0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
PIC16C711-04/P

PIC16C711-04/P

  • 厂商:

    ACTEL(微芯科技)

  • 封装:

    DIP18

  • 描述:

    IC MCU 8BIT 1.75KB OTP 18DIP

  • 数据手册
  • 价格&库存
PIC16C711-04/P 数据手册
PIC16C71X 8-Bit CMOS Microcontrollers with A/D Converter Devices included in this data sheet: PIC16C71X Peripheral Features: • • • • • Timer0: 8-bit timer/counter with 8-bit prescaler • 8-bit multichannel analog-to-digital converter • Brown-out detection circuitry for Brown-out Reset (BOR) • 13 I/O Pins with Individual Direction Control PIC16C710 PIC16C71 PIC16C711 PIC16C715 PIC16C71X Microcontroller Core Features: 710 71 711 715 Program Memory (EPROM) x 14 512 1K 1K 2K Data Memory (Bytes) x 8 36 36 68 128 I/O Pins 13 13 13 13 Timer Modules 1 1 1 1 A/D Channels 4 4 4 4 In-Circuit Serial Programming Yes Yes Yes Yes Brown-out Reset Yes — Interrupt Sources 4 4 Yes Yes 4 4 Pin Diagrams PDIP, SOIC, Windowed CERDIP •1 18 RA1/AN1 RA3/AN3/VREF RA2/AN2 2 17 RA0/AN0 RA4/T0CKI 3 16 OSC1/CLKIN MCLR/VPP 4 15 OSC2/CLKOUT VSS 5 RB0/INT 6 RB1 RB2 7 8 RB3 14 VDD 13 RB7 12 11 RB6 RB5 9 10 RB4 SSOP •1 20 RA1/AN1 RA3/AN3/VREF RA2/AN2 2 19 RA0/AN0 RA4/T0CKI 3 18 OSC1/CLKIN MCLR/VPP 4 VSS 5 VSS 6 RB0/INT RB1 7 8 RB2 RB3 PIC16C710 PIC16C711 PIC16C715  1997 Microchip Technology Inc. PIC16C7X Features PIC16C710 PIC16C71 PIC16C711 PIC16C715 • High-performance RISC CPU • Only 35 single word instructions to learn • All single cycle instructions except for program branches which are two cycle • Operating speed: DC - 20 MHz clock input DC - 200 ns instruction cycle • Up to 2K x 14 words of Program Memory, up to 128 x 8 bytes of Data Memory (RAM) • Interrupt capability • Eight level deep hardware stack • Direct, indirect, and relative addressing modes • Power-on Reset (POR) • Power-up Timer (PWRT) and Oscillator Start-up Timer (OST) • Watchdog Timer (WDT) with its own on-chip RC oscillator for reliable operation • Programmable code-protection • Power saving SLEEP mode • Selectable oscillator options • Low-power, high-speed CMOS EPROM technology • Fully static design • Wide operating voltage range: 2.5V to 6.0V • High Sink/Source Current 25/25 mA • Commercial, Industrial and Extended temperature ranges • Program Memory Parity Error Checking Circuitry with Parity Error Reset (PER) (PIC16C715) • Low-power consumption: - < 2 mA @ 5V, 4 MHz - 15 µA typical @ 3V, 32 kHz - < 1 µA typical standby current 17 OSC2/CLKOUT 16 VDD 15 VDD 14 13 RB7 RB6 9 12 RB5 10 11 RB4 DS30272A-page 1 PIC16C71X Table of Contents 1.0 General Description .................................................................................................................................................................... 3 2.0 PIC16C71X Device Varieties...................................................................................................................................................... 5 3.0 Architectural Overview................................................................................................................................................................ 7 4.0 Memory Organization ............................................................................................................................................................... 11 5.0 I/O Ports.................................................................................................................................................................................... 25 6.0 Timer0 Module.......................................................................................................................................................................... 31 7.0 Analog-to-Digital Converter (A/D) Module ................................................................................................................................ 37 8.0 Special Features of the CPU .................................................................................................................................................... 47 9.0 Instruction Set Summary .......................................................................................................................................................... 69 10.0 Development Support ............................................................................................................................................................... 85 11.0 Electrical Characteristics for PIC16C710 and PIC16C711 ....................................................................................................... 89 12.0 DC and AC Characteristics Graphs and Tables for PIC16C710 and PIC16C711.................................................................. 101 13.0 Electrical Characteristics for PIC16C715................................................................................................................................ 111 14.0 DC and AC Characteristics Graphs and Tables for PIC16C715 ............................................................................................ 125 15.0 Electrical Characteristics for PIC16C71.................................................................................................................................. 135 16.0 DC and AC Characteristics Graphs and Tables for PIC16C71 .............................................................................................. 147 17.0 Packaging Information ............................................................................................................................................................ 155 Appendix A: ...................................................................................................................................................................................... 161 Appendix B: Compatibility................................................................................................................................................................. 161 Appendix C: What’s New .................................................................................................................................................................. 162 Appendix D: What’s Changed .......................................................................................................................................................... 162 Index .................................................................................................................................................................................................. 163 PIC16C71X Product Identification System......................................................................................................................................... 173 To Our Valued Customers We constantly strive to improve the quality of all our products and documentation. We have spent an exceptional amount of time to ensure that these documents are correct. However, we realize that we may have missed a few things. If you find any information that is missing or appears in error, please use the reader response form in the back of this data sheet to inform us. We appreciate your assistance in making this a better document. DS30272A-page 2  1997 Microchip Technology Inc. PIC16C71X 1.0 GENERAL DESCRIPTION The PIC16C71X is a family of low-cost, high-performance, CMOS, fully-static, 8-bit microcontrollers with integrated analog-to-digital (A/D) converters, in the PIC16CXX mid-range family. All PIC16/17 microcontrollers employ an advanced RISC architecture. The PIC16CXX microcontroller family has enhanced core features, eight-level deep stack, and multiple internal and external interrupt sources. The separate instruction and data buses of the Harvard architecture allow a 14-bit wide instruction word with the separate 8-bit wide data. The two stage instruction pipeline allows all instructions to execute in a single cycle, except for program branches which require two cycles. A total of 35 instructions (reduced instruction set) are available. Additionally, a large register set gives some of the architectural innovations used to achieve a very high performance. PIC16CXX microcontrollers typically achieve a 2:1 code compression and a 4:1 speed improvement over other 8-bit microcontrollers in their class. The PIC16C710/71 devices have 36 bytes of RAM, the PIC16C711 has 68 bytes of RAM and the PIC16C715 has 128 bytes of RAM. Each device has 13 I/O pins. In addition a timer/counter is available. Also a 4-channel high-speed 8-bit A/D is provided. The 8-bit resolution is ideally suited for applications requiring low-cost analog interface, e.g. thermostat control, pressure sensing, etc. The PIC16C71X family has special features to reduce external components, thus reducing cost, enhancing system reliability and reducing power consumption. There are four oscillator options, of which the single pin RC oscillator provides a low-cost solution, the LP oscillator minimizes power consumption, XT is a standard crystal, and the HS is for High Speed crystals. The SLEEP (power-down) feature provides a power saving mode. The user can wake up the chip from SLEEP through several external and internal interrupts and resets.  1997 Microchip Technology Inc. A highly reliable Watchdog Timer with its own on-chip RC oscillator provides protection against software lockup. A UV erasable CERDIP packaged version is ideal for code development while the cost-effective One-TimeProgrammable (OTP) version is suitable for production in any volume. The PIC16C71X family fits perfectly in applications ranging from security and remote sensors to appliance control and automotive. The EPROM technology makes customization of application programs (transmitter codes, motor speeds, receiver frequencies, etc.) extremely fast and convenient. The small footprint packages make this microcontroller series perfect for all applications with space limitations. Low cost, low power, high performance, ease of use and I/O flexibility make the PIC16C71X very versatile even in areas where no microcontroller use has been considered before (e.g. timer functions, serial communication, capture and compare, PWM functions and coprocessor applications). 1.1 Family and Upward Compatibility Users familiar with the PIC16C5X microcontroller family will realize that this is an enhanced version of the PIC16C5X architecture. Please refer to Appendix A for a detailed list of enhancements. Code written for the PIC16C5X can be easily ported to the PIC16CXX family of devices (Appendix B). 1.2 Development Support PIC16C71X devices are supported by the complete line of Microchip Development tools. Please refer to Section 10.0 for more details about Microchip’s development tools. DS30272A-page 3 PIC16C71X TABLE 1-1: PIC16C71X FAMILY OF DEVICES PIC16C710 Clock Memory Memory PIC16C72 PIC16CR72(1) 20 20 20 20 20 EPROM Program Memory (x14 words) 512 1K 1K 2K 2K — ROM Program Memory (14K words) — — — — — 2K Data Memory (bytes) 36 36 68 128 128 128 Timer Module(s) TMR0 TMR0 TMR0 TMR0 TMR0, TMR1, TMR2 TMR0, TMR1, TMR2 — — — — 1 1 Serial Port(s) (SPI/I2C, USART) — — — — SPI/I2C SPI/I2C Parallel Slave Port — — — — — — A/D Converter (8-bit) Channels 4 4 4 4 5 5 Interrupt Sources 4 4 4 4 8 8 I/O Pins 13 13 13 13 22 22 Voltage Range (Volts) 2.5-6.0 3.0-6.0 2.5-6.0 2.5-5.5 2.5-6.0 3.0-5.5 In-Circuit Serial Programming Yes Yes Yes Yes Yes Yes Brown-out Reset Yes — Yes Yes Yes Yes Packages 18-pin DIP, 18-pin DIP, 18-pin DIP, 18-pin DIP, 28-pin SDIP, 28-pin SDIP, SOIC; SOIC SOIC; SOIC; SOIC, SSOP SOIC, SSOP 20-pin SSOP 20-pin SSOP 20-pin SSOP PIC16C74A PIC16C76 PIC16C77 Maximum Frequency of Operation (MHz) 20 20 20 20 EPROM Program Memory (x14 words) 4K 4K 8K 8K Data Memory (bytes) 192 192 376 376 Timer Module(s) TMR0, TMR1, TMR2 TMR0, TMR1, TMR2 TMR0, TMR1, TMR2 TMR0, TMR1, TMR2 2 2 2 2 Serial Port(s) (SPI/I2C, USART) SPI/I2C, USART SPI/I2C, USART SPI/I2C, USART SPI/I2C, USART Parallel Slave Port — Capture/Compare/PWM Peripherals Module(s) Features PIC16C715 20 PIC16C73A Clock PIC16C711 Maximum Frequency of Operation (MHz) Capture/Compare/PWM Peripherals Module(s) Features PIC16C71 Yes — Yes A/D Converter (8-bit) Channels 5 8 5 8 Interrupt Sources 11 12 11 12 I/O Pins 22 33 22 33 Voltage Range (Volts) 2.5-6.0 2.5-6.0 2.5-6.0 2.5-6.0 In-Circuit Serial Programming Yes Yes Yes Yes Brown-out Reset Yes Yes Yes Yes Packages 28-pin SDIP, SOIC 40-pin DIP; 44-pin PLCC, MQFP, TQFP 28-pin SDIP, SOIC 40-pin DIP; 44-pin PLCC, MQFP, TQFP All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability. All PIC16C7XX Family devices use serial programming with clock pin RB6 and data pin RB7. Note 1: Please contact your local Microchip sales office for availability of these devices. DS30272A-page 4  1997 Microchip Technology Inc. PIC16C71X 2.0 PIC16C71X DEVICE VARIETIES A variety of frequency ranges and packaging options are available. Depending on application and production requirements, the proper device option can be selected using the information in the PIC16C71X Product Identification System section at the end of this data sheet. When placing orders, please use that page of the data sheet to specify the correct part number. For the PIC16C71X family, there are two device “types” as indicated in the device number: 1. 2. 