PIC16C6X
8-Bit CMOS Microcontrollers
Devices included in this data sheet:
• PIC16C61
• PIC16C64A
• PIC16C62
• PIC16CR64
• PIC16C62A
• PIC16C65
• PIC16CR62
• PIC16C65A
• PIC16C63
• PIC16CR65
• PIC16CR63
• PIC16C66
• PIC16C64
• PIC16C67
• Low-power, high-speed CMOS EPROM/ROM
technology
• Fully static design
• Wide operating voltage range: 2.5V to 6.0V
• Commercial, Industrial, and Extended
temperature ranges
• Low-power consumption:
< 2 mA @ 5V, 4 MHz
15 A typical @ 3V, 32 kHz
< 1 A typical standby current
PIC16C6X Microcontroller Core Features:
PIC16C6X Peripheral Features:
• High performance RISC CPU
• Only 35 single word instructions to learn
• All single cycle instructions except for program
branches which are two-cycle
• Operating speed: DC - 20 MHz clock input
DC - 200 ns instruction cycle
• Interrupt capability
• Eight level deep hardware stack
• Direct, indirect, and relative addressing modes
• Power-on Reset (POR)
• Power-up Timer (PWRT) and
Oscillator Start-up Timer (OST)
• Watchdog Timer (WDT) with its own on-chip RC
oscillator for reliable operation
• Programmable code-protection
• Power saving SLEEP mode
• Selectable oscillator options
• Timer0: 8-bit timer/counter with 8-bit prescaler
• Timer1: 16-bit timer/counter with prescaler,
can be incremented during sleep via
external crystal/clock
• Timer2: 8-bit timer/counter with 8-bit period
register, prescaler and postscaler
• Capture/Compare/PWM (CCP) module(s)
• Capture is 16-bit, max resolution is 12.5 ns,
Compare is 16-bit, max resolution is 200 ns,
PWM max resolution is 10-bit.
• Synchronous Serial Port (SSP) with SPI and I2C
• Universal Synchronous Asynchronous Receiver
Transmitter (USART/SCI)
• Parallel Slave Port (PSP) 8-bits wide, with
external RD, WR and CS controls
• Brown-out detection circuitry for
Brown-out Reset (BOR)
PIC16C6X Features
Program Memory
(EPROM) x 14
61
62
62A
R62
63
R63
64
64A
R64
65
65A
R65
66
67
1K
2K
2K
—
4K
—
2K
2K
—
4K
4K
—
8K
8K
(ROM) x 14
—
—
—
2K
—
4K
—
—
2K
—
—
4K
—
—
Data Memory (Bytes) x 8
36
128
128
128
192
192
128
128
128
192
192
192
368
368
I/O Pins
13
22
22
22
22
22
33
33
33
33
33
33
22
33
Parallel Slave Port
—
—
—
—
—
—
Yes
Yes
Yes
Yes
Yes
Yes
—
Yes
Capture/Compare/PWM
Module(s)
—
1
1
1
2
2
1
1
1
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
Timer Modules
1
3
3
Serial Communication
—
SPI/
I2C
SPI/
I2C
SPI/ SPI/I2C, SPI/I2C, SPI/
I2C USART USART I2C
SPI/
I2C
SPI/ SPI/I2C, SPI/I2C, SPI/I2C, SPI/I2C, SPI/I2C,
I2C USART USART USART USART USART
In-Circuit Serial
Programming
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Brown-out Reset
—
—
Yes
Yes
Yes
Yes
—
Yes
Interrupt Sources
3
7
7
7
10
10
8
8
Sink/Source Current (mA) 25/20 25/25 25/25 25/25 25/25
1997-2013 Microchip Technology Inc.
3
Yes
Yes
Yes
Yes
Yes
Yes
—
Yes
Yes
Yes
Yes
8
11
11
11
10
11
25/25
25/25
25/25
25/25
25/25 25/25 25/25 25/25 25/25
DS30234E-page 1
PIC16C6X
Pin Diagrams
PDIP, SOIC, Windowed CERDIP
SDIP, SOIC, SSOP, Windowed CERDIP (300 mil)
RA2
1
18
RA1
RA3
2
17
RA0
RA4/T0CKI
3
16
OSC1/CLKIN
MCLR/VPP
4
15
OSC2/CLKOUT
VSS
5
14
VDD
RB0/INT
6
13
RB7
RB1
7
12
RB6
RB2
8
11
RB5
RB3
9
10
RB4
MCLR/VPP
RA0
RA1
RA2
RA3
RA4/T0CKI
RA5/SS
VSS
PIC16C61
1
2
3
4
5
6
7
8
28
27
26
25
24
23
22
21
OSC1/CLKIN
OSC2/CLKOUT
9
10
20
19
RC0/T1OSI/T1CKI
RC1/T1OSO
RC2/CCP1
RC3/SCK/SCL
11
12
13
14
18
17
16
15
RB7
RB6
RB5
RB4
RB3
RB2
RB1
RB0/INT
VDD
VSS
RC7
RC6
RC5/SDO
RC4/SDI/SDA
PIC16C62
SDIP, SOIC, SSOP, Windowed CERDIP (300 mil)
MCLR/VPP
RA0
RA1
RA2
RA3
RA4/T0CKI
RA5/SS
VSS
OSC1/CLKIN
OSC2/CLKOUT
RC0/T1OSO/T1CKI
RC1/T1OSI
RC2/CCP1
RC3/SCK/SCL
1
2
3
4
28
27
26
25
5
6
7
8
9
10
11
12
13
14
24
23
22
21
20
19
18
17
16
15
SDIP, SOIC, Windowed CERDIP (300 mil)
RB7
RB6
RB5
MCLR/VPP
RA0
RA1
RA2
RA3
RA4/T0CKI
RA5/SS
VSS
OSC1/CLKIN
RB4
RB3
RB2
RB1
RB0/INT
VDD
VSS
RC7
OSC2/CLKOUT
RC0/T1OSO/T1CKI
RC1/T1OSI/CCP2
RC2/CCP1
RC3/SCK/SCL
RC6
RC5/SDO
RC4/SDI/SDA
PIC16C62A
PIC16CR62
1
2
3
4
28
27
26
25
5
6
7
8
9
10
11
12
13
14
24
23
22
21
20
19
18
17
16
15
RB7
RB6
RB5
RB4
RB3
RB2
RB1
RB0/INT
VDD
VSS
RC7/RX/DT
RC6/TX/CK
RC5/SDO
RC4/SDI/SDA
PIC16C63
PIC16CR63
PIC16C66
PDIP, Windowed CERDIP
MCLR/VPP
RA0
RA1
RA2
RA3
RA4/T0CKI
RA5/SS
RE0/RD
RE1/WR
RE2/CS
VDD
VSS
OSC1/CLKIN
OSC2/CLKOUT
RC0/T1OSI/T1CKI
RC1/T1OSO
RC2/CCP1
RC3/SCK/SCL
RD0/PSP0
RD1/PSP1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
PIC16C64
DS30234E-page 2
RB7
MCLR/VPP
RB6
RA0
RB5
RA1
RB4
RA2
RB3
RA3
RB2
RA4/T0CKI
RB1
RA5/SS
RB0/INT
RE0/RD
VDD
RE1/WR
VSS
RE2/CS
VDD
RD7/PSP7
VSS
RD6/PSP6
RD5/PSP5
OSC1/CLKIN
RD4/PSP4
OSC2/CLKOUT
RC7
RC0/T1OSO/T1CKI
RC6
RC1/T1OSI
RC5/SDO
RC2/CCP1
RC4/SDI/SDA
RC3/SCK/SCL
RD3/PSP3
RD0/PSP0
RD2/PSP2
RD1/PSP1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
PIC16C64A
PIC16CR64
RB7
MCLR/VPP
RB6
RA0
RB5
RA1
RB4
RA2
RB3
RA3
RB2
RA4/T0CKI
RB1
RA5/SS
RB0/INT
RE0/RD
VDD
RE1/WR
VSS
RE2/CS
VDD
RD7/PSP7
VSS
RD6/PSP6
RD5/PSP5
OSC1/CLKIN
RD4/PSP4
OSC2/CLKOUT
RC7
RC0/T1OSO/T1CKI
RC6
RC1/T1OSI/CCP2
RC5/SDO
RC2/CCP1
RC4/SDI/SDA
RC3/SCK/SCL
RD3/PSP3
RD0/PSP0
RD2/PSP2
RD1/PSP1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
RB7
RB6
RB5
RB4
RB3
RB2
RB1
RB0/INT
VDD
VSS
RD7/PSP7
RD6/PSP6
RD5/PSP5
RD4/PSP4
RC7/RX/DT
RC6/TX/CK
RC5/SDO
RC4/SDI/SDA
RD3/PSP3
RD2/PSP2
PIC16C65
PIC16C65A
PIC16CR65
PIC16C67
1997-2013 Microchip Technology Inc.
PIC16C6X
PLCC
RC7
RD4/PSP4
RD5/PSP5
RD6/PSP6
RD7/PSP7
VSS
VDD
RB0/INT
RB1
RB2
RB3
44
43
42
41
40
39
38
37
36
35
34
6
5
4
3
2
1
44
43
42
41
40
MQFP
RA3
RA2
RA1
RA0
MCLR/VPP
NC
RB7
RB6
RB5
RB4
NC
RC6
RC5/SDO
RC4/SDI/SDA
RD3/PSP3
RD2/PSP2
RD1/PSP1
RD0/PSP0
RC3/SCK/SCL
RC2/CCP1
RC1/T1OSO
NC
Pin Diagrams (Cont.’d)
1
2
3
4
5
6
7
8
9
10
11
PIC16C64
33
32
31
30
29
28
27
26
25
24
23
NC
RC0/T1OSI/T1CKI
OSC2/CLKOUT
OSC1/CLKIN
VSS
VDD
RE2/CS
RE1/WR
RE0/RD
RA5/SS
RA4/T0CKI
RA4/T0CKI
RA5/SS
RE0/RD
RE1/WR
RE2/CS
VDD
VSS
OSC1/CLKIN
OSC2/CLKOUT
RC0/T1OSI/T1CKI
NC
7
8
9
10
11
12
13
14
15
16
17
39
38
37
36
35
34
33
32
31
30
29
PIC16C64
RB3
RB2
RB1
RB0/INT
VDD
VSS
RD7/PSP7
RD6/PSP6
RD5/PSP5
RD4/PSP4
RC7
28
27
26
25
24
23
22
21
20
19
18
22
21
20
19
18
17
16
15
14
13
12
NC
RC6
RC5/SDO
RC4/SDI/SDA
RD3/PSP3
RD2/PSP2
RD1/PSP1
RD0/PSP0
RC3/SCK/SCL
RC2/CCP1
RC1/T1OSO
RA3
RA2
RA1
RA0
MCLR/VPP
RB7
RB6
RB5
RB4
NC
NC
MQFP,
TQFP (PIC16C64A only)
1
2
3
4
5
6
7
8
9
10
11
PIC16C64A
PIC16CR64
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
NC
RC0/T1OSO/T1CKI
OSC2/CLKOUT
OSC1/CLKIN
VSS
VDD
RE2/CS
RE1/WR
RE0/RD
RA5/SS
RA4/T0CKI
RA4/T0CKI
RA5/SS
RE0/RD
RE1/WR
RE2/CS
VDD
VSS
OSC1/CLKIN
OSC2/CLKOUT
RC0/T1OSO/T1CKI
NC
7
8
9
10
11
12
13
14
15
16
17
PIC16C64A
PIC16CR64
39
38
37
36
35
34
33
32
31
30
29
RB3
RB2
RB1
RB0/INT
VDD
VSS
RD7/PSP7
RD6/PSP6
RD5/PSP5
RD4/PSP4
RC7
39
38
37
36
35
34
33
32
31
30
29
RB3
RB2
RB1
RB0/INT
VDD
VSS
RD7/PSP7
RD6/PSP6
RD5/PSP5
RD4/PSP4
RC7/RX/DT
28
27
26
25
24
23
22
21
20
19
18
RC7
RD4/PSP4
RD5/PSP5
RD6/PSP6
RD7/PSP7
VSS
VDD
RB0/INT
RB1
RB2
RB3
44
43
42
41
40
39
38
37
36
35
34
6
5
4
3
2
1
44
43
42
41
40
RC6
RC5/SDO
RC4/SDI/SDA
RD3/PSP3
RD2/PSP2
RD1/PSP1
RD0/PSP0
RC3/SCK/SCL
RC2/CCP1
RC1/T1OSI
NC
RA3
RA2
RA1
RA0
MCLR/VPP
NC
RB7
RB6
RB5
RB4
NC
PLCC
NC
RC6
RC5/SDO
RC4/SDI/SDA
RD3/PSP3
RD2/PSP2
RD1/PSP1
RD0/PSP0
RC3/SCK/SCL
RC2/CCP1
RC1/T1OSI
RA3
RA2
RA1
RA0
MCLR/VPP
RB7
RB6
RB5
RB4
NC
NC
MQFP,
TQFP (Not on PIC16C65)
1
2
3
4
5
6
7
8
9
10
11
PIC16C65
PIC16C65A
PIC16CR65
PIC16C67
22
21
20
19
18
17
16
15
14
13
12
NC
RC0/T1OSO/T1CKI
OSC2/CLKOUT
OSC1/CLKIN
VSS
VDD
RE2/CS
RE1/WR
RE0/RD
RA5/SS
RA4/T0CKI
RA4/T0CKI
RA5/SS
RE0/RD
RE1/WR
RE2/CS
VDD
VSS
OSC1/CLKIN
OSC2/CLKOUT
RC0/T1OSO/T1CKI
NC
RA3
RA2
RA1
RA0
MCLR/VPP
NC
RB7
RB6
RB5
RB4
NC
7
8
9
10
11
12
13
14
15
16
17
PIC16C65
PIC16C65A
PIC16CR65
PIC16C67
NC
RC6/TX/CK
RC5/SDO
RC4/SDI/SDA
RD3/PSP3
RD2/PSP2
RD1/PSP1
RD0/PSP0
RC3/SCK/SCL
RC2/CCP1
RC1/T1OSI /CCP2
RA3
RA2
RA1
RA0
MCLR/VPP
RB7
RB6
RB5
RB4
NC
NC
1997-2013 Microchip Technology Inc.
33
32
31
30
29
28
27
26
25
24
23
28
27
26
25
24
23
22
21
20
19
18
RC7/RX/DT
RD4/PSP4
RD5/PSP5
RD6/PSP6
RD7/PSP7
VSS
VDD
RB0/INT
RB1
RB2
RB3
44
43
42
41
40
39
38
37
36
35
34
6
5
4
3
2
1
44
43
42
41
40
RC6/TX/CK
RC5/SDO
RC4/SDI/SDA
RD3/PSP3
RD2/PSP2
RD1/PSP1
RD0/PSP0
RC3/SCK/SCL
RC2/CCP1
RC1/T1OSI/CCP2
NC
PLCC
DS30234E-page 3
PIC16C6X
Table Of Contents
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0
12.0
13.0
14.0
15.0
16.0
17.0
18.0
19.0
20.0
21.0
22.0
23.0
24.0
General Description ....................................................................................................................................................................... 5
PIC16C6X Device Varieties ........................................................................................................................................................... 7
Architectural Overview ................................................................................................................................................................... 9
Memory Organization................................................................................................................................................................... 19
I/O Ports....................................................................................................................................................................................... 51
Overview of Timer Modules ......................................................................................................................................................... 63
Timer0 Module ............................................................................................................................................................................. 65
Timer1 Module ............................................................................................................................................................................. 71
Timer2 Module ............................................................................................................................................................................. 75
Capture/Compare/PWM (CCP) Module(s)................................................................................................................................... 77
Synchronous Serial Port (SSP) Module ....................................................................................................................................... 83
Universal Synchronous Asynchronous Receiver Transmitter (USART) Module........................................................................ 105
Special Features of the CPU ..................................................................................................................................................... 123
Instruction Set Summary............................................................................................................................................................ 143
Development Support ................................................................................................................................................................ 159
Electrical Characteristics for PIC16C61 ..................................................................................................................................... 163
DC and AC Characteristics Graphs and Tables for PIC16C61.................................................................................................. 173
Electrical Characteristics for PIC16C62/64 ................................................................................................................................ 183
Electrical Characteristics for PIC16C62A/R62/64A/R64 ............................................................................................................ 199
Electrical Characteristics for PIC16C65 ..................................................................................................................................... 215
Electrical Characteristics for PIC16C63/65A ............................................................................................................................. 231
Electrical Characteristics for PIC16CR63/R65........................................................................................................................... 247
Electrical Characteristics for PIC16C66/67 ................................................................................................................................ 263
DC and AC Characteristics Graphs and Tables for:
PIC16C62, PIC16C62A, PIC16CR62, PIC16C63, PIC16C64, PIC16C64A, PIC16CR64,
PIC16C65A, PIC16C66, PIC16C67 ........................................................................................................................................... 281
25.0 Packaging Information ............................................................................................................................................................... 291
Appendix A: Modifications .............................................................................................................................................................. 307
Appendix B: Compatibility .............................................................................................................................................................. 307
Appendix C: What’s New................................................................................................................................................................ 308
Appendix D: What’s Changed ........................................................................................................................................................ 308
Appendix E:
PIC16/17 Microcontrollers ....................................................................................................................................... 309
Pin Compatibility ................................................................................................................................................................................ 315
Index .................................................................................................................................................................................................. 317
List of Equation and Examples........................................................................................................................................................... 326
List of Figures..................................................................................................................................................................................... 326
List of Tables...................................................................................................................................................................................... 330
Reader Response .............................................................................................................................................................................. 334
PIC16C6X Product Identification System........................................................................................................................................... 335
For register and module descriptions in this data sheet, device legends show which devices apply to those sections. For
example, the legend below shows that some features of only the PIC16C62A, PIC16CR62, PIC16C63, PIC16C64A,
PIC16CR64, and PIC16C65A are described in this section.
Applicable Devices
61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
To Our Valued Customers
We constantly strive to improve the quality of all our products and documentation. We have spent an exceptional
amount of time to ensure that these documents are correct. However, we realize that we may have missed a few
things. If you find any information that is missing or appears in error, please use the reader response form in the
back of this data sheet to inform us. We appreciate your assistance in making this a better document.
DS30234E-page 4
1997-2013 Microchip Technology Inc.
PIC16C6X
1.0
GENERAL DESCRIPTION
The PIC16CXX is a family of low-cost, high-performance, CMOS, fully-static, 8-bit microcontrollers.
All PIC16/17 microcontrollers employ an advanced
RISC architecture. The PIC16CXX microcontroller family has enhanced core features, eight-level deep stack,
and multiple internal and external interrupt sources.
The separate instruction and data buses of the Harvard
architecture allow a 14-bit wide instruction word with
separate 8-bit wide data. The two stage instruction
pipeline allows all instructions to execute in a single
cycle, except for program branches (which require two
cycles). A total of 35 instructions (reduced instruction
set) are available. Additionally, a large register set gives
some of the architectural innovations used to achieve a
very high performance.
PIC16CXX microcontrollers typically achieve a 2:1
code compression and a 4:1 speed improvement over
other 8-bit microcontrollers in their class.
The PIC16C61 device has 36 bytes of RAM and 13 I/O
pins. In addition a timer/counter is available.
The PIC16C62/62A/R62 devices have 128 bytes of
RAM and 22 I/O pins. In addition, several peripheral
features are available, including: three timer/counters,
one Capture/Compare/PWM module and one serial
port. The Synchronous Serial Port can be configured
as either a 3-wire Serial Peripheral Interface (SPI) or
the two-wire Inter-Integrated Circuit (I2C) bus.
The PIC16C63/R63 devices have 192 bytes of RAM,
while the PIC16C66 has 368 bytes. All three devices
have 22 I/O pins. In addition, several peripheral features are available, including: three timer/counters, two
Capture/Compare/PWM modules and two serial ports.
The Synchronous Serial Port can be configured as
either a 3-wire Serial Peripheral Interface (SPI) or the
two-wire Inter-Integrated Circuit (I2C) bus. The Universal Synchronous Asynchronous Receiver Transmitter
(USART) is also know as a Serial Communications
Interface or SCI.
The PIC16C64/64A/R64 devices have 128 bytes of
RAM and 33 I/O pins. In addition, several peripheral
features are available, including: three timer/counters,
one Capture/Compare/PWM module and one serial
port. The Synchronous Serial Port can be configured
as either a 3-wire Serial Peripheral Interface (SPI) or
the two-wire Inter-Integrated Circuit (I2C) bus. An 8-bit
Parallel Slave Port is also provided.
The PIC16C65/65A/R65 devices have 192 bytes of
RAM, while the PIC16C67 has 368 bytes. All four
devices have 33 I/O pins. In addition, several peripheral
features are available, including: three timer/counters,
two Capture/Compare/PWM modules and two serial
ports. The Synchronous Serial Port can be configured
as either a 3-wire Serial Peripheral Interface (SPI) or
the two-wire Inter-Integrated Circuit (I2C) bus. The Universal Synchronous Asynchronous Receiver Transmit-
1997-2013 Microchip Technology Inc.
ter (USART) is also known as a Serial Communications
Interface or SCI. An 8-bit Parallel Slave Port is also provided.
The PIC16C6X device family has special features to
reduce external components, thus reducing cost,
enhancing system reliability and reducing power consumption. There are four oscillator options, of which the
single pin RC oscillator provides a low-cost solution,
the LP oscillator minimizes power consumption, XT is a
standard crystal, and the HS is for High Speed crystals.
The SLEEP (power-down) mode offers a power saving
mode. The user can wake the chip from SLEEP
through several external and internal interrupts, and
resets.
A highly reliable Watchdog Timer with its own on-chip
RC oscillator provides protection against software lockup.
A UV erasable CERDIP packaged version is ideal for
code
development,
while
the
cost-effective
One-Time-Programmable (OTP) version is suitable for
production in any volume.
The PIC16C6X family fits perfectly in applications ranging from high-speed automotive and appliance control
to low-power remote sensors, keyboards and telecom
processors. The EPROM technology makes customization of application programs (transmitter codes,
motor speeds, receiver frequencies, etc.) extremely
fast and convenient. The small footprint packages
make this microcontroller series perfect for all applications with space limitations. Low-cost, low-power, high
performance, ease-of-use, and I/O flexibility make the
PIC16C6X very versatile even in areas where no microcontroller use has been considered before (e.g. timer
functions, serial communication, capture and compare,
PWM functions, and co-processor applications).
1.1
Family and Upward Compatibility
Those users familiar with the PIC16C5X family of
microcontrollers will realize that this is an enhanced
version of the PIC16C5X architecture. Please refer to
Appendix A for a detailed list of enhancements. Code
written for PIC16C5X can be easily ported to
PIC16CXX family of devices (Appendix B).
1.2
Development Support
PIC16C6X devices are supported by the complete line
of Microchip Development tools.
Please refer to Section 15.0 for more details about
Microchip’s development tools.
DS30234E-page 5
PIC16C6X
TABLE 1-1:
PIC16C6X FAMILY OF DEVICES
PIC16C61
PIC16C62A
PIC16CR62
PIC16C63
PIC16CR63
Maximum Frequency
of Operation (MHz)
20
20
20
20
20
EPROM Program Memory
(x14 words)
1K
2K
—
4K
—
ROM Program Memory
(x14 words)
—
—
2K
—
4K
Data Memory (bytes)
36
128
128
192
192
Timer Module(s)
TMR0
TMR0,
TMR1,
TMR2
TMR0,
TMR1,
TMR2
TMR0,
TMR1,
TMR2
TMR0,
TMR1,
TMR2
Capture/Compare/
Peripherals PWM Module(s)
—
1
1
2
2
Serial Port(s)
(SPI/I2C, USART)
—
SPI/I2C
SPI/I2C
SPI/I2C,
USART
SPI/I2C
USART
Clock
Memory
Features
Parallel Slave Port
—
—
—
—
—
Interrupt Sources
3
7
7
10
10
I/O Pins
13
22
22
22
22
Voltage Range (Volts)
3.0-6.0
2.5-6.0
2.5-6.0
2.5-6.0
2.5-6.0
In-Circuit Serial Programming
Yes
Yes
Yes
Yes
Yes
Brown-out Reset
—
Yes
Yes
Yes
Yes
Packages
18-pin DIP, SO 28-pin SDIP,
SOIC, SSOP
28-pin SDIP,
SOIC, SSOP
28-pin SDIP, 28-pin SDIP,
SOIC
SOIC
PIC16C64A
Clock
Memory
PIC16C65A
PIC16CR65
PIC16C66
PIC16C67
20
20
20
20
20
20
EPROM Program Memory
(x14 words)
2K
—
4K
—
8K
8K
ROM Program Memory (x14
words)
—
2K
—
4K
—
—
Data Memory (bytes)
128
128
192
192
368
368
Timer Module(s)
TMR0,
TMR1,
TMR2
TMR0,
TMR1,
TMR2
TMR0,
TMR1,
TMR2
TMR0,
TMR1,
TMR2
TMR0,
TMR1,
TMR2
TMR0,
TMR1,
TMR2
1
1
2
2
2
2
SPI/I2C
SPI/I2C
SPI/I2C,
USART
SPI/I2C,
USART
SPI/I2C,
USART
SPI/I2C,
USART
Capture/Compare/PWM ModPeripherals ule(s)
Serial Port(s) (SPI/I2C, USART)
Features
PIC16CR64
Maximum Frequency
of Operation (MHz)
Parallel Slave Port
Yes
Yes
Yes
Yes
—
Yes
Interrupt Sources
8
8
11
11
10
11
I/O Pins
33
33
33
33
22
33
Voltage Range (Volts)
2.5-6.0
2.5-6.0
2.5-6.0
2.5-6.0
2.5-6.0
2.5-6.0
In-Circuit Serial Programming
Yes
Yes
Yes
Yes
Yes
Yes
Brown-out Reset
Yes
Yes
Yes
Yes
Yes
Yes
Packages
40-pin DIP; 40-pin DIP;
40-pin DIP;
40-pin DIP;
44-pin PLCC, 44-pin PLCC, 44-pin PLCC, 44-pin
MQFP, TQFP MQFP, TQFP MQFP, TQFP PLCC,
MQFP,
TQFP
28-pin SDIP, 40-pin DIP;
SOIC
44-pin
PLCC,
MQFP,
TQFP
All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current
capability. All PIC16C6X Family devices use serial programming with clock pin RB6 and data pin RB7.
DS30234E-page 6
1997-2013 Microchip Technology Inc.
PIC16C6X
2.0
PIC16C6X DEVICE VARIETIES
A variety of frequency ranges and packaging options
are available. Depending on application and production
requirements, the proper device option can be selected
using the information in the PIC16C6X Product Identification System section at the end of this data sheet.
When placing orders, please use that page of the data
sheet to specify the correct part number.
For the PIC16C6X family of devices, there are four
device “types” as indicated in the device number:
1.
2.
3.
4.
2.1
C, as in PIC16C64. These devices have
EPROM type memory and operate over the
standard voltage range.
LC, as in PIC16LC64. These devices have
EPROM type memory and operate over an
extended voltage range.
CR, as in PIC16CR64. These devices have
ROM program memory and operate over the
standard voltage range.
LCR, as in PIC16LCR64. These devices have
ROM program memory and operate over an
extended voltage range.
UV Erasable Devices
The UV erasable version, offered in CERDIP package
is optimal for prototype development and pilot
programs. This version can be erased and
reprogrammed to any of the oscillator modes.
Microchip's PICSTART Plus and PRO MATE II
programmers both support programming of the
PIC16C6X.
2.2
One-Time-Programmable (OTP)
Devices
2.3
Quick-Turnaround-Production (QTP)
Devices
Microchip offers a QTP Programming Service for factory production orders. This service is made available
for users who choose not to program a medium to high
quantity of units and whose code patterns have stabilized. The devices are identical to the OTP devices but
with all EPROM locations and configuration options
already programmed by the factory. Certain code and
prototype verification procedures apply before production shipments are available. Please contact your local
Microchip Technology sales office for more details.
2.4
Serialized Quick-Turnaround
Production (SQTPSM) Devices
Microchip offers a unique programming service where
a few user-defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random, or sequential.
Serial programming allows each device to have a
unique number which can serve as an entry-code,
password, or ID number.
ROM devices do not allow serialization information in
the program memory space. The user may have this
information programmed in the data memory space.
For information on submitting ROM code, please contact your regional sales office.
2.5
Read Only Memory (ROM) Devices
Microchip offers masked ROM versions of several of
the highest volume parts, thus giving customers a low
cost option for high volume, mature products.
For information on submitting ROM code, please contact your regional sales office.
The availability of OTP devices is especially useful for
customers who need the flexibility for frequent code
updates and small volume applications.
The OTP devices, packaged in plastic packages, permit the user to program them once. In addition to the
program memory, the configuration bits must also be
programmed.
1997-2013 Microchip Technology Inc.
DS30234E-page 7
PIC16C6X
NOTES:
DS30234E-page 8
1997-2013 Microchip Technology Inc.
PIC16C6X
3.0
ARCHITECTURAL OVERVIEW
The high performance of the PIC16CXX family can be
attributed to a number of architectural features commonly found in RISC microprocessors. To begin with,
the PIC16CXX uses a Harvard architecture, in which,
program and data are accessed from separate memories using separate buses. This improves bandwidth
over traditional von Neumann architecture where program and data may be fetched from the same memory
using the same bus. Separating program and data busses further allows instructions to be sized differently
than 8-bit wide data words. Instruction opcodes are
14-bits wide making it possible to have all single word
instructions. A 14-bit wide program memory access
bus fetches a 14-bit instruction in a single cycle. A twostage pipeline overlaps fetch and execution of instructions (Example 3-1). Consequently, all instructions execute in a single cycle (200 ns @ 20 MHz) except for
program branches.
The PIC16C61 addresses 1K x 14 of program memory.
The PIC16C62/62A/R62/64/64A/R64 address 2K x 14
of
program
memory,
and
the
PIC16C63/R63/65/65A/R65 devices address 4K x 14 of
program memory. The PIC16C66/67 address 8K x 14
program memory. All program memory is internal.
The PIC16CXX device contains an 8-bit ALU and working register (W). The ALU is a general purpose arithmetic unit. It performs arithmetic and Boolean functions
between data in the working register and any register
file.
The ALU is 8-bits wide and capable of addition, subtraction, shift, and logical operations. Unless otherwise
mentioned, arithmetic operations are two's complement in nature. In two-operand instructions, typically
one operand is the working register (W register), the
other operand is a file register or an immediate constant. In single operand instructions, the operand is
either the W register or a file register.
The W register is an 8-bit working register used for ALU
operations. It is not an addressable register.
Depending upon the instruction executed, the ALU may
affect the values of the Carry (C), Digit Carry (DC), and
Zero (Z) bits in the STATUS register. Bits C and DC
operate as a borrow and digit borrow out bit, respectively, in subtraction. See the SUBLW and SUBWF
instructions for examples.
The PIC16CXX can directly or indirectly address its
register files or data memory. All special function registers including the program counter are mapped in
the data memory. The PIC16CXX has an orthogonal
(symmetrical) instruction set that makes it possible to
carry out any operation on any register using any
addressing mode. This symmetrical nature and lack of
“special optimal situations” makes programming with
the PIC16CXX simple yet efficient, thus significantly
reducing the learning curve.
1997-2013 Microchip Technology Inc.
DS30234E-page 9
PIC16C6X
FIGURE 3-1:
PIC16C61 BLOCK DIAGRAM
13
Program
Memory
Program
Bus
14
PORTA
RA0
RA1
RA2
RA3
RAM
File
Registers
36 x 8
8 Level Stack
(13-bit)
1K x 14
8
Data Bus
Program Counter
EPROM
RAM Addr
(1)
RA4/T0CKI
PORTB
9
Addr MUX
Instruction reg
Direct Addr
7
8
Indirect
Addr
FSR reg
RB0/INT
RB7:RB1
STATUS reg
8
Power-up
Timer
Instruction
Decode &
Control
Timing
Generation
3
Oscillator
Start-up Timer
Power-on
Reset
Watchdog
Timer
MUX
ALU
8
W reg
OSC1/CLKIN
OSC2/CLKOUT
Timer0
MCLR
VDD, VSS
Note 1: Higher order bits are from the STATUS register.
DS30234E-page 10
1997-2013 Microchip Technology Inc.
PIC16C6X
FIGURE 3-2:
PIC16C62/62A/R62/64/64A/R64 BLOCK DIAGRAM
13
Program
Bus
14
PORTA
RA0
RA1
RA2
RA3
RAM
File
Registers
128 x 8
8 Level Stack
(13-bit)
2K x 14
8
Data Bus
Program Counter
EPROM/
ROM
Program
Memory
RAM Addr(1)
RA4/T0CKI
RA5/SS
PORTB
9
Addr MUX
Instruction reg
Direct Addr
7
8
RB0/INT
Indirect
Addr
RB7:RB1
FSR reg
STATUS reg
8
PORTC
Power-up
Timer
3
Oscillator
Start-up Timer
Instruction
Decode &
Control
Power-on
Reset
Timing
Generation
Watchdog
Timer
Brown-out
Reset(3)
OSC1/CLKIN
OSC2/CLKOUT
MCLR
RC0/T1OSO/T1CKI(4)
RC1/T1OSI(4)
RC2/CCP1
RC3/SCK/SCL
RC4/SDI/SDA
RC5/SDO
RC6
RC7
MUX
ALU
8
W reg
PORTD
RD0/PSP0
RD1/PSP1
RD2/PSP2
RD3/PSP3
RD4/PSP4
RD5/PSP5
RD6/PSP6
RD7/PSP7
VDD, VSS
Parallel Slave
Port
PORTE
RE0/RD
Timer1
Timer2
RE1/WR
CCP1
RE2/CS
(Note 2)
Timer0
Note 1:
2:
3:
4:
Synchronous
Serial Port
Higher order bits are from the STATUS register.
PORTD, PORTE and the Parallel Slave Port are not available on the PIC16C62/62A/R62.
Brown-out Reset is not available on the PIC16C62/64.
Pin functions T1OSI and T1OSO are swapped on the PIC16C62/64.
1997-2013 Microchip Technology Inc.
DS30234E-page 11
PIC16C6X
FIGURE 3-3:
PIC16C63/R63/65/65A/R65 BLOCK DIAGRAM
13
Program
Memory
Program
Bus
14
PORTA
RA0
RA1
RA2
RA3
RA4/T0CKI
RAM
File
Registers
192 x 8
8 Level Stack
(13-bit)
4K x 14
8
Data Bus
Program Counter
EPROM
RAM Addr(1)
RA5/SS
PORTB
9
Addr MUX
Instruction reg
Direct Addr
7
8
RB0/INT
Indirect
Addr
RB7:RB1
FSR reg
STATUS reg
8
PORTC
Power-up
Timer
Instruction
Decode &
Control
Timing
Generation
OSC1/CLKIN
OSC2/CLKOUT
3
Oscillator
Start-up Timer
Power-on
Reset
Watchdog
Timer
ALU
8
W reg
PORTD
Brown-out
Reset(3)
MCLR
RC0/T1OSO/T1CKI
RC1/T1OSI/CCP2
RC2/CCP1
RC3/SCK/SCL
RC4/SDI/SDA
RC5/SDO
RC6/TX/CK
RC7/RX/DT
MUX
VDD, VSS
Parallel Slave
Port
RD0/PSP0
RD1/PSP1
RD2/PSP2
RD3/PSP3
RD4/PSP4
RD5/PSP5
RD6/PSP6
RD7/PSP7
PORTE
RE0/RD
RE1/WR
Timer0
Timer1
Timer2
RE2/CS
(Note 2)
USART
Synchronous
Serial Port
CCP1
CCP2
Note 1: Higher order bits are from the STATUS register.
2: PORTD, PORTE and the Parallel Slave Port are not available on the PIC16C63/R63.
3: Brown-out Reset is not available on the PIC16C65.
DS30234E-page 12
1997-2013 Microchip Technology Inc.
PIC16C6X
FIGURE 3-4:
PIC16C66/67 BLOCK DIAGRAM
13
Program
Memory
Program
Bus
14
PORTA
RA0
RA1
RA2
RA3
RA4/T0CKI
RAM
File
Registers
368 x 8
8 Level Stack
(13-bit)
8K x 14
8
Data Bus
Program Counter
EPROM
RAM Addr(1)
RA5/SS
PORTB
9
Addr MUX
Instruction reg
Direct Addr
7
8
RB0/INT
Indirect
Addr
RB7:RB1
FSR reg
STATUS reg
8
PORTC
Power-up
Timer
3
Oscillator
Start-up Timer
Instruction
Decode &
Control
Power-on
Reset
Timing
Generation
Watchdog
Timer
OSC1/CLKIN
OSC2/CLKOUT
ALU
8
W reg
PORTD
Brown-out
Reset
MCLR
RC0/T1OSO/T1CKI
RC1/T1OSI/CCP2
RC2/CCP1
RC3/SCK/SCL
RC4/SDI/SDA
RC5/SDO
RC6/TX/CK
RC7/RX/DT
MUX
VDD, VSS
Parallel Slave
Port
RD0/PSP0
RD1/PSP1
RD2/PSP2
RD3/PSP3
RD4/PSP4
RD5/PSP5
RD6/PSP6
RD7/PSP7
PORTE
RE0/RD
RE1/WR
Timer0
Timer1
Timer2
RE2/CS
(Note 2)
USART
Synchronous
Serial Port
CCP1
CCP2
Note 1: Higher order bits are from the STATUS register.
2: PORTD, PORTE and the Parallel Slave Port are not available on the PIC16C66.
1997-2013 Microchip Technology Inc.
DS30234E-page 13
PIC16C6X
TABLE 3-1:
PIC16C61 PINOUT DESCRIPTION
Pin Name
DIP
Pin#
SOIC
Pin#
Pin Type
Buffer
Type
Description
ST/CMOS(1) Oscillator crystal input/external clock source input.
OSC1/CLKIN
16
16
I
OSC2/CLKOUT
15
15
O
—
Oscillator crystal output. Connects to crystal or resonator in crystal
oscillator mode. In RC mode, the pin outputs CLKOUT which has
1/4 the frequency of OSC1, and denotes the instruction cycle rate.
MCLR/VPP
4
4
I/P
ST
Master clear reset input or programming voltage input. This pin is an
active low reset to the device.
RA0
17
17
I/O
TTL
RA1
18
18
I/O
TTL
RA2
1
1
I/O
TTL
RA3
2
2
I/O
TTL
RA4/T0CKI
3
3
I/O
ST
PORTA is a bi-directional I/O port.
RA4 can also be the clock input to the Timer0 timer/counter.
Output is open drain type.
PORTB is a bi-directional I/O port. PORTB can be software programmed for internal weak pull-up on all inputs.
RB0/INT
6
6
I/O
TTL/ST(2)
RB1
7
7
I/O
TTL
RB2
8
8
I/O
TTL
RB3
9
9
I/O
TTL
RB4
10
10
I/O
TTL
Interrupt on change pin.
RB5
11
11
I/O
TTL
Interrupt on change pin.
RB6
12
12
I/O
TTL/ST(3)
RB7
13
13
I/O
TTL/ST(3)
VSS
5
5
P
—
Ground reference for logic and I/O pins.
VDD
14
14
P
—
Positive supply for logic and I/O pins.
RB0 can also be the external interrupt pin.
Interrupt on change pin. Serial programming clock.
Interrupt on change pin. Serial programming data.
Legend: I = input
O = output
I/O = input/output
P = power
— = Not used
TTL = TTL input
ST = Schmitt Trigger input
Note 1: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.
2: This buffer is a Schmitt Trigger input when configured as the external interrupt.
3: This buffer is a Schmitt Trigger input when used in serial programming mode.
DS30234E-page 14
1997-2013 Microchip Technology Inc.
PIC16C6X
TABLE 3-2:
PIC16C62/62A/R62/63/R63/66 PINOUT DESCRIPTION
Pin Name
Pin#
Pin Type
Buffer
Type
Description
OSC1/CLKIN
9
I
ST/CMOS(3)
OSC2/CLKOUT
10
O
—
Oscillator crystal output. Connects to crystal or resonator in crystal oscillator mode. In RC mode, the pin outputs CLKOUT which
has 1/4 the frequency of OSC1, and denotes the instruction cycle
rate.
MCLR/VPP
1
I/P
ST
Master clear reset input or programming voltage input. This pin is
an active low reset to the device.
RA0
2
I/O
TTL
RA1
3
I/O
TTL
RA2
4
I/O
TTL
RA3
5
I/O
TTL
RA4/T0CKI
6
I/O
ST
RA4 can also be the clock input to the Timer0 timer/counter.
Output is open drain type.
RA5/SS
7
I/O
TTL
RA5 can also be the slave select for the synchronous serial
port.
Oscillator crystal input/external clock source input.
PORTA is a bi-directional I/O port.
PORTB is a bi-directional I/O port. PORTB can be software programmed for internal weak pull-up on all inputs.
RB0/INT
21
I/O
TTL/ST(4)
RB1
22
I/O
TTL
RB2
23
I/O
TTL
RB3
24
I/O
TTL
RB4
25
I/O
TTL
Interrupt on change pin.
RB5
26
I/O
TTL
Interrupt on change pin.
RB6
27
I/O
TTL/ST(5)
RB7
28
I/O
TTL/ST(5)
RB0 can also be the external interrupt pin.
Interrupt on change pin. Serial programming clock.
Interrupt on change pin. Serial programming data.
PORTC is a bi-directional I/O port.
RC0/T1OSO(1)/T1CKI
11
I/O
ST
RC0 can also be the Timer1 oscillator output(1) or Timer1
clock input.
RC1/T1OSI(1)/CCP2(2)
12
I/O
ST
RC1 can also be the Timer1 oscillator input(1) or Capture2
input/Compare2 output/PWM2 output(2).
RC2/CCP1
13
I/O
ST
RC2 can also be the Capture1 input/Compare1 output/PWM1 output.
RC3/SCK/SCL
14
I/O
ST
RC3 can also be the synchronous serial clock input/output
for both SPI and I2C modes.
RC4/SDI/SDA
15
I/O
ST
RC4 can also be the SPI Data In (SPI mode) or
data I/O (I2C mode).
RC5/SDO
16
I/O
ST
RC5 can also be the SPI Data Out (SPI mode).
RC6/TX/CK(2)
17
I/O
ST
RC6 can also be the USART Asynchronous Transmit(2) or
Synchronous Clock(2).
RC7/RX/DT(2)
18
I/O
ST
RC7 can also be the USART Asynchronous Receive(2) or
Synchronous Data(2).
VSS
8,19
P
—
Ground reference for logic and I/O pins.
VDD
20
P
—
Positive supply for logic and I/O pins.
Legend: I = input
Note 1:
2:
3:
4:
5:
O = output
I/O = input/output
P = power
— = Not used
TTL = TTL input
ST = Schmitt Trigger input
Pin functions T1OSO and T1OSI are reversed on the PIC16C62.
The USART and CCP2 are not available on the PIC16C62/62A/R62.
This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.
This buffer is a Schmitt Trigger input when configured as the external interrupt.
This buffer is a Schmitt Trigger input when used in serial programming mode.
1997-2013 Microchip Technology Inc.
DS30234E-page 15
PIC16C6X
TABLE 3-3:
PIC16C64/64A/R64/65/65A/R65/67 PINOUT DESCRIPTION
Pin Name
DIP
Pin#
PLCC
Pin#
TQFP
MQFP
Pin#
Pin
Type
Buffer
Type
Description
ST/CMOS(3) Oscillator crystal input/external clock source input.
OSC1/CLKIN
13
14
30
I
OSC2/CLKOUT
14
15
31
O
—
Oscillator crystal output. Connects to crystal or resonator in
crystal oscillator mode. In RC mode, the pin outputs CLKOUT which has 1/4 the frequency of OSC1, and denotes the
instruction cycle rate.
MCLR/VPP
1
2
18
I/P
ST
Master clear reset input or programming voltage input. This
pin is an active low reset to the device.
RA0
2
3
19
I/O
TTL
RA1
3
4
20
I/O
TTL
RA2
4
5
21
I/O
TTL
RA3
5
6
22
I/O
TTL
RA4/T0CKI
6
7
23
I/O
ST
RA4 can also be the clock input to the Timer0
timer/counter. Output is open drain type.
RA5/SS
7
8
24
I/O
TTL
RA5 can also be the slave select for the synchronous
serial port.
PORTA is a bi-directional I/O port.
PORTB is a bi-directional I/O port. PORTB can be software
programmed for internal weak pull-up on all inputs.
RB0/INT
33
36
8
I/O
TTL/ST(4)
RB1
34
37
9
I/O
TTL
RB2
35
38
10
I/O
TTL
RB3
36
39
11
I/O
TTL
RB4
37
41
14
I/O
TTL
Interrupt on change pin.
RB5
38
42
15
I/O
TTL
Interrupt on change pin.
RB6
39
43
16
I/O
TTL/ST(5)
RB7
40
44
17
I/O
TTL/ST(5)
RB0 can also be the external interrupt pin.
Interrupt on change pin. Serial programming clock.
Interrupt on change pin. Serial programming data.
PORTC is a bi-directional I/O port.
RC0/T1OSO(1)/T1CKI
15
16
32
I/O
ST
RC0 can also be the Timer1 oscillator output(1) or
Timer1 clock input.
RC1/T1OSI(1)/CCP2(2)
16
18
35
I/O
ST
RC1 can also be the Timer1 oscillator input(1) or
Capture2 input/Compare2 output/PWM2 output(2).
RC2/CCP1
17
19
36
I/O
ST
RC2 can also be the Capture1 input/Compare1 output/PWM1 output.
RC3/SCK/SCL
18
20
37
I/O
ST
RC3 can also be the synchronous serial clock input/output for both SPI and I2C modes.
RC4/SDI/SDA
23
25
42
I/O
ST
RC4 can also be the SPI Data In (SPI mode) or
data I/O (I2C mode).
RC5/SDO
24
26
43
I/O
ST
RC5 can also be the SPI Data Out (SPI mode).
RC6/TX/CK(2)
25
27
44
I/O
ST
RC6 can also be the USART Asynchronous Transmit(2)
or Synchronous Clock(2).
RC7/RX/DT(2)
26
29
1
I/O
ST
RC7 can also be the USART Asynchronous Receive(2)
or Synchronous Data(2).
Legend: I = input
Note 1:
2:
3:
4:
5:
6:
O = output
I/O = input/output
P = power
— = Not used
TTL = TTL input
ST = Schmitt Trigger input
Pin functions T1OSO and T1OSI are reversed on the PIC16C64.
CCP2 and the USART are not available on the PIC16C64/64A/R64.
This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.
This buffer is a Schmitt Trigger input when configured as the external interrupt.
This buffer is a Schmitt Trigger input when used in serial programming mode.
This buffer is a Schmitt Trigger input when configured as general purpose I/O and a TTL input when used in the Parallel Slave
Port mode (for interfacing to a microprocessor bus).
DS30234E-page 16
1997-2013 Microchip Technology Inc.
PIC16C6X
TABLE 3-3:
Pin Name
PIC16C64/64A/R64/65/65A/R65/67 PINOUT DESCRIPTION (Cont.’d)
DIP
Pin#
PLCC
Pin#
TQFP
MQFP
Pin#
Pin
Type
Buffer
Type
Description
PORTD can be a bi-directional I/O port or parallel slave port
for interfacing to a microprocessor bus.
RD0/PSP0
19
21
38
I/O
ST/TTL(6)
RD1/PSP1
20
22
39
I/O
ST/TTL(6)
RD2/PSP2
21
23
40
I/O
ST/TTL(6)
RD3/PSP3
22
24
41
I/O
ST/TTL(6)
RD4/PSP4
27
30
2
I/O
ST/TTL(6)
RD5/PSP5
28
31
3
I/O
ST/TTL(6)
RD6/PSP6
29
32
4
I/O
ST/TTL(6)
RD7/PSP7
30
33
5
I/O
ST/TTL(6)
RE0/RD
8
9
25
I/O
ST/TTL(6)
RE0 can also be read control for the parallel slave port.
RE1/WR
9
10
26
I/O
ST/TTL(6)
RE1 can also be write control for the parallel slave port.
RE2/CS
10
11
27
I/O
ST/TTL(6)
VSS
12,31
13,34
6,29
P
—
VDD
11,32
12,35
7,28
P
—
Positive supply for logic and I/O pins.
NC
—
1,17,
28,40
12,13,
33,34
—
—
These pins are not internally connected. These pins should
be left unconnected.
PORTE is a bi-directional I/O port.
RE2 can also be select control for the parallel slave port.
Ground reference for logic and I/O pins.
Legend: I = input
Note 1:
2:
3:
4:
5:
6:
O = output
I/O = input/output
P = power
— = Not used
TTL = TTL input
ST = Schmitt Trigger input
Pin functions T1OSO and T1OSI are reversed on the PIC16C64.
CCP2 and the USART are not available on the PIC16C64/64A/R64.
This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.
This buffer is a Schmitt Trigger input when configured as the external interrupt.
This buffer is a Schmitt Trigger input when used in serial programming mode.
This buffer is a Schmitt Trigger input when configured as general purpose I/O and a TTL input when used in the Parallel Slave
Port mode (for interfacing to a microprocessor bus).
1997-2013 Microchip Technology Inc.
DS30234E-page 17
PIC16C6X
3.1
Clocking Scheme/Instruction Cycle
3.2
The clock input (from OSC1) is internally divided by
four to generate four non-overlapping quadrature
clocks namely Q1, Q2, Q3, and Q4. Internally, the program counter (PC) is incremented every Q1, the
instruction is fetched from the program memory and
latched into the instruction register in Q4. The instruction is decoded and executed during the following Q1
through Q4. The clock and instruction execution flow is
shown in Figure 3-5.
Instruction Flow/Pipelining
An “Instruction Cycle” consists of four Q cycles (Q1,
Q2, Q3, and Q4). The instruction fetch and execute are
pipelined such that fetch takes one instruction cycle
while decode and execute takes another instruction
cycle. However, due to the pipelining, each instruction
effectively executes in one cycle. If an instruction
causes the program counter to change (e.g. GOTO)
then two cycles are required to complete the instruction
(Example 3-1).
A fetch cycle begins with the program counter (PC)
incrementing in Q1.
In the execution cycle, the fetched instruction is latched
into the “Instruction Register (IR)” in cycle Q1. This
instruction is then decoded and executed during the
Q2, Q3, and Q4 cycles. Data memory is read during Q2
(operand read) and written during Q4 (destination
write).
FIGURE 3-5:
CLOCK/INSTRUCTION CYCLE
Q1
Q2
Q3
Q4
Q1
Q2
Q3
Q4
Q1
Q2
Q3
Q4
OSC1
Q1
Q2
Internal
Phase
Clock
Q3
Q4
PC
(Program counter)
OSC2/CLKOUT
(RC mode)
PC
PC+1
Fetch INST (PC)
Execute INST (PC-1)
EXAMPLE 3-1:
1. MOVLW 55h
PC+2
Fetch INST (PC+1)
Execute INST (PC)
Fetch INST (PC+2)
Execute INST (PC+1)
INSTRUCTION PIPELINE FLOW
Tcy0
Tcy1
Fetch 1
Execute 1
2. MOVWF PORTB
3. CALL
SUB_1
4. BSF
PORTA, BIT3 (Forced NOP)
5. Instruction @ address SUB_1
Fetch 2
Tcy2
Tcy3
Tcy4
Tcy5
Execute 2
Fetch 3
Execute 3
Fetch 4
Flush
Fetch SUB_1 Execute SUB_1
All instructions are single cycle, except for any program branches. These take two cycles since the fetch
instruction is “flushed” from the pipeline while the new instruction is being fetched and then executed.
DS30234E-page 18
1997-2013 Microchip Technology Inc.
PIC16C6X
4.0
MEMORY ORGANIZATION
FIGURE 4-2:
Applicable Devices
61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
Program Memory Organization
The PIC16C6X family has a 13-bit program counter
capable of addressing an 8K x 14 program memory
space. The amount of program memory available to
each device is listed below:
Device
PIC16C61
PIC16C62
PIC16C62A
PIC16CR62
PIC16C63
PIC16CR63
PIC16C64
PIC16C64A
PIC16CR64
PIC16C65
PIC16C65A
PIC16CR65
PIC16C66
PIC16C67
Program
Memory
Address Range
1K x 14
2K x 14
2K x 14
2K x 14
4K x 14
4K x 14
2K x 14
2K x 14
2K x 14
4K x 14
4K x 14
4K x 14
8K x 14
8K x 14
0000h-03FFh
0000h-07FFh
0000h-07FFh
0000h-07FFh
0000h-0FFFh
0000h-0FFFh
0000h-07FFh
0000h-07FFh
0000h-07FFh
0000h-0FFFh
0000h-0FFFh
0000h-0FFFh
0000h-1FFFh
0000h-1FFFh
For those devices with less than 8K program memory,
accessing a location above the physically implemented
address will cause a wraparound.
The reset vector is at 0000h and the interrupt vector is
at 0004h.
FIGURE 4-1:
PC
13
CALL, RETURN
RETFIE, RETLW
Stack Level 1
Stack Level 8
User Memory
Space
4.1
PIC16C62/62A/R62/64/64A/
R64 PROGRAM MEMORY
MAP AND STACK
Reset Vector
0000h
Peripheral Interrupt Vector
0004h
0005h
On-chip Program
Memory
07FFh
0800h
1FFFh
FIGURE 4-3:
PIC16C63/R63/65/65A/R65
PROGRAM MEMORY MAP
AND STACK
PC
13
CALL, RETURN
RETFIE, RETLW
Stack Level 1
Stack Level 8
PIC16C61 PROGRAM
MEMORY MAP AND STACK
Reset Vector
0000h
Peripheral Interrupt Vector
0004h
0005h
PC
User Memory
Space
User Memory
Space
13
CALL, RETURN
RETFIE, RETLW
Stack Level 1
Stack Level 8
Reset Vector
0000h
Peripheral Interrupt Vector
0004h
0005h
On-chip Program
Memory
On-chip Program
Memory (Page 0)
07FFh
0800h
On-chip Program
Memory (Page 1)
0FFFh
1000h
03FFh
0400h
1FFFh
1FFFh
1997-2013 Microchip Technology Inc.
DS30234E-page 19
PIC16C6X
FIGURE 4-4:
PIC16C66/67 PROGRAM
MEMORY MAP AND STACK
User Memory
Space
PC
13
CALL, RETURN
RETFIE, RETLW
Stack Level 1
Stack Level 8
For the PIC16C61, general purpose register locations
8Ch-AFh of Bank 1 are not physically implemented.
These locations are mapped into 0Ch-2Fh of Bank 0.
FIGURE 4-5:
PIC16C61 REGISTER FILE
MAP
File Address
Reset Vector
0000h
Peripheral Interrupt Vector
0004h
0005h
On-chip Program
Memory (Page 0)
07FFh
0800h
On-chip Program
Memory (Page 1)
0FFFh
1000h
On-chip Program
Memory (Page 2)
INDF(1)
INDF(1)
80h
01h
TMR0
OPTION
81h
02h
PCL
PCL
82h
03h
STATUS
STATUS
83h
04h
FSR
FSR
84h
05h
PORTA
TRISA
85h
06h
PORTB
TRISB
86h
07h
87h
08h
88h
89h
09h
0Ah
0Bh
17FFh
1800h
File Address
00h
PCLATH
PCLATH
8Ah
INTCON
INTCON
8Bh
8Ch
0Ch
On-chip Program
Memory (Page 3)
General
Purpose
Register
Mapped
in Bank 0(2)
1FFFh
4.2
Data Memory Organization
2Fh
AFh
30h
B0h
Applicable Devices
61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
The data memory is partitioned into multiple banks
which contain the General Purpose Registers and the
Special Function Registers. Bits RP1 and RP0 are the
bank select bits.
RP1:RP0 (STATUS)
= 00 Bank0
= 01 Bank1
= 10 Bank2
= 11 Bank3
Each bank extends up to 7Fh (128 bytes). The lower
locations of each bank are reserved for the Special
Function Registers. Above the Special Function Registers are General Purpose Registers, implemented as
static RAM. All implemented banks contain special
function registers. Some “high use” special function
registers from one bank may be mirrored in another
bank for code reduction and quicker access.
4.2.1
7Fh
FFh
Bank 0
Bank 1
Unimplemented data memory location; read as '0'.
Note 1: Not a physical register.
2: These locations are unimplemented in
Bank 1. Any access to these locations will
access the corresponding Bank 0 register.
GENERAL PURPOSE REGISTERS
These registers are accessed either directly or indirectly through the File Select Register (FSR)
(Section 4.5).
DS30234E-page 20
1997-2013 Microchip Technology Inc.
PIC16C6X
FIGURE 4-6:
PIC16C62/62A/R62/64/64A/
R64 REGISTER FILE MAP
File Address
File Address
FIGURE 4-7:
PIC16C63/R63/65/65A/R65
REGISTER FILE MAP
File Address
File Address
00h
INDF(1)
INDF(1)
80h
00h
INDF(1)
INDF(1)
80h
01h
TMR0
OPTION
81h
01h
TMR0
OPTION
81h
02h
PCL
PCL
82h
02h
PCL
PCL
82h
03h
STATUS
STATUS
83h
03h
STATUS
STATUS
83h
04h
FSR
FSR
84h
04h
FSR
FSR
84h
05h
PORTA
TRISA
85h
05h
PORTA
TRISA
85h
06h
PORTB
TRISB
86h
06h
PORTB
TRISB
86h
07h
PORTC
TRISC
87h
07h
PORTC
TRISC
87h
08h
PORTD(2)
TRISD(2)
88h
08h
PORTD(2)
TRISD(2)
88h
PORTE(2)
TRISE(2)
89h
09h
PORTE(2)
TRISE(2)
89h
0Ah
PCLATH
PCLATH
8Ah
0Ah
PCLATH
PCLATH
8Ah
0Bh
INTCON
INTCON
8Bh
0Bh
INTCON
INTCON
8Bh
0Ch
PIR1
PIE1
8Ch
0Ch
PIR1
PIE1
8Ch
8Dh
0Dh
PIR2
PIE2
8Dh
8Eh
0Eh
TMR1L
PCON
8Eh
TMR1H
8Fh
0Fh
TMR1H
8Fh
10h
T1CON
90h
10h
T1CON
90h
11h
TMR2
91h
11h
TMR2
91h
09h
0Dh
0Eh
0Fh
TMR1L
PCON
12h
T2CON
PR2
92h
12h
T2CON
PR2
92h
13h
SSPBUF
SSPADD
93h
13h
SSPBUF
SSPADD
93h
14h
SSPCON
SSPSTAT
94h
14h
SSPCON
SSPSTAT
94h
15h
CCPR1L
95h
15h
CCPR1L
95h
16h
CCPR1H
96h
16h
CCPR1H
96h
17h
CCP1CON
97h
17h
CCP1CON
97h
98h
18h
RCSTA
TXSTA
98h
19h
TXREG
SPBRG
99h
1Ah
RCREG
1Bh
CCPR2L
9Bh
18h
9Ah
1Fh
9Fh
1Ch
CCPR2H
9Ch
20h
A0h
1Dh
CCP2CON
9Dh
General
Purpose
Register
General
Purpose
Register
7Fh
BFh
C0h
FFh
Bank 1
Bank 0
Unimplemented data memory location; read as '0'.
Note 1: Not a physical register.
2: PORTD and PORTE are not available on
the PIC16C62/62A/R62.
1997-2013 Microchip Technology Inc.
1Eh
9Eh
1Fh
9Fh
20h
7Fh
General
Purpose
Register
General
Purpose
Register
A0h
FFh
Bank 1
Bank 0
Unimplemented data memory location; read as '0'.
Note 1: Not a physical register
2: PORTD and PORTE are not available on
the PIC16C63/R63.
DS30234E-page 21
PIC16C6X
FIGURE 4-8:
PIC16C66/67 DATA MEMORY MAP
File
Address
Indirect addr.(*)
TMR0
PCL
STATUS
FSR
PORTA
PORTB
PORTC
PORTD (1)
PORTE (1)
PCLATH
INTCON
PIR1
PIR2
TMR1L
TMR1H
T1CON
TMR2
T2CON
SSPBUF
SSPCON
CCPR1L
CCPR1H
CCP1CON
RCSTA
TXREG
RCREG
CCPR2L
CCPR2H
CCP2CON
00h
01h
02h
03h
04h
05h
06h
07h
08h
09h
0Ah
0Bh
0Ch
0Dh
0Eh
0Fh
10h
11h
12h
13h
14h
15h
16h
17h
18h
19h
1Ah
1Bh
1Ch
1Dh
1Eh
1Fh
20h
General
Purpose
Register
7Fh
*
OPTION
PCL
STATUS
FSR
TRISA
TRISB
TRISC
TRISD (1)
TRISE (1)
PCLATH
INTCON
PIE1
PIE2
PCON
PR2
SSPADD
SSPSTAT
TXSTA
SPBRG
80h
81h
82h
83h
84h
85h
86h
87h
88h
89h
8Ah
8Bh
8Ch
8Dh
8Eh
8Fh
90h
91h
92h
93h
94h
95h
96h
97h
98h
99h
9Ah
9Bh
9Ch
9Dh
9Eh
9Fh
Indirect addr.(*)
TMR0
PCL
STATUS
FSR
PORTB
PCLATH
INTCON
General
Purpose
Register
16 Bytes
A0h
General
Purpose
Register
80 Bytes
96 Bytes
Bank 0
Indirect addr.(*)
accesses
70h-7Fh
in Bank 0
Bank 1
EFh
F0h
FFh
General
Purpose
Register
80 Bytes
accesses
70h-7Fh
in Bank 0
Bank 2
100h
101h
102h
103h
104h
105h
106h
107h
108h
109h
10Ah
10Bh
10Ch
10Dh
10Eh
10Fh
110h
111h
112h
113h
114h
115h
116h
117h
118h
119h
11Ah
11Bh
11Ch
11Dh
11Eh
11Fh
120h
16Fh
170h
17Fh
Indirect addr.(*)
OPTION
PCL
STATUS
FSR
TRISB
PCLATH
INTCON
General
Purpose
Register
16 Bytes
180h
181h
182h
183h
184h
185h
186h
187h
188h
189h
18Ah
18Bh
18Ch
18Dh
18Eh
18Fh
190h
191h
192h
193h
194h
195h
196h
197h
198h
199h
19Ah
19Bh
19Ch
19Dh
19Eh
19Fh
1A0h
General
Purpose
Register
80 Bytes
accesses
70h-7Fh
in Bank 0
Bank 3
1EFh
1F0h
1FFh
Unimplemented data memory locations, read as '0'.
Not a physical register.
These registers are not implemented on the PIC16C66.
Note:
DS30234E-page 22
The upper 16 bytes of data memory in banks 1, 2, and 3 are mapped in Bank 0. This may require
relocation of data memory usage in the user application code if upgrading to the PIC16C66/67.
1997-2013 Microchip Technology Inc.
PIC16C6X
4.2.2
SPECIAL FUNCTION REGISTERS:
The Special Function Registers are registers used by
the CPU and peripheral modules for controlling the
desired operation of the device. These registers are
implemented as static RAM.
TABLE 4-1:
Address Name
The special function registers can be classified into two
sets (core and peripheral). The registers associated
with the “core” functions are described in this section
and those related to the operation of the peripheral features are described in the section of that peripheral feature.
SPECIAL FUNCTION REGISTERS FOR THE PIC16C61
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Value on:
POR
Value on
all other
resets(3)
Bank 0
00h(1)
INDF
Addressing this location uses contents of FSR to address data memory (not a physical register)
0000 0000 0000 0000
01h
TMR0
Timer0 module’s register
xxxx xxxx uuuu uuuu
02h(1)
PCL
Program Counter's (PC) Least Significant Byte
03h(1)
STATUS
04h(1)
FSR
IRP(4)
RP1(4)
RP0
TO
0000 0000 0000 0000
PD
Z
DC
C
Indirect data memory address pointer
05h
PORTA
06h
PORTB
—
—
—
0001 1xxx 000q quuu
xxxx xxxx uuuu uuuu
PORTA Data Latch when written: PORTA pins when read
PORTB Data Latch when written: PORTB pins when read
---x xxxx ---u uuuu
xxxx xxxx uuuu uuuu
07h
—
Unimplemented
—
—
08h
—
Unimplemented
—
—
09h
—
Unimplemented
—
—
0Ah(1,2)
PCLATH
—
—
—
0Bh(1)
INTCON
GIE
—
T0IE
Write Buffer for the upper 5 bits of the Program Counter
INTE
RBIE
T0IF
INTF
---0 0000 ---0 0000
RBIF
0-00 000x 0-00 000u
Addressing this location uses contents of FSR to address data memory (not a physical register)
0000 0000 0000 0000
Bank 1
80h(1)
INDF
81h
OPTION
82h(1)
PCL
83h(1)
STATUS
84h(1)
FSR
85h
TRISA
86h
TRISB
87h
–
Unimplemented
—
—
88h
–
Unimplemented
—
—
89h
–
Unimplemented
—
—
RBPU
INTEDG
T0CS
T0SE
PSA
PS2
PS1
PS0
Program Counter's (PC) Least Significant Byte
IRP(4)
RP1(4)
RP0
TO
PD
Z
DC
C
Indirect data memory address pointer
—
—
—
PCLATH
—
—
—
8Bh(1)
INTCON
GIE
—
T0IE
0001 1xxx 000q quuu
xxxx xxxx uuuu uuuu
PORTA Data Direction Register
---1 1111 ---1 1111
PORTB Data Direction Control Register
8Ah(1,2)
1111 1111 1111 1111
0000 0000 0000 0000
1111 1111 1111 1111
Write Buffer for the upper 5 bits of the Program Counter
INTE
RBIE
T0IF
INTF
RBIF
---0 0000 ---0 0000
0-00 000x
0-00 000u
Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented locations read as '0'.
Shaded locations are unimplemented and read as ‘0’
Note 1: These registers can be addressed from either bank.
2: The upper byte of the Program Counter (PC) is not directly accessible. PCLATH is a holding register for the PC whose contents are transferred to the upper byte of the program counter. (PC)
3: Other (non power-up) resets include external reset through MCLR and the Watchdog Timer Reset.
4: The IRP and RP1 bits are reserved on the PIC16C61, always maintain these bits clear.
1997-2013 Microchip Technology Inc.
DS30234E-page 23
PIC16C6X
TABLE 4-2:
SPECIAL FUNCTION REGISTERS FOR THE PIC16C62/62A/R62
Address Name
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Value on:
POR,
BOR
Value on
all other
resets(3)
Bank 0
00h(1)
INDF
Addressing this location uses contents of FSR to address data memory (not a physical register)
0000 0000 0000 0000
01h
TMR0
Timer0 module’s register
xxxx xxxx uuuu uuuu
PCL
Program Counter's (PC) Least Significant Byte
0000 0000 0000 0000
02h
(1)
03h(1)
STATUS
04h(1)
FSR
05h
PORTA
06h
PORTB
PORTB Data Latch when written: PORTB pins when read
xxxx xxxx uuuu uuuu
07h
PORTC
PORTC Data Latch when written: PORTC pins when read
xxxx xxxx uuuu uuuu
IRP
(5)
RP1(5)
RP0
TO
PD
Z
DC
C
Indirect data memory address pointer
—
—
0001 1xxx 000q quuu
xxxx xxxx uuuu uuuu
PORTA Data Latch when written: PORTA pins when read
--xx xxxx --uu uuuu
08h
—
Unimplemented
—
—
09h
—
Unimplemented
—
—
0Ah(1,2)
PCLATH
—
—
—
0Bh(1)
INTCON
GIE
PEIE
T0IE
INTE
RBIE
T0IF
INTF
RBIF
0000 000x 0000 000u
0Ch
PIR1
(6)
(6)
—
—
SSPIF
CCP1IF
TMR2IF
TMR1IF
00-- 0000 00-- 0000
Write Buffer for the upper 5 bits of the Program Counter
0Dh
—
0Eh
TMR1L
Holding register for the Least Significant Byte of the 16-bit TMR1 register
0Fh
TMR1H
Holding register for the Most Significant Byte of the 16-bit TMR1 register
10h
T1CON
11h
TMR2
12h
T2CON
13h
SSPBUF
14h
SSPCON
15h
CCPR1L
Capture/Compare/PWM1 (LSB)
16h
CCPR1H
Capture/Compare/PWM1 (MSB)
17h
CCP1CON
18h-1Fh
—
Unimplemented
—
—
—
xxxx xxxx uuuu uuuu
T1CKPS1
T1CKPS0
T1OSCEN
T1SYNC
TMR1CS
TMR1ON
TOUTPS3 TOUTPS2
TOUTPS1
TOUTPS0
TMR2ON
T2CKPS1
T2CKPS0 -000 0000 -000 0000
SSPM2
SSPM1
SSPOV
—
Unimplemented
—
--00 0000 --uu uuuu
0000 0000 0000 0000
Synchronous Serial Port Receive Buffer/Transmit Register
WCOL
—
xxxx xxxx uuuu uuuu
Timer2 module’s register
—
---0 0000 ---0 0000
SSPEN
CCP1X
CKP
SSPM3
xxxx xxxx uuuu uuuu
SSPM0
0000 0000 0000 0000
xxxx xxxx uuuu uuuu
xxxx xxxx uuuu uuuu
CCP1Y
CCP1M3
CCP1M2
CCP1M1
CCP1M0
--00 0000 --00 0000
—
—
Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented location read as '0'.
