCIE SCIE BOEN SDAHT SBCDE AHEN DHEN 184 SSPMSK SSPSTAT TRISA Legend: * Note 1: SSPM 182 MSK 185 SMP CKE D/A P S R/W UA BF 181 — — TRISA5 TRISA4 —(1) TRISA2 TRISA1 TRISA0 87 — = unimplemented location, read as ‘0’. Shaded cells are not used by the MSSP module in I2C mode. Page provides register information. Unimplemented, read as ‘1’. DS40001674F-page 178  2012-2016 Microchip Technology Inc. PIC12LF1552 18.7 BAUD RATE GENERATOR The MSSP1 module has a Baud Rate Generator available for clock generation in both I2C and SPI Master modes. The Baud Rate Generator (BRG) reload value is placed in the SSPADD register (Register 18-6). When a write occurs to SSPBUF, the Baud Rate Generator will automatically begin counting down. clock line. The logic dictating when the reload signal is asserted depends on the mode the MSSP1 is being operated in. Table 18-4 demonstrates clock rates based on instruction cycles and the BRG value loaded into SSPADD. EQUATION 18-1: Once the given operation is complete, the internal clock will automatically stop counting and the clock pin will remain in its last state. FOSC FCLOCK = ------------------------------------------------ SSPxADD + 1   4  An internal signal “Reload” in Figure 18-40 triggers the value from SSPADD to be loaded into the BRG counter. This occurs twice for each oscillation of the module FIGURE 18-40: BAUD RATE GENERATOR BLOCK DIAGRAM SSPM SSPM Reload SCL Control SSPxCLK SSPADD Reload BRG Down Counter FOSC/2 Note: Values of 0x00, 0x01 and 0x02 are not valid for SSPADD when used as a Baud Rate Generator for I2C. This is an implementation limitation. TABLE 18-4: Note 1: 2: MSSP1 CLOCK RATE W/BRG FOSC FCY BRG Value FCLOCK (2 Rollovers of BRG) 32 MHz 8 MHz 13h 400 kHz(1) 32 MHz 8 MHz 19h 308 kHz 32 MHz 8 MHz 4Fh 100 kHz 16 MHz 4 MHz 09h 400 kHz(1) 16 MHz 4 MHz 0Ch 308 kHz 16 MHz 4 MHz 27h 100 kHz 4 MHz 1 MHz 09h 100 kHz Refer to the I/O port electrical and timing specifications in Table 21-3 and Figure 21-5 to ensure the system is designed to support the I/O timing requirements. The I2C interface does not conform to the 400 kHz I2C specification (which applies to rates greater than 100 kHz) in all details, but may be used with care where higher rates are required by the application.  2012-2016 Microchip Technology Inc. DS40001674F-page 179 PIC12LF1552 18.7.1 ALTERNATE PIN LOCATIONS This module incorporates I/O pins that can be moved to other locations with the use of the alternate pin function register, APFCON. To determine which pins can be moved and what their default locations are upon a Reset, see Section 11.1 “Alternate Pin Function” for more information. DS40001674F-page 180  2012-2016 Microchip Technology Inc. PIC12LF1552 18.8 Register Definitions: MSSP Control REGISTER 18-1: SSPSTAT: SSP STATUS REGISTER R/W-0/0 R/W-0/0 R-0/0 R-0/0 R-0/0 R-0/0 R-0/0 R-0/0 SMP CKE D/A P S R/W UA BF bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7 SMP: SPI Data Input Sample bit SPI Master mode: 1 = Input data sampled at end of data output time 0 = Input data sampled at middle of data output time SPI Slave mode: SMP must be cleared when SPI is used in Slave mode In I2 C Master or Slave mode: 1 = Slew rate control disabled for Standard Speed mode (100 kHz and 1 MHz) 0 = Slew rate control enabled for High Speed mode (400 kHz) bit 6 CKE: SPI Clock Edge Select bit (SPI mode only) In SPI Master or Slave mode: 1 = Transmit occurs on transition from active to Idle clock state 0 = Transmit occurs on transition from Idle to active clock state In I2 C™ mode only: 1 = Enable input logic so that thresholds are compliant with SMBus specification 0 = Disable SMBus specific inputs bit 5 D/A: Data/Address bit (I2C mode only) 1 = Indicates that the last byte received or transmitted was data 0 = Indicates that the last byte received or transmitted was address bit 4 P: Stop bit (I2C mode only. This bit is cleared when the MSSP1 module is disabled, SSPEN is cleared.) 1 = Indicates that a Stop bit has been detected last (this bit is ‘0’ on Reset) 0 = Stop bit was not detected last bit 3 S: Start bit (I2C mode only. This bit is cleared when the MSSP1 module is disabled, SSPEN is cleared.) 1 = Indicates that a Start bit has been detected last (this bit is ‘0’ on Reset) 0 = Start bit was not detected last bit 2 R/W: Read/Write bit information (I2C mode only) This bit holds the R/W bit information following the last address match. This bit is only valid from the address match to the next Start bit, Stop bit, or not ACK bit. In I2 C Slave mode: 1 = Read 0 = Write In I2 C Master mode: 1 = Transmit is in progress 0 = Transmit is not in progress OR-ing this bit with SEN, RSEN, PEN, RCEN or ACKEN will indicate if the MSSP1 is in Idle mode. bit 1 UA: Update Address bit (10-bit I2C mode only) 1 = Indicates that the user needs to update the address in the SSPADD register 0 = Address does not need to be updated bit 0 BF: Buffer Full Status bit Receive (SPI and I2 C modes): 1 = Receive complete, SSPBUF is full 0 = Receive not complete, SSPBUF is empty Transmit (I2 C mode only): 1 = Data transmit in progress (does not include the ACK and Stop bits), SSPBUF is full 0 = Data transmit complete (does not include the ACK and Stop bits), SSPBUF is empty  2012-2016 Microchip Technology Inc. DS40001674F-page 181 PIC12LF1552 REGISTER 18-2: SSPCON1: SSP CONTROL REGISTER 1 R/C/HS-0/0 R/C/HS-0/0 R/W-0/0 R/W-0/0 WCOL SSPOV SSPEN CKP R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 SSPM bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared HS = Bit is set by hardware C = User cleared bit 7 WCOL: Write Collision Detect bit Master mode: 1 = A write to the SSPBUF register was attempted while the I2C conditions were not valid for a transmission to be started 0 = No collision Slave mode: 1 = The SSPBUF register is written while it is still transmitting the previous word (must be cleared in software) 0 = No collision bit 6 SSPOV: Receive Overflow Indicator bit(1) In SPI mode: 1 = A new byte is received while the SSPBUF register is still holding the previous data. In case of overflow, the data in SSPSR is lost. Overflow can only occur in Slave mode. In Slave mode, the user must read the SSPBUF, even if only transmitting data, to avoid setting overflow. In Master mode, the overflow bit is not set since each new reception (and transmission) is initiated by writing to the SSPBUF register (must be cleared in software). 0 = No overflow In I2C mode: 1 = A byte is received while the SSPBUF register is still holding the previous byte. SSPOV is a “don’t care” in Transmit mode (must be cleared in software). 0 = No overflow bit 5 SSPEN: Synchronous Serial Port Enable bit In both modes, when enabled, these pins must be properly configured as input or output In SPI mode: 1 = Enables serial port and configures SCK, SDO, SDI and SS as the source of the serial port pins(2) 0 = Disables serial port and configures these pins as I/O port pins In I2C mode: 1 = Enables the serial port and configures the SDA and SCL pins as the source of the serial port pins(3) 0 = Disables serial port and configures these pins as I/O port pins bit 4 CKP: Clock Polarity Select bit In SPI mode: 1 = Idle state for clock is a high level 0 = Idle state for clock is a low level In I2C Slave mode: SCL release control 1 = Enable clock 0 = Holds clock low (clock stretch). (Used to ensure data setup time.) In I2C Master mode: Unused in this mode bit 3-0 SSPM: Synchronous Serial Port Mode Select bits 0000 = SPI Master mode, clock = FOSC/4 0001 = SPI Master mode, clock = FOSC/16 0010 = SPI Master mode, clock = FOSC/64 0011 = Reserved 0100 = SPI Slave mode, clock = SCK pin, SS pin control enabled 0101 = SPI Slave mode, clock = SCK pin, SS pin control disabled, SS can be used as I/O pin 0110 = I2C Slave mode, 7-bit address 0111 = I2C Slave mode, 10-bit address 1000 = I2C Master mode, clock = FOSC / (4 * (SSPADD+1))(4) 1001 = Reserved 1010 = SPI Master mode, clock = FOSC/(4 * (SSPADD+1))(5) 1011 = I2C firmware controlled Master mode (Slave idle) 1100 = Reserved 1101 = Reserved 1110 = I2C Slave mode, 7-bit address with Start and Stop bit interrupts enabled 1111 = I2C Slave mode, 10-bit address with Start and Stop bit interrupts enabled Note 1: 2: 3: 4: 5: In Master mode, the overflow bit is not set since each new reception (and transmission) is initiated by writing to the SSPBUF register. When enabled, these pins must be properly configured as input or output. When enabled, the SDA and SCL pins must be configured as inputs. SSPADD values of 0, 1 or 2 are not supported for I2C mode. SSPADD value of ‘0’ is not supported. Use SSPM = 0000 instead. DS40001674F-page 182  2012-2016 Microchip Technology Inc. PIC12LF1552 REGISTER 18-3: SSPCON2: SSP CONTROL REGISTER 2 R/W-0/0 R-0/0 R/W-0/0 R/S/HS-0/0 R/S/HS-0/0 R/S/HS-0/0 R/S/HS-0/0 R/W/HS-0/0 GCEN ACKSTAT ACKDT ACKEN RCEN PEN RSEN SEN bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared HC = Cleared by hardware S = User set bit 7 GCEN: General Call Enable bit (in I2C Slave mode only) 1 = Enable interrupt when a general call address (0x00 or 00h) is received in the SSPSR 0 = General call address disabled bit 6 ACKSTAT: Acknowledge Status bit (in I2C mode only) 1 = Acknowledge was not received 0 = Acknowledge was received bit 5 ACKDT: Acknowledge Data bit (in I2C mode only) In Receive mode: Value transmitted when the user initiates an Acknowledge sequence at the end of a receive 1 = Not Acknowledge 0 = Acknowledge bit 4 ACKEN: Acknowledge Sequence Enable bit (in I2C Master mode only) In Master Receive mode: 1 = Initiate Acknowledge sequence on SDA and SCL pins, and transmit ACKDT data bit. Automatically cleared by hardware. 