2.1 C, as in PIC16C71. These devices have EPROM type memory and operate over the standard voltage range. LC, as in PIC16LC71. These devices have EPROM type memory and operate over an extended voltage range. UV Erasable Devices The UV erasable version, offered in CERDIP package is optimal for prototype development and pilot programs. This version can be erased and reprogrammed to any of the oscillator modes. 2.3 Quick-Turnaround-Production (QTP) Devices Microchip offers a QTP Programming Service for factory production orders. This service is made available for users who choose not to program a medium to high quantity of units and whose code patterns have stabilized. The devices are identical to the OTP devices but with all EPROM locations and configuration options already programmed by the factory. Certain code and prototype verification procedures apply before production shipments are available. Please contact your local Microchip Technology sales office for more details. 2.4 Serialized Quick-Turnaround Production (SQTPSM) Devices Microchip offers a unique programming service where a few user-defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random, or sequential. Serial programming allows each device to have a unique number which can serve as an entry-code, password, or ID number. Microchip's PICSTART Plus and PRO MATE II programmers both support programming of the PIC16C71X. 2.2 One-Time-Programmable (OTP) Devices The availability of OTP devices is especially useful for customers who need the flexibility for frequent code updates and small volume applications. The OTP devices, packaged in plastic packages, permit the user to program them once. In addition to the program memory, the configuration bits must also be programmed.  1997 Microchip Technology Inc. DS30272A-page 5 PIC16C71X NOTES: DS30272A-page 6  1997 Microchip Technology Inc. PIC16C71X 3.0 ARCHITECTURAL OVERVIEW The high performance of the PIC16CXX family can be attributed to a number of architectural features commonly found in RISC microprocessors. To begin with, the PIC16CXX uses a Harvard architecture, in which, program and data are accessed from separate memories using separate buses. This improves bandwidth over traditional von Neumann architecture in which program and data are fetched from the same memory using the same bus. Separating program and data buses further allows instructions to be sized differently than the 8-bit wide data word. Instruction opcodes are 14-bits wide making it possible to have all single word instructions. A 14-bit wide program memory access bus fetches a 14-bit instruction in a single cycle. A twostage pipeline overlaps fetch and execution of instructions (Example 3-1). Consequently, all instructions (35) execute in a single cycle (200 ns @ 20 MHz) except for program branches. The table below lists program memory (EPROM) and data memory (RAM) for each PIC16C71X device. Device PIC16C710 PIC16C71 PIC16C711 PIC16C715 Program Memory 512 x 14 1K x 14 1K x 14 2K x 14 PIC16CXX devices contain an 8-bit ALU and working register. The ALU is a general purpose arithmetic unit. It performs arithmetic and Boolean functions between the data in the working register and any register file. The ALU is 8-bits wide and capable of addition, subtraction, shift and logical operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. In two-operand instructions, typically one operand is the working register (W register). The other operand is a file register or an immediate constant. In single operand instructions, the operand is either the W register or a file register. The W register is an 8-bit working register used for ALU operations. It is not an addressable register. Depending on the instruction executed, the ALU may affect the values of the Carry (C), Digit Carry (DC), and Zero (Z) bits in the STATUS register. The C and DC bits operate as a borrow bit and a digit borrow out bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples. Data Memory 36 x 8 36 x 8 68 x 8 128 x 8 The PIC16CXX can directly or indirectly address its register files or data memory. All special function registers, including the program counter, are mapped in the data memory. The PIC16CXX has an orthogonal (symmetrical) instruction set that makes it possible to carry out any operation on any register using any addressing mode. This symmetrical nature and lack of ‘special optimal situations’ make programming with the PIC16CXX simple yet efficient. In addition, the learning curve is reduced significantly.  1997 Microchip Technology Inc. DS30272A-page 7 PIC16C71X FIGURE 3-1: Device PIC16C71X BLOCK DIAGRAM Program Memory Data Memory (RAM) PIC16C710 PIC16C71 PIC16C711 PIC16C715 512 x 14 1K x 14 1K x 14 2K x 14 36 x 8 36 x 8 68 x 8 128 x 8 13 8 Data Bus Program Counter PORTA EPROM Program Memory Program Bus RAM File Registers 8 Level Stack (13-bit) 14 RA0/AN0 RA1/AN1 RA2/AN2 RA3/AN3/VREF RA4/T0CKI RAM Addr (1) PORTB 9 Addr MUX Instruction reg Direct Addr 7 8 Indirect Addr FSR reg RB0/INT RB7:RB1 STATUS reg 8 3 MUX Power-up Timer Instruction Decode & Control Timing Generation OSC1/CLKIN OSC2/CLKOUT Oscillator Start-up Timer Power-on Reset ALU 8 W reg Watchdog Timer Brown-out Reset(2) Timer0 MCLR VDD, VSS A/D Note 1: Higher order bits are from the STATUS register. 2: Brown-out Reset is not available on the PIC16C71. DS30272A-page 8  1997 Microchip Technology Inc. PIC16C71X TABLE 3-1: Pin Name PIC16C710/71/711/715 PINOUT DESCRIPTION DIP SSOP Pin# Pin#(4) SOIC Pin# I/O/P Type Buffer Type Description ST/CMOS(3) Oscillator crystal input/external clock source input. — Oscillator crystal output. Connects to crystal or resonator in crystal oscillator mode. In RC mode, OSC2 pin outputs CLKOUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate. 4 4 4 I/P ST Master clear (reset) input or programming voltage input. This pin is MCLR/VPP an active low reset to the device. PORTA is a bi-directional I/O port. RA0/AN0 17 19 17 I/O TTL RA0 can also be analog input0 RA1/AN1 18 20 18 I/O TTL RA1 can also be analog input1 RA2/AN2 1 1 1 I/O TTL RA2 can also be analog input2 RA3/AN3/VREF 2 2 2 I/O TTL RA3 can also be analog input3 or analog reference voltage RA4/T0CKI 3 3 3 I/O ST RA4 can also be the clock input to the Timer0 module. Output is open drain type. PORTB is a bi-directional I/O port. PORTB can be software programmed for internal weak pull-up on all inputs. RB0 can also be the external interrupt pin. RB0/INT 6 7 6 I/O TTL/ST(1) RB1 7 8 7 I/O TTL RB2 8 9 8 I/O TTL RB3 9 10 9 I/O TTL RB4 10 11 10 I/O TTL Interrupt on change pin. RB5 11 12 11 I/O TTL Interrupt on change pin. RB6 12 13 12 I/O TTL/ST(2) Interrupt on change pin. Serial programming clock. RB7 13 14 13 I/O TTL/ST(2) Interrupt on change pin. Serial programming data. VSS 5 4, 6 5 P — Ground reference for logic and I/O pins. VDD 14 15, 16 14 P — Positive supply for logic and I/O pins. Legend: I = input O = output I/O = input/output P = power — = Not used TTL = TTL input ST = Schmitt Trigger input Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt. 2: This buffer is a Schmitt Trigger input when used in serial programming mode. 3: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise. 4: The PIC16C71 is not available in SSOP package. OSC1/CLKIN 16 18 16 I OSC2/CLKOUT 15 17 15 O  1997 Microchip Technology Inc. DS30272A-page 9 PIC16C71X 3.1 Clocking Scheme/Instruction Cycle 3.2 The clock input (from OSC1) is internally divided by four to generate four non-overlapping quadrature clocks namely Q1, Q2, Q3 and Q4. Internally, the program counter (PC) is incremented every Q1, the instruction is fetched from the program memory and latched into the instruction register in Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow is shown in Figure 3-2. Instruction Flow/Pipelining An “Instruction Cycle” consists of four Q cycles (Q1, Q2, Q3 and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g. GOTO) then two cycles are required to complete the instruction (Example 3-1). A fetch cycle begins with the program counter (PC) incrementing in Q1. In the execution cycle, the fetched instruction is latched into the “Instruction Register” (IR) in cycle Q1. This instruction is then decoded and executed during the Q2, Q3, and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write). FIGURE 3-2: CLOCK/INSTRUCTION CYCLE Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 OSC1 Q1 Q2 Internal phase clock Q3 Q4 PC OSC2/CLKOUT (RC mode) EXAMPLE 3-1: 1. MOVLW 55h PC PC+1 Fetch INST (PC) Execute INST (PC-1) PC+2 Fetch INST (PC+1) Execute INST (PC) Fetch INST (PC+2) Execute INST (PC+1) INSTRUCTION PIPELINE FLOW Tcy0 Tcy1 Fetch 1 Execute 1 2. MOVWF PORTB 3. CALL SUB_1 4. BSF PORTA, BIT3 (Forced NOP) 5. Instruction @ address SUB_1 Fetch 2 Tcy2 Tcy3 Tcy4 Tcy5 Execute 2 Fetch 3 Execute 3 Fetch 4 Flush Fetch SUB_1 Execute SUB_1 All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction is “flushed” from the pipeline while the new instruction is being fetched and then executed. DS30272A-page 10  1997 Microchip Technology Inc. PIC16C71X 4.0 MEMORY ORGANIZATION 4.1 Program Memory Organization The PIC16C71X family has a 13-bit program counter capable of addressing an 8K x 14 program memory space. The amount of program memory available to each device is listed below: PIC16C71/711 PROGRAM MEMORY MAP AND STACK PC CALL, RETURN RETFIE, RETLW 13 Stack Level 1 Program Memory Address Range PIC16C710 512 x 14 0000h-01FFh PIC16C71 1K x 14 0000h-03FFh PIC16C711 1K x 14 0000h-03FFh PIC16C715 2K x 14 0000h-07FFh For those devices with less than 8K program memory, accessing a location above the physically implemented address will cause a wraparound. The reset vector is at 0000h and the interrupt vector is at 0004h. Stack Level 8 User Memory Space Device FIGURE 4-1: FIGURE 4-2: Reset Vector 0000h Interrupt Vector 0004h 0005h On-chip Program Memory 03FFh PIC16C710 PROGRAM MEMORY MAP AND STACK 0400h PC CALL, RETURN RETFIE, RETLW 1FFFh 13 FIGURE 4-3: PIC16C715 PROGRAM MEMORY MAP AND STACK Stack Level 1 PC CALL, RETURN RETFIE, RETLW Stack Level 8 User Memory Space Reset Vector 0000h 13 Stack Level 1 Stack Level 8 Interrupt Vector On-chip Program Memory 0004h 0005h Reset Vector 0000h Interrupt Vector 0004h 0005h 01FFh 0200h 1FFFh On-chip Program Memory 07FFh 0800h 1FFFh  1997 Microchip Technology Inc. DS30272A-page 11 PIC16C71X 4.2 Data Memory Organization The data memory is partitioned into two Banks which contain the General Purpose Registers and the Special Function Registers. Bit RP0 is the bank select bit. RP0 (STATUS) = 1 → Bank 1 RP0 (STATUS) = 0 → Bank 0 Each Bank extends up to 7Fh (128 bytes). The lower locations of each Bank are reserved for the Special Function Registers. Above the Special Function Registers are General Purpose Registers implemented as static RAM. Both Bank 0 and Bank 1 contain special function registers. Some "high use" special function registers from Bank 0 are mirrored in Bank 1 for code reduction and quicker access. 4.2.1 GENERAL PURPOSE REGISTER FILE The register file can be accessed either directly, or indirectly through the File Select Register FSR (Section 4.5). FIGURE 4-4: PIC16C710/71 REGISTER FILE MAP File Address 00h 01h 02h 03h 04h 05h 06h 07h 08h 09h 0Ah 0Bh 0Ch File Address INDF(1) TMR0 PCL STATUS FSR PORTA PORTB ADCON0 ADRES INDF(1) OPTION PCL STATUS FSR TRISA TRISB PCON(2) ADCON1 ADRES PCLATH INTCON PCLATH INTCON General Purpose Register General Purpose Register 80h 81h 82h 83h 84h 85h 86h 87h 88h 89h 8Ah 8Bh 8Ch Mapped in Bank 0(3) 2Fh AFh 30h B0h 7Fh FFh Bank 0 Bank 1 Unimplemented data memory locations, read as '0'. Note 1: Not a physical register. 2: The PCON register is not implemented on the PIC16C71. 3: These locations are unimplemented in Bank 1. Any access to these locations will access the corresponding Bank 0 register. DS30272A-page 12  1997 Microchip Technology Inc. PIC16C71X FIGURE 4-5: PIC16C711 REGISTER FILE MAP File Address 00h 01h 02h 03h 04h 05h 06h 07h 08h 09h 0Ah 0Bh 0Ch File Address INDF(1) TMR0 PCL STATUS FSR PORTA PORTB ADCON0 ADRES INDF(1) OPTION PCL STATUS FSR TRISA TRISB PCON ADCON1 ADRES PCLATH INTCON PCLATH INTCON General Purpose Register General Purpose Register 80h 81h 82h 83h 84h 85h 86h 87h 88h 89h 8Ah 8Bh 8Ch Mapped in Bank 0(2) 4Fh CFh 50h D0h 7Fh FFh Bank 0 Bank 1 Unimplemented data memory locations, read as '0'. Note 1: Not a physical register. 2: These locations are unimplemented in Bank 1. Any access to these locations will access the corresponding Bank 0 register. FIGURE 4-6: PIC16C715 REGISTER FILE MAP File Address File Address 00h 01h 02h 03h 04h 05h 06h 07h 08h 09h 0Ah 0Bh 0Ch 0Dh 0Eh 0Fh 10h 11h 12h 13h 14h 15h 16h 17h 18h 19h 1Ah 1Bh 1Ch 1Dh 1Eh 1Fh 20h INDF(1) TMR0 PCL STATUS FSR PORTA PORTB INDF(1) OPTION PCL STATUS FSR TRISA TRISB PCLATH INTCON PIR1 PCLATH INTCON PIE1 PCON ADRES ADCON0 General Purpose Register ADCON1 General Purpose Register 80h 81h 82h 83h 84h 85h 86h 87h 88h 89h 8Ah 8Bh 8Ch 8Dh 8Eh 8Fh 90h 91h 92h 93h 94h 95h 96h 97h 98h 99h 9Ah 9Bh 9Ch 9Dh 9Eh 9Fh A0h BFh C0h 7Fh FFh Bank 0 Bank 1 Unimplemented data memory locations, read as '0'. Note 1: Not a physical register.  