Shaded locations are unimplemented, read as ‘0’.
Note 1: These registers can be addressed from either bank.
2: The upper byte of the Program Counter (PC) is not directly accessible. PCLATH is a holding register for the PC whose
contents are transferred to the upper byte of the program counter. (PC)
3: Other (non power-up) resets include external reset through MCLR and the Watchdog Timer reset.
4: The BOR bit is reserved on the PIC16C62, always maintain this bit set.
5: The IRP and RP1 bits are reserved on the PIC16C62/62A/R62, always maintain these bits clear.
6: PIE1 and PIR1 are reserved on the PIC16C62/62A/R62, always maintain these bits clear.
DS30234E-page 24
1997-2013 Microchip Technology Inc.
PIC16C6X
TABLE 4-2:
Address Name
SPECIAL FUNCTION REGISTERS FOR THE PIC16C62/62A/R62 (Cont.’d)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Value on:
POR,
BOR
Value on
all other
resets(3)
Bank 1
80h(1)
INDF
81h
OPTION
82h(1)
PCL
83h(1)
STATUS
84h(1)
FSR
85h
TRISA
86h
TRISB
PORTB Data Direction Register
1111 1111 1111 1111
87h
TRISC
PORTC Data Direction Register
1111 1111 1111 1111
88h
—
Unimplemented
—
—
89h
—
Unimplemented
—
—
(1,2)
Addressing this location uses contents of FSR to address data memory (not a physical register)
RBPU
INTEDG
T0CS
T0SE
PSA
PS2
PS1
PS0
Program Counter's (PC) Least Significant Byte
IRP(5)
RP1(5)
RP0
—
1111 1111 1111 1111
0000 0000 0000 0000
TO
PD
Z
DC
C
Indirect data memory address pointer
—
0000 0000 0000 0000
0001 1xxx 000q quuu
xxxx xxxx uuuu uuuu
PORTA Data Direction Register
--11 1111 --11 1111
Write Buffer for the upper 5 bits of the Program Counter
PCLATH
—
—
—
8Bh(1)
INTCON
GIE
PEIE
T0IE
INTE
RBIE
T0IF
INTF
RBIF
0000 000x 0000 000u
8Ch
PIE1
(6)
(6)
—
—
SSPIE
CCP1IE
TMR2IE
TMR1IE
00-- 0000 00-- 0000
—
—
—
—
—
POR
BOR(4)
---- --qq ---- --uu
8Ah
8Dh
—
8Eh
PCON
8Fh
—
Unimplemented
—
—
90h
—
Unimplemented
—
—
91h
—
Unimplemented
—
—
92h
Unimplemented
---0 0000 ---0 0000
—
—
PR2
Timer2 Period Register
93h
SSPADD
Synchronous Serial Port (I2C mode) Address Register
94h
SSPSTAT
95h-9Fh
—
—
—
Unimplemented
—
1111 1111 1111 1111
D/A
P
0000 0000 0000 0000
S
R/W
UA
BF
--00 0000 --00 0000
—
—
Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented location read as '0'.
Shaded locations are unimplemented, read as ‘0’.
Note 1: These registers can be addressed from either bank.
2: The upper byte of the Program Counter (PC) is not directly accessible. PCLATH is a holding register for the PC whose
contents are transferred to the upper byte of the program counter. (PC)
3: Other (non power-up) resets include external reset through MCLR and the Watchdog Timer reset.
4: The BOR bit is reserved on the PIC16C62, always maintain this bit set.
5: The IRP and RP1 bits are reserved on the PIC16C62/62A/R62, always maintain these bits clear.
6: PIE1 and PIR1 are reserved on the PIC16C62/62A/R62, always maintain these bits clear.
1997-2013 Microchip Technology Inc.
DS30234E-page 25
PIC16C6X
TABLE 4-3:
Address Name
SPECIAL FUNCTION REGISTERS FOR THE PIC16C63/R63
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Value on:
POR,
BOR
Value on
all other
resets(3)
Bank 0
00h(1)
INDF
Addressing this location uses contents of FSR to address data memory (not a physical register)
0000 0000 0000 0000
01h
TMR0
Timer0 module’s register
xxxx xxxx uuuu uuuu
PCL
Program Counter's (PC) Least Significant Byte
0000 0000 0000 0000
02h
(1)
03h(1)
STATUS
04h(1)
FSR
05h
PORTA
06h
PORTB
PORTB Data Latch when written: PORTB pins when read
xxxx xxxx uuuu uuuu
07h
PORTC
PORTC Data Latch when written: PORTC pins when read
xxxx xxxx uuuu uuuu
IRP
(4)
RP1(4)
RP0
TO
PD
Z
DC
C
Indirect data memory address pointer
—
—
0001 1xxx 000q quuu
xxxx xxxx uuuu uuuu
PORTA Data Latch when written: PORTA pins when read
--xx xxxx --uu uuuu
08h
—
Unimplemented
—
—
09h
—
Unimplemented
—
—
0Ah(1,2)
PCLATH
—
—
0Bh(1)
INTCON
GIE
PEIE
T0IE
INTE
RBIE
T0IF
INTF
RBIF
0000 000x 0000 000u
0Ch
PIR1
(5)
(5)
RCIF
TXIF
SSPIF
CCP1IF
TMR2IF
TMR1IF
0000 0000 0000 0000
0Dh
PIR2
—
—
—
—–
—
—
—
CCP2IF
---- ---0 ---- ---0
0Eh
TMR1L
Holding register for the Least Significant Byte of the 16-bit TMR1 register
0Fh
TMR1H
Holding register for the Most Significant Byte of the 16-bit TMR1 register
10h
T1CON
11h
TMR2
12h
T2CON
—
—
—
Write Buffer for the upper 5 bits of the Program Counter
xxxx xxxx uuuu uuuu
xxxx xxxx uuuu uuuu
T1CKPS1
T1CKPS0
T1OSCEN
T1SYNC
TMR1CS
TMR1ON
TOUTPS3 TOUTPS2
TOUTPS1
TOUTPS0
TMR2ON
T2CKPS1
T2CKPS0 -000 0000 -000 0000
SSPM2
SSPM1
Timer2 module’s register
—
SSPBUF
14h
SSPCON
Synchronous Serial Port Receive Buffer/Transmit Register
15h
CCPR1L
Capture/Compare/PWM1 (LSB)
16h
CCPR1H
Capture/Compare/PWM1 (MSB)
17h
CCP1CON
SSPOV
--00 0000 --uu uuuu
0000 0000 0000 0000
13h
WCOL
---0 0000 ---0 0000
SSPEN
CKP
SSPM3
xxxx xxxx uuuu uuuu
SSPM0
0000 0000 0000 0000
xxxx xxxx uuuu uuuu
xxxx xxxx uuuu uuuu
—
—
CCP1X
CCP1Y
CCP1M3
CCP1M2
CCP1M1
CCP1M0
SPEN
RX9
SREN
CREN
—
FERR
OERR
RX9D
--00 0000 --00 0000
18h
RCSTA
19h
TXREG
USART Transmit Data Register
0000 0000 0000 0000
1Ah
RCREG
USART Receive Data Register
0000 0000 0000 0000
1Bh
CCPR2L
Capture/Compare/PWM2 (LSB)
xxxx xxxx uuuu uuuu
1Ch
CCPR2H
Capture/Compare/PWM2 (MSB)
1Dh
CCP2CON
1Eh-1Fh
—
—
—
Unimplemented
CCP2X
0000 -00x 0000 -00x
xxxx xxxx uuuu uuuu
CCP2Y
CCP2M3
CCP2M2
CCP2M1
CCP2M0
--00 0000 --00 0000
—
—
Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented location read as '0'.
Shaded locations are unimplemented, read as ‘0’.
Note 1: These registers can be addressed from either bank.
2: The upper byte of the Program Counter (PC) is not directly accessible. PCLATH is a holding register for the PC whose
contents are transferred to the upper byte of the program counter. (PC)
3: Other (non power-up) resets include external reset through MCLR and the Watchdog Timer reset.
4: The IRP and RP1 bits are reserved on the PIC16C63/R63, always maintain these bits clear.
5: PIE1 and PIR1 are reserved on the PIC16C63/R63, always maintain these bits clear.
1997-2013 Microchip Technology Inc.
DS30234E-page 26
PIC16C6X
TABLE 4-3:
Address Name
SPECIAL FUNCTION REGISTERS FOR THE PIC16C63/R63 (Cont.’d)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Value on:
POR,
BOR
Value on
all other
resets(3)
Bank 1
80h(1)
INDF
81h
OPTION
82h(1)
PCL
83h(1)
STATUS
84h(1)
FSR
85h
TRISA
86h
TRISB
PORTB Data Direction Register
1111 1111 1111 1111
87h
TRISC
PORTC Data Direction Register
1111 1111 1111 1111
88h
—
Unimplemented
—
—
89h
—
Unimplemented
—
—
(1,2)
Addressing this location uses contents of FSR to address data memory (not a physical register)
RBPU
INTEDG
T0CS
T0SE
PSA
PS2
PS1
PS0
Program Counter's (PC) Least Significant Byte
IRP(4)
RP1(4)
RP0
—
TO
PD
Z
DC
C
0001 1xxx 000q quuu
xxxx xxxx uuuu uuuu
PORTA Data Direction Register
--11 1111 --11 1111
Write Buffer for the upper 5 bits of the Program Counter
PCLATH
—
—
8Bh(1)
INTCON
GIE
PEIE
T0IE
INTE
RBIE
T0IF
INTF
RBIF
0000 000x 0000 000u
8Ch
PIE1
(5)
(5)
RCIE
TXIE
SSPIE
CCP1IE
TMR2IE
TMR1IE
0000 0000 0000 0000
8Dh
PIE2
—
—
—
—
—
—
—
CCP2IE
---- ---0 ---- ---0
8Eh
PCON
—
—
—
—
—
—
POR
BOR
---- --qq ---- --uu
8Fh
—
Unimplemented
—
—
90h
—
Unimplemented
—
—
91h
—
Unimplemented
—
—
8Ah
92h
—
1111 1111 1111 1111
0000 0000 0000 0000
Indirect data memory address pointer
—
0000 0000 0000 0000
PR2
Timer2 Period Register
93h
SSPADD
Synchronous Serial Port (I2C mode) Address Register
94h
SSPSTAT
—
—
---0 0000 ---0 0000
1111 1111 1111 1111
D/A
P
0000 0000 0000 0000
S
R/W
UA
BF
--00 0000 --00 0000
95h
—
Unimplemented
—
—
96h
—
Unimplemented
—
—
97h
—
Unimplemented
—
—
98h(2)
TXSTA
99h(2)
SPBRG
CSRC
TX9
TXEN
Baud Rate Generator Register
SYNC
—
BRGH
TRMT
TX9D
0000 -010 0000 -010
0000 0000 0000 0000
9Ah
—
Unimplemented
—
—
9Bh
—
Unimplemented
—
—
9Ch
—
Unimplemented
—
—
9Dh
—
Unimplemented
—
—
9Eh
—
Unimplemented
—
—
9Fh
—
Unimplemented
—
—
Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented location read as '0'.
Shaded locations are unimplemented, read as ‘0’.
Note 1: These registers can be addressed from either bank.
2: The upper byte of the Program Counter (PC) is not directly accessible. PCLATH is a holding register for the PC whose
contents are transferred to the upper byte of the program counter. (PC)
3: Other (non power-up) resets include external reset through MCLR and the Watchdog Timer reset.
4: The IRP and RP1 bits are reserved on the PIC16C63/R63, always maintain these bits clear.
5: PIE1 and PIR1 are reserved on the PIC16C63/R63, always maintain these bits clear.
1997-2013 Microchip Technology Inc.
DS30234E-page 27
PIC16C6X
TABLE 4-4:
SPECIAL FUNCTION REGISTERS FOR THE PIC16C64/64A/R64
Address Name
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Value on:
POR,
BOR
Value on
all other
resets(3)
Bank 0
00h(1)
INDF
Addressing this location uses contents of FSR to address data memory (not a physical register)
0000 0000 0000 0000
01h
TMR0
Timer0 module’s register
xxxx xxxx uuuu uuuu
PCL
Program Counter's (PC) Least Significant Byte
0000 0000 0000 0000
02h
(1)
03h(1)
STATUS
04h(1)
FSR
05h
PORTA
06h
PORTB
PORTB Data Latch when written: PORTB pins when read
xxxx xxxx uuuu uuuu
07h
PORTC
PORTC Data Latch when written: PORTC pins when read
xxxx xxxx uuuu uuuu
08h
PORTD
PORTD Data Latch when written: PORTD pins when read
09h
PORTE
—
—
—
0Ah(1,2)
PCLATH
—
—
—
0Bh(1)
INTCON
GIE
PEIE
T0IE
INTE
RBIE
T0IF
INTF
RBIF
0000 000x 0000 000u
0Ch
PIR1
PSPIF
(6)
—
—
SSPIF
CCP1IF
TMR2IF
TMR1IF
00-- 0000 00-- 0000
IRP
(5)
RP1(5)
RP0
TO
PD
Z
—
—
C
—
—
RE1
RE0
Write Buffer for the upper 5 bits of the Program Counter
0Eh
TMR1L
Holding register for the Least Significant Byte of the 16-bit TMR1 register
0Fh
TMR1H
Holding register for the Most Significant Byte of the 16-bit TMR1 register
10h
T1CON
11h
TMR2
12h
T2CON
13h
SSPBUF
14h
SSPCON
15h
CCPR1L
Capture/Compare/PWM1 (LSB)
16h
CCPR1H
Capture/Compare/PWM1 (MSB)
17h
CCP1CON
—
--xx xxxx --uu uuuu
xxxx xxxx uuuu uuuu
RE2
—
Unimplemented
—
—
—
—
xxxx xxxx uuuu uuuu
T1CKPS1
T1CKPS0
T1OSCEN
T1SYNC
TMR1CS
TMR1ON
TOUTPS3 TOUTPS2
TOUTPS1
TOUTPS0
TMR2ON
T2CKPS1
T2CKPS0 -000 0000 -000 0000
SSPM2
SSPM1
SSPOV
—
Unimplemented
—
--00 0000 --uu uuuu
0000 0000 0000 0000
Synchronous Serial Port Receive Buffer/Transmit Register
WCOL
---- -xxx ---- -uuu
---0 0000 ---0 0000
xxxx xxxx uuuu uuuu
Timer2 module’s register
—
0001 1xxx 000q quuu
xxxx xxxx uuuu uuuu
PORTA Data Latch when written: PORTA pins when read
0Dh
18h-1Fh
DC
Indirect data memory address pointer
SSPEN
CCP1X
CKP
SSPM3
xxxx xxxx uuuu uuuu
SSPM0
0000 0000 0000 0000
xxxx xxxx uuuu uuuu
xxxx xxxx uuuu uuuu
CCP1Y
CCP1M3
CCP1M2
CCP1M1
CCP1M0
--00 0000 --00 0000
—
—
Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented location read as '0'.
Shaded locations are unimplemented, read as ‘0’.
Note 1: These registers can be addressed from either bank.
2: The upper byte of the Program Counter (PC) is not directly accessible. PCLATH is a holding register for the PC whose
contents are transferred to the upper byte of the program counter. (PC)
3: Other (non power-up) resets include external reset through MCLR and the Watchdog Timer reset.
4: The BOR bit is reserved on the PIC16C64, always maintain this bit set.
5: The IRP and RP1 bits are reserved on the PIC16C64/64A/R64, always maintain these bits clear.
6: PIE1 and PIR1 are reserved on the PIC16C64/64A/R64, always maintain these bits clear.
DS30234E-page 28
1997-2013 Microchip Technology Inc.
PIC16C6X
TABLE 4-4:
Address Name
SPECIAL FUNCTION REGISTERS FOR THE PIC16C64/64A/R64 (Cont.’d)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Value on:
POR,
BOR
Value on
all other
resets(3)
Bank 1
80h(1)
INDF
81h
OPTION
82h(1)
PCL
83h(1)
STATUS
84h(1)
FSR
85h
TRISA
86h
TRISB
PORTB Data Direction Register
1111 1111 1111 1111
87h
TRISC
PORTC Data Direction Register
1111 1111 1111 1111
88h
TRISD
PORTD Data Direction Register
89h
TRISE
IBF
OBF
IBOV
8Ah(1,2)
PCLATH
—
—
—
8Bh(1)
INTCON
GIE
PEIE
T0IE
INTE
RBIE
T0IF
INTF
RBIF
0000 000x 0000 000u
8Ch
PIE1
PSPIE
(6)
—
—
SSPIE
CCP1IE
TMR2IE
TMR1IE
00-- 0000 00-- 0000
—
—
—
—
—
POR
Addressing this location uses contents of FSR to address data memory (not a physical register)
RBPU
INTEDG
T0CS
T0SE
PSA
PS2
PS1
PS0
Program Counter's (PC) Least Significant Byte
IRP(5)
RP1(5)
RP0
—
1111 1111 1111 1111
0000 0000 0000 0000
TO
PD
Z
DC
C
0001 1xxx 000q quuu
Indirect data memory address pointer
—
0000 0000 0000 0000
xxxx xxxx uuuu uuuu
PORTA Data Direction Register
--11 1111 --11 1111
1111 1111 1111 1111
PSPMODE
—
PORTE Data Direction Bits
0000 -111 0000 -111
Write Buffer for the upper 5 bits of the Program Counter
---0 0000 ---0 0000
8Dh
—
8Eh
PCON
8Fh
—
Unimplemented
—
—
90h
—
Unimplemented
—
—
91h
—
Unimplemented
—
—
92h
Unimplemented
—
—
PR2
Timer2 Period Register
93h
SSPADD
Synchronous Serial Port (I2C mode) Address Register
94h
SSPSTAT
95h-9Fh
—
—
—
Unimplemented
BOR
(4)
—
---- --qq ---- --uu
1111 1111 1111 1111
D/A
P
0000 0000 0000 0000
S
R/W
UA
BF
--00 0000 --00 0000
—
—
Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented location read as '0'.
Shaded locations are unimplemented, read as ‘0’.
Note 1: These registers can be addressed from either bank.
2: The upper byte of the Program Counter (PC) is not directly accessible. PCLATH is a holding register for the PC whose
contents are transferred to the upper byte of the program counter. (PC)
3: Other (non power-up) resets include external reset through MCLR and the Watchdog Timer reset.
4: The BOR bit is reserved on the PIC16C64, always maintain this bit set.
5: The IRP and RP1 bits are reserved on the PIC16C64/64A/R64, always maintain these bits clear.
6: PIE1 and PIR1 are reserved on the PIC16C64/64A/R64, always maintain these bits clear.
1997-2013 Microchip Technology Inc.
DS30234E-page 29
PIC16C6X
TABLE 4-5:
SPECIAL FUNCTION REGISTERS FOR THE PIC16C65/65A/R65
Address Name
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Value on:
POR,
BOR
Value on
all other
resets(3)
Bank 0
00h(1)
INDF
Addressing this location uses contents of FSR to address data memory (not a physical register)
0000 0000 0000 0000
01h
TMR0
Timer0 module’s register
xxxx xxxx uuuu uuuu
02h(1)
PCL
Program Counter's (PC) Least Significant Byte
03h(1)
STATUS
04h(1)
FSR
05h
PORTA
06h
PORTB
PORTB Data Latch when written: PORTB pins when read
xxxx xxxx uuuu uuuu
07h
PORTC
PORTC Data Latch when written: PORTC pins when read
xxxx xxxx uuuu uuuu
08h
PORTD
PORTD Data Latch when written: PORTD pins when read
09h
PORTE
—
—
—
0Ah(1,2)
PCLATH
—
—
—
0Bh(1)
INTCON
GIE
PEIE
T0IE
INTE
RBIE
T0IF
INTF
RBIF
0000 000x 0000 000u
0Ch
PIR1
PSPIF
(6)
RCIF
TXIF
SSPIF
CCP1IF
TMR2IF
TMR1IF
0000 0000 0000 0000
0Dh
PIR2
—
—
—
—–
—
—
—
CCP2IF
---- ---0 ---- ---0
0Eh
TMR1L
Holding register for the Least Significant Byte of the 16-bit TMR1 register
0Fh
TMR1H
Holding register for the Most Significant Byte of the 16-bit TMR1 register
10h
T1CON
11h
TMR2
12h
T2CON
13h
SSPBUF
14h
SSPCON
15h
CCPR1L
Capture/Compare/PWM1 (LSB)
16h
CCPR1H
Capture/Compare/PWM1 (MSB)
17h
CCP1CON
18h
RCSTA
19h
TXREG
USART Transmit Data Register
0000 0000 0000 0000
1Ah
RCREG
USART Receive Data Register
0000 0000 0000 0000
xxxx xxxx uuuu uuuu
IRP(5)
RP1(5)
RP0
0000 0000 0000 0000
PD
Z
DC
C
Indirect data memory address pointer
—
—
—
—
—
xxxx xxxx uuuu uuuu
RE2
RE1
RE0
Write Buffer for the upper 5 bits of the Program Counter
xxxx xxxx uuuu uuuu
xxxx xxxx uuuu uuuu
T1CKPS0
T1OSCEN
T1SYNC
TMR1CS
TMR1ON
TOUTPS3 TOUTPS2
TOUTPS1
TOUTPS0
TMR2ON
T2CKPS1
T2CKPS0 -000 0000 -000 0000
SSPM2
SSPM1
SSPOV
SSPEN
CKP
SSPM3
xxxx xxxx uuuu uuuu
SSPM0
xxxx xxxx uuuu uuuu
—
CCP1X
CCP1Y
CCP1M3
CCP1M2
CCP1M1
CCP1M0
SPEN
RX9
SREN
CREN
—
FERR
OERR
RX9D
CCPR2L
Capture/Compare/PWM2 (LSB)
CCPR2H
Capture/Compare/PWM2 (MSB)
1Dh
CCP2CON
Unimplemented
—
CCP2X
0000 0000 0000 0000
xxxx xxxx uuuu uuuu
—
—
--00 0000 --uu uuuu
0000 0000 0000 0000
Synchronous Serial Port Receive Buffer/Transmit Register
WCOL
---- -xxx ---- -uuu
---0 0000 ---0 0000
T1CKPS1
1Ch
—
—
--xx xxxx --uu uuuu
Timer2 module’s register
—
0001 1xxx 000q quuu
xxxx xxxx uuuu uuuu
PORTA Data Latch when written: PORTA pins when read
1Bh
1Eh-1Fh
TO
--00 0000 --00 0000
0000 -00x 0000 -00x
xxxx xxxx uuuu uuuu
CCP2Y
CCP2M3
CCP2M2
CCP2M1
CCP2M0
--00 0000 --00 0000
—
—
Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented location read as '0'.
Shaded locations are unimplemented, read as ‘0’.
Note 1: These registers can be addressed from either bank.
2: The upper byte of the Program Counter (PC) is not directly accessible. PCLATH is a holding register for the PC whose
contents are transferred to the upper byte of the program counter. (PC)
3: Other (non power-up) resets include external reset through MCLR and the Watchdog Timer reset.
4: The BOR bit is reserved on the PIC16C65, always maintain this bit set.
5: The IRP and RP1 bits are reserved on the PIC16C65/65A/R65, always maintain these bits clear.
6: PIE1 and PIR1 are reserved on the PIC16C65/65A/R65, always maintain these bits clear.
DS30234E-page 30
1997-2013 Microchip Technology Inc.
PIC16C6X
TABLE 4-5:
Address Name
SPECIAL FUNCTION REGISTERS FOR THE PIC16C65/65A/R65 (Cont.’d)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Value on:
POR,
BOR
Value on
all other
resets(3)
Bank 1
80h(1)
INDF
81h
OPTION
82h(1)
PCL
83h(1)
STATUS
84h(1)
FSR
85h
TRISA
86h
TRISB
PORTB Data Direction Register
1111 1111 1111 1111
87h
TRISC
PORTC Data Direction Register
1111 1111 1111 1111
88h
TRISD
PORTD Data Direction Register
89h
TRISE
IBF
OBF
IBOV
8Ah(1,2)
PCLATH
—
—
—
8Bh(1)
INTCON
GIE
PEIE
T0IE
INTE
RBIE
T0IF
INTF
RBIF
0000 000x 0000 000u
8Ch
PIE1
PSPIE
(6)
RCIE
TXIE
SSPIE
CCP1IE
TMR2IE
TMR1IE
0000 0000 0000 0000
8Dh
PIE2
—
—
—
—
—
—
—
CCP2IE
---- ---0 ---- ---0
8Eh
PCON
—
—
—
—
—
—
POR
BOR(4)
---- --qq ---- --uu
8Fh
—
Unimplemented
—
—
90h
—
Unimplemented
—
—
91h
—
Unimplemented
—
—
92h
Addressing this location uses contents of FSR to address data memory (not a physical register)
RBPU
INTEDG
T0CS
T0SE
PSA
PS2
PS1
PS0
Program Counter's (PC) Least Significant Byte
IRP(5)
RP1(5)
RP0
—
TO
PD
Z
DC
C
--11 1111 --11 1111
1111 1111 1111 1111
PSPMODE
—
PORTE Data Direction Bits
0000 -111 0000 -111
Write Buffer for the upper 5 bits of the Program Counter
Timer2 Period Register
93h
SSPADD
Synchronous Serial Port (I2C mode) Address Register
94h
SSPSTAT
—
0001 1xxx 000q quuu
xxxx xxxx uuuu uuuu
PORTA Data Direction Register
PR2
—
1111 1111 1111 1111
0000 0000 0000 0000
Indirect data memory address pointer
—
0000 0000 0000 0000
---0 0000 ---0 0000
1111 1111 1111 1111
D/A
P
0000 0000 0000 0000
S
R/W
UA
BF
--00 0000 --00 0000
95h
—
Unimplemented
—
—
96h
—
Unimplemented
—
—
97h
—
Unimplemented
—
—
98h
TXSTA
99h
SPBRG
CSRC
TX9
TXEN
Baud Rate Generator Register
SYNC
—
BRGH
TRMT
TX9D
0000 -010 0000 -010
0000 0000 0000 0000
9Ah
—
Unimplemented
—
—
9Bh
—
Unimplemented
—
—
9Ch
—
Unimplemented
—
—
9Dh
—
Unimplemented
—
—
9Eh
—
Unimplemented
—
—
9Fh
—
Unimplemented
—
—
Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented location read as '0'.
Shaded locations are unimplemented, read as ‘0’.
Note 1: These registers can be addressed from either bank.
2: The upper byte of the Program Counter (PC) is not directly accessible. PCLATH is a holding register for the PC whose
contents are transferred to the upper byte of the program counter. (PC)
3: Other (non power-up) resets include external reset through MCLR and the Watchdog Timer reset.
4: The BOR bit is reserved on the PIC16C65, always maintain this bit set.
5: The IRP and RP1 bits are reserved on the PIC16C65/65A/R65, always maintain these bits clear.
6: PIE1 and PIR1 are reserved on the PIC16C65/65A/R65, always maintain these bits clear.
1997-2013 Microchip Technology Inc.
DS30234E-page 31
PIC16C6X
TABLE 4-6:
SPECIAL FUNCTION REGISTERS FOR THE PIC16C66/67
Address Name
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Value on:
POR,
BOR
Value on
all other
resets(3)
Bank 0
00h(1)
INDF
Addressing this location uses contents of FSR to address data memory (not a physical register)
0000 0000 0000 0000
01h
TMR0
Timer0 module’s register
xxxx xxxx uuuu uuuu
PCL
Program Counter's (PC) Least Significant Byte
0000 0000 0000 0000
02h
(1)
03h(1)
STATUS
04h(1)
FSR
05h
PORTA
06h
PORTB
PORTB Data Latch when written: PORTB pins when read
07h
PORTC
PORTC Data Latch when written: PORTC pins when read
xxxx xxxx uuuu uuuu
08h(5)
PORTD
PORTD Data Latch when written: PORTD pins when read
xxxx xxxx uuuu uuuu
09h(5)
PORTE
—
—
—
0Ah(1,2)
PCLATH
—
—
—
0Bh(1)
INTCON
GIE
PEIE
T0IE
INTE
RBIE
T0IF
INTF
RBIF
0000 000x 0000 000u
0Ch
PIR1
PSPIF(6)
(4)
RCIF
TXIF
SSPIF
CCP1IF
TMR2IF
TMR1IF
0000 0000 0000 0000
0Dh
PIR2
—
—
—
—–
—
—
—
CCP2IF
---- ---0 ---- ---0
0Eh
TMR1L
Holding register for the Least Significant Byte of the 16-bit TMR1 register
0Fh
TMR1H
Holding register for the Most Significant Byte of the 16-bit TMR1 register
10h
T1CON
11h
TMR2
12h
T2CON
13h
SSPBUF
14h
SSPCON
15h
CCPR1L
Capture/Compare/PWM1 (LSB)
16h
CCPR1H
Capture/Compare/PWM1 (MSB)
17h
CCP1CON
18h
RCSTA
19h
TXREG
USART Transmit Data Register
0000 0000 0000 0000
1Ah
RCREG
USART Receive Data Register
0000 0000 0000 0000
1Bh
CCPR2L
Capture/Compare/PWM2 (LSB)
xxxx xxxx uuuu uuuu
1Ch
CCPR2H
Capture/Compare/PWM2 (MSB)
1Dh
CCP2CON
1Eh-1Fh
IRP
RP1
RP0
TO
PD
Z
DC
C
Indirect data memory address pointer
—
—
—
—
xxxx xxxx uuuu uuuu
PORTA Data Latch when written: PORTA pins when read
—
—
—
--xx xxxx --uu uuuu
xxxx xxxx uuuu uuuu
RE2
RE1
RE0
Write Buffer for the upper 5 bits of the Program Counter
xxxx xxxx uuuu uuuu
T1CKPS1
T1CKPS0
T1OSCEN
T1SYNC
TMR1CS
TMR1ON
TOUTPS3 TOUTPS2
TOUTPS1
TOUTPS0
TMR2ON
T2CKPS1
T2CKPS0 -000 0000 -000 0000
SSPM2
SSPM1
SSPOV
SSPEN
CKP
SSPM3
xxxx xxxx uuuu uuuu
SSPM0
xxxx xxxx uuuu uuuu
—
CCP1X
CCP1Y
CCP1M3
CCP1M2
CCP1M1
CCP1M0
SPEN
RX9
SREN
CREN
—
FERR
OERR
RX9D
Unimplemented
—
CCP2X
0000 0000 0000 0000
xxxx xxxx uuuu uuuu
—
—
--00 0000 --uu uuuu
0000 0000 0000 0000
Synchronous Serial Port Receive Buffer/Transmit Register
WCOL
---- -xxx ---- -uuu
---0 0000 ---0 0000
xxxx xxxx uuuu uuuu
Timer2 module’s register
—
0001 1xxx 000q quuu
--00 0000 --00 0000
0000 -00x 0000 -00x
xxxx xxxx uuuu uuuu
CCP2Y
CCP2M3
CCP2M2
CCP2M1
CCP2M0
--00 0000 --00 0000
—
—
Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented location read as '0'.
Shaded locations are unimplemented, read as ‘0’.
Note 1: These registers can be addressed from any bank.
2: The upper byte of the Program Counter (PC) is not directly accessible. PCLATH is a holding register for the PC whose
contents are transferred to the upper byte of the program counter. (PC)
3: Other (non power-up) resets include external reset through MCLR and the Watchdog Timer reset.
4: PIE1 and PIR1 are reserved on the PIC16C66/67, always maintain these bits clear.
5: PORTD, PORTE, TRISD, and TRISE are not implemented on the PIC16C66, read as '0'.
6: PSPIF (PIR1) and PSPIE (PIE1) are reserved on the PIC16C66, maintain these bits clear.
DS30234E-page 32
1997-2013 Microchip Technology Inc.
PIC16C6X
TABLE 4-6:
Address Name
SPECIAL FUNCTION REGISTERS FOR THE PIC16C66/67 (Cont.’d)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Value on:
POR,
BOR
Value on
all other
resets(3)
Bank 1
80h(1)
INDF
81h
OPTION
82h(1)
PCL
83h(1)
STATUS
84h(1)
FSR
85h
TRISA
86h
TRISB
PORTB Data Direction Register
1111 1111 1111 1111
87h
TRISC
PORTC Data Direction Register
1111 1111 1111 1111
88h(5)
TRISD
PORTD Data Direction Register
89h(5)
TRISE
IBF
OBF
IBOV
8Ah(1,2)
PCLATH
—
—
—
8Bh(1)
INTCON
GIE
PEIE
T0IE
INTE
RBIE
T0IF
INTF
RBIF
0000 000x 0000 000u
0000 0000 0000 0000
Addressing this location uses contents of FSR to address data memory (not a physical register)
RBPU
INTEDG
T0CS
T0SE
PSA
PS2
PS1
PS0
Program Counter's (PC) Least Significant Byte
IRP
RP1
RP0
—
(6)
1111 1111 1111 1111
0000 0000 0000 0000
TO
PD
Z
DC
C
Indirect data memory address pointer
—
0000 0000 0000 0000
0001 1xxx 000q quuu
xxxx xxxx uuuu uuuu
PORTA Data Direction Register
--11 1111 --11 1111
1111 1111 1111 1111
PSPMODE
—
PORTE Data Direction Bits
0000 -111 0000 -111
Write Buffer for the upper 5 bits of the Program Counter
---0 0000 ---0 0000
8Ch
PIE1
(4)
RCIE
TXIE
SSPIE
CCP1IE
TMR2IE
TMR1IE
8Dh
PIE2
—
—
—
—
—
—
—
CCP2IE
---- ---0 ---- ---0
8Eh
PCON
—
—
—
—
—
—
POR
BOR
---- --qq ---- --uu
8Fh
—
Unimplemented
—
—
90h
—
Unimplemented
—
—
91h
—
Unimplemented
—
—
PSPIE
92h
PR2
Timer2 Period Register
93h
SSPADD
Synchronous Serial Port (I2C mode) Address Register
94h
SSPSTAT
SMP
CKE
1111 1111 1111 1111
D/A
P
0000 0000 0000 0000
S
R/W
UA
BF
0000 0000 0000 0000
95h
—
Unimplemented
—
—
96h
—
Unimplemented
—
—
97h
—
Unimplemented
—
—
98h
TXSTA
99h
SPBRG
CSRC
TX9
TXEN
Baud Rate Generator Register
SYNC
—
BRGH
TRMT
TX9D
0000 -010 0000 -010
0000 0000 0000 0000
9Ah
—
Unimplemented
—
—
9Bh
—
Unimplemented
—
—
9Ch
—
Unimplemented
—
—
9Dh
—
Unimplemented
—
—
9Eh
—
Unimplemented
—
—
9Fh
—
Unimplemented
—
—
Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented location read as '0'.
Shaded locations are unimplemented, read as ‘0’.
Note 1: These registers can be addressed from any bank.
2: The upper byte of the Program Counter (PC) is not directly accessible. PCLATH is a holding register for the PC whose
contents are transferred to the upper byte of the program counter. (PC)
3: Other (non power-up) resets include external reset through MCLR and the Watchdog Timer reset.
4: PIE1 and PIR1 are reserved on the PIC16C66/67, always maintain these bits clear.
5: PORTD, PORTE, TRISD, and TRISE are not implemented on the PIC16C66, read as '0'.
6: PSPIF (PIR1) and PSPIE (PIE1) are reserved on the PIC16C66, maintain these bits clear.
1997-2013 Microchip Technology Inc.
DS30234E-page 33
PIC16C6X
TABLE 4-6:
SPECIAL FUNCTION REGISTERS FOR THE PIC16C66/67 (Cont.’d)
Address Name
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Value on:
POR,
BOR
Value on
all other
resets(3)
Bank 2
100h(1)
INDF
Addressing this location uses contents of FSR to address data memory (not a physical register)
0000 0000 0000 0000
101h
TMR0
Timer0 module’s register
xxxx xxxx uuuu uuuu
102h(1)
PCL
Program Counter's (PC) Least Significant Byte
0000 0000 0000 0000
(1)
103h
STATUS
104h(1)
FSR
105h
—
106h
IRP
RP1
RP0
TO
PD
Z
DC
C
Indirect data memory address pointer
PORTB
0001 1xxx 000q quuu
xxxx xxxx uuuu uuuu
Unimplemented
—
PORTB Data Latch when written: PORTB pins when read
—
xxxx xxxx uuuu uuuu
107h
—
Unimplemented
—
—
108h
—
Unimplemented
—
—
109h
—
Unimplemented
—
—
(1,2)
10Ah
PCLATH
—
—
—
10Bh(1)
INTCON
GIE
PEIE
T0IE
10Ch10Fh
—
Write Buffer for the upper 5 bits of the Program Counter
INTE
RBIE
T0IF
INTF
RBIF
Unimplemented
---0 0000 ---0 0000
0000 000x 0000 000u
—
—
Bank 3
180h(1)
INDF
181h
OPTION
182h(1)
PCL
183h(1)
STATUS
184h(1)
FSR
Addressing this location uses contents of FSR to address data memory (not a physical register)
RBPU
INTEDG
T0CS
T0SE
PSA
PS2
PS1
PS0
Program Counter's (PC) Least Significant Byte
IRP
RP1
RP0
TO
0000 0000 0000 0000
1111 1111 1111 1111
0000 0000 0000 0000
PD
Z
DC
C
Indirect data memory address pointer
0001 1xxx 000q quuu
xxxx xxxx uuuu uuuu
185h
—
186h
TRISB
187h
—
Unimplemented
—
—
188h
—
Unimplemented
—
—
189h
—
Unimplemented
—
—
18Ah(1,2) PCLATH
18Bh(1)
18Ch19Fh
INTCON
—
Unimplemented
—
PORTB Data Direction Register
—
—
—
GIE
PEIE
T0IE
Unimplemented
—
1111 1111 1111 1111
Write Buffer for the upper 5 bits of the Program Counter
INTE
RBIE
T0IF
INTF
RBIF
---0 0000 ---0 0000
0000 000x 0000 000u
—
—
Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented location read as '0'.
Shaded locations are unimplemented, read as ‘0’.
Note 1: These registers can be addressed from any bank.
2: The upper byte of the Program Counter (PC) is not directly accessible. PCLATH is a holding register for the PC whose
contents are transferred to the upper byte of the program counter. (PC)
3: Other (non power-up) resets include external reset through MCLR and the Watchdog Timer reset.
4: PIE1 and PIR1 are reserved on the PIC16C66/67, always maintain these bits clear.
5: PORTD, PORTE, TRISD, and TRISE are not implemented on the PIC16C66, read as '0'.
6: PSPIF (PIR1) and PSPIE (PIE1) are reserved on the PIC16C66, maintain these bits clear.
DS30234E-page 34
1997-2013 Microchip Technology Inc.
PIC16C6X
4.2.2.1
STATUS REGISTER
Applicable Devices
61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
The STATUS register, shown in Figure 4-9, contains
the arithmetic status of the ALU, the RESET status and
the bank select bits for data memory.
It is recommended, therefore, that only BCF, BSF,
SWAPF and MOVWF instructions are used to alter the
STATUS register because these instructions do not
affect the Z, C or DC bits from the STATUS register. For
other instructions, not affecting any status bits, see the
“Instruction Set Summary.”
Note 1: For those devices that do not use bits IRP
and RP1 (STATUS), maintain these
bits clear to ensure upward compatibility
with future products.
The STATUS register can be the destination for any
instruction, as with any other register. If the STATUS
register is the destination for an instruction that affects
the Z, DC or C bits, then the write to these three bits is
disabled. These bits are set or cleared according to the
device logic. Furthermore, the TO and PD bits are not
writable. Therefore, the result of an instruction with the
STATUS register as destination may be different than
intended.
Note 2: The C and DC bits operate as a borrow
and digit borrow bit, respectively, in subtraction. See the SUBLW and SUBWF
instructions for examples.
For example, CLRF STATUS will clear the upper-three
bits and set the Z bit. This leaves the STATUS register
as 000u u1uu (where u = unchanged).
FIGURE 4-9:
R/W-0
IRP
STATUS REGISTER (ADDRESS 03h, 83h, 103h, 183h)
R/W-0
RP1
R/W-0
RP0
R-1
TO
R-1
PD
R/W-x
Z
R/W-x
DC
bit7
R/W-x
C
bit0
R = Readable bit
W = Writable bit
- n = Value at POR reset
x = unknown
bit 7:
IRP: RegIster Bank Select bit (used for indirect addressing)
1 = Bank 2, 3 (100h - 1FFh)
0 = Bank 0, 1 (00h - FFh)
bit 6-5:
RP1:RP0: Register Bank Select bits (used for direct addressing)
11 = Bank 3 (180h - 1FFh)
10 = Bank 2 (100h - 17Fh)
01 = Bank 1 (80h - FFh)
00 = Bank 0 (00h - 7Fh)
Each bank is 128 bytes.
bit 4:
TO: Time-out bit
1 = After power-up, CLRWDT instruction, or SLEEP instruction
0 = A WDT time-out occurred
bit 3:
PD: Power-down bit
1 = After power-up or by the CLRWDT instruction
0 = By execution of the SLEEP instruction
bit 2:
Z: Zero bit
1 = The result of an arithmetic or logic operation is zero
0 = The result of an arithmetic or logic operation is not zero
bit 1:
DC: Digit carry/borrow bit (for ADDWF, ADDLW,SUBLW, and SUBWF instructions) (For borrow the polarity is reversed).
1 = A carry-out from the 4th low order bit of the result occurred
0 = No carry-out from the 4th low order bit of the result
bit 0:
C: Carry/borrow bit (for ADDWF, ADDLW,SUBLW, and SUBWF instructions)( For borrow the polarity is reversed).
1 = A carry-out from the most significant bit of the result occurred
0 = No carry-out from the most significant bit of the result
Note: a subtraction is executed by adding the two’s complement of the second operand.
For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low order bit of the source register.
1997-2013 Microchip Technology Inc.
DS30234E-page 35
PIC16C6X
4.2.2.2
OPTION REGISTER
Note:
Applicable Devices
61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
The OPTION register is a readable and writable register which contains various control bits to configure the
TMR0/WDT prescaler, the external INT interrupt,
TMR0, and the weak pull-ups on PORTB.
To achieve a 1:1 prescaler assignment for
TMR0 register, assign the prescaler to the
Watchdog Timer.
FIGURE 4-10: OPTION REGISTER (ADDRESS 81h, 181h)
R/W-1
R/W-1
R/W-1
R/W-1
R/W-1
R/W-1
R/W-1
R/W-1
RBPU
INTEDG
T0CS
T0SE
PSA
PS2
PS1
PS0
bit7
bit0
bit 7:
RBPU: PORTB Pull-up Enable bit
1 = PORTB pull-ups are disabled
0 = PORTB pull-ups are enabled by individual port latch values
bit 6:
INTEDG: Interrupt Edge Select bit
1 = Interrupt on rising edge of RB0/INT pin
0 = Interrupt on falling edge of RB0/INT pin
bit 5:
T0CS: TMR0 Clock Source Select bit
1 = Transition on RA4/T0CKI pin
0 = Internal instruction cycle clock (CLKOUT)
bit 4:
T0SE: TMR0 Source Edge Select bit
1 = Increment on high-to-low transition on RA4/T0CKI pin
0 = Increment on low-to-high transition on RA4/T0CKI pin
bit 3:
PSA: Prescaler Assignment bit
1 = Prescaler is assigned to the WDT
0 = Prescaler is assigned to the Timer0 module
bit 2-0:
PS2:PS0: Prescaler Rate Select bits
Bit Value
000
001
010
011
100
101
110
111
DS30234E-page 36
TMR0 Rate
1:2
1:4
1:8
1 : 16
1 : 32
1 : 64
1 : 128
1 : 256
R = Readable bit
W = Writable bit
U = Unimplemented bit,
read as ‘0’
- n = Value at POR reset
WDT Rate
1:1
1:2
1:4
1:8
1 : 16
1 : 32
1 : 64
1 : 128
1997-2013 Microchip Technology Inc.
PIC16C6X
4.2.2.3
INTCON REGISTER
Note:
Applicable Devices
61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
The INTCON Register is a readable and writable register which contains the various enable and flag bits for
the TMR0 register overflow, RB port change and external RB0/INT pin interrupts.
Interrupt flag bits get set when an interrupt
condition occurs regardless of the state of
its corresponding enable bit or the global
enable bit, GIE (INTCON).
FIGURE 4-11: INTCON REGISTER (ADDRESS 0Bh, 8Bh, 10Bh 18Bh)
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-x
GIE
PEIE
T0IE
INTE
RBIE
T0IF
INTF
RBIF
bit7
bit0
R = Readable bit
W = Writable bit
U = Unimplemented bit,
read as ‘0’
- n = Value at POR reset
x = unknown
bit 7:
GIE:(1) Global Interrupt Enable bit
1 = Enables all un-masked interrupts
0 = Disables all interrupts
bit 6:
PEIE:(2) Peripheral Interrupt Enable bit
1 = Enables all un-masked peripheral interrupts
0 = Disables all peripheral interrupts
bit 5:
T0IE: TMR0 Overflow Interrupt Enable bit
1 = Enables the TMR0 overflow interrupt
0 = Disables the TMR0 overflow interrupt
bit 4:
INTE: RB0/INT External Interrupt Enable bit
1 = Enables the RB0/INT external interrupt
0 = Disables the RB0/INT external interrupt
bit 3:
RBIE: RB Port Change Interrupt Enable bit
1 = Enables the RB port change interrupt
0 = Disables the RB port change interrupt
bit 2:
T0IF: TMR0 Overflow Interrupt Flag bit
1 = TMR0 register overflowed (must be cleared in software)
0 = TMR0 register did not overflow
bit 1:
INTF: RB0/INT External Interrupt Flag bit
1 = The RB0/INT external interrupt occurred (must be cleared in software)
0 = The RB0/INT external interrupt did not occur
bit 0:
RBIF: RB Port Change Interrupt Flag bit
1 = At least one of the RB7:RB4 pins changed state (see Section 5.2 to clear the interrupt)
0 = None of the RB7:RB4 pins have changed state
Note 1: For the PIC16C61/62/64/65, if an interrupt occurs while the GIE bit is being cleared, the GIE bit may unintentionally
be re-enabled by the RETFIE instruction in the user’s Interrupt Service Routine. Refer to Section 13.5 for a detailed
description.
2: The PEIE bit (bit6) is unimplemented on the PIC16C61, read as '0'.
Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the
global enable bit, GIE (INTCON). User software should ensure the appropriate interrupt flag bits are clear prior to
enabling an interrupt.
1997-2013 Microchip Technology Inc.
DS30234E-page 37
PIC16C6X
4.2.2.4
PIE1 REGISTER
Note:
Applicable Devices
61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
Bit PEIE (INTCON) must be set to
enable any peripheral interrupt.
This register contains the individual enable bits for the
peripheral interrupts.
FIGURE 4-12: PIE1 REGISTER FOR PIC16C62/62A/R62 (ADDRESS 8Ch)
RW-0
R/W-0
U-0
U-0
R/W-0
R/W-0
R/W-0
R/W-0
—
—
—
—
SSPIE
CCP1IE
TMR2IE
TMR1IE
bit7
bit0
bit 7-6:
Reserved: Always maintain these bits clear.
bit 5-4:
Unimplemented: Read as '0'
bit 3:
SSPIE: Synchronous Serial Port Interrupt Enable bit
1 = Enables the SSP interrupt
0 = Disables the SSP interrupt
bit 2:
CCP1IE: CCP1 Interrupt Enable bit
1 = Enables the CCP1 interrupt
0 = Disables the CCP1 interrupt
bit 1:
TMR2IE: TMR2 to PR2 Match Interrupt Enable bit
1 = Enables the TMR2 to PR2 match interrupt
0 = Disables the TMR2 to PR2 match interrupt
bit 0:
TMR1IE: TMR1 Overflow Interrupt Enable bit
1 = Enables the TMR1 overflow interrupt
0 = Disables the TMR1 overflow interrupt
DS30234E-page 38
R = Readable bit
W = Writable bit
U = Unimplemented bit,
read as ‘0’
- n = Value at POR reset
1997-2013 Microchip Technology Inc.
PIC16C6X
FIGURE 4-13: PIE1 REGISTER FOR PIC16C63/R63/66 (ADDRESS 8Ch)
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
—
—
RCIE
TXIE
SSPIE
CCP1IE
TMR2IE
TMR1IE
bit7
bit0
bit 7-6:
Reserved: Always maintain these bits clear.
bit 5:
RCIE: USART Receive Interrupt Enable bit
1 = Enables the USART receive interrupt
0 = Disables the USART receive interrupt
bit 4:
TXIE: USART Transmit Interrupt Enable bit
1 = Enables the USART transmit interrupt
0 = Disables the USART transmit interrupt
bit 3:
SSPIE: Synchronous Serial Port Interrupt Enable bit
1 = Enables the SSP interrupt
0 = Disables the SSP interrupt
bit 2:
CCP1IE: CCP1 Interrupt Enable bit
1 = Enables the CCP1 interrupt
0 = Disables the CCP1 interrupt
bit 1:
TMR2IE: TMR2 to PR2 Match Interrupt Enable bit
1 = Enables the TMR2 to PR2 match interrupt
0 = Disables the TMR2 to PR2 match interrupt
bit 0:
TMR1IE: TMR1 Overflow Interrupt Enable bit
1 = Enables the TMR1 overflow interrupt
0 = Disables the TMR1 overflow interrupt
R = Readable bit
W = Writable bit
U = Unimplemented bit,
read as ‘0’
- n = Value at POR reset
FIGURE 4-14: PIE1 REGISTER FOR PIC16C64/64A/R64 (ADDRESS 8Ch)
R/W-0
R/W-0
U-0
U-0
R/W-0
R/W-0
R/W-0
R/W-0
PSPIE
—
—
—
SSPIE
CCP1IE
TMR2IE
TMR1IE
bit7
bit0
bit 7:
PSPIE: Parallel Slave Port Read/Write Interrupt Enable bit
1 = Enables the PSP read/write interrupt
0 = Disables the PSP read/write interrupt
bit 6:
Reserved: Always maintain this bit clear.
bit 5-4:
Unimplemented: Read as '0'
bit 3:
SSPIE: Synchronous Serial Port Interrupt Enable bit
1 = Enables the SSP interrupt
0 = Disables the SSP interrupt
bit 2:
CCP1IE: CCP1 Interrupt Enable bit
1 = Enables the CCP1 interrupt
0 = Disables the CCP1 interrupt
bit 1:
TMR2IE: TMR2 to PR2 Match Interrupt Enable bit
1 = Enables the TMR2 to PR2 match interrupt
0 = Disables the TMR2 to PR2 match interrupt
bit 0:
TMR1IE: TMR1 Overflow Interrupt Enable bit
1 = Enables the TMR1 overflow interrupt
0 = Disables the TMR1 overflow interrupt
1997-2013 Microchip Technology Inc.
R = Readable bit
W = Writable bit
U = Unimplemented bit,
read as ‘0’
- n = Value at POR reset
DS30234E-page 39
PIC16C6X
FIGURE 4-15: PIE1 REGISTER FOR PIC16C65/65A/R65/67 (ADDRESS 8Ch)
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
PSPIE
—
RCIE
TXIE
SSPIE
CCP1IE
TMR2IE
TMR1IE
bit7
bit0
bit 7:
PSPIE: Parallel Slave Port Read/Write Interrupt Enable bit
1 = Enables the PSP read/write interrupt
0 = Disables the PSP read/write interrupt
bit 6:
Reserved: Always maintain this bit clear.
bit 5:
RCIE: USART Receive Interrupt Enable bit
1 = Enables the USART receive interrupt
0 = Disables the USART receive interrupt
bit 4:
TXIE: USART Transmit Interrupt Enable bit
1 = Enables the USART transmit interrupt
0 = Disables the USART transmit interrupt
bit 3:
SSPIE: Synchronous Serial Port Interrupt Enable bit
1 = Enables the SSP interrupt
0 = Disables the SSP interrupt
bit 2:
CCP1IE: CCP1 Interrupt Enable bit
1 = Enables the CCP1 interrupt
0 = Disables the CCP1 interrupt
bit 1:
TMR2IE: TMR2 to PR2 Match Interrupt Enable bit
1 = Enables the TMR2 to PR2 match interrupt
0 = Disables the TMR2 to PR2 match interrupt
bit 0:
TMR1IE: TMR1 Overflow Interrupt Enable bit
1 = Enables the TMR1 overflow interrupt
0 = Disables the TMR1 overflow interrupt
DS30234E-page 40
R = Readable bit
W = Writable bit
U = Unimplemented bit,
read as ‘0’
- n = Value at POR reset
1997-2013 Microchip Technology Inc.
PIC16C6X
4.2.2.5
PIR1 REGISTER
Note:
Applicable Devices
61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
This register contains the individual flag bits for the
peripheral interrupts.
Interrupt flag bits get set when an interrupt
condition occurs regardless of the state of
its corresponding enable bit or the global
enable bit, GIE (INTCON). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an
interrupt.
FIGURE 4-16: PIR1 REGISTER FOR PIC16C62/62A/R62 (ADDRESS 0Ch)
R/W-0
R/W-0
U-0
U-0
R/W-0
R/W-0
R/W-0
R/W-0
—
—
—
—
SSPIF
CCP1IF
TMR2IF
TMR1IF
bit7
bit0
bit 7-6:
Reserved: Always maintain these bits clear.
bit 5-4:
Unimplemented: Read as '0'
bit 3:
SSPIF: Synchronous Serial Port Interrupt Flag bit
1 = The transmission/reception is complete (must be cleared in software)
0 = Waiting to transmit/receive
bit 2:
CCP1IF: CCP1 Interrupt Flag bit
Capture Mode
1 = A TMR1 register capture occurred (must be cleared in software)
0 = No TMR1 register capture occurred
Compare Mode
1 = A TMR1 register compare match occurred (must be cleared in software)
0 = No TMR1 register compare match occurred
PWM Mode
Unused in this mode
bit 1:
TMR2IF: TMR2 to PR2 Match Interrupt Flag bit
1 = TMR2 to PR2 match occurred (must be cleared in software)
0 = No TMR2 to PR2 match occurred
bit 0:
TMR1IF: TMR1 Overflow Interrupt Flag bit
1 = TMR1 register overflow occurred (must be cleared in software)
0 = No TMR1 register overflow occurred
R = Readable bit
W = Writable bit
U = Unimplemented bit,
read as ‘0’
- n = Value at POR reset
Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the
global enable bit, GIE (INTCON). User software should ensure the appropriate interrupt flag bits are clear prior to
enabling an interrupt.
1997-2013 Microchip Technology Inc.
DS30234E-page 41
PIC16C6X
FIGURE 4-17: PIR1 REGISTER FOR PIC16C63/R63/66 (ADDRESS 0Ch)
R/W-0
R/W-0
R-0
R-0
R/W-0
R/W-0
R/W-0
R/W-0
—
—
RCIF
TXIF
SSPIF
CCP1IF
TMR2IF
TMR1IF
bit7
bit0
bit 7-6:
Reserved: Always maintain these bits clear.
bit 5:
RCIF: USART Receive Interrupt Flag bit
1 = The USART receive buffer is full (cleared by reading RCREG)
0 = The USART receive buffer is empty
bit 4:
TXIF: USART Transmit Interrupt Flag bit
1 = The USART transmit buffer is empty (cleared by writing to TXREG)
0 = The USART transmit buffer is full
bit 3:
SSPIF: Synchronous Serial Port Interrupt Flag bit
1 = The transmission/reception is complete (must be cleared in software)
0 = Waiting to transmit/receive
bit 2:
CCP1IF: CCP1 Interrupt Flag bit
Capture Mode
1 = A TMR1 register capture occurred (must be cleared in software)
0 = No TMR1 register capture occurred
Compare Mode
1 = A TMR1 register compare match occurred (must be cleared in software)
0 = No TMR1 register compare match occurred
PWM Mode
Unused in this mode
bit 1:
TMR2IF: TMR2 to PR2 Match Interrupt Flag bit
1 = TMR2 to PR2 match occurred (must be cleared in software)
0 = No TMR2 to PR2 match occurred
bit 0:
TMR1IF: TMR1 Overflow Interrupt Flag bit
1 = TMR1 register overflow occurred (must be cleared in software)
0 = No TMR1 register overflow occurred
R = Readable bit
W = Writable bit
U = Unimplemented bit,
read as ‘0’
- n = Value at POR reset
Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the
global enable bit, GIE (INTCON). User software should ensure the appropriate interrupt flag bits are clear prior to
enabling an interrupt.
DS30234E-page 42
1997-2013 Microchip Technology Inc.
PIC16C6X
FIGURE 4-18: PIR1 REGISTER FOR PIC16C64/64A/R64 (ADDRESS 0Ch)
R/W-0
R/W-0
U-0
U-0
R/W-0
R/W-0
R/W-0
R/W-0
PSPIF
—
—
—
SSPIF
CCP1IF
TMR2IF
TMR1IF
bit7
bit0
bit 7:
PSPIF: Parallel Slave Port Interrupt Flag bit
1 = A read or a write operation has taken place (must be cleared in software)
0 = No read or write operation has taken place
bit 6:
Reserved: Always maintain this bit clear.
bit 5-4:
Unimplemented: Read as '0'
bit 3:
SSPIF: Synchronous Serial Port Interrupt Flag bit
1 = The transmission/reception is complete (must be cleared in software)
0 = Waiting to transmit/receive
bit 2:
CCP1IF: CCP1 Interrupt Flag bit
Capture Mode
1 = A TMR1 register capture occurred (must be cleared in software)
0 = No TMR1 register capture occurred
Compare Mode
1 = A TMR1 register compare match occurred (must be cleared in software)
0 = No TMR1 register compare match occurred
PWM Mode
Unused in this mode
bit 1:
TMR2IF: TMR2 to PR2 Match Interrupt Flag bit
1 = TMR2 to PR2 match occurred (must be cleared in software)
0 = No TMR2 to PR2 match occurred
bit 0:
TMR1IF: TMR1 Overflow Interrupt Flag bit
1 = TMR1 register overflow occurred (must be cleared in software)
0 = No TMR1 register occurred
R = Readable bit
W = Writable bit
U = Unimplemented bit,
read as ‘0’
- n = Value at POR reset
Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the
global enable bit, GIE (INTCON). User software should ensure the appropriate interrupt flag bits are clear prior to
enabling an interrupt.
1997-2013 Microchip Technology Inc.
DS30234E-page 43
PIC16C6X
FIGURE 4-19: PIR1 REGISTER FOR PIC16C65/65A/R65/67 (ADDRESS 0Ch)
R/W-0
R/W-0
R-0
R-0
R/W-0
R/W-0
R/W-0
R/W-0
PSPIF
—
RCIF
TXIF
SSPIF
CCP1IF
TMR2IF
TMR1IF
bit7
bit0
bit 7:
PSPIF: Parallel Slave Port Interrupt Flag bit
1 = A read or a write operation has taken place (must be cleared in software)
0 = No read or write operation has taken place
bit 6:
Reserved: Always maintain this bit clear.
bit 5:
RCIF: USART Receive Interrupt Flag bit
1 = The USART receive buffer is full (cleared by reading RCREG)
0 = The USART receive buffer is empty
bit 4:
TXIF: USART Transmit Interrupt Flag bit
1 = The USART transmit buffer is empty (cleared by writing to TXREG)
0 = The USART transmit buffer is full
bit 3:
SSPIF: Synchronous Serial Port Interrupt Flag bit
1 = The transmission/reception is complete (must be cleared in software)
0 = Waiting to transmit/receive
bit 2:
CCP1IF: CCP1 Interrupt Flag bit
Capture Mode
1 = A TMR1 register capture occurred (must be cleared in software)
0 = No TMR1 register capture occurred
Compare Mode
1 = A TMR1 register compare match occurred (must be cleared in software)
0 = No TMR1 register compare match occurred
PWM Mode
Unused in this mode
bit 1:
TMR2IF: TMR2 to PR2 Match Interrupt Flag bit
1 = TMR2 to PR2 match occurred (must be cleared in software)
0 = No TMR2 to PR2 match occurred
bit 0:
TMR1IF: TMR1 Overflow Interrupt Flag bit
1 = TMR1 register overflow occurred (must be cleared in software)
0 = No TMR1 register overflow occurred
R = Readable bit
W = Writable bit
U = Unimplemented bit,
read as ‘0’
- n = Value at POR reset
Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the
global enable bit, GIE (INTCON). User software should ensure the appropriate interrupt flag bits are clear prior to
enabling an interrupt.
DS30234E-page 44
1997-2013 Microchip Technology Inc.
PIC16C6X
4.2.2.6
PIE2 REGISTER
Applicable Devices
61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
This register contains the CCP2 interrupt enable bit.
FIGURE 4-20: PIE2 REGISTER (ADDRESS 8Dh)
U-0
U-0
U-0
U-0
U-0
U-0
U-0
R/W-0
—
—
—
—
—
—
—
CCP2IE
bit7
bit0
bit 7-1:
Unimplemented: Read as '0'
bit 0:
CCP2IE: CCP2 Interrupt Enable bit
1 = Enables the CCP2 interrupt
0 = Disables the CCP2 interrupt
1997-2013 Microchip Technology Inc.
R = Readable bit
W = Writable bit
U = Unimplemented bit,
read as ‘0’
- n = Value at POR reset
DS30234E-page 45
PIC16C6X
4.2.2.7
PIR2 REGISTER
.
Note:
Applicable Devices
61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
This register contains the CCP2 interrupt flag bit.
Interrupt flag bits get set when an interrupt
condition occurs regardless of the state of
its corresponding enable bit or the global
enable bit, GIE (INTCON). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an
interrupt.
FIGURE 4-21: PIR2 REGISTER (ADDRESS 0Dh)
U-0
U-0
U-0
U-0
U-0
U-0
U-0
R/W-0
—
—
—
—
—
—
—
CCP2IF
bit7
bit0
bit 7-1:
Unimplemented: Read as '0'
bit 0:
CCP2IF: CCP2 Interrupt Flag bit
Capture Mode
1 = A TMR1 register capture occurred (must be cleared in software)
0 = No TMR1 register capture occurred
Compare Mode
1 = A TMR1 register compare match occurred (must be cleared in software)
0 = No TMR1 register compare match occurred
PWM Mode
Unused in this mode
R = Readable bit
W = Writable bit
U = Unimplemented bit,
read as ‘0’
- n = Value at POR reset
Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the
global enable bit, GIE (INTCON). User software should ensure the appropriate interrupt flag bits are clear prior to
enabling an interrupt.
DS30234E-page 46
1997-2013 Microchip Technology Inc.
PIC16C6X
4.2.2.8
PCON REGISTER
Note:
Applicable Devices
61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
The Power Control register (PCON) contains a flag bit
to allow differentiation between a Power-on Reset to an
external MCLR reset or WDT reset. Those devices with
brown-out detection circuitry contain an additional bit to
differentiate a Brown-out Reset condition from a Poweron Reset condition.
FIGURE 4-22:
BOR is unknown on Power-on Reset. It
must then be set by the user and checked
on subsequent resets to see if BOR is
clear, indicating a brown-out has occurred.
The BOR status bit is a “don't care” and is
not necessarily predictable if the brown-out
circuit is disabled (by clearing the BODEN
bit in the Configuration word).
PCON REGISTER FOR PIC16C62/64/65 (ADDRESS 8Eh)
U-0
U-0
U-0
U-0
U-0
U-0
R/W-0
R/W-q
—
—
—
—
—
—
POR
—
bit7
bit0
R = Readable bit
W = Writable bit
U = Unimplemented bit,
read as ‘0’
- n = Value at POR reset
q = value depends on conditions
bit 7-2:
Unimplemented: Read as '0'
bit 1:
POR: Power-on Reset Status bit
1 = No Power-on Reset occurred
0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)
bit 0:
Reserved
This bit should be set upon a Power-on Reset by user software and maintained as set. Use of this bit as a general
purpose read/write bit is not recommended, since this may affect upward compatibility with future products.
FIGURE 4-23: PCON REGISTER FOR PIC16C62A/R62/63/R63/64A/R64/65A/R65/66/67
(ADDRESS 8Eh)
U-0
U-0
U-0
U-0
U-0
U-0
R/W-0
R/W-q
—
—
—
—
—
—
POR
BOR
bit7
bit0
R = Readable bit
W = Writable bit
U = Unimplemented bit,
read as ‘0’
- n = Value at POR reset
q = value depends on conditions
bit 7-2:
Unimplemented: Read as '0'
bit 1:
POR: Power-on Reset Status bit
1 = No Power-on Reset occurred
0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)
bit 0:
BOR: Brown-out Reset Status bit
1 = No Brown-out Reset occurred
0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)
1997-2013 Microchip Technology Inc.
DS30234E-page 47
PIC16C6X
4.3
PCL and PCLATH
Applicable Devices
61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
The program counter (PC) is 13-bits wide. The low byte
comes from the PCL register, which is a readable and
writable register. The upper bits (PC) are not
readable, but are indirectly writable through the
PCLATH register. On any reset, the upper bits of the PC
will be cleared. Figure 4-24 shows the two situations for
the loading of the PC. The upper example in the figure
shows how the PC is loaded on a write to PCL
(PCLATH PCH). The lower example in the figure shows how the PC is loaded during a CALL or GOTO
instruction (PCLATH PCH).
FIGURE 4-24: LOADING OF PC IN
DIFFERENT SITUATIONS
PCH
PCL
12
8
7
0
PC
8
PCLATH
5
Instruction with
PCL as
destination
ALU
PCLATH
PCH
12
11 10
PCL
8
7
0
PC
PCLATH
11
Opcode
PCLATH
4.3.1
Note 2: There are no instructions mnemonics
called PUSH or POP. These are actions
that occur from the execution of the
CALL, RETURN, RETLW, and RETFIE
instructions, or the vectoring to an interrupt address
4.4
Program Memory Paging
Applicable Devices
61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
PIC16C6X devices are capable of addressing a continuous 8K word block of program memory. The CALL and
GOTO instructions provide only 11 bits of address to
allow branching within any 2K program memory page.
When doing a CALL or GOTO instruction the upper two
bits of the address are provided by PCLATH.
When doing a CALL or GOTO instruction, the user must
ensure that the page select bits are programmed so
that the desired program memory page is addressed. If
a return from a CALL instruction (or interrupt) is executed, the entire 13-bit PC is pushed onto the stack.
Therefore, manipulation of the PCLATH bits are
not required for the return instructions (which POPs the
address from the stack).
Note:
GOTO, CALL
2
Note 1: There are no status bits to indicate stack
overflows or stack underflow conditions.
PIC16C6X devices with 4K or less of program
memory ignore paging bit
PCLATH. The use of PCLATH as a
general purpose read/write bit is not recommended since this may affect upward
compatibility with future products.
COMPUTED GOTO
A computed GOTO is accomplished by adding an offset
to the program counter (ADDWF PCL). When doing a
table read using a computed GOTO method, care
should be exercised if the table location crosses a PCL
memory boundary (each 256 word block). Refer to the
application note “Implementing a Table Read” (AN556).
4.3.2
STACK
The PIC16CXX family has an 8 deep x 13-bit wide
hardware stack. The stack space is not part of either
program or data space and the stack pointer is not
readable or writable. The PC is PUSHed onto the stack
when a CALL instruction is executed or an interrupt
causes a branch. The stack is POPed in the event of a
RETURN, RETLW or a RETFIE instruction execution.
PCLATH is not affected by a PUSH or a POP operation.
The stack operates as a circular buffer. This means that
after the stack has been PUSHed eight times, the ninth
push overwrites the value that was stored from the first
push. The tenth push overwrites the second push (and
so on).
DS30234E-page 48
1997-2013 Microchip Technology Inc.
PIC16C6X
Example 4-1 shows the calling of a subroutine in
page 1 of the program memory. This example assumes
that the PCLATH is saved and restored by the interrupt
service routine (if interrupts are used).
4.5
EXAMPLE 4-1:
The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.
Applicable Devices
61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
CALL OF A SUBROUTINE IN
PAGE 1 FROM PAGE 0
ORG 0x500
BSF
PCLATH,3
BCF
PCLATH,4
CALL
SUB1_P1
:
:
:
ORG 0x900
SUB1_P1:
:
:
RETURN
Indirect Addressing, INDF and FSR
Registers
Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually
accesses the register pointed to by the File Select Register, FSR. Reading the INDF register itself indirectly
(FSR = '0') will produce 00h. Writing to the INDF register indirectly results in a no-operation (although status
bits may be affected). An effective 9-bit address is
obtained by concatenating the 8-bit FSR register and
the IRP bit (STATUS), as shown in Figure 4-25.
;Select page 1 (800h-FFFh)
;Only on >4K devices
;Call subroutine in
;page 1 (800h-FFFh)
;called subroutine
;page 1 (800h-FFFh)
A simple program to clear RAM location 20h-2Fh using
indirect addressing is shown in Example 4-2.