0 = Acknowledge sequence idle bit 3 RCEN: Receive Enable bit (in I2C Master mode only) 1 = Enables Receive mode for I2C 0 = Receive idle bit 2 PEN: Stop Condition Enable bit (in I2C Master mode only) SCK Release Control: 1 = Initiate Stop condition on SDA and SCL pins. Automatically cleared by hardware. 0 = Stop condition Idle bit 1 RSEN: Repeated Start Condition Enable bit (in I2C Master mode only) 1 = Initiate Repeated Start condition on SDA and SCL pins. Automatically cleared by hardware. 0 = Repeated Start condition Idle bit 0 SEN: Start Condition Enable/Stretch Enable bit In Master mode: 1 = Initiate Start condition on SDA and SCL pins. Automatically cleared by hardware. 0 = Start condition Idle In Slave mode: 1 = Clock stretching is enabled for both slave transmit and slave receive (stretch enabled) 0 = Clock stretching is disabled Note 1: For bits ACKEN, RCEN, PEN, RSEN, SEN: If the I2C module is not in the Idle mode, this bit may not be set (no spooling) and the SSPBUF may not be written (or writes to the SSPBUF are disabled).  2012-2016 Microchip Technology Inc. DS40001674F-page 183 PIC12LF1552 REGISTER 18-4: SSPCON3: SSP CONTROL REGISTER 3 R-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 ACKTIM PCIE SCIE BOEN SDAHT SBCDE AHEN DHEN bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7 ACKTIM: Acknowledge Time Status bit (I2C mode only)(3) 1 = Indicates the I2C bus is in an Acknowledge sequence, set on 8TH falling edge of SCL clock 0 = Not an Acknowledge sequence, cleared on 9TH rising edge of SCL clock bit 6 PCIE: Stop Condition Interrupt Enable bit (I2C mode only) 1 = Enable interrupt on detection of Stop condition 0 = Stop detection interrupts are disabled(2) bit 5 SCIE: Start Condition Interrupt Enable bit (I2C mode only) 1 = Enable interrupt on detection of Start or Restart conditions 0 = Start detection interrupts are disabled(2) bit 4 BOEN: Buffer Overwrite Enable bit In SPI Slave mode:(1) 1 = SSPBUF updates every time that a new data byte is shifted in ignoring the BF bit 0 = If new byte is received with BF bit of the SSPSTAT register already set, SSPOV bit of the SSPCON1 register is set, and the buffer is not updated In I2C Master mode and SPI Master mode: This bit is ignored. In I2C Slave mode: 1 = SSPBUF is updated and ACK is generated for a received address/data byte, ignoring the state of the SSPOV bit only if the BF bit = 0. 0 = SSPBUF is only updated when SSPOV is clear bit 3 SDAHT: SDA Hold Time Selection bit (I2C mode only) 1 = Minimum of 300 ns hold time on SDA after the falling edge of SCL 0 = Minimum of 100 ns hold time on SDA after the falling edge of SCL bit 2 SBCDE: Slave Mode Bus Collision Detect Enable bit (I2C Slave mode only) If on the rising edge of SCL, SDA is sampled low when the module is outputting a high state, the BCLIF bit of the PIR2 register is set, and bus goes idle 1 = Enable slave bus collision interrupts 0 = Slave bus collision interrupts are disabled bit 1 AHEN: Address Hold Enable bit (I2C Slave mode only) 1 = Following the 8th falling edge of SCL for a matching received address byte; CKP bit of the SSPCON1 register will be cleared and the SCL will be held low. 0 = Address holding is disabled bit 0 DHEN: Data Hold Enable bit (I2C Slave mode only) 1 = Following the 8th falling edge of SCL for a received data byte; slave hardware clears the CKP bit of the SSPCON1 register and SCL is held low. 0 = Data holding is disabled Note 1: 2: 3: For daisy-chained SPI operation; allows the user to ignore all but the last received byte. SSPOV is still set when a new byte is received and BF = 1, but hardware continues to write the most recent byte to SSPBUF. This bit has no effect in Slave modes that Start and Stop condition detection is explicitly listed as enabled. The ACKTIM Status bit is only active when the AHEN bit or DHEN bit is set. DS40001674F-page 184  2012-2016 Microchip Technology Inc. PIC12LF1552 REGISTER 18-5: R/W-1/1 SSPMSK: SSP MASK REGISTER R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 MSK bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared bit 7-1 MSK: Mask bits 1 = The received address bit n is compared to SSPADD to detect I2C address match 0 = The received address bit n is not used to detect I2C address match bit 0 MSK: Mask bit for I2C Slave mode, 10-bit Address I2C Slave mode, 10-bit address (SSPM = 0111 or 1111): 1 = The received address bit 0 is compared to SSPADD to detect I2C address match 0 = The received address bit 0 is not used to detect I2C address match I2C Slave mode, 7-bit address, the bit is ignored REGISTER 18-6: R/W-0/0 SSPADD: MSSP1 ADDRESS AND BAUD RATE REGISTER (I2C MODE) R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 ADD bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets ‘1’ = Bit is set ‘0’ = Bit is cleared Master mode: bit 7-0 ADD: Baud Rate Clock Divider bits SCL pin clock period = ((ADD + 1) *4)/FOSC 10-Bit Slave mode — Most Significant Address Byte: bit 7-3 Not used: Unused for Most Significant Address Byte. Bit state of this register is a “don’t care”. Bit pattern sent by master is fixed by I2C specification and must be equal to ‘11110’. However, those bits are compared by hardware and are not affected by the value in this register. bit 2-1 ADD: Two Most Significant bits of 10-bit address bit 0 Not used: Unused in this mode. Bit state is a “don’t care”. 10-Bit Slave mode — Least Significant Address Byte: bit 7-0 ADD: Eight Least Significant bits of 10-bit address 7-Bit Slave mode: bit 7-1 ADD: 7-bit address bit 0 Not used: Unused in this mode. Bit state is a “don’t care”.  2012-2016 Microchip Technology Inc. DS40001674F-page 185 PIC12LF1552 19.0 IN-CIRCUIT SERIAL PROGRAMMING™ (ICSP™) ICSP™ programming allows customers to manufacture circuit boards with unprogrammed devices. Programming can be done after the assembly process, allowing the device to be programmed with the most recent firmware or a custom firmware. Five pins are needed for ICSP™ programming: • ICSPCLK • ICSPDAT • MCLR/VPP • VDD • VSS In Program/Verify mode the Program Memory, User IDs and the Configuration Words are programmed through serial communications. The ICSPDAT pin is a bidirectional I/O used for transferring the serial data and the ICSPCLK pin is the clock input. For more information on ICSP™ refer to the “PIC12LF1552 Memory Programming Specification” (DS41642). 19.1 High-Voltage Programming Entry Mode The device is placed into High-Voltage Programming Entry mode by holding the ICSPCLK and ICSPDAT pins low then raising the voltage on MCLR/VPP to VIHH. 19.2 Low-Voltage Programming Entry Mode The Low-Voltage Programming Entry mode allows the PIC® Flash MCUs to be programmed using VDD only, without high voltage. When the LVP bit of Configuration Words is set to ‘1’, the low-voltage ICSP programming entry is enabled. To disable the Low-Voltage ICSP mode, the LVP bit must be programmed to ‘0’. 19.3 Common Programming Interfaces Connection to a target device is typically done through an ICSP™ header. A commonly found connector on development tools is the RJ-11 in the 6P6C (6-pin, 6-connector) configuration. See Figure 19-1. FIGURE 19-1: VDD ICD RJ-11 STYLE CONNECTOR INTERFACE ICSPDAT NC 2 4 6 ICSPCLK 1 3 5 Target VPP/MCLR VSS PC Board Bottom Side Pin Description* 1 = VPP/MCLR 2 = VDD Target 3 = VSS (ground) 4 = ICSPDAT 5 = ICSPCLK 6 = No Connect Another connector often found in use with the PICkit™ programmers is a standard 6-pin header with 0.1 inch spacing. Refer to Figure 19-2. Entry into the Low-Voltage Programming Entry mode requires the following steps: 1. 