1997 Microchip Technology Inc. DS30272A-page 13 PIC16C71X 4.2.2 The special function registers can be classified into two sets (core and peripheral). Those registers associated with the “core” functions are described in this section, and those related to the operation of the peripheral features are described in the section of that peripheral feature. SPECIAL FUNCTION REGISTERS The Special Function Registers are registers used by the CPU and Peripheral Modules for controlling the desired operation of the device. These registers are implemented as static RAM. TABLE 4-1: Address Name PIC16C710/71/711 SPECIAL FUNCTION REGISTER SUMMARY Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on: POR, BOR Value on all other resets (1) Bank 0 00h(3) INDF Addressing this location uses contents of FSR to address data memory (not a physical register) 0000 0000 0000 0000 01h TMR0 Timer0 module’s register xxxx xxxx uuuu uuuu 02h(3) PCL Program Counter's (PC) Least Significant Byte 0000 0000 0000 0000 03h(3) STATUS 04h(3) FSR RP1(5) RP0 TO PD Z DC C Indirect data memory address pointer 05h PORTA 06h PORTB 07h IRP(5) — — — — xxxx xxxx uuuu uuuu PORTA Data Latch when written: PORTA pins when read PORTB Data Latch when written: PORTB pins when read ---x 0000 ---u 0000 xxxx xxxx uuuu uuuu Unimplemented ADCS1 0001 1xxx 000q quuu — 08h ADCON0 ADCS0 (6) 09h(3) ADRES 0Ah(2,3) PCLATH — — — 0Bh(3) INTCON GIE ADIE T0IE CHS1 CHS0 GO/DONE ADIF ADON — 00-0 0000 00-0 0000 xxxx xxxx uuuu uuuu A/D Result Register Write Buffer for the upper 5 bits of the Program Counter INTE RBIE T0IF INTF ---0 0000 ---0 0000 RBIF 0000 000x 0000 000u Addressing this location uses contents of FSR to address data memory (not a physical register) 0000 0000 0000 0000 Bank 1 80h(3) INDF 81h OPTION 82h (3) PCL (3) STATUS (3) FSR 83h 84h 85h TRISA 86h TRISB RBPU INTEDG T0CS T0SE PSA PS2 PS1 PS0 Program Counter's (PC) Least Significant Byte IRP(5) (5) RP1 RP0 TO 0000 0000 0000 0000 PD Z DC C Indirect data memory address pointer — — — 1111 1111 1111 1111 0001 1xxx 000q quuu xxxx xxxx uuuu uuuu PORTA Data Direction Register ---1 1111 ---1 1111 PORTB Data Direction Control Register 1111 1111 1111 1111 87h(4) PCON — — — — — — POR BOR ---- --qq ---- --uu 88h ADCON1 — — — — — — PCFG1 PCFG0 ---- --00 ---- --00 89h(3) xxxx xxxx uuuu uuuu A/D Result Register PCLATH — — — (3) INTCON GIE ADIE T0IE 8Ah 8Bh ADRES (2,3) Write Buffer for the upper 5 bits of the Program Counter INTE RBIE T0IF INTF RBIF ---0 0000 ---0 0000 0000 000x 0000 000u Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as '0'. Shaded locations are unimplemented, read as ‘0’. Note 1: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset. 2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC whose contents are transferred to the upper byte of the program counter. 3: These registers can be addressed from either bank. 4: The PCON register is not physically implemented in the PIC16C71, read as ’0’. 5: The IRP and RP1 bits are reserved on the PIC16C710/71/711, always maintain these bits clear. 6: Bit5 of ADCON0 is a General Purpose R/W bit for the PIC16C710/711 only. For the PIC16C71, this bit is unimplemented, read as '0'. DS30272A-page 14  1997 Microchip Technology Inc. PIC16C71X TABLE 4-2: Address Name PIC16C715 SPECIAL FUNCTION REGISTER SUMMARY Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on: POR, BOR, PER Value on all other resets (3) Bank 0 00h(1) INDF Addressing this location uses contents of FSR to address data memory (not a physical register) 0000 0000 0000 0000 01h TMR0 Timer0 module’s register xxxx xxxx uuuu uuuu 02h(1) PCL Program Counter's (PC) Least Significant Byte 03h(1) STATUS 04h(1) FSR 05h PORTA 06h PORTB IRP(4) RP1(4) RP0 TO 0000 0000 0000 0000 PD Z DC C 0001 1xxx 000q quuu PORTA Data Latch when written: PORTA pins when read ---x 0000 ---u 0000 Indirect data memory address pointer — — — xxxx xxxx uuuu uuuu PORTB Data Latch when written: PORTB pins when read xxxx xxxx uuuu uuuu 07h — Unimplemented — — 08h — Unimplemented — — 09h — Unimplemented — — (1,2) 0Ah PCLATH — — — 0Bh(1) INTCON GIE PEIE T0IE Write Buffer for the upper 5 bits of the Program Counter INTE RBIE T0IF INTF RBIF 0000 000x 0000 000u 0Ch PIR1 — ADIF — — — — — — -0-- ---- -0-- ---- ---0 0000 ---0 0000 0Dh — Unimplemented — — 0Eh — Unimplemented — — 0Fh — Unimplemented — — 10h — Unimplemented — — 11h — Unimplemented — — 12h — Unimplemented — — 13h — Unimplemented — — 14h — Unimplemented — — 15h — Unimplemented — — 16h — Unimplemented — — 17h — Unimplemented — — 18h — Unimplemented — — 19h — Unimplemented — — 1Ah — Unimplemented — — 1Bh — Unimplemented — — 1Ch — Unimplemented — — 1Dh — Unimplemented — — 1Eh ADRES 1Fh ADCON0 A/D Result Register ADCS1 ADCS0 xxxx xxxx uuuu uuuu CHS2 CHS1 CHS0 GO/DONE — ADON 0000 00-0 0000 00-0 Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as '0'. Shaded locations are unimplemented, read as ‘0’. Note 1: These registers can be addressed from either bank. 2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC whose contents are transferred to the upper byte of the program counter. 3: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset. 4: The IRP and RP1 bits are reserved on the PIC16C715, always maintain these bits clear.  1997 Microchip Technology Inc. DS30272A-page 15 PIC16C71X TABLE 4-2: Address Name PIC16C715 SPECIAL FUNCTION REGISTER SUMMARY (Cont.’d) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on: POR, BOR, PER Value on all other resets (3) Bank 1 80h(1) INDF 81h OPTION 82h(1) PCL (1) Addressing this location uses contents of FSR to address data memory (not a physical register) RBPU INTEDG T0CS T0SE PSA PS2 PS1 PS0 Program Counter's (PC) Least Significant Byte 83h STATUS 84h(1) FSR (4) IRP (4) RP1 RP0 TO PD Z DC C 0001 1xxx 000q quuu xxxx xxxx uuuu uuuu 85h TRISA 86h TRISB 87h — Unimplemented — — 88h — Unimplemented — — — Unimplemented — — 89h 8Ah(1,2) — 1111 1111 1111 1111 0000 0000 0000 0000 Indirect data memory address pointer — 0000 0000 0000 0000 PORTA Data Direction Register --11 1111 --11 1111 PORTB Data Direction Register PCLATH — 8Bh(1) INTCON 8Ch PIE1 1111 1111 1111 1111 — — Write Buffer for the upper 5 bits of the PC GIE PEIE T0IE INTE RBIE T0IF INTF RBIF 0000 000x 0000 000u — ADIE — — — — — — -0-- ---- -0-- ---- — — — PER POR BOR u--- -1qq u--- -1uu ---0 0000 ---0 0000 8Dh — 8Eh PCON 8Fh — Unimplemented — — 90h — Unimplemented — — 91h — Unimplemented — — 92h — Unimplemented — — 93h — Unimplemented — — 94h — Unimplemented — — 95h — Unimplemented — — 96h — Unimplemented — — 97h — Unimplemented — — 98h — Unimplemented — — 99h — Unimplemented — — 9Ah — Unimplemented — — 9Bh — Unimplemented — — 9Ch — Unimplemented — — 9Dh — Unimplemented — — 9Eh — Unimplemented — — ---- --00 ---- --00 9Fh ADCON1 Unimplemented MPEEN — — — — — — — — PCFG1 PCFG0 — Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as '0'. Shaded locations are unimplemented, read as ‘0’. Note 1: These registers can be addressed from either bank. 2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC whose contents are transferred to the upper byte of the program counter. 3: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset. 4: The IRP and RP1 bits are reserved on the PIC16C715, always maintain these bits clear. DS30272A-page 16  1997 Microchip Technology Inc. PIC16C71X 4.2.2.1 STATUS REGISTER Applicable Devices 710 71 711 715 The STATUS register, shown in Figure 4-7, contains the arithmetic status of the ALU, the RESET status and the bank select bits for data memory. The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended. It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register because these instructions do not affect the Z, C or DC bits from the STATUS register. For other instructions, not affecting any status bits, see the "Instruction Set Summary." Note 1: For those devices that do not use bits IRP and RP1 (STATUS), maintain these bits clear to ensure upward compatibility with future products. Note 2: The C and DC bits operate as a borrow and digit borrow bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples. For example, CLRF STATUS will clear the upper-three bits and set the Z bit. This leaves the STATUS register as 000u u1uu (where u = unchanged). FIGURE 4-7: R/W-0 IRP bit7 bit 7: STATUS REGISTER (ADDRESS 03h, 83h) R/W-0 RP1 R/W-0 RP0 R-1 TO R-1 PD R/W-x Z R/W-x DC R/W-x C bit0 R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ - n = Value at POR reset IRP: Register Bank Select bit (used for indirect addressing) 1 = Bank 2, 3 (100h - 1FFh) 0 = Bank 0, 1 (00h - FFh) bit 6-5: RP1:RP0: Register Bank Select bits (used for direct addressing) 11 = Bank 3 (180h - 1FFh) 10 = Bank 2 (100h - 17Fh) 01 = Bank 1 (80h - FFh) 00 = Bank 0 (00h - 7Fh) Each bank is 128 bytes bit 4: TO: Time-out bit 1 = After power-up, CLRWDT instruction, or SLEEP instruction 0 = A WDT time-out occurred bit 3: PD: Power-down bit 1 = After power-up or by the CLRWDT instruction 0 = By execution of the SLEEP instruction bit 2: Z: Zero bit 1 = The result of an arithmetic or logic operation is zero 0 = The result of an arithmetic or logic operation is not zero bit 1: DC: Digit carry/borrow bit (ADDWF, ADDLW,SUBLW,SUBWF instructions)(for borrow the polarity is reversed) 1 = A carry-out from the 4th low order bit of the result occurred 0 = No carry-out from the 4th low order bit of the result bit 0: C: Carry/borrow bit (ADDWF, ADDLW,SUBLW,SUBWF instructions) 1 = A carry-out from the most significant bit of the result occurred 0 = No carry-out from the most significant bit of the result occurred Note: For borrow the polarity is reversed. A subtraction is executed by adding the two’s complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low order bit of the source register.  1997 Microchip Technology Inc. DS30272A-page 17 PIC16C71X 4.2.2.2 OPTION REGISTER Applicable Devices Note: 710 71 711 715 The OPTION register is a readable and writable register which contains various control bits to configure the TMR0/WDT prescaler, the External INT Interrupt, TMR0, and the weak pull-ups on PORTB. FIGURE 4-8: R/W-1 RBPU bit7 To achieve a 1:1 prescaler assignment for the TMR0 register, assign the prescaler to the Watchdog Timer by setting bit PSA (OPTION). OPTION REGISTER (ADDRESS 81h, 181h) R/W-1 INTEDG R/W-1 T0CS R/W-1 T0SE R/W-1 PSA R/W-1 PS2 R/W-1 PS1 bit 7: RBPU: PORTB Pull-up Enable bit 1 = PORTB pull-ups are disabled 0 = PORTB pull-ups are enabled by individual port latch values bit 6: INTEDG: Interrupt Edge Select bit 1 = Interrupt on rising edge of RB0/INT pin 0 = Interrupt on falling edge of RB0/INT pin bit 5: T0CS: TMR0 Clock Source Select bit 1 = Transition on RA4/T0CKI pin 0 = Internal instruction cycle clock (CLKOUT) bit 4: T0SE: TMR0 Source Edge Select bit 1 = Increment on high-to-low transition on RA4/T0CKI pin 0 = Increment on low-to-high transition on RA4/T0CKI pin bit 3: PSA: Prescaler Assignment bit 1 = Prescaler is assigned to the WDT 0 = Prescaler is assigned to the Timer0 module R/W-1 PS0 bit0 R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ - n = Value at POR reset bit 2-0: PS2:PS0: Prescaler Rate Select bits Bit Value TMR0 Rate WDT Rate 000 001 010 011 100 101 110 111 1:2 1:4 1:8 1 : 16 1 : 32 1 : 64 1 : 128 1 : 256 1:1 1:2 1:4 1:8 1 : 16 1 : 32 1 : 64 1 : 128 DS30272A-page 18  1997 Microchip Technology Inc. PIC16C71X 4.2.2.3 INTCON REGISTER Applicable Devices Note: 710 71 711 715 The INTCON Register is a readable and writable register which contains various enable and flag bits for the TMR0 register overflow, RB Port change and External RB0/INT pin interrupts. FIGURE 4-9: R/W-0 GIE bit7 Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON). INTCON REGISTER (ADDRESS 0Bh, 8Bh) R/W-0 ADIE R/W-0 T0IE R/W-0 INTE R/W-0 RBIE R/W-0 T0IF R/W-0 INTF R/W-x RBIF bit0 R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ - n = Value at POR reset bit 7: GIE:(1) Global Interrupt Enable bit 1 = Enables all un-masked interrupts 0 = Disables all interrupts bit 6: ADIE: A/D Converter Interrupt Enable bit 1 = Enables A/D interrupt 0 = Disables A/D interrupt bit 5: T0IE: TMR0 Overflow Interrupt Enable bit 1 = Enables the TMR0 interrupt 0 = Disables the TMR0 interrupt bit 4: INTE: RB0/INT External Interrupt Enable bit 1 = Enables the RB0/INT external interrupt 0 = Disables the RB0/INT external interrupt bit 3: RBIE: RB Port Change Interrupt Enable bit 1 = Enables the RB port change interrupt 0 = Disables the RB port change interrupt bit 2: T0IF: TMR0 Overflow Interrupt Flag bit 1 = TMR0 register has overflowed (must be cleared in software) 0 = TMR0 register did not overflow bit 1: INTF: RB0/INT External Interrupt Flag bit 1 = The RB0/INT external interrupt occurred (must be cleared in software) 0 = The RB0/INT external interrupt did not occur bit 0: RBIF: RB Port Change Interrupt Flag bit 1 = At least one of the RB7:RB4 pins changed state (must be cleared in software) 0 = None of the RB7:RB4 pins have changed state Note 1: For the PIC16C71, if an interrupt occurs while the GIE bit is being cleared, the GIE bit may be unintentionally re-enabled by the RETFIE instruction in the user’s Interrupt Service Routine. Refer to Section 8.5 for a detailed description. Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.  1997 Microchip Technology Inc. DS30272A-page 19 PIC16C71X 4.2.2.4 PIE1 REGISTER Applicable Devices Note: 710 71 711 715 Bit PEIE (INTCON) must be set to enable any peripheral interrupt. This register contains the individual enable bits for the Peripheral interrupts. FIGURE 4-10: PIE1 REGISTER (ADDRESS 8Ch) U-0 — bit7 R/W-0 ADIE U-0 — U-0 — U-0 — bit 7: Unimplemented: Read as '0' bit 6: ADIE: A/D Converter Interrupt Enable bit 1 = Enables the A/D interrupt 0 = Disables the A/D interrupt U-0 — U-0 — U-0 — bit0 R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ - n = Value at POR reset bit 5-0: Unimplemented: Read as '0' DS30272A-page 20  1997 Microchip Technology Inc. PIC16C71X 4.2.2.5 PIR1 REGISTER Applicable Devices Note: 710 71 711 715 This register contains the individual flag bits for the Peripheral interrupts. Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. FIGURE 4-11: PIR1 REGISTER (ADDRESS 0Ch) U-0 — bit7 R/W-0 ADIF U-0 — U-0 — U-0 — bit 7: Unimplemented: Read as '0' bit 6: ADIF: A/D Converter Interrupt Flag bit 1 = An A/D conversion completed 0 = The A/D conversion is not complete U-0 — U-0 — U-0 — bit0 R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ - n = Value at POR reset bit 5-0: Unimplemented: Read as '0'  1997 Microchip Technology Inc. DS30272A-page 21 PIC16C71X 4.2.2.6 PCON REGISTER Applicable Devices Note: 710 71 711 715 The Power Control (PCON) register contains a flag bit to allow differentiation between a Power-on Reset (POR) to an external MCLR Reset or WDT Reset. Those devices with brown-out detection circuitry contain an additional bit to differentiate a Brown-out Reset (BOR) condition from a Power-on Reset condition. For the PIC16C715 the PCON register also contains status bits MPEEN and PER. MPEEN reflects the value of the MPEEN bit in the configuration word. PER indicates a parity error reset has occurred. BOR is unknown on Power-on Reset. It must then be set by the user and checked on subsequent resets to see if BOR is clear, indicating a brown-out has occurred. The BOR status bit is a don't care and is not necessarily predictable if the brown-out circuit is disabled (by clearing the BODEN bit in the Configuration word). FIGURE 4-12: PCON REGISTER (ADDRESS 8Eh), PIC16C710/711 U-0 U-0 U-0 U-0 U-0 U-0 R/W-0 — — — — — — POR bit7 R/W-q BOR bit0 R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ - n = Value at POR reset bit 7-2: Unimplemented: Read as '0' bit 1: POR: Power-on Reset Status bit 1 = No Power-on Reset occurred 0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs) bit 0: BOR: Brown-out Reset Status bit 1 = No Brown-out Reset occurred 0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs) FIGURE 4-13: PCON REGISTER (ADDRESS 8Eh), PIC16C715 R-U MPEEN bit7 bit 7: U-0 — U-0 — U-0 — U-0 — R/W-1 PER R/W-0 POR R/W-q BOR(1) bit0 R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ - n = Value at POR reset MPEEN: Memory Parity Error Circuitry Status bit Reflects the value of configuration word bit, MPEEN bit 6-3: Unimplemented: Read as '0' bit 2: PER: Memory Parity Error Reset Status bit 1 = No Error occurred 0 = Program Memory Fetch Parity Error occurred (must be set in software after a Parity Error Reset) bit 1: POR: Power-on Reset Status bit 1 = No Power-on Reset occurred 0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs) bit 0: BOR: Brown-out Reset Status bit 1 = No Brown-out Reset occurred 0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs) DS30272A-page 22  1997 Microchip Technology Inc. PIC16C71X 4.3 PCL and PCLATH 4.3.2 The program counter (PC) is 13-bits wide. The low byte comes from the PCL register, which is a readable and writable register. The upper bits (PC) are not readable, but are indirectly writable through the PCLATH register. On any reset, the upper bits of the PC will be cleared. Figure 4-14 shows the two situations for the loading of the PC. The upper example in the figure shows how the PC is loaded on a write to PCL (PCLATH → PCH). The lower example in the figure shows how the PC is loaded during a CALL or GOTO instruction (PCLATH → PCH). FIGURE 4-14: LOADING OF PC IN DIFFERENT SITUATIONS PCH 8 7 0 PC 5 8 PCLATH Instruction with PCL as Destination ALU PCLATH PCH 12 11 10 PCL 8 GOTO, CALL PCLATH 11 Opcode PCLATH 4.3.1 The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on). Note 2: There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW, and RETFIE instructions, or the vectoring to an interrupt address. 4.4 0 7 PC 2 The PIC16CXX family has an 8 level deep x 13-bit wide hardware stack. The stack space is not part of either program or data space and the stack pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation. Note 1: There are no status bits to indicate stack overflow or stack underflow conditions. PCL 12 STACK Program Memory Paging The PIC16C71X devices ignore both paging bits (PCLATH, which are used to access program memory when more than one page is available. The use of PCLATH as general purpose read/write bits for the PIC16C71X is not recommended since this may affect upward compatibility with future products. COMPUTED GOTO A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When doing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256 byte block). Refer to the application note “Implementing a Table Read" (AN556).  1997 Microchip Technology Inc. DS30272A-page 23 PIC16C71X 4.5 Example 4-1 shows the calling of a subroutine in page 1 of the program memory. This example assumes that PCLATH is saved and restored by the interrupt service routine (if interrupts are used). EXAMPLE 4-1: ORG 0x500 BSF PCLATH,3 BCF PCLATH,4 CALL SUB1_P1 : : : ORG 0x900 SUB1_P1: : : RETURN Indirect Addressing, INDF and FSR Registers The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing. Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses the register pointed to by the File Select Register, FSR. Reading the INDF register itself indirectly (FSR = '0') will read 00h. Writing to the INDF register indirectly results in a no-operation (although status bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS), as shown in Figure 4-15. However, IRP is not used in the PIC16C71X devices. CALL OF A SUBROUTINE IN PAGE 1 FROM PAGE 0 ;Select page 1 (800h-FFFh) ;Only on >4K devices ;Call subroutine in ;page 1 (800h-FFFh) ;called subroutine ;page 1 (800h-FFFh) A simple program to clear RAM locations 20h-2Fh using indirect addressing is shown in Example 4-2. ;return to Call subroutine ;in page 0 (000h-7FFh) EXAMPLE 4-2: movlw movwf clrf incf btfss goto NEXT INDIRECT ADDRESSING 0x20 FSR INDF FSR,F FSR,4 NEXT ;initialize pointer ;to RAM ;clear INDF register ;inc pointer ;all done? ;no clear next CONTINUE : FIGURE 4-15: ;yes continue DIRECT/INDIRECT ADDRESSING Direct Addressing Indirect Addressing from opcode RP1:RP0 6 bank select location select (1) 0 IRP 7 bank select 00 00h 01 80h 10 FSR register 0 location select 11 100h 180h Not Used Data Memory 7Fh FFh Bank 0 Bank 1 17Fh Bank 2 1FFh Bank 3 For register file map detail see Figure 4-4. Note 1: The RP1 and IRP bits are reserved, always maintain these bits clear. DS30272A-page 24  1997 Microchip Technology Inc. PIC16C71X 5.0 I/O PORTS Applicable Devices FIGURE 5-1: 710 71 711 715 Some pins for these I/O ports are multiplexed with an alternate function for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin. 5.1 BLOCK DIAGRAM OF RA3:RA0 PINS Data bus D Q VDD WR Port Q CK Data Latch PORTA is a 5-bit latch. The RA4/T0CKI pin is a Schmitt Trigger input and an open drain output. All other RA port pins have TTL input levels and full CMOS output drivers. All pins have data direction bits (TRIS registers) which can configure these pins as output or input. D WR TRIS TRIS Latch Pin RA4 is multiplexed with the Timer0 module clock input to become the RA4/T0CKI pin. To A/D Converter On a Power-on Reset, these pins are configured as analog inputs and read as '0'. The TRISA register controls the direction of the RA pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set when using them as analog inputs. EXAMPLE 5-1: STATUS, RP0 PORTA BSF MOVLW STATUS, RP0 0xCF MOVWF TRISA Q ; ; ; ; ; ; ; ; ; ; ; ; Initialize PORTA by clearing output data latches Select Bank 1 Value used to initialize data direction Set RA as inputs RA as outputs TRISA are always read as '0'. D EN Note 1: I/O pins have protection diodes to VDD and VSS. FIGURE 5-2: Data bus WR PORT BLOCK DIAGRAM OF RA4/ T0CKI PIN D Q CK Q N I/O pin(1) Data Latch INITIALIZING PORTA BCF CLRF TTL input buffer RD TRIS RD PORT I/O pin(1) VSS Analog input mode Q CK Reading the PORTA register reads the status of the pins whereas writing to it will write to the port latch. All write operations are read-modify-write operations. Therefore a write to a port implies that the port pins are read, this value is modified, and then written to the port data latch. Other PORTA pins are multiplexed with analog inputs and analog VREF input. The operation of each pin is selected by clearing/setting the control bits in the ADCON1 register (A/D Control Register1). N Q Setting a TRISA register bit puts the corresponding output driver in a hi-impedance mode. Clearing a bit in the TRISA register puts the contents of the output latch on the selected pin(s). Note: P PORTA and TRISA Registers WR TRIS D Q CK Q VSS Schmitt Trigger input buffer TRIS Latch RD TRIS Q D EN EN RD PORT TMR0 clock input Note 1: I/O pin has protection diodes to VSS only.  1997 Microchip Technology Inc. DS30272A-page 25 PIC16C71X TABLE 5-1: PORTA FUNCTIONS Name Bit# Buffer RA0/AN0 RA1/AN1 RA2/AN2 RA3/AN3/VREF RA4/T0CKI bit0 bit1 bit2 bit3 bit4 TTL TTL TTL TTL ST Function Input/output or analog input Input/output or analog input Input/output or analog input Input/output or analog input/VREF Input/output or external clock input for Timer0 Output is open drain type Legend: TTL = TTL input, ST = Schmitt Trigger input TABLE 5-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA Address Name 05h Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on: POR, BOR Value on all other resets RA4 RA3 RA2 RA1 RA0 ---x 0000 ---u 0000 ---1 1111 ---1 1111 PCFG1 PCFG0 ---- --00 ---- --00 PORTA — — — 85h TRISA — — — 9Fh ADCON1 — — — PORTA Data Direction Register — — — Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA. DS30272A-page 26  1997 Microchip Technology Inc. PIC16C71X 5.2 PORTB and TRISB Registers PORTB is an 8-bit wide bi-directional port. The corresponding data direction register is TRISB. Setting a bit in the TRISB register puts the corresponding output driver in a hi-impedance input mode. Clearing a bit in the TRISB register puts the contents of the output latch on the selected pin(s). EXAMPLE 5-2: INITIALIZING PORTB BCF CLRF STATUS, RP0 PORTB BSF MOVLW STATUS, RP0 0xCF MOVWF TRISB ; ; ; ; ; ; ; ; ; ; ; Initialize PORTB by clearing output data latches Select Bank 1 Value used to initialize data direction Set RB as inputs RB as outputs RB as inputs Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is performed by clearing bit RBPU (OPTION). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset. FIGURE 5-3: BLOCK DIAGRAM OF RB3:RB0 PINS Data bus WR Port weak P pull-up Data Latch D Q I/O pin(1) CK TRIS Latch D Q WR TRIS This interrupt can wake the device from SLEEP. The user, in the interrupt service routine, can clear the interrupt in the following manner: a) b) Any read or write of PORTB. This will end the mismatch condition. Clear flag bit RBIF. A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition, and allow flag bit RBIF to be cleared. This interrupt on mismatch feature, together with software configurable pull-ups on these four pins allow easy interface to a keypad and make it possible for wake-up on key-depression. Refer to the Embedded Control Handbook, "Implementing Wake-Up on Key Stroke" (AN552). Note: VDD RBPU(2) Four of PORTB’s pins, RB7:RB4, have an interrupt on change feature. Only pins configured as inputs can cause this interrupt to occur (i.e. any RB7:RB4 pin configured as an output is excluded from the interrupt on change comparison). The input pins (of RB7:RB4) are compared with the old value latched on the last read of PORTB. The “mismatch” outputs of RB7:RB4 are OR’ed together to generate the RB Port Change Interrupt with flag bit RBIF (INTCON). For the PIC16C71 if a change on the I/O pin should occur when the read operation is being executed (start of the Q2 cycle), then interrupt flag bit RBIF may not get set. The interrupt on change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt on change feature. Polling of PORTB is not recommended while using the interrupt on change feature. TTL Input Buffer CK RD TRIS Q RD Port D EN RB0/INT Schmitt Trigger Buffer RD Port Note 1: I/O pins have diode protection to VDD and VSS. 2: TRISB = ’1’ enables weak pull-up if RBPU = ’0’ (OPTION).  