;return to Call subroutine
;in page 0 (000h-7FFh)
EXAMPLE 4-2:
movlw
movwf
clrf
incf
btfss
goto
NEXT
INDIRECT ADDRESSING
0x20
FSR
INDF
FSR,F
FSR,4
NEXT
;initialize pointer
; to RAM
;clear INDF register
;inc pointer
;all done?
;NO, clear next
CONTINUE
:
;YES, continue
FIGURE 4-25: DIRECT/INDIRECT ADDRESSING
Direct Addressing
RP1: RP0
bank select
6
Indirect Addressing
0
from opcode
IRP
7
bank select
location select
00
01
10
FSR
0
location select
11
00h
80h
100h
180h
7Fh
FFh
17Fh
1FFh
Data
Memory
Bank 0
Bank 1
Bank 2
Bank 3
For memory map detail see Figure 4-5, Figure 4-6, Figure 4-7, and Figure 4-8.
1997-2013 Microchip Technology Inc.
DS30234E-page 49
PIC16C6X
NOTES:
DS30234E-page 50
1997-2013 Microchip Technology Inc.
PIC16C6X
5.0
I/O PORTS
FIGURE 5-1:
BLOCK DIAGRAM OF THE
RA3:RA0 PINS AND THE RA5
PIN
Applicable Devices
61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
Some pins for these I/O ports are multiplexed with an
alternate function(s) for the peripheral features on the
device. In general, when a peripheral is enabled, that
pin may not be used as a general purpose I/O pin.
5.1
PORTA and TRISA Register
Data
bus
D
VDD
WR
Port
Pin RA4/T0CKI is a Schmitt Trigger input and an open
drain output. All other RA port pins have TTL input levels and full CMOS output drivers. All pins have data
direction bits (TRIS registers) which can configure
these pins as output or input.
Q
CK
Applicable Devices
61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
All devices have a 6-bit wide PORTA, except for the
PIC16C61 which has a 5-bit wide PORTA.
Q
Q
N
Q
VSS
TRIS Latch
TTL
input
buffer
D
WR
TRIS
CK
Setting a bit in the TRISA register puts the corresponding output driver in a hi-impedance mode. Clearing a bit
in the TRISA register puts the contents of the output
latch on the selected pin.
Reading PORTA register reads the status of the pins
whereas writing to it will write to the port latch. All write
operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read,
this value is modified, and then written to the port data
latch.
Pin RA4 is multiplexed with Timer0 module clock input
to become the RA4/T0CKI pin.
EXAMPLE 5-1:
BCF
BCF
CLRF
BSF
MOVLW
MOVWF
INITIALIZING PORTA
STATUS, RP0
STATUS, RP1
PORTA
STATUS, RP0
0xCF
TRISA
;
;
;
;
;
;
;
;
;
;
;
;
;
PIC16C66/67 only
Initialize PORTA by
clearing output
data latches
Select Bank 1
Value used to
initialize data
direction
Set RA as inputs
RA as outputs
TRISA are always
read as '0'.
P
Data Latch
I/O pin(1)
RD TRIS
Q
D
EN
RD PORT
Note 1: I/O pins have protection diodes to VDD and
VSS.
2: The PIC16C61 does not have an RA5 pin.
FIGURE 5-2:
Data
bus
WR
PORT
BLOCK DIAGRAM OF THE
RA4/T0CKI PIN
D
Q
CK
Q
N
I/O pin(1)
Data Latch
WR
TRIS
D
Q
CK
Q
VSS
Schmitt
Trigger
input
buffer
TRIS Latch
RD TRIS
Q
D
ENEN
RD PORT
TMR0 clock input
Note 1: I/O pin has protection diodes to VSS only.
1997-2013 Microchip Technology Inc.
DS30234E-page 51
PIC16C6X
TABLE 5-1:
PORTA FUNCTIONS
Name
Bit#
Buffer Type
RA0
RA1
RA2
RA3
RA4/T0CKI
bit0
bit1
bit2
bit3
bit4
TTL
TTL
TTL
TTL
ST
RA5/SS (1)
bit5
TTL
Function
Input/output
Input/output
Input/output
Input/output
Input/output or external clock input for Timer0.
Output is open drain type.
Input/output or slave select input for synchronous serial port.
Legend: TTL = TTL input, ST = Schmitt Trigger input
Note 1: The PIC16C61 does not have PORTA or TRISA, read as ‘0’.
TABLE 5-2:
REGISTERS/BITS ASSOCIATED WITH PORTA
Address
Name
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
05h
PORTA
—
—
RA5(1)
RA4
RA3
RA2
RA1
RA0
85h
TRISA
—
—
PORTA Data Direction Register(1)
Value on:
POR,
BOR
Value on all
other resets
--xx xxxx
--uu uuuu
--11 1111
--11 1111
Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.
Note 1: PORTA and TRISA are not implemented on the PIC16C61, read as '0'.
DS30234E-page 52
1997-2013 Microchip Technology Inc.
PIC16C6X
5.2
PORTB and TRISB Register
Applicable Devices
61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
PORTB is an 8-bit wide bi-directional port. The corresponding data direction register is TRISB. Setting a bit
in the TRISB register puts the corresponding output
driver in a hi-impedance mode. Clearing a bit in the
TRISB register puts the contents of the output latch on
the selected pin(s).
EXAMPLE 5-2:
INITIALIZING PORTB
BCF
CLRF
STATUS, RP0
PORTB
BSF
MOVLW
STATUS, RP0
0xCF
MOVWF
TRISB
;
;
;
;
;
;
;
;
;
;
;
Initialize PORTB by
clearing output
data latches
Select Bank 1
Value used to
initialize data
direction
Set RB as inputs
RB as outputs
RB as inputs
Each of the PORTB pins has a weak internal pull-up. A
single control bit can turn on all the pull-ups. This is
performed by clearing bit RBPU (OPTION). The
weak pull-up is automatically turned off when the port
pin is configured as an output. The pull-ups are also
disabled on a Power-on Reset.
Four of PORTB’s pins, RB7:RB4, have an interrupt on
change feature. Only pins configured as inputs can
cause this interrupt to occur (i.e., any RB7:RB4 pin
configured as an output is excluded from the interrupt
on change comparison). The input pins (of RB7:RB4)
are compared with the old value latched on the last
read of PORTB. The “mismatch” outputs of RB7:RB4
are OR’ed together to generate the RB port change
interrupt with flag bit RBIF (INTCON).
This interrupt can wake the device from SLEEP. The
user, in the interrupt service routine, can clear the interrupt in the following manner:
a)
b)
Any read or write of PORTB. This will end the
mismatch condition.
Clear flag bit RBIF.
A mismatch condition will continue to set flag bit RBIF.
Reading PORTB will end the mismatch condition, and
allow flag bit RBIF to be cleared.
This interrupt on mismatch feature, together with software configurable pull-ups on these four pins allow
easy interface to a keypad and make it possible for
wake-up on key-depression. Refer to the Embedded
Control Handbook, Application Note, “Implementing
Wake-up on Key Stroke” (AN552).
Note:
For PIC16C61/62/64/65, if a change on the
I/O pin should occur when a read operation
is being executed (start of the Q2 cycle),
then interrupt flag bit RBIF may not get set.
The interrupt on change feature is recommended for
wake-up on key depression operation and operations
where PORTB is only used for the interrupt on change
feature. Polling of PORTB is not recommended while
using the interrupt on change feature.
FIGURE 5-3:
BLOCK DIAGRAM OF THE
RB7:RB4 PINS FOR
PIC16C61/62/64/65
VDD
RBPU(2)
Data bus
weak
P pull-up
Data Latch
D
Q
WR Port
I/O
pin(1)
CK
TRIS Latch
D
Q
WR TRIS
TTL
Input
Buffer
CK
RD TRIS
Q
ST
Buffer
Latch
D
EN
RD Port
Set RBIF
From other
RB7:RB4 pins
Q
D
EN
RD Port
RB7:RB6 in serial programming mode
Note 1: I/O pins have diode protection to VDD and VSS.
2: To enable weak pull-ups, set the appropriate TRIS bit(s)
and clear the RPBU bit (OPTION).
1997-2013 Microchip Technology Inc.
DS30234E-page 53
PIC16C6X
FIGURE 5-4:
BLOCK DIAGRAM OF THE
RB7:RB4 PINS FOR
PIC16C62A/63/R63/64A/65A/
R65/66/67
FIGURE 5-5:
VDD
RBPU(2)
weak
P pull-up
VDD
RBPU(2)
Data Latch
D
WR Port
D
WR Port
WR TRIS
TRIS Latch
D
Q
TTL
Input
Buffer
I/O
pin(1)
TRIS Latch
D
Q
I/O
pin(1)
CK
Q
CK
Q
CK
WR TRIS
Data Latch
Data bus
weak
P pull-up
Data bus
BLOCK DIAGRAM OF THE
RB3:RB0 PINS
TTL
Input
Buffer
CK
ST
Buffer
RD TRIS
Q
RD TRIS
Latch
Q
D
EN
RD Port
EN
RD Port
Q1
D
RB0/INT
Set RBIF
Schmitt Trigger
Buffer
Q
From other
RB7:RB4 pins
RD Port
D
RD Port
EN
Note 1: I/O pins have diode protection to VDD and VSS.
2: To enable weak pull-ups, set the appropriate TRIS bit(s)
and clear the RPBU bit (OPTION).
Q3
RB7:RB6 in serial programming mode
Note 1: I/O pins have diode protection to VDD and VSS.
2: To enable weak pull-ups, set the appropriate TRIS bit(s)
and clear the RPBU bit (OPTION).
TABLE 5-3:
PORTB FUNCTIONS
Name
Bit#
Buffer Type
RB0/INT
bit0
TTL/ST(1)
RB1
RB2
RB3
RB4
bit1
bit2
bit3
bit4
TTL
TTL
TTL
TTL
RB5
bit5
TTL
RB6
bit6
TTL/ST(2)
RB7
bit7
TTL/ST(2)
Function
Input/output pin or external interrupt input. Internal software programmable
weak pull-up.
Input/output pin. Internal software programmable weak pull-up.
Input/output pin. Internal software programmable weak pull-up.
Input/output pin. Internal software programmable weak pull-up.
Input/output pin (with interrupt on change). Internal software programmable
weak pull-up.
Input/output pin (with interrupt on change). Internal software programmable
weak pull-up.
Input/output pin (with interrupt on change). Internal software programmable
weak pull-up. Serial programming clock.
Input/output pin (with interrupt on change). Internal software programmable
weak pull-up. Serial programming data.
Legend: TTL = TTL input, ST = Schmitt Trigger input
Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.
2: This buffer is a Schmitt Trigger input when used in serial programming mode.
TABLE 5-4:
Address
SUMMARY OF REGISTERS ASSOCIATED WITH PORTB
Name
06h, 106h PORTB
86h, 186h TRISB
81h, 181h OPTION
Value on:
POR,
BOR
Value on all
other resets
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
RB7
RB6
RB5
RB4
RB3
RB2
RB1
RB0
xxxx xxxx uuuu uuuuu
1111 1111
1111 1111
T0SE
PSA
PS2
PS1
PS0
1111 1111
1111 1111
PORTB Data Direction Register
RBPU
INTEDG
T0CS
Legend: x = unknown, u = unchanged. Shaded cells are not used by PORTB.
DS30234E-page 54
1997-2013 Microchip Technology Inc.
PIC16C6X
5.3
PORTC and TRISC Register
FIGURE 5-6:
Applicable Devices
61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
PORTC is an 8-bit wide bi-directional port. Each pin is
individually configurable as an input or output through
the TRISC register. PORTC is multiplexed with several
peripheral functions (Table 5-5). PORTC pins have
Schmitt Trigger input buffers.
When enabling peripheral functions, care should be
taken in defining TRIS bits for each PORTC pin. Some
peripherals override the TRIS bit to make a pin an output, while other peripherals override the TRIS bit to
make a pin an input. Since the TRIS bit override is in
effect while the peripheral is enabled, read-modifywrite instructions (BSF, BCF, XORWF) with TRISC as
destination should be avoided. The user should refer to
the corresponding peripheral section for the correct
TRIS bit settings.
EXAMPLE 5-3:
INITIALIZING PORTC
BCF
BCF
CLRF
STATUS, RP0
STATUS, RP1
PORTC
BSF
MOVLW
STATUS, RP0
0xCF
MOVWF
TRISC
TABLE 5-5:
;
;
;
;
;
;
;
;
;
;
;
;
PIC16C66/67 only
Initialize PORTC by
clearing output
data latches
Select Bank 1
Value used to
initialize data
direction
Set RC as inputs
RC as outputs
RC as inputs
PORTC BLOCK DIAGRAM
PORT/PERIPHERAL Select(2)
Peripheral Data Out
Data bus
WR
PORT
D
VDD
0
Q
P
1
CK
Q
Data Latch
WR
TRIS
D
CK
I/O
pin(1)
Q
Q
N
TRIS Latch
VSS
Schmitt
Trigger
RD TRIS
Peripheral
OE(3)
RD
PORT
Peripheral input
Q
D
EN
Note 1: I/O pins have diode protection to VDD and VSS.
2: Port/Peripheral select signal selects between port
data and peripheral output.
3: Peripheral OE (output enable) is only activated if
peripheral select is active.
PORTC FUNCTIONS FOR PIC16C62/64
Name
Bit# Buffer Type Function
RC0/T1OSI/T1CKI
bit0
ST
RC1/T1OSO
bit1
ST
Input/output port pin or Timer1 oscillator input or Timer1 clock input
Input/output port pin or Timer1 oscillator output
RC2/CCP1
bit2
ST
Input/output port pin or Capture1 input/Compare1 output/PWM1 output
RC3 can also be the synchronous serial clock for both SPI and I2C modes.
RC3/SCK/SCL
bit3
ST
RC4/SDI/SDA
RC5/SDO
bit4
ST
bit5
ST
RC4 can also be the SPI Data In (SPI mode) or data I/O (I2C mode).
Input/output port pin or synchronous serial port data output
RC6
bit6
ST
Input/output port pin
RC7
bit7
ST
Input/output port pin
Legend: ST = Schmitt Trigger input
1997-2013 Microchip Technology Inc.
DS30234E-page 55
PIC16C6X
TABLE 5-6:
PORTC FUNCTIONS FOR PIC16C62A/R62/64A/R64
Name
Bit# Buffer Type Function
RC0/T1OSO/T1CKI
bit0
ST
RC1/T1OSI
bit1
ST
Input/output port pin or Timer1 oscillator input
RC2/CCP1
bit2
ST
Input/output port pin or Capture input/Compare output/PWM1 output
RC3 can also be the synchronous serial clock for both SPI and I2C modes.
Input/output port pin or Timer1 oscillator output or Timer1 clock input
RC3/SCK/SCL
bit3
ST
RC4/SDI/SDA
RC5/SDO
bit4
ST
bit5
ST
RC4 can also be the SPI Data In (SPI mode) or data I/O (I2C mode).
Input/output port pin or synchronous serial port data output
RC6
bit6
ST
Input/output port pin
RC7
bit7
ST
Input/output port pin
Legend: ST = Schmitt Trigger input
TABLE 5-7:
PORTC FUNCTIONS FOR PIC16C63/R63/65/65A/R65/66/67
Name
Bit# Buffer Type Function
RC0/T1OSO/T1CKI
bit0
ST
Input/output port pin or Timer1 oscillator output or Timer1 clock input
RC1/T1OSI/CCP2
bit1
ST
Input/output port pin or Timer1 oscillator input or Capture2 input/Compare2
output/PWM2 output
RC2/CCP1
bit2
ST
RC3/SCK/SCL
bit3
ST
Input/output port pin or Capture1 input/Compare1 output/PWM1 output
RC3 can also be the synchronous serial clock for both SPI and I2C modes.
RC4/SDI/SDA
RC5/SDO
bit4
ST
bit5
ST
RC6/TX/CK
bit6
ST
Input/output port pin or USART Asynchronous Transmit, or USART Synchronous Clock
RC7/RX/DT
bit7
ST
Input/output port pin or USART Asynchronous Receive, or USART Synchronous Data
RC4 can also be the SPI Data In (SPI mode) or data I/O (I2C mode).
Input/output port pin or synchronous serial port data output
Legend: ST = Schmitt Trigger input
TABLE 5-8:
SUMMARY OF REGISTERS ASSOCIATED WITH PORTC
Address Name
07h
PORTC
87h
TRISC
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Value on:
POR,
BOR
Value on all
other resets
RC7
RC6
RC5
RC4
RC3
RC2
RC1
RC0
xxxx xxxx
uuuu uuuu
1111 1111
1111 1111
PORTC Data Direction Register
Legend: x = unknown, u = unchanged.
DS30234E-page 56
1997-2013 Microchip Technology Inc.
PIC16C6X
5.4
PORTD and TRISD Register
FIGURE 5-7:
Applicable Devices
61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
Data
bus
PORTD is an 8-bit port with Schmitt Trigger input buffers. Each pin is individually configurable as input or
output.
D
WR
PORT
PORTD can be configured as an 8-bit wide microprocessor port (parallel slave port) by setting control bit
PSPMODE (TRISE). In this mode, the input buffers
are TTL.
PORTD BLOCK DIAGRAM
(IN I/O PORT MODE)
Q
I/O pin(1)
CK
Data Latch
D
WR
TRIS
Q
Schmitt
Trigger
input
buffer
CK
TRIS Latch
RD TRIS
Q
D
EN
EN
RD PORT
Note 1: I/O pins have protection diodes to VDD and VSS.
TABLE 5-9:
PORTD FUNCTIONS
Name
Bit#
Buffer Type
RD0/PSP0
bit0
ST/TTL(1)
Function
Input/output port pin or parallel slave port bit0
RD1/PSP1
bit1
ST/TTL(1)
Input/output port pin or parallel slave port bit1
RD2/PSP2
bit2
ST/TTL(1)
Input/output port pin or parallel slave port bit2
RD3/PSP3
bit3
ST/TTL(1)
Input/output port pin or parallel slave port bit3
RD4/PSP4
bit4
ST/TTL(1)
Input/output port pin or parallel slave port bit4
RD5/PSP5
bit5
ST/TTL(1)
Input/output port pin or parallel slave port bit5
RD6/PSP6
bit6
ST/TTL(1)
Input/output port pin or parallel slave port bit6
RD7/PSP7
bit7
ST/TTL(1)
Input/output port pin or parallel slave port bit7
Legend: ST = Schmitt Trigger input, TTL = TTL input
Note 1: Buffer is a Schmitt Trigger when in I/O mode, and a TTL buffer when in Parallel Slave Port mode.
TABLE 5-10:
Address Name
08h
PORTD
88h
TRISD
89h
TRISE
SUMMARY OF REGISTERS ASSOCIATED WITH PORTD
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Value on:
POR,
BOR
Value on all
other resets
RD7
RD6
RD5
RD4
RD3
RD2
RD1
RD0
xxxx xxxx
uuuu uuuu
1111 1111
1111 1111
0000 -111
0000 -111
PORTD Data Direction Register
IBF
OBF
IBOV
PSPMODE
—
PORTE Data Direction Bits
Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTD.
1997-2013 Microchip Technology Inc.
DS30234E-page 57
PIC16C6X
5.5
PORTE and TRISE Register
FIGURE 5-8:
Applicable Devices
61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
Data
bus
PORTE has three pins, RE2/CS, RE1/WR, and
RE0/RD which are individually configurable as inputs
or outputs. These pins have Schmitt Trigger input buffers.
PORTE BLOCK DIAGRAM
(IN I/O PORT MODE)
D
WR
PORT
Q
I/O pin(1)
CK
Data Latch
I/O PORTE becomes control inputs for the microprocessor port when bit PSPMODE (TRISE) is set. In
this mode, the user must make sure that the
TRISE bits are set (pins are configured as digital
inputs). In this mode the input buffers are TTL.
D
WR
TRIS
Q
Schmitt
Trigger
input
buffer
CK
TRIS Latch
Figure 5-9 shows the TRISE register, which controls
the parallel slave port operation and also controls the
direction of the PORTE pins.
RD TRIS
Q
D
ENEN
RD PORT
Note 1: I/O pins have protection diodes to VDD and VSS.
FIGURE 5-9:
TRISE REGISTER (ADDRESS 89h)
R-0
R-0
R/W-0
R/W-0
U-0
R/W-1
R/W-1
R/W-1
IBF
OBF
IBOV
PSPMODE
—
bit2
bit1
bit0
bit7
bit0
R = Readable bit
W = Writable bit
U = Unimplemented bit,
read as ‘0’
- n = Value at POR reset
bit 7 :
IBF: Input Buffer Full Status bit
1 = A word has been received and is waiting to be read by the CPU
0 = No word has been received
bit 6:
OBF: Output Buffer Full Status bit
1 = The output buffer still holds a previously written word
0 = The output buffer has been read
bit 5:
IBOV: Input Buffer Overflow Detect bit (in microprocessor mode)
1 = A write occurred when a previously input word has not been read (must be cleared in software)
0 = No overflow occurred
bit 4:
PSPMODE: Parallel Slave Port Mode Select bit
1 = Parallel slave port mode
0 = General purpose I/O mode
bit 3:
Unimplemented: Read as '0'
PORTE Data Direction Bits
bit 2:
Bit2: Direction Control bit for pin RE2/CS
1 = Input
0 = Output
bit 1:
Bit1: Direction Control bit for pin RE1/WR
1 = Input
0 = Output
bit 0:
Bit0: Direction Control bit for pin RE0/RD
1 = Input
0 = Output
DS30234E-page 58
1997-2013 Microchip Technology Inc.
PIC16C6X
TABLE 5-11:
PORTE FUNCTIONS
Name
Bit#
Buffer Type
RE0/RD
bit0
ST/TTL(1)
Function
Input/output port pin or Read control input in parallel slave port mode.
RD
1 = Not a read operation
0 = Read operation. The system reads the PORTD register (if
chip selected)
RE1/WR
bit1
ST/TTL(1)
Input/output port pin or Write control input in parallel slave port mode.
WR
1 = Not a write operation
0 = Write operation. The system writes to the PORTD register (if
chip selected)
RE2/CS
bit2
ST/TTL(1)
Input/output port pin or Chip select control input in parallel slave port
mode.
CS
1 = Device is not selected
0 = Device is selected
Legend: ST = Schmitt Trigger input, TTL = TTL input
Note 1: Buffer is a Schmitt Trigger when in I/O mode, and a TTL buffer when in Parallel Slave Port (PSP) mode.
TABLE 5-12:
Address
SUMMARY OF REGISTERS ASSOCIATED WITH PORTE
Name
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
09h
PORTE
—
—
—
—
—
89h
TRISE
IBF
OBF
IBOV
PSPMODE
—
Bit 2
Bit 1
Bit 0
RE2
RE1
RE0
PORTE Data Direction Bits
Value on:
POR,
BOR
Value on all
other resets
---- -xxx
---- -uuu
0000 -111
0000 -111
Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells not used by PORTE.
1997-2013 Microchip Technology Inc.
DS30234E-page 59
PIC16C6X
5.6
I/O Programming Considerations
EXAMPLE 5-4:
Applicable Devices
61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
5.6.1
BI-DIRECTIONAL I/O PORTS
Any instruction which writes, operates internally as a
read followed by a write operation. The BCF and BSF
instructions, for example, read the register into the
CPU, execute the bit operation and write the result back
to the register. Caution must be used when these
instructions are applied to a port with both inputs and
outputs defined. For example, a BSF operation on bit5
of PORTB will cause all eight bits of PORTB to be read
into the CPU. Then the BSF operation takes place on
bit5 and PORTB is written to the output latches. If
another bit of PORTB is used as a bi-directional I/O pin
(e.g., bit0) and it is defined as an input at this time, the
input signal present on the pin itself would be read into
the CPU and rewritten to the data latch of this particular
pin, overwriting the previous content. As long as the pin
stays in the input mode, no problem occurs. However, if
bit0 is switched into output mode later on, the content
of the data latch may now be unknown.
Reading the port register, reads the values of the port
pins. Writing to the port register writes the value to the
port latch. When using read-modify-write instructions
(ex. BCF, BSF, etc.) on a port, the value of the port pins
is read, the desired operation is done to this value, and
this value is then written to the port latch.
Example 5-4 shows the effect of two sequential
read-modify-write instructions on an I/O port.
READ-MODIFY-WRITE
INSTRUCTIONS ON AN
I/O PORT
;Initial PORT settings: PORTB Inputs
;
PORTB Outputs
;PORTB have external pull-ups and are
;not connected to other circuitry
;
;
PORT latch PORT pins
;
---------- --------BCF PORTB, 7
; 01pp pppp
11pp pppp
BCF PORTB, 6
; 10pp pppp
11pp pppp
BSF STATUS, RP0 ;
BCF TRISB, 7
; 10pp pppp
11pp pppp
BCF TRISB, 6
; 10pp pppp
10pp pppp
;
;Note that the user may have expected the
;pin values to be 00pp pppp. The 2nd BCF
;caused RB7 to be latched as the pin value
;(high).
A pin actively outputting a Low or High should not be
driven from external devices at the same time in order
to change the level on this pin (“wired-or”, “wired-and”).
The resulting high output currents may damage the
chip.
5.6.2
SUCCESSIVE OPERATIONS ON I/O PORTS
The actual write to an I/O port happens at the end of an
instruction cycle, whereas for reading, the data must be
valid at the beginning of the instruction cycle
(Figure 5-10). Therefore, care must be exercised if a
write followed by a read operation is carried out on the
same I/O port. The sequence of instructions should be
such to allow the pin voltage to stabilize (load dependent) before the next instruction which causes that file
to be read into the CPU is executed. Otherwise, the
previous state of that pin may be read into the CPU
rather than the new state. When in doubt, it is better to
separate these instructions with a NOP or another
instruction not accessing this I/O port.
FIGURE 5-10: SUCCESSIVE I/O OPERATION
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
PC
Instruction
fetched
PC
PC + 1
MOVWF PORTB MOVF PORTB,W
write to
PORTB
Q1 Q2 Q3 Q4
PC + 2
PC + 3
NOP
NOP
This example shows a write to PORTB
followed by a read from PORTB.
Note that:
data setup time = (0.25TCY - TPD)
RB7:RB0
where TCY = instruction cycle
TPD = propagation delay
Port pin
sampled here
TPD
Instruction
executed
NOP
MOVWF PORTB
write to
PORTB
DS30234E-page 60
Note:
MOVF PORTB,W
Therefore, at higher clock frequencies,
a write followed by a read may be problematic.
1997-2013 Microchip Technology Inc.
PIC16C6X
5.7
Parallel Slave Port
Applicable Devices
61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
PORTD operates as an 8-bit wide parallel slave port
(microprocessor port) when control bit PSPMODE
(TRISE) is set. In slave mode it is asynchronously
readable and writable by the external world through
RD control input (RE0/RD) and WR control input pin
(RE1/WR).
It can directly interface to an 8-bit microprocessor data
bus. The external microprocessor can read or write the
PORTD latch as an 8-bit latch. Setting PSPMODE
enables port pin RE0/RD to be the RD input, RE1/WR
to be the WR input and RE2/CS to be the CS (chip
select) input. For this functionality, the corresponding
data direction bits of the TRISE register (TRISE)
must be configured as inputs (set).
There are actually two 8-bit latches, one for data-out
(from the PIC16/17) and one for data input. The user
writes 8-bit data to PORTD data latch and reads data
from the port pin latch (note that they have the same
address). In this mode, the TRISD register is ignored
since the microprocessor is controlling the direction of
data flow.
A write to the PSP occurs when both the CS and WR
lines are first detected low. When either the CS or WR
lines become high (level triggered), then the Input Buffer Full status flag bit IBF (TRISE) is set on the Q4
clock cycle, following the next Q2 cycle, to signal the
write is complete (Figure 5-12). The interrupt flag bit
PSPIF (PIR1) is also set on the same Q4 clock
cycle. IBF can only be cleared by reading the PORTD
input latch. The input Buffer Overflow status flag bit
IBOV (TRISE) is set if a second write to the Parallel
Slave Port is attempted when the previous byte has not
been read out of the buffer.
FIGURE 5-11: PORTD AND PORTE AS A
PARALLEL SLAVE PORT
Data bus
D
WR
PORT
Q
RDx
pin
CK
TTL
Q
RD
PORT
D
EN
EN
One bit of PORTD
Set interrupt flag
PSPIF (PIR1)
Read
TTL
RD
Chip Select
TTL
CS
TTL
WR
Write
Note: I/O pin has protection diodes to VDD and VSS.
A read from the PSP occurs when both the CS and RD
lines are first detected low. The Output Buffer Full status flag bit OBF (TRISE) is cleared immediately
(Figure 5-13) indicating that the PORTD latch is waiting
to be read by the external bus. When either the CS or
RD pin becomes high (level triggered), the interrupt flag
bit PSPIF is set on the Q4 clock cycle, following the next
Q2 cycle, indicating that the read is complete. OBF
remains low until data is written to PORTD by the user
firmware.
When not in Parallel Slave Port mode, the IBF and OBF
bits are held clear. However, if flag bit IBOV was previously set, it must be cleared in firmware.
An interrupt is generated and latched into flag bit
PSPIF when a read or write operation is completed.
PSPIF must be cleared by the user in firmware and the
interrupt can be disabled by clearing the interrupt
enable bit PSPIE (PIE1).
1997-2013 Microchip Technology Inc.
DS30234E-page 61
PIC16C6X
FIGURE 5-12: PARALLEL SLAVE PORT WRITE WAVEFORMS
Q1
Q2
Q3
Q4
Q1
Q2
Q3
Q4
Q1
Q2
Q3
Q4
Q4
Q1
Q2
Q3
Q4
CS
WR
RD
PORTD
IBF
OBF
PSPIF
FIGURE 5-13: PARALLEL SLAVE PORT READ WAVEFORMS
Q1
Q2
Q3
Q4
Q1
Q2
Q3
CS
WR
RD
PORTD
IBF
OBF
PSPIF
TABLE 5-13:
REGISTERS ASSOCIATED WITH PARALLEL SLAVE PORT
Value on:
POR,
BOR
Value on all
other resets
Address
Name
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
08h
PORTD
PSP7
PSP6
PSP5
PSP4
PSP3
PSP2
PSP1
PSP0
xxxx xxxx
uuuu uuuu
09h
PORTE
—
—
—
—
—
RE2
RE1
RE0
---- -xxx
---- -uuu
PORTE Data Direction Bits
89h
TRISE
0Ch
PIR1
8Ch
PIE1
IBF
OBF
IBOV
PSPMODE
—
0000 -111
0000 -111
PSPIF
(1)
RCIF(2)
TXIF(2)
SSPIF
CCP1IF TMR2IF TRM1IF
0000 0000
0000 0000
PSPIE
(1)
RCIE(2)
TXIE(2)
SSPIE CCP1IE TMR2IE TMR1IE
0000 0000
0000 0000
Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by the PSP.
Note 1: These bits are reserved, always maintain these bits clear.
2: These bits are implemented on the PIC16C65/65A/R65/67 only.
DS30234E-page 62
1997-2013 Microchip Technology Inc.
PIC16C6X
6.0
OVERVIEW OF TIMER
MODULES
Applicable Devices
61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
All PIC16C6X devices have three timer modules except
for the PIC16C61, which has one timer module. Each
module can generate an interrupt to indicate that an
event has occurred (i.e., timer overflow). Each of these
modules are detailed in the following sections. The
timer modules are:
6.3
Timer2 Overview
Applicable Devices
61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
Timer2 is an 8-bit timer with a programmable prescaler
and a programmable postscaler, as well as an 8-bit
Period Register (PR2). Timer2 can be used with the
CCP module (in PWM mode) as well as the Baud Rate
Generator for the Synchronous Serial Port (SSP). The
prescaler option allows Timer2 to increment at the following rates: 1:1, 1:4, and 1:16.
• Timer0 module (Section 7.0)
• Timer1 module (Section 8.0)
• Timer2 module (Section 9.0)
The postscaler allows TMR2 register to match the
period register (PR2) a programmable number of times
before generating an interrupt. The postscaler can be
programmed from 1:1 to 1:16 (inclusive).
6.1
6.4
Timer0 Overview
CCP Overview
Applicable Devices
61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
Applicable Devices
61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
The Timer0 module is a simple 8-bit overflow counter.
The clock source can be either the internal system
clock (Fosc/4) or an external clock. When the clock
source is an external clock, the Timer0 module can be
selected to increment on either the rising or falling
edge.
The CCP module(s) can operate in one of three modes:
16-bit capture, 16-bit compare, or up to 10-bit Pulse
Width Modulation (PWM).
The Timer0 module also has a programmable prescaler option. This prescaler can be assigned to either
the Timer0 module or the Watchdog Timer. Bit PSA
(OPTION) assigns the prescaler, and bits PS2:PS0
(OPTION) determine the prescaler value. TMR0
can increment at the following rates: 1:1 when the prescaler is assigned to Watchdog Timer, 1:2, 1:4, 1:8,
1:16, 1:32, 1:64, 1:128, and 1:256.
Synchronization of the external clock occurs after the
prescaler. When the prescaler is used, the external
clock frequency may be higher then the device’s frequency. The maximum frequency is 50 MHz, given the
high and low time requirements of the clock.
6.2
Timer1 Overview
Applicable Devices
61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
Capture mode captures the 16-bit value of TMR1 into
the CCPRxH:CCPRxL register pair. The capture event
can be programmed for either the falling edge, rising
edge, fourth rising edge, or sixteenth rising edge of the
CCPx pin.
Compare mode compares the TMR1H:TMR1L register
pair to the CCPRxH:CCPRxL register pair. When a
match occurs, an interrupt can be generated and the
output pin CCPx can be forced to a given state (High or
Low) and Timer1 can be reset. This depends on control
bits CCPxM3:CCPxM0.
PWM mode compares the TMR2 register to a 10-bit
duty cycle register (CCPRxH:CCPRxL) as well as
to an 8-bit period register (PR2). When the TMR2 register = Duty Cycle register, the CCPx pin will be forced
low. When TMR2 = PR2, TMR2 is cleared to 00h, an
interrupt can be generated, and the CCPx pin (if an output) will be forced high.
Timer1 is a 16-bit timer/counter. The clock source can
be either the internal system clock (Fosc/4), an external
clock, or an external crystal. Timer1 can operate as
either a timer or a counter. When operating as a counter (external clock source), the counter can either operate synchronized to the device or asynchronously to
the device. Asynchronous operation allows Timer1 to
operate during sleep, which is useful for applications
that require a real-time clock as well as the power savings of SLEEP mode.
TImer1 also has a prescaler option which allows TMR1
to increment at the following rates: 1:1, 1:2, 1:4, and
1:8. TMR1 can be used in conjunction with the Capture/
Compare/PWM module. When used with a CCP module, Timer1 is the time-base for 16-bit capture or 16-bit
compare and must be synchronized to the device.
1997-2013 Microchip Technology Inc.
DS30234E-page 63
PIC16C6X
NOTES:
DS30234E-page 64
1997-2013 Microchip Technology Inc.
PIC16C6X
7.0
TIMER0 MODULE
(OPTION). Clearing bit T0SE selects the rising
edge. Restrictions on the external clock input are discussed in detail in Section 7.2.
Applicable Devices
61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
The prescaler is mutually exclusively shared between
the Timer0 module and the Watchdog Timer. The prescaler assignment is controlled in software by control bit
PSA (OPTION). Clearing bit PSA will assign the
prescaler to the Timer0 module. The prescaler is not
readable or writable. When the prescaler is assigned to
the Timer0 module, prescale values of 1:2, 1:4, ...,
1:256 are selectable. Section 7.3 details the operation
of the prescaler.
The Timer0 module has the following features:
• 8-bit timer/counter register, TMR0
- Read and write capability
- Interrupt on overflow from FFh to 00h
• 8-bit software programmable prescaler
• Internal or external clock select
- Edge select for external clock
Figure 7-1 is a simplified block diagram of the Timer0
module.
7.1
The TMR0 interrupt is generated when the register
(TMR0) overflows from FFh to 00h. This overflow sets
interrupt flag bit T0IF (INTCON). The interrupt can
be masked by clearing enable bit T0IE (INTCON).
Flag bit T0IF must be cleared in software by the TImer0
interrupt service routine before re-enabling this interrupt. The TMR0 interrupt cannot wake the processor
from SLEEP since the timer is shut off during SLEEP.
Figure 7-4 displays the Timer0 interrupt timing.
Counter mode is selected by setting bit T0CS. In this
mode, Timer0 will increment either on every rising or
falling edge of pin RA4/T0CKI. The incrementing edge
is determined by the source edge select bit T0SE
FIGURE 7-1:
TMR0 Interrupt
Applicable Devices
61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
Timer mode is selected by clearing bit T0CS
(OPTION). In timer mode, the Timer0 module will
increment every instruction cycle (without prescaler). If
TMR0 register is written, the increment is inhibited for
the following two instruction cycles (Figure 7-2 and
Figure 7-3). The user can work around this by writing
an adjusted value to the TMR0 register.
TIMER0 BLOCK DIAGRAM
Data bus
RA4/T0CKI
pin
FOSC/4
0
PSout
1
1
Programmable
Prescaler
8
Sync with
Internal
clocks
0
TMR0 reg
PSout
(2 cycle delay)
T0SE
3
Set bit T0IF
on overflow
PSA
PS2, PS1, PS0
T0CS
Note 1: Bits, T0CS, T0SE, PSA, and PS2, PS1, PS0 are (OPTION VDD) 20 mA
Maximum output current sunk by any I/O pin..........................................................................................................25 mA
Maximum output current sourced by any I/O pin ....................................................................................................20 mA
Maximum current sunk byPORTA ..........................................................................................................................80 mA
Maximum current sourced by PORTA .....................................................................................................................50 mA
Maximum current sunk by PORTB........................................................................................................................150 mA
Maximum current sourced by PORTB...................................................................................................................100 mA
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - IOH} + {(VDD-VOH) x IOH} + (VOl x IOL)
Note 2: Voltage spikes below VSS at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up. Thus,
a series resistor of 50-100 should be used when applying a “low” level to the MCLR pin rather than pulling
this pin directly to VSS.
† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the
device. This is a stress rating only and functional operation of the device at those or any other conditions above those
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability.
TABLE 15-1:
OSC
CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS
AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)
PIC16C61-04
PIC16C61-20
PIC16LC61-04
JW Devices
RC
VDD:
IDD:
IPD:
Freq:
4.0V to 6.0V
3.3 mA max. at 5.5V
14 A max. at 4V
4 MHz max.
VDD:
IDD:
IPD:
Freq:
4.5V to 5.5V
1.8 mA typ. at 5.5V
1.0 A typ. at 4V
4 MHz max.
VDD:
IDD:
IPD:
Freq:
3.0V to 6.0V
1.4 mA typ. at 3.0V
0.6 A typ. at 3V
4 MHz max.
VDD:
IDD:
IPD:
Freq:
4.0V to 6.0V
3.3 mA max. at 5.5V
14 A max. at 4V
4 MHz max.
XT
VDD:
IDD:
IPD:
Freq:
4.0V to 6.0V
3.3 mA max. at 5.5V
14 A max. at 4V
4 MHz max.
VDD: 4.5V to 5.5V
IDD: 1.8 mA typ. at 5.5V
IPD: 1.0 A typ. at 4V
Freq: 4 MHz max.
VDD:
IDD:
IPD:
Freq:
3.0V to 6.0V
1.4 mA typ. at 3.0V
0.6 A typ. at 3V
4 MHz max.
VDD:
IDD:
IPD:
Freq:
4.0V to 6.0V
3.3 mA max. at 5.5V
14 A max. at 4V
4 MHz max.
HS
VDD: 4.5V to 5.5V
VDD: 4.5V to 5.5V
IDD:
13.5 mA typ. at 5.5V
IDD: 30 mA max. at 5.5V
IPD:
1.0 A typ. at 4.5V
IPD:
Freq: 4 MHz max.
LP
VDD: 4.0V to 6.0V
IDD: 15 A typ. at 32 kHz,
4.0V
IPD: 0.6 A typ. at 4.0V
Freq: 200 kHz max.
1.0 A typ. at 4.5V
VDD: 4.5V to 5.5V
Not recommended for use in
HS mode
Freq: 20 MHz max.
Not recommended for
use in LP mode
IDD: 30 mA max. at 5.5V
IPD:
1.0 A typ. at 4.5V
Freq: 20 MHz max.
VDD: 3.0V to 6.0V
IDD: 32 A max. at 32 kHz,
3.0V
IPD: 9 A max. at 3.0V
Freq: 200 kHz max.
VDD: 3.0V to 6.0V
IDD: 32 A max. at 32 kHz,
3.0V
IPD: 9 A max. at 3.0V
Freq: 200 kHz max.
The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications.
It is recommended that the user select the device type that ensures the specifications required.
1997-2013 Microchip Technology Inc.
DS30234E-page 159
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
15.1
DC Characteristics:
PIC16C61-04 (Commercial, Industrial, Extended)
PIC16C61-20 (Commercial, Industrial, Extended)
DC CHARACTERISTICS
Param
No.
D001
D001A
D002*
D003
D004*
D010
Characteristic
Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C TA +125°C for extended,
-40°C TA +85°C for industrial and
0°C
TA +70°C for commercial
Sym
Min Typ† Max Units
Conditions
Supply Voltage
VDD
RAM Data Retention
Voltage (Note 1)
VDD start voltage to
ensure internal Poweron Reset signal
VDD rise rate to ensure
internal Power-on
Reset signal
Supply Current (Note 2)
D013
1.5
6.0
5.5
-
V
V
V
XT, RC and LP osc configuration
HS osc configuration
VDR
4.0
4.5
-
VPOR
-
VSS
-
V
See section on Power-on Reset for details
SVDD
0.05
-
-
-
1.8
3.3
mA
FOSC = 4 MHz, VDD = 5.5V (Note 4)
-
13.5
30
mA
HS osc configuration
FOSC = 20 MHz, VDD = 5.5V
VDD = 4.0V, WDT enabled, -40C to +85C
VDD = 4.0V, WDT disabled, -0C to +70C
VDD = 4.0V, WDT disabled, -40C to +85C
VDD = 4.0V, WDT disabled, -40C to +125C
IDD
V/ms See section on Power-on Reset for details
D020
Power-down Current
IPD
7
28
A
D021
(Note 3)
1.0
14
A
D021A
1.0
16
A
D021B
1.0
20
A
*
These parameters are characterized but not tested.
†
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only
and are not tested.
Note 1: This is the limit to which VDD can be lowered without losing RAM data.
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin
loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an
impact on the current consumption.
The test conditions for all IDD measurements in active operation mode are:
OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD,
MCLR = VDD; WDT enabled/disabled as specified.
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.
4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
DS30234E-page 160
1997-2013 Microchip Technology Inc.
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
15.2
DC Characteristics:
DC CHARACTERISTICS
Param
No.
Characteristic
D001
D002*
Supply Voltage
RAM Data Retention Voltage (Note 1)
VDD start voltage to
ensure internal Power-on
Reset signal
VDD rise rate to ensure
internal Power-on Reset
signal
Supply Current (Note 2)
D003
D004*
D010
PIC16LC61-04 (Commercial, Industrial)
Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C
TA +85°C for industrial and
0°C
TA +70°C for commercial
Sym Min Typ† Max Units
Conditions
VDD
VDR
3.0
-
1.5
6.0
-
V
V
XT, RC, and LP osc configuration
VPOR
-
VSS
-
V
See section on Power-on Reset for details
SVDD
0.05
-
-
-
1.4
2.5
mA
FOSC = 4 MHz, VDD = 3.0V (Note 4)
-
15
32
A
FOSC = 32 kHz, VDD = 3.0V, WDT disabled,
LP osc configuration
VDD = 3.0V, WDT enabled, -40C to +85C
VDD = 3.0V, WDT disabled, 0C to +70C
VDD = 3.0V, WDT disabled, -40C to +85C
IDD
D010A
D020
D021
D021A
*
†
Note 1:
2:
3:
4:
V/ms See section on Power-on Reset for details
5
20
A
0.6
9
A
0.6
12
A
These parameters are characterized but not tested.
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only
and are not tested.
This is the limit to which VDD can be lowered without losing RAM data.
The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin
loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an
impact on the current consumption.
The test conditions for all IDD measurements in active operation mode are:
OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD,
MCLR = VDD; WDT enabled/disabled as specified.
The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.
For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
Power-down Current
(Note 3)
1997-2013 Microchip Technology Inc.
IPD
DS30234E-page 161
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
15.3
DC Characteristics:
PIC16C61-04 (Commercial, Industrial, Extended)
PIC16C61-20 (Commercial, Industrial, Extended)
PIC16LC61-04 (Commercial, Industrial)
DC CHARACTERISTICS
Param
No.
Characteristic
Input Low Voltage
I/O ports
with TTL buffer
D030
D030A
D031
with Schmitt Trigger buffer
D032 MCLR, OSC1 (in RC mode)
D033 OSC1 (in XT, HS and LP)
Input High Voltage
I/O ports
D040
with TTL buffer
D040A
D041
D042
D042A
D043
D070
Standard Operating Conditions (unless otherwise stated)
Operating temperature
-40°C TA +125°C for extended,
-40°C TA +85°C for industrial and
0°C
TA +70°C for commercial
Operating voltage VDD range as described in DC spec Section 15.1 and
Section 15.2.
Sym
Min Typ† Max Units
Conditions
VIL
Vss
VSS
Vss
Vss
Vss
VIH
2.0
0.25VDD
+ 0.8V
D060
with Schmitt Trigger buffer
MCLR
OSC1 (XT, HS and LP)
OSC1 (in RC mode)
PORTB weak pull-up current
IPURB
Input Leakage Current (Notes 2, 3)
I/O ports
IIL
D061
D063
MCLR, RA4/T0CKI
OSC1
D080
Output Low Voltage
I/O ports
D080A
D083
OSC2/CLKOUT (RC osc config)
D083A
VOL
-
0.15VDD
0.8V
0.2VDD
0.2VDD
0.3VDD
V
V
V
V
V
For entire VDD range
4.5V VDD 5.5V
-
VDD
VDD
V
V
4.5V VDD 5.5V
For entire VDD range
VDD
VDD
VDD
VDD
† 400
V
V
V
V
A
For entire VDD range
Vss VPIN VDD, Pin at hiimpedance
Vss VPIN VDD
Vss VPIN VDD, XT, HS and
LP osc configuration
0.85VDD 0.85VDD 0.7VDD
0.9VDD
50
250
-
-
1
A
-
-
5
5
A
A
-
-
0.6
V
-
-
0.6
V
-
-
0.6
V
-
-
0.6
V
Note1
Note1
VDD = 5V, VPIN = VSS
IOL = 8.5 mA, VDD = 4.5V,
-40C to +85C
IOL = 7.0 mA, VDD = 4.5V,
-40C to +125C
IOL = 1.6 mA, VDD = 4.5V,
-40C to +85C
IOL = 1.2 mA, VDD = 4.5V,
-40C to +125C
*
†
The parameters are characterized but not tested.
Data in “Typ” column is at 5V, 25C unless otherwise stated. These parameters are for design guidance only
and are not tested.
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the
PIC16C6X be driven with external clock in RC mode.
2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified
levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
3: Negative current is defined as current sourced by the pin.
DS30234E-page 162
1997-2013 Microchip Technology Inc.
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
DC CHARACTERISTICS
Param
No.
D090
Characteristic
Output High Voltage
I/O ports (Note 3)
Standard Operating Conditions (unless otherwise stated)
Operating temperature
-40°C TA +125°C for extended,
-40°C TA +85°C for industrial and
0°C
TA +70°C for commercial
Operating voltage VDD range as described in DC spec Section 15.1 and
Section 15.2.
Sym
Min Typ† Max Units
Conditions
VOH
D090A
D092
OSC2/CLKOUT (RC osc config)
D092A
D150*
D100
Open-Drain High Voltage
Capacitive Loading Specs on
Output Pins
OSC2 pin
VOD
COSC2
VDD-0.7
-
-
V
VDD-0.7
-
-
V
VDD-0.7
-
-
V
VDD-0.7
-
-
V
-
-
14
V
15
pF
IOH = -3.0 mA,
VDD = 4.5V, -40C to +85C
IOH = -2.5 mA,
VDD = 4.5V, -40C to +125C
IOH = -1.3 mA,
VDD = 4.5V, -40C to +85C
IOH = -1.0 mA,
VDD = 4.5V, -40C to +125C
RA4 pin
In XT, HS and LP modes when
external clock is used to drive
OSC1.
D101
*
†
All I/O pins and OSC2 (in RC mode) CIO
50
pF
The parameters are characterized but not tested.
Data in “Typ” column is at 5V, 25C unless otherwise stated. These parameters are for design guidance only
and are not tested.
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the
PIC16C6X be driven with external clock in RC mode.
2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified
levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
3: Negative current is defined as current sourced by the pin.
1997-2013 Microchip Technology Inc.
DS30234E-page 163
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
15.4
Timing Parameter Symbology
The timing parameter symbols have been created following one of the following formats:
1. TppS2ppS
3. TCC:ST
(I2C specifications only)
2. TppS
4. Ts
(I2C specifications only)
T
F
Frequency
Lowercase letters (pp) and their meanings:
pp
cc
CCP1
ck
CLKOUT
cs
CS
di
SDI
do
SDO
dt
Data in
io
I/O port
mc
MCLR
Uppercase letters and their meanings:
S
F
Fall
H
High
I
Invalid (Hi-impedance)
L
Low
I2C only
AA
BUF
output access
Bus free
TCC:ST (I2C specifications only)
CC
HD
Hold
ST
DAT
DATA input hold
STA
START condition
T
Time
osc
rd
rw
sc
ss
t0
t1
wr
OSC1
RD
RD or WR
SCK
SS
T0CKI
T1CKI
WR
P
R
V
Z
Period
Rise
Valid
Hi-impedance
High
Low
High
Low
SU
Setup
STO
STOP condition
FIGURE 15-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS
Load condition 1
Load condition 2
VDD/2
RL
CL
Pin
CL
Pin
VSS
VSS
RL = 464
CL = 50 pF
15 pF
DS30234E-page 164
for all pins except OSC2/CLKOUT
for OSC2 output
1997-2013 Microchip Technology Inc.
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
15.5
Timing Diagrams and Specifications
FIGURE 15-2: EXTERNAL CLOCK TIMING
Q4
Q1
Q2
Q3
Q4
Q1
OSC1
3
1
3
4
4
2
CLKOUT
TABLE 15-2:
Parameter
No.
EXTERNAL CLOCK TIMING REQUIREMENTS
Sym
Characteristic
Min
Fosc
External CLKIN Frequency
(Note 1)
DC
—
4
MHz
XT and RC osc mode
DC
—
4
MHz
HS osc mode (-04)
Oscillator Frequency
(Note 1)
1
Tosc
External CLKIN Period
(Note 1)
Oscillator Period
(Note 1)
Typ†
Max
Units Conditions
DC
—
20
MHz
HS osc mode (-20)
DC
—
200
kHz
LP osc mode
DC
—
4
MHz
RC osc mode
0.1
—
4
MHz
XT osc mode
1
—
4
MHz
HS osc mode (-04)
HS osc mode (-20)
1
—
20
MHz
250
—
—
ns
XT and RC osc mode
250
—
—
ns
HS osc mode (-04)
50
—
—
ns
HS osc mode (-20)
5
—
—
s
LP osc mode
250
—
—
ns
RC osc mode
250
—
10,000
ns
XT osc mode
250
—
1,000
ns
HS osc mode (-04)
50
—
1,000
ns
HS osc mode (-20)
5
—
—
s
LP osc mode
TCY = 4/Fosc
2
TCY
Instruction Cycle Time (Note 1)
1.0
TCY
DC
s
3
TosL,
TosH
External Clock in (OSC1) High or
Low Time
50
—
—
ns
XT oscillator
2.5
—
—
s
LP oscillator
TosR,
TosF
External Clock in (OSC1) Rise or
Fall Time
4
10
—
—
ns
HS oscillator
25
—
—
ns
XT oscillator
50
—
—
ns
LP oscillator
15
—
—
ns
HS oscillator
†
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not
tested.
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on
characterization data for that particular oscillator type under standard operating conditions with the device executing code.
Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin.
When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.
1997-2013 Microchip Technology Inc.
DS30234E-page 165
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
FIGURE 15-3: CLKOUT AND I/O TIMING
Q1
Q4
Q2
Q3
OSC1
11
10
CLKOUT
13
19
14
12
18
16
I/O Pin
(input)
15
17
I/O Pin
(output)
new value
old value
20, 21
Note: Refer to Figure 15-1 for load conditions.
TABLE 15-3:
Parameter
No.
CLKOUT AND I/O TIMING REQUIREMENTS
Sym
Characteristic
Min
Typ†
Max
10*
TosH2ckL
11*
TosH2ckH
12*
OSC1 to CLKOUT
—
15
30
ns
Note 1
OSC1 to CLKOUT
—
15
30
ns
Note 1
TckR
CLKOUT rise time
—
5
15
ns
Note 1
13*
TckF
CLKOUT fall time
—
5
15
ns
Note 1
14*
TckL2ioV
CLKOUT to Port out valid
—
—
0.5TCY + 20
ns
Note 1
15*
TioV2ckH
Port in valid before CLKOUT
16*
TckH2ioI
Port in hold after CLKOUT
17*
TosH2ioV
OSC1 (Q1 cycle) to Port out valid
18*
TosH2ioI
OSC1 (Q2 cycle) to Port input invalid
(I/O in hold time)
19*
TioV2osH
Port input valid to OSC1(I/O in setup
time)
20*
TioR
Port output rise time
21*
TioF
Port output fall time
Units Conditions
0.25TCY + 25
—
—
ns
Note 1
0
—
—
ns
Note 1
—
—
80 - 100
ns
TBD
—
—
ns
TBD
—
—
ns
PIC16C61
—
10
25
ns
PIC16LC61
—
—
60
ns
PIC16C61
—
10
25
ns
PIC16LC61
—
—
60
ns
22††*
Tinp
RB0/INT pin high or low time
20
—
—
ns
23††*
Trbp
RB7:RB4 change int high or low time
20
—
—
ns
*
†
These parameters are characterized but not tested.
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not
tested.
††
These parameters are asynchronous events not related to any internal clock edges.
Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x TOSC.
DS30234E-page 166
1997-2013 Microchip Technology Inc.
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
FIGURE 15-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP
TIMER TIMING
VDD
MCLR
30
Internal
POR
33
PWRT
Time-out
32
OSC
Time-out
Internal
RESET
Watchdog
Timer
RESET
31
34
34
I/O Pins
Note: Refer to Figure 15-1 for load conditions.
TABLE 15-4:
RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP
TIMER REQUIREMENTS
Parameter
No.
Sym
Characteristic
Min
30*
TmcL
MCLR Pulse Width (low)
200
—
—
ns
VDD = 5V, -40°C to +125°C
31*
Twdt
Watchdog Timer Time-out Period
(No Prescaler)
7
18
33
ms
VDD = 5V, -40°C to +125°C
*
†
32
Tost
33*
Tpwrt
34*
TIOZ
Typ†
Max
Units
Conditions
TOSC = OSC1 period
Oscillation Start-up Timer Period
—
1024TOSC
—
Power-up Timer Period
28
72
132
ms
I/O Hi-impedance from MCLR Low
—
—
100
ns
VDD = 5V, -40°C to +125°C
These parameters are characterized but not tested.
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not
tested.
1997-2013 Microchip Technology Inc.
DS30234E-page 167
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
FIGURE 15-5: TIMER0 EXTERNAL CLOCK TIMINGS
RA4/T0CKI
41
40
42
TMR0
Note: Refer to Figure 15-1 for load conditions.
TABLE 15-5:
Parameter
No.
40*
TIMER0 EXTERNAL CLOCK REQUIREMENTS
Sym Characteristic
Tt0H T0CKI High Pulse Width
Min
No Prescaler
With Prescaler
41*
Tt0L T0CKI Low Pulse Width
No Prescaler
With Prescaler
42*
Tt0P T0CKI Period
No Prescaler
With Prescaler
*
†
Typ† Max Units Conditions
0.5TCY + 20
—
—
ns
10
—
—
ns
0.5TCY + 20
—
—
ns
10
—
—
ns
TCY + 40
—
—
ns
Greater of:
20 ns or
TCY + 40
N
—
—
ns
Must also meet
parameter 42
Must also meet
parameter 42
N = prescale value
(2, 4, ..., 256)
These parameters are characterized but not tested.
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not
tested.
DS30234E-page 168
1997-2013 Microchip Technology Inc.
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
16.0
DC AND AC
CHARACTERISTICS GRAPHS
AND TABLES FOR PIC16C61
Note:
The data presented in this section is a statistical summary of data collected on units
from different lots over a period of time and
matrix samples. 'Typical' represents the
mean of the distribution while 'max' or 'min'
represents (mean +3) and (mean -3)
respectively where is standard deviation.
The graphs and tables provided in this section are for
design guidance and are not tested or guaranteed.
In some graphs or tables the data presented are
outside specified operating range (i.e., outside
specified VDD range). This is for information only
and devices are guaranteed to operate properly
only within the specified range.
FIGURE 16-1: TYPICAL RC OSCILLATOR FREQUENCY vs. TEMPERATURE
FOSC
FOSC (25C)
Frequency Normalized TO +25C
1.050
REXT 10 k
CEXT = 100 pF
1.025
1.00
VDD = 5.5V
0.975
0.950
0.925
VDD = 3.5V
0.900
0.875
0.850
0
10
20
25
30
40
50
60
70
T (C)
TABLE 16-1:
RC OSCILLATOR FREQUENCIES
Cext
Rext
20 pF
4.7k
10k
100k
3.3k
4.7k
10k
100k
3.3k
4.7k
10k
100k
100 pF
300 pF
Average
Fosc @ 5V, 25C
4.52 MHz
2.47 MHz
290.86 kHz
1.92 MHz
1.48 MHz
788.77 kHz
88.11 kHz
726.89 kHz
573.95 kHz
307.31 kHz
33.82 kHz
17.35%
10.10%
11.90%
9.43%
9.83%
10.92%
16.03%
10.97%
10.14%
10.43%
11.24%
The percentage variation indicated here is part to part variation due to normal process distribution. The variation indicated is 3 standard deviation from average value for VDD = 5V.
1997-2013 Microchip Technology Inc.
DS30234E-page 169
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
FIGURE 16-2: TYPICAL RC OSCILLATOR
FREQUENCY VS. VDD
FIGURE 16-4: TYPICAL RC OSCILLATOR
FREQUENCY VS. VDD
8.0
5.0
R = 3.3k
4.5
R = 4.7k
7.0
4.0
6.0
R = 4.7k
5.0
3.0
Fosc (MHz)
Fosc (MHz)
3.5
R = 10k
2.5
4.0
R = 10k
2.0
3.0
1.5
2.0
1.0
Cext = 300 pF, T = 25C
1.0
0.5
R = 100k
R = 100k
0.0
3.0
3.5
4.0
4.5
5.0
5.5
0.0
3.0
6.0
3.5
4.0
VDD (Volts)
4.5
5.0
5.5
6.0
VDD (Volts)
FIGURE 16-3: TYPICAL RC OSCILLATOR
FREQUENCY VS. VDD
2.0
FIGURE 16-5: TYPICAL IPD VS. VDD
WATCHDOG TIMER
DISABLED 25C
0.6
R = 3.3k
1.8
1.6
0.5
1.4
R = 4.7k
1.2
0.4
1.0
IPD (A)
Fosc (MHz)
Data based on matrix samples. See first page of this section for details.
Cext = 20 pF, T = 25C
0.8
R = 10k
0.3
0.6
0.2
0.4
Cext = 100 pF, T = 25C
0.2
0.1
R = 100k
0.0
3.0
3.5
4.0
4.5
VDD (Volts)
5.0
5.5
6.0
0.0
3.0
3.5
4.0
4.5
5.0
5.5
6.0
VDD (Volts)
DS30234E-page 170
1997-2013 Microchip Technology Inc.
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
FIGURE 16-6: TYPICAL IPD VS. VDD
WATCHDOG TIMER ENABLED
25C
FIGURE 16-7: MAXIMUM IPD VS. VDD
WATCHDOG DISABLED
25
14
125C
12
20
10
IPD (A)
IPD (A)
15
8
6
10
70C
5
2
0
3.0
0
3.0
3.5
4.0
4.5
5.0
5.5
6.0
3.5
4.0
4.5
5.0
VDD (Volts)
5.5
0C
-40C
-55C
6.0
VDD (Volts)
1997-2013 Microchip Technology Inc.
DS30234E-page 171
Data based on matrix samples. See first page of this section for details.
85C
4
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
FIGURE 16-8: MAXIMUM IPD VS. VDD
WATCHDOG ENABLED*
FIGURE 16-9: VTH (INPUT THRESHOLD
VOLTAGE) OF I/O PINS VS.
VDD
45
-55C
-40C
40
2.00
1.80
IPD (A)
30
125C
25
VTH (Volts)
35
Max (-40C to 85C)
1.60
25C, Typ
1.40
1.20
Min (-40C to 85C)
1.00
20
0.80
15
0.60
2.5
0C
70C
85C
3.0
3.5
4.0 4.5 5.0
VDD (Volts)
5.5
6.0
10
Data based on matrix samples. See first page of this section for details.
5
0
3.0
3.5
4.0
4.5
5.0
VDD (Volts)
5.5
6.0
*IPD, with Watchdog Timer enabled, has two components: The leakage current which increases with higher
temperature and the operating current of the Watchdog
Timer logic which increases with lower temperature. At
-40C, the latter dominates explaining the apparently
anomalous behavior.
DS30234E-page 172
1997-2013 Microchip Technology Inc.
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
FIGURE 16-10: VIH, VIL OF MCLR, T0CKI AND OSC1 (IN RC MODE) VS. VDD
4.5
VIH, Max (-40C to 85C)
VIH, Typ (25C)
4.0
VIH, Min (-40C to 85C)
VIH, VIL (Volts)
3.5
3.0
2.5
2.0
1.5
VIL, Max (-40C to 85C)
1.0
VIL, Typ (25C)
VIL, Min (-40C to 85C)
0.5
0.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
FIGURE 16-11: VTH (INPUT THRESHOLD VOLTAGE) OF OSC1 INPUT (IN XT, HS, AND LP MODES)
VS. VDD
3.6
Max (-40C to 85C)
3.4
Typ (25C)
3.2
Min (-40C to 85C)
3.0
VTH (Volts)
2.8
2.6
2.4
2.2
2.0
1.8
1.6
1.4
1.2
1.0
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
VDD (Volts)
1997-2013 Microchip Technology Inc.
DS30234E-page 173
Data based on matrix samples. See first page of this section for details.
VDD (Volts)
These pins have Schmitt Trigger input buffers.
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
FIGURE 16-12: TYPICAL IDD VS. FREQUENCY (EXTERNAL CLOCK, 25C)
10,000
6.0
5.5
5.0
4.5
4.0
3.5
3.0
IDD (A)
1,000
100
1
10,000
100,000
1,000,000
100,000,000
10,000,000
Frequency (Hz)
FIGURE 16-13: MAXIMUM IDD VS. FREQUENCY (EXTERNAL CLOCK, -40 TO +85C)
10,000
6.0
5.5
5.0
4.5
4.0
3.5
3.0
1,000
IDD (A)
Data based on matrix samples. See first page of this section for details.
10
100
10
10,000
100,000
1,000,000
10,000,000
100,000,000
Frequency (Hz)
DS30234E-page 174
1997-2013 Microchip Technology Inc.
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
FIGURE 16-14: MAXIMUM IDD VS. FREQUENCY (EXTERNAL CLOCK, -55 TO +125C)
10,000
6.0
5.5
5.0
4.5
4.0
3.5
3.0
IDD (A)
1,000
10
10,000
100,000
1,000,000
100,000,000
10,000,000
Frequency (Hz)
FIGURE 16-15: WDT TIMER TIME-OUT
PERIOD VS. VDD
FIGURE 16-16: TRANSCONDUCTANCE (gm)
OF HS OSCILLATOR VS. VDD
50
9000
45
8000
40
7000
Max. -40C
6000
gm (A/V)
WDT period (ms)
35
30
Max. 85C
5000
4000
25
Typ. 25C
Max. 70C
3000
20
Typ. 25C
MIn. 85C
2000
15
Min. 0C
1000
10
Min. -40C
0
5
2
2
3
4
5
6
7
3
4
5
6
7
VDD (Volts)
VDD (Volts)
1997-2013 Microchip Technology Inc.
DS30234E-page 175
Data based on matrix samples. See first page of this section for details.
100
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
FIGURE 16-17: TRANSCONDUCTANCE (gm)
OF LP OSCILLATOR VS. VDD
FIGURE 16-19: IOH VS. VOH, VDD = 3V
0
225
-5
200
MIn. 85C
Max. -40C
175
150
-10
IOH (mA)
gm (A/V)
Typ. 25C
125
100
Typ. 25C
-15
MIn. 85C
75
-20
25
Max. -40C
0
3.0
3.5
4.0
4.5
VDD (Volts)
5.0
5.5
-25
6.0
0
FIGURE 16-18: TRANSCONDUCTANCE (gm)
OF XT OSCILLATOR VS. VDD
0.5
1.0
1.5
VOH (Volts)
2.0
2.5
3.0
FIGURE 16-20: IOH VS. VOH, VDD = 5V
0
2500
-5
Max. -40C
-10
200
IOH (mA)
-15
1500
gm (A/V)
Data based on matrix samples. See first page of this section for details.
50
Typ. 25C
-20
Min @ 85C
-25
Typ @ 25C
-30
100
-35
MIn. 85C
-40
Max @ -40C
500
-45
-50
0.0 0.5
0
2
3
4
5
VDD (Volts)
DS30234E-page 176
6
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
7
VOH (Volts)
1997-2013 Microchip Technology Inc.
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
FIGURE 16-21: IOL VS. VOL, VDD = 3V
FIGURE 16-22: IOL VS. VOL, VDD = 5V
90
35
80
Min @ -40C
30
Min @ -40C
70
25
60
Typ @ 25C
Typ @ 25C
IOL (mA)
IOL (mA)
20
15
50
Min @ +85C
40
Min @ +85C
30
10
5
10
0
0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
VOL (Volts)
TABLE 16-2:
VOL (Volts)
INPUT CAPACITANCE*
Pin Name
RA port
Typical Capacitance (pF)
18L PDIP
18L SOIC
5.0
4.3
RB port
5.0
4.3
MCLR
17.0
17.0
OSC1/CLKIN
4.0
3.5
OSC2/CLKOUT
4.3
3.5
T0CKI
3.2
2.8
*All capacitance values are typical at 25C. A part to part variation of 25% (three standard deviations) should be
taken into account.
1997-2013 Microchip Technology Inc.
DS30234E-page 177
Data based on matrix samples. See first page of this section for details.
20
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
NOTES:
DS30234E-page 178
1997-2013 Microchip Technology Inc.
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
17.0
ELECTRICAL CHARACTERISTICS FOR PIC16C62/64
Absolute Maximum Ratings †
Ambient temperature under bias...............................................................................................................-55°C to +85°C
Storage temperature .............................................................................................................................. -65°C to +150°C
Voltage on any pin with respect to VSS (except VDD, MCLR, and RA4).......................................... -0.3V to (VDD + 0.3V)
Voltage on VDD with respect to VSS ......................................................................................................... -0.3V to +7.5V
Voltage on MCLR with respect to VSS (Note 2)............................................................................................... 0V to +14V
Voltage on RA4 with respect to Vss ............................................................................................................... 0V to +14V
Total power dissipation (Note 1)................................................................................................................................1.0W
Maximum current out of VSS pin ...........................................................................................................................300 mA
Maximum current into VDD pin ..............................................................................................................................250 mA
Input clamp current, IIK (VI < 0 or VI > VDD) 20 mA
Output clamp current, IOK (VO < 0 or VO > VDD) 20 mA
Maximum output current sunk by any I/O pin..........................................................................................................25 mA
Maximum output current sourced by any I/O pin ....................................................................................................25 mA
Maximum current sunk byPORTA, PORTB, and PORTE* (combined) ................................................................200 mA
Maximum current sourced by PORTA, PORTB, and PORTE* (combined) ...........................................................200 mA
Maximum current sunk by PORTC and PORTD* (combined)...............................................................................200 mA
Maximum current sourced by PORTC and PORTD* (combined) .........................................................................200 mA
* PORTD and PORTE not available on the PIC16C62.
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - IOH} + {(VDD-VOH) x IOH} + (VOl x IOL)
Note 2: Voltage spikes below VSS at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up. Thus,
a series resistor of 50-100 should be used when applying a “low” level to the MCLR pin rather than pulling
this pin directly to VSS.
† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the
device. This is a stress rating only and functional operation of the device at those or any other conditions above those
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability.
TABLE 17-1:
OSC
CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS
AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)
PIC16C62-04
PIC16C64-04
PIC16C62-10
PIC16C64-10
PIC16C62-20
PIC16C64-20
PIC16LC62-04
PIC16LC64-04
JW Devices
RC
VDD: 4.0V to 6.0V
IDD: 3.8 mA max. at 5.5V
IPD: 21 A max. at 4V
Freq:4 MHz max.
VDD: 4.5V to 5.5V
IDD: 2.0 mA typ. at 5.5V
IPD: 1.5 A typ. at 4V
Freq:4 MHz max.