2. MCLR is brought to VIL. A 32-bit key sequence is presented on ICSPDAT, while clocking ICSPCLK. Once the key sequence is complete, MCLR must be held at VIL for as long as Program/Verify mode is to be maintained. If low-voltage programming is enabled (LVP = 1), the MCLR Reset function is automatically enabled and cannot be disabled. See Section 6.5 “MCLR” for more information. The LVP bit can only be reprogrammed to ‘0’ by using the High-Voltage Programming mode. DS40001674F-page 186  2012-2016 Microchip Technology Inc. PIC12LF1552 FIGURE 19-2: PICkit™ PROGRAMMER STYLE CONNECTOR INTERFACE Pin 1 Indicator Pin Description* 1 = VPP/MCLR 1 2 3 4 5 6 2 = VDD Target 3 = VSS (ground) 4 = ICSPDAT 5 = ICSPCLK 6 = No Connect * The 6-pin header (0.100" spacing) accepts 0.025" square pins. For additional interface recommendations, refer to your specific device programmer manual prior to PCB design. It is recommended that isolation devices be used to separate the programming pins from other circuitry. The type of isolation is highly dependent on the specific application and may include devices such as resistors, diodes, or even jumpers. See Figure 19-3 for more information. FIGURE 19-3: TYPICAL CONNECTION FOR ICSP™ PROGRAMMING External Programming Signals Device to be Programmed VDD VDD VDD VPP MCLR/VPP VSS VSS Data ICSPDAT Clock ICSPCLK * * * To Normal Connections * Isolation devices (as required).  2012-2016 Microchip Technology Inc. DS40001674F-page 187 PIC12LF1552 20.0 INSTRUCTION SET SUMMARY 20.1 Read-Modify-Write Operations • Byte Oriented • Bit Oriented • Literal and Control Any instruction that specifies a file register as part of the instruction performs a Read-Modify-Write (R-M-W) operation. The register is read, the data is modified, and the result is stored according to either the instruction, or the destination designator ‘d’. A read operation is performed on a register even if the instruction writes to that register. The literal and control category contains the most varied instruction word format. TABLE 20-1: Each instruction is a 14-bit word containing the operation code (opcode) and all required operands. The opcodes are broken into three broad categories. Table 20-3 lists the instructions recognized by the MPASMTM assembler. All instructions are executed within a single instruction cycle, with the following exceptions, which may take two or three cycles: • Subroutine takes two cycles (CALL, CALLW) • Returns from interrupts or subroutines take two cycles (RETURN, RETLW, RETFIE) • Program branching takes two cycles (GOTO, BRA, BRW, BTFSS, BTFSC, DECFSZ, INCSFZ) • One additional instruction cycle will be used when any instruction references an indirect file register and the file select register is pointing to program memory. One instruction cycle consists of 4 oscillator cycles; for an oscillator frequency of 4 MHz, this gives a nominal instruction execution rate of 1 MHz. All instruction examples use the format ‘0xhh’ to represent a hexadecimal number, where ‘h’ signifies a hexadecimal digit. OPCODE FIELD DESCRIPTIONS Field f Description Register file address (0x00 to 0x7F) W Working register (accumulator) b Bit address within an 8-bit file register k Literal field, constant data or label x Don’t care location (= 0 or 1). The assembler will generate code with x = 0. It is the recommended form of use for compatibility with all Microchip software tools. d Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1. n FSR or INDF number. (0-1) mm Pre-post increment-decrement mode selection TABLE 20-2: ABBREVIATION DESCRIPTIONS Field PC Program Counter TO Time-out bit C DC Z PD DS40001674F-page 188 Description Carry bit Digit carry bit Zero bit Power-down bit  2012-2016 Microchip Technology Inc. PIC12LF1552 FIGURE 20-1: GENERAL FORMAT FOR INSTRUCTIONS Byte-oriented file register operations 13 8 7 6 OPCODE d f (FILE #) 0 d = 0 for destination W d = 1 for destination f f = 7-bit file register address Bit-oriented file register operations 13 10 9 7 6 OPCODE b (BIT #) f (FILE #) 0 b = 3-bit bit address f = 7-bit file register address Literal and control operations General 13 OPCODE 8 7 0 k (literal) k = 8-bit immediate value CALL and GOTO instructions only 13 11 10 OPCODE 0 k (literal) k = 11-bit immediate value MOVLP instruction only 13 OPCODE 7 6 0 k (literal) k = 7-bit immediate value MOVLB instruction only 13 OPCODE 5 4 0 k (literal) k = 5-bit immediate value BRA instruction only 13 OPCODE 9 8 0 k (literal) k = 9-bit immediate value FSR Offset instructions 13 OPCODE 7 6 n 5 0 k (literal) n = appropriate FSR k = 6-bit immediate value FSR Increment instructions 13 OPCODE 3 2 1 0 n m (mode) n = appropriate FSR m = 2-bit mode value OPCODE only 13 0 OPCODE  2012-2016 Microchip Technology Inc. DS40001674F-page 189 PIC12LF1552 TABLE 20-3: PIC12LF1552 INSTRUCTION SET 14-Bit Opcode Mnemonic, Operands Description Cycles MSb LSb Status Affected Notes BYTE-ORIENTED FILE REGISTER OPERATIONS ADDWF ADDWFC ANDWF ASRF LSLF LSRF CLRF CLRW COMF DECF INCF IORWF MOVF MOVWF RLF RRF SUBWF SUBWFB SWAPF XORWF f, d f, d f, d f, d f, d f, d f – f, d f, d f, d f, d f, d f f, d f, d f, d f, d f, d f, d Add W and f Add with Carry W and f AND W with f Arithmetic Right Shift Logical Left Shift Logical Right Shift Clear f Clear W Complement f Decrement f Increment f Inclusive OR W with f Move f Move W to f Rotate Left f through Carry Rotate Right f through Carry Subtract W from f Subtract with Borrow W from f Swap nibbles in f Exclusive OR W with f 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 00 11 00 11 11 11 00 00 00 00 00 00 00 00 00 00 00 11 00 00 0111 1101 0101 0111 0101 0110 0001 0001 1001 0011 1010 0100 1000 0000 1101 1100 0010 1011 1110 0110 dfff dfff dfff dfff dfff dfff lfff 0000 dfff dfff dfff dfff dfff 1fff dfff dfff dfff dfff dfff dfff ffff ffff ffff ffff ffff ffff ffff 00xx ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff ffff C, DC, Z C, DC, Z Z C, Z C, Z C, Z Z Z Z Z Z Z Z C C C, DC, Z C, DC, Z Z 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 BYTE ORIENTED SKIP OPERATIONS DECFSZ INCFSZ f, d f, d Decrement f, Skip if 0 Increment f, Skip if 0 BCF BSF f, b f, b Bit Clear f Bit Set f 1(2) 1(2) 00 00 1, 2 1, 2 1011 dfff ffff 1111 dfff ffff BIT-ORIENTED FILE REGISTER OPERATIONS 1 1 01 01 00bb bfff ffff 01bb bfff ffff 2 2 1, 2 1, 2 BIT-ORIENTED SKIP OPERATIONS BTFSC BTFSS f, b f, b Bit Test f, Skip if Clear Bit Test f, Skip if Set 1 (2) 1 (2) 01 01 10bb bfff ffff 11bb bfff ffff 1 1 1 1 1 1 1 1 11 11 11 00 11 11 11 11 1110 1001 1000 0000 0001 0000 1100 1010 LITERAL OPERATIONS ADDLW ANDLW IORLW MOVLB MOVLP MOVLW SUBLW XORLW k k k k k k k k Add literal and W AND literal with W Inclusive OR literal with W Move literal to BSR Move literal to PCLATH Move literal to W Subtract W from literal Exclusive OR literal with W kkkk kkkk kkkk 001k 1kkk kkkk kkkk kkkk kkkk kkkk kkkk kkkk kkkk kkkk kkkk kkkk C, DC, Z Z Z C, DC, Z Z Note 1: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP. 2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one additional instruction cycle. DS40001674F-page 190  2012-2016 Microchip Technology Inc. PIC12LF1552 TABLE 20-3: PIC12LF1552 INSTRUCTION SET (CONTINUED) 14-Bit Opcode Mnemonic, Operands Description Cycles MSb LSb Status Affected Notes CONTROL OPERATIONS BRA BRW CALL CALLW GOTO RETFIE RETLW RETURN k – k – k k k – Relative Branch Relative Branch with W Call Subroutine Call Subroutine with W Go to address Return from interrupt Return with literal in W Return from Subroutine CLRWDT NOP OPTION RESET SLEEP TRIS – – – – – f Clear Watchdog Timer No Operation Load OPTION_REG register with W Software device Reset Go into Standby mode Load TRIS register with W ADDFSR MOVIW n, k n mm MOVWI k[n] n mm Add Literal k to FSRn Move Indirect FSRn to W with pre/post inc/dec modifier, mm Move INDFn to W, Indexed Indirect. Move W to Indirect FSRn with pre/post inc/dec modifier, mm Move W to INDFn, Indexed Indirect. k[n] 2 2 2 2 2 2 2 2 INHERENT OPERATIONS 1 1 1 1 1 1 C-COMPILER OPTIMIZED 11 00 10 00 10 00 11 00 001k 0000 0kkk 0000 1kkk 0000 0100 0000 kkkk 0000 kkkk 0000 kkkk 0000 kkkk 0000 kkkk 1011 kkkk 1010 kkkk 1001 kkkk 1000 00 00 00 00 00 00 0000 0000 0000 0000 0000 0000 0110 0000 0110 0000 0110 0110 0100 TO, PD 0000 0010 0001 0011 TO, PD 0fff 1 1 11 00 1 1 11 00 0001 0nkk kkkk 0000 0001 0nmm Z kkkk 1111 0nkk 1nmm Z 0000 0001 kkkk 1 11 1111 1nkk 2, 3 2 2, 3 2 Note 1: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP. 2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one additional instruction cycle. 