1997 Microchip Technology Inc. DS30272A-page 27 PIC16C71X FIGURE 5-4: BLOCK DIAGRAM OF RB7:RB4 PINS (PIC16C71) FIGURE 5-5: BLOCK DIAGRAM OF RB7:RB4 PINS (PIC16C710/711/715) VDD RBPU(2) VDD weak P pull-up Data Latch D Q Data bus WR Port RBPU(2) Data bus I/O pin(1) CK WR Port TRIS Latch D Q WR TRIS weak P pull-up Data Latch D Q I/O pin(1) CK TRIS Latch D Q TTL Input Buffer CK RD TRIS Q WR TRIS ST Buffer RD TRIS Latch D Q EN RD Port TTL Input Buffer CK Latch D EN RD Port Set RBIF ST Buffer Q1 Set RBIF From other RB7:RB4 pins Q D From other RB7:RB4 pins Q D RD Port EN EN RD Port RB7:RB6 in serial programming mode RB7:RB6 in serial programming mode Note 1: I/O pins have diode protection to VDD and VSS. 2: TRISB = ’1’ enables weak pull-up if RBPU = ’0’ (OPTION). Note 1: I/O pins have diode protection to VDD and VSS. 2: TRISB = ’1’ enables weak pull-up if RBPU = ’0’ (OPTION). TABLE 5-3: Name Q3 PORTB FUNCTIONS Bit# Buffer Function TTL/ST(1) Input/output pin or external interrupt input. Internal software programmable weak pull-up. RB1 bit1 TTL Input/output pin. Internal software programmable weak pull-up. RB2 bit2 TTL Input/output pin. Internal software programmable weak pull-up. RB3 bit3 TTL Input/output pin. Internal software programmable weak pull-up. RB4 bit4 TTL Input/output pin (with interrupt on change). Internal software programmable weak pull-up. RB5 bit5 TTL Input/output pin (with interrupt on change). Internal software programmable weak pull-up. RB6 bit6 TTL/ST(2) Input/output pin (with interrupt on change). Internal software programmable weak pull-up. Serial programming clock. RB7 bit7 TTL/ST(2) Input/output pin (with interrupt on change). Internal software programmable weak pull-up. Serial programming data. Legend: TTL = TTL input, ST = Schmitt Trigger input Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt. 2: This buffer is a Schmitt Trigger input when used in serial programming mode. RB0/INT bit0 DS30272A-page 28  1997 Microchip Technology Inc. PIC16C71X TABLE 5-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on: POR, BOR Value on all other resets 06h, 106h PORTB RB7 RB6 RB5 RB4 RB3 RB2 RB1 RB0 xxxx xxxx uuuu uuuu 86h, 186h TRISB 1111 1111 1111 1111 81h, 181h OPTION 1111 1111 1111 1111 PORTB Data Direction Register RBPU INTEDG T0CS T0SE PSA PS2 PS1 PS0 Legend: x = unknown, u = unchanged. Shaded cells are not used by PORTB.  1997 Microchip Technology Inc. DS30272A-page 29 PIC16C71X 5.3 I/O Programming Considerations 5.3.1 BI-DIRECTIONAL I/O PORTS EXAMPLE 5-3: Any instruction which writes, operates internally as a read followed by a write operation. The BCF and BSF instructions, for example, read the register into the CPU, execute the bit operation and write the result back to the register. Caution must be used when these instructions are applied to a port with both inputs and outputs defined. For example, a BSF operation on bit5 of PORTB will cause all eight bits of PORTB to be read into the CPU. Then the BSF operation takes place on bit5 and PORTB is written to the output latches. If another bit of PORTB is used as a bi-directional I/O pin (e.g., bit0) and it is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and rewritten to the data latch of this particular pin, overwriting the previous content. As long as the pin stays in the input mode, no problem occurs. However, if bit0 is switched to an output, the content of the data latch may now be unknown. Reading the port register, reads the values of the port pins. Writing to the port register writes the value to the port latch. When using read-modify-write instructions (ex. BCF, BSF, etc.) on a port, the value of the port pins is read, the desired operation is done to this value, and this value is then written to the port latch. Example 5-3 shows the effect of two sequential readmodify-write instructions on an I/O port. FIGURE 5-6: ;Initial PORT settings: PORTB Inputs ; PORTB Outputs ;PORTB have external pull-ups and are ;not connected to other circuitry ; ; PORT latch PORT pins ; ---------- --------BCF PORTB, 7 ; 01pp pppp 11pp pppp BCF PORTB, 6 ; 10pp pppp 11pp pppp BSF STATUS, RP0 ; BCF TRISB, 7 ; 10pp pppp 11pp pppp BCF TRISB, 6 ; 10pp pppp 10pp pppp ; ;Note that the user may have expected the ;pin values to be 00pp ppp. The 2nd BCF ;caused RB7 to be latched as the pin value ;(high). A pin actively outputting a Low or High should not be driven from external devices at the same time in order to change the level on this pin (“wired-or”, “wired-and”). The resulting high output currents may damage the chip. 5.3.2 SUCCESSIVE OPERATIONS ON I/O PORTS The actual write to an I/O port happens at the end of an instruction cycle, whereas for reading, the data must be valid at the beginning of the instruction cycle (Figure 5-6). Therefore, care must be exercised if a write followed by a read operation is carried out on the same I/O port. The sequence of instructions should be such to allow the pin voltage to stabilize (load dependent) before the next instruction which causes that file to be read into the CPU is executed. Otherwise, the previous state of that pin may be read into the CPU rather than the new state. When in doubt, it is better to separate these instructions with a NOP or another instruction not accessing this I/O port. SUCCESSIVE I/O OPERATION Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 PC Instruction fetched READ-MODIFY-WRITE INSTRUCTIONS ON AN I/O PORT PC PC + 1 MOVWF PORTB MOVF PORTB,W write to PORTB PC + 2 PC + 3 NOP NOP This example shows a write to PORTB followed by a read from PORTB. Note that: data setup time = (0.25TCY - TPD) RB7:RB0 where TCY = instruction cycle TPD = propagation delay Port pin sampled here TPD Instruction executed NOP MOVWF PORTB write to PORTB DS30272A-page 30 Note: MOVF PORTB,W Therefore, at higher clock frequencies, a write followed by a read may be problematic.  1997 Microchip Technology Inc. PIC16C71X 6.0 TIMER0 MODULE Applicable Devices bit T0SE selects the rising edge. Restrictions on the external clock input are discussed in detail in Section 6.2. 710 71 711 715 The Timer0 module timer/counter has the following features: • • • • • • The prescaler is mutually exclusively shared between the Timer0 module and the Watchdog Timer. The prescaler assignment is controlled in software by control bit PSA (OPTION). Clearing bit PSA will assign the prescaler to the Timer0 module. The prescaler is not readable or writable. When the prescaler is assigned to the Timer0 module, prescale values of 1:2, 1:4, ..., 1:256 are selectable. Section 6.3 details the operation of the prescaler. 8-bit timer/counter Readable and writable 8-bit software programmable prescaler Internal or external clock select Interrupt on overflow from FFh to 00h Edge select for external clock Figure 6-1 is a simplified block diagram of the Timer0 module. 6.1 Timer mode is selected by clearing bit T0CS (OPTION). In timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If the TMR0 register is written, the increment is inhibited for the following two instruction cycles (Figure 6-2 and Figure 6-3). The user can work around this by writing an adjusted value to the TMR0 register. Counter mode is selected by setting bit T0CS (OPTION). In counter mode, Timer0 will increment either on every rising or falling edge of pin RA4/T0CKI. The incrementing edge is determined by the Timer0 Source Edge Select bit T0SE (OPTION). Clearing FIGURE 6-1: Timer0 Interrupt The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h. This overflow sets bit T0IF (INTCON). The interrupt can be masked by clearing bit T0IE (INTCON). Bit T0IF must be cleared in software by the Timer0 module interrupt service routine before re-enabling this interrupt. The TMR0 interrupt cannot awaken the processor from SLEEP since the timer is shut off during SLEEP. See Figure 6-4 for Timer0 interrupt timing. TIMER0 BLOCK DIAGRAM Data bus FOSC/4 0 PSout 1 Sync with Internal clocks 1 Programmable Prescaler RA4/T0CKI pin 8 0 TMR0 PSout (2 cycle delay) T0SE 3 Set interrupt flag bit T0IF on overflow PSA PS2, PS1, PS0 T0CS Note 1: T0CS, T0SE, PSA, PS2:PS0 (OPTION). 2: The prescaler is shared with Watchdog Timer (refer to Figure 6-6 for detailed block diagram). FIGURE 6-2: PC (Program Counter) TIMER0 TIMING: INTERNAL CLOCK/NO PRESCALE Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 PC-1 Instruction Fetch TMR0 T0 PC PC+1 MOVWF TMR0 MOVF TMR0,W T0+1 Instruction Executed  1997 Microchip Technology Inc. PC+2 MOVF TMR0,W PC+3 MOVF TMR0,W T0+2 NT0 NT0 Write TMR0 executed Read TMR0 reads NT0 Read TMR0 reads NT0 PC+4 MOVF TMR0,W NT0 Read TMR0 reads NT0 PC+5 PC+6 MOVF TMR0,W NT0+1 Read TMR0 reads NT0 + 1 NT0+2 T0 Read TMR0 reads NT0 + 2 DS30272A-page 31 PIC16C71X FIGURE 6-3: TIMER0 TIMING: INTERNAL CLOCK/PRESCALE 1:2 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 PC (Program Counter) PC-1 Instruction Fetch PC PC+1 MOVWF TMR0 MOVF TMR0,W PC+3 Instruction Execute PC+5 MOVF TMR0,W PC+6 MOVF TMR0,W Read TMR0 reads NT0 Read TMR0 reads NT0 PC+6 NT0+1 NT0 Write TMR0 executed FIGURE 6-4: PC+4 MOVF TMR0,W T0+1 T0 TMR0 PC+2 MOVF TMR0,W Read TMR0 reads NT0 Read TMR0 reads NT0 Read TMR0 reads NT0 + 1 TIMER0 INTERRUPT TIMING Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 OSC1 CLKOUT(3) Timer0 FEh T0IF bit (INTCON) FFh 00h 01h 02h 1 1 GIE bit (INTCON) INSTRUCTION FLOW PC PC Instruction fetched Inst (PC) Instruction executed Inst (PC-1) PC +1 PC +1 Inst (PC+1) Inst (PC) Dummy cycle 0004h 0005h Inst (0004h) Inst (0005h) Dummy cycle Inst (0004h) Note 1: Interrupt flag bit T0IF is sampled here (every Q1). 2: Interrupt latency = 4Tcy where Tcy = instruction cycle time. 3: CLKOUT is available only in RC oscillator mode. DS30272A-page 32  1997 Microchip Technology Inc. PIC16C71X 6.2 Using Timer0 with an External Clock caler so that the prescaler output is symmetrical. For the external clock to meet the sampling requirement, the ripple-counter must be taken into account. Therefore, it is necessary for T0CKI to have a period of at least 4Tosc (and a small RC delay of 40 ns) divided by the prescaler value. The only requirement on T0CKI high and low time is that they do not violate the minimum pulse width requirement of 10 ns. Refer to parameters 40, 41 and 42 in the electrical specification of the desired device. When an external clock input is used for Timer0, it must meet certain requirements. The requirements ensure the external clock can be synchronized with the internal phase clock (TOSC). Also, there is a delay in the actual incrementing of Timer0 after synchronization. 6.2.1 EXTERNAL CLOCK SYNCHRONIZATION When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of T0CKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks (Figure 6-5). Therefore, it is necessary for T0CKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device. 6.2.2 TMR0 INCREMENT DELAY Since the prescaler output is synchronized with the internal clocks, there is a small delay from the time the external clock edge occurs to the time the Timer0 module is actually incremented. Figure 6-5 shows the delay from the external clock edge to the timer incrementing. When a prescaler is used, the external clock input is divided by the asynchronous ripple-counter type pres- FIGURE 6-5: TIMER0 TIMING WITH EXTERNAL CLOCK Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 External Clock Input or Prescaler output (2) Q1 Q2 Q3 Q4 Small pulse misses sampling (1) (3) External Clock/Prescaler Output after sampling Increment Timer0 (Q4) Timer0 T0 T0 + 1 T0 + 2 Note 1: Delay from clock input change to Timer0 increment is 3Tosc to 7Tosc. (Duration of Q = Tosc). Therefore, the error in measuring the interval between two edges on Timer0 input = ±4Tosc max. 2: External clock if no prescaler selected, Prescaler output otherwise. 3: The arrows indicate the points in time where sampling occurs.  1997 Microchip Technology Inc. DS30272A-page 33 PIC16C71X 6.3 Prescaler When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g. CLRF 1, MOVWF 1, BSF 1,x....etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the Watchdog Timer. The prescaler is not readable or writable. An 8-bit counter is available as a prescaler for the Timer0 module, or as a postscaler for the Watchdog Timer, respectively (Figure 6-6). For simplicity, this counter is being referred to as “prescaler” throughout this data sheet. Note that there is only one prescaler available which is mutually exclusively shared between the Timer0 module and the Watchdog Timer. Thus, a prescaler assignment for the Timer0 module means that there is no prescaler for the Watchdog Timer, and vice-versa. Note: Writing to TMR0 when the prescaler is assigned to Timer0 will clear the prescaler count, but will not change the prescaler assignment. The PSA and PS2:PS0 bits (OPTION) determine the prescaler assignment and prescale ratio. FIGURE 6-6: BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER Data Bus CLKOUT (=Fosc/4) 0 RA4/T0CKI pin 8 M U X 1 M U X 0 1 SYNC 2 Cycles TMR0 reg T0SE T0CS 0 Watchdog Timer 1 M U X Set flag bit T0IF on Overflow PSA 8-bit Prescaler 8 8 - to - 1MUX PS2:PS0 PSA WDT Enable bit 1 0 MUX PSA WDT Time-out Note: T0CS, T0SE, PSA, PS2:PS0 are (OPTION). DS30272A-page 34  1997 Microchip Technology Inc. PIC16C71X 6.3.1 SWITCHING PRESCALER ASSIGNMENT Note: The prescaler assignment is fully under software control, i.e., it can be changed “on the fly” during program execution. EXAMPLE 6-1: BCF CLRF BSF CLRWDT MOVLW MOVWF BCF To avoid an unintended device RESET, the following instruction sequence (shown in Example 6-1) must be executed when changing the prescaler assignment from Timer0 to the WDT. This sequence must be followed even if the WDT is disabled. CHANGING PRESCALER (TIMER0→WDT) STATUS, RP0 TMR0 STATUS, RP0 b'xxxx1xxx' OPTION_REG STATUS, RP0 ;Bank 0 ;Clear TMR0 & Prescaler ;Bank 1 ;Clears WDT ;Selects new prescale value ;and assigns the prescaler to the WDT ;Bank 0 To change prescaler from the WDT to the Timer0 module use the sequence shown in Example 6-2. EXAMPLE 6-2: CLRWDT BSF MOVLW MOVWF BCF CHANGING PRESCALER (WDT→TIMER0) STATUS, RP0 b'xxxx0xxx' OPTION_REG STATUS, RP0 TABLE 6-1: ;Clear WDT and prescaler ;Bank 1 ;Select TMR0, new prescale value and ;clock source ;Bank 0 REGISTERS ASSOCIATED WITH TIMER0 Address Name Bit 7 Bit 6 01h TMR0 0Bh,8Bh, INTCON 81h OPTION RBPU INTEDG 85h TRISA Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Timer0 module’s register GIE — ADIE — Value on: POR, BOR Value on all other resets xxxx xxxx uuuu uuuu T0IE INTE RBIE T0IF INTF RBIF 0000 000x 0000 000u T0CS T0SE PSA PS2 PS1 PS0 1111 1111 1111 1111 ---1 1111 ---1 1111 — PORTA Data Direction Register Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Timer0.  