VDD: 4.5V to 5.5V
IDD: 2.0 mA typ. at 5.5V
IPD: 1.5 A typ. at 4V
Freq:4 MHz max.
VDD: 3.0V to 6.0V
IDD: 3.8 mA max. at 3.0V
IPD: 13.5 A max. at 3V
Freq: 4 MHz max.
VDD: 4.0V to 6.0V
IDD: 3.8 mA max. at 5.5V
IPD: 21 A max. at 4V
Freq:4 MHz max.
XT
VDD: 4.0V to 6.0V
IDD: 3.8 mA max. at 5.5V
IPD: 21 A max. at 4V
Freq:4 MHz max.
VDD: 4.5V to 5.5V
IDD: 2.0 mA typ. at 5.5V
IPD: 1.5 A typ. at 4V
Freq:4 MHz max.
VDD: 4.5V to 5.5V
IDD: 2.0 mA typ. at 5.5V
IPD: 1.5 A typ. at 4V
Freq:4 MHz max.
VDD: 3.0V to 6.0V
IDD: 3.8 mA max. at 3.0V
IPD: 13.5 A max. at 3.0V
Freq: 4 MHz max.
VDD: 4.0V to 6.0V
IDD: 3.8 mA max. at 5.5V
IPD: 21 A max. at 4V
Freq:4 MHz max.
HS
VDD: 4.5V to 5.5V
VDD: 4.5V to 5.5V
VDD: 4.5V to 5.5V
IDD: 13.5 mA typ. at 5.5V IDD: 15 mA max. at 5.5V IDD: 30 mA max. at 5.5V
LP
IPD: 1.5 A typ. at 4.5V
IPD: 1.5 A typ. at 4.5V
IPD: 1.5 A typ. at 4.5V
Freq:4 MHz max.
Freq: 10 MHz max.
Freq: 20 MHz max.
VDD: 4.0V to 6.0V
IDD: 52.5 A typ.
at 32 kHz, 4.0V
IPD: 0.9 A typ. at 4.0V
Freq:200 kHz max.
Not recommended for
use in LP mode
Not recommended for
use in LP mode
VDD: 4.5V to 5.5V
IDD: 30 mA max. at 5.5V
Not recommended for
use in HS mode
IPD: 1.5 A typ. at 4.5V
VDD: 3.0V to 6.0V
IDD: 48 A max.
at 32 kHz, 3.0V
IPD: 13.5 A max. at 3.0V
Freq:200 kHz max.
VDD: 3.0V to 6.0V
IDD: 48 A max.
at 32 kHz, 3.0V
IPD:13.5 A max. at 3.0V
Freq:200 kHz max.
Freq: 20 MHz max.
The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended
that the user select the device type that ensures the specifications required.
1997-2013 Microchip Technology Inc.
DS30234E-page 179
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
17.1
DC Characteristics:
DC CHARACTERISTICS
Param
No.
Characteristic
PIC16C62/64-04 (Commercial, Industrial)
PIC16C62/64-10 (Commercial, Industrial)
PIC16C62/64-20 (Commercial, Industrial)
Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C TA +85°C for industrial and
0°C
TA +70°C for commercial
Sym
Min
Typ† Max Units
Conditions
D001
D001A
Supply Voltage
VDD
4.0
4.5
-
6.0
5.5
V
V
D002*
RAM Data Retention
Voltage (Note 1)
VDR
-
1.5
-
V
D003
VDD start voltage to
VPOR
ensure internal Poweron Reset signal
-
VSS
-
V
D004*
VDD rise rate to ensure SVDD
internal Power-on
Reset signal
0.05
-
-
D010
Supply Current
(Note 2, 5)
-
2.7
5.0
mA
XT, RC, osc configuration
FOSC = 4 MHz, VDD = 5.5V (Note 4)
-
13.5
30
mA
HS osc configuration
FOSC = 20 MHz, VDD = 5.5V
-
10.5
1.5
1.5
42
21
24
A
A
A
VDD = 4.0V, WDT enabled, -40C to +85C
VDD = 4.0V, WDT disabled, -0C to +70C
VDD = 4.0V, WDT disabled, -40C to +85C
IDD
D013
D020
D021
D021A
Power-down Current
(Note 3, 5)
IPD
XT, RC and LP osc configuration
HS osc configuration
See section on Power-on Reset for details
V/ms See section on Power-on Reset for details
*
†
These parameters are characterized but not tested.
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only
and are not tested.
Note 1: This is the limit to which VDD can be lowered without losing RAM data.
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin
loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an
impact on the current consumption.
The test conditions for all IDD measurements in active operation mode are:
OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD
MCLR = VDD; WDT enabled/disabled as specified.
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.
4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
5: Timer1 oscillator (when enabled) adds approximately 20 A to the specification. This value is from characterization and is for design guidance only. This is not tested.
DS30234E-page 180
1997-2013 Microchip Technology Inc.
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
17.2
DC Characteristics:
DC CHARACTERISTICS
Param
No.
D001
D002*
D003
D004*
D010
Characteristic
PIC16LC62/64-04 (Commercial, Industrial)
Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C TA +85°C for industrial and
0°C
TA +70°C for commercial
Sym Min Typ† Max Units
Conditions
Supply Voltage
RAM Data Retention
Voltage (Note 1)
VDD start voltage to
ensure internal Poweron Reset signal
VDD rise rate to ensure
internal Power-on Reset
signal
Supply Current
(Note 2, 5)
D010A
VDD
VDR
3.0
-
1.5
6.0
-
V
V
LP, XT, RC osc configuration (DC - 4 MHz)
VPOR
-
VSS
-
V
See section on Power-on Reset for details
SVDD
0.05
-
-
-
2.0
3.8
mA
XT, RC osc configuration
FOSC = 4 MHz, VDD = 3.0V (Note 4)
-
22.5
48
A
LP osc configuration
FOSC = 32 kHz, VDD = 3.0V, WDT disabled
VDD = 3.0V, WDT enabled, -40C to +85C
VDD = 3.0V, WDT disabled, 0C to +70C
VDD = 3.0V, WDT disabled, -40C to +85C
IDD
V/ms See section on Power-on Reset for details
D020
Power-down Current
IPD
7.5
30
A
D021
(Note 3, 5)
0.9 13.5 A
D021A
0.9
18
A
*
These parameters are characterized but not tested.
†
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only
and are not tested.
Note 1: This is the limit to which VDD can be lowered without losing RAM data.
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin
loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an
impact on the current consumption.
The test conditions for all IDD measurements in active operation mode are:
OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD
MCLR = VDD; WDT enabled/disabled as specified.
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.
4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
5: Timer1 oscillator (when enabled) adds approximately 20 A to the specification. This value is from characterization and is for design guidance only. This is not tested.
1997-2013 Microchip Technology Inc.
DS30234E-page 181
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
17.3
DC Characteristics:
PIC16C62/64-04 (Commercial, Industrial)
PIC16C62/64-10 (Commercial, Industrial)
PIC16C62/64-20 (Commercial, Industrial)
PIC16LC62/64-04 (Commercial, Industrial)
DC CHARACTERISTICS
Param
No.
Characteristic
Input Low Voltage
I/O ports
with TTL buffer
D030
D030A
D031
with Schmitt Trigger buffer
D032
MCLR, OSC1 (in RC mode)
D033
OSC1 (in XT, HS and LP)
Input High Voltage
I/O ports
D040
with TTL buffer
D040A
D041
D042
D042A
D043
D070
D060
with Schmitt Trigger buffer
MCLR
OSC1 (XT, HS and LP)
OSC1 (in RC mode)
PORTB weak pull-up current
Input Leakage Current (Notes 2, 3)
I/O ports
D061
D063
MCLR, RA4/T0CKI
OSC1
D080
Output Low Voltage
I/O ports
D083
OSC2/CLKOUT (RC osc config)
D090
Output High Voltage
I/O ports (Note 3)
D092
OSC2/CLKOUT (RC osc config)
D150*
Open-Drain High Voltage
Standard Operating Conditions (unless otherwise stated)
Operating temperature
-40°C TA +85°C for industrial and
0°C
TA +70°C for commercial
Operating voltage VDD range as described in DC spec Section 17.1
and Section 17.2
Sym
Min
Typ
Max
Units
Conditions
†
VIL
VSS
VSS
VSS
Vss
Vss
-
0.15VDD
0.8V
0.2VDD
0.2VDD
0.3VDD
V
V
V
V
V
For entire VDD range
4.5V VDD 5.5V
Note1
2.0
0.25VDD
+ 0.8V
-
VDD
VDD
V
V
4.5V VDD 5.5V
For entire VDD range
VDD
VDD
VDD
VDD
400
V
V
V
A
VIH
IPURB
IIL
VOL
VOH
VOD
0.8VDD
0.8VDD
0.7VDD 0.9VDD 50
200
For entire VDD range
-
-
1
A
-
-
5
5
A
A
-
-
0.6
V
-
-
0.6
V
VDD-0.7
-
-
V
VDD-0.7
-
-
V
-
-
14
V
Note1
VDD = 5V, VPIN = VSS
Vss VPIN VDD, Pin at hiimpedance
Vss VPIN VDD
Vss VPIN VDD, XT, HS and
LP osc configuration
IOL = 8.5 mA, VDD = 4.5V,
-40C to +85C
IOL = 1.6 mA, VDD = 4.5V,
-40C to +85C
IOH = -3.0 mA, VDD = 4.5V,
-40C to +85C
IOH = -1.3 mA, VDD = 4.5V,
-40C to +85C
RA4 pin
*
†
These parameters are characterized but not tested.
Data in “Typ” column is at 5V, 25C unless otherwise stated. These parameters are for design guidance only and
are not tested.
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the
PIC16C6X be driven with external clock in RC mode.
2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
3: Negative current is defined as current sourced by the pin.
DS30234E-page 182
1997-2013 Microchip Technology Inc.
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
DC CHARACTERISTICS
Param
No.
Characteristic
Standard Operating Conditions (unless otherwise stated)
Operating temperature
-40°C TA +85°C for industrial and
0°C
TA +70°C for commercial
Operating voltage VDD range as described in DC spec Section 17.1
and Section 17.2
Sym
Min
Typ
Max
Units
Conditions
†
D100
Capacitive Loading Specs on Output
Pins
OSC2 pin
COSC2
D101
D102
SCL, SDA in I2C mode
All I/O pins and OSC2 (in RC mode)
CIO
Cb
-
-
15
pF
-
-
50
400
pF
pF
In XT, HS and LP modes
when external clock is used to
drive OSC1.
*
†
These parameters are characterized but not tested.
Data in “Typ” column is at 5V, 25C unless otherwise stated. These parameters are for design guidance only and
are not tested.
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the
PIC16C6X be driven with external clock in RC mode.
2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
3: Negative current is defined as current sourced by the pin.
1997-2013 Microchip Technology Inc.
DS30234E-page 183
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
17.4
Timing Parameter Symbology
The timing parameter symbols have been created following one of the following formats:
1. TppS2ppS
3. TCC:ST
(I2C specifications only)
2. TppS
4. Ts
(I2C specifications only)
T
F
Frequency
Lowercase letters (pp) and their meanings:
pp
cc
CCP1
ck
CLKOUT
cs
CS
di
SDI
do
SDO
dt
Data in
io
I/O port
mc
MCLR
Uppercase letters and their meanings:
S
F
Fall
H
High
I
Invalid (Hi-impedance)
L
Low
I2C only
AA
BUF
output access
Bus free
TCC:ST (I2C specifications only)
CC
HD
Hold
ST
DAT
DATA input hold
STA
START condition
T
Time
osc
rd
rw
sc
ss
t0
t1
wr
OSC1
RD
RD or WR
SCK
SS
T0CKI
T1CKI
WR
P
R
V
Z
Period
Rise
Valid
Hi-impedance
High
Low
High
Low
SU
Setup
STO
STOP condition
FIGURE 17-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS
Load condition 1
Load condition 2
VDD/2
RL
CL
Pin
CL
Pin
VSS
VSS
RL = 464
CL = 50 pF
15 pF
for all pins except OSC2/CLKOUT
but including D and E outputs as ports
Note 1: PORTD and PORTE are not implemented on the PIC16C62.
for OSC2 output
DS30234E-page 184
1997-2013 Microchip Technology Inc.
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
17.5
Timing Diagrams and Specifications
FIGURE 17-2: EXTERNAL CLOCK TIMING
Q4
Q1
Q2
Q3
Q4
Q1
OSC1
3
1
3
4
4
2
CLKOUT
TABLE 17-2:
Parameter
No.
EXTERNAL CLOCK TIMING REQUIREMENTS
Sym
Characteristic
Min
Fosc
External CLKIN Frequency
(Note 1)
DC
—
4
MHz
XT and RC osc mode
DC
—
4
MHz
HS osc mode (-04)
Oscillator Frequency
(Note 1)
1
Tosc
External CLKIN Period
(Note 1)
Oscillator Period
(Note 1)
Typ†
Max
Units Conditions
DC
—
10
MHz
HS osc mode (-10)
DC
—
20
MHz
HS osc mode (-20)
DC
—
200
kHz
LP osc mode
DC
—
4
MHz
RC osc mode
XT osc mode
0.1
—
4
MHz
4
—
20
MHz
HS osc mode
5
—
200
kHz
LP osc mode
250
—
—
ns
XT and RC osc mode
250
—
—
ns
HS osc mode (-04)
100
—
—
ns
HS osc mode (-10)
50
—
—
ns
HS osc mode (-20)
5
—
—
s
LP osc mode
250
—
—
ns
RC osc mode
250
—
10,000
ns
XT osc mode
250
—
250
ns
HS osc mode (-04)
100
—
250
ns
HS osc mode (-10)
50
—
1,000
ns
HS osc mode (-20)
5
—
—
s
LP osc mode
TCY = 4/FOSC
2
TCY
Instruction Cycle Time (Note 1)
200
TCY
DC
ns
3
TosL,
TosH
External Clock in (OSC1) High
or Low Time
100
—
—
ns
XT oscillator
2.5
—
—
s
LP oscillator
TosR,
TosF
External Clock in (OSC1) Rise
or Fall Time
4
15
—
—
ns
HS oscillator
—
—
25
ns
XT oscillator
—
—
50
ns
LP oscillator
—
—
15
ns
HS oscillator
†
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not
tested.
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on
characterization data for that particular oscillator type under standard operating conditions with the device executing code.
Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin.
When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.
1997-2013 Microchip Technology Inc.
DS30234E-page 185
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
FIGURE 17-3: CLKOUT AND I/O TIMING
Q1
Q4
Q2
Q3
OSC1
11
10
CLKOUT
13
19
14
12
18
16
I/O Pin
(input)
15
17
I/O Pin
(output)
new value
old value
20, 21
Note: Refer to Figure 17-1 for load conditions.
TABLE 17-3:
CLKOUT AND I/O TIMING REQUIREMENTS
Parameters Sym
Min
Typ†
Max
10*
TosH2ckL
OSC1 to CLKOUT
Characteristic
—
75
200
Units Conditions
ns
Note 1
11*
TosH2ckH OSC1 to CLKOUT
—
75
200
ns
Note 1
12*
TckR
CLKOUT rise time
—
35
100
ns
Note 1
13*
TckF
CLKOUT fall time
—
35
100
ns
Note 1
—
—
0.5TCY + 20
ns
Note 1
TOSC + 200
—
—
ns
Note 1
Note 1
14*
TckL2ioV
CLKOUT to Port out valid
15*
TioV2ckH
Port in valid before CLKOUT
16*
TckH2ioI
Port in hold after CLKOUT
0
—
—
ns
17*
TosH2ioV
OSC1 (Q1 cycle) to Port out valid
—
50
150
ns
18*
TosH2ioI
OSC1 (Q2 cycle) to Port
PIC16C62/64
input invalid (I/O in hold time)
PIC16LC62/64
100
—
—
ns
200
—
—
ns
0
—
—
ns
PIC16C62/64
—
10
40
ns
PIC16LC62/64
—
—
80
ns
PIC16C62/64
—
10
40
ns
19*
TioV2osH
Port input valid to OSC1
(I/O in setup time)
20*
TioR
Port output rise time
21*
TioF
Port output fall time
—
—
80
ns
22††*
Tinp
INT pin high or low time
TCY
—
—
ns
23††*
Trbp
RB7:RB4 change INT high or low time
TCY
—
—
ns
PIC16LC62/64
*
†
These parameters are characterized but not tested.
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not
tested.
†† These parameters are asynchronous events not related to any internal clock edge.
Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x TOSC.
DS30234E-page 186
1997-2013 Microchip Technology Inc.
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
FIGURE 17-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP
TIMER TIMING
VDD
MCLR
30
Internal
POR
33
PWRT
Time-out
32
OSC
Time-out
Internal
RESET
Watchdog
Timer
RESET
31
34
34
I/O Pins
Note: Refer to Figure 17-1 for load conditions.
TABLE 17-4:
RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP
TIMER REQUIREMENTS
Parameter
No.
Sym
Characteristic
Min
30*
TmcL
MCLR Pulse Width (low)
100
—
—
ns
VDD = 5V, -40°C to +85°C
31*
Twdt
Watchdog Timer Time-out Period
(No Prescaler)
7
18
33
ms
VDD = 5V, -40°C to +85°C
*
†
32
Tost
33*
Tpwrt
34*
TIOZ
Typ†
Max
Units
Conditions
Oscillation Start-up Timer Period
—
1024TOSC
—
—
TOSC = OSC1 period
Power-up Timer Period
28
72
132
ms
VDD = 5V, -40°C to +85°C
I/O Hi-impedance from MCLR Low
—
—
100
ns
These parameters are characterized but not tested.
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not
tested.
1997-2013 Microchip Technology Inc.
DS30234E-page 187
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
FIGURE 17-5: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS
RA4/T0CKI
41
40
42
RC0/T1OSI/T1CKI
46
45
47
48
TMR0 or
TMR1
Note: Refer to Figure 17-1 for load conditions.
TABLE 17-5:
TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS
Param
No.
Sym
Characteristic
40*
Tt0H
T0CKI High Pulse Width
41*
42*
45*
46*
47*
48
*
†
Min
No Prescaler
With Prescaler
No Prescaler
With Prescaler
T0CKI Low Pulse Width
Max
Units Conditions
0.5TCY + 20
—
—
ns
10
—
—
—
—
—
—
—
—
—
—
ns
ns
ns
ns
ns
—
—
—
—
—
—
ns
ns
ns
—
—
—
—
—
—
—
—
—
—
ns
ns
ns
ns
ns
—
—
—
—
—
—
ns
ns
ns
0.5TCY + 20
10
TCY + 40
Tt0P
T0CKI Period
No Prescaler
With Prescaler Greater of:
20 or TCY + 40
N
Tt1H
T1CKI High Time Synchronous, Prescaler = 1
0.5TCY + 20
Synchronous, PIC16C6X
15
Prescaler =
PIC16LC6X
25
2,4,8
Asynchronous PIC16C6X
30
PIC16LC6X
50
Tt1L
T1CKI Low Time
Synchronous, Prescaler = 1
0.5TCY + 20
Synchronous, PIC16C6X
15
Prescaler =
PIC16LC6X
25
2,4,8
Asynchronous PIC16C6X
30
PIC16LC6X
50
Tt1P
T1CKI input period Synchronous
PIC16C6X
Greater of:
30 OR TCY + 40
N
Greater of:
PIC16LC6X
50 OR TCY + 40
N
Asynchronous PIC16C6X
60
PIC16LC6X
100
Ft1
Timer1 oscillator input frequency range
DC
(oscillator enabled by setting bit T1OSCEN)
TCKEZtmr1 Delay from external clock edge to timer increment
2Tosc
Tt0L
Typ†
Must also meet
parameter 42
Must also meet
parameter 42
N = prescale value
(2, 4, ..., 256)
Must also meet
parameter 47
Must also meet
parameter 47
N = prescale value
(1, 2, 4, 8)
N = prescale value
(1, 2, 4, 8)
—
—
—
—
—
200
ns
ns
kHz
—
7Tosc
—
These parameters are characterized but not tested.
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not
tested.
DS30234E-page 188
1997-2013 Microchip Technology Inc.
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
FIGURE 17-6: CAPTURE/COMPARE/PWM TIMINGS (CCP1)
RC2/CCP1
(Capture Mode)
50
51
52
RC2/CCP1
(Compare or
PWM Mode)
54
53
Note: Refer to Figure 17-1 for load conditions.
TABLE 17-6:
CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1)
Parameter
No.
Sym Characteristic
50*
TccL CCP1
input low time
Min
No Prescaler
With Prescaler PIC16C62/64
PIC16LC62/64
51*
TccH CCP1
input high time
No Prescaler
With Prescaler PIC16C62/64
PIC16LC62/64
52*
TccP CCP1 input period
53
TccR CCP1 output rise time
54
*
†
TccF CCP1 output fall time
PIC16C62/64
Typ† Max Units Conditions
0.5TCY + 20
—
—
ns
10
—
—
ns
20
—
—
ns
0.5TCY + 20
—
—
ns
10
—
—
ns
20
—
—
ns
3TCY + 40
N
—
—
ns
—
10
25
ns
PIC16LC62/64
—
25
45
ns
PIC16C62/64
—
10
25
ns
PIC16LC62/64
—
25
45
ns
N = prescale value
(1,4 or 16)
These parameters are characterized but not tested.
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not
tested.
1997-2013 Microchip Technology Inc.
DS30234E-page 189
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
FIGURE 17-7: PARALLEL SLAVE PORT TIMING (PIC16C64)
RE2/CS
RE0/RD
RE1/WR
65
RD7:RD0
62
64
63
Note: Refer to Figure 17-1 for load conditions
TABLE 17-7:
PARALLEL SLAVE PORT REQUIREMENTS (PIC16C64)
Parameter
No.
Sym
62
TdtV2wrH
63*
TwrH2dtI
*
†
Characteristic
Min
Typ†
Max
Units
Data in valid before WR or CS (setup time)
20
—
—
ns
WR or CS to data–in invalid PIC16C64
(hold time)
PIC16LC64
20
—
—
ns
35
—
—
ns
64
TrdL2dtV
RD and CS to data–out valid
—
—
80
ns
65
TrdH2dtI
RD or CS to data–out invalid
10
—
30
ns
Conditions
These parameters are characterized but not tested.
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not
tested.
DS30234E-page 190
1997-2013 Microchip Technology Inc.
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
FIGURE 17-8: SPI MODE TIMING
SS
70
SCK
(CKP = 0)
71
72
78
79
79
78
SCK
(CKP = 1)
80
SDO
77
75, 76
SDI
74
73
Note: Refer to Figure 17-1 for load conditions
TABLE 17-8:
Parameter
No.
70
†
SPI MODE REQUIREMENTS
Sym
TssL2scH,
TssL2scL
Characteristic
Min
Typ†
Max
Units
SS to SCK or SCK input
TCY
—
—
ns
71
TscH
SCK input high time (slave mode)
TCY + 20
—
—
ns
72
TscL
SCK input low time (slave mode)
TCY + 20
—
—
ns
73
TdiV2scH,
TdiV2scL
Setup time of SDI data input to SCK
edge
50
—
—
ns
74
TscH2diL,
TscL2diL
Hold time of SDI data input to SCK
edge
50
—
—
ns
75
TdoR
SDO data output rise time
—
10
25
ns
76
TdoF
SDO data output fall time
—
10
25
ns
ns
77
TssH2doZ
SS to SDO output hi-impedance
10
—
50
78
TscR
SCK output rise time (master mode)
—
10
25
ns
79
TscF
SCK output fall time (master mode)
—
10
25
ns
80
TscH2doV,
TscL2doV
SDO data output valid after SCK
edge
—
—
50
ns
Conditions
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not
tested.
1997-2013 Microchip Technology Inc.
DS30234E-page 191
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
FIGURE 17-9: I2C BUS START/STOP BITS TIMING
SCL
91
93
92
90
SDA
STOP
Condition
START
Condition
Note: Refer to Figure 17-1 for load conditions
TABLE 17-9:
I2C BUS START/STOP BITS REQUIREMENTS
Parameter
No.
Sym
90
TSU:STA
91
92
93
THD:STA
TSU:STO
THD:STO
DS30234E-page 192
Characteristic
Min
Typ Max
START condition
100 kHz mode
4700
—
—
Setup time
400 kHz mode
600
—
—
START condition
100 kHz mode
4000
—
—
Hold time
400 kHz mode
600
—
—
STOP condition
100 kHz mode
4700
—
—
Setup time
400 kHz mode
600
—
—
STOP condition
100 kHz mode
4000
—
—
Hold time
400 kHz mode
600
—
—
Units
Conditions
ns
Only relevant for repeated START
condition
ns
After this period the first clock
pulse is generated
ns
ns
1997-2013 Microchip Technology Inc.
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
FIGURE 17-10: I2C BUS DATA TIMING
103
102
100
101
SCL
90
106
107
91
92
SDA
In
110
109
109
SDA
Out
Note: Refer to Figure 17-1 for load conditions
TABLE 17-10: I2C BUS DATA REQUIREMENTS
Parameter
No.
Sym
Characteristic
100
THIGH
Clock high time
Min
Max
Units
Conditions
100 kHz mode
4.0
—
s
Device must operate at a minimum of 1.5 MHz
400 kHz mode
0.6
—
s
Device must operate at a minimum of 10 MHz
1.5TCY
—
100 kHz mode
4.7
—
s
Device must operate at a minimum of 1.5 MHz
400 kHz mode
1.3
—
s
Device must operate at a minimum of 10 MHz
SSP Module
101
TLOW
Clock low time
1.5TCY
—
SDA and SCL rise
time
100 kHz mode
—
1000
ns
400 kHz mode
20 + 0.1Cb
300
ns
SDA and SCL fall time
100 kHz mode
—
300
ns
400 kHz mode
20 + 0.1Cb
300
ns
Cb is specified to be from
10 to 400 pF
START condition
setup time
100 kHz mode
4.7
—
s
400 kHz mode
0.6
—
s
Only relevant for repeated
START condition
START condition hold
time
100 kHz mode
4.0
—
s
400 kHz mode
0.6
—
s
Data input hold time
100 kHz mode
0
—
ns
400 kHz mode
0
0.9
s
SSP Module
102
103
90
91
106
107
92
109
110
TR
TF
TSU:STA
THD:STA
THD:DAT
TSU:DAT
TSU:STO
TAA
TBUF
Cb
Data input setup time
100 kHz mode
250
—
ns
400 kHz mode
100
—
ns
STOP condition setup
time
100 kHz mode
4.7
—
s
400 kHz mode
0.6
—
s
Output valid from
clock
100 kHz mode
—
3500
ns
400 kHz mode
—
—
ns
Bus free time
100 kHz mode
4.7
—
s
400 kHz mode
1.3
—
s
—
400
pF
Bus capacitive loading
Cb is specified to be from
10 to 400 pF
After this period the first clock
pulse is generated
Note 2
Note 1
Time the bus must be free
before a new transmission can
start
Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of
the falling edge of SCL to avoid unintended generation of START or STOP conditions.
2: A fast-mode (400 kHz) I2C-bus device can be used in a standard-mode (100 kHz) I2C-bus system, but the requirement
tsu;DAT 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the
SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line
TR max. + tsu;DAT = 1000 + 250 = 1250 ns (according to the standard-mode I2C bus specification) before the SCL line is
released.
1997-2013 Microchip Technology Inc.
DS30234E-page 193
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
NOTES:
DS30234E-page 194
1997-2013 Microchip Technology Inc.
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
18.0
ELECTRICAL CHARACTERISTICS FOR PIC16C62A/R62/64A/R64
Absolute Maximum Ratings †
Ambient temperature under bias.............................................................................................................-55°C to +125°C
Storage temperature .............................................................................................................................. -65°C to +150°C
Voltage on any pin with respect to VSS (except VDD, MCLR, and RA4).......................................... -0.3V to (VDD + 0.3V)
Voltage on VDD with respect to VSS ......................................................................................................... -0.3V to +7.5V
Voltage on MCLR with respect to VSS (Note 2)............................................................................................... 0V to +14V
Voltage on RA4 with respect to Vss ................................................................................................................ 0V to +14V
Total power dissipation (Note 1)................................................................................................................................1.0W
Maximum current out of VSS pin ...........................................................................................................................300 mA
Maximum current into VDD pin ..............................................................................................................................250 mA
Input clamp current, IIK (VI < 0 or VI > VDD) 20 mA
Output clamp current, IOK (VO < 0 or VO > VDD) 20 mA
Maximum output current sunk by any I/O pin..........................................................................................................25 mA
Maximum output current sourced by any I/O pin ....................................................................................................25 mA
Maximum current sunk byPORTA, PORTB, and PORTE (combined)..................................................................200 mA
Maximum current sourced by PORTA, PORTB, and PORTE (combined) ............................................................200 mA
Maximum current sunk by PORTC and PORTD (combined) ................................................................................200 mA
Maximum current sourced by PORTC and PORTD (combined) ...........................................................................200 mA
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - IOH} + {(VDD-VOH) x IOH} + (VOl x IOL)
Note 2: Voltage spikes below VSS at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up. Thus,
a series resistor of 50-100 should be used when applying a “low” level to the MCLR pin rather than pulling
this pin directly to VSS.
† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the
device. This is a stress rating only and functional operation of the device at those or any other conditions above those
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability.
TABLE 18-1:
CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS
AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)
PIC16C62A-04
PIC16CR62-04
PIC16C64A-04
PIC16CR64-04
PIC16C62A-10
PIC16CR62-10
PIC16C64A-10
PIC16CR64-10
PIC16C62A-20
PIC16CR62-20
PIC16C64A-20
PIC16CR64-20
PIC16LC62A-04
PIC16LCR62-04
PIC16LC64A-04
PIC16LCR64-04
RC VDD: 4.0V to 6.0V
IDD: 5 mA max. at 5.5V
IPD: 16 A max. at 4V
Freq:4 MHz max.
VDD: 4.5V to 5.5V
IDD: 2.0 mA typ. at 5.5V
IPD: 1.5 A typ. at 4V
Freq: 4 MHz max.
VDD: 4.5V to 5.5V
IDD: 2.0 mA typ. at 5.5V
IPD: 1.5 A typ. at 4V
Freq: 4 MHz max.
VDD: 2.5V to 6.0V
IDD: 3.8 mA max. at 3.0V
IPD: 5 A max. at 3V
Freq: 4 MHz max.
VDD: 4.0V to 6.0V
IDD: 5 mA max. at 5.5V
IPD: 16 A max. at 4V
Freq:4 MHz max.
VDD: 4.0V to 6.0V
IDD: 5 mA max. at 5.5V
IPD: 16 A max. at 4V
Freq: 4 MHz max.
VDD: 4.5V to 5.5V
IDD: 2.0 mA typ. at 5.5V
IPD: 1.5 A typ. at 4V
Freq: 4 MHz max.
VDD: 4.5V to 5.5V
IDD: 2.0 mA typ. at 5.5V
IPD: 1.5 A typ. at 4V
Freq: 4 MHz max.
VDD: 2.5V to 6.0V
IDD: 3.8 mA max. at 3.0V
IPD: 5 A max. at 3.0V
Freq: 4 MHz max.
VDD: 4.0V to 6.0V
IDD: 5 mA max. at 5.5V
IPD: 16 A max. at 4V
Freq: 4 MHz max.
VDD: 4.5V to 5.5V
VDD: 4.5V to 5.5V
OSC
XT
HS VDD: 4.5V to 5.5V
JW Devices
VDD: 4.5V to 5.5V
IDD: 13.5 mA typ. at 5.5V IDD: 10 mA max. at 5.5V IDD: 20 mA max. at 5.5V Not recommended for use IDD: 20 mA max. at 5.5V
in HS mode
IPD: 1.5 A typ. at 4.5V IPD: 1.5 A typ. at 4.5V IPD: 1.5 A typ. at 4.5V
IPD: 1.5 A typ. at 4.5V
Freq: 4 MHz max.
LP
VDD: 4.0V to 6.0V
IDD: 52.5 A typ.
at 32 kHz, 4.0V
IPD: 0.9 A typ. at 4.0V
Freq: 200 kHz max.
Freq: 10 MHz max.
Not recommended for
use in LP mode
Freq: 20 MHz max.
Not recommended for
use in LP mode
Freq: 20 MHz max.
VDD: 2.5V to 6.0V
IDD: 48 A max. at 32
kHz, 3.0V
IPD: 5 A max. at 3.0V
Freq: 200 kHz max.
VDD: 2.5V to 6.0V
IDD: 48 A max.
at 32 kHz, 3.0V
IPD: 5 A max. at 3.0V
Freq: 200 kHz max.
The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended
that the user select the device type that ensures the specifications required.
1997-2013 Microchip Technology Inc.
DS30234E-page 195
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
18.1
DC Characteristics:
DC CHARACTERISTICS
Param
No.
Characteristic
PIC16C62A/R62/64A/R64-04 (Commercial, Industrial, Extended)
PIC16C62A/R62/64A/R64-10 (Commercial, Industrial, Extended)
PIC16C62A/R62/64A/R64-20 (Commercial, Industrial, Extended)
Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C TA +125°C for extended,
-40°C TA +85°C for industrial and
0°C
TA +70°C for commercial
Sym
Min
Typ† Max Units
Conditions
D001
D001A
Supply Voltage
VDD
4.0
4.5
-
6.0
5.5
V
V
D002*
RAM Data Retention
Voltage (Note 1)
VDR
-
1.5
-
V
D003
VDD start voltage to
ensure internal Power-on
Reset signal
VPOR
-
VSS
-
V
D004*
VDD rise rate to ensure
internal Power-on Reset
signal
SVDD
0.05
-
-
D005
Brown-out Reset Voltage
BVDD
3.7
4.0
4.3
V
BODEN bit in configuration word enabled
3.7
4.0
4.4
V
Extended Range Only
-
2.7
5
mA
-
10
20
mA
-
350
425
A
BOR enabled, VDD = 5.0V
-
10.5
1.5
1.5
2.5
42
16
19
19
A
A
A
A
VDD = 4.0V, WDT enabled, -40C to +85C
VDD = 4.0V, WDT disabled, -0C to +70C
VDD = 4.0V, WDT disabled, -40C to +85C
VDD = 4.0V, WDT disabled, -40C to +125C
-
350
425
A
BOR enabled, VDD = 5.0V
D010
Supply Current (Note 2, 5) IDD
D013
IBOR
D015*
Brown-out Reset Current
(Note 6)
D020
D021
D021A
D021B
Power-down Current (Note IPD
3, 5)
D023*
Brown-out Reset Current
(Note 6)
IBOR
XT, RC and LP osc configuration
HS osc configuration
See section on Power-on Reset for details
V/ms See section on Power-on Reset for details
XT, RC, osc configuration FOSC = 4 MHz,
VDD = 5.5V (Note 4)
HS osc configuration FOSC = 20 MHz,
VDD = 5.5V
*
†
These parameters are characterized but not tested.
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only
and are not tested.
Note 1: This is the limit to which VDD can be lowered without losing RAM data.
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin
loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an
impact on the current consumption.
The test conditions for all IDD measurements in active operation mode are:
OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD
MCLR = VDD; WDT enabled/disabled as specified.
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.
4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
5: Timer1 oscillator (when enabled) adds approximately 20 A to the specification. This value is from characterization and is for design guidance only. This is not tested.
6: The current is the additional current consumed when this peripheral is enabled. This current should be
added to the base IDD or IPD measurement.
DS30234E-page 196
1997-2013 Microchip Technology Inc.
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
18.2
DC Characteristics:
PIC16LC62A/R62/64A/R64-04 (Commercial, Industrial)
DC CHARACTERISTICS
Param
No.
D001
D002*
D003
D004*
D005
D010
Characteristic
Supply Voltage
RAM Data Retention Voltage (Note 1)
VDD start voltage to
ensure internal Power-on
Reset signal
VDD rise rate to ensure
internal Power-on Reset
signal
Brown-out Reset Voltage
Supply Current (Note 2, 5)
Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C TA +85°C for industrial and
0°C
TA +70°C for commercial
Sym Min Typ† Max Units
Conditions
VDD
VDR
2.5
-
1.5
6.0
-
V
V
LP, XT, RC osc configuration (DC - 4 MHz)
VPOR
-
VSS
-
V
See section on Power-on Reset for details
SVDD
0.05
-
-
BVDD
IDD
3.7
-
4.0
2.0
4.3
3.8
V
mA
BODEN bit in configuration word enabled
XT, RC osc configuration
FOSC = 4 MHz, VDD = 3.0V (Note 4)
-
22.5
48
A
LP osc configuration
FOSC = 32 kHz, VDD = 3.0V, WDT disabled
IBOR
-
350
425
A
BOR enabled, VDD = 5.0V
IPD
-
7.5
0.9
0.9
30
5
5
A
A
A
VDD = 3.0V, WDT enabled, -40C to +85C
VDD = 3.0V, WDT disabled, 0C to +70C
VDD = 3.0V, WDT disabled, -40C to +85C
D010A
D015*
D020
D021
D021A
Brown-out Reset Current
(Note 6)
Power-down Current
(Note 3, 5)
V/ms See section on Power-on Reset for details
Brown-out Reset Current IBOR
350 425
A BOR enabled, VDD = 5.0V
(Note 6)
*
These parameters are characterized but not tested.
†
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and
are not tested.
Note 1: This is the limit to which VDD can be lowered without losing RAM data.
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin
loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an
impact on the current consumption.
The test conditions for all IDD measurements in active operation mode are:
OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD
MCLR = VDD; WDT enabled/disabled as specified.
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.
4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
5: Timer1 oscillator (when enabled) adds approximately 20 A to the specification. This value is from characterization and is for design guidance only. This is not tested.
6: The current is the additional current consumed when this peripheral is enabled. This current should be added
to the base IDD or IPD measurement.
D023*
1997-2013 Microchip Technology Inc.
DS30234E-page 197
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
18.3
DC Characteristics:
PIC16C62A/R62/64A/R64-04 (Commercial, Industrial, Extended)
PIC16C62A/R62/64A/R64-10 (Commercial, Industrial, Extended)
PIC16C62A/R62/64A/R64-20 (Commercial, Industrial, Extended)
PIC16LC62A/R62/64A/R64-04 (Commercial, Industrial)
DC CHARACTERISTICS
Param
No.
Characteristic
Input Low Voltage
I/O ports
with TTL buffer
D030
D030A
D031
with Schmitt Trigger buffer
D032 MCLR, OSC1 (in RC mode)
D033 OSC1 (in XT, HS and LP)
Input High Voltage
I/O ports
D040
with TTL buffer
D040A
D041
D042
D042A
D043
D070
Standard Operating Conditions (unless otherwise stated)
Operating temperature
-40°C TA +125°C for extended,
-40°C TA +85°C for industrial and
0°C
TA +70°C for commercial
Operating voltage VDD range as described in DC spec Section 18.1 and
Section 18.2
Sym
Min Typ Max Units
Conditions
†
VIL
Vss
VSS
Vss
Vss
Vss
VIH
2.0
0.25VDD
+ 0.8V
D060
with Schmitt Trigger buffer
MCLR
OSC1 (XT, HS and LP)
OSC1 (in RC mode)
PORTB weak pull-up current
IPURB
Input Leakage Current (Notes 2, 3)
I/O ports
IIL
D061
D063
MCLR, RA4/T0CKI
OSC1
D080
Output Low Voltage
I/O ports
D080A
D083
OSC2/CLKOUT (RC osc config)
D083A
VOL
-
0.15VDD
0.8V
0.2VDD
0.2VDD
0.3VDD
V
V
V
V
V
For entire VDD range
4.5V VDD 5.5V
-
VDD
VDD
V
V
4.5V VDD 5.5V
For entire VDD range
VDD
VDD
VDD
VDD
400
V
V
V
V
A
For entire VDD range
Vss VPIN VDD, Pin at hi-impedance
Vss VPIN VDD
Vss VPIN VDD, XT, HS and LP
osc configuration
0.8VDD 0.8VDD 0.7VDD 0.9VDD 50
250
-
-
1
A
-
-
5
5
A
A
-
-
0.6
V
-
-
0.6
V
-
-
0.6
V
-
-
0.6
V
Note1
Note1
VDD = 5V, VPIN = VSS
IOL = 8.5 mA, VDD = 4.5V,
-40C to +85C
IOL = 7.0 mA, VDD = 4.5V,
-40C to +125C
IOL = 1.6 mA, VDD = 4.5V,
-40C to +85C
IOL = 1.2 mA, VDD = 4.5V,
-40C to +125C
*
†
These parameters are characterized but not tested.
Data in “Typ” column is at 5V, 25C unless otherwise stated. These parameters are for design guidance only and
are not tested.
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the
PIC16C6X be driven with external clock in RC mode.
2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
3: Negative current is defined as current sourced by the pin.
DS30234E-page 198
1997-2013 Microchip Technology Inc.
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
DC CHARACTERISTICS
Param
No.
D090
Characteristic
Output High Voltage
I/O ports (Note 3)
Standard Operating Conditions (unless otherwise stated)
Operating temperature
-40°C TA +125°C for extended,
-40°C TA +85°C for industrial and
0°C
TA +70°C for commercial
Operating voltage VDD range as described in DC spec Section 18.1 and
Section 18.2
Sym
Min Typ Max Units
Conditions
†
VOH
D090A
D092
OSC2/CLKOUT (RC osc config)
D092A
D150*
D100
Open-Drain High Voltage
VOD
Capacitive Loading Specs on Output Pins
OSC2 pin
COSC2
VDD-0.7
-
-
V
VDD-0.7
-
-
V
VDD-0.7
-
-
V
VDD-0.7
-
-
V
-
-
14
V
-
-
15
pF
IOH = -3.0 mA, VDD = 4.5V,
-40C to +85C
IOH = -2.5 mA, VDD = 4.5V,
-40C to +125C
IOH = -1.3 mA, VDD = 4.5V,
-40C to +85C
IOH = -1.0 mA, VDD = 4.5V,
-40C to +125C
RA4 pin
In XT, HS and LP modes when
external clock is used to drive
OSC1.
50
pF
All I/O pins and OSC2 (in RC mode) CIO
Cb
400
pF
SCL, SDA in I2C mode
*
These parameters are characterized but not tested.
†
Data in “Typ” column is at 5V, 25C unless otherwise stated. These parameters are for design guidance only and
are not tested.
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the
PIC16C6X be driven with external clock in RC mode.
2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
3: Negative current is defined as current sourced by the pin.
D101
D102
1997-2013 Microchip Technology Inc.
DS30234E-page 199
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
18.4
Timing Parameter Symbology
The timing parameter symbols have been created following one of the following formats:
1. TppS2ppS
3. TCC:ST
(I2C specifications only)
2. TppS
4. Ts
(I2C specifications only)
T
F
Frequency
Lowercase letters (pp) and their meanings:
pp
cc
CCP1
ck
CLKOUT
cs
CS
di
SDI
do
SDO
dt
Data in
io
I/O port
mc
MCLR
Uppercase letters and their meanings:
S
F
Fall
H
High
I
Invalid (Hi-impedance)
L
Low
I2C only
AA
BUF
output access
Bus free
TCC:ST (I2C specifications only)
CC
HD
Hold
ST
DAT
DATA input hold
STA
START condition
T
Time
osc
rd
rw
sc
ss
t0
t1
wr
OSC1
RD
RD or WR
SCK
SS
T0CKI
T1CKI
WR
P
R
V
Z
Period
Rise
Valid
Hi-impedance
High
Low
High
Low
SU
Setup
STO
STOP condition
FIGURE 18-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS
Load condition 1
Load condition 2
VDD/2
RL
CL
Pin
VSS
CL
Pin
VSS
RL = 464
CL = 50 pF
Note 1: PORTD and PORTE are not
implemented on the
PIC16C62A/R62.
DS30234E-page 200
15 pF
for all pins except OSC2/CLKOUT
but including D and E outputs as ports
for OSC2 output
1997-2013 Microchip Technology Inc.
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
18.5
Timing Diagrams and Specifications
FIGURE 18-2: EXTERNAL CLOCK TIMING
Q4
Q1
Q2
Q3
Q4
Q1
OSC1
3
1
3
4
4
2
CLKOUT
TABLE 18-2:
Parameter
No.
EXTERNAL CLOCK TIMING REQUIREMENTS
Sym
Characteristic
Min
Fosc
External CLKIN Frequency
(Note 1)
DC
—
4
MHz
XT and RC osc mode
DC
—
4
MHz
HS osc mode (-04)
DC
—
10
MHz
HS osc mode (-10)
DC
—
20
MHz
HS osc mode (-20)
DC
—
200
kHz
LP osc mode
DC
—
4
MHz
RC osc mode
0.1
—
4
MHz
XT osc mode
4
—
20
MHz
HS osc mode
LP osc mode
Oscillator Frequency
(Note 1)
1
Tosc
External CLKIN Period
(Note 1)
Oscillator Period
(Note 1)
Max
Units Conditions
5
—
200
kHz
250
—
—
ns
XT and RC osc mode
250
—
—
ns
HS osc mode (-04)
100
—
—
ns
HS osc mode (-10)
50
—
—
ns
HS osc mode (-20)
5
—
—
s
LP osc mode
250
—
—
ns
RC osc mode
250
—
10,000
ns
XT osc mode
250
—
250
ns
HS osc mode (-04)
100
—
250
ns
HS osc mode (-10)
50
—
250
ns
HS osc mode (-20)
5
—
—
s
LP osc mode
Instruction Cycle Time (Note 1)
200
TCY
DC
ns
TCY = 4/FOSC
TosL,
TosH
External Clock in (OSC1) High or
Low Time
100
—
—
ns
XT oscillator
2.5
—
—
s
LP oscillator
TosR,
TosF
External Clock in (OSC1) Rise or
Fall Time
2
TCY
3
4
Typ†
15
—
—
ns
HS oscillator
—
—
25
ns
XT oscillator
—
—
50
ns
LP oscillator
—
—
15
ns
HS oscillator
†
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not
tested.
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on
characterization data for that particular oscillator type under standard operating conditions with the device executing code.
Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin.
When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.
1997-2013 Microchip Technology Inc.
DS30234E-page 201
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
FIGURE 18-3: CLKOUT AND I/O TIMING
Q1
Q4
Q2
Q3
OSC1
10
11
CLKOUT
13
19
14
12
18
16
I/O Pin
(input)
15
17
I/O Pin
(output)
new value
old value
20, 21
Note: Refer to Figure 18-1 for load conditions.
TABLE 18-3:
CLKOUT AND I/O TIMING REQUIREMENTS
Parameters Sym
Min
Typ†
Max
10*
TosH2ckL
OSC1 to CLKOUT
Characteristic
—
75
200
Units Conditions
ns
11*
TosH2ckH
OSC1 to CLKOUT
—
75
200
ns
Note 1
12*
TckR
CLKOUT rise time
—
35
100
ns
Note 1
Note 1
Note 1
13*
TckF
CLKOUT fall time
—
35
100
ns
14*
TckL2ioV
CLKOUT to Port out valid
—
—
0.5TCY + 20
ns
Note 1
15*
TioV2ckH
Port in valid before CLKOUT
Tosc + 200
—
—
ns
Note 1
16*
TckH2ioI
Port in hold after CLKOUT
0
—
—
ns
Note 1
17*
TosH2ioV
OSC1 (Q1 cycle) to Port out valid
—
50
150
ns
18*
TosH2ioI
OSC1 (Q2 cycle) to Port input PIC16C62A/
invalid (I/O in hold time)
R62/64A/R64
100
—
—
ns
PIC16LC62A/
R62/64A/R64
200
—
—
ns
19*
TioV2osH
Port input valid to OSC1(I/O in setup time)
0
—
—
ns
20*
TioR
Port output rise time
PIC16C62A/
R62/64A/R64
—
10
40
ns
PIC16LC62A/
R62/64A/R64
—
—
80
ns
PIC16C62A/
R62/64A/R64
—
10
40
ns
PIC16LC62A/
R62/64A/R64
—
—
80
ns
21*
TioF
Port output fall time
22††*
Tinp
RB0/INT pin high or low time
TCY
—
—
ns
23††*
Trbp
RB7:RB4 change int high or low time
TCY
—
—
ns
*
†
These parameters are characterized but not tested.
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not
tested.
†† These parameters are asynchronous events not related to any internal clock edge.
Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x TOSC.
DS30234E-page 202
1997-2013 Microchip Technology Inc.
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
FIGURE 18-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP
TIMER TIMING
VDD
MCLR
30
Internal
POR
33
PWRT
Time-out
32
OSC
Time-out
Internal
RESET
Watchdog
Timer
RESET
31
34
34
I/O Pins
Note: Refer to Figure 18-1 for load conditions.
FIGURE 18-5: BROWN-OUT RESET TIMING
BVDD
VDD
TABLE 18-4:
35
RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER,
AND BROWN-OUT RESET REQUIREMENTS
Parameter
No.
Sym
Characteristic
Typ†
Max
Units
Conditions
30
TmcL
MCLR Pulse Width (low)
2
—
—
s
VDD = 5V, -40°C to +125°C
31*
Twdt
Watchdog Timer Time-out Period
(No Prescaler)
7
18
33
ms
VDD = 5V, -40°C to +125°C
32
Tost
Oscillation Start-up Timer Period
—
1024TOSC
—
—
TOSC = OSC1 period
33*
Tpwrt
Power-up Timer Period
28
72
132
ms
VDD = 5V, -40°C to +125°C
34
TIOZ
I/O Hi-impedance from MCLR Low
or WDT Reset
—
—
2.1
s
TBOR
Brown-out Reset Pulse Width
100
—
—
s
35
*
†
Min
VDD BVDD (param. D005)
These parameters are characterized but not tested.
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not
tested.
1997-2013 Microchip Technology Inc.
DS30234E-page 203
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
FIGURE 18-6: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS
RA4/T0CKI
41
40
42
RC0/T1OSO/T1CKI
46
45
47
48
TMR0 or
TMR1
Note: Refer to Figure 18-1 for load conditions.
TABLE 18-5:
TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS
Param
No.
Sym
Characteristic
40*
Tt0H
T0CKI High Pulse Width
41*
42*
45*
46*
47*
48
*
†
Min
No Prescaler
With Prescaler
No Prescaler
With Prescaler
T0CKI Low Pulse Width
Max
Units Conditions
0.5TCY + 20
—
—
ns
10
—
—
—
—
—
—
—
—
—
—
ns
ns
ns
ns
ns
—
—
—
—
—
—
ns
ns
ns
—
—
—
—
—
—
—
—
—
—
ns
ns
ns
ns
ns
—
—
—
—
—
—
ns
ns
ns
0.5TCY + 20
10
TCY + 40
Tt0P
T0CKI Period
No Prescaler
With Prescaler Greater of:
20 or TCY + 40
N
Tt1H
T1CKI High Time Synchronous, Prescaler = 1
0.5TCY + 20
Synchronous, PIC16C6X
15
Prescaler =
PIC16LC6X
25
2,4,8
Asynchronous PIC16C6X
30
PIC16LC6X
50
Tt1L
T1CKI Low Time
Synchronous, Prescaler = 1
0.5TCY + 20
Synchronous, PIC16C6X
15
Prescaler =
PIC16LC6X
25
2,4,8
Asynchronous PIC16C6X
30
PIC16LC6X
50
Tt1P
T1CKI input period Synchronous
PIC16C6X
Greater of:
30 OR TCY + 40
N
Greater of:
PIC16LC6X
50 OR TCY + 40
N
Asynchronous PIC16C6X
60
PIC16LC6X
100
Ft1
Timer1 oscillator input frequency range
DC
(oscillator enabled by setting bit T1OSCEN)
TCKEZtmr1 Delay from external clock edge to timer increment
2Tosc
Tt0L
Typ†
Must also meet
parameter 42
Must also meet
parameter 42
N = prescale value
(2, 4, ..., 256)
Must also meet
parameter 47
Must also meet
parameter 47
N = prescale value
(1, 2, 4, 8)
N = prescale value
(1, 2, 4, 8)
—
—
—
—
—
200
ns
ns
kHz
—
7Tosc
—
These parameters are characterized but not tested.
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not
tested.
DS30234E-page 204
1997-2013 Microchip Technology Inc.
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
FIGURE 18-7: CAPTURE/COMPARE/PWM TIMINGS (CCP1)
RC2/CCP1
(Capture Mode)
50
51
52
RC2/CCP1
(Compare or
PWM Mode)
53
54
Note: Refer to Figure 18-1 for load conditions.
TABLE 18-6:
CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1)
Parameter Sym Characteristic
No.
50*
TccL CCP1
input low time
Min
No Prescaler
With Prescaler PIC16C62A/R62/
64A/R64
PIC16LC62A/R62/
64A/R64
51*
TccH CCP1
input high time
No Prescaler
53*
TccR CCP1 output rise time
54*
*
†
TccF CCP1 output fall time
—
—
ns
10
—
—
ns
20
—
—
ns
—
—
ns
10
—
—
ns
20
—
—
ns
3TCY + 40
N
—
—
ns
PIC16C62A/R62/
64A/R64
—
10
25
ns
PIC16LC62A/R62/
64A/R64
—
25
45
ns
PIC16C62A/R62/
64A/R64
—
10
25
ns
PIC16LC62A/R62/
64A/R64
—
25
45
ns
PIC16LC62A/R62/
64A/R64
TccP CCP1 input period
0.5TCY + 20
0.5TCY + 20
With Prescaler PIC16C62A/R62/
64A/R64
52*
Typ† Max Units Conditions
N = prescale value
(1,4 or 16)
These parameters are characterized but not tested.
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not
tested.
1997-2013 Microchip Technology Inc.
DS30234E-page 205
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
FIGURE 18-8: PARALLEL SLAVE PORT TIMING (PIC16C64A/R64)
RE2/CS
RE0/RD
RE1/WR
65
RD7:RD0
62
64
63
Note: Refer to Figure 18-1 for load conditions
TABLE 18-7:
Parameter
No.
62
63*
64
65*
*
†
PARALLEL SLAVE PORT REQUIREMENTS (PIC16C64A/R64)
Sym
Characteristic
Min
Typ†
Max
Units
20
—
—
ns
25
—
—
ns
PIC16C64A/R64
20
—
—
ns
PIC16LC64A.R64
35
—
—
ns
—
—
80
ns
—
—
90
ns
10
—
30
ns
TdtV2wrH Data in valid before WR or CS (setup time)
TwrH2dtI
TrdL2dtV
TrdH2dtI
WR or CS to data–in invalid (hold
time)
RD and CS to data–out valid
RD or CS to data–out invalid
Conditions
Extended
Range Only
Extended
Range Only
These parameters are characterized but not tested.
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not
tested.
DS30234E-page 206
1997-2013 Microchip Technology Inc.
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
FIGURE 18-9: SPI MODE TIMING
SS
70
SCK
(CKP = 0)
71
72
78
79
79
78
SCK
(CKP = 1)
80
SDO
77
75, 76
SDI
74
73
Note: Refer to Figure 18-1 for load conditions
TABLE 18-8:
Parameter
No.
70*
*
†
SPI MODE REQUIREMENTS
Sym
TssL2scH,
TssL2scL
Characteristic
Min
Typ†
Max
Units
SS to SCK or SCK input
TCY
—
—
ns
71*
TscH
SCK input high time (slave mode)
TCY + 20
—
—
ns
72*
TscL
SCK input low time (slave mode)
TCY + 20
—
—
ns
73*
TdiV2scH,
TdiV2scL
Setup time of SDI data input to SCK
edge
50
—
—
ns
74*
TscH2diL,
TscL2diL
Hold time of SDI data input to SCK
edge
50
—
—
ns
75*
TdoR
SDO data output rise time
—
10
25
ns
76*
TdoF
SDO data output fall time
—
10
25
ns
ns
77*
TssH2doZ
SS to SDO output hi-impedance
10
—
50
78*
TscR
SCK output rise time (master mode)
—
10
25
ns
79*
TscF
SCK output fall time (master mode)
—
10
25
ns
80*
TscH2doV,
TscL2doV
SDO data output valid after SCK
edge
—
—
50
ns
Conditions
These parameters are characterized but not tested.
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not
tested.
1997-2013 Microchip Technology Inc.
DS30234E-page 207
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
FIGURE 18-10: I2C BUS START/STOP BITS TIMING
SCL
91
93
90
92
SDA
STOP
Condition
START
Condition
Note: Refer to Figure 18-1 for load conditions
TABLE 18-9:
I2C BUS START/STOP BITS REQUIREMENTS
Parameter
No.
Sym
90*
TSU:STA
91*
92*
93*
THD:STA
TSU:STO
THD:STO
Characteristic
Min
Typ Max
START condition
100 kHz mode
4700
—
—
Setup time
400 kHz mode
600
—
—
START condition
100 kHz mode
4000
—
—
Hold time
400 kHz mode
600
—
—
STOP condition
100 kHz mode
4700
—
—
Setup time
400 kHz mode
600
—
—
STOP condition
100 kHz mode
4000
—
—
Hold time
400 kHz mode
600
—
—
Units
Conditions
ns
Only relevant for repeated START
condition
ns
After this period the first clock
pulse is generated
ns
ns
*These parameters are characterized but not tested.
DS30234E-page 208
1997-2013 Microchip Technology Inc.
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
FIGURE 18-11: I2C BUS DATA TIMING
103
102
100
101
SCL
90
106
107
92
91
SDA
In
110
109
109
SDA
Out
Note: Refer to Figure 18-1 for load conditions
TABLE 18-10: I2C BUS DATA REQUIREMENTS
Parameter
No.
Sym
Characteristic
100*
THIGH
Clock high time
101*
102*
103*
TLOW
TR
TF
Clock low time
SDA and SCL rise
time
SDA and SCL fall time
90*
TSU:STA
START condition
setup time
91*
THD:STA
START condition hold
time
106*
THD:DAT
Data input hold time
107*
TSU:DAT
Data input setup time
92*
TSU:STO
STOP condition setup
time
109*
TAA
110*
TBUF
Output valid from
clock
Bus free time
Min
Max
Units
Conditions
100 kHz mode
4.0
—
s
400 kHz mode
0.6
—
s
Device must operate at a minimum of 1.5 MHz
Device must operate at a minimum of 10 MHz
SSP Module
100 kHz mode
1.5TCY
4.7
—
—
s
400 kHz mode
1.3
—
s
SSP Module
100 kHz mode
400 kHz mode
1.5TCY
—
20 + 0.1Cb
—
1000
300
ns
ns
100 kHz mode
400 kHz mode
—
20 + 0.1Cb
300
300
ns
ns
100 kHz mode
400 kHz mode
100 kHz mode
400 kHz mode
100 kHz mode
400 kHz mode
100 kHz mode
400 kHz mode
100 kHz mode
400 kHz mode
100 kHz mode
400 kHz mode
100 kHz mode
400 kHz mode
4.7
0.6
4.0
0.6
0
0
250
100
4.7
0.6
—
—
4.7
1.3
—
—
—
—
—
0.9
—
—
—
—
3500
—
—
—
s
s
s
s
ns
s
ns
ns
s
s
ns
ns
s
s
Device must operate at a minimum of 1.5 MHz
Device must operate at a minimum of 10 MHz
Cb is specified to be from
10-400 pF
Cb is specified to be from
10-400 pF
Only relevant for repeated
START condition
After this period the first clock
pulse is generated
Note 2
Note 1
Time the bus must be free
before a new transmission can
start
Cb
Bus capacitive loading
—
400
pF
* These parameters are characterized but not tested.
Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of
the falling edge of SCL to avoid unintended generation of START or STOP conditions.
2: A fast-mode (400 kHz) I2C-bus device can be used in a standard-mode (100 kHz) I2C-bus system, but the requirement
tsu;DAT 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the
SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line
TR max.+tsu;DAT = 1000 + 250 = 1250 ns (according to the standard-mode I2C bus specification) before the SCL line is
released.
1997-2013 Microchip Technology Inc.
DS30234E-page 209
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
NOTES:
DS30234E-page 210
1997-2013 Microchip Technology Inc.
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
19.0
ELECTRICAL CHARACTERISTICS FOR PIC16C65
Absolute Maximum Ratings †
Ambient temperature under bias...............................................................................................................-55°C to +85°C
Storage temperature .............................................................................................................................. -65°C to +150°C
Voltage on any pin with respect to VSS (except VDD, MCLR, and RA4).......................................... -0.3V to (VDD + 0.3V)
Voltage on VDD with respect to VSS ......................................................................................................... -0.3V to +7.5V
Voltage on MCLR with respect to VSS (Note 2)............................................................................................... 0V to +14V
Voltage on RA4 with respect to Vss ................................................................................................................ 0V to +14V
Total power dissipation (Note 1)................................................................................................................................1.0W
Maximum current out of VSS pin ...........................................................................................................................300 mA
Maximum current into VDD pin ..............................................................................................................................250 mA
Input clamp current, IIK (VI < 0 or VI > VDD) 20 mA
Output clamp current, IOK (VO < 0 or VO > VDD) 20 mA
Maximum output current sunk by any I/O pin..........................................................................................................25 mA
Maximum output current sourced by any I/O pin ....................................................................................................25 mA
Maximum current sunk byPORTA, PORTB, and PORTE (combined)..................................................................200 mA
Maximum current sourced by PORTA, PORTB, and PORTE (combined) ............................................................200 mA
Maximum current sunk by PORTC and PORTD (combined) ................................................................................200 mA
Maximum current sourced by PORTC and PORTD (combined) ...........................................................................200 mA
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - IOH} + {(VDD-VOH) x IOH} + (VOl x IOL)
Note 2: Voltage spikes below VSS at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up. Thus,
a series resistor of 50-100 should be used when applying a “low” level to the MCLR pin rather than pulling
this pin directly to VSS.
† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the
device. This is a stress rating only and functional operation of the device at those or any other conditions above those
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability.
TABLE 19-1:
OSC
CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS
AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)
PIC16C65-10
PIC16C65-20
RC VDD: 4.0V to 6.0V
IDD: 5 mA max. at 5.5V
IPD: 21 A max. at 4V
Freq: 4 MHz max.
VDD: 4.5V to 5.5V
IDD: 2.7 mA typ. at 5.5V
IPD: 1.5 A typ. at 4V
Freq: 4 MHz max.
VDD: 4.5V to 5.5V
IDD: 2.7 mA typ. at 5.5V
IPD: 1.5 A typ. at 4V
Freq: 4 MHz max.
VDD: 3.0V to 6.0V
IDD: 3.8 mA max. at 3V
IPD: 800 A max. at 3V
Freq: 4 MHz max.
VDD: 4.0V to 6.0V
IDD: 5 mA max. at 5.5V
IPD: 21 A max. at 4V
Freq: 4 MHz max.
XT
VDD: 4.0V to 6.0V
IDD: 5 mA max. at 5.5V
IPD: 21 A max. at 4V
Freq: 4 MHz max.
VDD: 4.5V to 5.5V
IDD: 2.7 mA typ. at 5.5V
IPD: 1.5 A typ. at 4V
Freq: 4 MHz max.
VDD: 4.5V to 5.5V
IDD: 2.7 mA typ. at 5.5V
IPD: 1.5 A typ. at 4V
Freq: 4 MHz max.
VDD: 3.0V to 6.0V
IDD: 3.8 mA max. at 3V
IPD: 800 A max. at 3V
Freq: 4 MHz max.
VDD: 4.0V to 6.0V
IDD: 5 mA max. at 5.5V
IPD: 21 A max. at 4V
Freq: 4 MHz max.
HS
VDD: 4.5V to 5.5V
VDD: 4.5V to 5.5V
VDD: 4.5V to 5.5V
IDD: 13.5 mA typ. at
5.5V
IDD: 15 mA max. at 5.5V IDD: 30 mA max. at
5.5V
IPD: 1.5 A typ. at 4.5V
IPD 1.0 A typ. at 4.5V IPD: 1.5 A typ. at 4.5V
Freq: 4 MHz max.
Freq: 10 MHz max.
LP
PIC16C65-04
VDD: 4.0V to 6.0V
IDD: 52.5 A typ.
at 32 kHz, 4.0V
IPD: 0.9 A typ. at 4.0V
Freq: 200 kHz max.
Not recommended for
use in LP mode
PIC16LC65-04
JW Devices
VDD: 4.5V to 5.5V
Not recommended for
use in HS mode
Freq: 20 MHz max.
VDD: 3.0V to 6.0V
IDD: 105 A max.
Not recommended for
at 32 kHz, 3.0V
use in LP mode
IPD: 800 A max. at
3.0V
Freq: 200 kHz max.
IDD: 30 mA max. at 5.5V
IPD: 1.5 A typ. at 4.5V
Freq: 20 MHz max.
VDD: 3.0V to 6.0V
IDD: 105 A max.
at 32 kHz, 3.0V
IPD: 800 A max. at
3.0V
Freq: 200 kHz max.
The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended that the user select the device type that ensures the specifications required.
1997-2013 Microchip Technology Inc.
DS30234E-page 211
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
19.1
DC Characteristics:
DC CHARACTERISTICS
Param
No.
Characteristic
PIC16C65-04 (Commercial, Industrial)
PIC16C65-10 (Commercial, Industrial)
PIC16C65-20 (Commercial, Industrial)
Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C TA +85°C for industrial and
0°C
TA +70°C for commercial
Sym
Min
Typ† Max Units
Conditions
D001
D001A
Supply Voltage
VDD
4.0
4.5
-
6.0
5.5
V
V
D002*
RAM Data Retention
Voltage (Note 1)
VDR
-
1.5
-
V
D003
VDD start voltage to
ensure internal Power-on
Reset signal
VPOR
-
VSS
-
V
D004*
VDD rise rate to ensure
internal Power-on Reset
signal
SVDD
0.05
-
-
D010
Supply Current (Note 2, 5) IDD
-
2.7
5
mA
XT, RC osc configuration
FOSC = 4 MHz, VDD = 5.5V (Note 4)
-
13.5
30
mA
HS osc configuration
FOSC = 20 MHz, VDD = 5.5V
-
10.5
1.5
1.5
800
800
800
A
A
A
VDD = 4.0V, WDT enabled,-40C to +85C
VDD = 4.0V, WDT disabled,-0C to +70C
VDD = 4.0V, WDT disabled,-40C to +85C
D013
D020
D021
D021A
Power-down Current
(Note 3, 5)
IPD
XT, RC and LP osc configuration
HS osc configuration
See section on Power-on Reset for details
V/ms See section on Power-on Reset for details
*
†
These parameters are characterized but not tested.
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only
and are not tested.
Note 1: This is the limit to which VDD can be lowered without losing RAM data.
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin
loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an
impact on the current consumption.
The test conditions for all IDD measurements in active operation mode are:
OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD,
MCLR = VDD; WDT enabled/disabled as specified.
3: The power down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.
4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
5: Timer1 oscillator (when enabled) adds approximately 20 A to the specification. This value is from characterization and is for design guidance only. This is not tested.
DS30234E-page 212
1997-2013 Microchip Technology Inc.
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
19.2
DC Characteristics:
DC CHARACTERISTICS
Param
No.
Characteristic
D001
D002*
Supply Voltage
RAM Data Retention
Voltage (Note 1)
VDD start voltage to
ensure internal Power-on
Reset signal
VDD rise rate to ensure
internal Power-on Reset
signal
Supply Current (Note 2, 5)
D003
D004*
D010
D010A
PIC16LC65-04 (Commercial, Industrial)
Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C TA +85°C for industrial and
0°C
TA +70°C for commercial
Sym Min Typ† Max Units
Conditions
VDD
VDR
3.0
-
1.5
6.0
-
V
V
LP, XT, RC osc configuration (DC - 4 MHz)
VPOR
-
VSS
-
V
See section on Power-on Reset for details
SVDD
0.05
-
-
-
2.0
3.8
mA
XT, RC osc configuration
FOSC = 4 MHz, VDD = 3.0V (Note 4)
-
22.5
105
A
LP osc configuration
FOSC = 32 kHz, VDD = 4.0V, WDT disabled
VDD = 3.0V, WDT enabled, -40C to +85C
VDD = 3.0V, WDT disabled, 0C to +70C
VDD = 3.0V, WDT disabled, -40C to +85C
IDD
V/ms See section on Power-on Reset for details
D020 Power-down Current
IPD
7.5 800
A
D021 (Note 3, 5)
0.9 800
A
D021A
0.9 800
A
*
These parameters are characterized but not tested.
†
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only
and are not tested.
Note 1: This is the limit to which VDD can be lowered without losing RAM data.
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin
loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an
impact on the current consumption.
The test conditions for all IDD measurements in active operation mode are:
OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD,
MCLR = VDD; WDT enabled/disabled as specified.
3: The power down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.
4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
5: Timer1 oscillator (when enabled) adds approximately 20 A to the specification. This value is from characterization and is for design guidance only. This is not tested.
1997-2013 Microchip Technology Inc.
DS30234E-page 213
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
19.3
DC Characteristics:
PIC16C65-04 (Commercial, Industrial)
PIC16C65-10 (Commercial, Industrial)
PIC16C65-20 (Commercial, Industrial)
PIC16LC65-04 (Commercial, Industrial)
DC CHARACTERISTICS
Param
No.