3: See Table in the MOVIW and MOVWI instruction descriptions.  2012-2016 Microchip Technology Inc. DS40001674F-page 191 PIC12LF1552 20.2 Instruction Descriptions ADDFSR Add Literal to FSRn ANDLW AND literal with W Syntax: [ label ] ADDFSR FSRn, k Syntax: [ label ] ANDLW Operands: -32  k  31 n  [ 0, 1] Operands: 0  k  255 Operation: FSR(n) + k  FSR(n) Status Affected: None Description: The signed 6-bit literal ‘k’ is added to the contents of the FSRnH:FSRnL register pair. k Operation: (W) .AND. (k)  (W) Status Affected: Z Description: The contents of W register are AND’ed with the 8-bit literal ‘k’. The result is placed in the W register. ANDWF AND W with f FSRn is limited to the range 0000h-FFFFh. Moving beyond these bounds will cause the FSR to wrap-around. ADDLW Add literal and W Syntax: [ label ] ADDLW Operands: 0  k  255 Operation: Status Affected: Syntax: [ label ] ANDWF Operands: 0  f  127 d 0,1 (W) + k  (W) Operation: (W) .AND. (f)  (destination) C, DC, Z Status Affected: Z Description: The contents of the W register are added to the 8-bit literal ‘k’ and the result is placed in the W register. Description: AND the W register with register ‘f’. If ‘d’ is ‘0’, the result is stored in the W register. If ‘d’ is ‘1’, the result is stored back in register ‘f’. ASRF Arithmetic Right Shift ADDWF Add W and f Syntax: [ label ] ADDWF Operands: 0  f  127 d 0,1 Operation: (W) + (f)  (destination) Status Affected: C, DC, Z Description: Add the contents of the W register with register ‘f’. If ‘d’ is ‘0’, the result is stored in the W register. If ‘d’ is ‘1’, the result is stored back in register ‘f’. ADDWFC k f,d ADD W and CARRY bit to f Syntax: [ label ] ADDWFC Operands: 0  f  127 d [0,1] Operation: (W) + (f) + (C)  dest Syntax: [ label ] ASRF Operands: 0  f  127 d [0,1] f {,d} Operation: (f) dest (f)  dest, (f)  C, Status Affected: C, Z Description: The contents of register ‘f’ are shifted one bit to the right through the Carry flag. The MSb remains unchanged. If ‘d’ is ‘0’, the result is placed in W. If ‘d’ is ‘1’, the result is stored back in register ‘f’. register f C f {,d} Status Affected: C, DC, Z Description: Add W, the Carry flag and data memory location ‘f’. If ‘d’ is ‘0’, the result is placed in W. If ‘d’ is ‘1’, the result is placed in data memory location ‘f’. DS40001674F-page 192 f,d  2012-2016 Microchip Technology Inc. PIC12LF1552 BCF Bit Clear f Syntax: [ label ] BCF BTFSC f,b Bit Test f, Skip if Clear Syntax: [ label ] BTFSC f,b 0  f  127 0b7 Operands: 0  f  127 0b7 Operands: Operation: 0  (f) Operation: skip if (f) = 0 Status Affected: None Status Affected: None Description: Bit ‘b’ in register ‘f’ is cleared. Description: If bit ‘b’ in register ‘f’ is ‘1’, the next instruction is executed. If bit ‘b’, in register ‘f’, is ‘0’, the next instruction is discarded, and a NOP is executed instead, making this a 2-cycle instruction. BRA Relative Branch BTFSS Bit Test f, Skip if Set Syntax: [ label ] BRA label [ label ] BRA $+k Syntax: [ label ] BTFSS f,b Operands: Operands: -256  label - PC + 1  255 -256  k  255 0  f  127 0b VDD) 20 mA Maximum output current sunk by any I/O pin.................................................................................................... 25 mA Maximum output current sourced by any I/O pin............................................................................................... 25 mA Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD –  IOH} +  {(VDD – VOH) x IOH} + (VOl x IOL). † NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for extended periods may affect device reliability. FIGURE 21-1: PIC12LF1552 VOLTAGE FREQUENCY GRAPH, -40°C  TA +125°C VDD (V) 3.6 2.5 1.8 4 8 12 16 20 24 28 32 Frequency (MHz) Note 1: The shaded region indicates the permissible combinations of voltage and frequency. 2: Refer to Table 21-1 for each Oscillator mode’s supported frequencies. DS40001674F-page 202  2012-2016 Microchip Technology Inc. PIC12LF1552 21.1 DC Characteristics: PIC12LF1552-I/E (Industrial, Extended) Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C  TA  +85°C for industrial -40°C  TA  +125°C for extended PIC12LF1552 Param. No. D001 Sym. VDD Characteristic Min. Typ.† Max. Units Supply Voltage (VDDMIN, VDDMAX) 1.8 2.5 — — 3.6 3.6 V V FOSC  16 MHz: FOSC  32 MHz Device in Sleep mode RAM Data Retention Voltage(1) 1.5 — — V Power-on Reset Release Voltage — 1.6 — V D002B* VPORR* Power-on Reset Rearm Voltage — 0.8 — V D003 -7 -8 -7 -8 — — — — 6 6 6 6 % D003C* TCVFVR Temperature Coefficient, Fixed Voltage Reference — -130 — ppm/°C D003D* VFVR/ VIN Line Regulation, Fixed Voltage Reference — 0.270 — %/V D004* VDD Rise Rate to ensure internal Power-on Reset signal 0.05 — — V/ms D002* VDR D002A* VPOR* VADFVR Fixed Voltage Reference Voltage for ADC, Initial Accuracy SVDD Conditions 1.024V, VDD  2.5V, 85°C (Note 2) 1.024V, VDD  2.5V, 125°C (Note 2) 2.048V, VDD  2.5V, 85°C 2.048V, VDD  2.5V, 125°C See Section 6.1 “Power-on Reset (POR)” for details. * † These parameters are characterized but not tested. Data in “Typ.” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data. 2: For proper operation, the minimum value of the ADC positive voltage reference must be 1.8V or greater. When selecting the FVR or the VREF+ pin as the source of the ADC positive voltage reference, be aware that the voltage must be 1.8V or greater.  2012-2016 Microchip Technology Inc. DS40001674F-page 203 PIC12LF1552 FIGURE 21-2: POR AND POR REARM WITH SLOW RISING VDD VDD VPOR VPORR VSS NPOR(1) POR REARM VSS TVLOW(2) Note 1: 2: 3: DS40001674F-page 204 TPOR(3) When NPOR is low, the device is held in Reset. TPOR 1 s typical. TVLOW 2.7 s typical.  2012-2016 Microchip Technology Inc. PIC12LF1552 21.2 DC Characteristics: PIC12LF1552-I/E (Industrial, Extended) Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C  TA  +85°C for industrial -40°C  TA  +125°C for extended PIC12LF1552 Param. No. Device Characteristics Conditions Min. Typ.† Max. Units VDD Note Supply Current (IDD)(1, 2) D010 — D011 D012 2.5 18 A 1.8 — 4 20 A 3.0 — 0.35 0.70 mA 1.8 — 0.5 1.10 mA 3.0 — 0.5 1.2 mA 1.8 FOSC = 31 kHz LFINTOSC mode FOSC = 8 MHz HFINTOSC mode FOSC = 16 MHz HFINTOSC mode — 0.75 1.75 mA 3.0 D013 — 1.4 3.5 mA 3.0 FOSC = 32 MHz HFINTOSC mode with PLL D014 — 3 17 A 1.8 — 5 20 A 3.0 FOSC = 32 kHz ECL mode — 11 40 A 1.8 — 16 60 A 3.0 — 23 65 A 1.8 — 36 100 A 3.0 — 75 250 A 1.8 — 120 430 A 3.0 — 0.65 1.5 mA 3.0 D015 D016 D017 D018 FOSC = 500 kHz ECL mode FOSC = 1 MHz ECM mode FOSC = 4 MHz ECM mode FOSC = 20 MHz ECH mode † Data in “Typ.” column is at 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1: The test conditions for all IDD measurements in active operation mode are: CLKIN = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled. 2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.  2012-2016 Microchip Technology Inc. DS40001674F-page 205 PIC12LF1552 21.3 DC Characteristics: PIC12LF1552-I/E (Power-Down) Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C  TA  +85°C for industrial -40°C  TA  +125°C for extended PIC12LF1552 Param. No. Device Characteristics Min. Typ. † Power-down Base Current (IPD) D020 Max. Max. Units +85°C +125°C Conditions VDD Note (2) — 0.02 1.0 8 A 1.8 — 0.03 2 9 A 3.0 WDT, BOR, FVR, and T1OSC disabled, all Peripherals Inactive LPWDT Current (Note 1) — 0.24 2 9 A 1.8 — 0.37 3 10 A 3.0 — 13 28 30 A 1.8 — 22 30 33 A 3.0 D023 — 6.5 17 20 A 3.0 BOR Current (Note 1) D024 — 0.1 4 10 A 3.0 LPBOR Current ADC Current (Note 1, Note 3), no conversion in progress D021 D022 D025 D026* — 0.03 3.5 9 A 1.8 — 0.04 4.0 10 A 3.0 — 350 — — A 1.8 — 350 — — A 3.0 FVR current (Note 1) ADC Current (Note 1, Note 3), conversion in progress * These parameters are characterized but not tested. † Data in “Typ.” column is at 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral  current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption. 2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD. 3: ADC oscillator source is FRC. DS40001674F-page 206  2012-2016 Microchip Technology Inc. PIC12LF1552 21.4 DC Characteristics: PIC12LF1552-I/E Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C  TA  +85°C for industrial -40°C  TA  +125°C for extended DC CHARACTERISTICS Param. No. Sym. VIL D030 Characteristic Input Low Voltage I/O PORT: with TTL buffer Min. Typ.