1997 Microchip Technology Inc. DS30272A-page 35 PIC16C71X NOTES: DS30272A-page 36  1997 Microchip Technology Inc. PIC16C71X 7.0 ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE Applicable Devices The A/D converter has a unique feature of being able to operate while the device is in SLEEP mode. To operate in sleep, the A/D conversion clock must be derived from the A/D’s internal RC oscillator. 710 71 711 715 The A/D module has three registers. These registers are: The analog-to-digital (A/D) converter module has four analog inputs. • A/D Result Register (ADRES) • A/D Control Register 0 (ADCON0) • A/D Control Register 1 (ADCON1) The A/D allows conversion of an analog input signal to a corresponding 8-bit digital number (refer to Application Note AN546 for use of A/D Converter). The output of the sample and hold is the input into the converter, which generates the result via successive approximation. The analog reference voltage is software selectable to either the device’s positive supply voltage (VDD) or the voltage level on the RA3/AN3/VREF pin. FIGURE 7-1: The ADCON0 register, shown in Figure 7-1 and Figure 7-2, controls the operation of the A/D module. The ADCON1 register, shown in Figure 7-3 configures the functions of the port pins. The port pins can be configured as analog inputs (RA3 can also be a voltage reference) or as digital I/O. ADCON0 REGISTER (ADDRESS 08h), PIC16C710/71/711 R/W-0 R/W-0 ADCS1 ADCS0 U-0 — (1) R/W-0 CHS1 R/W-0 CHS0 R/W-0 GO/DONE bit7 R/W-0 ADIF R/W-0 ADON bit0 R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ - n =Value at POR reset bit 7-6: ADCS1:ADCS0: A/D Conversion Clock Select bits 00 = FOSC/2 01 = FOSC/8 10 = FOSC/32 11 = FRC (clock derived from an RC oscillation) bit 5: Unimplemented: Read as '0'. bit 4-3: CHS1:CHS0: Analog Channel Select bits 00 = channel 0, (RA0/AN0) 01 = channel 1, (RA1/AN1) 10 = channel 2, (RA2/AN2) 11 = channel 3, (RA3/AN3) bit 2: GO/DONE: A/D Conversion Status bit If ADON = 1: 1 = A/D conversion in progress (setting this bit starts the A/D conversion) 0 = A/D conversion not in progress (This bit is automatically cleared by hardware when the A/D conversion is complete) bit 1: ADIF: A/D Conversion Complete Interrupt Flag bit 1 = conversion is complete (must be cleared in software) 0 = conversion is not complete bit 0: ADON: A/D On bit 1 = A/D converter module is operating 0 = A/D converter module is shutoff and consumes no operating current Note 1: Bit5 of ADCON0 is a General Purpose R/W bit for the PIC16C710/711 only. For the PIC16C71, this bit is unimplemented, read as '0'.  1997 Microchip Technology Inc. DS30272A-page 37 PIC16C71X FIGURE 7-2: ADCON0 REGISTER (ADDRESS 1Fh), PIC16C715 R/W-0 R/W-0 ADCS1 ADCS0 bit7 R/W-0 — R/W-0 CHS1 R/W-0 CHS0 R/W-0 GO/DONE U-0 — R/W-0 ADON bit0 R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ - n = Value at POR reset bit 7-6: ADCS1:ADCS0: A/D Conversion Clock Select bits 00 = FOSC/2 01 = FOSC/8 10 = FOSC/32 11 = FRC (clock derived from an RC oscillation) bit 5: Unused bit 6-3: CHS1:CHS0: Analog Channel Select bits 000 = channel 0, (RA0/AN0) 001 = channel 1, (RA1/AN1) 010 = channel 2, (RA2/AN2) 011 = channel 3, (RA3/AN3) 100 = channel 0, (RA0/AN0) 101 = channel 1, (RA1/AN1) 110 = channel 2, (RA2/AN2) 111 = channel 3, (RA3/AN3) bit 2: GO/DONE: A/D Conversion Status bit If ADON = 1 1 = A/D conversion in progress (setting this bit starts the A/D conversion) 0 = A/D conversion not in progress (This bit is automatically cleared by hardware when the A/D conversion is complete) bit 1: Unimplemented: Read as '0' bit 0: ADON: A/D On bit 1 = A/D converter module is operating 0 = A/D converter module is shutoff and consumes no operating current FIGURE 7-3: U-0 — bit7 ADCON1 REGISTER, PIC16C710/71/711 (ADDRESS 88h), PIC16C715 (ADDRESS 9Fh) U-0 — U-0 — U-0 — U-0 — U-0 — R/W-0 PCFG1 R/W-0 PCFG0 bit0 R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ - n =Value at POR reset bit 7-2: Unimplemented: Read as '0' bit 1-0: PCFG1:PCFG0: A/D Port Configuration Control bits PCFG1:PCFG0 00 01 10 11 RA1 & RA0 A A A D RA2 A A D D RA3 A VREF D D VREF VDD RA3 VDD VDD A = Analog input D = Digital I/O DS30272A-page 38  1997 Microchip Technology Inc. PIC16C71X 2. The ADRES register contains the result of the A/D conversion. When the A/D conversion is complete, the result is loaded into the ADRES register, the GO/DONE bit (ADCON0) is cleared, and A/D interrupt flag bit ADIF is set. The block diagram of the A/D module is shown in Figure 7-4. 3. 4. After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as an input. To determine acquisition time, see Section 7.1. After this acquisition time has elapsed the A/D conversion can be started. The following steps should be followed for doing an A/D conversion: 1. 5. OR 6. Configure the A/D module: • Configure analog pins / voltage reference / and digital I/O (ADCON1) • Select A/D input channel (ADCON0) • Select A/D conversion clock (ADCON0) • Turn on A/D module (ADCON0) FIGURE 7-4: Configure A/D interrupt (if desired): • Clear ADIF bit • Set ADIE bit • Set GIE bit Wait the required acquisition time. Start conversion: • Set GO/DONE bit (ADCON0) Wait for A/D conversion to complete, by either: • Polling for the GO/DONE bit to be cleared 7. • Waiting for the A/D interrupt Read A/D Result register (ADRES), clear bit ADIF if required. For next conversion, go to step 1 or step 2 as required. The A/D conversion time per bit is defined as TAD. A minimum wait of 2TAD is required before next acquisition starts. A/D BLOCK DIAGRAM CHS1:CHS0 11 VIN RA3/AN3/VREF 10 (Input voltage) RA2/AN2 01 A/D Converter RA1/AN1 00 RA0/AN0 VDD 00 or 10 or 11 VREF (Reference voltage) 01 PCFG1:PCFG0  1997 Microchip Technology Inc. DS30272A-page 39 PIC16C71X 7.1 A/D Acquisition Requirements Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out. For the A/D converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 7-5. The source impedance (RS) and the internal sampling switch (RSS) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (RSS) impedance varies over the device voltage (VDD), Figure 7-5. The source impedance affects the offset voltage at the analog input (due to pin leakage current). The maximum recommended impedance for analog sources is 10 kΩ. After the analog input channel is selected (changed) this acquisition must be done before the conversion can be started. To calculate the minimum acquisition time, Equation 71 may be used. This equation calculates the acquisition time to within 1/2 LSb error is used (512 steps for the A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified accuracy. EQUATION 7-1: Note 2: The charge holding capacitor (CHOLD) is not discharged after each conversion. Note 3: The maximum recommended impedance for analog sources is 10 kΩ. This is required to meet the pin leakage specification. Note 4: After a conversion has completed, a 2.0TAD delay must complete before acquisition can begin again. During this time the holding capacitor is not connected to the selected A/D input channel. EXAMPLE 7-1: CALCULATING THE MINIMUM REQUIRED AQUISITION TIME TACQ = Amplifier Settling Time + Holding Capacitor Charging Time + A/D MINIMUM CHARGING TIME Temperature Coefficient VHOLD = (VREF - (VREF/512)) • (1 - e(-TCAP/CHOLD(RIC + RSS + RS))) TACQ = 5 µs + TCAP + [(Temp - 25°C)(0.05 µs/°C)] Given: VHOLD = (VREF/512), for 1/2 LSb resolution TCAP = -CHOLD (RIC + RSS + RS) ln(1/511) The above equation reduces to: -51.2 pF (1 kΩ + 7 kΩ + 10 kΩ) ln(0.0020) TCAP = -(51.2 pF)(1 kΩ + RSS + RS) ln(1/511) -51.2 pF (18 kΩ) ln(0.0020) Example 7-1 shows the calculation of the minimum required acquisition time TACQ. This calculation is based on the following system assumptions. -0.921 µs (-6.2364) 5.747 µs TACQ = 5 µs + 5.747 µs + [(50°C - 25°C)(0.05 µs/°C)] CHOLD = 51.2 pF 10.747 µs + 1.25 µs Rs = 10 kΩ 11.997 µs 1/2 LSb error VDD = 5V → Rss = 7 kΩ Temp (application system max.) = 50°C VHOLD = 0 @ t = 0 FIGURE 7-5: ANALOG INPUT MODEL VDD Rs ANx CPIN 5 pF VA Sampling Switch VT = 0.6V VT = 0.6V RIC ≤ 1k SS RSS CHOLD = DAC capacitance = 51.2 pF I leakage ± 500 nA VSS Legend CPIN = input capacitance VT = threshold voltage I leakage = leakage current at the pin due to various junctions RIC SS CHOLD DS30272A-page 40 = interconnect resistance = sampling switch = sample/hold capacitance (from DAC) 6V 5V VDD 4V 3V 2V 5 6 7 8 9 10 11 Sampling Switch ( kΩ )  1997 Microchip Technology Inc. PIC16C71X 7.2 Selecting the A/D Conversion Clock 7.3 The A/D conversion time per bit is defined as TAD. The A/D conversion requires 9.5TAD per 8-bit conversion. The source of the A/D conversion clock is software selectable. The four possible options for TAD are: • • • • The ADCON1 and TRISA registers control the operation of the A/D port pins. The port pins that are desired as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted. 2TOSC 8TOSC 32TOSC Internal RC oscillator The A/D operation is independent of the state of the CHS2:CHS0 bits and the TRIS bits. Note 1: When reading the port register, all pins configured as analog input channels will read as cleared (a low level). Pins configured as digital inputs, will convert an analog input. Analog levels on a digitally configured input will not affect the conversion accuracy. For correct A/D conversions, the A/D conversion clock (TAD) must be selected to ensure a minimum TAD time of: 2.0 µs for the PIC16C71 1.6 µs for all other PIC16C71X devices Note 2: Analog levels on any pin that is defined as a digital input (including the AN7:AN0 pins), may cause the input buffer to consume current that is out of the devices specification. Table 7-1 and Table 7-2 and show the resultant TAD times derived from the device operating frequencies and the A/D clock source selected. TABLE 7-1: TAD vs. DEVICE OPERATING FREQUENCIES, PIC16C71 AD Clock Source (TAD) Operation Configuring Analog Port Pins Device Frequency ADCS1:ADCS0 20 MHz 16 MHz 4 MHz 1 MHz 333.33 kHz 00 100 ns(2) 125 ns(2) 6 µs 8TOSC 01 400 ns(2) 500 ns(2) 2.0 µs 2.0 µs ns(2) 8.0 µs 24 µs(3) 32TOSC 10 1.6 µs(2) 8.0 µs 32.0 µs(3) 96 µs(3) 2TOSC RC(5) 5: 2-6 2-6 2-6 2 - 6 µs(1) 2 - 6 µs Shaded cells are outside of recommended range. The RC source has a typical TAD time of 4 µs. These values violate the minimum required TAD time. For faster conversion times, the selection of another clock source is recommended. When device frequency is greater than 1 MHz, the RC A/D conversion clock source is recommended for sleep operation only. For extended voltage devices (LC), please refer to Electrical Specifications section. TABLE 7-2: µs(1,4) (1,4) 11 Legend: Note 1: 2: 3: 4: 500 2.0 µs ADCS1:ADCS0 Device Frequency 20 MHz 2TOSC 00 100 8TOSC 01 400 ns(2) 1.6 µs 32TOSC µs(1) TAD vs. DEVICE OPERATING FREQUENCIES, PIC16C710/711, PIC16C715 AD Clock Source (TAD) Operation µs(1,4) 10 ns(2) 5 MHz 1.25 MHz 333.33 kHz 400 1.6 µs 1.6 µs 6 µs 6.4 µs 24 µs(3) 6.4 µs 25.6 µs 96 µs(3) ns(2) (3) 2 - 6 µs(1,4) 2 - 6 µs(1,4) 2 - 6 µs(1) 2 - 6 µs(1,4) Shaded cells are outside of recommended range. The RC source has a typical TAD time of 4 µs. These values violate the minimum required TAD time. For faster conversion times, the selection of another clock source is recommended. When device frequency is greater than 1 MHz, the RC A/D conversion clock source is recommended for sleep operation only. 5: For extended voltage devices (LC), please refer to Electrical Specifications section. RC(5) Legend: Note 1: 2: 3: 4: 11  1997 Microchip Technology Inc. DS30272A-page 41 PIC16C71X 7.4 A/D Conversions Example 7-2 shows how to perform an A/D conversion. The RA pins are configured as analog inputs. The analog reference (VREF) is the device VDD. The A/D interrupt is enabled, and the A/D conversion clock is FRC. The conversion is performed on the RA0 pin (channel 0). EXAMPLE 7-2: BSF CLRF BCF MOVLW MOVWF BSF BSF ; ; ; ; Note: The GO/DONE bit should NOT be set in the same instruction that turns on the A/D. Clearing the GO/DONE bit during a conversion will abort the current conversion. The ADRES register will NOT be updated with the partially completed A/D conversion sample. That is, the ADRES register will continue to contain the value of the last completed conversion (or the last value written to the ADRES register). After the A/D conversion is aborted, a 2TAD wait is required before the next acquisition is started. After this 2TAD wait, an acquisition is automatically started on the selected channel. A/D CONVERSION STATUS, ADCON1 STATUS, 0xC1 ADCON0 INTCON, INTCON, RP0 RP0 ADIE GIE ; ; ; ; ; ; ; Select Bank 1 Configure A/D inputs Select Bank 0 RC Clock, A/D is on, Channel 0 is selected Enable A/D Interrupt Enable all interrupts Ensure that the required sampling time for the selected input channel has elapsed. Then the conversion may be started. BSF : : ADCON0, GO DS30272A-page 42 ; Start A/D Conversion ; The ADIF bit will be set and the GO/DONE bit ; is cleared upon completion of the A/D Conversion.  