D030
D030A
D031
D032
D033
D040
D040A
D041
D042
D042A
D043
D070
Characteristic
Input Low Voltage
I/O ports
with TTL buffer
with Schmitt Trigger buffer
MCLR, OSC1(in RC mode)
OSC1 (in XT, HS and LP)
Input High Voltage
I/O ports
with TTL buffer
D060
with Schmitt Trigger buffer
MCLR
OSC1 (XT, HS and LP)
OSC1 (in RC mode)
PORTB weak pull-up current
Input Leakage Current
(Notes 2, 3)
I/O ports
D061
D063
MCLR, RA4/T0CKI
OSC1
D080
Output Low Voltage
I/O ports
D083
OSC2/CLKOUT (RC osc config)
D090
Output High Voltage
I/O ports (Note 3)
D092
OSC2/CLKOUT (RC osc config)
Standard Operating Conditions (unless otherwise stated)
Operating temperature
-40°C TA +85°C for industrial and
0°C
TA +70°C for commercial
Operating voltage VDD range as described in DC spec Section 19.1 and
Section 19.2
Sym
Min
Typ Max
Units
Conditions
†
VIL
VSS
VSS
VSS
Vss
Vss
VIH
2.0
0.25VDD +
0.8V
IPURB
IIL
VOL
VOH
-
0.15VDD
0.8V
0.2VDD
0.2VDD
0.3VDD
V
V
V
V
V
For entire VDD range
4.5V VDD 5.5V
-
VDD
VDD
V
V
4.5V VDD 5.5V
For entire VDD range
VDD
VDD
VDD
VDD
400
V
V
V
A
0.8VDD
0.8VDD
0.7 VDD 0.9VDD
50
250
Note1
For entire VDD range
-
-
1
A
-
-
5
5
A
A
-
-
0.6
V
-
-
0.6
V
VDD-0.7
-
-
V
VDD-0.7
-
-
V
Note1
VDD = 5V, VPIN = VSS
Vss VPIN VDD, Pin at hiimpedance
Vss VPIN VDD
Vss VPIN VDD, XT, HS, and
LP osc configuration
IOL = 8.5 mA, VDD = 4.5V,
-40C to +85C
IOL = 1.6 mA, VDD = 4.5V,
-40C to +85C
IOH = -3.0 mA, VDD = 4.5V,
-40C to +85C
IOH = -1.3 mA, VDD = 4.5V,
-40C to +85C
RA4 pin
14
V
D150* Open-Drain High Voltage
VOD
*
These parameters are characterized but not tested.
†
Data in “Typ” column is at 5V, 25C unless otherwise stated. These parameters are for design guidance only
and are not tested.
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the
PIC16C6X be driven with external clock in RC mode.
2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified
levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
3: Negative current is defined as current sourced by the pin.
DS30234E-page 214
1997-2013 Microchip Technology Inc.
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
DC CHARACTERISTICS
Param
No.
D100
Characteristic
Capacitive Loading Specs on
Output Pins
OSC2 pin
Standard Operating Conditions (unless otherwise stated)
Operating temperature
-40°C TA +85°C for industrial and
0°C
TA +70°C for commercial
Operating voltage VDD range as described in DC spec Section 19.1 and
Section 19.2
Sym
Min
Typ Max
Units
Conditions
†
COSC2
-
-
15
pF
In XT, HS and LP modes when
external clock is used to drive
OSC1.
50
pF
All I/O pins and OSC2 (in RC mode) CIO
Cb
400
pF
SCL, SDA in I2C mode
*
These parameters are characterized but not tested.
†
Data in “Typ” column is at 5V, 25C unless otherwise stated. These parameters are for design guidance only
and are not tested.
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the
PIC16C6X be driven with external clock in RC mode.
2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified
levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
3: Negative current is defined as current sourced by the pin.
D101
D102
1997-2013 Microchip Technology Inc.
DS30234E-page 215
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
19.4
Timing Parameter Symbology
The timing parameter symbols have been created following one of the following formats:
1. TppS2ppS
3. TCC:ST
(I2C specifications only)
2. TppS
4. Ts
(I2C specifications only)
T
F
Frequency
Lowercase letters (pp) and their meanings:
pp
cc
CCP1
ck
CLKOUT
cs
CS
di
SDI
do
SDO
dt
Data in
io
I/O port
mc
MCLR
Uppercase letters and their meanings:
S
F
Fall
H
High
I
Invalid (Hi-impedance)
L
Low
I2C only
AA
BUF
output access
Bus free
TCC:ST (I2C specifications only)
CC
HD
Hold
ST
DAT
DATA input hold
STA
START condition
T
Time
osc
rd
rw
sc
ss
t0
t1
wr
OSC1
RD
RD or WR
SCK
SS
T0CKI
T1CKI
WR
P
R
V
Z
Period
Rise
Valid
Hi-impedance
High
Low
High
Low
SU
Setup
STO
STOP condition
FIGURE 19-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS
Load condition 1
Load condition 2
VDD/2
CL
Pin
RL
VSS
CL
Pin
RL = 464
VSS
CL = 50 pF
15 pF
DS30234E-page 216
for all pins except OSC2/CLKOUT
but including D and E outputs as ports
for OSC2 output
1997-2013 Microchip Technology Inc.
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
19.5
Timing Diagrams and Specifications
FIGURE 19-2: EXTERNAL CLOCK TIMING
Q4
Q1
Q2
Q3
Q4
Q1
OSC1
3
1
3
4
4
2
CLKOUT
TABLE 19-2:
Parameter
No.
EXTERNAL CLOCK TIMING REQUIREMENTS
Sym
Characteristic
Min
Fosc
External CLKIN Frequency
(Note 1)
DC
—
4
MHz
XT and RC osc mode
DC
—
4
MHz
HS osc mode (-04)
DC
—
10
MHz
HS osc mode (-10)
DC
—
20
MHz
HS osc mode (-20)
DC
—
200
kHz
LP osc mode
DC
—
4
MHz
RC osc mode
0.1
—
4
MHz
XT osc mode
4
—
20
MHz
HS osc mode
LP osc mode
Oscillator Frequency
(Note 1)
1
Tosc
External CLKIN Period
(Note 1)
Oscillator Period
(Note 1)
Max
Units Conditions
5
—
200
kHz
250
—
—
ns
XT and RC osc mode
250
—
—
ns
HS osc mode (-04)
100
—
—
ns
HS osc mode (-10)
50
—
—
ns
HS osc mode (-20)
5
—
—
s
LP osc mode
250
—
—
ns
RC osc mode
250
—
10,000
ns
XT osc mode
250
—
250
ns
HS osc mode (-04)
100
—
250
ns
HS osc mode (-10)
50
—
250
ns
HS osc mode (-20)
5
—
—
s
LP osc mode
Instruction Cycle Time (Note 1)
200
TCY
DC
ns
TCY = 4/FOSC
TosL,
TosH
External Clock in (OSC1) High or
Low Time
50
—
—
ns
XT oscillator
2.5
—
—
s
LP oscillator
TosR,
TosF
External Clock in (OSC1) Rise or
Fall Time
2
TCY
3
4
Typ†
15
—
—
ns
HS oscillator
—
—
25
ns
XT oscillator
—
—
50
ns
LP oscillator
—
—
15
ns
HS oscillator
†
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not
tested.
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on
characterization data for that particular oscillator type under standard operating conditions with the device executing code.
Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin.
When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.
1997-2013 Microchip Technology Inc.
DS30234E-page 217
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
FIGURE 19-3: CLKOUT AND I/O TIMING
Q1
Q4
Q2
Q3
OSC1
11
10
CLKOUT
13
19
14
12
18
16
I/O Pin
(input)
15
17
I/O Pin
(output)
new value
old value
20, 21
Note: Refer to Figure 19-1 for load conditions.
TABLE 19-3:
CLKOUT AND I/O TIMING REQUIREMENTS
Parameter Sym
No.
Characteristic
Min
Typ†
Max
Units Conditions
10*
TosH2ckL
OSC1 to CLKOUT
—
75
200
ns
Note 1
11*
TosH2ckH
OSC1 to CLKOUT
—
75
200
ns
Note 1
12*
TckR
CLKOUT rise time
—
35
100
ns
Note 1
13*
TckF
CLKOUT fall time
—
35
100
ns
Note 1
14*
TckL2ioV
CLKOUT to Port out valid
—
—
0.5TCY + 20
ns
Note 1
15*
TioV2ckH
Port in valid before CLKOUT
0.25TCY + 25
—
—
ns
Note 1
16*
TckH2ioI
Port in hold after CLKOUT
0
—
—
ns
Note 1
17*
TosH2ioV
OSC1 (Q1 cycle) to Port out valid
—
50
150
ns
18*
TosH2ioI
OSC1 (Q2 cycle) to Port
input invalid (I/O in hold time)
PIC16C65
100
—
—
ns
PIC16LC65
200
—
—
ns
0
—
—
ns
PIC16C65
—
10
25
ns
PIC16LC65
—
—
60
ns
PIC16C65
—
10
25
ns
PIC16LC65
—
—
60
ns
19*
TioV2osH
Port input valid to OSC1(I/O in setup time)
20*
TioR
Port output rise time
21*
TioF
Port output fall time
22††*
Tinp
RB0/INT pin high or low time
TCY
—
—
ns
23††*
Trbp
RB7:RB4 change int high or low time
TCY
—
—
ns
*
†
These parameters are characterized but not tested.
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not
tested.
†† These parameters are asynchronous events not related to any internal clock edge.
Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x TOSC.
DS30234E-page 218
1997-2013 Microchip Technology Inc.
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
FIGURE 19-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP
TIMER TIMING
VDD
MCLR
30
Internal
POR
33
PWRT
Time-out
32
OSC
Time-out
Internal
RESET
Watchdog
Timer
RESET
31
34
34
I/O Pins
Note: Refer to Figure 19-1 for load conditions.
TABLE 19-4:
RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP
TIMER REQUIREMENTS
Parameter
No.
Sym
Characteristic
Min
30*
TmcL
MCLR Pulse Width (low)
100
—
—
ns
VDD = 5V, -40°C to +85°C
31*
Twdt
Watchdog Timer Time-out Period
(No Prescaler)
7
18
33
ms
VDD = 5V, -40°C to +85°C
*
†
Typ†
Max
Units
Conditions
32
Tost
Oscillation Start-up Timer Period
—
1024TOSC
—
—
TOSC = OSC1 period
33*
Tpwrt
Power-up Timer Period or WDT
reset
28
72
132
ms
VDD = 5V, -40°C to +85°C
34
TIOZ
I/O Hi-impedance from MCLR Low
—
—
100
ns
These parameters are characterized but not tested.
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not
tested.
1997-2013 Microchip Technology Inc.
DS30234E-page 219
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
FIGURE 19-5: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS
RA4/T0CKI
41
40
42
RC0/T1OSO/T1CKI
46
45
47
48
TMR0 or
TMR1
Note: Refer to Figure 19-1 for load conditions.
TABLE 19-5:
TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS
Param
No.
Sym
Characteristic
40*
Tt0H
T0CKI High Pulse Width
41*
42*
45*
46*
47*
48
*
†
Min
No Prescaler
With Prescaler
No Prescaler
With Prescaler
T0CKI Low Pulse Width
Max
Units Conditions
0.5TCY + 20
—
—
ns
10
—
—
—
—
—
—
—
—
—
—
ns
ns
ns
ns
ns
—
—
—
—
—
—
ns
ns
ns
—
—
—
—
—
—
—
—
—
—
ns
ns
ns
ns
ns
—
—
—
—
—
—
ns
ns
ns
0.5TCY + 20
10
TCY + 40
Tt0P
T0CKI Period
No Prescaler
With Prescaler Greater of:
20 or TCY + 40
N
Tt1H
T1CKI High Time Synchronous, Prescaler = 1
0.5TCY + 20
Synchronous, PIC16C6X
15
Prescaler =
PIC16LC6X
25
2,4,8
Asynchronous PIC16C6X
30
PIC16LC6X
50
Tt1L
T1CKI Low Time
Synchronous, Prescaler = 1
0.5TCY + 20
Synchronous, PIC16C6X
15
Prescaler =
PIC16LC6X
25
2,4,8
Asynchronous PIC16C6X
30
PIC16LC6X
50
Tt1P
T1CKI input period Synchronous
PIC16C6X
Greater of:
30 OR TCY + 40
N
Greater of:
PIC16LC6X
50 OR TCY + 40
N
Asynchronous PIC16C6X
60
PIC16LC6X
100
Ft1
Timer1 oscillator input frequency range
DC
(oscillator enabled by setting bit T1OSCEN)
TCKEZtmr1 Delay from external clock edge to timer increment
2Tosc
Tt0L
Typ†
Must also meet
parameter 42
Must also meet
parameter 42
N = prescale value
(2, 4, ..., 256)
Must also meet
parameter 47
Must also meet
parameter 47
N = prescale value
(1, 2, 4, 8)
N = prescale value
(1, 2, 4, 8)
—
—
—
—
—
200
ns
ns
kHz
—
7Tosc
—
These parameters are characterized but not tested.
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not
tested.
DS30234E-page 220
1997-2013 Microchip Technology Inc.
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
FIGURE 19-6: CAPTURE/COMPARE/PWM TIMINGS (CCP1 AND CCP2)
RC1/T1OSI/CCP2
and RC2/CCP1
(Capture Mode)
50
51
52
RC1/T1OSI/CCP2
and RC2/CCP1
(Compare or
PWM Mode)
53
54
Note: Refer to Figure 19-1 for load conditions.
TABLE 19-6:
Parameter
No.
50*
51*
Sym Characteristic
TccL CCP1 and CCP2
input low time
TccH CCP1 and CCP2
input high time
Min
With Prescaler
0.5TCY + 20
—
—
ns
10
—
—
ns
PIC16LC65
20
—
—
ns
0.5TCY + 20
—
—
ns
PIC16C65
10
—
—
ns
PIC16LC65
20
—
—
ns
3TCY + 40
N
—
—
ns
No Prescaler
With Prescaler
TccP CCP1 and CCP2 input period
53
TccR CCP1 and CCP2 output rise time
TccF CCP1 and CCP2 output fall time
Typ† Max Units Conditions
PIC16C65
No Prescaler
52*
54
*
†
CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND CCP2)
PIC16C65
—
10
25
ns
PIC16LC65
—
25
45
ns
PIC16C65
—
10
25
ns
PIC16LC65
—
25
45
ns
N = prescale value
(1,4, or 16)
These parameters are characterized but not tested.
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not
tested.
1997-2013 Microchip Technology Inc.
DS30234E-page 221
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
FIGURE 19-7: PARALLEL SLAVE PORT TIMING
RE2/CS
RE0/RD
RE1/WR
65
RD7:RD0
62
64
63
Note: Refer to Figure 19-1 for load conditions
TABLE 19-7:
Parameter
No.
*
†
PARALLEL SLAVE PORT REQUIREMENTS
Sym
Characteristic
Min
62
TdtV2wrH Data in valid before WR or CS (setup time)
63*
TwrH2dtI
WR or CS to data–in invalid (hold
time)
64
TrdL2dtV
RD and CS to data–out valid
65
TrdH2dtI
RD or CS to data–out invalid
Typ†
Max
Units
20
—
—
ns
PIC16C65
20
—
—
ns
PIC16LC65
35
—
—
ns
—
—
80
ns
10
—
30
ns
Conditions
These parameters are characterized but not tested.
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not
tested.
DS30234E-page 222
1997-2013 Microchip Technology Inc.
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
FIGURE 19-8: SPI MODE TIMING
SS
70
SCK
(CKP = 0)
71
72
78
79
79
78
SCK
(CKP = 1)
80
SDO
77
75, 76
SDI
74
73
Note: Refer to Figure 19-1 for load conditions
TABLE 19-8:
Parameter
No.
70
†
SPI MODE REQUIREMENTS
Sym
TssL2scH,
TssL2scL
Characteristic
Min
Typ†
Max
Units
SS to SCK or SCK input
TCY
—
—
ns
71
TscH
SCK input high time (slave mode)
TCY + 20
—
—
ns
72
TscL
SCK input low time (slave mode)
TCY + 20
—
—
ns
73
TdiV2scH,
TdiV2scL
Setup time of SDI data input to SCK
edge
50
—
—
ns
74
TscH2diL,
TscL2diL
Hold time of SDI data input to SCK
edge
50
—
—
ns
75
TdoR
SDO data output rise time
—
10
25
ns
76
TdoF
SDO data output fall time
—
10
25
ns
ns
77
TssH2doZ
SS to SDO output hi-impedance
10
—
50
78
TscR
SCK output rise time (master mode)
—
10
25
ns
79
TscF
SCK output fall time (master mode)
—
10
25
ns
80
TscH2doV,
TscL2doV
SDO data output valid after SCK
edge
—
—
50
ns
Conditions
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not
tested.
1997-2013 Microchip Technology Inc.
DS30234E-page 223
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
FIGURE 19-9: I2C BUS START/STOP BITS TIMING
SCL
91
93
92
90
SDA
STOP
Condition
START
Condition
Note: Refer to Figure 19-1 for load conditions
TABLE 19-9:
I2C BUS START/STOP BITS REQUIREMENTS
Parameter
No.
Sym
90
TSU:STA
91
92
93
THD:STA
TSU:STO
THD:STO
DS30234E-page 224
Characteristic
Min
Typ Max
START condition
100 kHz mode
4700
—
—
Setup time
400 kHz mode
600
—
—
START condition
100 kHz mode
4000
—
—
Hold time
400 kHz mode
600
—
—
STOP condition
100 kHz mode
4700
—
—
Setup time
400 kHz mode
600
—
—
STOP condition
100 kHz mode
4000
—
—
Hold time
400 kHz mode
600
—
—
Units
Conditions
ns
Only relevant for repeated START
condition
ns
After this period the first clock
pulse is generated
ns
ns
1997-2013 Microchip Technology Inc.
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
FIGURE 19-10: I2C BUS DATA TIMING
103
102
100
101
SCL
106
90
107
91
92
SDA
In
110
109
109
SDA
Out
Note: Refer to Figure 19-1 for load conditions
TABLE 19-10: I2C BUS DATA REQUIREMENTS
Parameter
No.
Sym
Characteristic
100
THIGH
Clock high time
Min
Max
Units
Conditions
100 kHz mode
4.0
—
s
Device must operate at a minimum of 1.5 MHz
400 kHz mode
0.6
—
s
Devce must operate at a minimum of 10 MHz
1.5TCY
—
100 kHz mode
4.7
—
s
Device must operate at a minimum of 1.5 MHz
400 kHz mode
1.3
—
s
Device must operate at a minimum of 10 MHz
SSP Module
101
TLOW
Clock low time
1.5TCY
—
SDA and SCL rise
time
100 kHz mode
—
1000
ns
400 kHz mode
20 + 0.1Cb
300
ns
SDA and SCL fall time
100 kHz mode
—
300
ns
400 kHz mode
20 + 0.1Cb
300
ns
Cb is specified to be from
10-400 pF
START condition
setup time
100 kHz mode
4.7
—
s
400 kHz mode
0.6
—
s
Only relevant for repeated
START condition
START condition hold
time
100 kHz mode
4.0
—
s
400 kHz mode
0.6
—
s
Data input hold time
100 kHz mode
0
—
ns
400 kHz mode
0
0.9
s
SSP Module
102
103
90
91
106
107
92
109
110
TR
TF
TSU:STA
THD:STA
THD:DAT
TSU:DAT
TSU:STO
TAA
TBUF
Cb
Data input setup time
100 kHz mode
250
—
ns
400 kHz mode
100
—
ns
STOP condition setup
time
100 kHz mode
4.7
—
s
400 kHz mode
0.6
—
s
Output valid from
clock
100 kHz mode
—
3500
ns
400 kHz mode
—
—
ns
Bus free time
100 kHz mode
4.7
—
s
400 kHz mode
1.3
—
s
—
400
pF
Bus capacitive loading
Cb is specified to be from
10-400 pF
After this period the first clock
pulse is generated
Note 2
Note 1
Time the bus must be free
before a new transmission can
start
Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of
the falling edge of SCL to avoid unintended generation of START or STOP conditions.
2: A fast-mode (400 kHz) I2C-bus device can be used in a standard-mode (100 kHz) I2C-bus system, but the requirement
tsu;DAT 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the
SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line
TR max.+tsu;DAT = 1000 + 250 = 1250 ns (according to the standard-mode I2C bus specification) before the SCL line is
released.
1997-2013 Microchip Technology Inc.
DS30234E-page 225
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
FIGURE 19-11: USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING
RC6/TX/CK
pin
121
121
RC7/RX/DT
pin
120
122
Note: Refer to Figure 19-1 for load conditions
TABLE 19-11: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS
Parameter Sym
No.
120
Min
TckH2dtV SYNC XMIT (MASTER & SLAVE)
Clock high to data out valid
121
Tckrf
122
†:
Characteristic
Tdtrf
Typ†
Max
Units Conditions
PIC16C65
—
—
80
ns
PIC16LC65
—
—
100
ns
ns
Clock out rise time and fall time
(Master Mode)
PIC16C65
—
—
45
PIC16LC65
—
—
50
ns
Data out rise time and fall time
PIC16C65
—
—
45
ns
PIC16LC65
—
—
50
ns
Data in “Typ” column is at 5V, 25C unless otherwise stated. These parameters are for design guidance only and are not
tested.
FIGURE 19-12: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING
RC6/TX/CK
pin
RC7/RX/DT
pin
125
126
Note: Refer to Figure 19-1 for load conditions
TABLE 19-12: USART SYNCHRONOUS RECEIVE REQUIREMENTS
Parameter
No.
†:
Sym
Characteristic
Min
Typ†
Max
Units Conditions
125
TdtV2ckL
SYNC RCV (MASTER & SLAVE)
Data setup before CK (DT setup time)
15
—
—
ns
126
TckL2dtl
Data hold after CK (DT hold time)
15
—
—
ns
Data in “Typ” column is at 5V, 25C unless otherwise stated. These parameters are for design guidance only and are not
tested.
DS30234E-page 226
1997-2013 Microchip Technology Inc.
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
20.0
ELECTRICAL CHARACTERISTICS FOR PIC16C63/65A
Absolute Maximum Ratings (†)
Ambient temperature under bias.............................................................................................................-55°C to +125°C
Storage temperature .............................................................................................................................. -65°C to +150°C
Voltage on any pin with respect to VSS (except VDD, MCLR, and RA4).......................................... -0.3V to (VDD + 0.3V)
Voltage on VDD with respect to VSS ......................................................................................................... -0.3V to +7.5V
Voltage on MCLR with respect to VSS (Note 2)............................................................................................... 0V to +14V
Voltage on RA4 with respect to Vss ................................................................................................................ 0V to +14V
Total power dissipation (Note 1)................................................................................................................................1.0W
Maximum current out of VSS pin ...........................................................................................................................300 mA
Maximum current into VDD pin ..............................................................................................................................250 mA
Input clamp current, IIK (VI < 0 or VI > VDD) 20 mA
Output clamp current, IOK (VO < 0 or VO > VDD) 20 mA
Maximum output current sunk by any I/O pin..........................................................................................................25 mA
Maximum output current sourced by any I/O pin ....................................................................................................25 mA
Maximum current sunk byPORTA, PORTB, and PORTE (Note 3) (combined)....................................................200 mA
Maximum current sourced by PORTA, PORTB, and PORTE (Note 3) (combined) ..............................................200 mA
Maximum current sunk by PORTC and PORTD (Note 3) (combined) ..................................................................200 mA
Maximum current sourced by PORTC and PORTD (Note 3) (combined) .............................................................200 mA
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - IOH} + {(VDD-VOH) x IOH} + (VOl x IOL)
Note 2: Voltage spikes below VSS at the MCLR/VPP pin, inducing currents greater than 80 mA, may cause latch-up.
Thus, a series resistor of 50-100 should be used when applying a “low” level to the MCLR/VPP pin rather
than pulling this pin directly to VSS.
Note 3: PORTD and PORTE not available on the PIC16C63.
† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the
device. This is a stress rating only and functional operation of the device at those or any other conditions above those
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability.
TABLE 20-1:
CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS
AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)
PIC16C63-04
PIC16C65A-04
PIC16C63-10
PIC16C65A-10
PIC16C63-20
PIC16C65A-20
PIC16LC63-04
PIC16LC65A-04
JW Devices
RC
VDD: 4.0V to 6.0V
IDD: 5 mA max. at 5.5V
IPD: 16 A max. at 4V
Freq: 4 MHz max.
VDD: 4.5V to 5.5V
IDD: 2.7 mA typ. at 5.5V
IPD: 1.5 A typ. at 4V
Freq: 4 MHz max.
VDD: 4.5V to 5.5V
IDD: 2.7 mA typ. at 5.5V
IPD: 1.5 A typ. at 4V
Freq: 4 MHz max.
VDD: 2.5V to 6.0V
IDD: 3.8 mA max. at 3V
IPD: 5 A max. at 3V
Freq: 4 MHz max.
VDD: 4.0V to 6.0V
IDD: 5 mA max. at 5.5V
IPD: 16 A max. at 4V
Freq: 4 MHz max.
XT
VDD: 4.0V to 6.0V
IDD: 5 mA max. at 5.5V
IPD: 16 A max. at 4V
Freq: 4 MHz max.
VDD: 4.5V to 5.5V
IDD: 2.7 mA typ. at 5.5V
IPD: 1.5 A typ. at 4V
Freq: 4 MHz max.
VDD: 4.5V to 5.5V
IDD: 2.7 mA typ. at 5.5V
IPD: 1.5 A typ. at 4V
Freq: 4 MHz max.
VDD: 2.5V to 6.0V
IDD: 3.8 mA max. at 3V
IPD: 5 A max. at 3V
Freq: 4 MHz max.
VDD: 4.0V to 6.0V
IDD: 5 mA max. at 5.5V
IPD: 16 A max. at 4V
Freq: 4 MHz max.
HS
VDD: 4.5V to 5.5V
VDD: 4.5V to 5.5V
VDD: 4.5V to 5.5V
IDD: 13.5 mA typ. at
5.5V
IDD: 10 mA max. at 5.5V IDD: 20 mA max. at 5.5V
OSC
IPD: 1.5 A typ. at 4.5V IPD 1.5 A typ. at 4.5V IPD: 1.5 A typ. at 4.5V
Freq: 4 MHz max.
LP
VDD: 4.0V to 6.0V
IDD: 52.5 A typ.
at 32 kHz, 4.0V
IPD: 0.9 A typ. at 4.0V
Freq: 200 kHz max.
Freq: 10 MHz max.
Not recommended for
use in LP mode
VDD: 4.5V to 5.5V
Not recommended for
use in HS mode
Freq: 20 MHz max.
Not recommended for
use in LP mode
IDD: 20 mA max. at
5.5V
IPD: 1.5 A typ. at 4.5V
Freq: 20 MHz max.
VDD: 2.5V to 6.0V
IDD: 48 A max. at 32
kHz, 3.0V
IPD: 5 A max. at 3.0V
Freq: 200 kHz max.
VDD: 2.5V to 6.0V
IDD: 48 A max.
at 32 kHz, 3.0V
IPD: 5 A max. at 3.0V
Freq: 200 kHz max.
The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended that the user select the device type that ensures the specifications required.
1997-2013 Microchip Technology Inc.
DS30234E-page 227
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
20.1
DC Characteristics:
DC CHARACTERISTICS
Param
No.
Characteristic
PIC16C63/65A-04 (Commercial, Industrial, Extended)
PIC16C63/65A-10 (Commercial, Industrial, Extended)
PIC16C63/65A-20 (Commercial, Industrial, Extended)
Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C TA +125°C for extended,
-40°C TA +85°C for industrial and
0°C
TA +70°C for commercial
Sym
Min
Typ† Max Units
Conditions
D001 Supply Voltage
D001A
VDD
4.0
4.5
-
6.0
5.5
V
V
D002*
RAM Data Retention
Voltage (Note 1)
VDR
-
1.5
-
V
D003
VDD start voltage to
ensure internal Power-on
Reset signal
VPOR
-
VSS
-
V
D004*
VDD rise rate to ensure
internal Power-on Reset
signal
SVDD
0.05
-
-
D005
Brown-out Reset Voltage
BVDD
3.7
4.0
4.3
V
BODEN configuration bit is enabled
3.7
4.0
4.4
V
Extended Range Only
-
2.7
5
mA
XT, RC, osc config FOSC = 4 MHz,
VDD = 5.5V (Note 4)
-
10
20
mA
HS osc config FOSC = 20 MHz, VDD = 5.5V
IBOR
-
350
425
A
BOR enabled, VDD = 5.0V
D020 Power-down Current
D021 (Note 3, 5)
D021A
D021B
IPD
-
10.5
1.5
1.5
2.5
42
16
19
19
A
A
A
A
VDD = 4.0V, WDT enabled,-40C to +85C
VDD = 4.0V, WDT disabled,-0C to +70C
VDD = 4.0V, WDT disabled,-40C to +85C
VDD = 4.0V, WDT disabled,-40C to +125C
D023*
IBOR
-
350
425
A
BOR enabled, VDD = 5.0V
D010
Supply Current (Note 2, 5) IDD
D013
D015*
Brown-out Reset Current
(Note 6)
Brown-out Reset Current
(Note 6)
XT, RC and LP osc configuration
HS osc configuration
See section on Power-on Reset for details
V/ms See section on Power-on Reset for details
*
†
These parameters are characterized but not tested.
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only
and are not tested.
Note 1: This is the limit to which VDD can be lowered without losing RAM data.
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin
loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an
impact on the current consumption.
The test conditions for all IDD measurements in active operation mode are:
OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD,
MCLR = VDD; WDT enabled/disabled as specified.
3: The power down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.
4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
5: Timer1 oscillator (when enabled) adds approximately 20 A to the specification. This value is from characterization and is for design guidance only. This is not tested.
6: The current is the additional current consumed when this peripheral is enabled. This current should be
added to the base IDD or IPD measurement.
DS30234E-page 228
1997-2013 Microchip Technology Inc.
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
20.2
DC Characteristics:
PIC16LC63/65A-04 (Commercial, Industrial)
DC CHARACTERISTICS
Param
No.
D001
D002*
D003
D004*
D005
D010
Characteristic
Supply Voltage
RAM Data Retention
Voltage (Note 1)
VDD start voltage to
ensure internal Power-on
Reset signal
VDD rise rate to ensure
internal Power-on Reset
signal
Brown-out Reset Voltage
Supply Current (Note 2, 5)
Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C
TA +85°C for industrial and
0°C
TA +70°C for commercial
Sym Min Typ† Max Units
Conditions
VDD
VDR
2.5
-
1.5
6.0
-
V
V
LP, XT, RC osc configuration (DC - 4 MHz)
VPOR
-
VSS
-
V
See section on Power-on Reset for details
SVDD
0.05
-
-
BVDD
IDD
3.7
-
4.0
2.0
4.3
3.8
V
mA
BODEN configuration bit is enabled
XT, RC osc configuration
FOSC = 4 MHz, VDD = 3.0V (Note 4)
-
22.5
48
A
LP osc configuration
FOSC = 32 kHz, VDD = 3.0V, WDT disabled
IBOR
-
350
425
A
BOR enabled, VDD = 5.0V
IPD
-
7.5
0.9
0.9
30
5
5
A
A
A
VDD = 3.0V, WDT enabled, -40C to +85C
VDD = 3.0V, WDT disabled, 0C to +70C
VDD = 3.0V, WDT disabled, -40C to +85C
D010A
D015*
D020
D021
D021A
Brown-out Reset Current
(Note 6)
Power-down Current
(Note 3, 5)
V/ms See section on Power-on Reset for details
Brown-out Reset Current IBOR
350 425
A BOR enabled, VDD = 5.0V
(Note 6)
*
These parameters are characterized but not tested.
†
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and
are not tested.
Note 1: This is the limit to which VDD can be lowered without losing RAM data.
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin
loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an
impact on the current consumption.
The test conditions for all IDD measurements in active operation mode are:
OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD,
MCLR = VDD; WDT enabled/disabled as specified.
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.
4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
5: Timer1 oscillator (when enabled) adds approximately 20 A to the specification. This value is from characterization and is for design guidance only. This is not tested.
6: The current is the additional current consumed when this peripheral is enabled. This current should be
added to the base IDD or IPD measurement.
D023*
1997-2013 Microchip Technology Inc.
DS30234E-page 229
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
20.3
DC Characteristics:
PIC16C63/65A-04 (Commercial, Industrial, Extended)
PIC16C63/65A-10 (Commercial, Industrial, Extended)
PIC16C63/65A-20 (Commercial, Industrial, Extended)
PIC16LC63/65A-04 (Commercial, Industrial)
DC CHARACTERISTICS
Param
No.
D030
D030A
D031
D032
D033
D040
D040A
D041
D042
D042A
D043
D070
Characteristic
Input Low Voltage
I/O ports
with TTL buffer
with Schmitt Trigger buffer
MCLR, OSC1 (in RC mode)
OSC1 (in XT, HS and LP)
Input High Voltage
I/O ports
with TTL buffer
Standard Operating Conditions (unless otherwise stated)
Operating temperature
-40°C TA +125°C for extended,
-40°C TA +85°C for industrial and
0°C
TA +70°C for commercial
Operating voltage VDD range as described in DC spec Section 20.1 and
Section 20.2
Sym
Min Typ Max
Units
Conditions
†
VIL
VSS
VSS
VSS
Vss
Vss
VIH
2.0
0.25VDD
+ 0.8V
D060
with Schmitt Trigger buffer
MCLR
OSC1 (XT, HS and LP)
OSC1 (in RC mode)
PORTB weak pull-up current
IPURB
Input Leakage Current (Notes 2, 3)
I/O ports
IIL
D061
D063
MCLR, RA4/T0CKI
OSC1
D080
Output Low Voltage
I/O ports
D080A
D083
OSC2/CLKOUT (RC osc config)
D083A
VOL
-
0.15VDD
0.8V
0.2VDD
0.2VDD
0.3VDD
V
V
V
V
V
For entire VDD range
4.5V VDD 5.5V
-
VDD
VDD
V
V
4.5V VDD 5.5V
For entire VDD range
VDD
VDD
VDD
VDD
400
V
V
V
V
A
For entire VDD range
0.8VDD 0.8VDD 0.7VDD 0.9VDD 50
250
-
-
1
A
-
-
5
5
A
A
-
-
0.6
V
-
-
0.6
V
-
-
0.6
V
-
-
0.6
V
Note1
Note1
VDD = 5V, VPIN = VSS
Vss VPIN VDD, Pin at hiimpedance
Vss VPIN VDD
Vss VPIN VDD, XT, HS and
LP osc configuration
IOL = 8.5 mA, VDD = 4.5V,
-40C to +85C
IOL = 7.0 mA, VDD = 4.5V,
-40C to +125C
IOL = 1.6 mA, VDD = 4.5V,
-40C to +85C
IOL = 1.2 mA, VDD = 4.5V,
-40C to +125C
*
†
These parameters are characterized but not tested.
Data in “Typ” column is at 5V, 25C unless otherwise stated. These parameters are for design guidance only
and are not tested.
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the
PIC16C6X be driven with external clock in RC mode.
2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified
levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
3: Negative current is defined as current sourced by the pin.
DS30234E-page 230
1997-2013 Microchip Technology Inc.
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
DC CHARACTERISTICS
Param
No.
Characteristic
Output High Voltage
I/O ports (Note 3)
Standard Operating Conditions (unless otherwise stated)
Operating temperature
-40°C TA +125°C for extended,
-40°C TA +85°C for industrial and
0°C
TA +70°C for commercial
Operating voltage VDD range as described in DC spec Section 20.1 and
Section 20.2
Sym
Min Typ Max
Units
Conditions
†
VDD-0.7
-
-
V
VDD-0.7
-
-
V
VDD-0.7
-
-
V
VDD-0.7
-
-
V
-
-
14
V
D100
Open-Drain High Voltage
VOD
Capacitive Loading Specs on Output Pins
OSC2 pin
COSC2
-
-
15
pF
D101
D102
SCL, SDA in I2C mode
All I/O pins and OSC2 (in RC mode) CIO
Cb
-
-
50
400
pF
pF
D090
VOH
D090A
D092
OSC2/CLKOUT (RC osc config)
D092A
D150*
IOH = -3.0 mA, VDD = 4.5V,
-40C to +85C
IOH = -2.5 mA, VDD = 4.5V,
-40C to +125C
IOH = -1.3 mA, VDD = 4.5V,
-40C to +85C
IOH = -1.0 mA, VDD = 4.5V,
-40C to +125C
RA4 pin
In XT, HS and LP modes when
external clock is used to drive
OSC1.
*
†
These parameters are characterized but not tested.
Data in “Typ” column is at 5V, 25C unless otherwise stated. These parameters are for design guidance only
and are not tested.
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the
PIC16C6X be driven with external clock in RC mode.
2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified
levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
3: Negative current is defined as current sourced by the pin.
1997-2013 Microchip Technology Inc.
DS30234E-page 231
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
20.4
Timing Parameter Symbology
The timing parameter symbols have been created following one of the following formats:
1. TppS2ppS
3. TCC:ST
(I2C specifications only)
2. TppS
4. Ts
(I2C specifications only)
T
F
Frequency
Lowercase letters (pp) and their meanings:
pp
cc
CCP1
ck
CLKOUT
cs
CS
di
SDI
do
SDO
dt
Data in
io
I/O port
mc
MCLR
Uppercase letters and their meanings:
S
F
Fall
H
High
I
Invalid (Hi-impedance)
L
Low
I2C only
AA
BUF
output access
Bus free
TCC:ST (I2C specifications only)
CC
HD
Hold
ST
DAT
DATA input hold
STA
START condition
T
Time
osc
rd
rw
sc
ss
t0
t1
wr
OSC1
RD
RD or WR
SCK
SS
T0CKI
T1CKI
WR
P
R
V
Z
Period
Rise
Valid
Hi-impedance
High
Low
High
Low
SU
Setup
STO
STOP condition
FIGURE 20-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS
Load condition 1
Load condition 2
VDD/2
RL
CL
Pin
VSS
CL
Pin
RL = 464
VSS
Note 1: PORTD and PORTE are not implemented on the PIC16C63.
DS30234E-page 232
CL = 50 pF
15 pF
for all pins except OSC2/CLKOUT
but including D and E outputs as ports
for OSC2 output
1997-2013 Microchip Technology Inc.
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
20.5
Timing Diagrams and Specifications
FIGURE 20-2: EXTERNAL CLOCK TIMING
Q4
Q1
Q2
Q3
Q4
Q1
OSC1
3
1
3
4
4
2
CLKOUT
TABLE 20-2:
Param
No.
EXTERNAL CLOCK TIMING REQUIREMENTS
Sym
Characteristic
Min
Fosc
External CLKIN Frequency
(Note 1)
DC
—
4
MHz
XT and RC osc mode
DC
—
4
MHz
HS osc mode (-04)
DC
—
10
MHz
HS osc mode (-10)
DC
—
20
MHz
HS osc mode (-20)
DC
—
200
kHz
LP osc mode
DC
—
4
MHz
RC osc mode
XT osc mode
Oscillator Frequency
(Note 1)
1
Tosc
External CLKIN Period
(Note 1)
Oscillator Period
(Note 1)
2
TCY
3*
TosL,
TosH
4*
TosR,
TosF
Typ†
Max
Units Conditions
0.1
—
4
MHz
4
—
20
MHz
HS osc mode
5
—
200
kHz
LP osc mode
250
—
—
ns
XT and RC osc mode
250
—
—
ns
HS osc mode (-04)
100
—
—
ns
HS osc mode (-10)
50
—
—
ns
HS osc mode (-20)
5
—
—
s
LP osc mode
250
—
—
ns
RC osc mode
250
—
10,000
ns
XT osc mode
250
—
250
ns
HS osc mode (-04)
100
—
250
ns
HS osc mode (-10)
50
—
250
ns
HS osc mode (-20)
5
—
—
s
LP osc mode
Instruction Cycle Time (Note 1)
200
TCY
DC
ns
TCY = 4/FOSC
External Clock in (OSC1) High or
Low Time
100
—
—
ns
XT oscillator
External Clock in (OSC1) Rise or
Fall Time
2.5
—
—
s
LP oscillator
15
—
—
ns
HS oscillator
—
—
25
ns
XT oscillator
—
—
50
ns
LP oscillator
—
—
15
ns
HS oscillator
*
†
These parameters are characterized but not tested.
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not
tested.
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on
characterization data for that particular oscillator type under standard operating conditions with the device executing code.
Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin.
When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.
1997-2013 Microchip Technology Inc.
DS30234E-page 233
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
FIGURE 20-3: CLKOUT AND I/O TIMING
Q1
Q4
Q2
Q3
OSC1
11
10
CLKOUT
13
19
14
12
18
16
I/O Pin
(input)
15
17
I/O Pin
(output)
new value
old value
20, 21
Note: Refer to Figure 20-1 for load conditions.
TABLE 20-3:
CLKOUT AND I/O TIMING REQUIREMENTS
Parameter Sym
No.
Characteristic
Min
Typ†
Max
Units Conditions
10*
TosH2ckL
OSC1 to CLKOUT
—
75
200
ns
11*
TosH2ckH OSC1 to CLKOUT
—
75
200
ns
Note 1
12*
TckR
CLKOUT rise time
—
35
100
ns
Note 1
13*
TckF
CLKOUT fall time
—
35
100
ns
Note 1
14*
TckL2ioV
CLKOUT to Port out valid
—
—
0.5TCY + 20
ns
Note 1
15*
TioV2ckH
Port in valid before CLKOUT
Tosc + 200
—
—
ns
Note 1
Note 1
16*
TckH2ioI
Port in hold after CLKOUT
0
—
—
ns
17*
TosH2ioV
OSC1 (Q1 cycle) to Port out valid
—
50
150
ns
18*
TosH2ioI
OSC1 (Q2 cycle) to Port input
invalid (I/O in hold time)
PIC16C63/65A
100
—
—
ns
PIC16LC63/65A
200
—
—
ns
19*
TioV2osH
Port input valid to OSC1(I/O in setup time)
0
—
—
ns
20*
TioR
Port output rise time
ns
PIC16C63/65A
—
10
40
PIC16LC63/65A
—
—
80
ns
PIC16C63/65A
—
10
40
ns
21*
TioF
Port output fall time
—
—
80
ns
22††*
Tinp
INT pin high or low time
TCY
—
—
ns
23††*
Trbp
RB7:RB4 change INT high or low time
TCY
—
—
ns
PIC16LC63/65A
Note 1
*
†
These parameters are characterized but not tested.
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not
tested.
†† These parameters are asynchronous events not related to any internal clock edge.
Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x TOSC.
DS30234E-page 234
1997-2013 Microchip Technology Inc.
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
FIGURE 20-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP
TIMER TIMING
VDD
MCLR
30
Internal
POR
33
PWRT
Time-out
32
OSC
Time-out
Internal
RESET
Watchdog
Timer
RESET
31
34
34
I/O Pins
Note: Refer to Figure 20-1 for load conditions.
FIGURE 20-5: BROWN-OUT RESET TIMING
BVDD
VDD
TABLE 20-4:
35
RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER,
AND BROWN-OUT RESET REQUIREMENTS
Parameter
No.
Sym
Characteristic
30
TmcL
MCLR Pulse Width (low)
2
—
—
s
VDD = 5V, -40°C to +125°C
31*
Twdt
Watchdog Timer Time-out Period
(No Prescaler)
7
18
33
ms
VDD = 5V, -40°C to +125°C
Typ†
Max
Units
Conditions
Oscillation Start-up Timer Period
—
1024 TOSC
—
—
TOSC = OSC1 period
Power-up Timer Period
28
72
132
ms
VDD = 5V, -40°C to +125°C
TIOZ
I/O Hi-impedance from MCLR Low
or WDT reset
—
—
2.1
s
TBOR
Brown-out Reset Pulse Width
100
—
—
s
32
Tost
33*
Tpwrt
34
35
*
†
Min
VDD BVDD (D005)
These parameters are characterized but not tested.
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not
tested.
1997-2013 Microchip Technology Inc.
DS30234E-page 235
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
FIGURE 20-6: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS
RA4/T0CKI
41
40
42
RC0/T1OSO/T1CKI
46
45
47
48
TMR0 or
TMR1
Note: Refer to Figure 20-1 for load conditions.
TABLE 20-5:
TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS
Param
No.
Sym
Characteristic
40*
Tt0H
T0CKI High Pulse Width
41*
42*
45*
46*
47*
48
*
†
Min
No Prescaler
With Prescaler
No Prescaler
With Prescaler
T0CKI Low Pulse Width
Max
Units Conditions
0.5TCY + 20
—
—
ns
10
—
—
—
—
—
—
—
—
—
—
ns
ns
ns
ns
ns
—
—
—
—
—
—
ns
ns
ns
—
—
—
—
—
—
—
—
—
—
ns
ns
ns
ns
ns
—
—
—
—
—
—
ns
ns
ns
0.5TCY + 20
10
TCY + 40
Tt0P
T0CKI Period
No Prescaler
With Prescaler Greater of:
20 or TCY + 40
N
Tt1H
T1CKI High Time Synchronous, Prescaler = 1
0.5TCY + 20
Synchronous, PIC16C6X
15
Prescaler =
PIC16LC6X
25
2,4,8
Asynchronous PIC16C6X
30
PIC16LC6X
50
Tt1L
T1CKI Low Time
Synchronous, Prescaler = 1
0.5TCY + 20
Synchronous, PIC16C6X
15
Prescaler =
PIC16LC6X
25
2,4,8
Asynchronous PIC16C6X
30
PIC16LC6X
50
Tt1P
T1CKI input period Synchronous
PIC16C6X
Greater of:
30 OR TCY + 40
N
PIC16LC6X
Greater of:
50 OR TCY + 40
N
Asynchronous PIC16C6X
60
PIC16LC6X
100
Ft1
Timer1 oscillator input frequency range
DC
(oscillator enabled by setting bit T1OSCEN)
TCKEZtmr1 Delay from external clock edge to timer increment
2Tosc
Tt0L
Typ†
Must also meet
parameter 42
Must also meet
parameter 42
N = prescale value
(2, 4, ..., 256)
Must also meet
parameter 47
Must also meet
parameter 47
N = prescale value
(1, 2, 4, 8)
N = prescale value
(1, 2, 4, 8)
—
—
—
—
—
200
ns
ns
kHz
—
7Tosc
—
These parameters are characterized but not tested.
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not
tested.
DS30234E-page 236
1997-2013 Microchip Technology Inc.
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
FIGURE 20-7: CAPTURE/COMPARE/PWM TIMINGS (CCP1 AND CCP2)
RC1/T1OSI/CCP2
and RC2/CCP1
(Capture Mode)
50
51
52
RC1/T1OSI/CCP2
and RC2/CCP1
(Compare or
PWM Mode)
54
53
Note: Refer to Figure 20-1 for load conditions.
TABLE 20-6:
Parameter
No.
50*
CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND CCP2)
Sym Characteristic
Min
TccL CCP1 and CCP2
input low time
No Prescaler
TccH CCP1 and CCP2
input high time
No Prescaler
With Prescaler
PIC16C63/65A
PIC16LC63/65A
51*
With Prescaler
PIC16C63/65A
PIC16LC63/65A
52*
TccP CCP1 and CCP2 input period
53*
TccR CCP1 and CCP2 output rise time
54*
*
†
TccF CCP1 and CCP2 output fall time
Typ† Max Units Conditions
0.5TCY + 20
—
—
ns
10
—
—
ns
ns
20
—
—
0.5TCY + 20
—
—
ns
10
—
—
ns
20
—
—
ns
3TCY + 40
N
—
—
ns
PIC16C63/65A
—
10
25
ns
PIC16LC63/65A
—
25
45
ns
PIC16C63/65A
—
10
25
ns
PIC16LC63/65A
—
25
45
ns
N = prescale value
(1,4, or 16)
These parameters are characterized but not tested.
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not
tested.
1997-2013 Microchip Technology Inc.
DS30234E-page 237
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
FIGURE 20-8: PARALLEL SLAVE PORT TIMING (PIC16C65A)
RE2/CS
RE0/RD
RE1/WR
65
RD7:RD0
62
64
63
Note: Refer to Figure 20-1 for load conditions
TABLE 20-7:
Parameter
No.
62*
63*
64
65*
*
†
PARALLEL SLAVE PORT REQUIREMENTS (PIC16C65A)
Sym
Characteristic
Min
TdtV2wrH Data in valid before WR or CS (setup time)
TwrH2dtI
TrdL2dtV
TrdH2dtI
WR or CS to data–in invalid (hold
time)
RD and CS to data–out valid
RD or CS to data–out invalid
Typ†
Max
Units
20
—
—
ns
25
—
—
ns
PIC16C65A
20
—
—
ns
PIC16LC65A
35
—
—
ns
—
—
80
ns
—
—
90
ns
10
—
30
ns
Conditions
Extended
Range Only
Extended
Range Only
These parameters are characterized but not tested.
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not
tested.
DS30234E-page 238
1997-2013 Microchip Technology Inc.
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
FIGURE 20-9: SPI MODE TIMING
SS
70
SCK
(CKP = 0)
71
72
78
79
79
78
SCK
(CKP = 1)
80
SDO
77
75, 76
SDI
74
73
Note: Refer to Figure 20-1 for load conditions
TABLE 20-8:
Parameter
No.
70*
*
†
SPI MODE REQUIREMENTS
Sym
TssL2scH,
TssL2scL
Characteristic
Min
Typ†
Max
Units
SS to SCK or SCK input
TCY
—
—
ns
71*
TscH
SCK input high time (slave mode)
TCY + 20
—
—
ns
72*
TscL
SCK input low time (slave mode)
TCY + 20
—
—
ns
73*
TdiV2scH,
TdiV2scL
Setup time of SDI data input to SCK
edge
50
—
—
ns
74*
TscH2diL,
TscL2diL
Hold time of SDI data input to SCK
edge
50
—
—
ns
75*
TdoR
SDO data output rise time
—
10
25
ns
76*
TdoF
SDO data output fall time
—
10
25
ns
ns
77*
TssH2doZ
SS to SDO output hi-impedance
10
—
50
78*
TscR
SCK output rise time (master mode)
—
10
25
ns
79*
TscF
SCK output fall time (master mode)
—
10
25
ns
80*
TscH2doV,
TscL2doV
SDO data output valid after SCK
edge
—
—
50
ns
Conditions
These parameters are characterized but not tested.
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not
tested.
1997-2013 Microchip Technology Inc.
DS30234E-page 239
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
FIGURE 20-10: I2C BUS START/STOP BITS TIMING
SCL
91
93
90
92
SDA
STOP
Condition
START
Condition
Note: Refer to Figure 20-1 for load conditions
TABLE 20-9:
Parameter
No.
Sym
90*
TSU:STA
91*
92*
93
*
I2C BUS START/STOP BITS REQUIREMENTS
THD:STA
TSU:STO
THD:STO
Characteristic
Min
Typ Max
START condition
100 kHz mode
4700
—
—
Setup time
400 kHz mode
600
—
—
START condition
100 kHz mode
4000
—
—
Hold time
400 kHz mode
600
—
—
STOP condition
100 kHz mode
4700
—
—
Setup time
400 kHz mode
600
—
—
STOP condition
100 kHz mode
4000
—
—
Hold time
400 kHz mode
600
—
—
Units
Conditions
ns
Only relevant for repeated START
condition
ns
After this period the first clock
pulse is generated
ns
ns
These parameters are characterized but not tested.
DS30234E-page 240
1997-2013 Microchip Technology Inc.
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
FIGURE 20-11: I2C BUS DATA TIMING
103
102
100
101
SCL
90
106
107
91
92
SDA
In
110
109
109
SDA
Out
Note: Refer to Figure 20-1 for load conditions
TABLE 20-10: I2C BUS DATA REQUIREMENTS
Parameter
No.
Sym
Characteristic
100*
THIGH
Clock high time
101*
102*
103*
TLOW
TR
TF
Clock low time
SDA and SCL rise
time
SDA and SCL fall time
90*
TSU:STA
START condition
setup time
91*
THD:STA
START condition hold
time
106*
THD:DAT
Data input hold time
107*
TSU:DAT
Data input setup time
92*
TSU:STO
STOP condition setup
time
109*
TAA
110*
TBUF
Output valid from
clock
Bus free time
Min
Max
Units
Conditions
100 kHz mode
4.0
—
s
400 kHz mode
0.6
—
s
Device must operate at a minimum of 1.5 MHz
Device must operate at a minimum of 10 MHz
SSP Module
100 kHz mode
1.5TCY
4.7
—
—
s
400 kHz mode
1.3
—
s
SSP Module
100 kHz mode
400 kHz mode
1.5TCY
—
20 + 0.1Cb
—
1000
300
ns
ns
100 kHz mode
400 kHz mode
—
20 + 0.1Cb
300
300
ns
ns
100 kHz mode
400 kHz mode
100 kHz mode
400 kHz mode
100 kHz mode
400 kHz mode
100 kHz mode
400 kHz mode
100 kHz mode
400 kHz mode
100 kHz mode
400 kHz mode
100 kHz mode
400 kHz mode
4.7
0.6
4.0
0.6
0
0
250
100
4.7
0.6
—
—
4.7
1.3
—
—
—
—
—
0.9
—
—
—
—
3500
—
—
—
s
s
s
s
ns
s
ns
ns
s
s
ns
ns
s
s
Device must operate at a minimum of 1.5 MHz
Device must operate at a minimum of 10 MHz
Cb is specified to be from
10-400 pF
Cb is specified to be from
10-400 pF
Only relevant for repeated
START condition
After this period the first clock
pulse is generated
Note 2
Note 1
Time the bus must be free
before a new transmission can
start
Cb
Bus capacitive loading
—
400
pF
*
These parameters are characterized but not tested.
Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of
the falling edge of SCL to avoid unintended generation of START or STOP conditions.
2: A fast-mode (400 kHz) I2C-bus device can be used in a standard-mode (100 kHz) I2C-bus system, but the requirement
Tsu:DAT 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of
the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA
line TR max.+tsu;DAT = 1000 + 250 = 1250 ns (according to the standard-mode I2C bus specification) before the SCL line
is released.
1997-2013 Microchip Technology Inc.
DS30234E-page 241
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
FIGURE 20-12: USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING
RC6/TX/CK
pin
121
121
RC7/RX/DT
pin
120
122
Note: Refer to Figure 20-1 for load conditions
TABLE 20-11: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS
Parameter
No.
120*
Sym
Characteristic
Min
Typ†
TckH2dtV
Max
Units Conditions
SYNC XMIT (MASTER & SLAVE) PIC16C63/65A
Clock high to data out valid
PIC16LC63/65A
—
—
80
—
—
100
ns
—
—
45
ns
ns
121*
Tckrf
Clock out rise time and fall time
(Master Mode)
PIC16C63/65A
PIC16LC63/65A
—
—
50
ns
122*
Tdtrf
Data out rise time and fall time
PIC16C63/65A
—
—
45
ns
PIC16LC63/65A
—
—
50
ns
*
†:
These parameters are characterized but not tested.
Data in “Typ” column is at 5V, 25C unless otherwise stated. These parameters are for design guidance only and are not
tested.
FIGURE 20-13: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING
RC6/TX/CK
pin
RC7/RX/DT
pin
125
126
Note: Refer to Figure 20-1 for load conditions
TABLE 20-12: USART SYNCHRONOUS RECEIVE REQUIREMENTS
Parameter
No.
*
†:
Sym
Characteristic
Min
Typ†
Max
Units Conditions
125*
TdtV2ckL
SYNC RCV (MASTER & SLAVE)
Data setup before CK (DT setup time)
15
—
—
ns
126*
TckL2dtl
Data hold after CK (DT hold time)
15
—
—
ns
These parameters are characterized but not tested.
Data in “Typ” column is at 5V, 25C unless otherwise stated. These parameters are for design guidance only and are not
tested.
DS30234E-page 242
1997-2013 Microchip Technology Inc.
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
21.0
ELECTRICAL CHARACTERISTICS FOR PIC16CR63/R65
Absolute Maximum Ratings (†)
Ambient temperature under bias.............................................................................................................-55°C to +125°C
Storage temperature .............................................................................................................................. -65°C to +150°C
Voltage on any pin with respect to VSS (except VDD, MCLR, and RA4).......................................... -0.3V to (VDD + 0.3V)
Voltage on VDD with respect to VSS ......................................................................................................... -0.3V to +7.5V
Voltage on MCLR with respect to VSS (Note 2)............................................................................................... 0V to +14V
Voltage on RA4 with respect to Vss ................................................................................................................ 0V to +14V
Total power dissipation (Note 1)................................................................................................................................1.0W
Maximum current out of VSS pin ...........................................................................................................................300 mA
Maximum current into VDD pin ..............................................................................................................................250 mA
Input clamp current, IIK (VI < 0 or VI > VDD) 20 mA
Output clamp current, IOK (VO < 0 or VO > VDD) 20 mA
Maximum output current sunk by any I/O pin..........................................................................................................25 mA
Maximum output current sourced by any I/O pin ....................................................................................................25 mA
Maximum current sunk byPORTA, PORTB, and PORTE (Note 3) (combined)....................................................200 mA
Maximum current sourced by PORTA, PORTB, and PORTE (Note 3) (combined) ..............................................200 mA
Maximum current sunk by PORTC and PORTD (Note 3) (combined) ..................................................................200 mA
Maximum current sourced by PORTC and PORTD (Note 3) (combined) .............................................................200 mA
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - IOH} + {(VDD-VOH) x IOH} + (VOl x IOL)
Note 2: Voltage spikes below VSS at the MCLR/VPP pin, inducing currents greater than 80 mA, may cause latch-up.
Thus, a series resistor of 50-100 should be used when applying a “low” level to the MCLR/VPP pin rather
than pulling this pin directly to VSS.
Note 3: PORTD and PORTE not available on the PIC16CR63.
† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the
device. This is a stress rating only and functional operation of the device at those or any other conditions above those
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability.
TABLE 21-1:
CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS
AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)
PIC16CR63-04
PIC16CR65-04
PIC16CR63-10
PIC16CR65-10
PIC16CR63-20
PIC16CR65-20
PIC16LCR63-04
PIC16LCR65-04
JW Devices
RC
VDD: 4.0V to 5.5V
IDD: 5 mA max. at 5.5V
IPD: 16 A max. at 4V
Freq: 4 MHz max.
VDD: 4.5V to 5.5V
IDD: 2.7 mA typ. at 5.5V
IPD: 1.5 A typ. at 4V
Freq: 4 MHz max.
VDD: 4.5V to 5.5V
IDD: 2.7 mA typ. at 5.5V
IPD: 1.5 A typ. at 4V
Freq: 4 MHz max.
VDD: 3.0V to 5.5V
IDD: 3.8 mA max. at 3V
IPD: 5 A max. at 3V
Freq: 4 MHz max.
VDD: 4.0V to 5.5V
IDD: 5 mA max. at 5.5V
IPD: 16 A max. at 4V
Freq: 4 MHz max.
XT
VDD: 4.0V to 5.5V
IDD: 5 mA max. at 5.5V
IPD: 16 A max. at 4V
Freq: 4 MHz max.
VDD: 4.5V to 5.5V
IDD: 2.7 mA typ. at 5.5V
IPD: 1.5 A typ. at 4V
Freq: 4 MHz max.
VDD: 4.5V to 5.5V
IDD: 2.7 mA typ. at 5.5V
IPD: 1.5 A typ. at 4V
Freq: 4 MHz max.
VDD: 3.0V to 5.5V
IDD: 3.8 mA max. at 3V
IPD: 5 A max. at 3V
Freq: 4 MHz max.
VDD: 4.0V to 5.5V
IDD: 5 mA max. at 5.5V
IPD: 16 A max. at 4V
Freq: 4 MHz max.
HS
VDD: 4.5V to 5.5V
VDD: 4.5V to 5.5V
VDD: 4.5V to 5.5V
IDD: 13.5 mA typ. at
5.5V
IDD: 10 mA max. at 5.5V IDD: 20 mA max. at 5.5V
OSC
IPD: 1.5 A typ. at 4.5V IPD 1.5 A typ. at 4.5V IPD: 1.5 A typ. at 4.5V
Freq: 4 MHz max.
LP
VDD: 4.0V to 5.5V
IDD: 52.5 A typ.
at 32 kHz, 4.0V
IPD: 0.9 A typ. at 4.0V
Freq: 200 kHz max.
Freq: 10 MHz max.
Not recommended for
use in LP mode
VDD: 4.5V to 5.5V
Not recommended for
use in HS mode
Freq: 20 MHz max.
Not recommended for
use in LP mode
IDD: 20 mA max. at
5.5V
IPD: 1.5 A typ. at 4.5V
Freq: 20 MHz max.
VDD: 3.0V to 5.5V
IDD: 48 A max. at 32
kHz, 3.0V
IPD: 5 A max. at 3.0V
Freq: 200 kHz max.
VDD: 3.0V to 5.5V
IDD: 48 A max.
at 32 kHz, 3.0V
IPD: 5 A max. at 3.0V
Freq: 200 kHz max.
The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended that the user select the device type that ensures the specifications required.
1997-2013 Microchip Technology Inc.
DS30234E-page 243
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
21.1
DC Characteristics:
DC CHARACTERISTICS
Param
No.
Characteristic
PIC16CR63/R65-04 (Commercial, Industrial)
PIC16CR63/R65-10 (Commercial, Industrial)
PIC16CR63/R65-20 (Commercial, Industrial)
Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C TA +85°C for industrial and
0°C
TA +70°C for commercial
Sym
Min
Typ† Max Units
Conditions
D001 Supply Voltage
D001A
VDD
4.0
4.5
-
5.5
5.5
V
V
D002*
RAM Data Retention
Voltage (Note 1)
VDR
-
1.5
-
V
D003
VDD start voltage to
ensure internal Power-on
Reset signal
VPOR
-
VSS
-
V
D004*
VDD rise rate to ensure
internal Power-on Reset
signal
SVDD
0.05
-
-
D005
Brown-out Reset Voltage
BVDD
3.7
4.0
4.3
V
BODEN configuration bit is enabled
D010
Supply Current (Note 2, 5) IDD
-
2.7
5
mA
XT, RC, osc config FOSC = 4 MHz,
VDD = 5.5V (Note 4)
-
10
20
mA
HS osc config
FOSC = 20 MHz, VDD = 5.5V
IBOR
-
350
425
A
BOR enabled, VDD = 5.0V
D020 Power-down Current
D021 (Note 3, 5)
D021A
IPD
-
10.5
1.5
1.5
42
16
19
A
A
A
VDD = 4.0V, WDT enabled,-40C to +85C
VDD = 4.0V, WDT disabled,-0C to +70C
VDD = 4.0V, WDT disabled,-40C to +85C
D023*
IBOR
-
350
425
A
BOR enabled, VDD = 5.0V
D013
D015*
Brown-out Reset Current
(Note 6)
Brown-out Reset Current
(Note 6)
XT, RC and LP osc configuration
HS osc configuration
See section on Power-on Reset for details
V/ms See section on Power-on Reset for details
*
†
These parameters are characterized but not tested.
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only
and are not tested.
Note 1: This is the limit to which VDD can be lowered without losing RAM data.
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin
loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an
impact on the current consumption.
The test conditions for all IDD measurements in active operation mode are:
OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD,
MCLR = VDD; WDT enabled/disabled as specified.
3: The power down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.
4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
5: Timer1 oscillator (when enabled) adds approximately 20 A to the specification. This value is from characterization and is for design guidance only. This is not tested.
6: The current is the additional current consumed when this peripheral is enabled. This current should be
added to the base IDD or IPD measurement.
DS30234E-page 244
1997-2013 Microchip Technology Inc.
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
21.2
DC Characteristics:
PIC16LCR63/R65-04 (Commercial, Industrial)
DC CHARACTERISTICS
Param
No.
D001
D002*
D003
D004*
D005
D010
Characteristic
Supply Voltage
RAM Data Retention
Voltage (Note 1)
VDD start voltage to
ensure internal Power-on
Reset signal
VDD rise rate to ensure
internal Power-on Reset
signal
Brown-out Reset Voltage
Supply Current (Note 2, 5)
Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C
TA +85°C for industrial and
0°C
TA +70°C for commercial
Sym Min Typ† Max Units
Conditions
VDD
VDR
3.0
-
1.5
5.5
-
V
V
LP, XT, RC osc configuration (DC - 4 MHz)
VPOR
-
VSS
-
V
See section on Power-on Reset for details
SVDD
0.05
-
-
BVDD
IDD
3.7
-
4.0
2.0
4.3
3.8
V
mA
BODEN configuration bit is enabled
XT, RC osc configuration
FOSC = 4 MHz, VDD = 3.0V (Note 4)
-
22.5
48
A
LP osc configuration
FOSC = 32 kHz, VDD = 3.0V, WDT disabled
IBOR
-
350
425
A
BOR enabled, VDD = 5.0V
IPD
-
7.5
0.9
0.9
30
5
5
A
A
A
VDD = 3.0V, WDT enabled, -40C to +85C
VDD = 3.0V, WDT disabled, 0C to +70C
VDD = 3.0V, WDT disabled, -40C to +85C
D010A
D015*
D020
D021
D021A
Brown-out Reset Current
(Note 6)
Power-down Current
(Note 3, 5)
V/ms See section on Power-on Reset for details
Brown-out Reset Current IBOR
350 425
A BOR enabled, VDD = 5.0V
(Note 6)
*
These parameters are characterized but not tested.
†
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and
are not tested.
Note 1: This is the limit to which VDD can be lowered without losing RAM data.
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin
loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an
impact on the current consumption.
The test conditions for all IDD measurements in active operation mode are:
OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD,
MCLR = VDD; WDT enabled/disabled as specified.
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.
4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
5: Timer1 oscillator (when enabled) adds approximately 20 A to the specification. This value is from characterization and is for design guidance only. This is not tested.
6: The current is the additional current consumed when this peripheral is enabled. This current should be
added to the base IDD or IPD measurement.
D023*
1997-2013 Microchip Technology Inc.
DS30234E-page 245
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
21.3
DC Characteristics:
PIC16CR63/R65-04 (Commercial, Industrial)
PIC16CR63/R65-10 (Commercial, Industrial)
PIC16CR63/R65-20 (Commercial, Industrial)
PIC16LCR63/R65-04 (Commercial, Industrial)
DC CHARACTERISTICS
Param
No.
D030
D030A
D031
D032
D033
D040
D040A
D041
D042
D042A
D043
D070
Characteristic
Input Low Voltage
I/O ports
with TTL buffer
with Schmitt Trigger buffer
MCLR, OSC1 (in RC mode)
OSC1 (in XT, HS and LP)
Input High Voltage
I/O ports
with TTL buffer
Standard Operating Conditions (unless otherwise stated)
Operating temperature
-40°C TA +85°C for industrial and
0°C
TA +70°C for commercial
Operating voltage VDD range as described in DC spec Section 21.1 and
Section 21.2
Sym
Min Typ Max
Units
Conditions
†
VIL
VSS
VSS
VSS
Vss
Vss
VIH
2.0
0.25VDD
+ 0.8V
D060
with Schmitt Trigger buffer
MCLR
OSC1 (XT, HS and LP)
OSC1 (in RC mode)
PORTB weak pull-up current
IPURB
Input Leakage Current (Notes 2, 3)
I/O ports
IIL
D061
D063
MCLR, RA4/T0CKI
OSC1
D080
Output Low Voltage
I/O ports
D083
OSC2/CLKOUT (RC osc config)
D090
Output High Voltage
I/O ports (Note 3)
D092
OSC2/CLKOUT (RC osc config)
D150*
Open-Drain High Voltage
VOL
VOH
VOD
-
0.15VDD
0.8V
0.2VDD
0.2VDD
0.3VDD
V
V
V
V
V
Note1
-
VDD
VDD
V
V
4.5V VDD 5.5V
For entire VDD range
VDD
VDD
VDD
VDD
400
V
V
V
V
A
For entire VDD range
Vss VPIN VDD, Pin at hiimpedance
Vss VPIN VDD
Vss VPIN VDD, XT, HS and
LP osc configuration
0.8VDD 0.8VDD 0.7VDD 0.9VDD 50
250
-
-
1
A
-
-
5
5
A
A
-
-
0.6
V
-
-
0.6
V
VDD-0.7
-
-
V
VDD-0.7
-
-
V
-
-
14
V
For entire VDD range
4.5V VDD 5.5V
Note1
VDD = 5V, VPIN = VSS
IOL = 8.5 mA, VDD = 4.5V,
-40C to +85C
IOL = 1.6 mA, VDD = 4.5V,
-40C to +85C
IOH = -3.0 mA, VDD = 4.5V,
-40C to +85C
IOH = -1.3 mA, VDD = 4.5V,
-40C to +85C
RA4 pin
*
†
These parameters are characterized but not tested.
Data in “Typ” column is at 5V, 25C unless otherwise stated. These parameters are for design guidance only
and are not tested.
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the
PIC16C6X be driven with external clock in RC mode.
2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified
levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
3: Negative current is defined as current sourced by the pin.
DS30234E-page 246
1997-2013 Microchip Technology Inc.
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
DC CHARACTERISTICS
Param
No.