† Max. Units Conditions — — 0.15 VD V 1.8V  VDD  3.6V D D031 D032 VIH D040 D041 D042 IIL D060 D061 IPUR with Schmitt Trigger buffer MCLR Input High Voltage I/O ports: with TTL buffer with Schmitt Trigger buffer MCLR Input Leakage Current(1) I/O ports MCLR(2) Weak Pull-up Current D070* VOL D080 VOH D090 Output Low Voltage(3) I/O ports Output High Voltage(3) I/O ports — — — — 0.2 VDD 0.2 VDD V V 2.0V  VDD  3.6V 0.25 VDD + 0.8 0.8 VDD 0.8 VDD — — — — V 1.8V  VDD 3.6V — — — — V V 2.0V  VDD  3.6V — ±5 ± 125 nA — ±5 ± 50 ± 1000 ± 200 nA nA VSS  VPIN  VDD, Pin at high-impedance at 85°C 125°C VSS  VPIN  VDD at 85°C 25 100 200 A VDD = 3.3V, VPIN = VSS — — 0.6 V IOL = 6mA, VDD = 3.3V IOL = 1.8mA, VDD = 1.8V VDD - 0.7 — — V IOH = 3mA, VDD = 3.3V IOH = 1mA, VDD = 1.8V Capacitive Loading Specs on Output Pins D101A* CIO All I/O pins — — 50 pF * These parameters are characterized but not tested. † Data in “Typ.” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1: Negative current is defined as current sourced by the pin. 2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages. 3: Including OSC2 in CLKOUT mode.  2012-2016 Microchip Technology Inc. DS40001674F-page 207 PIC12LF1552 21.5 Memory Programming Requirements Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C  TA  +125°C DC CHARACTERISTICS Param. No. Sym. Characteristic Min. Typ.† Max. Units Conditions Program Memory Programming Specifications D110 VIHH Voltage on MCLR/VPP pin 8.0 — 9.0 V D111 IDDP Supply Current during Programming — — 10 mA D112 VBE VDD for Bulk Erase 2.7 — VDDMAX V D113 VPEW VDD for Write or Row Erase VDDMIN — VDDMAX V D114 IPPPGM Current on MCLR/VPP during Erase/Write — — 1.0 mA D115 IDDPGM Current on VDD during Erase/Write — — 5.0 mA D121 EP Cell Endurance 10K — — E/W (Note 2) Program Flash Memory -40C to +85C (Note 1) D122 VPRW VDD for Read/Write VDDMIN — VDDMAX V D123 TIW Self-timed Write Cycle Time — 2 2.5 ms D124 TRETD Characteristic Retention — 40 — Year Provided no other specifications are violated D125 EHEFC High-Endurance Flash Cell 100K — — E/W 0C to +60C, Lower byte, Last 128 Addresses in Flash Memory † Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1: Self-write and Block Erase. 2: Required only if single-supply programming is disabled. DS40001674F-page 208  2012-2016 Microchip Technology Inc. PIC12LF1552 21.6 Thermal Considerations Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C  TA  +125°C Param. No. Sym. Characteristic Typ. Units TH01 JA Thermal Resistance Junction to Ambient TH02 JC Thermal Resistance Junction to Case 89.3 149.5 211 60 43.1 C/W C/W C/W C/W C/W Conditions 8-pin PDIP package 8-pin SOIC package 8-pin MSOP package 8-pin UDFN 2X3mm package 8-pin PDIP package 39.9 C/W 8-pin SOIC package 39 C/W 8-pin MSOP package 11 C/W 8-pin UDFN 2X3mm package TH03 TJMAX Maximum Junction Temperature 150 C TH04 PD Power Dissipation — W PD = PINTERNAL + PI/O TH05 PINTERNAL Internal Power Dissipation — W PINTERNAL = IDD x VDD(1) TH06 PI/O I/O Power Dissipation — W PI/O =  (IOL * VOL) +  (IOH * (VDD - VOH)) TH07 PDER Derated Power — W PDER = PDMAX (TJ - TA)/JA(2) Note 1: IDD is current to run the chip alone without driving any load on the output pins. 2: TA = Ambient Temperature; TJ = Junction Temperature.  2012-2016 Microchip Technology Inc. DS40001674F-page 209 PIC12LF1552 21.7 Timing Parameter Symbology The timing parameter symbols have been created with one of the following formats: 1. TppS2ppS 2. TppS T F Frequency Lowercase letters (pp) and their meanings: pp cc CCP1 ck CLKOUT cs CS di SDIx do SDO dt Data in io I/O PORT mc MCLR Uppercase letters and their meanings: S F Fall H High I Invalid (High-impedance) L Low FIGURE 21-3: T Time osc rd rw sc ss t0 t1 wr CLKIN RD RD or WR SCKx SS T0CKI T1CKI WR P R V Z Period Rise Valid High-impedance LOAD CONDITIONS Load Condition Pin CL VSS Legend: CL = 50 pF for all pins DS40001674F-page 210  2012-2016 Microchip Technology Inc. PIC12LF1552 21.8 AC Characteristics: PIC12LF1552-I/E FIGURE 21-4: CLOCK TIMING Q4 Q1 Q2 Q3 Q4 Q1 CLKIN OS02 OS12 OS11 OS03 CLKOUT (CLKOUT Mode) Note: See Table 21-3.  2012-2016 Microchip Technology Inc. DS40001674F-page 211 PIC12LF1552 TABLE 21-1: CLOCK OSCILLATOR TIMING REQUIREMENTS Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C  TA  +125°C Param. Sym. No. OS01 Characteristic Min. Typ.† Max. Units Conditions FOSC External CLKIN Frequency(1) DC — 0.5 MHz EC Oscillator mode (low) DC — 4 MHz EC Oscillator mode (medium) DC — 20 MHz EC Oscillator mode (high) 50 —  ns EC mode OS02 TOSC External CLKIN Period(1) Instruction Cycle Time(1) 200 — DC ns TCY = FOSC/4 OS03 TCY * These parameters are characterized but not tested. † Data in “Typ.” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at “min” values with an external clock applied to CLKIN pin. When an external clock input is used, the “max” cycle time limit is “DC” (no clock) for all devices. TABLE 21-2: OSCILLATOR PARAMETERS Standard Operating Conditions (unless otherwise stated) Operating Temperature -40°C TA +125°C Param. No. Sym. Characteristic Min. Typ.† Max. Units Conditions MHz 0°C  TA  +85°C OS08 HFOSC Internal Calibrated HFINTOSC Frequency(1) — 16.0 — OS08A HFTOL Frequency Tolerance — 3 — — 6 — % OS09 LFOSC Internal LFINTOSC Frequency — 31 — kHz OS10* TWARM HFINTOSC Wake-up from Sleep Start-up Time LFINTOSC Wake-up from Sleep Start-up Time MFINTOSC Wake-up from Sleep Start-up Time — 5 8 s % 25°C, 16MHz 0°C  TA  +85°C, 16 MHZ -40°C  TA  +125°C * † These parameters are characterized but not tested. Data in “Typ.” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1: To ensure these oscillator frequency tolerances, VDD and VSS must be capacitively decoupled as close to the device as possible. 0.1 F and 0.01 F values in parallel are recommended. DS40001674F-page 212  2012-2016 Microchip Technology Inc. PIC12LF1552 FIGURE 21-5: CLKOUT AND I/O TIMING Cycle Write Fetch Read Execute Q4 Q1 Q2 Q3 FOSC OS12 OS11 OS20 OS21 CLKOUT OS19 OS18 OS16 OS13 OS17 I/O pin (Input) OS14 OS15 I/O pin (Output) New Value Old Value OS18, OS19 TABLE 21-3: CLKOUT AND I/O TIMING PARAMETERS Standard Operating Conditions (unless otherwise stated) Operating Temperature -40°C TA +125°C Param. No. Sym. Characteristic Min. Typ.† Max. Units Conditions — — 70 ns VDD = 3.3-3.6V — — 72 ns VDD = 3.3-3.6V — — 20 ns TOSC + 200 ns — 50 — — ns 50 Fosc (Q1 cycle) to Port out valid — Fosc (Q2 cycle) to Port input invalid (I/O in hold time) 20 — OS17 TioV2osH Port input valid to Fosc(Q2 cycle) (I/O in setup time) OS18* TioR Port output rise time(2) — 15 — 28 OS19* TioF Port output fall time(2) OS20* Tinp INT pin input high or low time 25 — OS21* Tioc Interrupt-on-change new input level 25 — time * These parameters are characterized but not tested. † Data in “Typ” column is at 3.0V, 25C unless otherwise stated. Note 1: Measurements are taken in EC mode where CLKOUT output is 4 x TOSC. 70* — ns ns — ns 32 55 — — ns ns ns ns FOSC to CLKOUT (1) OS11 TosH2ckL OS12 TosH2ckH FOSC to CLKOUT (1) OS13 TckL2ioV CLKOUT to Port out OS14 TioV2ckH Port input valid before CLKOUT(1) OS15 OS16 TosH2ioV TosH2ioI  2012-2016 Microchip Technology Inc. valid(1) VDD = 3.3-3.6V VDD = 3.3-3.6V VDD = 2.0V VDD = 2.0V DS40001674F-page 213 PIC12LF1552 FIGURE 21-6: RESET, WATCHDOG TIMER AND POWER-UP TIMER TIMING VDD MCLR 30 Internal POR 33 PWRT Time-out Internal Reset(1) Watchdog Timer Reset(1) 31 34 34 I/O pins Note 1: Asserted low. FIGURE 21-7: BROWN-OUT RESET TIMING AND CHARACTERISTICS VDD VBOR and VHYST VBOR (Device in Brown-out Reset) (Device not in Brown-out Reset) 37 Reset (due to BOR) Note 1: 33(1) 64 ms delay only if PWRTE bit in the Configuration Words is programmed to ‘0’. 2 ms delay if PWRTE = 0. DS40001674F-page 214  2012-2016 Microchip Technology Inc. PIC12LF1552 TABLE 21-4: RESET, WATCHDOG TIMER, POWER-UP TIMER AND BROWN-OUT RESET PARAMETERS Standard Operating Conditions (unless otherwise stated) Operating Temperature -40°C TA +125°C Param. No. Sym. Characteristic Min. Typ.† Max. Units Conditions 2 5 — — — — s s -40°C to +85°C +85°C to +125°C 10 16 27 ms VDD = 3.3V-3.6V, 1:512 Prescaler used Power-up Timer Period, PWRTE = 0 40 65 140 ms TIOZ I/O high-impedance from MCLR Low or Watchdog Timer Reset — — 2.0 s 35 VBOR Brown-out Reset Voltage(1) 2.55 1.80 2.70 1.90 2.85 2.05 V V 36* VHYST Brown-out Reset Hysteresis 0 25 50 mV -40°C to +85°C 37* TBORDC Brown-out Reset DC Response Time 1 3 5 s VDD  VBOR 30 TMCL MCLR Pulse Width (low) 31 TWDTLP Low-Power Watchdog Timer Time-out Period 33* TPWRT 34* BORV = 0 BORV = 1 * † These parameters are characterized but not tested. Data in “Typ.” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1: To ensure these voltage tolerances, VDD and VSS must be capacitively decoupled as close to the device as possible. 