1997 Microchip Technology Inc. PIC16C71X 7.4.1 FASTER CONVERSION - LOWER RESOLUTION TRADE-OFF Not all applications require a result with 8-bits of resolution, but may instead require a faster conversion time. The A/D module allows users to make the trade-off of conversion speed to resolution. Regardless of the resolution required, the acquisition time is the same. To speed up the conversion, the clock source of the A/D module may be switched so that the TAD time violates the minimum specified time (see the applicable electrical specification). Once the TAD time violates the minimum specified time, all the following A/D result bits are not valid (see A/D Conversion Timing in the Electrical Specifications section.) The clock sources may only be switched between the three oscillator versions (cannot be switched from/to RC). The equation to determine the time before the oscillator can be switched is as follows: Since the TAD is based from the device oscillator, the user must use some method (a timer, software loop, etc.) to determine when the A/D oscillator may be changed. Example 7-3 shows a comparison of time required for a conversion with 4-bits of resolution, versus the 8-bit resolution conversion. The example is for devices operating at 20 MHz and 16 MHz (The A/D clock is programmed for 32TOSC), and assumes that immediately after 6TAD, the A/D clock is programmed for 2TOSC. The 2TOSC violates the minimum TAD time since the last 4-bits will not be converted to correct values. Conversion time = 2TAD + N • TAD + (8 - N)(2TOSC) Where: N = number of bits of resolution required. EXAMPLE 7-3: 4-BIT vs. 8-BIT CONVERSION TIMES Freq. (MHz)(1) TAD TOSC 2TAD + N • TAD + (8 - N)(2TOSC) 20 16 20 16 20 16 Resolution 4-bit 8-bit 1.6 µs 2.0 µs 50 ns 62.5 ns 10 µs 12.5 µs 1.6 µs 2.0 µs 50 ns 62.5 ns 16 µs 20 µs Note 1: The PIC16C71 has a minimum TAD time of 2.0 µs. All other PIC16C71X devices have a minimum TAD time of 1.6 µs.  1997 Microchip Technology Inc. DS30272A-page 43 PIC16C71X 7.5 A/D Operation During Sleep The A/D module can operate during SLEEP mode. This requires that the A/D clock source be set to RC (ADCS1:ADCS0 = 11). When the RC clock source is selected, the A/D module waits one instruction cycle before starting the conversion. This allows the SLEEP instruction to be executed, which eliminates all digital switching noise from the conversion. When the conversion is completed the GO/DONE bit will be cleared, and the result loaded into the ADRES register. If the A/D interrupt is enabled, the device will wake-up from SLEEP. If the A/D interrupt is not enabled, the A/D module will then be turned off, although the ADON bit will remain set. When the A/D clock source is another clock option (not RC), a SLEEP instruction will cause the present conversion to be aborted and the A/D module to be turned off, though the ADON bit will remain set. Turning off the A/D places the A/D module in its lowest current consumption state. Note: 7.6 For the A/D module to operate in SLEEP, the A/D clock source must be set to RC (ADCS1:ADCS0 = 11). To perform an A/D conversion in SLEEP, ensure the SLEEP instruction immediately follows the instruction that sets the GO/DONE bit. A/D Accuracy/Error The absolute accuracy specified for the A/D converter includes the sum of all contributions for quantization error, integral error, differential error, full scale error, offset error, and monotonicity. It is defined as the maximum deviation from an actual transition versus an ideal transition for any code. The absolute error of the A/D converter is specified at < ±1 LSb for VDD = VREF (over the device’s specified operating range). However, the accuracy of the A/D converter will degrade as VDD diverges from VREF. For a given range of analog inputs, the output digital code will be the same. This is due to the quantization of the analog input to a digital code. Quantization error is typically ± 1/2 LSb and is inherent in the analog to digital conversion process. The only way to reduce quantization error is to increase the resolution of the A/D converter. Offset error measures the first actual transition of a code versus the first ideal transition of a code. Offset error shifts the entire transfer function. Offset error can be calibrated out of a system or introduced into a system through the interaction of the total leakage current and source impedance at the analog input. full scale error is that full scale does not take offset error into account. Gain error can be calibrated out in software. Linearity error refers to the uniformity of the code changes. Linearity errors cannot be calibrated out of the system. Integral non-linearity error measures the actual code transition versus the ideal code transition adjusted by the gain error for each code. Differential non-linearity measures the maximum actual code width versus the ideal code width. This measure is unadjusted. In systems where the device frequency is low, use of the A/D RC clock is preferred. At moderate to high frequencies, TAD should be derived from the device oscillator. TAD must not violate the minimum and should be ≤ 8 µs for preferred operation. This is because TAD, when derived from TOSC, is kept away from on-chip phase clock transitions. This reduces, to a large extent, the effects of digital switching noise. This is not possible with the RC derived clock. The loss of accuracy due to digital switching noise can be significant if many I/O pins are active. In systems where the device will enter SLEEP mode after the start of the A/D conversion, the RC clock source selection is required. In this mode, the digital noise from the modules in SLEEP are stopped. This method gives high accuracy. 7.7 Effects of a RESET A device reset forces all registers to their reset state. This forces the A/D module to be turned off, and any conversion is aborted. The value that is in the ADRES register is not modified for a Power-on Reset. The ADRES register will contain unknown data after a Power-on Reset. 7.8 Connection Considerations If the input voltage exceeds the rail values (VSS or VDD) by greater than 0.2V, then the accuracy of the conversion is out of specification. Note: Care must be taken when using the RA0 pin in A/D conversions due to its proximity to the OSC1 pin. An external RC filter is sometimes added for anti-aliasing of the input signal. The R component should be selected to ensure that the total source impedance is kept under the 10 kΩ recommended specification. Any external components connected (via hi-impedance) to an analog input pin (capacitor, zener diode, etc.) should have very little leakage current at the pin. Gain error measures the maximum deviation of the last actual transition and the last ideal transition adjusted for offset error. This error appears as a change in slope of the transfer function. The difference in gain error to DS30272A-page 44  1997 Microchip Technology Inc. PIC16C71X 7.9 Transfer Function FIGURE 7-6: A/D TRANSFER FUNCTION The ideal transfer function of the A/D converter is as follows: the first transition occurs when the analog input voltage (VAIN) is Analog VREF/256 (Figure 7-6). References Digital code output 7.10 A very good reference for understanding A/D converters is the "Analog-Digital Conversion Handbook" third edition, published by Prentice Hall (ISBN 0-13-032848-0). FFh FEh 04h 03h 02h 01h 256 LSb (full scale) 255 LSb 4 LSb 3 LSb 2 LSb 0.5 LSb 1 LSb 00h Analog input voltage FIGURE 7-7: FLOWCHART OF A/D OPERATION ADON = 0 Yes ADON = 0? No Acquire Selected Channel Yes GO = 0? No A/D Clock = RC? Yes Start of A/D Conversion Delayed 1 Instruction Cycle Finish Conversion GO = 0 ADIF = 1 No No Device in SLEEP? SLEEP Yes Instruction? Yes Abort Conversion GO = 0 ADIF = 0 Finish Conversion GO = 0 ADIF = 1 Wait 2 TAD No No Finish Conversion GO = 0 ADIF = 1 Wake-up Yes From Sleep? SLEEP Power-down A/D Wait 2 TAD Stay in Sleep Power-down A/D Wait 2 TAD  1997 Microchip Technology Inc. DS30272A-page 45 PIC16C71X TABLE 7-3: Address REGISTERS/BITS ASSOCIATED WITH A/D, PIC16C710/71/711 Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on: POR, BOR Value on all other Resets GIE ADIE T0IE INTE RBIE T0IF INTF RBIF 0000 000x 0000 000u xxxx xxxx uuuu uuuu 0Bh,8Bh INTCON 89h ADRES A/D Result Register 08h ADCON0 ADCS1 ADCS0 — CHS1 CHS0 GO/DONE ADIF ADON 00-0 0000 00-0 0000 88h ADCON1 — — — — — — PCFG1 PCFG0 ---- --00 ---- --00 05h PORTA — — — RA4 RA3 RA2 RA1 RA0 ---x 0000 ---u 0000 ---1 1111 ---1 1111 85h TRISA — — — PORTA Data Direction Register Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used for A/D conversion. TABLE 7-4: REGISTERS/BITS ASSOCIATED WITH A/D, PIC16C715 Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on: POR, BOR Value on all other Resets 0Bh/8Bh INTCON PIR1 0Ch GIE PEIE T0IE INTE RBIE T0IF INTF RBIF 0000 000x 0000 000u — ADIF — — — — — — -0-- ---- -0-- ---- — ADIE — — — — — — -0-- ---- -0-- ---- xxxx xxxx uuuu uuuu 0000 00-0 0000 00-0 PCFG0 ---- --00 ---- --00 8Ch PIE1 1Eh ADRES A/D Result Register 1Fh ADCON 0 ADCON 1 ADCS 1 — ADCS 0 — CHS2 CHS1 CHS0 — — PORTA — — — RA4 — — 9Fh 05h 85h TRISA TRISA4 — PCFG1 RA3 RA2 RA1 ADON ---x 0000 ---u 0000 TRISA1 TRISA0 ---1 1111 ---1 1111 RA0 TRISA TRISA2 3 Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used for A/D conversion. DS30272A-page 46 — — GO/ DONE —  1997 Microchip Technology Inc. PIC16C71X 8.0 SPECIAL FEATURES OF THE CPU Applicable Devices fixed delay of 72 ms (nominal) on power-up only, designed to keep the part in reset while the power supply stabilizes. With these two timers on-chip, most applications need no external reset circuitry. 710 71 711 715 SLEEP mode is designed to offer a very low current power-down mode. The user can wake-up from SLEEP through external reset, Watchdog Timer Wake-up, or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost while the LP crystal option saves power. A set of configuration bits are used to select various options. What sets a microcontroller apart from other processors are special circuits to deal with the needs of realtime applications. The PIC16CXX family has a host of such features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection. These are: • Oscillator selection • Reset - Power-on Reset (POR) - Power-up Timer (PWRT) - Oscillator Start-up Timer (OST) - Brown-out Reset (BOR) (PIC16C710/711/715) - Parity Error Reset (PER) (PIC16C715) • Interrupts • Watchdog Timer (WDT) • SLEEP • Code protection • ID locations • In-circuit serial programming 8.1 Configuration Bits The configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped in program memory location 2007h. The user will note that address 2007h is beyond the user program memory space. In fact, it belongs to the special test/configuration memory space (2000h 3FFFh), which can be accessed only during programming. The PIC16CXX has a Watchdog Timer which can be shut off only through configuration bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in reset until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a FIGURE 8-1: — — CONFIGURATION WORD FOR PIC16C71 — — — — — — — CP0 bit13 PWRTE WDTE FOSC1 FOSC0 bit0 Register: Address CONFIG 2007h bit 13-5: Unimplemented: Read as '1' bit 4: CP0: Code protection bit 1 = Code protection off 0 = All memory is code protected, but 00h - 3Fh is writable bit 3: PWRTE: Power-up Timer Enable bit 1 = Power-up Timer enabled 0 = Power-up Timer disabled bit 2: WDTE: Watchdog Timer Enable bit 1 = WDT enabled 0 = WDT disabled bit 1-0: FOSC1:FOSC0: Oscillator Selection bits 11 = RC oscillator 10 = HS oscillator 01 = XT oscillator 00 = LP oscillator  1997 Microchip Technology Inc. DS30272A-page 47 PIC16C71X FIGURE 8-2: CP0 CP0 CONFIGURATION WORD, PIC16C710/711 CP0 CP0 CP0 CP0 CP0 BODEN CP0 CP0 bit13 PWRTE WDTE FOSC1 FOSC0 bit0 Register: Address CONFIG 2007h bit 13-7 CP0: Code protection bits (2) 5-4: 1 = Code protection off 0 = All memory is code protected, but 00h - 3Fh is writable bit 6: BODEN: Brown-out Reset Enable bit (1) 1 = BOR enabled 0 = BOR disabled bit 3: PWRTE: Power-up Timer Enable bit (1) 1 = PWRT disabled 0 = PWRT enabled bit 2: WDTE: Watchdog Timer Enable bit 1 = WDT enabled 0 = WDT disabled bit 1-0: FOSC1:FOSC0: Oscillator Selection bits 11 = RC oscillator 10 = HS oscillator 01 = XT oscillator 00 = LP oscillator Note 1: Enabling Brown-out Reset automatically enables Power-up Timer (PWRT) regardless of the value of bit PWRTE. Ensure the Power-up Timer is enabled anytime Brown-out Reset is enabled. 2: All of the CP0 bits have to be given the same value to enable the code protection scheme listed. FIGURE 8-3: CP1 CP0 CONFIGURATION WORD, PIC16C715 CP1 CP0 CP1 CP0 MPEEN BODEN CP1 CP0 bit13 PWRTE WDTE FOSC1 FOSC0 bit0 bit 13-8 5-4: CP1:CP0: Code Protection bits (2) 11 = Code protection off 10 = Upper half of program memory code protected 01 = Upper 3/4th of program memory code protected 00 = All memory is code protected bit 7: MPEEN: Memory Parity Error Enable 1 = Memory Parity Checking is enabled 0 = Memory Parity Checking is disabled bit 6: BODEN: Brown-out Reset Enable bit (1) 1 = BOR enabled 0 = BOR disabled bit 3: PWRTE: Power-up Timer Enable bit (1) 1 = PWRT disabled 0 = PWRT enabled bit 2: WDTE: Watchdog Timer Enable bit 1 = WDT enabled 0 = WDT disabled bit 1-0: FOSC1:FOSC0: Oscillator Selection bits 11 = RC oscillator 10 = HS oscillator 01 = XT oscillator 00 = LP oscillator Register: Address CONFIG 2007h Note 1: Enabling Brown-out Reset automatically enables Power-up Timer (PWRT) regardless of the value of bit PWRTE. Ensure the Power-up Timer is enabled anytime Brown-out Reset is enabled. 