Characteristic
Standard Operating Conditions (unless otherwise stated)
Operating temperature
-40°C TA +85°C for industrial and
0°C
TA +70°C for commercial
Operating voltage VDD range as described in DC spec Section 21.1 and
Section 21.2
Sym
Min Typ Max
Units
Conditions
†
D100
Capacitive Loading Specs on Output Pins
OSC2 pin
COSC2
-
-
15
pF
D101
D102
SCL, SDA in I2C mode
All I/O pins and OSC2 (in RC mode) CIO
Cb
-
-
50
400
pF
pF
In XT, HS and LP modes when
external clock is used to drive
OSC1.
*
†
These parameters are characterized but not tested.
Data in “Typ” column is at 5V, 25C unless otherwise stated. These parameters are for design guidance only
and are not tested.
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the
PIC16C6X be driven with external clock in RC mode.
2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified
levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
3: Negative current is defined as current sourced by the pin.
1997-2013 Microchip Technology Inc.
DS30234E-page 247
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
21.4
Timing Parameter Symbology
The timing parameter symbols have been created following one of the following formats:
1. TppS2ppS
3. TCC:ST
(I2C specifications only)
2. TppS
4. Ts
(I2C specifications only)
T
F
Frequency
Lowercase letters (pp) and their meanings:
pp
cc
CCP1
ck
CLKOUT
cs
CS
di
SDI
do
SDO
dt
Data in
io
I/O port
mc
MCLR
Uppercase letters and their meanings:
S
F
Fall
H
High
I
Invalid (Hi-impedance)
L
Low
I2C only
AA
BUF
output access
Bus free
TCC:ST (I2C specifications only)
CC
HD
Hold
ST
DAT
DATA input hold
STA
START condition
T
Time
osc
rd
rw
sc
ss
t0
t1
wr
OSC1
RD
RD or WR
SCK
SS
T0CKI
T1CKI
WR
P
R
V
Z
Period
Rise
Valid
Hi-impedance
High
Low
High
Low
SU
Setup
STO
STOP condition
FIGURE 21-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS
Load condition 1
Load condition 2
VDD/2
RL
CL
Pin
VSS
CL
Pin
RL = 464
VSS
Note 1: PORTD and PORTE are not implemented on the PIC16CR63.
DS30234E-page 248
CL = 50 pF
15 pF
for all pins except OSC2/CLKOUT
but including D and E outputs as ports
for OSC2 output
1997-2013 Microchip Technology Inc.
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
21.5
Timing Diagrams and Specifications
FIGURE 21-2: EXTERNAL CLOCK TIMING
Q4
Q1
Q2
Q3
Q4
Q1
OSC1
3
1
3
4
4
2
CLKOUT
TABLE 21-2:
Param
No.
EXTERNAL CLOCK TIMING REQUIREMENTS
Sym
Characteristic
Min
Fosc
External CLKIN Frequency
(Note 1)
DC
—
4
MHz
XT and RC osc mode
DC
—
4
MHz
HS osc mode (-04)
DC
—
10
MHz
HS osc mode (-10)
DC
—
20
MHz
HS osc mode (-20)
DC
—
200
kHz
LP osc mode
DC
—
4
MHz
RC osc mode
XT osc mode
Oscillator Frequency
(Note 1)
1
Tosc
External CLKIN Period
(Note 1)
Oscillator Period
(Note 1)
2
TCY
3*
TosL,
TosH
4*
TosR,
TosF
Typ†
Max
Units Conditions
0.1
—
4
MHz
4
—
20
MHz
HS osc mode
5
—
200
kHz
LP osc mode
250
—
—
ns
XT and RC osc mode
250
—
—
ns
HS osc mode (-04)
100
—
—
ns
HS osc mode (-10)
50
—
—
ns
HS osc mode (-20)
5
—
—
s
LP osc mode
250
—
—
ns
RC osc mode
250
—
10,000
ns
XT osc mode
250
—
250
ns
HS osc mode (-04)
100
—
250
ns
HS osc mode (-10)
50
—
250
ns
HS osc mode (-20)
5
—
—
s
LP osc mode
Instruction Cycle Time (Note 1)
200
TCY
DC
ns
TCY = 4/FOSC
External Clock in (OSC1) High or
Low Time
100
—
—
ns
XT oscillator
External Clock in (OSC1) Rise or
Fall Time
2.5
—
—
s
LP oscillator
15
—
—
ns
HS oscillator
—
—
25
ns
XT oscillator
—
—
50
ns
LP oscillator
—
—
15
ns
HS oscillator
*
†
These parameters are characterized but not tested.
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not
tested.
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on
characterization data for that particular oscillator type under standard operating conditions with the device executing code.
Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin.
When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.
1997-2013 Microchip Technology Inc.
DS30234E-page 249
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
FIGURE 21-3: CLKOUT AND I/O TIMING
Q1
Q4
Q2
Q3
OSC1
11
10
CLKOUT
13
19
14
12
18
16
I/O Pin
(input)
15
17
I/O Pin
(output)
new value
old value
20, 21
Note: Refer to Figure 21-1 for load conditions.
TABLE 21-3:
Param
No.
CLKOUT AND I/O TIMING REQUIREMENTS
Sym
Characteristic
Min
Typ†
Max
10*
TosH2ckL
11*
12*
TckR
13*
Units Conditions
OSC1 to CLKOUT
—
75
200
ns
Note 1
TosH2ckH OSC1 to CLKOUT
—
75
200
ns
Note 1
CLKOUT rise time
—
35
100
ns
Note 1
TckF
CLKOUT fall time
—
35
100
ns
Note 1
14*
TckL2ioV
CLKOUT to Port out valid
—
—
0.5TCY + 20
ns
Note 1
15*
TioV2ckH
Port in valid before CLKOUT
Tosc + 200
—
—
ns
Note 1
Note 1
16*
TckH2ioI
Port in hold after CLKOUT
0
—
—
ns
17*
TosH2ioV
OSC1 (Q1 cycle) to Port out valid
—
50
150
ns
18*
TosH2ioI
OSC1 (Q2 cycle) to Port input
invalid (I/O in hold time)
PIC16CR63/R65
100
—
—
ns
PIC16LCR63/R65
200
—
—
ns
0
—
—
ns
PIC16CR63/R65
—
10
40
ns
PIC16LCR63/R65
—
—
80
ns
PIC16CR63/R65
—
10
40
ns
PIC16LCR63/R65
—
—
80
ns
19*
TioV2osH
Port input valid to OSC1(I/O in setup time)
20*
TioR
Port output rise time
21*
TioF
Port output fall time
22††*
Tinp
INT pin high or low time
TCY
—
—
ns
23††*
Trbp
RB7:RB4 change INT high or low time
TCY
—
—
ns
*
†
These parameters are characterized but not tested.
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not
tested.
†† These parameters are asynchronous events not related to any internal clock edge.
Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x TOSC.
DS30234E-page 250
1997-2013 Microchip Technology Inc.
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
FIGURE 21-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP
TIMER TIMING
VDD
MCLR
30
Internal
POR
33
PWRT
Time-out
32
OSC
Time-out
Internal
RESET
Watchdog
Timer
RESET
31
34
34
I/O Pins
Note: Refer to Figure 21-1 for load conditions.
FIGURE 21-5: BROWN-OUT RESET TIMING
BVDD
VDD
TABLE 21-4:
35
RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER,
AND BROWN-OUT RESET REQUIREMENTS
Parameter
No.
Sym
Characteristic
30
TmcL
MCLR Pulse Width (low)
2
—
—
s
VDD = 5V, -40°C to +125°C
31*
Twdt
Watchdog Timer Time-out Period
(No Prescaler)
7
18
33
ms
VDD = 5V, -40°C to +125°C
Typ†
Max
Units
Conditions
Oscillation Start-up Timer Period
—
1024 TOSC
—
—
TOSC = OSC1 period
Power-up Timer Period
28
72
132
ms
VDD = 5V, -40°C to +125°C
TIOZ
I/O Hi-impedance from MCLR Low
or WDT reset
—
—
2.1
s
TBOR
Brown-out Reset Pulse Width
100
—
—
s
32
Tost
33*
Tpwrt
34
35
*
†
Min
VDD BVDD (D005)
These parameters are characterized but not tested.
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not
tested.
1997-2013 Microchip Technology Inc.
DS30234E-page 251
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
FIGURE 21-6: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS
RA4/T0CKI
41
40
42
RC0/T1OSO/T1CKI
46
45
47
48
TMR0 or
TMR1
Note: Refer to Figure 21-1 for load conditions.
TABLE 21-5:
TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS
Param
No.
Sym
Characteristic
40*
Tt0H
T0CKI High Pulse Width
41*
42*
45*
46*
47*
48
*
†
Min
No Prescaler
With Prescaler
No Prescaler
With Prescaler
T0CKI Low Pulse Width
Max
Units Conditions
0.5TCY + 20
—
—
ns
10
—
—
—
—
—
—
—
—
—
—
ns
ns
ns
ns
ns
—
—
—
—
—
—
ns
ns
ns
—
—
—
—
—
—
—
—
—
—
ns
ns
ns
ns
ns
—
—
—
—
—
—
ns
ns
ns
0.5TCY + 20
10
TCY + 40
Tt0P
T0CKI Period
No Prescaler
With Prescaler Greater of:
20 or TCY + 40
N
Tt1H
T1CKI High Time Synchronous, Prescaler = 1
0.5TCY + 20
Synchronous, PIC16C6X
15
Prescaler =
PIC16LC6X
25
2,4,8
Asynchronous PIC16C6X
30
PIC16LC6X
50
Tt1L
T1CKI Low Time
Synchronous, Prescaler = 1
0.5TCY + 20
Synchronous, PIC16C6X
15
Prescaler =
PIC16LC6X
25
2,4,8
Asynchronous PIC16C6X
30
PIC16LC6X
50
Tt1P
T1CKI input period Synchronous
PIC16C6X
Greater of:
30 OR TCY + 40
N
Greater of:
PIC16LC6X
50 OR TCY + 40
N
Asynchronous PIC16C6X
60
PIC16LC6X
100
Ft1
Timer1 oscillator input frequency range
DC
(oscillator enabled by setting bit T1OSCEN)
TCKEZtmr1 Delay from external clock edge to timer increment
2Tosc
Tt0L
Typ†
Must also meet
parameter 42
Must also meet
parameter 42
N = prescale value
(2, 4, ..., 256)
Must also meet
parameter 47
Must also meet
parameter 47
N = prescale value
(1, 2, 4, 8)
N = prescale value
(1, 2, 4, 8)
—
—
—
—
—
200
ns
ns
kHz
—
7Tosc
—
These parameters are characterized but not tested.
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not
tested.
DS30234E-page 252
1997-2013 Microchip Technology Inc.
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
FIGURE 21-7: CAPTURE/COMPARE/PWM TIMINGS (CCP1 AND CCP2)
RC1/T1OSI/CCP2
and RC2/CCP1
(Capture Mode)
50
51
52
RC1/T1OSI/CCP2
and RC2/CCP1
(Compare or
PWM Mode)
53
54
Note: Refer to Figure 21-1 for load conditions.
TABLE 21-6:
Param
No.
50*
51*
CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND CCP2)
Sym Characteristic
TccL CCP1 and CCP2
input low time
TccH CCP1 and CCP2
input high time
Min
With Prescaler
TccP CCP1 and CCP2 input period
53*
TccR CCP1 and CCP2 output rise time
*
†
—
—
10
—
—
ns
PIC16LCR63/R65
20
—
—
ns
TccF CCP1 and CCP2 output fall time
ns
ns
0.5TCY + 20
—
—
PIC16CR63/R65
10
—
—
ns
PIC16LCR63/R65
20
—
—
ns
3TCY + 40
N
—
—
ns
No Prescaler
52*
54*
0.5TCY + 20
PIC16CR63/R65
No Prescaler
With Prescaler
Typ† Max Units Conditions
PIC16CR63/R65
—
10
25
ns
PIC16LCR63/R65
—
25
45
ns
PIC16CR63/R65
—
10
25
ns
PIC16LCR63/R65
—
25
45
ns
N = prescale value
(1,4, or 16)
These parameters are characterized but not tested.
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not
tested.
1997-2013 Microchip Technology Inc.
DS30234E-page 253
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
FIGURE 21-8: PARALLEL SLAVE PORT TIMING (PIC16CR65)
RE2/CS
RE0/RD
RE1/WR
65
RD7:RD0
62
64
63
Note: Refer to Figure 21-1 for load conditions
TABLE 21-7:
Parameter
No.
Sym
Characteristic
Min
62*
TdtV2wrH Data in valid before WR or CS (setup time)
63*
TwrH2dtI
WR or CS to data–in invalid (hold
time)
64
TrdL2dtV
RD and CS to data–out valid
TrdH2dtI
RD or CS to data–out invalid
65*
*
†
PARALLEL SLAVE PORT REQUIREMENTS (PIC16CR65)
Typ†
Max
Units
20
—
—
ns
PIC16CR65
20
—
—
ns
PIC16LCR65
35
—
—
ns
—
—
80
ns
10
—
30
ns
Conditions
These parameters are characterized but not tested.
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not
tested.
DS30234E-page 254
1997-2013 Microchip Technology Inc.
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
FIGURE 21-9: SPI MODE TIMING
SS
70
SCK
(CKP = 0)
71
72
78
79
79
78
SCK
(CKP = 1)
80
SDO
77
75, 76
SDI
74
73
Note: Refer to Figure 21-1 for load conditions
TABLE 21-8:
Parameter
No.
70*
*
†
SPI MODE REQUIREMENTS
Sym
TssL2scH,
TssL2scL
Characteristic
Min
Typ†
Max
Units
SS to SCK or SCK input
TCY
—
—
ns
71*
TscH
SCK input high time (slave mode)
TCY + 20
—
—
ns
72*
TscL
SCK input low time (slave mode)
TCY + 20
—
—
ns
73*
TdiV2scH,
TdiV2scL
Setup time of SDI data input to SCK
edge
50
—
—
ns
74*
TscH2diL,
TscL2diL
Hold time of SDI data input to SCK
edge
50
—
—
ns
75*
TdoR
SDO data output rise time
—
10
25
ns
76*
TdoF
SDO data output fall time
—
10
25
ns
ns
77*
TssH2doZ
SS to SDO output hi-impedance
10
—
50
78*
TscR
SCK output rise time (master mode)
—
10
25
ns
79*
TscF
SCK output fall time (master mode)
—
10
25
ns
80*
TscH2doV,
TscL2doV
SDO data output valid after SCK
edge
—
—
50
ns
Conditions
These parameters are characterized but not tested.
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not
tested.
1997-2013 Microchip Technology Inc.
DS30234E-page 255
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
FIGURE 21-10: I2C BUS START/STOP BITS TIMING
SCL
91
93
90
92
SDA
STOP
Condition
START
Condition
Note: Refer to Figure 21-1 for load conditions
TABLE 21-9:
Parameter
No.
Sym
90*
TSU:STA
91*
92*
93
*
I2C BUS START/STOP BITS REQUIREMENTS
THD:STA
TSU:STO
THD:STO
Characteristic
Min
Typ Max
START condition
100 kHz mode
4700
—
—
Setup time
400 kHz mode
600
—
—
START condition
100 kHz mode
4000
—
—
Hold time
400 kHz mode
600
—
—
STOP condition
100 kHz mode
4700
—
—
Setup time
400 kHz mode
600
—
—
STOP condition
100 kHz mode
4000
—
—
Hold time
400 kHz mode
600
—
—
Units
Conditions
ns
Only relevant for repeated START
condition
ns
After this period the first clock
pulse is generated
ns
ns
These parameters are characterized but not tested.
DS30234E-page 256
1997-2013 Microchip Technology Inc.
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
FIGURE 21-11: I2C BUS DATA TIMING
103
102
100
101
SCL
90
106
107
91
92
SDA
In
110
109
109
SDA
Out
Note: Refer to Figure 21-1 for load conditions
TABLE 21-10: I2C BUS DATA REQUIREMENTS
Parameter
No.
Sym
Characteristic
100*
THIGH
Clock high time
101*
102*
103*
TLOW
TR
TF
Clock low time
SDA and SCL rise
time
SDA and SCL fall time
90*
TSU:STA
START condition
setup time
91*
THD:STA
START condition hold
time
106*
THD:DAT
Data input hold time
107*
TSU:DAT
Data input setup time
92*
TSU:STO
STOP condition setup
time
109*
TAA
110*
TBUF
Output valid from
clock
Bus free time
Min
Max
Units
Conditions
100 kHz mode
4.0
—
s
400 kHz mode
0.6
—
s
Device must operate at a minimum of 1.5 MHz
Device must operate at a minimum of 10 MHz
SSP Module
100 kHz mode
1.5TCY
4.7
—
—
s
400 kHz mode
1.3
—
s
SSP Module
100 kHz mode
400 kHz mode
1.5TCY
—
20 + 0.1Cb
—
1000
300
ns
ns
100 kHz mode
400 kHz mode
—
20 + 0.1Cb
300
300
ns
ns
100 kHz mode
400 kHz mode
100 kHz mode
400 kHz mode
100 kHz mode
400 kHz mode
100 kHz mode
400 kHz mode
100 kHz mode
400 kHz mode
100 kHz mode
400 kHz mode
100 kHz mode
400 kHz mode
4.7
0.6
4.0
0.6
0
0
250
100
4.7
0.6
—
—
4.7
1.3
—
—
—
—
—
0.9
—
—
—
—
3500
—
—
—
s
s
s
s
ns
s
ns
ns
s
s
ns
ns
s
s
Device must operate at a minimum of 1.5 MHz
Device must operate at a minimum of 10 MHz
Cb is specified to be from
10-400 pF
Cb is specified to be from
10-400 pF
Only relevant for repeated
START condition
After this period the first clock
pulse is generated
Note 2
Note 1
Time the bus must be free
before a new transmission can
start
Cb
Bus capacitive loading
—
400
pF
*
These parameters are characterized but not tested.
Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of
the falling edge of SCL to avoid unintended generation of START or STOP conditions.
2: A fast-mode (400 kHz) I2C-bus device can be used in a standard-mode (100 kHz) I2C-bus system, but the requirement
Tsu:DAT 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of
the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA
line TR max.+tsu;DAT = 1000 + 250 = 1250 ns (according to the standard-mode I2C bus specification) before the SCL line
is released.
1997-2013 Microchip Technology Inc.
DS30234E-page 257
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
FIGURE 21-12: USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING
RC6/TX/CK
pin
121
121
RC7/RX/DT
pin
120
122
Note: Refer to Figure 21-1 for load conditions
TABLE 21-11: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS
Param
No.
120*
Sym
Characteristic
Min
Typ†
TckH2dtV
Max
Units Conditions
SYNC XMIT (MASTER & SLAVE) PIC16CR63/R65
Clock high to data out valid
PIC16LCR63/R65
—
—
80
—
—
100
ns
—
—
45
ns
ns
121*
Tckrf
Clock out rise time and fall time
(Master Mode)
PIC16CR63/R65
PIC16LCR63/R65
—
—
50
ns
122*
Tdtrf
Data out rise time and fall time
PIC16CR63/R65
—
—
45
ns
PIC16LCR63/R65
—
—
50
ns
*
†:
These parameters are characterized but not tested.
Data in “Typ” column is at 5V, 25C unless otherwise stated. These parameters are for design guidance only and are not
tested.
FIGURE 21-13: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING
RC6/TX/CK
pin
RC7/RX/DT
pin
125
126
Note: Refer to Figure 21-1 for load conditions
TABLE 21-12: USART SYNCHRONOUS RECEIVE REQUIREMENTS
Parameter
No.
*
†:
Sym
Characteristic
Min
Typ†
Max
Units Conditions
125*
TdtV2ckL
SYNC RCV (MASTER & SLAVE)
Data setup before CK (DT setup time)
15
—
—
ns
126*
TckL2dtl
Data hold after CK (DT hold time)
15
—
—
ns
These parameters are characterized but not tested.
Data in “Typ” column is at 5V, 25C unless otherwise stated. These parameters are for design guidance only and are not
tested.
DS30234E-page 258
1997-2013 Microchip Technology Inc.
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
22.0
ELECTRICAL CHARACTERISTICS FOR PIC16C66/67
Absolute Maximum Ratings (†)
Ambient temperature under bias.............................................................................................................-55°C to +125°C
Storage temperature .............................................................................................................................. -65°C to +150°C
Voltage on any pin with respect to VSS (except VDD, MCLR, and RA4).......................................... -0.3V to (VDD + 0.3V)
Voltage on VDD with respect to VSS ......................................................................................................... -0.3V to +7.5V
Voltage on MCLR with respect to VSS (Note 2)............................................................................................... 0V to +14V
Voltage on RA4 with respect to Vss ................................................................................................................ 0V to +14V
Total power dissipation (Note 1)................................................................................................................................1.0W
Maximum current out of VSS pin ...........................................................................................................................300 mA
Maximum current into VDD pin ..............................................................................................................................250 mA
Input clamp current, IIK (VI < 0 or VI > VDD) 20 mA
Output clamp current, IOK (VO < 0 or VO > VDD) 20 mA
Maximum output current sunk by any I/O pin..........................................................................................................25 mA
Maximum output current sourced by any I/O pin ....................................................................................................25 mA
Maximum current sunk byPORTA, PORTB, and PORTE (Note 3) (combined)....................................................200 mA
Maximum current sourced by PORTA, PORTB, and PORTE (Note 3) (combined) ..............................................200 mA
Maximum current sunk by PORTC and PORTD (Note 3) (combined) ..................................................................200 mA
Maximum current sourced by PORTC and PORTD (Note 3) (combined) .............................................................200 mA
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - IOH} + {(VDD-VOH) x IOH} + (VOl x IOL)
Note 2: Voltage spikes below VSS at the MCLR/VPP pin, inducing currents greater than 80 mA, may cause latch-up.
Thus, a series resistor of 50-100 should be used when applying a “low” level to the MCLR/VPP pin rather
than pulling this pin directly to VSS.
Note 3: PORTD and PORTE not available on the PIC16C66.
† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the
device. This is a stress rating only and functional operation of the device at those or any other conditions above those
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability.
TABLE 22-1:
CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS
AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)
PIC16C66-04
PIC16C67-04
PIC16C66-10
PIC16C67-10
PIC16C66-20
PIC16C67-20
PIC16LC66-04
PIC16LC67-04
JW Devices
RC
VDD: 4.0V to 6.0V
IDD: 5 mA max. at 5.5V
IPD: 16 A max. at 4V
Freq: 4 MHz max.
VDD: 4.5V to 5.5V
IDD: 2.7 mA typ. at 5.5V
IPD: 1.5 A typ. at 4V
Freq: 4 MHz max.
VDD: 4.5V to 5.5V
IDD: 2.7 mA typ. at 5.5V
IPD: 1.5 A typ. at 4V
Freq: 4 MHz max.
VDD: 2.5V to 6.0V
IDD: 3.8 mA max. at 3V
IPD: 5 A max. at 3V
Freq: 4 MHz max.
VDD: 4.0V to 6.0V
IDD: 5 mA max. at 5.5V
IPD: 16 A max. at 4V
Freq: 4 MHz max.
XT
VDD: 4.0V to 6.0V
IDD: 5 mA max. at 5.5V
IPD: 16 A max. at 4V
Freq: 4 MHz max.
VDD: 4.5V to 5.5V
IDD: 2.7 mA typ. at 5.5V
IPD: 1.5 A typ. at 4V
Freq: 4 MHz max.
VDD: 4.5V to 5.5V
IDD: 2.7 mA typ. at 5.5V
IPD: 1.5 A typ. at 4V
Freq: 4 MHz max.
VDD: 2.5V to 6.0V
IDD: 3.8 mA max. at 3V
IPD: 5 A max. at 3V
Freq: 4 MHz max.
VDD: 4.0V to 6.0V
IDD: 5 mA max. at 5.5V
IPD: 16 A max. at 4V
Freq: 4 MHz max.
HS
VDD: 4.5V to 5.5V
VDD: 4.5V to 5.5V
VDD: 4.5V to 5.5V
IDD: 13.5 mA typ. at
5.5V
IDD: 10 mA max. at 5.5V IDD: 20 mA max. at 5.5V
OSC
IPD: 1.5 A typ. at 4.5V IPD 1.5 A typ. at 4.5V IPD: 1.5 A typ. at 4.5V
Freq: 4 MHz max.
LP
VDD: 4.0V to 6.0V
IDD: 52.5 A typ.
at 32 kHz, 4.0V
IPD: 0.9 A typ. at 4.0V
Freq: 200 kHz max.
Freq: 10 MHz max.
Not recommended for
use in LP mode
VDD: 4.5V to 5.5V
Not recommended for
use in HS mode
Freq: 20 MHz max.
Not recommended for
use in LP mode
IDD: 20 mA max. at
5.5V
IPD: 1.5 A typ. at 4.5V
Freq: 20 MHz max.
VDD: 2.5V to 6.0V
IDD: 48 A max. at 32
kHz, 3.0V
IPD: 5 A max. at 3.0V
Freq: 200 kHz max.
VDD: 2.5V to 6.0V
IDD: 48 A max.
at 32 kHz, 3.0V
IPD: 5 A max. at 3.0V
Freq: 200 kHz max.
The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended that the user select the device type that ensures the specifications required.
1997-2013 Microchip Technology Inc.
DS30234E-page 259
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
22.1
DC Characteristics:
DC CHARACTERISTICS
Param
No.
Characteristic
PIC16C66/67-04 (Commercial, Industrial, Extended)
PIC16C66/67-10 (Commercial, Industrial, Extended)
PIC16C66/67-20 (Commercial, Industrial, Extended)
Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C TA +125°C for extended,
-40°C TA +85°C for industrial and
0°C
TA +70°C for commercial
Sym
Min
Typ† Max Units
Conditions
D001 Supply Voltage
D001A
VDD
4.0
4.5
-
6.0
5.5
V
V
D002*
RAM Data Retention
Voltage (Note 1)
VDR
-
1.5
-
V
D003
VDD start voltage to
ensure internal Power-on
Reset signal
VPOR
-
VSS
-
V
D004*
VDD rise rate to ensure
internal Power-on Reset
signal
SVDD
0.05
-
-
D005
Brown-out Reset Voltage
BVDD
3.7
4.0
4.3
V
BODEN configuration bit is enabled
3.7
4.0
4.4
V
Extended Range Only
-
2.7
5
mA
XT, RC, osc config FOSC = 4 MHz, VDD = 5.5V
(Note 4)
-
10
20
mA
HS osc config
FOSC = 20 MHz, VDD = 5.5V
IBOR
-
350
425
A
BOR enabled, VDD = 5.0V
D020 Power-down Current
D021 (Note 3, 5)
D021A
D021B
IPD
-
10.5
1.5
1.5
2.5
42
16
19
19
A
A
A
A
VDD = 4.0V, WDT enabled,-40C to +85C
VDD = 4.0V, WDT disabled,-0C to +70C
VDD = 4.0V, WDT disabled,-40C to +85C
VDD = 4.0V, WDT disabled,-40C to +125C
D023*
IBOR
-
350
425
A
BOR enabled, VDD = 5.0V
D010
Supply Current (Note 2, 5) IDD
D013
D015*
Brown-out Reset Current
(Note 6)
Brown-out Reset Current
(Note 6)
XT, RC and LP osc configuration
HS osc configuration
See section on Power-on Reset for details
V/ms See section on Power-on Reset for details
*
†
These parameters are characterized but not tested.
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only
and are not tested.
Note 1: This is the limit to which VDD can be lowered without losing RAM data.
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin
loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an
impact on the current consumption.
The test conditions for all IDD measurements in active operation mode are:
OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD,
MCLR = VDD; WDT enabled/disabled as specified.
3: The power down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.
4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
5: Timer1 oscillator (when enabled) adds approximately 20 A to the specification. This value is from characterization and is for design guidance only. This is not tested.
6: The current is the additional current consumed when this peripheral is enabled. This current should be
added to the base IDD or IPD measurement.
DS30234E-page 260
1997-2013 Microchip Technology Inc.
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
22.2
DC Characteristics:
PIC16LC66/67-04 (Commercial, Industrial)
DC CHARACTERISTICS
Param
No.
D001
D002*
D003
D004*
D005
D010
Characteristic
Supply Voltage
RAM Data Retention
Voltage (Note 1)
VDD start voltage to
ensure internal Power-on
Reset signal
VDD rise rate to ensure
internal Power-on Reset
signal
Brown-out Reset Voltage
Supply Current (Note 2, 5)
Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C
TA +85°C for industrial and
0°C
TA +70°C for commercial
Sym Min Typ† Max Units
Conditions
VDD
VDR
2.5
-
1.5
6.0
-
V
V
LP, XT, RC osc configuration (DC - 4 MHz)
VPOR
-
VSS
-
V
See section on Power-on Reset for details
SVDD
0.05
-
-
BVDD
IDD
3.7
-
4.0
2.0
4.3
3.8
V
mA
BODEN configuration bit is enabled
XT, RC osc configuration
FOSC = 4 MHz, VDD = 3.0V (Note 4)
-
22.5
48
A
LP osc configuration
FOSC = 32 kHz, VDD = 3.0V, WDT disabled
IBOR
-
350
425
A
BOR enabled, VDD = 5.0V
IPD
-
7.5
0.9
0.9
30
5
5
A
A
A
VDD = 3.0V, WDT enabled, -40C to +85C
VDD = 3.0V, WDT disabled, 0C to +70C
VDD = 3.0V, WDT disabled, -40C to +85C
D010A
D015*
D020
D021
D021A
Brown-out Reset Current
(Note 6)
Power-down Current
(Note 3, 5)
V/ms See section on Power-on Reset for details
Brown-out Reset Current IBOR
350 425
A BOR enabled, VDD = 5.0V
(Note 6)
*
These parameters are characterized but not tested.
†
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and
are not tested.
Note 1: This is the limit to which VDD can be lowered without losing RAM data.
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin
loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an
impact on the current consumption.
The test conditions for all IDD measurements in active operation mode are:
OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD,
MCLR = VDD; WDT enabled/disabled as specified.
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.
4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
5: Timer1 oscillator (when enabled) adds approximately 20 A to the specification. This value is from characterization and is for design guidance only. This is not tested.
6: The current is the additional current consumed when this peripheral is enabled. This current should be
added to the base IDD or IPD measurement.
D023*
1997-2013 Microchip Technology Inc.
DS30234E-page 261
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
22.3
DC Characteristics:
PIC16C66/67-04 (Commercial, Industrial, Extended)
PIC16C66/67-10 (Commercial, Industrial, Extended)
PIC16C66/67-20 (Commercial, Industrial, Extended)
PIC16LC66/67-04 (Commercial, Industrial)
DC CHARACTERISTICS
Param
No.
Characteristic
Input Low Voltage
I/O ports
with TTL buffer
D030
D030A
D031
with Schmitt Trigger buffer
D032
MCLR, OSC1 (in RC mode)
D033
OSC1 (in XT, HS and LP)
Input High Voltage
I/O ports
D040
with TTL buffer
D040A
D041
D042
D042A
D043
D070
Standard Operating Conditions (unless otherwise stated)
Operating temperature
-40°C TA +125°C for extended,
-40°C TA +85°C for industrial and
0°C
TA +70°C for commercial
Operating voltage VDD range as described in DC spec Section 22.1
and Section 22.2
Sym
Min Typ Max
Units
Conditions
†
VIL
VSS
VSS
VSS
Vss
Vss
VIH
2.0
0.25VDD
+ 0.8V
D060
with Schmitt Trigger buffer
MCLR
OSC1 (XT, HS and LP)
OSC1 (in RC mode)
PORTB weak pull-up current
IPURB
Input Leakage Current (Notes 2, 3)
I/O ports
IIL
D061
D063
MCLR, RA4/T0CKI
OSC1
D080
Output Low Voltage
I/O ports
D080A
D083
OSC2/CLKOUT (RC osc config)
D083A
VOL
-
0.15VDD
0.8V
0.2VDD
0.2VDD
0.3VDD
V
V
V
V
V
Note1
-
VDD
VDD
V
V
4.5V VDD 5.5V
For entire VDD range
VDD
VDD
VDD
VDD
400
V
V
V
V
A
For entire VDD range
0.8VDD 0.8VDD 0.7VDD 0.9VDD 50
250
-
-
1
A
-
-
5
5
A
A
-
-
0.6
V
-
-
0.6
V
-
-
0.6
V
-
-
0.6
V
For entire VDD range
4.5V VDD 5.5V
Note1
VDD = 5V, VPIN = VSS
Vss VPIN VDD, Pin at hiimpedance
Vss VPIN VDD
Vss VPIN VDD, XT, HS and
LP osc configuration
IOL = 8.5 mA, VDD = 4.5V,
-40C to +85C
IOL = 7.0 mA, VDD = 4.5V,
-40C to +125C
IOL = 1.6 mA, VDD = 4.5V,
-40C to +85C
IOL = 1.2 mA, VDD = 4.5V,
-40C to +125C
*
†
These parameters are characterized but not tested.
Data in “Typ” column is at 5V, 25C unless otherwise stated. These parameters are for design guidance only
and are not tested.
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the
PIC16C6X be driven with external clock in RC mode.
2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified
levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
3: Negative current is defined as current sourced by the pin.
DS30234E-page 262
1997-2013 Microchip Technology Inc.
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
DC CHARACTERISTICS
Param
No.
Characteristic
Output High Voltage
I/O ports (Note 3)
Standard Operating Conditions (unless otherwise stated)
Operating temperature
-40°C TA +125°C for extended,
-40°C TA +85°C for industrial and
0°C
TA +70°C for commercial
Operating voltage VDD range as described in DC spec Section 22.1
and Section 22.2
Sym
Min Typ Max
Units
Conditions
†
VDD-0.7
-
-
V
VDD-0.7
-
-
V
VDD-0.7
-
-
V
VDD-0.7
-
-
V
-
-
14
V
D100
Open-Drain High Voltage
VOD
Capacitive Loading Specs on Output Pins
OSC2 pin
COSC2
-
-
15
pF
D101
D102
SCL, SDA in I2C mode
All I/O pins and OSC2 (in RC mode) CIO
Cb
-
-
50
400
pF
pF
D090
VOH
D090A
D092
OSC2/CLKOUT (RC osc config)
D092A
D150*
IOH = -3.0 mA, VDD = 4.5V,
-40C to +85C
IOH = -2.5 mA, VDD = 4.5V,
-40C to +125C
IOH = -1.3 mA, VDD = 4.5V,
-40C to +85C
IOH = -1.0 mA, VDD = 4.5V,
-40C to +125C
RA4 pin
In XT, HS and LP modes when
external clock is used to drive
OSC1.
*
†
These parameters are characterized but not tested.
Data in “Typ” column is at 5V, 25C unless otherwise stated. These parameters are for design guidance only
and are not tested.
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the
PIC16C6X be driven with external clock in RC mode.
2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified
levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
3: Negative current is defined as current sourced by the pin.
1997-2013 Microchip Technology Inc.
DS30234E-page 263
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
22.4
Timing Parameter Symbology
The timing parameter symbols have been created following one of the following formats:
1. TppS2ppS
3. TCC:ST
(I2C specifications only)
2. TppS
4. Ts
(I2C specifications only)
T
F
Frequency
Lowercase letters (pp) and their meanings:
pp
cc
CCP1
ck
CLKOUT
cs
CS
di
SDI
do
SDO
dt
Data in
io
I/O port
mc
MCLR
Uppercase letters and their meanings:
S
F
Fall
H
High
I
Invalid (Hi-impedance)
L
Low
I2C only
AA
BUF
output access
Bus free
TCC:ST (I2C specifications only)
CC
HD
Hold
ST
DAT
DATA input hold
STA
START condition
T
Time
osc
rd
rw
sc
ss
t0
t1
wr
OSC1
RD
RD or WR
SCK
SS
T0CKI
T1CKI
WR
P
R
V
Z
Period
Rise
Valid
Hi-impedance
High
Low
High
Low
SU
Setup
STO
STOP condition
FIGURE 22-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS
Load condition 1
Load condition 2
VDD/2
RL
CL
Pin
VSS
CL
Pin
RL = 464
VSS
Note 1: PORTD and PORTE are not implemented on the PIC16C66.
DS30234E-page 264
CL = 50 pF
15 pF
for all pins except OSC2/CLKOUT
but including D and E outputs as ports
for OSC2 output
1997-2013 Microchip Technology Inc.
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
22.5
Timing Diagrams and Specifications
FIGURE 22-2: EXTERNAL CLOCK TIMING
Q4
Q1
Q2
Q3
Q4
Q1
OSC1
3
1
3
4
4
2
CLKOUT
TABLE 22-2:
Param
No.
EXTERNAL CLOCK TIMING REQUIREMENTS
Sym
Characteristic
Min
Fosc
External CLKIN Frequency
(Note 1)
DC
—
4
MHz
XT and RC osc mode
DC
—
4
MHz
HS osc mode (-04)
DC
—
10
MHz
HS osc mode (-10)
DC
—
20
MHz
HS osc mode (-20)
DC
—
200
kHz
LP osc mode
DC
—
4
MHz
RC osc mode
XT osc mode
Oscillator Frequency
(Note 1)
1
Tosc
External CLKIN Period
(Note 1)
Oscillator Period
(Note 1)
2
TCY
3*
TosL,
TosH
4*
TosR,
TosF
Typ†
Max
Units Conditions
0.1
—
4
MHz
4
—
20
MHz
HS osc mode
5
—
200
kHz
LP osc mode
250
—
—
ns
XT and RC osc mode
250
—
—
ns
HS osc mode (-04)
100
—
—
ns
HS osc mode (-10)
50
—
—
ns
HS osc mode (-20)
5
—
—
s
LP osc mode
250
—
—
ns
RC osc mode
250
—
10,000
ns
XT osc mode
250
—
250
ns
HS osc mode (-04)
100
—
250
ns
HS osc mode (-10)
50
—
250
ns
HS osc mode (-20)
5
—
—
s
LP osc mode
Instruction Cycle Time (Note 1)
200
TCY
DC
ns
TCY = 4/FOSC
External Clock in (OSC1) High or
Low Time
100
—
—
ns
XT oscillator
External Clock in (OSC1) Rise or
Fall Time
2.5
—
—
s
LP oscillator
15
—
—
ns
HS oscillator
—
—
25
ns
XT oscillator
—
—
50
ns
LP oscillator
—
—
15
ns
HS oscillator
*
†
These parameters are characterized but not tested.
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not
tested.
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on
characterization data for that particular oscillator type under standard operating conditions with the device executing code.
Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin.
When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.
1997-2013 Microchip Technology Inc.
DS30234E-page 265
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
FIGURE 22-3: CLKOUT AND I/O TIMING
Q1
Q4
Q2
Q3
OSC1
11
10
CLKOUT
13
19
14
12
18
16
I/O Pin
(input)
15
17
I/O Pin
(output)
new value
old value
20, 21
Note: Refer to Figure 22-1 for load conditions.
TABLE 22-3:
CLKOUT AND I/O TIMING REQUIREMENTS
Parameter Sym
No.
Characteristic
Min
Typ†
Max
Units Conditions
10*
TosH2ckL
OSC1 to CLKOUT
—
75
200
ns
11*
TosH2ckH OSC1 to CLKOUT
—
75
200
ns
Note 1
12*
TckR
CLKOUT rise time
—
35
100
ns
Note 1
13*
TckF
CLKOUT fall time
—
35
100
ns
Note 1
14*
TckL2ioV
CLKOUT to Port out valid
—
—
0.5TCY + 20
ns
Note 1
15*
TioV2ckH
Port in valid before CLKOUT
Tosc + 200
—
—
ns
Note 1
Note 1
16*
TckH2ioI
Port in hold after CLKOUT
0
—
—
ns
17*
TosH2ioV
OSC1 (Q1 cycle) to Port out valid
—
50
150
ns
18*
TosH2ioI
OSC1 (Q2 cycle) to Port input
invalid (I/O in hold time)
PIC16C66/67
100
—
—
ns
PIC16LC66/67
200
—
—
ns
19*
TioV2osH
Port input valid to OSC1(I/O in setup time)
0
—
—
ns
20*
TioR
Port output rise time
ns
PIC16C66/67
—
10
40
PIC16LC66/67
—
—
80
ns
PIC16C66/67
—
10
40
ns
21*
TioF
Port output fall time
—
—
80
ns
22††*
Tinp
INT pin high or low time
TCY
—
—
ns
23††*
Trbp
RB7:RB4 change INT high or low time
TCY
—
—
ns
PIC16LC66/67
Note 1
*
†
These parameters are characterized but not tested.
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not
tested.
†† These parameters are asynchronous events not related to any internal clock edge.
Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x TOSC.
DS30234E-page 266
1997-2013 Microchip Technology Inc.
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
FIGURE 22-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP
TIMER TIMING
VDD
MCLR
30
Internal
POR
33
PWRT
Time-out
32
OSC
Time-out
Internal
RESET
Watchdog
Timer
RESET
31
34
34
I/O Pins
Note: Refer to Figure 22-1 for load conditions.
FIGURE 22-5: BROWN-OUT RESET TIMING
BVDD
VDD
TABLE 22-4:
35
RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER,
AND BROWN-OUT RESET REQUIREMENTS
Parameter
No.
Sym
Characteristic
30
TmcL
MCLR Pulse Width (low)
2
—
—
s
VDD = 5V, -40°C to +125°C
31*
Twdt
Watchdog Timer Time-out Period
(No Prescaler)
7
18
33
ms
VDD = 5V, -40°C to +125°C
Typ†
Max
Units
Conditions
Oscillation Start-up Timer Period
—
1024 TOSC
—
—
TOSC = OSC1 period
Power-up Timer Period
28
72
132
ms
VDD = 5V, -40°C to +125°C
TIOZ
I/O Hi-impedance from MCLR Low
or WDT reset
—
—
2.1
s
TBOR
Brown-out Reset Pulse Width
100
—
—
s
32
Tost
33*
Tpwrt
34
35
*
†
Min
VDD BVDD (D005)
These parameters are characterized but not tested.
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not
tested.
1997-2013 Microchip Technology Inc.
DS30234E-page 267
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
FIGURE 22-6: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS
RA4/T0CKI
41
40
42
RC0/T1OSO/T1CKI
46
45
47
48
TMR0 or
TMR1
Note: Refer to Figure 22-1 for load conditions.
TABLE 22-5:
TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS
Param
No.
Sym
Characteristic
40*
Tt0H
T0CKI High Pulse Width
41*
42*
45*
46*
47*
48
*
†
Min
No Prescaler
With Prescaler
No Prescaler
With Prescaler
T0CKI Low Pulse Width
Max
Units Conditions
0.5TCY + 20
—
—
ns
10
—
—
—
—
—
—
—
—
—
—
ns
ns
ns
ns
ns
—
—
—
—
—
—
ns
ns
ns
—
—
—
—
—
—
—
—
—
—
ns
ns
ns
ns
ns
—
—
—
—
—
—
ns
ns
ns
0.5TCY + 20
10
TCY + 40
Tt0P
T0CKI Period
No Prescaler
With Prescaler Greater of:
20 or TCY + 40
N
Tt1H
T1CKI High Time Synchronous, Prescaler = 1
0.5TCY + 20
Synchronous, PIC16C6X
15
Prescaler =
PIC16LC6X
25
2,4,8
Asynchronous PIC16C6X
30
PIC16LC6X
50
Tt1L
T1CKI Low Time
Synchronous, Prescaler = 1
0.5TCY + 20
Synchronous, PIC16C6X
15
Prescaler =
PIC16LC6X
25
2,4,8
Asynchronous PIC16C6X
30
PIC16LC6X
50
Tt1P
T1CKI input period Synchronous
PIC16C6X
Greater of:
30 OR TCY + 40
N
Greater of:
PIC16LC6X
50 OR TCY + 40
N
Asynchronous PIC16C6X
60
PIC16LC6X
100
Ft1
Timer1 oscillator input frequency range
DC
(oscillator enabled by setting bit T1OSCEN)
TCKEZtmr1 Delay from external clock edge to timer increment
2Tosc
Tt0L
Typ†
Must also meet
parameter 42
Must also meet
parameter 42
N = prescale value
(2, 4, ..., 256)
Must also meet
parameter 47
Must also meet
parameter 47
N = prescale value
(1, 2, 4, 8)
N = prescale value
(1, 2, 4, 8)
—
—
—
—
—
200
ns
ns
kHz
—
7Tosc
—
These parameters are characterized but not tested.
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not
tested.
DS30234E-page 268
1997-2013 Microchip Technology Inc.
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
FIGURE 22-7: CAPTURE/COMPARE/PWM TIMINGS (CCP1 AND CCP2)
RC1/T1OSI/CCP2
and RC2/CCP1
(Capture Mode)
50
51
52
RC1/T1OSI/CCP2
and RC2/CCP1
(Compare or
PWM Mode)
54
53
Note: Refer to Figure 22-1 for load conditions.
TABLE 22-6:
Parameter
No.
50*
CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND CCP2)
Sym Characteristic
Min
TccL CCP1 and CCP2
input low time
No Prescaler
TccH CCP1 and CCP2
input high time
No Prescaler
With Prescaler
PIC16C66/67
PIC16LC66/67
51*
With Prescaler
PIC16C66/67
PIC16LC66/67
52*
TccP CCP1 and CCP2 input period
53*
TccR CCP1 and CCP2 output rise time
54*
*
†
TccF CCP1 and CCP2 output fall time
Typ† Max Units Conditions
0.5TCY + 20
—
—
ns
10
—
—
ns
ns
20
—
—
0.5TCY + 20
—
—
ns
10
—
—
ns
20
—
—
ns
3TCY + 40
N
—
—
ns
PIC16C66/67
—
10
25
ns
PIC16LC66/67
—
25
45
ns
PIC16C66/67
—
10
25
ns
PIC16LC66/67
—
25
45
ns
N = prescale value
(1,4, or 16)
These parameters are characterized but not tested.
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not
tested.
1997-2013 Microchip Technology Inc.
DS30234E-page 269
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
FIGURE 22-8: PARALLEL SLAVE PORT TIMING (PIC16C67)
RE2/CS
RE0/RD
RE1/WR
65
RD7:RD0
62
64
63
Note: Refer to Figure 22-1 for load conditions
TABLE 22-7:
Parameter
No.
62*
63*
64
65*
*
†
PARALLEL SLAVE PORT REQUIREMENTS (PIC16C67)
Sym
Characteristic
Min
TdtV2wrH Data in valid before WR or CS (setup time)
TwrH2dtI
TrdL2dtV
TrdH2dtI
WR or CS to data–in invalid (hold
time)
RD and CS to data–out valid
RD or CS to data–out invalid
Typ†
Max
Units
20
—
—
ns
25
—
—
ns
PIC16C67
20
—
—
ns
PIC16LC67
35
—
—
ns
—
—
80
ns
—
—
90
ns
10
—
30
ns
Conditions
Extended
Range Only
Extended
Range Only
These parameters are characterized but not tested.
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not
tested.
DS30234E-page 270
1997-2013 Microchip Technology Inc.
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
FIGURE 22-9: SPI MASTER MODE TIMING (CKE = 0)
SS
70
SCK
(CKP = 0)
71
72
78
79
79
78
SCK
(CKP = 1)
80
BIT6 - - - - - -1
MSB
SDO
LSB
75, 76
SDI
MSB IN
BIT6 - - - -1
LSB IN
74
73
Refer to Figure 22-1 for load conditions.
FIGURE 22-10: SPI MASTER MODE TIMING (CKE = 1)
SS
81
SCK
(CKP = 0)
71
72
79
73
SCK
(CKP = 1)
80
78
SDO
BIT6 - - - - - -1
MSB
LSB
75, 76
SDI
MSB IN
BIT6 - - - -1
LSB IN
74
Refer to Figure 22-1 for load conditions.
1997-2013 Microchip Technology Inc.
DS30234E-page 271
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
FIGURE 22-11: SPI SLAVE MODE TIMING (CKE = 0)
SS
70
SCK
(CKP = 0)
83
71
72
78
79
79
78
SCK
(CKP = 1)
80
MSB
SDO
LSB
BIT6 - - - - - -1
77
75, 76
SDI
MSB IN
BIT6 - - - -1
LSB IN
74
73
Refer to Figure 22-1 for load conditions.
FIGURE 22-12: SPI SLAVE MODE TIMING (CKE = 1)
82
SS
SCK
(CKP = 0)
70
83
71
72
SCK
(CKP = 1)
80
SDO
MSB
BIT6 - - - - - -1
LSB
75, 76
SDI
MSB IN
77
BIT6 - - - -1
LSB IN
74
Refer to Figure 22-1 for load conditions.
DS30234E-page 272
1997-2013 Microchip Technology Inc.
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
TABLE 22-8:
Parameter
No.
70*
*
†
SPI MODE REQUIREMENTS
Sym
TssL2scH,
TssL2scL
Characteristic
Min
Typ†
Max
Units
SS to SCK or SCK input
TCY
—
—
ns
71*
TscH
SCK input high time (slave mode)
TCY + 20
—
—
ns
72*
TscL
SCK input low time (slave mode)
TCY + 20
—
—
ns
73*
TdiV2scH,
TdiV2scL
Setup time of SDI data input to SCK
edge
100
—
—
ns
74*
TscH2diL,
TscL2diL
Hold time of SDI data input to SCK
edge
100
—
—
ns
75*
TdoR
SDO data output rise time
—
10
25
ns
76*
TdoF
SDO data output fall time
—
10
25
ns
ns
77*
TssH2doZ
SS to SDO output hi-impedance
10
—
50
78*
TscR
SCK output rise time (master mode)
—
10
25
ns
79*
TscF
SCK output fall time (master mode)
—
10
25
ns
80*
TscH2doV,
TscL2doV
SDO data output valid after SCK
edge
—
—
50
ns
81*
TdoV2scH,
TdoV2scL
SDO data output setup to SCK
edge
TCY
—
—
ns
82*
TssL2doV
SDO data output valid after SS
edge
—
—
50
ns
83*
TscH2ssH,
TscL2ssH
SS after SCK edge
1.5TCY + 40
—
—
ns
Conditions
These parameters are characterized but not tested.
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not
tested.
1997-2013 Microchip Technology Inc.
DS30234E-page 273
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
FIGURE 22-13: I2C BUS START/STOP BITS TIMING
SCL
91
93
90
92
SDA
STOP
Condition
START
Condition
Note: Refer to Figure 22-1 for load conditions
TABLE 22-9:
Parameter
No.
Sym
90*
TSU:STA
91*
92*
93
*
I2C BUS START/STOP BITS REQUIREMENTS
THD:STA
TSU:STO
THD:STO
Characteristic
Min
Typ Max
START condition
100 kHz mode
4700
—
—
Setup time
400 kHz mode
600
—
—
START condition
100 kHz mode
4000
—
—
Hold time
400 kHz mode
600
—
—
STOP condition
100 kHz mode
4700
—
—
Setup time
400 kHz mode
600
—
—
STOP condition
100 kHz mode
4000
—
—
Hold time
400 kHz mode
600
—
—
Units
Conditions
ns
Only relevant for repeated START
condition
ns
After this period the first clock
pulse is generated
ns
ns
These parameters are characterized but not tested.
DS30234E-page 274
1997-2013 Microchip Technology Inc.
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
FIGURE 22-14: I2C BUS DATA TIMING
103
102
100
101
SCL
90
106
107
91
92
SDA
In
110
109
109
SDA
Out
Note: Refer to Figure 22-1 for load conditions
TABLE 22-10: I2C BUS DATA REQUIREMENTS
Parameter
No.
Sym
Characteristic
100*
THIGH
Clock high time
101*
102*
103*
TLOW
TR
TF
Clock low time
SDA and SCL rise
time
SDA and SCL fall time
90*
TSU:STA
START condition
setup time
91*
THD:STA
START condition hold
time
106*
THD:DAT
Data input hold time
107*
TSU:DAT
Data input setup time
92*
TSU:STO
STOP condition setup
time
109*
TAA
110*
TBUF
Output valid from
clock
Bus free time
Min
Max
Units
Conditions
100 kHz mode
4.0
—
s
400 kHz mode
0.6
—
s
Device must operate at a minimum of 1.5 MHz
Device must operate at a minimum of 10 MHz
SSP Module
100 kHz mode
1.5TCY
4.7
—
—
s
400 kHz mode
1.3
—
s
SSP Module
100 kHz mode
400 kHz mode
1.5TCY
—
20 + 0.1Cb
—
1000
300
ns
ns
100 kHz mode
400 kHz mode
—
20 + 0.1Cb
300
300
ns
ns
100 kHz mode
400 kHz mode
100 kHz mode
400 kHz mode
100 kHz mode
400 kHz mode
100 kHz mode
400 kHz mode
100 kHz mode
400 kHz mode
100 kHz mode
400 kHz mode
100 kHz mode
400 kHz mode
4.7
0.6
4.0
0.6
0
0
250
100
4.7
0.6
—
—
4.7
1.3
—
—
—
—
—
0.9
—
—
—
—
3500
—
—
—
s
s
s
s
ns
s
ns
ns
s
s
ns
ns
s
s
Device must operate at a minimum of 1.5 MHz
Device must operate at a minimum of 10 MHz
Cb is specified to be from
10-400 pF
Cb is specified to be from
10-400 pF
Only relevant for repeated
START condition
After this period the first clock
pulse is generated
Note 2
Note 1
Time the bus must be free
before a new transmission can
start
Cb
Bus capacitive loading
—
400
pF
*
These parameters are characterized but not tested.
Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of
the falling edge of SCL to avoid unintended generation of START or STOP conditions.
2: A fast-mode (400 kHz) I2C-bus device can be used in a standard-mode (100 kHz) I2C-bus system, but the requirement
Tsu:DAT 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of
the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA
line TR max.+tsu;DAT = 1000 + 250 = 1250 ns (according to the standard-mode I2C bus specification) before the SCL line
is released.
1997-2013 Microchip Technology Inc.
DS30234E-page 275
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
FIGURE 22-15: USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING
RC6/TX/CK
pin
121
121
RC7/RX/DT
pin
120
122
Note: Refer to Figure 22-1 for load conditions
TABLE 22-11: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS
Parameter
No.
120*
Sym
Characteristic
Min
Typ†
TckH2dtV
Max
Units Conditions
SYNC XMIT (MASTER & SLAVE) PIC16C66/67
Clock high to data out valid
PIC16LC66/67
—
—
80
—
—
100
ns
—
—
45
ns
ns
121*
Tckrf
Clock out rise time and fall time
(Master Mode)
PIC16C66/67
PIC16LC66/67
—
—
50
ns
122*
Tdtrf
Data out rise time and fall time
PIC16C66/67
—
—
45
ns
PIC16LC66/67
—
—
50
ns
*
†:
These parameters are characterized but not tested.
Data in “Typ” column is at 5V, 25C unless otherwise stated. These parameters are for design guidance only and are not
tested.
FIGURE 22-16: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING
RC6/TX/CK
pin
RC7/RX/DT
pin
125
126
Note: Refer to Figure 22-1 for load conditions
TABLE 22-12: USART SYNCHRONOUS RECEIVE REQUIREMENTS
Parameter
No.
*
†:
Sym
Characteristic
Min
Typ†
Max
Units Conditions
125*
TdtV2ckL
SYNC RCV (MASTER & SLAVE)
Data setup before CK (DT setup time)
15
—
—
ns
126*
TckL2dtl
Data hold after CK (DT hold time)
15
—
—
ns
These parameters are characterized but not tested.
Data in “Typ” column is at 5V, 25C unless otherwise stated. These parameters are for design guidance only and are not
tested.
DS30234E-page 276
1997-2013 Microchip Technology Inc.
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
23.0
DC AND AC CHARACTERISTICS GRAPHS AND TABLES FOR:
PIC16C62, PIC16C62A, PIC16CR62, PIC16C63, PIC16C64, PIC16C64A,
PIC16CR64, PIC16C65A, PIC16C66, PIC16C67
The graphs and tables provided in this section are for design guidance and are not tested or guaranteed.
In some graphs or tables the data presented are outside specified operating range (i.e., outside specified VDD
range). This is for information only and devices are guaranteed to operate properly only within the specified
range.
Note:
The data presented in this section is a statistical summary of data collected on units from different lots over
a period of time and matrix samples. 'Typical' represents the mean of the distribution at, 25C, while 'max'
or 'min' represents (mean +3) and (mean -3) respectively where is standard deviation.
FIGURE 23-1: TYPICAL IPD vs. VDD (WDT DISABLED, RC MODE)
35
30
IPD(nA)
25
20
15
10
5
0
2.5
3.0
3.5
4.0
4.5
VDD(Volts)
5.0
5.5
6.0
FIGURE 23-2: MAXIMUM IPD vs. VDD (WDT DISABLED, RC MODE)
10.000
85C
70C
IPD(A)
1.000
25C
0.100
0C
-40C
0.010
0.001
2.5
3.0
1997-2013 Microchip Technology Inc.
3.5
4.0
4.5
VDD(Volts)
5.0
5.5
6.0
DS30234E-page 277
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
FIGURE 23-3: TYPICAL IPD vs. VDD @ 25C
(WDT ENABLED, RC MODE)
FIGURE 23-5: TYPICAL RC OSCILLATOR
FREQUENCY vs. VDD
Cext = 22 pF, T = 25C
6.0
25
5.5
5.0
4.5
Fosc(MHz)
IPD(A)
20
15
10
R = 5k
4.0
3.5
3.0
R = 10k
2.5
2.0
5
1.5
1.0
0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
0.0
2.5
VDD(Volts)
FIGURE 23-4: MAXIMUM IPD vs. VDD (WDT
ENABLED, RC MODE)
35
3.0
3.5
4.0
4.5
VDD(Volts)
5.0
0C
Cext = 100 pF, T = 25C
2.4
2.2
R = 3.3k
2.0
20
1.8
70C
Fosc(MHz)
IPD(A)
6.0
Shaded area is beyond recommended range.
25
15
85C
10
5
1.6
R = 5k
1.4
1.2
1.0
R = 10k
0.8
0.6
0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
0.4
6.0
R = 100k
0.2
VDD(Volts)
0.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
VDD(Volts)
FIGURE 23-7: TYPICAL RC OSCILLATOR
FREQUENCY vs. VDD
Cext = 300 pF, T = 25C
1000
900
800
Fosc(kHz)
Data based on matrix samples. See first page of this section for details.
5.5
FIGURE 23-6: TYPICAL RC OSCILLATOR
FREQUENCY vs. VDD
-40C
30
R = 100k
0.5
6.0
R = 3.3k
700
600
R = 5k
500
400
R = 10k
300
200
R = 100k
100
0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
VDD(Volts)
DS30234E-page 278
1997-2013 Microchip Technology Inc.
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
FIGURE 23-8: TYPICAL IPD vs. VDD BROWNOUT DETECT ENABLED (RC
MODE)
FIGURE 23-10: TYPICAL IPD vs. TIMER1
ENABLED (32 kHz, RC0/RC1 =
33 pF/33 pF, RC MODE)
1400
1200
30
25
Device NOT in
Brown-out Reset
800
20
600
400
200
0
2.5
IPD(A)
IPD(A)
1000
Device in
Brown-out
Reset
15
10
3.0
3.5
4.0
4.5
VDD(Volts)
5.0
5.5
5
6.0
0
2.5
The shaded region represents the built-in hysteresis of the
brown-out reset circuitry.
FIGURE 23-9: MAXIMUM IPD vs. VDD
BROWN-OUT DETECT
ENABLED
(85C TO -40C, RC MODE)
3.0
3.5
4.0
4.5
VDD(Volts)
5.0
5.5
6.0
FIGURE 23-11: MAXIMUM IPD vs. TIMER1
ENABLED
(32 kHz, RC0/RC1 = 33 pF/33
pF, 85C TO -40C, RC MODE)
1600
1400
1200
45
40
Device NOT in
Brown-out Reset
800
35
30
400
Device in
Brown-out
Reset
20
15
200
4.3
0
2.5
25
3.0
3.5
4.0
4.5
VDD(Volts)
10
5.0
5.5
6.0
The shaded region represents the built-in hysteresis of the
brown-out reset circuitry.
1997-2013 Microchip Technology Inc.
5
0
2.5
3.0
3.5
4.0
4.5
VDD(Volts)
5.0
5.5
6.0
DS30234E-page 279
Data based on matrix samples. See first page of this section for details.
600
IPD(A)
IPD(A)
1000
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
FIGURE 23-12: TYPICAL IDD vs. FREQUENCY (RC MODE @ 22 pF, 25C)
2000
6.0V
1800
5.5V
5.0V
1600
4.5V
1400
IDD(A)
4.0V
1200
3.5V
1000
3.0V
800
2.5V
600
400
200
0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
Frequency(MHz)
3.5
4.0
4.5
Shaded area is
beyond recommended range
FIGURE 23-13: MAXIMUM IDD vs. FREQUENCY (RC MODE @ 22 pF, -40C TO 85C)
2000
6.0V
1800
5.5V
5.0V
1600
4.5V
1400
IDD(A)
Data based on matrix samples. See first page of this section for details.
4.0V
1200
3.5V
1000
3.0V
800
2.5V
600
400
200
0
0.0
0.5
1.0
1.5
2.0
2.5
Frequency(MHz)
DS30234E-page 280
3.0
3.5
4.0
4.5
Shaded area is
beyond recommended range
1997-2013 Microchip Technology Inc.
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
FIGURE 23-14: TYPICAL IDD vs. FREQUENCY (RC MODE @ 100 pF, 25C)
1600
6.0V
1400
5.5V
5.0V
1200
4.5V
4.0V
1000
IDD(A)
3.5V
3.0V
800
2.5V
600
400
200
0
0
200
400
Shaded area is
beyond recommended range
600
800
1000
1200
1400
1600
1800
Frequency(kHz)
FIGURE 23-15: MAXIMUM IDD vs. FREQUENCY (RC MODE @ 100 pF, -40C TO 85C)
1600
1400
5.5V
5.0V
1200
4.5V
4.0V
1000
IDD(A)
3.5V
3.0V
800
2.5V
600
400
200
0
0
200
400
Shaded area is
beyond recommended range
1997-2013 Microchip Technology Inc.
600
800
1000
1200
1400
1600
1800
Frequency(kHz)
DS30234E-page 281
Data based on matrix samples. See first page of this section for details.
6.0V
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
FIGURE 23-16: TYPICAL IDD vs. FREQUENCY (RC MODE @ 300 pF, 25C)
1200
6.0V
5.5V
1000
5.0V
4.5V
4.0V
800
3.5V
IDD(A)
3.0V
600
2.5V
400
200
0
0
100
200
300
400
500
600
700
Frequency(kHz)
FIGURE 23-17: MAXIMUM IDD vs. FREQUENCY (RC MODE @ 300 pF, -40C TO 85C)
1200
6.0V
5.5V
5.0V
4.5V
4.0V
800
3.5V
IDD(A)
Data based on matrix samples. See first page of this section for details.
1000
3.0V
600
2.5V
400
200
0
0
100
200
300
400
500
600
700
Frequency(kHz)
DS30234E-page 282
1997-2013 Microchip Technology Inc.
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
FIGURE 23-18: TYPICAL IDD vs.
CAPACITANCE @ 500 kHz
(RC MODE)
FIGURE 23-19: TRANSCONDUCTANCE(gm)
OF HS OSCILLATOR vs. VDD
600
4.0
500
3.5
3.0
gm(mA/V)
4.0V
400
IDD(A)
Max -40C
5.0V
3.0V
300
200
2.5
Typ 25C
2.0
Min 85C
1.5
1.0
100
0.5
100 pF
TABLE 23-1:
0.0
3.0
300 pF
RC OSCILLATOR
FREQUENCIES
300 pF
5k
4.12 MHz
± 1.4%
10k
2.35 MHz
± 1.4%
100k
268 kHz
± 1.1%
5.5
6.0
6.5
7.0
80
70
60
1.80 MHz
± 1.0%
1.27 MHz
± 1.0%
30
10k
688 kHz
± 1.2%
20
100k
77.2 kHz
± 1.0%
10
3.3k
707 kHz
± 1.4%
± 1.2%
10k
269 kHz
± 1.6%
100k
28.3 kHz
± 1.1%
The percentage variation indicated here is part to
part variation due to normal process distribution. The
variation indicated is ±3 standard deviation from
average value for VDD = 5V.
Typ 25C
50
5k
501 kHz
Max -40C
90
3.3k
5k
5.0
100
gm(A/V)
100 pF
4.5
110
Rext
Fosc @ 5V, 25C
22 pF
4.0
FIGURE 23-20: TRANSCONDUCTANCE(gm)
OF LP OSCILLATOR vs. VDD
Average
Cext
3.5
VDD(Volts)
Shaded area is
beyond recommended range
Capacitance(pF)
40
0
2.0
Min 85C
2.5 3.0 3.5
4.0
4.5
5.0 5.5 6.0
6.5
7.0
VDD(Volts)
Shaded areas are
beyond recommended range
FIGURE 23-21: TRANSCONDUCTANCE(gm)
OF XT OSCILLATOR vs. VDD
1000
900
Max -40C
800
gm(A/V)
700
600
Typ 25C
500
400
300
Min 85C
200
100
0
2.0 2.5 3.0 3.5
4.0 4.5
5.0 5.5
6.0 6.5
7.0
VDD(Volts)
Shaded areas are
beyond recommended range
1997-2013 Microchip Technology Inc.
DS30234E-page 283
Data based on matrix samples. See first page of this section for details.
0
20 pF
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
FIGURE 23-22: TYPICAL XTAL STARTUP
TIME vs. VDD (LP MODE, 25C)
FIGURE 23-24: TYPICAL XTAL STARTUP
TIME vs. VDD (XT MODE, 25C)
3.5
70
3.0
60
50
Startup Time(ms)
Startup Time(Seconds)
2.5
2.0
32 kHz, 33 pF/33 pF
1.5
1.0
40
200 kHz, 68 pF/68 pF
30
200 kHz, 47 pF/47 pF
20
1 MHz, 15 pF/15 pF
10
0.5
4 MHz, 15 pF/15 pF
200 kHz, 15 pF/15 pF
0.0
2.5
0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
3.0
3.5
6.0
4.0
4.5
VDD(Volts)
5.0
5.5
6.0
VDD(Volts)
FIGURE 23-23: TYPICAL XTAL STARTUP
TIME vs. VDD (HS MODE,
25C)
TABLE 23-2:
Osc Type
7
LP
Startup Time(ms)
Data based on matrix samples. See first page of this section for details.
6
20 MHz, 33 pF/33 pF
5
XT
4
8 MHz, 33 pF/33 pF
HS
3
20 MHz, 15 pF/15 pF
8 MHz, 15 pF/15 pF
2
1
4.0
4.5
DS30234E-page 284
5.0
VDD(Volts)
5.5
6.0
CAPACITOR SELECTION FOR
CRYSTAL OSCILLATORS
Crystal
Freq
Cap. Range
C1
Cap. Range
C2
33 pF
32 kHz
33 pF
200 kHz
15 pF
15 pF
200 kHz
47-68 pF
47-68 pF
1 MHz
15 pF
15 pF
4 MHz
15 pF
15 pF
4 MHz
15 pF
15 pF
8 MHz
15-33 pF
15-33 pF
20 MHz
15-33 pF
15-33 pF
Crystals
Used
32 kHz
Epson C-001R32.768K-A
± 20 PPM
200 kHz
STD XTL 200.000KHz
± 20 PPM
1 MHz
ECS ECS-10-13-1
± 50 PPM
4 MHz
ECS ECS-40-20-1
± 50 PPM
8 MHz
EPSON CA-301 8.000M-C
± 30 PPM
20 MHz
EPSON CA-301 20.000M-C
± 30 PPM
1997-2013 Microchip Technology Inc.
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
FIGURE 23-25: TYPICAL IDD vs. FREQUENCY
(LP MODE, 25°C)
FIGURE 23-27: TYPICAL IDD vs. FREQUENCY
(XT MODE, 25°C)
1800
1600
6.0V
1400
5.5V
120
100
5.0V
1200
4.5V
1000
4.0V
60
40
20
0
0
6.0V
5.5V
5.0V
4.5V
4.0V
3.5V
3.0V
2.5V
IDD(A)
IDD(A)
80
3.5V
800
3.0V
600
2.5V
400
50
100
150
200
200
Frequency(kHz)
0
0.0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
3.6
4.0
Frequency(MHz)
FIGURE 23-26: MAXIMUM IDD vs.
FREQUENCY
(LP MODE, 85°C TO -40°C)
FIGURE 23-28: MAXIMUM IDD vs.
FREQUENCY
(XT MODE, -40°C TO 85°C)
1800
6.0V
1600
120
1400
100
1200
80
1000
4.0V
800
3.5V
40
20
0
0
6.0V
5.5V
5.0V
4.5V
4.0V
3.5V
3.0V
2.5V
5.5V
5.0V
4.5V
3.0V
600
2.5V
400
200
50
100
Frequency(kHz)
150
200
0
0.0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
3.6
4.0
Frequency(MHz)
1997-2013 Microchip Technology Inc.
DS30234E-page 285
Data based on matrix samples. See first page of this section for details.
60
IDD(A)
IDD(A)
140
PIC16C6X
Applicable Devices 61 62 62A R62 63 R63 64 64A R64 65 65A R65 66 67
FIGURE 23-29: TYPICAL IDD vs. FREQUENCY
(HS MODE, 25°C)
7.0
FIGURE 23-30: MAXIMUM IDD vs.