0.1 F and 0.01 F values in parallel are recommended. FIGURE 21-8: TIMER0 EXTERNAL CLOCK TIMINGS T0CKI 40 41 42 T1CKI 45 46 47 49 TMR0  2012-2016 Microchip Technology Inc. DS40001674F-page 215 PIC12LF1552 TABLE 21-5: TIMER0 EXTERNAL CLOCK REQUIREMENTS Standard Operating Conditions (unless otherwise stated) Operating Temperature -40°C TA +125°C Param. Sym. No. Characteristic 40* TT0H T0CKI High Pulse Width 41* TT0L T0CKI Low Pulse Width 42* TT0P T0CKI Period 45* TT1H T1CKI High Time * † Min. No Prescaler With Prescaler No Prescaler With Prescaler Typ.† Max. Units 0.5 TCY + 20 10 0.5 TCY + 20 10 Greater of: 20 or TCY + 40 N 0.5 TCY + 20 15 30 — — — — — — — — — — ns ns ns ns ns Conditions N = prescale value (2, 4, ..., 256) Synchronous, No Prescaler — — ns Synchronous, with Prescaler — — ns Asynchronous — — ns These parameters are characterized but not tested. Data in “Typ.” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. TABLE 21-6: PIC12LF1552 A/D CONVERTER (ADC) CHARACTERISTICS:(1,2,3) Standard Operating Conditions (unless otherwise stated) Operating temperature Tested at 25°C Param. Sym. No. Characteristic Min. Typ.† — — Max. Units Conditions AD01 NR Resolution AD02 EIL Integral Error — ±0.4 ±1 LSb -40°C to +85°C, VREF  2.0V AD03 EDL Differential Error — ±0.3 ±1 LSb -40°C to +85°C, VREF  2.0V AD04 EOFF Offset Error — 1.2 ±3 LSb -40°C to +85°C, VREF  2.0V AD05 EGN — 1.0 ±3 LSb -40°C to +85°C, VREF  2.0V AD06 VREF Reference Voltage Range (VREFH – VREFL) 1.8 2.0 — — — — AD07 VAIN Full-Scale Range VSS — VREF V AD08 ZAIN Recommended Impedance of Analog Voltage Source — — 3 k * † Note 1: 2: 3: 4: Gain Error 10 bit V V Absolute Minimum (Note 4) Minimum for 1LSb Accuracy Can go higher if external 0.01F capacitor is present on input pin. These parameters are characterized but not tested. Data in “Typ.” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. Total Absolute Error includes integral, differential, offset and gain errors. The ADC conversion result never decreases with an increase in the input voltage and has no missing codes. When ADC is off, it will not consume any current other than leakage current. The power-down current specification includes any such leakage from the ADC module. ADC VREF is selected by ADPREF bits. DS40001674F-page 216  2012-2016 Microchip Technology Inc. PIC12LF1552 TABLE 21-7: PIC12LF1552 ADC CONVERSION REQUIREMENTS Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C  TA  +125°C Param. Sym. No. Characteristic Min. Typ.† Max. Units Conditions ADC Clock Period 0.25 0.7 0.7 — — — 25 25 8 s s s TOSC-based, -40°C to +85°C,VREF2.4V TOSC-based, -40°C to +85°C, VREF2.4V TOSC-based, +86°C to +125°C ADC Internal FRC Oscillator Period 1.0 1.6 6.0 s ADCS = 11 (ADFRC mode) AD131 TCNV Conversion Time (not including Acquisition Time)(1) — 11 — TAD Set GO/DONE bit to conversion complete AD132* TACQ Acquisition Time — 5.0 — s AD130* TAD * † These parameters are characterized but not tested. Data in “Typ.” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1: The ADRES register may be read on the following TCY cycle. FIGURE 21-9: PIC12LF1552 ADC CONVERSION TIMING (NORMAL MODE) BSF ADCON0, GO AD134 1 TCY (TOSC/2(1)) AD131 Q4 AD130 ADC CLK 9 ADC Data 8 7 6 3 OLD_DATA ADRES 1 0 NEW_DATA 1 TCY ADIF GO Sample 2 DONE AD132 Sampling Stopped Note 1: If the ADC clock source is selected as FRC, a time of TCY is added before the ADC clock starts. This allows the SLEEP instruction to be executed.  2012-2016 Microchip Technology Inc. DS40001674F-page 217 PIC12LF1552 FIGURE 21-10: PIC12LF1552 ADC CONVERSION TIMING (SLEEP MODE) BSF ADCON0, GO AD134 (TOSC/2 + TCY(1)) 1 TCY AD131 Q4 AD130 ADC CLK 9 ADC Data 8 7 6 OLD_DATA ADRES 3 2 1 0 NEW_DATA ADIF 1 TCY GO DONE Sample AD132 Sampling Stopped Note 1: If the ADC clock source is selected as FRC, a time of TCY is added before the ADC clock starts. This allows the SLEEP instruction to be executed. DS40001674F-page 218  2012-2016 Microchip Technology Inc. PIC12LF1552 22.0 DC AND AC CHARACTERISTICS GRAPHS AND CHARTS The graphs and tables provided in this section are for design guidance and are not tested. In some graphs or tables, the data presented are outside specified operating range (i.e., outside specified VDD range). This is for information only and devices are ensured to operate properly only within the specified range. Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range. “Typical” represents the mean of the distribution at 25C. “MAXIMUM”, “Max.”, “MINIMUM” or “Min.” represents (mean + 3) or (mean - 3) respectively, where  is a standard deviation, over each temperature range.  2012-2016 Microchip Technology Inc. DS40001674F-page 219 PIC12LF1552 Note: Unless otherwise noted CIN = 0.1 µF and TA = 25°C. 14 50 Max. Max: 85°C + 3σ Typical: 25°C 12 45 35 30 8 IDD (μA) IDD (μA) 10 Max. Max: 85°C + 3σ Typical: 25°C 40 6 25 20 Typical Typical 15 4 10 2 5 0 0 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 VDD (V) VDD (V) FIGURE 22-1: IDD, EC Oscillator, Low-Power Mode, FOSC = 32 kHz FIGURE 22-2: IDD, Typical, EC Oscillator, Low-Power Mode, FOSC = 500 kHz 140 350 4 MHz 120 Max: 85°C + 3σ 300 Typical: 25°C 4 MHz 250 80 IDD (μA) IDD (μA) 100 60 200 150 1 MHz 40 100 20 50 1 MHz 0 0 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 1.6 3.8 1.8 2.0 2.2 2.4 2.6 VDD (V) FIGURE 22-3: High-Power Mode 2.8 3.0 3.2 3.4 3.6 3.8 3.6 3.8 VDD (V) IDD, Typical, EC Oscillator, FIGURE 22-4: IDD, Maximum, EC Oscillator, Medium-Power Mode 1.6 0.8 20 MHz Typical: 25°C 0.7 20 MHz 1.2 16 MHz 0.6 16 MHz 1.0 0.4 IDD (mA) 0.5 IDD (mA) Max: 85°C + 3σ 1.4 8 MHz 0.8 8 MHz 0.3 0.6 0.2 0.4 0.1 0.2 0.0 0.0 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 VDD (V) FIGURE 22-5: High-Power Mode DS40001674F-page 220 IDD, Typical, EC Oscillator, 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 VDD (V) FIGURE 22-6: IDD, Maximum, EC Oscillator, High-Power Mode  2012-2016 Microchip Technology Inc. PIC12LF1552 Note: Unless otherwise noted CIN = 0.1 µF and TA = 25°C. 1.0 12 Max: 85°C + 3σ Typical: 25°C 0.9 16 MHz Typical: 25°C Max. 10 0.8 0.7 IDD (mA) IDD (μA) 8 6 Typical 8 MHz 0.6 0.5 0.4 4 0.3 0.2 2 0.1 0 0.0 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 1.6 1.8 2.0 2.2 2.4 FIGURE 22-7: 2.6 2.8 3.0 3.2 3.4 3.6 3.8 VDD (V) VDD (V) IDD, LFINTOSC, FOSC = 31 kHz FIGURE 22-8: 1.6 IDD, Typical, HFINTOSC 450 Max: 85°C + 3σ 1.4 Max: 85°C + 3σ Typical: 25°C 400 16 MHz Max. 350 1.2 300 IPD (μA) IDD (mA) 1.0 8 MHz 0.8 250 200 0.6 150 0.4 100 Typical 50 0.2 0 1.6 0.0 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 3.8 VDD (V) VDD (V) FIGURE 22-9: IDD, Maximum, EC Oscillator, High-Power Mode FIGURE 22-10: Mode 45 2.0 Max: 85°C + 3σ Typical: 25°C 1.8 40 Max. 1.6 Max. Max: 85°C + 3σ Typical: 25°C 35 1.4 Typical 30 1.2 IPD (μA) IPD (μA) IPD, Base, Low-Power Sleep 1.0 25 20 0.8 15 Typical 0.6 0.4 10 0.2 5 0.0 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 0 1.6 1.8 2.0 2.2 VDD (V) FIGURE 22-11: IPD, Watchdog Timer (WDT)  2012-2016 Microchip Technology Inc. 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 VDD (V) FIGURE 22-12: Reference (FVR) IPD, Fixed Voltage DS40001674F-page 221 PIC12LF1552 Note: Unless otherwise noted CIN = 0.1 µF and TA = 25°C. 10 6 9 Max: 85°C + 3σ Typical: 25°C 8 5 Max. 7 Typical VOH (V) IPD (μA) 4 6 5 3 125°C 4 Typical 2 3 -40°C 2 Graph represents 3σ Limits 1 1 0 0 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 -45 3.8 -40 -35 -30 -25 -20 -15 -10 -5 0 IOH (mA) VDD (V) FIGURE 22-13: IPD, Brown-out Reset (BOR) FIGURE 22-14: VOH vs. IOH, Over Temperature, VDD = 5.5V, PIC12FXXXX Only 1.54 1.70 1.68 1.66 1.50 Max. Typical 1.64 1.48 1.62 Voltage (V) Voltage (V) Max: Typical + 3σ Min: Typical - 3σ 1.52 Max. Min. 1.60 1.58 1.56 1.44 Typical 1.42 1.40 Max: Typical + 3σ Min: Typical - 3σ 1.54 1.46 Min. 1.38 1.52 1.36 1.50 -40 -20 0 20 40 60 80 100 120 1.34 -40 -20 0 20 40 60 80 100 120 Temperature (°C) Temperature (°C) FIGURE 22-15: DS40001674F-page 222 POR Release Voltage FIGURE 22-16: POR Rearm Voltage, PIC12FXXXX Only  2012-2016 Microchip Technology Inc. PIC12LF1552 23.0 DEVELOPMENT SUPPORT The PIC® microcontrollers (MCU) and dsPIC® digital signal controllers (DSC) are supported with a full range of software and hardware development tools: • Integrated Development Environment - MPLAB® X IDE Software • Compilers/Assemblers/Linkers - MPLAB XC Compiler - MPASMTM Assembler - MPLINKTM Object Linker/ MPLIBTM Object Librarian - MPLAB Assembler/Linker/Librarian for Various Device Families • Simulators - MPLAB X SIM Software Simulator • Emulators - MPLAB REAL ICE™ In-Circuit Emulator • In-Circuit Debuggers/Programmers - MPLAB ICD 3 - PICkit™ 3 • Device Programmers - MPLAB PM3 Device Programmer • Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits • Third-party development tools 23.1 MPLAB X Integrated Development Environment Software The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows®, Linux and Mac OS® X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for highperformance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface. With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users. Feature-Rich Editor: • Color syntax highlighting • Smart code completion makes suggestions and provides hints as you type • Automatic code formatting based on user-defined rules • Live parsing User-Friendly, Customizable Interface: • Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc. • Call graph window Project-Based Workspaces: • • • • Multiple projects Multiple tools Multiple configurations Simultaneous debugging sessions File History and Bug Tracking: • Local file history feature • Built-in support for Bugzilla issue tracker  2012-2016 Microchip Technology Inc. DS40001674F-page 223 PIC12LF1552 23.2 MPLAB XC Compilers The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip’s 8, 16, and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X. For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE. The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications. MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include: • • • • • • Support for the entire device instruction set Support for fixed-point and floating-point data Command-line interface Rich directive set Flexible macro language MPLAB X IDE compatibility 23.3 MPASM Assembler The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs. The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel® standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging. The MPASM Assembler features include: 23.4 MPLINK Object Linker/ MPLIB Object Librarian The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script. The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications. The object linker/library features include: • Efficient linking of single libraries instead of many smaller files • Enhanced code maintainability by grouping related modules together • Flexible creation of libraries with easy module listing, replacement, deletion and extraction 23.5 MPLAB Assembler, Linker and Librarian for Various Device Families MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include: • • • • • • Support for the entire device instruction set Support for fixed-point and floating-point data Command-line interface Rich directive set Flexible macro language MPLAB X IDE compatibility • Integration into MPLAB X IDE projects • User-defined macros to streamline assembly code • Conditional assembly for multipurpose source files • Directives that allow complete control over the assembly process DS40001674F-page 224  2012-2016 Microchip Technology Inc. PIC12LF1552 23.6 MPLAB X SIM Software Simulator The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers. The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool. 23.7 MPLAB REAL ICE In-Circuit Emulator System The MPLAB REAL ICE In-Circuit Emulator System is Microchip’s next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE. The emulator is connected to the design engineer’s PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, LowVoltage Differential Signal (LVDS) interconnection (CAT5). The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.  2012-2016 Microchip Technology Inc. 23.8 MPLAB ICD 3 In-Circuit Debugger System The MPLAB ICD 3 In-Circuit Debugger System is Microchip’s most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE. The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer’s PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers. 23.9 PICkit 3 In-Circuit Debugger/ Programmer The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer’s PC using a full-speed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming™ (ICSP™). 23.10 MPLAB PM3 Device Programmer The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications. DS40001674F-page 225 PIC12LF1552 23.11 Demonstration/Development Boards, Evaluation Kits, and Starter Kits A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification. The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory. 23.12 Third-Party Development Tools Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality. • Device Programmers and Gang Programmers from companies, such as SoftLog and CCS • Software Tools from companies, such as Gimpel and Trace Systems • Protocol Analyzers from companies, such as Saleae and Total Phase • Demonstration Boards from companies, such as MikroElektronika, Digilent® and Olimex • Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika® The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications. In addition to the PICDEM™ and dsPICDEM™ demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ® security ICs, CAN, IrDA®, PowerSmart battery management, SEEVAL® evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more. Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board. Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits. DS40001674F-page 226  2012-2016 Microchip Technology Inc. PIC12LF1552 24.0 PACKAGING INFORMATION 24.1 Package Marking Information 8-Lead PDIP (300 mil.) XXXXXXXX XXXXXNNN YYWW 8-Lead SOIC (3.90 mm) e3 * Note: 12F1552 E/Pe3 017 1410 Example 12F1552 E/SN1410 017 NNN Legend: XX...X Y YY WW NNN Example Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week ‘01’) Alphanumeric traceability code Pb-free JEDEC® designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ( e3 ) can be found on the outer packaging for this package. In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.  2012-2016 Microchip Technology Inc. DS40001674F-page 227 PIC12LF1552 Package Marking Information (Continued) 8-Lead MSOP (3x3 mm) Example L1552I 410017 8-Lead UDFN (2x3x0.5 mm) Example BAQ 410 17 Legend: XX...X Y YY WW NNN e3 * Note: DS40001674F-page 228 Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week ‘01’) Alphanumeric traceability code Pb-free JEDEC® designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ( e3 ) can be found on the outer packaging for this package. In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.  2012-2016 Microchip Technology Inc. PIC12LF1552 24.2 Package Details The following sections give the technical details of the packages. 8-Lead Plastic Dual In-Line (P) - 300 mil Body [PDIP] Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging D A N B E1 NOTE 1 1 2 TOP VIEW E C A2 A PLANE L c A1 e eB 8X b1 8X b .010 C SIDE VIEW END VIEW Microchip Technology Drawing No. C04-018D Sheet 1 of 2  2012-2016 Microchip Technology Inc. DS40001674F-page 229 PIC12LF1552 8-Lead Plastic Dual In-Line (P) - 300 mil Body [PDIP] Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging ALTERNATE LEAD DESIGN (VENDOR DEPENDENT) DATUM A DATUM A b b e 2 e 2 e Units Dimension Limits Number of Pins N e Pitch Top to Seating Plane A Molded Package Thickness A2 Base to Seating Plane A1 Shoulder to Shoulder Width E Molded Package Width E1 Overall Length D Tip to Seating Plane L c Lead Thickness Upper Lead Width b1 b Lower Lead Width Overall Row Spacing eB § e MIN .115 .015 .290 .240 .348 .115 .008 .040 .014 - INCHES NOM 8 .100 BSC .130 .310 .250 .365 .130 .010 .060 .018 - MAX .210 .195 .325 .280 .400 .150 .015 .070 .022 .430 Notes: 1. Pin 1 visual index feature may vary, but must be located within the hatched area. 2. § Significant Characteristic 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side. 4. Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. Microchip Technology Drawing No. C04-018D Sheet 2 of 2 DS40001674F-page 230  2012-2016 Microchip Technology Inc. PIC12LF1552 Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging  2012-2016 Microchip Technology Inc. DS40001674F-page 231 PIC12LF1552 Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging DS40001674F-page 232  2012-2016 Microchip Technology Inc. PIC12LF1552      !"#$%  &   ! "#  $% &"' ""    ($ )  %  *++&&&!    !+ $  2012-2016 Microchip Technology Inc. DS40001674F-page 233 PIC12LF1552 Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging DS40001674F-page 234  2012-2016 Microchip Technology Inc. PIC12LF1552 Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging  2012-2016 Microchip Technology Inc. DS40001674F-page 235 PIC12LF1552 Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging DS40001674F-page 236  2012-2016 Microchip Technology Inc. PIC12LF1552   ' (   )*+,-../ !",'(%  &   ! "#  $% &"' ""    ($ )  %  *++&&&!    !+ $  2012-2016 Microchip Technology Inc. DS40001674F-page 237 PIC12LF1552   ' (   )*+,-../ !",'(%  &   ! "#  $% &"' ""    ($ )  %  *++&&&!    !+ $ DS40001674F-page 238  2012-2016 Microchip Technology Inc. PIC12LF1552 APPENDIX A: DATA SHEET REVISION HISTORY Revision A(12/2012) Original release. Revision B (01/2013) Revised Product ID System – Corrected packaged code MF to MU. Revision C (12/2013) Updated Sections 16, CVD and 21, Electrical Specifications; Other minor corrections. Revision D (04/2014) Updated Peripheral Features on page 1; Updated Figure 1-1 and Equation 15-1; Updated Sections 18.3, 18.3.2, 18.6.7.4, 21.2 and 21.3; Updated titles in Figure 21-6 and Table 21-4; Updated Note 1 in Figure 21-7 and Note 4 in Table 21-6; Added DC and AC Characteristics Graphs and Charts; Updated Chapter 24, Packaging Information; Other minor corrections. Revision E (01/2015) Updated Tables corrections. 21-6 and 21-7; Other minor Revision F (10/2016) Updated eXtreme Low-Power (XLP) Features; Updated Example 3-2; Updated Table 5-1; Added section 5.3.2; Updated Table 21-2. Updated section 15.2.6; Updated Example 15-1; Updated Register 6-2; Updated Table 18-4; Updated section 21.3; Updated Table 21-4. Added new char graphs. Other minor corrections.  2012-2016 Microchip Technology Inc. DS40001674F-page 239 PIC12LF1552 THE MICROCHIP WEBSITE CUSTOMER SUPPORT Microchip provides online support via our website at www.microchip.com. This website is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the website contains the following information: Users of Microchip products can receive assistance through several channels: • Product Support – Data sheets and errata, application notes and sample programs, design resources, user’s guides and hardware support documents, latest software releases and archived software • General Technical Support – Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing • Business of Microchip – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives • • • • Distributor or Representative Local Sales Office Field Application Engineer (FAE) Technical Support Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document. Technical support is available through the website at: http://www.microchip.com/support CUSTOMER CHANGE NOTIFICATION SERVICE Microchip’s customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest. To register, access the Microchip website at www.microchip.com. Under “Support”, click on “Customer Change Notification” and follow the registration instructions. DS40001674F-page 240  2012-2016 Microchip Technology Inc. PIC12LF1552 PRODUCT IDENTIFICATION SYSTEM To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office. [X](1) PART NO. Device - X Tape and Reel Temperature Option Range /XX XXX Package Pattern Examples: a) b) Device: PIC12LF1552 Tape and Reel Option: Blank T = Standard packaging (tube or tray) = Tape and Reel(1) Temperature Range: I E = -40C to +85C = -40C to +125C Package:(2) MU MS P SN Pattern: QTP, SQTP, Code or Special Requirements (blank otherwise) = = = = (Industrial) (Extended) Micro Lead Frame (UDFN) 2x3 MSOP Plastic DIP SOIC  2012-2016 Microchip Technology Inc. c) PIC12LF1552T - I/SN Tape and Reel, Industrial temperature, SOIC package PIC12LF1552 - I/P Industrial temperature PDIP package PIC12LF1552 - E/MU Extended temperature, UDFN package Note 1: Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option. 2: Small form-factor packaging options may be available. Please check www.microchip.com/packaging for smallform factor package availability, or contact your local Sales Office. DS40001674F-page 241 Note the following details of the code protection feature on Microchip devices: • Microchip products meet the specification contained in their particular Microchip Data Sheet. • Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions. • There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property. • Microchip is willing to work with the customer who is concerned about the integrity of their code. • Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.” Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act. Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated. Trademarks The Microchip name and logo, the Microchip logo, AnyRate, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, LINK MD, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC32 logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. ClockWorks, The Embedded Control Solutions Company, ETHERSYNCH, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and QUIET-WIRE are registered trademarks of Microchip Technology Incorporated in the U.S.A. Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, RightTouch logo, REAL ICE, Ripple Blocker, Serial Quad I/O, SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. SQTP is a service mark of Microchip Technology Incorporated in the U.S.A. Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified. QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV == ISO/TS 16949 == DS40001674F-page 242 Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries. GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries. All other trademarks mentioned herein are property of their respective companies. © 2012-2016, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved. ISBN: 978-1-5224-1045-4  2012-2016 Microchip Technology Inc. Worldwide Sales and Service AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130 Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829 India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123 France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455 China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104 India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632 Germany - Dusseldorf Tel: 49-2129-3766400 Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431 Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 Austin, TX Tel: 512-257-3370 China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889 Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088 China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500 Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075 Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643 Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924 Detroit Novi, MI Tel: 248-848-4000 Houston, TX Tel: 281-894-5983 Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 New York, NY Tel: 631-435-6000 San Jose, CA Tel: 408-735-9110 China - Dongguan Tel: 86-769-8702-9880 China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116 India - Pune Tel: 91-20-3019-1500 Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310 Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771 Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302 China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431 Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934 China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470 Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205 Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068 China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066 Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069 China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393 Singapore Tel: 65-6334-8870 Fax: 65-6334-8850 China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760 Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955 China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118 Taiwan - Kaohsiung Tel: 886-7-213-7828 China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256 Canada - Toronto Tel: 905-673-0699 Fax: 905-673-6509 Germany - Karlsruhe Tel: 49-721-625370 Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44 Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781 Italy - Venice Tel: 39-049-7625286 Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340 Poland - Warsaw Tel: 48-22-3325737 Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91 Sweden - Stockholm Tel: 46-8-5090-4654 UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820 Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102 Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350 07/14/15  2012-2016 Microchip Technology Inc. DS40001674F-page 243
PIC12LF1552-I/MU 价格&库存

很抱歉,暂时无法提供与“PIC12LF1552-I/MU”相匹配的价格&库存,您可以联系我们找货

免费人工找货