FREQUENCY
(HS MODE, -40°C TO 85°C)
7.0
6.0
6.0
5.0
IDD(mA)
IDD(mA)
5.0
4.0
3.0
2.0
1.0
0.0
1 2
6.0V
5.5V
5.0V
4.5V
4.0V
4.0
3.0
2.0
1.0
4
6
8
10
12
Frequency(MHz)
14
16
18
20
0.0
1 2
6.0V
5.5V
5.0V
4.5V
4.0V
4
6
8
10
12
14
16
18
20
Data based on matrix samples. See first page of this section for details.
Frequency(MHz)
DS30234E-page 286
1997-2013 Microchip Technology Inc.
PIC16C6X
24.0
PACKAGING INFORMATION
24.1
18-Lead Plastic Dual In-line (300 mil) (P)
Note:
For the most current package drawings, please see the Microchip Packaging Specification located
at http://www.microchip.com/packaging
N
E1
C
E
eA
eB
Pin No. 1
Indicator
Area
D
S
S1
Base
Plane
Seating
Plane
L
B1
e1
B
A1 A2 A
D1
Package Group: Plastic Dual In-Line (PLA)
Millimeters
Symbol
Min
Max
0
A
A1
A2
B
B1
C
D
D1
E
E1
e1
eA
eB
L
N
S
S1
–
0.381
3.048
0.355
1.524
0.203
22.479
20.320
7.620
6.096
2.489
7.620
7.874
3.048
18
0.889
0.127
1997-2013 Microchip Technology Inc.
Inches
Notes
Min
Max
10
0
10
4.064
–
3.810
0.559
1.524
0.381
23.495
20.320
8.255
7.112
2.591
7.620
9.906
3.556
18
–
–
–
0.015
0.120
0.014
0.060
0.008
0.885
0.800
0.300
0.240
0.098
0.300
0.310
0.120
18
0.035
0.005
0.160
–
0.150
0.022
0.060
0.015
0.925
0.800
0.325
0.280
0.102
0.300
0.390
0.140
18
–
–
Reference
Typical
Reference
Typical
Reference
Notes
Reference
Typical
Reference
Typical
Reference
DS30234E-page 287
PIC16C6X
24.2
28-Lead Plastic Dual In-line (300 mil) (SP)
Note:
For the most current package drawings, please see the Microchip Packaging Specification located
at http://www.microchip.com/packaging
N
E1
E
C
eA
eB
Pin No. 1
Indicator
Area
B2
D
B1
S
Base
Plane
Seating
Plane
L
Detail A
B3
A1 A2 A
e1
B
Detail A
D1
Package Group: Plastic Dual In-Line (PLA)
Millimeters
Symbol
Min
Max
Inches
Notes
Min
Max
0
10
0
10
A
A1
A2
B
B1
B2
B3
C
D
D1
E
E1
e1
eA
eB
L
N
S
3.632
0.381
3.175
0.406
1.016
0.762
0.203
0.203
34.163
33.020
7.874
7.112
2.540
7.874
8.128
3.175
28
0.584
4.572
–
3.556
0.559
1.651
1.016
0.508
0.331
35.179
33.020
8.382
7.493
2.540
7.874
9.652
3.683
28
1.220
0.143
0.015
0.125
0.016
0.040
0.030
0.008
0.008
1.385
1.300
0.310
0.280
0.100
0.310
0.320
0.125
28
0.023
0.180
–
0.140
0.022
0.065
0.040
0.020
0.013
1.395
1.300
0.330
0.295
0.100
0.310
0.380
0.145
28
0.048
DS30234E-page 288
Typical
4 places
4 places
Typical
Reference
Typical
Reference
Notes
Typical
4 places
4 places
Typical
Reference
Typical
Reference
1997-2013 Microchip Technology Inc.
PIC16C6X
24.3
40-Lead Plastic Dual In-line (600 mil) (P)
Note:
For the most current package drawings, please see the Microchip Packaging Specification located
at http://www.microchip.com/packaging
N
E1
E
C
eA
eB
Pin No. 1
Indicator
Area
D
S
S1
Base
Plane
Seating
Plane
L
B1
A1 A2 A
e1
B
D1
Package Group: Plastic Dual In-Line (PLA)
Millimeters
Inches
Symbol
Min
Max
Min
Max
0
10
0
10
A
A1
A2
B
B1
C
D
D1
E
E1
e1
eA
eB
L
N
S
S1
–
0.381
3.175
0.355
1.270
0.203
51.181
48.260
15.240
13.462
2.489
15.240
15.240
2.921
40
1.270
0.508
5.080
–
4.064
0.559
1.778
0.381
52.197
48.260
15.875
13.970
2.591
15.240
17.272
3.683
40
–
–
–
0.015
0.125
0.014
0.050
0.008
2.015
1.900
0.600
0.530
0.098
0.600
0.600
0.115
40
0.050
0.020
0.200
–
0.160
0.022
0.070
0.015
2.055
1.900
0.625
0.550
0.102
0.600
0.680
0.145
40
–
–
1997-2013 Microchip Technology Inc.
Notes
Typical
Typical
Reference
Typical
Reference
Notes
Typical
Typical
Reference
Typical
Reference
DS30234E-page 289
PIC16C6X
24.4
18-Lead Plastic Surface Mount (SOIC - Wide, 300 mil Body) (SO)
Note:
For the most current package drawings, please see the Microchip Packaging Specification located
at http://www.microchip.com/packaging
e
B
h x 45
N
Index
Area
E
H
C
Chamfer
h x 45
L
1
2
3
D
Seating
Plane
Base
Plane
CP
A1
A
Package Group: Plastic SOIC (SO)
Millimeters
Symbol
Min
Max
Inches
Notes
Min
Max
0
8
0
8
A
A1
B
C
D
E
e
H
h
L
N
CP
2.362
0.101
0.355
0.241
11.353
7.416
1.270
10.007
0.381
0.406
18
–
2.642
0.300
0.483
0.318
11.735
7.595
1.270
10.643
0.762
1.143
18
0.102
0.093
0.004
0.014
0.009
0.447
0.292
0.050
0.394
0.015
0.016
18
–
0.104
0.012
0.019
0.013
0.462
0.299
0.050
0.419
0.030
0.045
18
0.004
DS30234E-page 290
Reference
Notes
Reference
1997-2013 Microchip Technology Inc.
PIC16C6X
24.5
28-Lead Plastic Surface Mount (SOIC - Wide, 300 mil Body) (SO)
Note:
For the most current package drawings, please see the Microchip Packaging Specification located
at http://www.microchip.com/packaging
e
B
h x 45
N
Index
Area
E
H
C
Chamfer
h x 45
L
1
2
3
D
Seating
Plane
Base
Plane
CP
A1
A
Package Group: Plastic SOIC (SO)
Millimeters
Inches
Symbol
Min
Max
Min
Max
0
8
0
8
A
A1
B
C
D
E
e
H
h
L
N
CP
2.362
0.101
0.355
0.241
17.703
7.416
1.270
10.007
0.381
0.406
28
–
2.642
0.300
0.483
0.318
18.085
7.595
1.270
10.643
0.762
1.143
28
0.102
0.093
0.004
0.014
0.009
0.697
0.292
0.050
0.394
0.015
0.016
28
–
0.104
0.012
0.019
0.013
0.712
0.299
0.050
0.419
0.030
0.045
28
0.004
1997-2013 Microchip Technology Inc.
Notes
Typical
Notes
Typical
DS30234E-page 291
PIC16C6X
24.6
18-Lead Ceramic CERDIP Dual In-line with Window (300 mil) (JW)
Note:
For the most current package drawings, please see the Microchip Packaging Specification located
at http://www.microchip.com/packaging
N
E1
C
E
eA
eB
Pin No. 1
Indicator
Area
D
S
S1
Base
Plane
Seating
Plane
L
B1
A1 A3 A
e1
B
A2
D1
Package Group: Ceramic CERDIP Dual In-Line (CDP)
Millimeters
Inches
Symbol
Min
Max
Min
Max
0
10
0
10
A
A1
A2
A3
B
B1
C
D
D1
E
E1
e1
eA
eB
L
N
S
S1
—
0.381
3.810
3.810
0.355
1.270
0.203
22.352
20.320
7.620
5.588
2.540
7.366
7.620
3.175
18
0.508
0.381
5.080
1.778
4.699
4.445
0.585
1.651
0.381
23.622
20.320
8.382
7.874
2.540
8.128
10.160
3.810
18
1.397
1.270
—
0.015
0.150
0.150
0.014
0.050
0.008
0.880
0.800
0.300
0.220
0.100
0.290
0.300
0.125
18
0.020
0.015
0.200
0.070
0.185
0.175
0.023
0.065
0.015
0.930
0.800
0.330
0.310
0.100
0.320
0.400
0.150
18
0.055
0.050
DS30234E-page 292
Notes
Typical
Typical
Reference
Reference
Typical
Notes
Typical
Typical
Reference
Reference
Typical
1997-2013 Microchip Technology Inc.
PIC16C6X
24.7
28-Lead Ceramic CERDIP Dual In-line with Window (300 mil)) (JW)
Note:
For the most current package drawings, please see the Microchip Packaging Specification located
at http://www.microchip.com/packaging
N
E1
E
C
Pin No. 1
Indicator
Area
eA
eB
D
D1
Base
Plane
Seating
Plane
L
B1
A1 A2 A
e1
B
D2
Package Group: Ceramic CERDIP Dual In-Line (CDP)
Millimeters
Inches
Symbol
Min
Max
Min
Max
0
10
0
10
A
A1
A2
B
B1
C
D
D2
E
E1
e
eA
eB
L
N
D1
3.30
0.38
2.92
0.35
1.14
0.20
34.54
32.97
7.62
6.10
2.54
7.62
—
2.92
28
0.13
5.84
—
4.95
0.58
1.78
0.38
37.72
33.07
8.25
7.87
2.54
7.62
11.43
5.08
28
—
.130
0.015
0.115
0.014
0.045
0.008
1.360
1.298
0.300
0.240
0.100
0.300
—
0.115
28
0.005
0.230
—
0.195
0.023
0.070
0.015
1.485
1.302
0.325
0.310
0.100
0.300
0.450
0.200
28
—
1997-2013 Microchip Technology Inc.
Notes
Typical
Typical
Reference
Typical
Reference
Notes
Typical
Typical
Reference
Typical
Reference
DS30234E-page 293
PIC16C6X
24.8
40-Lead Ceramic CERDIP Dual In-line with Window (600 mil) (JW)
Note:
For the most current package drawings, please see the Microchip Packaging Specification located
at http://www.microchip.com/packaging
N
E1
E
C
Pin No. 1
Indicator
Area
eA
eB
D
S
S1
Base
Plane
Seating
Plane
L
B1
A1 A3 A A2
e1
B
D1
Package Group: Ceramic CERDIP Dual In-Line (CDP)
Millimeters
Symbol
Min
Max
0
A
A1
A2
A3
B
B1
C
D
D1
E
E1
e1
eA
eB
L
N
S
S1
4.318
0.381
3.810
3.810
0.355
1.270
0.203
51.435
48.260
15.240
12.954
2.540
14.986
15.240
3.175
40
1.016
0.381
DS30234E-page 294
Inches
Notes
Min
Max
10
0
10
5.715
1.778
4.699
4.445
0.585
1.651
0.381
52.705
48.260
15.875
15.240
2.540
16.002
18.034
3.810
40
2.286
1.778
0.170
0.015
0.150
0.150
0.014
0.050
0.008
2.025
1.900
0.600
0.510
0.100
0.590
0.600
0.125
40
0.040
0.015
0.225
0.070
0.185
0.175
0.023
0.065
0.015
2.075
1.900
0.625
0.600
0.100
0.630
0.710
0.150
40
0.090
0.070
Typical
Typical
Reference
Reference
Typical
Notes
Typical
Typical
Reference
Reference
Typical
1997-2013 Microchip Technology Inc.
PIC16C6X
24.9
28-Lead Ceramic Side Brazed Dual In-Line with Window (300 mil) (JW)
Note:
For the most current package drawings, please see the Microchip Packaging Specification located
at http://www.microchip.com/packaging
N
C
E1 E
eA
eB
Pin #1
Indicator Area
D
S1
S
Base
Plane
Seating
Plane
L
B1
A3
A2
A
A1
e1
B
D1
Package Group: Ceramic Side Brazed Dual In-Line (CER)
Millimeters
Inches
Symbol
A
A1
A2
A3
B
B1
C
D
D1
E
E1
e1
eA
eB
L
N
S
S1
Min
Max
0
3.937
1.016
2.921
1.930
0.406
1.219
0.228
35.204
32.893
7.620
7.366
2.413
7.366
7.594
3.302
28
1.143
0.533
10
5.030
1.524
3.506
2.388
0.508
1.321
0.305
35.916
33.147
8.128
7.620
2.667
7.874
8.179
4.064
28
1.397
0.737
1997-2013 Microchip Technology Inc.
Notes
Typical
Typical
Reference
Typical
Reference
Min
Max
0
0.155
0.040
0.115
0.076
0.016
0.048
0.009
1.386
1.295
0.300
0.290
0.095
0.290
0.299
0.130
28
0.045
0.021
10
0.198
0.060
0.138
0.094
0.020
0.052
0.012
1.414
1.305
0.320
0.300
0.105
0.310
0.322
0.160
28
0.055
0.029
Notes
DS30234E-page 295
PIC16C6X
24.10
28-Lead Plastic Surface Mount (SSOP - 209 mil Body 5.30 mm) (SS)
Note:
For the most current package drawings, please see the Microchip Packaging Specification located
at http://www.microchip.com/packaging
N
Index
area
E
H
C
L
1 2 3
B
e
A
Base plane
CP
Seating plane
D
A1
Package Group: Plastic SSOP
Millimeters
Inches
Symbol
Min
Max
Min
Max
0
8
0
8
A
A1
B
C
D
E
e
H
L
N
CP
1.730
0.050
0.250
0.130
10.070
5.200
0.650
7.650
0.550
28
-
1.990
0.210
0.380
0.220
10.330
5.380
0.650
7.900
0.950
28
0.102
0.068
0.002
0.010
0.005
0.396
0.205
0.026
0.301
0.022
28
-
0.078
0.008
0.015
0.009
0.407
0.212
0.026
0.311
0.037
28
0.004
DS30234E-page 296
Notes
Reference
Notes
Reference
1997-2013 Microchip Technology Inc.
PIC16C6X
24.11
44-Lead Plastic Leaded Chip Carrier (Square) (PLCC)
Note:
For the most current package drawings, please see the Microchip Packaging Specification located
at http://www.microchip.com/packaging
D
-A-
D1
-D-
3
-F-
0.812/0.661 N Pics
.032/.026
1.27
.050
2 Sides
0.177
.007 S B D-E S
-HA
A1
3
D3/E3
D2
0.38
.015
3
-G-
8
F-G S
0.177
.007 S B A S
2 Sides
9
0.101 Seating
.004 Plane
D
-C-
4
E2
E1
E
0.38
.015
F-G S
4
-B-
3
-E-
0.177
.007 S A F-G S
10
0.254
.010 Max
2
0.254
.010 Max
11
0.508
.020
0.508
.020
-H-
11
-H-
2
0.812/0.661
3
.032/.026
1.524
.060 Min
6
6
-C1.651
.065
1.651
.065
R 1.14/0.64
.045/.025
R 1.14/0.64
.045/.025
5
0.533/0.331
.021/.013
0.64
Min
.025
0.177
F-G S , D-E S
.007 M A
Package Group: Plastic Leaded Chip Carrier (PLCC)
Millimeters
Symbol
Min
Max
Inches
Notes
Min
Max
A
4.191
4.572
0.165
0.180
A1
D
D1
D2
D3
E
E1
E2
E3
N
CP
LT
2.413
17.399
16.510
15.494
12.700
17.399
16.510
15.494
12.700
44
–
0.203
2.921
17.653
16.663
16.002
12.700
17.653
16.663
16.002
12.700
44
0.102
0.381
0.095
0.685
0.650
0.610
0.500
0.685
0.650
0.610
0.500
44
–
0.008
0.115
0.695
0.656
0.630
0.500
0.695
0.656
0.630
0.500
44
0.004
0.015
1997-2013 Microchip Technology Inc.
Reference
Reference
Notes
Reference
Reference
DS30234E-page 297
PIC16C6X
24.12
44-Lead Plastic Surface Mount (MQFP 10x10 mm Body 1.6/0.15 mm Lead Form) (PQ)
Note:
For the most current package drawings, please see the Microchip Packaging Specification located
at http://www.microchip.com/packaging
4 D
D1 5
0.20 M C A-B S
D S
0.20 M H A-B S
D S
7
0.20 min.
0.05 mm/mm A-B
D3
0.13 R min.
Index
area 6
9
PARTING
LINE
b
0.13/0.30 R
L
C
E3
E1 E
1.60 Ref.
0.20 M C A-B S
D S
4
TYP 4x
10
e
0.20 M H A-B S
B
D S
5
7
0.05 mm/mm D
A2
A
Base
Plane
Seating
Plane
A1
Package Group: Plastic MQFP
Millimeters
Symbol
Min
Max
0
A
A1
A2
b
C
D
D1
D3
E
E1
E3
e
L
N
CP
2.000
0.050
1.950
0.300
0.150
12.950
9.900
8.000
12.950
9.900
8.000
0.800
0.730
44
0.102
DS30234E-page 298
Inches
Notes
Min
Max
7
0
7
2.350
0.250
2.100
0.450
0.180
13.450
10.100
8.000
13.450
10.100
8.000
0.800
1.030
44
–
0.078
0.002
0.768
0.011
0.006
0.510
0.390
0.315
0.510
0.390
0.315
0.031
0.028
44
0.004
0.093
0.010
0.083
0.018
0.007
0.530
0.398
0.315
0.530
0.398
0.315
0.032
0.041
44
–
Typical
Reference
Reference
Notes
Typical
Reference
Reference
1997-2013 Microchip Technology Inc.
PIC16C6X
24.13
44-Lead Plastic Surface Mount (TQFP 10x10 mm Body 1.0/0.10 mm Lead Form) (TQ)
Note:
For the most current package drawings, please see the Microchip Packaging Specification located
at http://www.microchip.com/packaging
D
D1
1.0ø (0.039ø) Ref.
Pin#1
2
11/13(4x)
Pin#1
2
E
0 Min
E1
11/13(4x)
Detail B
e
3.0ø (0.118ø) Ref.
Option 1 (TOP side)
A1
A2
Detail B
Detail A
R1 0.08 Min
R 0.08/0.20
Option 2 (TOP side)
A
L
Base Metal
b
Lead Finish
L
c
1.00 Ref.
Gage Plane
0.250
c1
L1
1.00 Ref
b1
Detail A
S
0.20
Min
Detail B
Package Group: Plastic TQFP
Millimeters
Inches
Symbol
Min
Max
Min
Max
A
A1
A2
D
D1
E
E1
L
e
b
b1
c
c1
N
1.00
0.05
0.95
11.75
9.90
11.75
9.90
0.45
1.20
0.15
1.05
12.25
10.10
12.25
10.10
0.75
Notes
0.039
0.002
0.037
0.463
0.390
0.463
0.390
0.018
0.047
0.006
0.041
0.482
0.398
0.482
0.398
0.030
0.45
0.40
0.20
0.16
44
0.012
0.012
0.004
0.004
44
0.80 BSC
0.30
0.30
0.09
0.09
44
Notes
0.031 BSC
0.018
0.016
0.008
0.006
44
0
7
0
7
Note 1: Dimensions D1 and E1 do not include mold protrusion. Allowable mold protrusion is 0.25m/m (0.010”) per
side. D1 and E1 dimensions including mold mismatch.
2: Dimension “b” does not include Dambar protrusion, allowable Dambar protrusion shall be 0.08m/m
(0.003”)max.
3: This outline conforms to JEDEC MS-026.
1997-2013 Microchip Technology Inc.
DS30234E-page 299
PIC16C6X
24.14
Package Marking Information
18-Lead PDIP
Example
MMMMMMMMMMMMM
XXXXXXXXXXXXXXXX
PIC16C61-04/P
AABBCDE
9450CBA
18-Lead SOIC
Example
MMMMMMMMMM
XXXXXXXXXXXX
XXXXXXXXXXXX
PIC16C61
-20/SO
AABBCDE
9449CBA
18-Lead CERDIP Windowed
Example
MMMMMM
XXXXXXXX
PIC16C61
/JW
9440CBT
AABBCDE
28-Lead PDIP (.300 MIL)
Example
XXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXX
PIC16C63-04I/SP
AABBCAE
Legend:
MM...M
XX...X
AA
BB
C
D1
D2
E
Note:
9452CAN
Microchip part number information
Customer specific information*
Year code (last 2 digits of calender year)
Week code (week of January 1 is week '01’)
Facility code of the plant at which wafer is manufactured.
C = Chandler, Arizona, U.S.A.
S = Tempe, Arizona, U.S.A.
Mask revision number for microcontroller
Mask revision number for EEPROM
Assembly code of the plant or country of origin in which
part was assembled.
In the event the full Microchip part number cannot be marked on one
line, it will be carried over to the next line thus limiting the number of
available characters for customer specific information.
* Standard OTP marking consists of Microchip part number, year code, week code,
facility code, mask revision number, and assembly code. For OTP marking beyond
this, certain price adders apply. Please check with your Microchip Sales Office.
For QTP devices, any special marking adders are included in QTP price.
DS30234E-page 300
1997-2013 Microchip Technology Inc.
PIC16C6X
Package Marking Information (Cont’d)
28-Lead SOIC
Example
MMMMMMMMMMMMMMMMMMXX
XXXXXXXXXXXXXXXXXXXX
PIC16C62-20/S0111
AABBCAE
9515SBA
28-Lead CERDIP Skinny Windowed
Example
XXXXXXXXXXXXXX
XXXXXXXXXXXXXX
PIC16C62/JW
AABBCDE
9517SBT
28-Lead Side Brazed Skinny Windowed
Example
XXXXXXXXXXX
XXXXXXXXXXX
PIC16C66/JW
AABBCDE
28-Lead SSOP
9517CAT
Example
XXXXXXXXXXXX
XXXXXXXXXXXX
PIC16C62
20I/SS025
AABBCAE
9517SBP
Example
40-Lead PDIP
MMMMMMMMMMMMMM
XXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXX
AABBCDE
Legend:
Note:
PIC16C65-04/P
9510CAA
MM...M
XX...X
AA
BB
C
Microchip part number information
Customer specific information*
Year code (last 2 digits of calender year)
Week code (week of January 1 is week '01’)
Facility code of the plant at which wafer is manufactured.
C = Chandler, Arizona, U.S.A.
S = Tempe, Arizona, U.S.A.
D1
E
Mask revision number for microcontroller
Assembly code of the plant or country of origin in which
part was assembled.
In the event the full Microchip part number cannot be marked on one
line, it will be carried over to the next line thus limiting the number of
available characters for customer specific information.
* Standard OTP marking consists of Microchip part number, year code, week code,
facility code, mask revision number, and assembly code. For OTP marking beyond
this, certain price adders apply. Please check with your Microchip Sales Office.
For QTP devices, any special marking adders are included in QTP price.
1997-2013 Microchip Technology Inc.
DS30234E-page 301
PIC16C6X
Package Marking Information (Cont’d)
40-Lead CERDIP Windowed
Example
PIC16C67/JW
MMMMMMMMM
XXXXXXXXXXX
XXXXXXXXXXX
9450CAT
AABBCDE
44-Lead PLCC
Example
MMMMMMMM
XXXXXXXXXX
PIC16C64
-20/L
XXXXXXXXXX
AABBCDE
9442CAN
Example
44-Lead MQFP
MMMMMMMM
XXXXXXXXXX
XXXXXXXXXX
AABBCDE
PIC16C64
-04/PQ
9444CAP
44-Lead TQFP
Example
MMMMMMMM
XXXXXXXXXX
XXXXXXXXXX
AABBCDE
Legend:
Note:
PIC16C64A
-10/TQ
AABBCDE
MM...M
XX...X
AA
BB
C
Microchip part number information
Customer specific information*
Year code (last 2 digits of calender year)
Week code (week of January 1 is week '01’)
Facility code of the plant at which wafer is manufactured.
C = Chandler, Arizona, U.S.A.
S = Tempe, Arizona, U.S.A.
D1
E
Mask revision number for microcontroller
Assembly code of the plant or country of origin in which
part was assembled.
In the event the full Microchip part number cannot be marked on one
line, it will be carried over to the next line thus limiting the number of
available characters for customer specific information.
* Standard OTP marking consists of Microchip part number, year code, week code,
facility code, mask revision number, and assembly code. For OTP marking beyond
this, certain price adders apply. Please check with your Microchip Sales Office.
For QTP devices, any special marking adders are included in QTP price.
DS30234E-page 302
1997-2013 Microchip Technology Inc.
PIC16C6X
APPENDIX A: MODIFICATIONS
APPENDIX B: COMPATIBILITY
The following are the list of modifications over the
PIC16C5X microcontroller family:
To convert code written for PIC16C5X to PIC16CXX,
the user should take the following steps:
1.
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
Instruction word length is increased to 14-bits.
This allows larger page sizes both in program
memory (2K now as opposed to 512 before) and
register file (128 bytes now versus 32 bytes
before).
A PC high latch register (PCLATH) is added to
handle program memory paging. PA2, PA1, PA0
bits are removed from STATUS register.
Data memory paging is redefined slightly. STATUS register is modified.
Four new instructions have been added:
RETURN, RETFIE, ADDLW, and SUBLW.
Two instructions TRIS and OPTION are being
phased out although they are kept for compatibility with PIC16C5X.
OPTION and TRIS registers are made addressable.
Interrupt capability is added. Interrupt vector is
at 0004h.
Stack size is increased to 8 deep.
Reset vector is changed to 0000h.
Reset of all registers is revisited. Five different
reset (and wake-up) types are recognized. Registers are reset differently.
Wake-up from SLEEP through interrupt is
added.
Two separate timers, Oscillator Start-up Timer
(OST) and Power-up Timer (PWRT), are
included for more reliable power-up. These timers are invoked selectively to avoid unnecessary
delays on power-up and wake-up.
PORTB has weak pull-ups and interrupt on
change feature.
Timer0 pin is also a port pin (RA4/T0CKI) now.
FSR is made a full 8-bit register.
“In-circuit programming” is made possible. The
user can program PIC16CXX devices using only
five pins: VDD, VSS, VPP, RB6 (clock) and RB7
(data in/out).
Power Control register (PCON) is added with a
Power-on Reset status bit (POR).(Not on the
PIC16C61).
Brown-out Reset has been added to the following devices:
PIC16C62A/R62/63/R63/64A/R64/65A/R65/66/
67.
1997-2013 Microchip Technology Inc.
2.
3.
4.
5.
Remove any program memory page select
operations (PA2, PA1, PA0 bits) for CALL,
GOTO.
Revisit any computed jump operations (write to
PC or add to PC, etc.) to make sure page bits
are set properly under the new scheme.
Eliminate any data memory page switching.
Redefine data variables to reallocate them.
Verify all writes to STATUS, OPTION, and FSR
registers since these have changed.
Change reset vector to 0000h.
DS30234E-page 303
PIC16C6X
APPENDIX C: WHAT’S NEW
APPENDIX D: WHAT’S CHANGED
Added PIC16CR63 and PIC16CR65 devices.
Minor changes, spelling and grammatical changes.
Added PIC16C66 and PIC16C67 devices. The
PIC16C66/67 devices have 368 bytes of data memory
distributed in 4 banks and 8K of program memory in 4
pages. These two devices have an enhanced SPI that
supports both clock phase and polarity. The USART
has been enhanced.
Divided SPI section into SPI for the PIC16C66/67
(Section 11.3) and SPI for all other devices
(Section 11.2).
When upgrading to the PIC16C66/67 please note that
the upper 16 bytes of data memory in banks 1,2, and 3
are mapped into bank 0. This may require relocation of
data memory usage in the user application code.
Q-cycles for instruction execution were added to Section 14.0 Instruction Set Summary.
Added the following note for the USART. This applies to
all devices except the PIC16C66 and PIC16C67.
For the PIC16C63/R63/65/65A/R65 the asynchronous
high speed mode (BRGH = 1) may experience a high
rate of receive errors. It is recommended that BRGH =
0. If you desire a higher baud rate than BRGH = 0 can
support, refer to the device errata for additional information or use the PIC16C66/67.
APPENDIX E: REVISION E
January 2013 - Added a note to each package drawing.
DS30234E-page 304
1997-2013 Microchip Technology Inc.
PIC16C6X
APPENDIX F: PIC16/17 MICROCONTROLLERS
F.1
PIC12CXXX Family of Devices
PIC12C508
Clock
Memory
Peripherals
Features
PIC12C509
PIC12C671
PIC12C672
Maximum Frequency
of Operation (MHz)
4
4
4
4
EPROM Program Memory
512 x 12
1024 x 12
1024 x 14
2048 x 14
Data Memory (bytes)
25
41
128
128
Timer Module(s)
TMR0
TMR0
TMR0
TMR0
A/D Converter (8-bit) Channels
—
—
4
4
Wake-up from SLEEP on
pin change
Yes
Yes
Yes
Yes
I/O Pins
5
5
5
5
Input Pins
1
1
1
1
Internal Pull-ups
Yes
Yes
Yes
Yes
Voltage Range (Volts)
2.5-5.5
2.5-5.5
2.5-5.5
2.5-5.5
In-Circuit Serial Programming
Yes
Yes
Yes
Yes
Number of Instructions
33
33
35
35
Packages
8-pin DIP, SOIC
8-pin DIP, SOIC
8-pin DIP, SOIC
8-pin DIP, SOIC
All PIC12C5XX devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability.
All PIC12C5XX devices use serial programming with data pin GP1 and clock pin GP0.
F.2
PIC14C000 Family of Devices
PIC14C000
Clock
Memory
Peripherals
Features
Maximum Frequency of Operation (MHz)
20
EPROM Program Memory (x14 words)
4K
Data Memory (bytes)
192
Timer Module(s)
TMR0
ADTMR
Serial Port(s)
(SPI/I2C, USART)
I2C with SMBus
Support
Slope A/D Converter Channels
8 External; 6 Internal
Interrupt Sources
11
I/O Pins
22
Voltage Range (Volts)
2.7-6.0
In-Circuit Serial Programming
Yes
Additional On-chip Features
Internal 4MHz Oscillator, Bandgap Reference,Temperature Sensor,
Calibration Factors, Low Voltage Detector, SLEEP, HIBERNATE,
Comparators with Programmable References (2)
Packages
28-pin DIP (.300 mil), SOIC, SSOP
1997-2013 Microchip Technology Inc.
DS30234E-page 305
PIC16C6X
F.3
PIC16C15X Family of Devices
PIC16C154
Clock
Memory
PIC16C156
PIC16CR156
PIC16C158
PIC16CR158
20
20
20
20
20
20
EPROM Program Memory
(x12 words)
512
—
1K
—
2K
—
ROM Program Memory
(x12 words)
—
512
—
1K
—
2K
RAM Data Memory (bytes) 25
25
25
25
73
73
TMR0
TMR0
TMR0
TMR0
TMR0
TMR0
I/O Pins
12
12
12
12
12
12
Voltage Range (Volts)
3.0-5.5
2.5-5.5
3.0-5.5
2.5-5.5
3.0-5.5
2.5-5.5
Number of Instructions
33
33
33
33
33
33
Packages
18-pin DIP, 18-pin DIP,
18-pin DIP, 18-pin DIP,
18-pin DIP,
18-pin DIP,
SOIC;
SOIC;
SOIC;
SOIC;
SOIC;
SOIC;
20-pin SSOP 20-pin SSOP 20-pin SSOP 20-pin SSOP 20-pin SSOP 20-pin SSOP
Peripherals Timer Module(s)
Features
PIC16CR154
Maximum Frequency
of Operation (MHz)
All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high
I/O current capability.
F.4
PIC16C5X Family of Devices
PIC16C52
Clock
Memory
PIC16C54A
20
20
20
EPROM Program Memory
(x12 words)
384
512
512
—
512
1K
ROM Program Memory
(x12 words)
—
—
—
512
—
—
RAM Data Memory (bytes)
25
25
25
25
24
25
TMR0
TMR0
TMR0
TMR0
TMR0
TMR0
12
12
12
12
20
12
2.5-6.25
Voltage Range (Volts)
2.5-6.25
2.5-6.25
2.0-6.25
2.0-6.25
2.5-6.25
Number of Instructions
33
33
33
33
33
33
Packages
18-pin DIP, 18-pin DIP,
18-pin DIP,
18-pin DIP,
SOIC
SOIC;
SOIC;
SOIC;
20-pin SSOP 20-pin SSOP 20-pin SSOP
28-pin DIP,
SOIC,
SSOP
18-pin DIP,
SOIC;
20-pin SSOP
PIC16CR57B
PIC16C58A
PIC16CR58A
Maximum Frequency
of Operation (MHz)
20
20
20
20
EPROM Program Memory
(x12 words)
2K
—
2K
—
ROM Program Memory
(x12 words)
—
2K
—
2K
RAM Data Memory (bytes)
72
72
73
73
TMR0
TMR0
TMR0
TMR0
12
Peripherals Timer Module(s)
Features
PIC16C56
20
PIC16C57
Memory
PIC16C55
20
I/O Pins
Clock
PIC16CR54A
4
Peripherals Timer Module(s)
Features
PIC16C54
Maximum Frequency
of Operation (MHz)
I/O Pins
20
20
12
Voltage Range (Volts)
2.5-6.25
2.5-6.25
2.0-6.25
2.5-6.25
Number of Instructions
33
33
33
33
Packages
28-pin DIP,
SOIC,
SSOP
28-pin DIP, SOIC,
SSOP
18-pin DIP, SOIC; 18-pin DIP, SOIC;
20-pin SSOP
20-pin SSOP
All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer (except PIC16C52), selectable code protect and high
I/O current capability.
DS30234E-page 306
1997-2013 Microchip Technology Inc.
PIC16C6X
F.5
PIC16C55X Family of Devices
PIC16C556(1)
PIC16C554
Clock
Memory
20
20
20
EPROM Program Memory (x14 words)
512
1K
2K
Data Memory (bytes)
80
80
128
Timer Module(s)
TMR0
TMR0
TMR0
—
—
—
—
—
—
Peripherals Comparators(s)
Internal Reference Voltage
Features
PIC16C558
Maximum Frequency of Operation (MHz)
Interrupt Sources
3
3
3
I/O Pins
13
13
13
Voltage Range (Volts)
2.5-6.0
2.5-6.0
2.5-6.0
Brown-out Reset
—
—
—
Packages
18-pin DIP,
SOIC;
20-pin SSOP
18-pin DIP,
SOIC;
20-pin SSOP
18-pin DIP,
SOIC;
20-pin SSOP
All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high
I/O current capability. All PIC16C5XX Family devices use serial programming with clock pin RB6 and data pin RB7.
Note 1: Please contact your local Microchip sales office for availability of these devices.
F.6
PIC16C62X and PIC16C64X Family of Devices
PIC16C620
Clock
Memory
PIC16C622
PIC16C642
PIC16C662
20
20
20
20
20
EPROM Program Memory
(x14 words)
512
1K
2K
4K
4K
Data Memory (bytes)
80
80
128
176
176
Timer Module(s)
TMR0
TMR0
TMR0
TMR0
TMR0
2
2
2
2
2
Peripherals Comparators(s)
Features
PIC16C621
Maximum Frequency
of Operation (MHz)
Internal Reference Voltage
Yes
Yes
Yes
Yes
Yes
Interrupt Sources
4
4
4
4
5
I/O Pins
13
13
13
22
33
Voltage Range (Volts)
2.5-6.0
2.5-6.0
2.5-6.0
3.0-6.0
3.0-6.0
Brown-out Reset
Yes
Yes
Yes
Yes
Yes
Packages
18-pin DIP,
SOIC;
20-pin SSOP
18-pin DIP,
SOIC;
20-pin SSOP
18-pin DIP,
SOIC;
20-pin SSOP
28-pin PDIP,
SOIC,
Windowed
CDIP
40-pin PDIP,
Windowed
CDIP;
44-pin PLCC,
MQFP
All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high
I/O current capability. All PIC16C62X and PIC16C64X Family devices use serial programming with clock pin RB6 and data pin RB7.
1997-2013 Microchip Technology Inc.
DS30234E-page 307
PIC16C6X
F.7
PIC16C7XX Family of Devces
PIC16C710
PIC16C71
PIC16C711
PIC16C715
PIC16C72
PIC16CR72(1)
Maximum Frequency
of Operation (MHz)
20
20
20
20
20
20
EPROM Program Memory
(x14 words)
512
1K
1K
2K
2K
—
ROM Program Memory
(14K words)
—
—
—
—
—
2K
Data Memory (bytes)
36
36
68
128
128
128
Timer Module(s)
TMR0
TMR0
TMR0
TMR0
TMR0,
TMR1,
TMR2
TMR0,
TMR1,
TMR2
Capture/Compare/
Peripherals PWM Module(s)
—
—
—
—
1
1
Serial Port(s)
(SPI/I2C, USART)
—
—
—
—
SPI/I2C
SPI/I2C
Parallel Slave Port
—
Clock
Memory
A/D Converter (8-bit) Channels 4
Features
—
—
—
—
—
4
4
4
5
5
Interrupt Sources
4
4
4
4
8
8
I/O Pins
13
13
13
13
22
22
Voltage Range (Volts)
3.0-6.0
3.0-6.0
3.0-6.0
3.0-5.5
2.5-6.0
3.0-5.5
In-Circuit Serial Programming
Yes
Yes
Yes
Yes
Yes
Yes
Brown-out Reset
Yes
—
Yes
Yes
Yes
Yes
Packages
18-pin DIP, 18-pin DIP, 18-pin DIP, 18-pin DIP, 28-pin SDIP, 28-pin SDIP,
SOIC;
SOIC
SOIC;
SOIC;
SOIC, SSOP SOIC, SSOP
20-pin SSOP
20-pin SSOP 20-pin SSOP
PIC16C73A
Clock
Memory
PIC16C76
PIC16C77
20
20
20
EPROM Program Memory
(x14 words)
4K
4K
8K
8K
Data Memory (bytes)
192
192
368
368
Timer Module(s)
TMR0,
TMR1,
TMR2
TMR0,
TMR1,
TMR2
TMR0,
TMR1,
TMR2
TMR0,
TMR1,
TMR2
2
2
2
SPI/I2C, USART
SPI/I2C, USART
SPI/I2C, USART
Yes
Capture/Compare/PWM Mod- 2
Peripherals ule(s)
Serial
Port(s)
USART)
(SPI/I2C, SPI/I2C, USART
Parallel Slave Port
Features
PIC16C74A
Maximum Frequency of Oper- 20
ation (MHz)
Yes
—
A/D Converter (8-bit) Channels 5
—
8
5
8
Interrupt Sources
11
12
11
12
I/O Pins
22
33
22
33
Voltage Range (Volts)
2.5-6.0
2.5-6.0
2.5-6.0
2.5-6.0
In-Circuit Serial Programming
Yes
Yes
Yes
Yes
Brown-out Reset
Yes
Yes
Yes
Yes
Packages
28-pin SDIP,
SOIC
40-pin DIP;
44-pin PLCC,
MQFP, TQFP
28-pin SDIP,
SOIC
40-pin DIP;
44-pin PLCC,
MQFP, TQFP
All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability. All PIC16C7XX Family devices use serial programming with clock pin RB6 and data pin RB7.
Note 1: Please contact your local Microchip sales office for availability of these devices.
DS30234E-page 308
1997-2013 Microchip Technology Inc.
PIC16C6X
F.8
PIC16C8X Family of Devices
PIC16F83
Maximum Frequency
of Operation (MHz)
Clock
Memory
Peripherals
Features
PIC16CR83
10
10
PIC16F84
10
PIC16CR84
10
Flash Program Memory
512
—
1K
—
EEPROM Program Memory
—
—
—
—
ROM Program Memory
—
512
—
1K
Data Memory (bytes)
36
36
68
68
Data EEPROM (bytes)
64
64
64
64
Timer Module(s)
TMR0
TMR0
TMR0
TMR0
Interrupt Sources
4
4
4
4
I/O Pins
13
13
13
13
Voltage Range (Volts)
2.0-6.0
2.0-6.0
2.0-6.0
2.0-6.0
Packages
18-pin DIP,
SOIC
18-pin DIP,
SOIC
18-pin DIP,
SOIC
18-pin DIP,
SOIC
All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability. All PIC16C8X Family devices use serial programming with clock pin RB6 and data pin RB7.
F.9
PIC16C9XX Family Of Devices
PIC16C923
Clock
Memory
8
8
EPROM Program Memory
4K
4K
Data Memory (bytes)
176
176
Timer Module(s)
TMR0,
TMR1,
TMR2
TMR0,
TMR1,
TMR2
Capture/Compare/PWM Module(s)
1
1
SPI/I2C
SPI/I2C
Parallel Slave Port
—
—
A/D Converter (8-bit) Channels
—
5
LCD Module
4 Com,
32 Seg
4 Com,
32 Seg
Serial Port(s)
Peripherals (SPI/I2C, USART)
Features
PIC16C924
Maximum Frequency of Operation (MHz)
Interrupt Sources
8
9
I/O Pins
25
25
Input Pins
27
27
Voltage Range (Volts)
3.0-6.0
3.0-6.0
In-Circuit Serial Programming
Yes
Yes
Brown-out Reset
—
—
Packages
64-pin SDIP(1),
TQFP;
68-pin PLCC,
Die
64-pin SDIP(1),
TQFP;
68-pin PLCC,
Die
All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability. All PIC16C9XX Family devices use serial programming with clock pin RB6 and data pin RB7.
1997-2013 Microchip Technology Inc.
DS30234E-page 309
PIC16C6X
F.10
PIC17CXXX Family of Devices
PIC17C42A
Clock
Memory
Clock
Memory
PIC17CR43
PIC17C44
33
33
33
33
EPROM Program Memory
(words)
2K
—
4K
—
8K
ROM Program Memory
(words)
—
2K
—
4K
—
RAM Data Memory (bytes)
232
232
454
454
454
Timer Module(s)
TMR0,
TMR1,
TMR2,
TMR3
TMR0,
TMR1,
TMR2,
TMR3
TMR0,
TMR1,
TMR2,
TMR3
TMR0,
TMR1,
TMR2,
TMR3
TMR0,
TMR1,
TMR2,
TMR3
Captures/PWM Module(s)
2
2
2
2
2
Serial Port(s) (USART)
Yes
Yes
Yes
Yes
Yes
Hardware Multiply
Yes
Yes
Yes
Yes
Yes
External Interrupts
Yes
Yes
Yes
Yes
Yes
Interrupt Sources
11
11
11
11
11
I/O Pins
33
33
33
33
33
Voltage Range (Volts)
2.5-6.0
2.5-6.0
2.5-6.0
2.5-6.0
2.5-6.0
Number of Instructions
58
58
58
58
58
Packages
40-pin DIP;
44-pin PLCC,
MQFP, TQFP
40-pin DIP;
44-pin PLCC,
MQFP, TQFP
40-pin DIP;
44-pin PLCC,
MQFP, TQFP
40-pin DIP;
44-pin PLCC,
MQFP, TQFP
40-pin DIP;
44-pin PLCC,
MQFP, TQFP
PIC17C752
PIC17C756
Maximum Frequency
of Operation (MHz)
33
33
EPROM Program Memory
(words)
8K
16K
ROM Program Memory
(words)
—
—
RAM Data Memory (bytes)
454
902
Timer Module(s)
TMR0,
TMR1,
TMR2,
TMR3
TMR0,
TMR1,
TMR2,
TMR3
Peripherals
Features
PIC17C43
33
Peripherals
Features
PIC17CR42
Maximum Frequency
of Operation (MHz)
Captures/PWM Module(s)
4/3
4/3
Serial Port(s) (USART)
2
2
Hardware Multiply
Yes
Yes
External Interrupts
Yes
Yes
Interrupt Sources
18
18
I/O Pins
50
50
Voltage Range (Volts)
3.0-6.0
3.0-6.0
Number of Instructions
58
58
Packages
64-pin DIP;
68-pin LCC,
68-pin TQFP
64-pin DIP;
68-pin LCC,
68-pin TQFP
All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high
I/O current capability.
DS30234E-page 310
1997-2013 Microchip Technology Inc.
PIC16C6X
PIN COMPATIBILITY
Devices that have the same package type and VDD,
VSS and MCLR pin locations are said to be pin
compatible. This allows these different devices to
operate in the same socket. Compatible devices may
only requires minor software modification to allow
proper operation in the application socket
(ex., PIC16C56 and PIC16C61 devices). Not all
devices in the same package size are pin compatible;
for example, the PIC16C62 is compatible with the
PIC16C63, but not the PIC16C55.
Pin compatibility does not mean that the devices offer
the same features. As an example, the PIC16C54 is
pin compatible with the PIC16C71, but does not have
an A/D converter, weak pull-ups on PORTB, or
interrupts.
TABLE F-1:
PIN COMPATIBLE DEVICES
Pin Compatible Devices
Package
PIC12C508, PIC12C509, PIC12C671, PIC12C672
8-pin
PIC16C154, PIC16CR154, PIC16C156,
PIC16CR156, PIC16C158, PIC16CR158,
PIC16C52, PIC16C54, PIC16C54A,
PIC16CR54A,
PIC16C56,
PIC16C58A, PIC16CR58A,
PIC16C61,
PIC16C554, PIC16C556, PIC16C558
PIC16C620, PIC16C621, PIC16C622
PIC16C641, PIC16C642, PIC16C661, PIC16C662
PIC16C710, PIC16C71, PIC16C711, PIC16C715
PIC16F83, PIC16CR83,
PIC16F84A, PIC16CR84
18-pin,
20-pin
PIC16C55, PIC16C57, PIC16CR57B
28-pin
PIC16CR62, PIC16C62A, PIC16C63, PIC16CR63,
PIC16C66, PIC16C72, PIC16C73A, PIC16C76
28-pin
PIC16CR64, PIC16C64A, PIC16C65A,
PIC16CR65, PIC16C67, PIC16C74A, PIC16C77
40-pin
PIC17CR42, PIC17C42A,
PIC17C43, PIC17CR43, PIC17C44
40-pin
PIC16C923, PIC16C924
64/68-pin
PIC17C756, PIC17C752
64/68-pin
1997-2013 Microchip Technology Inc.
DS30234E-page 311
PIC16C6X
NOTES:
DS30234E-page 312
1997-2013 Microchip Technology Inc.
PIC16C6X
INDEX
Numerics
9-bit Receive Enable bit, RX9 ........................................... 106
9-bit Transmit Enable bit, TX9 .......................................... 105
9th bit of received data, RX9D .......................................... 106
9th bit of transmit data, TX9D ........................................... 105
A
Absolute Maximum
Ratings .............................. 163, 183, 199, 215, 231, 247, 263
ACK..................................................................... 96, 100, 101
ALU ....................................................................................... 9
Application Notes
AN552 (Implementing Wake-up on Key Stroke) ......... 53
AN556 (Implementing a Table Read) ......................... 48
AN594 (Using the CCP Modules) ............................... 77
Architectural Overview .......................................................... 9
B
Baud Rate Formula ........................................................... 107
Baud Rate Generator ........................................................ 107
Baud Rates
Asynchronous Mode ................................................. 108
Error, Calculating ...................................................... 107
RX Pin Sampling, Timing Diagrams.................. 110, 111
Sampling ................................................................... 110
Synchronous Mode ................................................... 108
BF ......................................................................... 84, 89, 100
Block Diagrams
Capture Mode Operation ............................................ 78
Compare Mode ........................................................... 79
Crystal Oscillator, Ceramic Resonator...................... 125
External Brown-out Protection .................................. 135
External Parallel Resonant Crystal Circuit ................ 127
External Power-on Reset .......................................... 135
External Series Resonant Crystal Circuit.................. 127
I2C Mode..................................................................... 99
In-circuit Programming Connections......................... 142
Interrupt Logic ........................................................... 137
On-chip Reset Circuit................................................ 128
Parallel Slave Port, PORTD-PORTE .......................... 61
PIC16C61 ................................................................... 10
PIC16C62 ................................................................... 11
PIC16C62A ................................................................. 11
PIC16C63 ................................................................... 12
PIC16C64 ................................................................... 11
PIC16C64A ................................................................. 11
PIC16C65 ................................................................... 12
PIC16C65A ................................................................. 12
PIC16C66 ................................................................... 13
PIC16C67 ................................................................... 13
PIC16CR62................................................................. 11
PIC16CR63................................................................. 12
PIC16CR64................................................................. 11
PIC16CR65................................................................. 12
PORTC ....................................................................... 55
PORTD (I/O Mode) ..................................................... 57
PORTE (I/O Mode) ..................................................... 58
PWM ........................................................................... 80
RA3:RA0 pins ............................................................. 51
RA4/T0CKI pin ............................................................ 51
RA5 pin ....................................................................... 51
RB3:RB0 pins ............................................................. 54
RB7:RB4 pins ....................................................... 53, 54
RC Oscillator Mode................................................... 127
1997-2013 Microchip Technology Inc.
SPI Master/Slave Connection..................................... 87
SSP in I2C Mode ........................................................ 99
SSP in SPI Mode.................................................. 86, 91
Timer0 ........................................................................ 65
Timer0/WDT Prescaler ............................................... 68
Timer1 ........................................................................ 72
Timer2 ........................................................................ 75
USART Receive ....................................................... 114
USART Transmit ...................................................... 112
Watchdog Timer ....................................................... 140
BOR .................................................................................. 129
BOR ............................................................................ 47, 131
BRGH ............................................................................... 105
Brown-out Reset (BOR).................................................... 129
Brown-out Reset Status bit, BOR ....................................... 47
Buffer Full Status bit, BF............................................... 84, 89
C
C ......................................................................................... 35
C Compiler........................................................................ 161
Capture
Block Diagram ............................................................ 78
Mode........................................................................... 78
Pin Configuration ........................................................ 78
Prescaler .................................................................... 79
Software Interrupt ....................................................... 78
Capture Interrupt ................................................................ 78
Capture/Compare/PWM (CCP)
Capture Mode............................................................. 78
Capture Mode Block Diagram .................................... 78
CCP1 .......................................................................... 77
CCP2 .......................................................................... 77
Compare Mode........................................................... 79
Compare Mode Block Diagram .................................. 79
Overview..................................................................... 63
Prescaler .................................................................... 79
PWM Block Diagram .................................................. 80
PWM Mode................................................................. 80
PWM, Example Frequencies/Resolutions .................. 81
Section........................................................................ 77
Carry..................................................................................... 9
Carry bit .............................................................................. 35
CCP Module Interaction...................................................... 77
CCP pin Configuration........................................................ 78
CCP to Timer Resource Use .............................................. 77
CCP1 Interrupt Enable bit, CCP1IE.................................... 38
CCP1 Interrupt Flag bit, CCP1IF ........................................ 41
CCP1 Mode Select bits....................................................... 78
CCP1CON ............................................ 24, 26, 28, 30, 32, 34
CCP1IE............................................................................... 38
CCP1IF ............................................................................... 41
CCP1M3:CCM1M0............................................................. 78
CCP1X:CCP1Y................................................................... 78
CCP2 Interrupt Enable bit, CCP2IE.................................... 45
CCP2 Interrupt Flag bit, CCP2IF ........................................ 46
CCP2 Mode Select bits....................................................... 78
CCP2CON ............................................ 24, 26, 28, 30, 32, 34
CCP2IE............................................................................... 45
CCP2IF ............................................................................... 46
CCP2M3:CCP2M0.............................................................. 78
CCP2X:CCP2Y................................................................... 78
CCPR1H............................................... 24, 26, 28, 30, 32, 34
CCPR1L ............................................... 24, 26, 28, 30, 32, 34
CCPR2H............................................... 24, 26, 28, 30, 32, 34
CCPR2L ............................................... 24, 26, 28, 30, 32, 34
CKE .................................................................................... 89
CKP .............................................................................. 85, 90
DS30234E-page 313
PIC16C6X
Clearing Interrupts............................................................... 53
Clock Polarity Select bit, CKP ....................................... 85, 90
Clock Polarity, SPI Mode .................................................... 87
Clock Source Select bit, CSRC......................................... 105
Clocking Scheme ................................................................ 18
Code Examples
Changing Between Capture Prescalers ...................... 79
Ensuring Interrupts are Globally Disabled ................ 136
Indirect Addressing ..................................................... 49
Initializing PORTA ....................................................... 51
Initializing PORTB ....................................................... 53
Initializing PORTC....................................................... 55
Loading the SSPBUF Register ................................... 86
Loading the SSPBUF register ..................................... 91
Reading a 16-bit Free-running Timer .......................... 73
Read-Modify-Write on an I/O Port............................... 60
Saving Status, W, and PCLATH Registers ............... 139
Subroutine Call, Page0 to Page1................................ 49
Code Protection ................................................................ 142
Compare
Block Diagram............................................................. 79
Mode ........................................................................... 79
Pin Configuration ........................................................ 79
Software Interrupt ....................................................... 79
Special Event Trigger.................................................. 79
Computed GOTO ................................................................ 48
Configuration Bits.............................................................. 123
Configuration Word, Diagram............................................ 124
Connecting Two Microcontrollers........................................ 87
Continuous Receive Enable bit, CREN............................. 106
CREN ................................................................................ 106
CSRC ................................................................................ 105
D
D/A ................................................................................ 84, 89
Data/Address bit, D/A.................................................... 84, 89
Data Memory
Organization................................................................ 20
Section ........................................................................ 20
Data Sheet
Compatibility ............................................................. 307
Modifications ............................................................. 307
What’s New ............................................................... 308
DC ....................................................................................... 35
DC CHARACTERISTICS .. 164, 184, 200, 216, 232, 248, 264
Development Support ....................................................... 159
Development Tools ........................................................... 159
Device Drawings
18-Lead Ceramic CERDIP Dual In-line
with Window (300 mil) ............................................... 296
18-Lead Plastic Dual In-line (300 mil) ....................... 291
18-Lead Plastic Surface Mount
(SOIC - Wide, 300 mil Body).................................... 294
28-Lead Ceramic CERDIP Dual In-line with
Window (300 mil)) ..................................................... 297
28-Lead Ceramic Side Brazed Dual In-Line
with Window (300 mil) ............................................... 299
28-Lead Plastic Dual In-line (300 mil) ....................... 292
28-Lead Plastic Surface Mount
(SOIC - Wide, 300 mil Body)..................................... 295
28-Lead Plastic Surface Mount
(SSOP - 209 mil Body 5.30 mm)............................... 300
40-Lead Ceramic CERDIP Dual In-line
with Window (600 mil) ............................................... 298
40-Lead Plastic Dual In-line (600 mil) ....................... 293
44-Lead Plastic Leaded Chip Carrier (Square) ......... 301
DS30234E-page 314
44-Lead Plastic Surface Mount (MQFP
10x10 mm Body 1.6/0.15 mm Lead Form) ....... 302, 303
Device Varieties.................................................................... 7
Digit Carry............................................................................. 9
Digit Carry bit ...................................................................... 35
Direct Addressing ............................................................... 49
E
Electrical Characteristics .. 163, 183, 199, 215, 231, 247, 263
External Clock Synchronization, TMR0 .............................. 67
F
Family of Devices
PIC12CXXX.............................................................. 309
PIC14C000 ............................................................... 309
PIC16C15X............................................................... 310
PIC16C55X............................................................... 311
PIC16C5X................................................................. 310
PIC16C62X and PIC16C64X.................................... 311
PIC16C6X..................................................................... 6
PIC16C7XX .............................................................. 312
PIC16C8X................................................................. 313
PIC16C9XX .............................................................. 313
PIC17CXX ................................................................ 314
FERR ................................................................................ 106
Framing Error bit, FERR ................................................... 106
FSR......................... 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34
Fuzzy Logic Dev. System (fuzzyTECH-MP)........... 159, 161
G
General Description .............................................................. 5
General Purpose Registers ................................................ 20
GIE...................................................................................... 37
Global Interrupt Enable bit, GIE.......................................... 37
Graphs
PIC16C6X................................................................. 281
PIC16C61 ................................................................. 173
H
High Baud Rate Select bit, BRGH .................................... 105
I
I/O Ports, Section................................................................ 51
I2C
Addressing................................................................ 100
Addressing I2C Devices.............................................. 96
Arbitration ................................................................... 98
Block Diagram ............................................................ 99
Clock Synchronization ................................................ 98
Combined Format ....................................................... 97
I2C Operation.............................................................. 99
I2C Overview............................................................... 95
Initiating and Terminating Data Transfer .................... 95
Master Mode............................................................. 103
Master-Receiver Sequence ........................................ 97
Master-Transmitter Sequence .................................... 97
Mode........................................................................... 99
Mode Selection........................................................... 99
Multi-master................................................................ 98
Multi-Master Mode .................................................... 103
Reception ................................................................. 101
Reception Timing Diagram ....................................... 101
SCL and SDA pins.................................................... 100
Slave Mode............................................................... 100
START ........................................................................ 95
STOP.................................................................... 95, 96
1997-2013 Microchip Technology Inc.
PIC16C6X
Transfer Acknowledge ................................................ 96
Transmission............................................................. 102
ID Locations ...................................................................... 142
IDLE_MODE ..................................................................... 104
In-circuit Serial Programming............................................ 142
INDF...................................................... 24, 26, 28, 30, 32, 34
Indirect Addressing ............................................................. 49
Instruction Cycle ................................................................. 18
Instruction Flow/Pipelining .................................................. 18
Instruction Format ............................................................. 143
Instruction Set
ADDLW ..................................................................... 145
ADDWF..................................................................... 145
ANDLW ..................................................................... 145
ANDWF..................................................................... 145
BCF........................................................................... 146
BSF ........................................................................... 146
BTFSC ...................................................................... 146
BTFSS ...................................................................... 147
CALL ......................................................................... 147
CLRF......................................................................... 148
CLRW ....................................................................... 148
CLRWDT................................................................... 148
COMF ....................................................................... 149
DECF ........................................................................ 149
DECFSZ.................................................................... 149
GOTO ....................................................................... 150
INCF.......................................................................... 150
INCFSZ ..................................................................... 151
IORLW ...................................................................... 151
IORWF ...................................................................... 152
MOVF........................................................................ 152
MOVLW .................................................................... 152
MOVWF .................................................................... 152
NOP .......................................................................... 153
OPTION .................................................................... 153
RETFIE ..................................................................... 153
RETLW ..................................................................... 154
RETURN ................................................................... 154
RLF ........................................................................... 155
RRF........................................................................... 155
SLEEP ...................................................................... 156
SUBLW ..................................................................... 156
SUBWF ..................................................................... 157
SWAPF ..................................................................... 157
TRIS.......................................................................... 157
XORLW..................................................................... 158
XORWF..................................................................... 158
Section ...................................................................... 143
Summary Table......................................................... 144
INTCON .................. 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34
INTE .................................................................................... 37
INTEDG .............................................................................. 36
Interrupt Edge Select bit, INTEDG ...................................... 36
Interrupt on Change Feature............................................... 53
Interrupts
Section ...................................................................... 136
CCP ............................................................................ 78
CCP1 .......................................................................... 38
CCP1 Flag bit.............................................................. 41
CCP2 Enable bit ......................................................... 45
CCP2 Flag bit.............................................................. 46
Context Saving.......................................................... 139
Parallel Slave Port Flag bit.......................................... 43
Parallel Slave Prot Read/Write Enable bit .................. 39
Port RB ....................................................................... 53
RB0/INT .............................................................. 54, 138
1997-2013 Microchip Technology Inc.
RB0/INT Timing Diagram ......................................... 138
Receive Flag bit.......................................................... 42
Timer0 ........................................................................ 65
Timer0, Timing............................................................ 66
Timing Diagram, Wake-up from SLEEP ................... 142
TMR0........................................................................ 138
USART Receive Enable bit ........................................ 39
USART Transmit Enable bit ....................................... 39
USART Transmit Flag bit............................................ 42
Wake-up ................................................................... 141
Wake-up from SLEEP .............................................. 141
INTF.................................................................................... 37
IRP...................................................................................... 35
L
Loading the Program Counter ............................................ 48
M
MPASM Assembler................................................... 159, 160
MPLAB-C.......................................................................... 161
MPSIM Software Simulator....................................... 159, 161
O
OERR ............................................................................... 106
One-Time-Programmable Devices ....................................... 7
OPCODE .......................................................................... 143
Open-Drain ......................................................................... 51
OPTION ................................................ 25, 27, 29, 31, 33, 34
Oscillator Start-up Timer (OST) ................................ 123, 129
Oscillators
Block Diagram, External Parallel Resonant Crystal . 127
Capacitor Selection .................................................... 73
Configuration ............................................................ 125
External Crystal Circuit ............................................. 127
HS..................................................................... 125, 130
LP ..................................................................... 125, 130
RC, Block Diagram ................................................... 127
RC, Section .............................................................. 127
XT ............................................................................. 125
Overrun Error bit, OERR................................................... 106
P
P ................................................................................... 84, 89
Packaging Information...................................................... 291
Parallel Slave Port
PORTD ....................................................................... 57
Section........................................................................ 61
Parallel Slave Port Interrupt Flag bit, PSPIF....................... 43
Parallel Slave Port Read/Write Interrupt Enable bit, PSPIE 39
PCL......................... 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34
PCLATH ........... 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 48
PCON ........................................... 25, 27, 29, 31, 33, 34, 130
PD............................................................................... 35, 131
PEIE ................................................................................... 37
Peripheral Interrupt Enable bit, PEIE.................................. 37
PICDEM-1 Low-Cost PIC16/17 Demo Board ........... 159, 160
PICDEM-2 Low-Cost PIC16CXX Demo Board......... 159, 160
PICDEM-3 Low-Cost PIC16C9XXX Demo Board ............ 160
PICMASTER In-Circuit Emulator...................................... 159
PICSTART Low-Cost Development System..................... 159
PIE1 ...................................................... 25, 27, 29, 31, 33, 34
PIE2 ...................................................... 25, 27, 29, 31, 33, 34
Pin Compatible Devices.................................................... 315
Pin Functions
MCLR/VPP .................................................................. 16
DS30234E-page 315
PIC16C6X
OSC1/CLKIN............................................................... 16
OSC2/CLKOUT........................................................... 16
PORTA........................................................................ 52
PORTB........................................................................ 54
PORTC ....................................................................... 55
PORTD ....................................................................... 57
PORTE........................................................................ 59
RA4/T0CKI ............................................................ 16, 52
RA5/SS ................................................................. 16, 52
RB0/INT ................................................................ 16, 54
RB6 ........................................................................... 142
RB7 ........................................................................... 142
RC0/T1OSI/T1CKI ...................................................... 55
RC0/T1OSO/T1CKI .............................................. 16, 55
RC1/T1OSI ................................................................. 55
RC1/T1OSI/CCP2 ................................................. 16, 55
RC1/T1OSO................................................................ 55
RC2/CCP1 ...................................................... 16, 55, 56
RC3/SCK/SCL ................................................ 16, 55, 56
RC4/SDI/SDA ................................................. 16, 55, 56
RC5/SDO ........................................................ 16, 55, 56
RC6/TX/CK ..................................... 16, 55, 56, 105–120
RC7/RX/DT ..................................... 16, 55, 56, 105–120
RD7/PSP7:RD0/PSP0 .......................................... 17, 57
RE0/RD ........................................................... 17, 59, 61
RE1/WR .......................................................... 17, 59, 61
RE2/CS ........................................................... 17, 59, 61
SCK....................................................................... 86–88
SDI ........................................................................ 86–88
SDO ...................................................................... 86–88
SS ......................................................................... 86–88
VDD.............................................................................. 17
VSS .............................................................................. 17
PIR1 ...................................................... 24, 26, 28, 30, 32, 34
PIR2 ...................................................... 24, 26, 28, 30, 32, 34
POP..................................................................................... 48
POR ............................................................................ 47, 131
POR Time-Out Sequence on Power-Up ........................... 134
Port RB Interrupt ................................................................. 53
PORTA............................................ 24, 26, 28, 30, 32, 34, 51
PORTB............................................ 24, 26, 28, 30, 32, 34, 53
PORTB Interrupt on Change............................................. 138
PORTB Pull-up Enable bit, RBPU....................................... 36
PORTC............................................ 24, 26, 28, 30, 32, 34, 55
PORTD............................................ 24, 26, 28, 30, 32, 34, 57
PORTE............................................ 24, 26, 28, 30, 32, 34, 58
Ports
Bi-directional ............................................................... 60
I/O Programming Considerations................................ 60
PORTA........................................................................ 16
PORTB........................................................................ 16
PORTC ....................................................................... 16
PORTD ....................................................................... 17
PORTE........................................................................ 17
Successive Operations on an I/O Port ........................ 60
Power/Control Status Register, PCON ............................. 130
Power-down bit ................................................................... 35
Power-down Mode ............................................................ 141
Power-on Reset (POR) ..................................................... 129
Power-on Reset Status bit, POR......................................... 47
Power-up Timer (PWRT)........................................... 123, 129
PR2 ....................................................... 25, 27, 29, 31, 33, 34
Prescaler ............................................................................. 68
Prescaler Assignment bit, PSA ........................................... 36
Prescaler Rate Select bits, PS2:PS0 .................................. 36
PRO MATE Universal Programmer .................................. 159
Program Memory
DS30234E-page 316
Map....................................................................... 19, 20
Organization ............................................................... 19
Paging ........................................................................ 48
Section........................................................................ 19
Programming While In-circuit............................................ 142
PS2:PS0 ............................................................................. 36
PSA..................................................................................... 36
PSPIE ................................................................................. 39
PSPIF ................................................................................. 43
Pull-ups............................................................................... 53
PUSH.................................................................................. 48
PWM
Block Diagram ............................................................ 80
Calculations ................................................................ 81
Mode........................................................................... 80
Output Timing ............................................................. 80
PWM Least Significant bits ................................................. 78
Q
Quadrature Clocks.............................................................. 18
Quick-Turnaround-Production .............................................. 7
R
R/W bit ............................................ 84, 89, 96, 100, 101, 102
RA0 pin ............................................................................... 51
RA1 pin ............................................................................... 51
RA2 pin ............................................................................... 51
RA3 pin ............................................................................... 51
RA4/T0CKI pin.................................................................... 51
RA5 pin ............................................................................... 51
RB Port Change Interrupt Enable bit, RBIE........................ 37
RB Port Change Interrupt Flag bit, RBIF ............................ 37
RB0..................................................................................... 54
RB0/INT ............................................................................ 138
RB0/INT External Interrupt Enable bit, INTE ...................... 37
RB0/INT External Interrupt Flag bit, INTF........................... 37
RB1..................................................................................... 54
RB2..................................................................................... 54
RB3..................................................................................... 54
RB4..................................................................................... 53
RB5..................................................................................... 53
RB6..................................................................................... 53
RB7..................................................................................... 53
RBIE ................................................................................... 37
RBIF.................................................................................... 37
RBPU............................................................................ 36, 53
RC Oscillator..................................................................... 130
RCIE ................................................................................... 39
RCIF ................................................................................... 42
RCREG................................................. 24, 26, 28, 30, 32, 34
RCSTA.......................................... 24, 26, 28, 30, 32, 34, 106
RCV_MODE ..................................................................... 104
Read Only Memory............................................................... 7
Read/Write bit Information, R/W ................................... 84, 89
Receive and Control Register........................................... 106
Receive Overflow Detect bit, SSPOV ................................. 85
Receive Overflow Indicator bit, SSPOV.............................. 90
Register Bank Select bit, Indirect........................................ 35
Register Bank Select bits. Direct ........................................ 35
1997-2013 Microchip Technology Inc.
PIC16C6X
Registers
CCP1CON
Diagram .............................................................. 78
Section ................................................................ 78
Summary .................................... 24, 26, 28, 30, 32
CCP2CON
Diagram .............................................................. 78
Section ................................................................ 78
Summary ................................................ 26, 30, 32
CCPR1H
Summary .................................... 24, 26, 28, 30, 32
CCPR1L
Summary .................................... 24, 26, 28, 30, 32
CCPR2H
Summary ................................................ 26, 30, 32
CCPR2L
Summary ................................................ 26, 30, 32
FSR
Indirect Addressing ............................................. 49
Summary .............................. 24, 26, 28, 30, 32, 34
INDF
Indirect Addressing ............................................. 49
Summary .............................. 24, 26, 28, 30, 32, 34
INTCON
Diagram .............................................................. 37
Section ................................................................ 37
Summary .............................. 24, 26, 28, 30, 32, 34
OPTION
Diagram .............................................................. 36
Section ................................................................ 36
Summary .............................. 25, 27, 29, 31, 33, 34
PCL
Section ................................................................ 48
Summary .............................. 24, 26, 28, 30, 32, 34
PCLATH
Section ................................................................ 48
Summary .............................. 24, 26, 28, 30, 32, 34
PCON
Diagram .............................................................. 47
Section ................................................................ 47
Summary .................................... 25, 27, 29, 31, 33
PIE1
Diagram .............................................................. 40
Section ................................................................ 38
Summary .................................... 25, 27, 29, 31, 33
PIE2
Diagram .............................................................. 45
Section ................................................................ 45
Summary ................................................ 27, 31, 33
PIR1
Diagram .............................................................. 44
Section ................................................................ 41
Summary .................................... 24, 26, 28, 30, 32
PIR2
Diagram .............................................................. 46
Section ................................................................ 46
Summary ................................................ 26, 30, 32
PORTA
Section ................................................................ 51
Summary .................................... 24, 26, 28, 30, 32
PORTB
Section ................................................................ 53
Summary .............................. 24, 26, 28, 30, 32, 34
PORTC
Section ................................................................ 55
Summary .................................... 24, 26, 28, 30, 32
1997-2013 Microchip Technology Inc.
PORTD
Section ............................................................... 57
Summary ................................................ 28, 30, 32
PORTE
Section ............................................................... 58
Summary ................................................ 28, 30, 32
PR2
Summary .................................... 25, 27, 29, 31, 33
RCREG
Summary ................................................ 26, 30, 32
RCSTA
Diagram ............................................................ 106
Summary ................................................ 26, 30, 32
SPBRG
Summary ................................................ 27, 31, 33
SSPBUF
Section ............................................................... 86
Summary .................................... 24, 26, 28, 30, 32
SSPCON
Diagram .............................................................. 85
Summary .................................... 24, 26, 28, 30, 32
SSPSR
Section ............................................................... 86
SSPSTAT ................................................................... 89
Diagram .............................................................. 84
Section ............................................................... 84
Summary .................................... 25, 27, 29, 31, 33
STATUS
Diagram .............................................................. 35
Section ............................................................... 35
Summary .............................. 24, 26, 28, 30, 32, 34
T1CON
Diagram .............................................................. 71
Section ............................................................... 71
Summary .................................... 24, 26, 28, 30, 32
T2CON
Diagram .............................................................. 75
Section ............................................................... 75
Summary .................................... 24, 26, 28, 30, 32
TMR0
Summary .............................. 24, 26, 28, 30, 32, 34
TMR1H
Summary .................................... 24, 26, 28, 30, 32
TMR1L
Summary .................................... 24, 26, 28, 30, 32
TMR2.......................................................................... 75
Summary .................................... 24, 26, 28, 30, 32
TRISA
Section ............................................................... 51
Summary .................................... 25, 27, 29, 31, 33
TRISB
Section ............................................................... 53
Summary .............................. 25, 27, 29, 31, 33, 34
TRISC
Section ............................................................... 55
Summary .................................... 25, 27, 29, 31, 33
TRISD
Section ............................................................... 57
Summary ................................................ 29, 31, 33
TRISE
Diagram .............................................................. 58
Section ............................................................... 58
Summary ................................................ 29, 31, 33
TXREG
Summary ................................................ 26, 30, 32
DS30234E-page 317
PIC16C6X
TXSTA
Diagram ............................................................ 105
Section .............................................................. 105
Summary....................................................... 31, 33
W................................................................................... 9
Special Function Registers, Initialization
Conditions ................................................................. 132
Special Function Registers, Reset Conditions .......... 131
Special Function Register Summary... 24, 26, 28, 30, 32
File Maps .................................................................... 21
Resets ............................................................................... 128
ROM...................................................................................... 7
RP0 bit .......................................................................... 20, 35
RP1 ..................................................................................... 35
RX9 ................................................................................... 106
RX9D................................................................................. 106
S
S.................................................................................... 84, 89
SCI - See Universal Synchronous Asynchronous Receiver
Transmitter (USART)
SCK..................................................................................... 86
SCL ................................................................................... 100
SDI ...................................................................................... 86
SDO .................................................................................... 86
Serial Port Enable bit, SPEN............................................. 106
Serial Programming .......................................................... 142
Serial Programming, Block Diagram ................................. 142
Serialized Quick-Turnaround-Production .............................. 7
Single Receive Enable bit, SREN ..................................... 106
Slave Mode
SCL ........................................................................... 100
SDA........................................................................... 100
SLEEP Mode............................................................. 123, 141
SMP .................................................................................... 89
Software Simulator (MPSIM)............................................. 161
SPBRG.................................................. 25, 27, 29, 31, 33, 34
Special Features, Section ................................................. 123
SPEN ................................................................................ 106
SPI
Block Diagram....................................................... 86, 91
Master Mode ............................................................... 92
Master Mode Timing ................................................... 93
Mode ........................................................................... 86
Serial Clock ................................................................. 91
Serial Data In .............................................................. 91
Serial Data Out ........................................................... 91
Slave Mode Timing ..................................................... 94
Slave Mode Timing Diagram....................................... 93
Slave Select ................................................................ 91
SPI clock ..................................................................... 92
SPI Mode .................................................................... 91
SSPCON ..................................................................... 90
SSPSTAT.................................................................... 89
SPI Clock Edge Select bit, CKE.......................................... 89
SPI Data Input Sample Phase Select bit, SMP................... 89
SPI Mode ............................................................................ 86
SREN ................................................................................ 106
SS ....................................................................................... 86
SSP
Module Overview ........................................................ 83
Section ........................................................................ 83
SSPBUF...................................................................... 92
SSPCON ..................................................................... 90
SSPSR ........................................................................ 92
SSPSTAT.................................................................... 89
DS30234E-page 318
SSP in I2C Mode - See I2C
SSPADD ......................................... 25, 27, 29, 31, 33, 34, 99
SSPBUF ......................................... 24, 26, 28, 30, 32, 34, 99
SSPCON................................... 24, 26, 28, 30, 32, 34, 85, 90
SSPEN.......................................................................... 85, 90
SSPIE ................................................................................. 38
SSPIF ................................................................................. 41
SSPM3:SSPM0 ............................................................ 85, 90
SSPOV ................................................................. 85, 90, 100
SSPSTAT ................................. 25, 27, 29, 31, 33, 34, 84, 99
SSPSTAT Register ............................................................. 89
Stack................................................................................... 48
Start bit, S ..................................................................... 84, 89
STATUS.................. 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34
Status bits ................................................................. 130, 131
Status Bits During Various Resets.................................... 131
Stop bit, P ..................................................................... 84, 89
Switching Prescalers .......................................................... 69
SYNC,USART Mode Select bit, SYNC............................. 105
Synchronizing Clocks, TMR0.............................................. 67
Synchronous Serial Port (SSP)
Block Diagram, SPI Mode........................................... 86
SPI Master/Slave Diagram ......................................... 87
SPI Mode.................................................................... 86
Synchronous Serial Port Enable bit, SSPEN................ 85, 90
Synchronous Serial Port Interrupt Enable bit, SSPIE ......... 38
Synchronous Serial Port Interrupt Flag bit, SSPIF ............. 41
Synchronous Serial Port Mode Select bits,
SSPM3:SSPM0 ............................................................ 85, 90
Synchronous Serial Port Module ........................................ 83
Synchronous Serial Port Status Register ........................... 89
T
T0CS................................................................................... 36
T0IE .................................................................................... 37
T0IF .................................................................................... 37
T0SE................................................................................... 36
T1CKPS1:T1CKPS0........................................................... 71
T1CON.................................................. 24, 26, 28, 30, 32, 34
T1OSCEN........................................................................... 71
T1SYNC.............................................................................. 71
T2CKPS1:T2CKPS0........................................................... 75
T2CON............................................ 24, 26, 28, 30, 32, 34, 75
TIme-out ........................................................................... 130
Time-out bit......................................................................... 35
Time-out Sequence .......................................................... 130
Timer Modules
Overview, all ............................................................... 63
Timer0
Block Diagram .................................................... 65
Counter Mode..................................................... 65
External Clock .................................................... 67
Interrupt .............................................................. 65
Overview............................................................. 63
Prescaler ............................................................ 68
Section................................................................ 65
Timer Mode ........................................................ 65
Timing DiagramTiiming Diagrams
Timer0 ................................................................ 65
TMR0 register..................................................... 65
Timer1
Block Diagram .................................................... 72
Capacitor Selection ............................................ 73
Counter Mode, Asynchronous ............................ 73
Counter Mode, Synchronous.............................. 72
External Clock .................................................... 73
Oscillator............................................................. 73
1997-2013 Microchip Technology Inc.
PIC16C6X
Overview ............................................................. 63
Prescaler............................................................. 72
Read/Write in Asynchronous Counter Mode ...... 73
Section ................................................................ 71
Synchronizing with External Clock...................... 72
Timer Mode......................................................... 72
TMR1 Register Pair ............................................ 71
Timer2
Block Diagram .................................................... 75
Overview ............................................................. 63
Postscaler ........................................................... 75
Prescaler............................................................. 75
Timer0 Clock Synchronization, Delay ................................. 67
TImer0 Interrupt ................................................................ 138
Timer1 Clock Source Select bit, TMR1CS .......................... 71
Timer1 External Clock Input Synchronization
Control bit, T1SYNC ........................................................... 71
Timer1 Input Clock Prescale Select bits ............................. 71
Timer1 Mode Selection ....................................................... 78
Timer1 On bit, TMR1ON ..................................................... 71
Timer1 Oscillator Enable Control bit, T1OSCEN ................ 71
Timer2 Clock Prescale Select bits,
T2CKPS1:T2CKPS0 ........................................................... 75
Timer2 Module .................................................................... 75
Timer2 On bit, TMR2ON ..................................................... 75
Timer2 Output Postscale Select bits,
TOUTPS3:TOUTPS0 .......................................................... 75
Timing Diagrams
Brown-out Reset ....................................................... 129
I2C Clock Synchronization .......................................... 98
I2C Data Transfer Wait State ...................................... 96
I2C Multi-Master Arbitration......................................... 98
I2C Reception (7-bit Address) ................................... 101
PIC16C61
CLKOUT and I/O .............................................. 170
External Clock................................................... 169
Oscillator Start-up Timer ................................... 171
Power-up Timer ................................................ 171
Reset ................................................................ 171
Timer0............................................................... 172
Watchdog Timer ............................................... 171
PIC16C62
Capture/Compare/PWM ................................... 193
CLKOUT and I/O .............................................. 190
External Clock................................................... 189
I2C Bus Data ..................................................... 197
I2C Bus Start/Stop Bits ..................................... 196
Oscillator Start-up Timer ................................... 191
Power-up Timer ................................................ 191
Reset ................................................................ 191
SPI Mode .......................................................... 195
Timer0............................................................... 192
Timer1............................................................... 192
Watchdog Timer ............................................... 191
PIC16C62A
Brown-out Reset ............................................... 207
Capture/Compare/PWM ................................... 209
CLKOUT and I/O .............................................. 206
External Clock................................................... 205
I2C Bus Data ..................................................... 213
I2C Bus Start/Stop Bits ..................................... 212
Oscillator Start-up Timer ................................... 207
Power-up Timer ................................................ 207
Reset ................................................................ 207
SPI Mode .......................................................... 211
Timer0............................................................... 208
Timer1............................................................... 208
1997-2013 Microchip Technology Inc.
Watchdog Timer ............................................... 207
PIC16C63
Brown-out Reset............................................... 239
Capture/Compare/PWM ................................... 241
CLKOUT and I/O .............................................. 238
External Clock .................................................. 237
I2C Bus Data..................................................... 245
I2C Bus Start/Stop Bits ..................................... 244
Oscillator Start-up Timer................................... 239
Power-up Timer................................................ 239
Reset ................................................................ 239
SPI Mode.......................................................... 243
Timer0 .............................................................. 240
Timer1 .............................................................. 240
USART Synchronous Receive
(Master/Slave) ................................................. 246
Watchdog Timer ............................................... 239
PIC16C64
Capture/Compare/PWM ................................... 193
CLKOUT and I/O .............................................. 190
External Clock .................................................. 189
I2C Bus Data..................................................... 197
I2C Bus Start/Stop Bits ..................................... 196
Oscillator Start-up Timer................................... 191
Parallel Slave Port............................................ 194
Power-up Timer................................................ 191
Reset ................................................................ 191
SPI Mode.......................................................... 195
Timer0 .............................................................. 192
Timer1 .............................................................. 192
Watchdog Timer ............................................... 191
PIC16C64A
Brown-out Reset............................................... 207
Capture/Compare/PWM ................................... 209
CLKOUT and I/O .............................................. 206
External Clock .................................................. 205
I2C Bus Data..................................................... 213
I2C Bus Start/Stop Bits ..................................... 212
Oscillator Start-up Timer................................... 207
Parallel Slave Port............................................ 210
Power-up Timer................................................ 207
Reset ................................................................ 207
SPI Mode.......................................................... 211
Timer0 .............................................................. 208
Timer1 .............................................................. 208
Watchdog Timer ............................................... 207
PIC16C65
Capture/Compare/PWM ................................... 225
CLKOUT and I/O .............................................. 222
External Clock .................................................. 221
I2C Bus Data..................................................... 229
I2C Bus Start/Stop Bits ..................................... 228
Oscillator Start-up Timer................................... 223
Parallel Slave Port............................................ 226
Reset ................................................................ 223
SPI Mode.......................................................... 227
Timer0 .............................................................. 224
Timer1 .............................................................. 224
USART Synchronous Receive
(Master/Slave) .................................................. 230
Watchdog Timer ............................................... 223
PIC16C65A
Brown-out Reset............................................... 239
Capture/Compare/PWM ................................... 241
CLKOUT and I/O .............................................. 238
External Clock .................................................. 237
I2C Bus Data..................................................... 245
DS30234E-page 319
PIC16C6X
I2C Bus Start/Stop Bits...................................... 244
Oscillator Start-up Timer ................................... 239
Parallel Slave Port ............................................ 242
Power-up Timer ................................................ 239
Reset................................................................. 239
SPI Mode .......................................................... 243
Timer0............................................................... 240
Timer1............................................................... 240
USART Synchronous Receive
(Master/Slave)................................................... 246
Watchdog Timer................................................ 239
PIC16C66
Brown-out Reset ............................................... 271
Capture/Compare/PWM.................................... 273
CLKOUT and I/O............................................... 270
External Clock................................................... 269
I2C Bus Data ..................................................... 279
I2C Bus Start/Stop Bits...................................... 278
Oscillator Start-up Timer ................................... 271
Power-up Timer ................................................ 271
Reset................................................................. 271
Timer0............................................................... 272
Timer1............................................................... 272
USART Synchronous Receive
(Master/Slave)................................................... 280
Watchdog Timer................................................ 271
PIC16C67
Brown-out Reset ............................................... 271
Capture/Compare/PWM.................................... 273
CLKOUT and I/O............................................... 270
External Clock................................................... 269
I2C Bus Data ..................................................... 279
I2C Bus Start/Stop Bits...................................... 278
Oscillator Start-up Timer ................................... 271
Parallel Slave Port ............................................ 274
Power-up Timer ................................................ 271
Reset................................................................. 271
Timer0............................................................... 272
Timer1............................................................... 272
USART Synchronous Receive
(Master/Slave)................................................... 280
Watchdog Timer................................................ 271
PIC16CR62
Capture/Compare/PWM.................................... 209
CLKOUT and I/O............................................... 206
External Clock................................................... 205
I2C Bus Data ..................................................... 213
I2C Bus Start/Stop Bits...................................... 212
Oscillator Start-up Timer ................................... 207
Power-up Timer ................................................ 207
Reset................................................................. 207
SPI Mode .......................................................... 211
Timer0............................................................... 208
Timer1............................................................... 208
Watchdog Timer................................................ 207
DS30234E-page 320
PIC16CR63
Brown-out Reset............................................... 255
Capture/Compare/PWM ................................... 257
CLKOUT and I/O .............................................. 254
External Clock .................................................. 253
I2C Bus Data..................................................... 261
I2C Bus Start/Stop Bits ..................................... 260
Oscillator Start-up Timer................................... 255
Power-up Timer ................................................ 255
Reset ................................................................ 255
SPI Mode.......................................................... 259
Timer0 .............................................................. 256
Timer1 .............................................................. 256
USART Synchronous Receive
(Master/Slave) ................................................. 262
Watchdog Timer ............................................... 255
PIC16CR64
Capture/Compare/PWM ................................... 209
CLKOUT and I/O .............................................. 206
External Clock .................................................. 205
I2C Bus Data..................................................... 213
I2C Bus Start/Stop Bits ..................................... 212
Oscillator Start-up Timer................................... 207
Parallel Slave Port ............................................ 210
Power-up Timer ................................................ 207
Reset ................................................................ 207
SPI Mode.......................................................... 211
Timer0 .............................................................. 208
Timer1 .............................................................. 208
Watchdog Timer ............................................... 207
PIC16CR65
Brown-out Reset............................................... 255
Capture/Compare/PWM ................................... 257
CLKOUT and I/O .............................................. 254
External Clock .................................................. 253
I2C Bus Data..................................................... 261
I2C Bus Start/Stop Bits ..................................... 260
Oscillator Start-up Timer................................... 255
Parallel Slave Port ............................................ 258
Power-up Timer ................................................ 255
Reset ................................................................ 255
SPI Mode.......................................................... 259
Timer0 .............................................................. 256
Timer1 .............................................................. 256
USART Synchronous Receive
(Master/Slave) .................................................. 262
Watchdog Timer ............................................... 255
Power-up Timer ........................................................ 223
PWM Output ............................................................... 80
RB0/INT Interrupt...................................................... 138
RX Pin Sampling............................................... 110, 111
SPI Master Mode ........................................................ 93
SPI Mode, Master/Slave Mode,
No SS Control............................................................. 88
SPI Mode, Slave Mode With SS Control .................... 88
SPI Slave Mode (CKE = 1) ......................................... 94
SPI Slave Mode Timing (CKE = 0) ............................. 93
Timer0 with External Clock......................................... 67
TMR0 Interrupt Timing................................................ 66
USART Asynchronous Master Transmission ........... 113
USART Asynchronous Master Transmission
(Back to Back) .......................................................... 113
USART Asynchronous Reception............................. 114
USART Synchronous Reception in
Master Mode............................................................. 119
USART Synchronous Tranmission ........................... 117
Wake-up from SLEEP Through Interrupts ................ 142
1997-2013 Microchip Technology Inc.
PIC16C6X
TMR0 .................................................... 24, 26, 28, 30, 32, 34
TMR0 Clock Source Select bit, T0CS ................................. 36
TMR0 Interrupt .................................................................... 65
TMR0 Overflow Interrupt Enable bit, T0IE .......................... 37
TMR0 Overflow Interrupt Flag bit, T0IF .............................. 37
TMR0 Prescale Selection Table ......................................... 36
TMR0 Source Edge Select bit, T0SE.................................. 36
TMR1 Overflow Interrupt Enable bit, TMR1IE .................... 38
TMR1 Overflow Interrupt Flag bit, TMR1IF ......................... 41
TMR1CS ............................................................................. 71
TMR1H.................................................. 24, 26, 28, 30, 32, 34
TMR1IE ............................................................................... 38
TMR1IF ............................................................................... 41
TMR1L .................................................. 24, 26, 28, 30, 32, 34
TMR1ON ............................................................................. 71
TMR2 .................................................... 24, 26, 28, 30, 32, 34
TMR2 Register .................................................................... 75
TMR2 to PR2 Match Interrupt Enable bit, TMR2IE ............. 38
TMR2 to PR2 Match Interrupt Flag bit, TMR2IF ................. 41
TMR2IE ............................................................................... 38
TMR2IF ............................................................................... 41
TMR2ON ............................................................................. 75
TO ............................................................................... 35, 131
TOUTPS3:TOUTPS0 .......................................................... 75
Transmit Enable bit, TXEN ............................................... 105
Transmit Shift Register Status bit, TRMT ......................... 105
Transmit Status and Control Register ............................... 105
TRISA ............................................. 25, 27, 29, 31, 33, 34, 51
TRISB ............................................. 25, 27, 29, 31, 33, 34, 53
TRISC ....................................... 25, 27, 29, 31, 33, 34, 55, 94
TRISD ............................................. 25, 27, 29, 31, 33, 34, 57
TRISE ............................................. 25, 27, 29, 31, 33, 34, 58
TRMT ................................................................................ 105
TX9 ................................................................................... 105
TX9D ................................................................................. 105
TXEN ................................................................................ 105
TXIE .................................................................................... 39
TXIF .................................................................................... 42
TXREG.................................................. 24, 26, 28, 30, 32, 34
TXSTA .......................................... 25, 27, 29, 31, 33, 34, 105
Synchronous Slave Mode
Reception ......................................................... 120
Section ............................................................. 120
Setting Up Reception........................................ 120
Setting Up Transmission .................................. 120
Transmit............................................................ 120
Transmit Block Diagram ........................................... 112
Update Address bit, UA ................................................ 84, 89
USART Receive Interrupt Enable bit, RCIE........................ 39
USART Receive Interrupt Flag bit, RCIF............................ 42
USART Transmit Interrupt Enable bit, TXIE ....................... 39
USART Transmit Interrupt Flag bit, TXIF............................ 42
UV Erasable Devices............................................................ 7
W
Wake-up from Sleep ......................................................... 141
Wake-up on Key Depression .............................................. 53
Wake-up Using Interrupts................................................. 141
Watchdog Timer (WDT)
Block Diagram .......................................................... 140
Period ....................................................................... 140
Programming Considerations ................................... 140
Section...................................................................... 140
WCOL........................................................................... 85, 90
Weak Internal Pull-ups........................................................ 53
Write Collision Detect bit, WCOL.................................. 85, 90
X
XMIT_MODE .................................................................... 104
XT ..................................................................................... 130
Z
Z ......................................................................................... 35
Zero bit ........................................................................... 9, 35
U
UA ................................................................................. 84, 89
Universal Synchronous Asynchronous Receiver Transmitter
(USART)
Asynchronous Mode
Setting Up Transmission................................... 113
Timing Diagram, Master Transmission ............. 113
Transmitter........................................................ 112
Asynchronous Receiver
Setting Up Reception ........................................ 115
Timing Diagram ................................................ 114
Asynchronous Receiver Mode
Block Diagram .................................................. 114
Section .............................................................. 114
Section ...................................................................... 105
Synchronous Master Mode
Reception.......................................................... 118
Section .............................................................. 116
Setting Up Reception ........................................ 118
Setting Up Transmission................................... 116
Timing Diagram, Reception .............................. 119
Timing Diagram, Transmission ......................... 117
Transmission .................................................... 116
1997-2013 Microchip Technology Inc.
DS30234E-page 321
PIC16C6X
LIST OF EQUATION AND EXAMPLES
Figure 4-15:
Example 3-1: Instruction Pipeline Flow ............................. 18
Example 4-1: Call of a Subroutine in Page 1
from Page 0 ................................................ 49
Example 4-2: Indirect Addressing ..................................... 49
Example 5-1: Initializing PORTA....................................... 51
Example 5-2: Initializing PORTB....................................... 53
Example 5-3: Initializing PORTC ...................................... 55
Example 5-4: Read-Modify-Write Instructions on an
I/O Port ....................................................... 60
Example 7-1: Changing Prescaler (Timer0WDT) .......... 69
Example 7-2: Changing Prescaler (WDTTimer0) .......... 69
Example 8-1: Reading a 16-bit
Free-running Timer ..................................... 73
Example 10-1: Changing Between
Capture Prescalers ..................................... 79
Example 10-2: PWM Period and Duty
Cycle Calculation ........................................ 81
Example 11-1: Loading the SSPBUF
(SSPSR) Register ....................................... 86
Example 11-2: Loading the SSPBUF
(SSPSR) Register (PIC16C66/67) .............. 91
Example 12-1: Calculating Baud Rate Error ..................... 107
Example 13-1: Saving Status and W
Registers in RAM ...................................... 139
Example 13-2: Saving Status, W, and
PCLATH Registers in RAM
(All other PIC16C6X devices) ................... 139
Figure 4-16:
Figure 4-17:
Figure 4-18:
Figure 4-19:
Figure 4-20:
Figure 4-21:
Figure 4-22:
Figure 4-23:
Figure 4-24:
Figure 4-25:
Figure 5-1:
Figure 5-2:
Figure 5-3:
Figure 5-4:
Figure 5-5:
Figure 5-6:
Figure 5-7:
LIST OF FIGURES
Figure 5-8:
Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 3-4:
Figure 3-5:
Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 4-4:
Figure 4-5:
Figure 4-6:
Figure 4-7:
Figure 4-8:
Figure 4-9:
Figure 4-10:
Figure 4-11:
Figure 4-12:
Figure 4-13:
Figure 4-14:
PIC16C61 Block Diagram ........................... 10
PIC16C62/62A/R62/64/64A/R64
Block Diagram ............................................ 11
PIC16C63/R63/65/65A/R65
Block Diagram ............................................ 12
PIC16C66/67 Block Diagram ...................... 13
Clock/Instruction Cycle ............................... 18
PIC16C61 Program Memory Map
and Stack .................................................... 19
PIC16C62/62A/R62/64/64A/
R64 Program Memory Map and Stack ....... 19
PIC16C63/R63/65/65A/R65 Program
Memory Map and Stack .............................. 19
PIC16C66/67 Program Memory
Map and Stack ............................................ 20
PIC16C61 Register File Map ...................... 20
PIC16C62/62A/R62/64/64A/
R64 Register File Map ................................ 21
PIC16C63/R63/65/65A/R65
Register File Map........................................ 21
PIC16C66/67 Data Memory Map................ 22
STATUS Register
(Address 03h, 83h, 103h, 183h) ................. 35
OPTION Register
(Address 81h, 181h) ................................... 36
INTCON Register
(Address 0Bh, 8Bh, 10Bh 18Bh)................. 37
PIE1 Register for PIC16C62/62A/R62
(Address 8Ch)............................................. 38
PIE1 Register for PIC16C63/R63/66
(Address 8Ch)............................................. 39
PIE1 Register for PIC16C64/64A/R64
(Address 8Ch)............................................. 39
DS30234E-page 322
Figure 5-9:
Figure 5-10:
Figure 5-11:
Figure 5-12:
Figure 5-13:
Figure 7-1:
Figure 7-2:
Figure 7-3:
Figure 7-4:
Figure 7-5:
Figure 7-6:
Figure 8-1:
Figure 8-2:
Figure 9-1:
Figure 9-2:
Figure 10-1:
Figure 10-2:
Figure 10-3:
Figure 10-4:
Figure 10-5:
Figure 11-1:
PIE1 Register for PIC16C65/65A/R65/67
(Address 8Ch) ............................................ 40
PIR1 Register for PIC16C62/62A/R62
(Address 0Ch) ............................................ 41
PIR1 Register for PIC16C63/R63/66
Address 0Ch).............................................. 42
PIR1 Register for PIC16C64/64A/R64
(Address 0Ch) ............................................ 43
PIR1 Register for PIC16C65/65A/R65/67
(Address 0Ch) ............................................ 44
PIE2 Register (Address 8Dh) ..................... 45
PIR2 Register (Address 0Dh) ..................... 46
PCON Register for PIC16C62/64/65
(Address 8Eh)............................................. 47
PCON Register for PIC16C62A/R62/63/
R63/64A/R64/65A/R65/66/67
(Address 8Eh)............................................. 47
Loading of PC in Different Situations.......... 48
Direct/Indirect Addressing .......................... 49
Block Diagram of the
RA3:RA0 Pins and the RA5 Pin ................. 51
Block Diagram of the RA4/T0CKI Pin......... 51
Block Diagram of the
RB7:RB4 Pins for PIC16C61/62/64/65....... 53
Block Diagram of the
RB7:RB4 Pins for PIC16C62A/63/R63/
64A/65A/R65/66/67 .................................... 54
Block Diagram of the
RB3:RB0 Pins............................................. 54
PORTC Block Diagram............................... 55
PORTD Block Diagram
(In I/O Port Mode)....................................... 57
PORTE Block Diagram
(In I/O Port Mode)...................................... 58
TRISE Register (Address 89h) ................... 58
Successive I/O Operation........................... 60
PORTD and PORTE as a Parallel
Slave Port ................................................... 61
Parallel Slave Port Write Waveforms ......... 62
Parallel Slave Port Read Waveforms ......... 62
Timer0 Block Diagram ................................ 65
Timer0 Timing: Internal Clock/No
Prescaler .................................................... 65
Timer0 Timing: Internal
Clock/Prescale 1:2...................................... 66
TMR0 Interrupt Timing................................ 66
Timer0 Timing With External Clock ............ 67
Block Diagram of the Timer0/WDT
Prescaler .................................................... 68
T1CON: Timer1 Control Register
(Address 10h) ............................................. 71
Timer1 Block Diagram ................................ 72
Timer2 Block Diagram ................................ 75
T2CON: Timer2 Control Register
(Address 12h) ............................................. 75
CCP1CON Register (Address 17h) /
CCP2CON Register (Address 1Dh) ........... 78
Capture Mode Operation
Block Diagram ............................................ 78
Compare Mode Operation
Block Diagram ............................................ 79
Simplified PWM Block Diagram.................. 80
PWM Output............................................... 80
SSPSTAT: Sync Serial Port Status
Register (Address 94h)............................... 84
1997-2013 Microchip Technology Inc.
PIC16C6X
Figure 11-2:
Figure 11-3:
Figure 11-4:
Figure 11-5:
Figure 11-6:
Figure 11-7:
Figure 11-8:
Figure 11-9:
Figure 11-10:
Figure 11-11:
Figure 11-12:
Figure 11-13:
Figure 11-14:
Figure 11-15:
Figure 11-16:
Figure 11-17:
Figure 11-18:
Figure 11-19:
Figure 11-20:
Figure 11-21:
Figure 11-22:
Figure 11-23:
Figure 11-24:
Figure 11-25:
Figure 11-26:
Figure 11-27:
Figure 12-1:
Figure 12-2:
Figure 12-3:
Figure 12-4:
Figure 12-5:
Figure 12-6:
Figure 12-7:
Figure 12-8:
Figure 12-9:
Figure 12-10:
Figure 12-11:
Figure 12-12:
Figure 12-13:
Figure 12-14:
Figure 13-1:
SSPCON: Sync Serial Port
Control Register (Address 14h) .................. 85
SSP Block Diagram (SPI Mode) ................. 86
SPI Master/Slave Connection..................... 87
SPI Mode Timing, Master Mode or
Slave Mode w/o SS Control........................ 88
SPI Mode Timing, Slave Mode with
SS Control .................................................. 88
SSPSTAT: Sync Serial Port Status
Register (Address 94h)(PIC16C66/67)....... 89
SSPCON: Sync Serial Port Control
Register (Address 14h)(PIC16C66/67)....... 90
SSP Block Diagram (SPI Mode)
(PIC16C66/67)............................................ 91
SPI Master/Slave Connection
(PIC16C66/67)............................................ 92
SPI Mode Timing, Master Mode
(PIC16C66/67)............................................ 93
SPI Mode Timing (Slave Mode With
CKE = 0) (PIC16C66/67) ............................ 93
SPI Mode Timing (Slave Mode With
CKE = 1) (PIC16C66/67) ............................ 94
Start and Stop Conditions........................... 95
7-bit Address Format .................................. 96
I2C 10-bit Address Format .......................... 96
Slave-receiver Acknowledge ...................... 96
Data Transfer Wait State ............................ 96
Master-transmitter Sequence ..................... 97
Master-receiver Sequence.......................... 97
Combined Format ....................................... 97
Multi-master Arbitration
(Two Masters)............................................. 98
Clock Synchronization ................................ 98
SSP Block Diagram (I2C Mode).................. 99
I2C Waveforms for Reception
(7-bit Address) .......................................... 101
I2C Waveforms for Transmission
(7-bit Address) .......................................... 102
Operation of the I2C Module in
IDLE_MODE, RCV_MODE or
XMIT_MODE ............................................ 104
TXSTA: Transmit Status and
Control Register (Address 98h) ................ 105
RCSTA: Receive Status and
Control Register (Address 18h) ................ 106
RX Pin Sampling Scheme (BRGH = 0)
PIC16C63/R63/65/65A/R65) .................... 110
RX Pin Sampling Scheme (BRGH = 1)
(PIC16C63/R63/65/65A/R65) ................... 110
RX Pin Sampling Scheme (BRGH = 1)
(PIC16C63/R63/65/65A/R65) ................... 110
RX Pin Sampling Scheme (BRGH = 0 or = 1)
(PIC16C66/67).......................................... 111
USART Transmit Block Diagram .............. 112
Asynchronous Master Transmission......... 113
Asynchronous Master Transmission
(Back to Back) .......................................... 113
USART Receive Block Diagram ............... 114
Asynchronous Reception.......................... 114
Synchronous Transmission ...................... 117
Synchronous Transmission
through TXEN ........................................... 117
Synchronous Reception
(Master Mode, SREN) .............................. 119
Configuration Word for PIC16C61 ............ 123
1997-2013 Microchip Technology Inc.
Figure 13-2:
Figure 13-3:
Figure 13-4:
Figure 13-5:
Figure 13-6:
Figure 13-7:
Figure 13-8:
Figure 13-9:
Figure 13-10:
Figure 13-11:
Figure 13-12:
Figure 13-13:
Figure 13-14:
Figure 13-15:
Figure 13-16:
Figure 13-17:
Figure 13-18:
Figure 13-19:
Figure 13-20:
Figure 13-21:
Figure 13-22:
Figure 13-23:
Figure 14-1:
Figure 16-1:
Figure 16-2:
Figure 16-3:
Figure 16-4:
Figure 16-5:
Figure 17-1:
Figure 17-2:
Figure 17-3:
Figure 17-4:
Figure 17-5:
Figure 17-6:
Figure 17-7:
Figure 17-8:
Figure 17-9:
Configuration Word for
PIC16C62/64/65....................................... 124
Configuration Word for
PIC16C62A/R62/63/R63/64A/R64/
65A/R65/66/67 ......................................... 124
Crystal/Ceramic Resonator Operation
(HS, XT or LP OSC Configuration)........... 125
External Clock Input Operation
(HS, XT or LP OSC Configuration)........... 125
External Parallel Resonant
Crystal Oscillator Circuit ........................... 127
External Series Resonant
Crystal Oscillator Circuit ........................... 127
RC Oscillator Mode .................................. 127
Simplified Block Diagram of
On-chip Reset Circuit ............................... 128
Brown-out Situations ................................ 129
Time-out Sequence on Power-up
(MCLR not Tied to VDD): Case 1 .............. 134
Time-out Sequence on Power-up
(MCLR Not Tied To VDD): Case 2 ............ 134
Time-out Sequence on Power-up
(MCLR Tied to VDD) ................................. 134
External Power-on Reset Circuit
(For Slow VDD Power-up) ......................... 135
External Brown-out
Protection Circuit 1 ................................... 135
External Brown-out
Protection Circuit 2 ................................... 135
Interrupt Logic for PIC16C61.................... 137
Interrupt Logic for PIC16C6X ................... 137
INT Pin Interrupt Timing ........................... 138
Watchdog Timer Block Diagram............... 140
Summary of Watchdog
Timer Registers ........................................ 140
Wake-up from Sleep
Through Interrupt...................................... 142
Typical In-circuit Serial
Programming Connection......................... 142
General Format for Instructions................ 143
Load Conditions for Device Timing
Specifications ........................................... 168
External Clock Timing .............................. 169
CLKOUT and I/O Timing .......................... 170
Reset, Watchdog Timer, Oscillator
Start-up Timer and Power-up Timer
Timing....................................................... 171
Timer0 External Clock Timings ................ 172
Typical RC Oscillator
Frequency vs. Temperature .................... 173
Typical RC Oscillator
Frequency vs. VDD ................................... 174
Typical RC Oscillator
Frequency vs. VDD ................................... 174
Typical RC Oscillator
Frequency vs. VDD ................................... 174
Typical IPD vs. VDD Watchdog Timer
Disabled 25C .......................................... 174
Typical IPD vs. VDD Watchdog Timer
Enabled 25C ........................................... 175
Maximum IPD vs. VDD Watchdog
Disabled ................................................... 175
Maximum IPD vs. VDD Watchdog
Enabled*................................................... 176
VTH (Input Threshold Voltage) of
I/O Pins vs. VDD ....................................... 176
DS30234E-page 323
PIC16C6X
Figure 17-10: VIH, VIL of MCLR, T0CKI and OSC1
(in RC Mode) vs. VDD ............................... 177
Figure 17-11: VTH (Input Threshold Voltage) of
OSC1 Input (in XT, HS,
and LP Modes) vs. VDD ............................ 177
Figure 17-12: Typical IDD vs. Frequency
(External Clock, 25C) .............................. 178
Figure 17-13: Maximum IDD vs. Frequency
(External Clock, -40 to +85C)................. 178
Figure 17-14: Maximum IDD vs. Frequency
(External Clock, -55 to +125C)............... 179
Figure 17-15: WDT Timer Time-out Period vs. VDD ........ 179
Figure 17-16: Transconductance (gm) of HS
Oscillator vs. VDD ...................................... 179
Figure 17-17: Transconductance (gm) of LP
Oscillator vs. VDD ...................................... 180
Figure 17-18: Transconductance (gm) of XT
Oscillator vs. VDD ...................................... 180
Figure 17-19: IOH vs. VOH, VDD = 3V .............................. 180
Figure 17-20: IOH vs. VOH, VDD = 5V .............................. 180
Figure 17-21: IOL vs. VOL, VDD = 3V ............................... 181
Figure 17-22: IOL vs. VOL, VDD = 5V ............................... 181
Figure 18-1: Load Conditions for Device
Timing Specifications ................................ 188
Figure 18-2: External Clock Timing ............................... 189
Figure 18-3: CLKOUT and I/O Timing........................... 190
Figure 18-4: Reset, Watchdog Timer,
Oscillator Start-up Timer and
Power-up Timer Timing ............................ 191
Figure 18-5: Timer0 and Timer1 External
Clock Timings ........................................... 192
Figure 18-6: Capture/Compare/PWM Timings
(CCP1) ...................................................... 193
Figure 18-7: Parallel Slave Port Timing
(PIC16C64) ............................................... 194
Figure 18-8: SPI Mode Timing ...................................... 195
Figure 18-9: I2C Bus Start/Stop Bits Timing.................. 196
Figure 18-10: I2C Bus Data Timing ................................. 197
Figure 19-1: Load Conditions for Device
Timing Specifications ................................ 204
Figure 19-2: External Clock Timing ............................... 205
Figure 19-3: CLKOUT and I/O Timing........................... 206
Figure 19-4: Reset, Watchdog Timer,
Oscillator Start-up Timer and
Power-up Timer Timing ............................ 207
Figure 19-5: Brown-out Reset Timing ........................... 207
Figure 19-6: Timer0 and Timer1 External
Clock Timings ........................................... 208
Figure 19-7: Capture/Compare/PWM Timings
(CCP1) ...................................................... 209
Figure 19-8: Parallel Slave Port Timing
(PIC16C64A/R64)..................................... 210
Figure 19-9: SPI Mode Timing ...................................... 211
Figure 19-10: I2C Bus Start/Stop Bits Timing.................. 212
Figure 19-11: I2C Bus Data Timing ................................. 213
Figure 20-1: Load Conditions for Device Timing
Specifications............................................ 220
Figure 20-2: External Clock Timing ............................... 221
Figure 20-3: CLKOUT and I/O Timing........................... 222
Figure 20-4: Reset, Watchdog Timer, Oscillator
Start-up Timer and Power-up Timer
Timing ....................................................... 223
Figure 20-5: Timer0 and Timer1 External Clock
Timings ..................................................... 224
Figure 20-6: Capture/Compare/PWM Timings
(CCP1 and CCP2) .................................... 225
DS30234E-page 324
Figure 20-7:
Figure 20-8:
Figure 20-9:
Figure 20-10:
Figure 20-11:
Figure 20-12:
Figure 21-1:
Figure 21-2:
Figure 21-3:
Figure 21-4:
Figure 21-5:
Figure 21-6:
Figure 21-7:
Figure 21-8:
Figure 21-9:
Figure 21-10:
Figure 21-11:
Figure 21-12:
Figure 21-13:
Figure 22-1:
Figure 22-2:
Figure 22-3:
Figure 22-4:
Figure 22-5:
Figure 22-6:
Figure 22-7:
Figure 22-8:
Figure 22-9:
Figure 22-10:
Figure 22-11:
Figure 22-12:
Figure 22-13:
Figure 23-1:
Figure 23-2:
Figure 23-3:
Figure 23-4:
Figure 23-5:
Figure 23-6:
Figure 23-7:
Figure 23-8:
Figure 23-9:
Figure 23-10:
Figure 23-11:
Parallel Slave Port Timing ........................ 226
SPI Mode Timing ...................................... 227
I2C Bus Start/Stop Bits Timing ................. 228
I2C Bus Data Timing................................. 229
USART Synchronous Transmission
(Master/Slave) Timing .............................. 230
USART Synchronous Receive
(Master/Slave) Timing .............................. 230
Load Conditions for Device Timing
Specifications ........................................... 236
External Clock Timing............................... 237
CLKOUT and I/O Timing .......................... 238
Reset, Watchdog Timer, Oscillator
Start-up Timer and Power-up Timer
Timing....................................................... 239
Brown-out Reset Timing ........................... 239
Timer0 and Timer1 External Clock
Timings ..................................................... 240
Capture/Compare/PWM Timings
(CCP1 and CCP2)................................... 241
Parallel Slave Port Timing
(PIC16C65A) ............................................ 242
SPI Mode Timing ...................................... 243
I2C Bus Start/Stop Bits Timing ................. 244
I2C Bus Data Timing................................. 245
USART Synchronous Transmission
(Master/Slave) Timing .............................. 246
USART Synchronous Receive
(Master/Slave) Timing .............................. 246
Load Conditions for Device Timing
Specifications ........................................... 252
External Clock Timing............................... 253
CLKOUT and I/O Timing .......................... 254
Reset, Watchdog Timer, Oscillator
Start-up Timer and Power-up Timer
Timing....................................................... 255
Brown-out Reset Timing ........................... 255
Timer0 and Timer1 External Clock
Timings ..................................................... 256
Capture/Compare/PWM Timings
(CCP1 and CCP2).................................... 257
Parallel Slave Port Timing
(PIC16CR65) ............................................ 258
SPI Mode Timing ...................................... 259
I2C Bus Start/Stop Bits Timing ................. 260
I2C Bus Data Timing................................. 261
USART Synchronous Transmission
(Master/Slave) Timing .............................. 262
USART Synchronous Receive
(Master/Slave) Timing .............................. 262
Load Conditions for Device Timing
Specifications ........................................... 268
External Clock Timing............................... 269
CLKOUT and I/O Timing .......................... 270
Reset, Watchdog Timer, Oscillator
Start-up Timer and Power-up Timer
Timing....................................................... 271
Brown-out Reset Timing ........................... 271
Timer0 and Timer1 External Clock
Timings ..................................................... 272
Capture/Compare/PWM Timings
(CCP1 and CCP2).................................... 273
Parallel Slave Port Timing (PIC16C67) .... 274
SPI Master Mode Timing (CKE = 0) ......... 275
SPI Master Mode Timing (CKE = 1) ......... 275
SPI Slave Mode Timing (CKE = 0) ........... 276
1997-2013 Microchip Technology Inc.
PIC16C6X
Figure 23-12:
Figure 23-13:
Figure 23-14:
Figure 23-15:
Figure 23-16:
Figure 24-1:
Figure 24-2:
Figure 24-3:
Figure 24-4:
Figure 24-5:
Figure 24-6:
Figure 24-7:
Figure 24-8:
Figure 24-9:
Figure 24-10:
Figure 24-11:
Figure 24-12:
Figure 24-13:
Figure 24-14:
Figure 24-15:
Figure 24-16:
Figure 24-17:
Figure 24-18:
Figure 24-19:
Figure 24-20:
Figure 24-21:
Figure 24-22:
Figure 24-23:
Figure 24-24:
Figure 24-25:
Figure 24-26:
Figure 24-27:
Figure 24-28:
SPI Slave Mode Timing (CKE = 1) ........... 276
I2C Bus Start/Stop Bits Timing.................. 278
I2C Bus Data Timing ................................. 279
USART Synchronous Transmission
(Master/Slave) Timing............................... 280
USART Synchronous Receive
(Master/Slave) Timing............................... 280
Typical IPD vs. VDD
(WDT Disabled, RC Mode) ....................... 281
Maximum IPD vs. VDD
(WDT Disabled, RC Mode) ....................... 281
Typical IPD vs. VDD @ 25C
(WDT Enabled, RC Mode)........................ 282
Maximum IPD vs. VDD
(WDT Enabled, RC Mode)........................ 282
Typical RC Oscillator
Frequency vs. VDD .................................... 282
Typical RC Oscillator
Frequency vs. VDD .................................... 282
Typical RC Oscillator
Frequency vs. VDD .................................... 282
Typical IPD vs. VDD Brown-out
Detect Enabled (RC Mode)....................... 283
Maximum IPD vs. VDD Brown-out
Detect Enabled
(85C to -40C, RC Mode) ........................ 283
Typical IPD vs. Timer1 Enabled
(32 kHz, RC0/RC1 = 33 pF/33 pF,
RC Mode) ................................................ 283
Maximum IPD vs. Timer1 Enabled
(32 kHz, RC0/RC1 = 33 pF/33 pF,
85C to -40C, RC Mode) ......................... 283
Typical IDD vs. Frequency
(RC Mode @ 22 pF, 25°C) ....................... 284
Maximum IDD vs. Frequency
(RC Mode @ 22 pF, -40°C to 85°C) ......... 284
Typical IDD vs. Frequency
(RC Mode @ 100 pF, 25°C) ..................... 285
Maximum IDD vs. Frequency
(RC Mode @ 100 pF, -40°C to 85°C) ....... 285
Typical IDD vs. Frequency
(RC Mode @ 300 pF, 25°C) ..................... 286
Maximum IDD vs. Frequency
(RC Mode @ 300 pF, -40°C to 85°C) ....... 286
Typical IDD vs. Capacitance @ 500 kHz
(RC Mode) ................................................ 287
Transconductance(gm) of HS
Oscillator vs. VDD ...................................... 287
Transconductance(gm) of LP
Oscillator vs. VDD ...................................... 287
Transconductance(gm) of XT
Oscillator vs. VDD ...................................... 287
Typical XTAL Startup Time vs. VDD
(LP Mode, 25C) ....................................... 288
Typical XTAL Startup Time vs. VDD
(HS Mode, 25C) ...................................... 288
Typical XTAL Startup Time vs. VDD
(XT Mode, 25C)....................................... 288
Typical Idd vs. Frequency
(LP Mode, 25°C) ....................................... 289
Maximum IDD vs. Frequency
(LP Mode, 85°C to -40°C)......................... 289
Typical IDD vs. Frequency
(XT Mode, 25°C)....................................... 289
Maximum IDD vs. Frequency
(XT Mode, -40°C to 85°C)......................... 289
1997-2013 Microchip Technology Inc.
Figure 24-29: Typical IDD vs. Frequency
(HS Mode, 25°C) ...................................... 290
Figure 24-30: Maximum IDD vs. Frequency
(HS Mode, -40°C to 85°C)........................ 290
DS30234E-page 325
PIC16C6X
LIST OF TABLES
Table 12-2:
Table 1-1:
Table 3-1:
Table 3-2:
Table 12-3:
Table 12-4:
Table 3-3:
Table 4-1:
Table 4-2:
Table 4-3:
Table 4-4:
Table 4-5:
Table 4-6:
Table 5-1:
Table 5-2:
Table 5-3:
Table 5-4:
Table 5-5:
Table 5-6:
Table 5-7:
Table 5-8:
Table 5-9:
Table 5-10:
Table 5-11:
Table 5-12:
Table 5-13:
Table 7-1:
Table 8-1:
Table 8-2:
Table 9-1:
Table 10-1:
Table 10-2:
Table 10-3:
Table 10-4:
Table 10-5:
Table 11-1:
Table 11-2:
Table 11-3:
Table 11-4:
Table 11-5:
Table 12-1:
PIC16C6X Family of Devices ....................... 6
PIC16C61 Pinout Description ..................... 14
PIC16C62/62A/R62/63/R63/66
Pinout Description....................................... 15
PIC16C64/64A/R64/65/65A/R65/67
Pinout Description....................................... 16
Special Function Registers for the
PIC16C61 ................................................... 23
Special Function Registers for the
PIC16C62/62A/R62 .................................... 24
Special Function Registers for the
PIC16C63/R63............................................ 26
Special Function Registers for the
PIC16C64/64A/R64 .................................... 28
Special Function Registers for the
PIC16C65/65A/R65 .................................... 30
Special Function Registers for the
PIC16C66/67 .............................................. 32
PORTA Functions ....................................... 52
Registers/Bits Associated with
PORTA ....................................................... 52
PORTB Functions ....................................... 54
Summary of Registers Associated with
PORTB ....................................................... 54
PORTC Functions for PIC16C62/64 ........... 55
PORTC Functions for
PIC16C62A/R62/64A/R64 .......................... 56
PORTC Functions for
PIC16C63/R63/65/65A/R65/66/67.............. 56
Summary of Registers Associated with
PORTC ....................................................... 56
PORTD Functions....................................... 57
Summary of Registers Associated with
PORTD ....................................................... 57
PORTE Functions ....................................... 59
Summary of Registers Associated with
PORTE ....................................................... 59
Registers Associated with
Parallel Slave Port ...................................... 62
Registers Associated with Timer0 .............. 69
Capacitor Selection for the
Timer1 Oscillator......................................... 73
Registers Associated with
Timer1 as a Timer/Counter ......................... 74
Registers Associated with
Timer2 as a Timer/Counter ......................... 76
CCP Mode - Timer Resource ..................... 77
Interaction of Two CCP Modules ................ 77
Example PWM Frequencies
and Resolutions at 20 MHz......................... 81
Registers Associated with Timer1,
Capture and Compare ................................ 81
Registers Associated with PWM
and Timer2.................................................. 82
Registers Associated with SPI
Operation .................................................... 88
Registers Associated with SPI
Operation (PIC16C66/67) ........................... 94
I2C Bus Terminology................................... 95
Data Transfer Received Byte
Actions ...................................................... 100
Registers Associated with I2C
Operation .................................................. 103
Baud Rate Formula................................... 107
DS30234E-page 326
Table 12-5:
Table 12-6:
Table 12-7:
Table 12-8:
Table 12-9:
Table 12-10:
Table 12-11:
Table 13-1:
Table 13-2:
Table 13-3:
Table 13-4:
Table 13-5:
Table 13-6:
Table 13-7:
Table 13-8:
Table 13-9:
Table 13-10:
Table 13-11:
Table 13-12:
Table 14-1:
Table 14-2:
Table 15-1:
Table 16-1:
Table 16-2:
Table 16-3:
Table 16-4:
Table 16-5:
Table 17-1:
Table 17-2:
Registers Associated with Baud
Rate Generator......................................... 107
Baud Rates for Synchronous Mode.......... 108
Baud Rates for Asynchronous Mode
(BRGH = 0)............................................... 108
Baud Rates for Asynchronous Mode
(BRGH = 1)............................................... 109
Registers Associated with
Asynchronous Transmission .................... 113
Registers Associated with
Asynchronous Reception.......................... 115
Registers Associated with
Synchronous Master Transmission .......... 117
Registers Associated with
Synchronous Master Reception ............... 118
Registers Associated with
Synchronous Slave Transmission ............ 121
Registers Associated with
Synchronous Slave Reception ................. 121
Ceramic Resonators PIC16C61 ............... 126
Ceramic Resonators
PIC16C62/62A/R62/63/R63/
64/64A/R64/65/65A/R65/66/67 ................ 126
Capacitor Selection for Crystal
Oscillator for PIC16C61............................ 126
Capacitor Selection for Crystal
Oscillator for PIC16C62/62A/R62/63/R63/
64/64A/R64/65/65A/R65/66/67 ................ 126
Time-out in Various Situations,
PIC16C61/62/64/65.................................. 130
Time-out in Various Situations,
PIC16C62A/R62/63/R63/
64A/R64/65A/R65/66/67 .......................... 130
Status Bits and Their Significance,
PIC16C61 ................................................. 130
Status bits and Their Significance,
PIC16C62/64/65....................................... 130
Status Bits and Their Significance for
PIC16C62A/R62/63/R63/
64A/R64/65A/R65/66/67 .......................... 131
Reset Condition for Special
Registers on PIC16C61/62/64/65............. 131
Reset Condition for Special
Registers on
PIC16C62A/R62/63/R63/
64A/R64/65A/R65/66/67 .......................... 131
Initialization Conditions for
all Registers.............................................. 132
Opcode Field Descriptions ....................... 143
PIC16CXX Instruction Set ........................ 144
Development Tools from Microchip .......... 162
Cross Reference of Device
Specs for Oscillator Configurations
and Frequencies of Operation
(Commercial Devices) .............................. 163
External Clock Timing
Requirements ........................................... 169
CLKOUT and I/O Timing
Requirements ........................................... 170
Reset, Watchdog Timer,
Oscillator Start-up Timer and
Power-up Timer Requirements................. 171
Timer0 External Clock Requirements....... 172
RC Oscillator Frequencies........................ 173
Input Capacitance* ................................... 181
1997-2013 Microchip Technology Inc.
PIC16C6X
Table 18-1:
Table 18-2:
Table 18-3:
Table 18-4:
Table 18-5:
Table 18-6:
Table 18-7:
Table 18-8:
Table 18-9:
Table 18-10:
Table 19-1:
Table 19-2:
Table 19-3:
Table 19-4:
Table 19-5:
Table 19-6:
Table 19-7:
Table 19-8:
Table 19-9:
Table 19-10:
Table 20-1:
Table 20-2:
Table 20-3:
Table 20-4:
Table 20-5:
Table 20-6:
Table 20-7:
Table 20-8:
Table 20-9:
Table 20-10:
Table 20-11:
Cross Reference of Device Specs
for Oscillator Configurations and
Frequencies of Operation
(Commercial Devices) .............................. 183
External Clock Timing
Requirements ........................................... 189
CLKOUT and I/O Timing
Requirements ........................................... 190
Reset, Watchdog Timer,
Oscillator Start-up Timer and
Power-up Timer Requirements................. 191
Timer0 and Timer1 External
Clock Requirements ................................. 192
Capture/Compare/PWM
Requirements (CCP1) .............................. 193
Parallel Slave Port Requirements (PIC16C64)
194
SPI Mode Requirements........................... 195
I2C Bus Start/Stop Bits
Requirements ........................................... 196
I2C Bus Data Requirements ..................... 197
Cross Reference of Device Specs
for Oscillator Configurations and
Frequencies of Operation
(Commercial Devices) .............................. 199
External Clock Timing
Requirements ........................................... 205
CLKOUT and I/O Timing
Requirements ........................................... 206
Reset, Watchdog Timer,
Oscillator Start-up Timer,
Power-up Timer, and Brown-out
Reset Requirements ................................. 207
Timer0 and Timer1 External
Clock Requirements ................................. 208
Capture/Compare/PWM
Requirements (CCP1) .............................. 209
Parallel Slave Port Requirements
(PIC16C64A/R64)..................................... 210
SPI Mode Requirements........................... 211
I2C Bus Start/Stop Bits
Requirements ........................................... 212
I2C Bus Data Requirements ..................... 213
Cross Reference of Device Specs
for Oscillator Configurations and
Frequencies of Operation
(Commercial Devices) .............................. 215
External Clock Timing
Requirements ........................................... 221
CLKOUT and I/O Timing
Requirements ........................................... 222
Reset, Watchdog Timer,
Oscillator Start-up Timer and
Power-up Timer Requirements................. 223
Timer0 and Timer1 External
Clock Requirements ................................. 224
Capture/Compare/PWM
Requirements (CCP1 and CCP2)............. 225
Parallel Slave Port Requirements............. 226
SPI Mode Requirements........................... 227
I2C Bus Start/Stop Bits
Requirements ........................................... 228
i2C Bus Data Requirements...................... 229
USART Synchronous Transmission
Requirements ........................................... 230
1997-2013 Microchip Technology Inc.
Table 20-12:
Table 21-1:
Table 21-2:
Table 21-3:
Table 21-4:
Table 21-5:
Table 21-6:
Table 21-7:
Table 21-8:
Table 21-9:
Table 21-10:
Table 21-11:
Table 21-12:
Table 22-1:
Table 22-2:
Table 22-3:
Table 22-4:
Table 22-5:
Table 22-6:
Table 22-7:
Table 22-8:
Table 22-9:
Table 22-10:
Table 22-11:
Table 22-12:
Table 23-1:
Table 23-2:
Table 23-3:
Table 23-4:
USART Synchronous Receive
Requirements ........................................... 230
Cross Reference of Device
Specs for Oscillator Configurations
and Frequencies of Operation
(Commercial Devices) .............................. 231
External Clock Timing
Requirements ........................................... 237
CLKOUT and I/O Timing
Requirements ........................................... 238
Reset, Watchdog Timer, Oscillator
Start-up Timer, Power-up Timer, and
Brown-out Reset Requirements ............... 239
Timer0 and Timer1 External
Clock Requirements ................................. 240
Capture/Compare/PWM
Requirements (CCP1 and CCP2) ............ 241
Parallel Slave Port Requirements
(PIC16C65A) ............................................ 242
SPI Mode Requirements .......................... 243
I2C Bus Start/Stop Bits
Requirements ........................................... 244
I2C Bus Data Requirements ..................... 245
USART Synchronous
Transmission Requirements..................... 246
USART Synchronous Receive
Requirements .......................................... 246
Cross Reference of Device Specs
for Oscillator Configurations and
Frequencies of Operation
(Commercial Devices) .............................. 247
External Clock Timing
Requirements ........................................... 253
CLKOUT and I/O Timing
Requirements ........................................... 254
Reset, Watchdog Timer,
Oscillator Start-up Timer,
Power-up Timer, and Brown-out
Reset Requirements................................. 255
Timer0 and Timer1 External
Clock Requirements ................................. 256
Capture/Compare/PWM
Requirements (CCP1 and CCP2) ............ 257
Parallel Slave Port Requirements
(PIC16CR65)............................................ 258
SPI Mode Requirements .......................... 259
I2C Bus Start/Stop Bits
Requirements ........................................... 260
I2C Bus Data Requirements ..................... 261
USART Synchronous Transmission
Requirements ........................................... 262
USART Synchronous Receive
Requirements .......................................... 262
Cross Reference of Device Specs
for Oscillator Configurations and
Frequencies of Operation
(Commercial Devices) .............................. 263
External Clock Timing
Requirements ........................................... 269
CLKOUT and I/O Timing
Requirements ........................................... 270
Reset, Watchdog Timer,
Oscillator Start-up Timer,
Power-up Timer, and Brown-out
Reset Requirements................................. 271
DS30234E-page 327
PIC16C6X
Table 23-5:
Table 23-6:
Table 23-7:
Table 23-8:
Table 23-9:
Table 23-10:
Table 23-11:
Table 23-12:
Table 24-1:
Table 24-2:
Table E-1:
Timer0 and Timer1 External
Clock Requirements ................................. 272
Capture/Compare/PWM
Requirements (CCP1 and CCP2) ............. 273
Parallel Slave Port Requirements (PIC16C67)
274
SPI Mode Requirements........................... 277
I2C Bus Start/Stop Bits
Requirements ........................................... 278
I2C Bus Data Requirements ..................... 279
USART Synchronous Transmission
Requirements ........................................... 280
USART Synchronous Receive
Requirements ........................................... 280
RC Oscillator Frequencies ........................ 287
Capacitor Selection for Crystal
Oscillators ................................................. 288
Pin Compatible Devices............................ 315
DS30234E-page 328
1997-2013 Microchip Technology Inc.
PIC16C6X
ON-LINE SUPPORT
Microchip provides two methods of on-line support.
These are the Microchip BBS and the Microchip World
Wide Web (WWW) site.
Use Microchip's Bulletin Board Service (BBS) to get
current information and help about Microchip products.
Microchip provides the BBS communication channel
for you to use in extending your technical staff with
microcontroller and memory experts.
To provide you with the most responsive service possible,
the Microchip systems team monitors the BBS, posts
the latest component data and software tool updates,
provides technical help and embedded systems
insights, and discusses how Microchip products provide project solutions.
The web site, like the BBS, is used by Microchip as a
means to make files and information easily available to
customers. To view the site, the user must have access
to the Internet and a web browser, such as Netscape or
Microsoft Explorer. Files are also available for FTP
download from our FTP site.
Connecting to the Microchip Internet Web Site
The Microchip web site is available by using your
favorite Internet browser to attach to:
www.microchip.com
The file transfer site is available by using an FTP service to connect to:
ftp://ftp.futureone.com/pub/microchip
The web site and file transfer site provide a variety of
services. Users may download files for the latest
Development Tools, Data Sheets, Application Notes,
User's Guides, Articles and Sample Programs. A variety of Microchip specific business information is also
available, including listings of Microchip sales offices,
distributors and factory representatives. Other data
available for consideration is:
• Latest Microchip Press Releases
• Technical Support Section with Frequently Asked
Questions
• Design Tips
• Device Errata
• Job Postings
• Microchip Consultant Program Member Listing
• Links to other useful web sites related to
Microchip Products
Connecting to the Microchip BBS
Connect worldwide to the Microchip BBS using either
the Internet or the CompuServe communications network.
Internet:
You can telnet or ftp to the Microchip BBS at the
address: mchipbbs.microchip.com
CompuServe Communications Network:
When using the BBS via the Compuserve Network,
in most cases, a local call is your only expense.
The Microchip BBS connection does not use CompuServe
membership services, therefore you do not need
CompuServe membership to join Microchip's BBS.
There is no charge for connecting to the Microchip BBS.
1997-2013 Microchip Technology Inc.
The procedure to connect will vary slightly from country
to country. Please check with your local CompuServe
agent for details if you have a problem. CompuServe
service allow multiple users various baud rates
depending on the local point of access.
The following connect procedure applies in most locations.
1. Set your modem to 8-bit, No parity, and One stop
(8N1). This is not the normal CompuServe setting
which is 7E1.
2. Dial your local CompuServe access number.
3. Depress the key and a garbage string will
appear because CompuServe is expecting a 7E1
setting.
4. Type +, depress the key and “Host Name:”
will appear.
5. Type MCHIPBBS, depress the key and you
will be connected to the Microchip BBS.
In the United States, to find the CompuServe phone
number closest to you, set your modem to 7E1 and dial
(800) 848-4480 for 300-2400 baud or (800) 331-7166
for 9600-14400 baud connection. After the system
responds with “Host Name:”, type NETWORK, depress
the key and follow CompuServe's directions.
For voice information (or calling from overseas), you
may call (614) 723-1550 for your local CompuServe
number.
Microchip regularly uses the Microchip BBS to distribute
technical information, application notes, source code,
errata sheets, bug reports, and interim patches for
Microchip systems software products. For each SIG, a
moderator monitors, scans, and approves or disapproves files submitted to the SIG. No executable files
are accepted from the user community in general to
limit the spread of computer viruses.
Systems Information and Upgrade Hot Line
The Systems Information and Upgrade Line provides
system users a listing of the latest versions of all of
Microchip's development systems software products.
Plus, this line provides information on how customers
can receive any currently available upgrade kits.The
Hot Line Numbers are:
1-800-755-2345 for U.S. and most of Canada, and
1-602-786-7302 for the rest of the world.
970301
Trademarks: The Microchip name, logo, PIC, PICSTART,
PICMASTER and PRO MATE are registered trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries. FlexROM, MPLAB and fuzzyLAB, are trademarks and SQTP is a service mark of Microchip in the
U.S.A.
fuzzyTECH is a registered trademark of Inform Software
Corporation. IBM, IBM PC-AT are registered trademarks of
International Business Machines Corp. Pentium is a trademark of Intel Corporation. Windows is a trademark and
MS-DOS, Microsoft Windows are registered trademarks
of Microsoft Corporation. CompuServe is a registered
trademark of CompuServe Incorporated.
All other trademarks mentioned herein are the property of
their respective companies.
DS30234E-page 329
PIC16C6X
READER RESPONSE
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation
can better serve you, please FAX your comments to the Technical Publications Manager at (602) 786-7578.
Please list the following information, and use this outline to provide us with your comments about this Data Sheet.
To:
Technical Publications Manager
RE:
Reader Response
Total Pages Sent
From: Name
Company
Address
City / State / ZIP / Country
Telephone: (_______) _________ - _________
FAX: (______) _________ - _________
Application (optional):
Would you like a reply?
Device: PIC16C6X
Y
N
Literature Number: DS30234E
Questions:
1. What are the best features of this document?
2. How does this document meet your hardware and software development needs?
3. Do you find the organization of this data sheet easy to follow? If not, why?
4. What additions to the data sheet do you think would enhance the structure and subject?
5. What deletions from the data sheet could be made without affecting the overall usefulness?
6. Is there any incorrect or misleading information (what and where)?
7. How would you improve this document?
8. How would you improve our software, systems, and silicon products?
DS30234E-page 330
1997-2013 Microchip Technology Inc.
PIC16C6X
PIC16C6X Product Identification System
To order or to obtain information, e.g., on pricing or delivery, please use the listed part numbers, and refer to the factory or the listed
sales offices.
PART NO.
-XX
X /XX XXX
Pattern:
3-Digit Pattern Code for QTP (blank otherwise)
Package:
L
SP
P
SO
PQ
TQ
JW*
SS
=
=
=
=
=
=
=
=
PLCC
Skinny DIP
PDIP
SOIC (Gull Wing, 300 mil body)
MQFP (Metric PQFP)
TQFP
Windowed CERDIP
Shrink SOIC (Gull Wing, 300 mil body)
Temperature
Range:
I
E
=
=
=
0°C to +70°C (T for tape/reel)
– 40°C to +85°C (S for tape/reel)
– 40°C to +125°C
Frequency
Range:
04
04
10
20
=
=
=
=
200 kHz (PIC16C6X-04)
4 MHz
10 MHz
20 MHz
Device:
PIC16C6X
:VDD range 4.0V to 6.0V
PIC16C6XT :VDD range 4.0V to 6.0V (Tape and Reel)
PIC16LC6X :VDD range 2.5V to 6.0V
PIC16LC6XT :VDD range 2.5V to 6.0V (Tape and Reel)
PIC16CR6X :VDD range 4.0V to 6.0V
PIC16CR6XT :VDD range 4.0V to 6.0V (Tape and Reel)
PIC16LCR6X :VDD range 2.5V to 6.0V
PIC16LCR6XT:VDD range 2.5V to 6.0V
Examples:
a)PIC16C62A - 04/P 301 = Commercial temp., PDIP package, 4 MHz, normal VDD limits, QTP pattern #301
b)PIC16LC65A - 04I/PQ = Industrial temp., MQFP package, 4 MHz, extended VDD limits
c)PIC16C67 - 10E/P
= Extended temp., PDIP package, 10 MHz, normal VDD limits
* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of
each oscillator type (including LC devices).
Sales and Support
Products supported by a preliminary Data Sheet may possibly have an errata sheet describing minor operational differences and
recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:
1. The Microchip Website at www.microchip.com
2. Your local Microchip sales office (see following page)
1997-2013 Microchip Technology Inc.
DS30234E-page 331
PIC16C6X
DS30234E-page 332
1997-2013 Microchip Technology Inc.
Note the following details of the code protection feature on Microchip devices:
•
Microchip products meet the specification contained in their particular Microchip Data Sheet.
•
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.
•
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
•
Microchip is willing to work with the customer who is concerned about the integrity of their code.
•
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.
Trademarks
The Microchip name and logo, the Microchip logo, dsPIC,
FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,
PICSTART, PIC32 logo, rfPIC, SST, SST Logo, SuperFlash
and UNI/O are registered trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,
MTP, SEEVAL and The Embedded Control Solutions
Company are registered trademarks of Microchip Technology
Incorporated in the U.S.A.
Silicon Storage Technology is a registered trademark of
Microchip Technology Inc. in other countries.
Analog-for-the-Digital Age, Application Maestro, BodyCom,
chipKIT, chipKIT logo, CodeGuard, dsPICDEM,
dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial
Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB
Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,
PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O,
Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA
and Z-Scale are trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.
SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.
GestIC and ULPP are registered trademarks of Microchip
Technology Germany II GmbH & Co. & KG, a subsidiary of
Microchip Technology Inc., in other countries.
All other trademarks mentioned herein are property of their
respective companies.
© 1997-2013, Microchip Technology Incorporated, Printed in
the U.S.A., All Rights Reserved.
Printed on recycled paper.
ISBN: 9781620769652
QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV
== ISO/TS 16949 ==
1997-2013 Microchip Technology Inc.
Microchip received ISO/TS-16949:2009 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.
DS30234E-page 333
Worldwide Sales and Service
AMERICAS
ASIA/PACIFIC
ASIA/PACIFIC
EUROPE
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Japan - Osaka
Tel: 81-6-6152-7160
Fax: 81-6-6152-9310
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445
Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
China - Hangzhou
Tel: 86-571-2819-3187
Fax: 86-571-2819-3189
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
China - Hong Kong SAR
Tel: 852-2943-5100
Fax: 852-2401-3431
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955
China - Shenzhen
Tel: 86-755-8864-2200
Fax: 86-755-8203-1760
Taiwan - Kaohsiung
Tel: 886-7-213-7828
Fax: 886-7-330-9305
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
Taiwan - Taipei
Tel: 886-2-2508-8600
Fax: 886-2-2508-0102
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350
UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049
DS30234E-page 334
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Japan - Tokyo
Tel: 81-3-6880- 3770
Fax: 81-3-6880-3771
11/29/12
1997-2013 Microchip Technology Inc.