2: All of the CP1:CP0 pairs have to be given the same value to enable the code protection scheme listed. DS30272A-page 48  1997 Microchip Technology Inc. PIC16C71X 8.2 Oscillator Configurations 8.2.1 OSCILLATOR TYPES TABLE 8-1: The PIC16CXX can be operated in four different oscillator modes. The user can program two configuration bits (FOSC1 and FOSC0) to select one of these four modes: • • • • LP XT HS RC 8.2.2 Low Power Crystal Crystal/Resonator High Speed Crystal/Resonator Resistor/Capacitor Ranges Tested: Mode XT CRYSTAL/CERAMIC RESONATOR OPERATION (HS, XT OR LP OSC CONFIGURATION) 455 kHz 2.0 MHz 4.0 MHz 8.0 MHz 16.0 MHz C2 (2) 47 - 100 pF 15 - 68 pF 15 - 68 pF 15 - 68 pF 10 - 47 pF To internal logic See Table 8-1 and Table 8-1 for recommended values of C1 and C2. Panasonic EFO-A455K04B Murata Erie CSA2.00MG Murata Erie CSA4.00MG Murata Erie CSA8.00MT Murata Erie CSA16.00MX TABLE 8-2: ± 0.3% ± 0.5% ± 0.5% ± 0.5% ± 0.5% CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR, PIC16C71 Mode Freq OSC1 OSC2 LP 32 kHz 200 kHz 100 kHz 500 kHz 1 MHz 2 MHz 4 MHz 8 MHz 20 MHz 33 - 68 pF 15 - 47 pF 47 - 100 pF 20 - 68 pF 15 - 68 pF 15 - 47 pF 15 - 33 pF 15 - 47 pF 15 - 47 pF 33 - 68 pF 15 - 47 pF 47 - 100 pF 20 - 68 pF 15 - 68 pF 15 - 47 pF 15 - 33 pF 15 - 47 pF 15 - 47 pF SLEEP PIC16CXXX OSC2 47 - 100 pF 15 - 68 pF 15 - 68 pF 15 - 68 pF 10 - 47 pF All resonators used did not have built-in capacitors. C1 RS Note1 OSC2 Resonators Used: XT OSC1 RF OSC1 These values are for design guidance only. See notes at bottom of page. In XT, LP or HS modes a crystal or ceramic resonator is connected to the OSC1/CLKIN and OSC2/CLKOUT pins to establish oscillation (Figure 8-4). The PIC16CXX Oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in XT, LP or HS modes, the device can have an external clock source to drive the OSC1/ CLKIN pin (Figure 8-5). XTAL Freq 455 kHz 2.0 MHz 4.0 MHz 8.0 MHz 16.0 MHz HS CRYSTAL OSCILLATOR/CERAMIC RESONATORS FIGURE 8-4: CERAMIC RESONATORS, PIC16C71 HS These values are for design guidance only. See notes at bottom of page. Note 1: A series resistor may be required for AT strip cut crystals. 2: The buffer is on the OSC2 pin. FIGURE 8-5: EXTERNAL CLOCK INPUT OPERATION (HS, XT OR LP OSC CONFIGURATION) OSC1 Clock from ext. system PIC16CXXX Open OSC2  1997 Microchip Technology Inc. DS30272A-page 49 PIC16C71X TABLE 8-3: CERAMIC RESONATORS, PIC16C710/711/715 TABLE 8-4: CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR, PIC16C710/711/715 Ranges Tested: Mode XT Freq 455 kHz 2.0 MHz 4.0 MHz 8.0 MHz 16.0 MHz HS OSC1 68 - 100 pF 15 - 68 pF 15 - 68 pF 10 - 68 pF 10 - 22 pF OSC2 68 - 100 pF 15 - 68 pF 15 - 68 pF 10 - 68 pF 10 - 22 pF These values are for design guidance only. See notes at bottom of page. Osc Type Crystal Freq Cap. Range C1 Cap. Range C2 LP 32 kHz 33 pF 33 pF XT HS Resonators Used: 455 kHz 2.0 MHz 4.0 MHz 8.0 MHz 16.0 MHz Panasonic EFO-A455K04B Murata Erie CSA2.00MG Murata Erie CSA4.00MG Murata Erie CSA8.00MT Murata Erie CSA16.00MX ± 0.3% ± 0.5% ± 0.5% ± 0.5% ± 0.5% All resonators used did not have built-in capacitors. 200 kHz 15 pF 15 pF 200 kHz 47-68 pF 47-68 pF 1 MHz 15 pF 15 pF 4 MHz 15 pF 15 pF 4 MHz 15 pF 15 pF 8 MHz 15-33 pF 15-33 pF 20 MHz 15-33 pF 15-33 pF These values are for design guidance only. See notes at bottom of page. Crystals Used 32 kHz Epson C-001R32.768K-A ± 20 PPM 200 kHz STD XTL 200.000KHz ± 20 PPM 1 MHz ECS ECS-10-13-1 ± 50 PPM 4 MHz ECS ECS-40-20-1 ± 50 PPM 8 MHz EPSON CA-301 8.000M-C ± 30 PPM 20 MHz EPSON CA-301 20.000M-C ± 30 PPM Note 1: Recommended values of C1 and C2 are identical to the ranges tested table. 2: Higher capacitance increases the stability of oscillator but also increases the start-up time. 3: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components. 4: Rs may be required in HS mode as well as XT mode to avoid overdriving crystals with low drive level specification. DS30272A-page 50  1997 Microchip Technology Inc. PIC16C71X 8.2.3 EXTERNAL CRYSTAL OSCILLATOR CIRCUIT Either a prepackaged oscillator can be used or a simple oscillator circuit with TTL gates can be built. Prepackaged oscillators provide a wide operating range and better stability. A well-designed crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits can be used; one with series resonance, or one with parallel resonance. Figure 8-6 shows implementation of a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180-degree phase shift that a parallel oscillator requires. The 4.7 kΩ resistor provides the negative feedback for stability. The 10 kΩ potentiometer biases the 74AS04 in the linear region. This could be used for external oscillator designs. FIGURE 8-6: EXTERNAL PARALLEL RESONANT CRYSTAL OSCILLATOR CIRCUIT +5V To Other Devices 10k 74AS04 4.7k PIC16CXXX CLKIN 74AS04 10k 10k 20 pF Figure 8-7 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a 180degree phase shift in a series resonant oscillator circuit. The 330 kΩ resistors provide the negative feedback to bias the inverters in their linear region. FIGURE 8-7: RC OSCILLATOR For timing insensitive applications the “RC” device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (Rext) and capacitor (Cext) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low Cext values. The user also needs to take into account variation due to tolerance of external R and C components used. Figure 8-8 shows how the R/C combination is connected to the PIC16CXX. For Rext values below 2.2 kΩ, the oscillator operation may become unstable, or stop completely. For very high Rext values (e.g. 1 MΩ), the oscillator becomes sensitive to noise, humidity and leakage. Thus, we recommend to keep Rext between 3 kΩ and 100 kΩ. Although the oscillator will operate with no external capacitor (Cext = 0 pF), we recommend using values above 20 pF for noise and stability reasons. With no or small external capacitance, the oscillation frequency can vary dramatically due to changes in external capacitances, such as PCB trace capacitance or package lead frame capacitance. See characterization data for desired device for RC frequency variation from part to part due to normal process variation. The variation is larger for larger R (since leakage current variation will affect RC frequency more for large R) and for smaller C (since variation of input capacitance will affect RC frequency more). XTAL 20 pF 8.2.4 See characterization data for desired device for variation of oscillator frequency due to VDD for given Rext/ Cext values as well as frequency variation due to operating temperature for given R, C, and VDD values. The oscillator frequency, divided by 4, is available on the OSC2/CLKOUT pin, and can be used for test purposes or to synchronize other logic (see Figure 3-2 for waveform). FIGURE 8-8: EXTERNAL SERIES RESONANT CRYSTAL OSCILLATOR CIRCUIT RC OSCILLATOR MODE V DD Rext 330 kΩ 330 kΩ 74AS04 74AS04 0.1 µF 74AS04 Internal clock OSC1 To Other Devices PIC16CXXX CLKIN Cext PIC16CXXX VSS Fosc/4 OSC2/CLKOUT XTAL  1997 Microchip Technology Inc. DS30272A-page 51 PIC16C71X 8.3 Reset Applicable Devices 710 71 711 715 The PIC16CXX differentiates between various kinds of reset: • • • • • • Power-on Reset (POR) MCLR reset during normal operation MCLR reset during SLEEP WDT Reset (normal operation) Brown-out Reset (BOR) (PIC16C710/711/715) Parity Error Reset (PIC16C715) A simplified block diagram of the on-chip reset circuit is shown in Figure 8-9. Some registers are not affected in any reset condition; their status is unknown on POR and unchanged in any other reset. Most other registers are reset to a “reset state” on Power-on Reset (POR), on the MCLR and FIGURE 8-9: WDT Reset, on MCLR reset during SLEEP, and Brownout Reset (BOR). They are not affected by a WDT Wake-up, which is viewed as the resumption of normal operation. The TO and PD bits are set or cleared differently in different reset situations as indicated in Table 87, Table 8-8 and Table 8-9. These bits are used in software to determine the nature of the reset. See Table 810 and Table 8-11 for a full description of reset states of all registers. The PIC16C710/711/715 have a MCLR noise filter in the MCLR reset path. The filter will detect and ignore small pulses. It should be noted that a WDT Reset does not drive MCLR pin low. SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT External Reset MCLR/VPP Pin MPEEN Program Memory Parity(3) WDT SLEEP Module WDT Time-out VDD rise detect Power-on Reset VDD Brown-out Reset(2) S BODEN OST/PWRT OST Chip_Reset 10-bit Ripple-counter OSC1/ CLKIN Pin On-chip(1) RC OSC R Q PWRT 10-bit Ripple-counter Enable PWRT See Table 8-6 for time-out situations. Enable OST Note 1: This is a separate oscillator from the RC oscillator of the CLKIN pin. 2: Brown-out Reset is implemented on the PIC16C710/711/715. 3: Parity Error Reset is implemented on the PIC16C715. DS30272A-page 52  1997 Microchip Technology Inc. PIC16C71X 8.4 8.4.1 Power-on Reset (POR), Power-up Timer (PWRT) and Oscillator Start-up Timer (OST), and Brown-out Reset (BOR) The power-up time delay will vary from chip to chip due to VDD, temperature, and process variation. See DC parameters for details. POWER-ON RESET (POR) Applicable Devices Applicable Devices 710 71 711 715 A Power-on Reset pulse is generated on-chip when VDD rise is detected (in the range of 1.5V - 2.1V). To take advantage of the POR, just tie the MCLR pin directly (or through a resistor) to VDD. This will eliminate external RC components usually needed to create a Power-on Reset. A maximum rise time for VDD is specified. See Electrical Specifications for details. When the device starts normal operation (exits the reset condition), device operating parameters (voltage, frequency, temperature, ...) must be met to ensure operation. If these conditions are not met, the device must be held in reset until the operating conditions are met. Brown-out Reset may be used to meet the startup conditions. For additional information, refer to Application Note AN607, "Power-up Trouble Shooting." 8.4.2 POWER-UP TIMER (PWRT) Applicable Devices 710 71 711 715 The Power-up Timer provides a fixed 72 ms nominal time-out on power-up only, from the POR. The Powerup Timer operates on an internal RC oscillator. The chip is kept in reset as long as the PWRT is active. The PWRT’s time delay allows VDD to rise to an acceptable level. A configuration bit is provided to enable/disable the PWRT. 8.4.3 OSCILLATOR START-UP TIMER (OST) 710 71 711 715 The Oscillator Start-up Timer (OST) provides 1024 oscillator cycle (from OSC1 input) delay after the PWRT delay is over. This ensures that the crystal oscillator or resonator has started and stabilized. The OST time-out is invoked only for XT, LP and HS modes and only on Power-on Reset or wake-up from SLEEP. 8.4.4 BROWN-OUT RESET (BOR) Applicable Devices 710 71 711 715 A configuration bit, BODEN, can disable (if clear/programmed) or enable (if set) the Brown-out Reset circuitry. If VDD falls below 4.0V (3.8V - 4.2V range) for greater than parameter #35, the brown-out situation will reset the chip. A reset may not occur if VDD falls below 4.0V for less than parameter #35. The chip will remain in Brown-out Reset until VDD rises above BVDD. The Power-up Timer will now be invoked and will keep the chip in RESET an additional 72 ms. If VDD drops below BVDD while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-up Timer will be initialized. Once VDD rises above BVDD, the Power-up Timer will execute a 72 ms time delay. The Power-up Timer should always be enabled when Brown-out Reset is enabled. Figure 8-10 shows typical brown-out situations. FIGURE 8-10: BROWN-OUT SITUATIONS VDD BVDD Internal Reset 72 ms VDD BVDD Internal Reset VDD).....................................................................................................................± 20 mA Output clamp current, IOK (VO < 0 or VO > VDD) .............................................................................................................± 20 mA Maximum output current sunk by any I/O pin..........................................................................................................25 mA Maximum output current sourced by any I/O pin ....................................................................................................25 mA Maximum current sunk by PORTA ........................................................................................................................200 mA Maximum current sourced by PORTA ...................................................................................................................200 mA Maximum current sunk by PORTB........................................................................................................................200 mA Maximum current sourced by PORTB...................................................................................................................200 mA Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - ∑ IOH} + ∑ {(VDD - VOH) x IOH} + ∑(VOl x IOL) † NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. TABLE 11-1: OSC RC XT HS LP CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES) PIC16C710-04 PIC16C711-04 VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 21 µA max. at 4V Freq:4 MHz max. VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 21 µA max. at 4V Freq: 4 MHz max. VDD: 4.5V to 5.5V IDD: 13.5 mA typ. at 5.5V IPD: 1.5 µA typ. at 4.5V Freq: 4 MHz max. VDD: 4.0V to 6.0V IDD: 52.5 µA typ. at 32 kHz, 4.0V IPD: 0.9 µA typ. at 4.0V Freq: 200 kHz max. PIC16C710-10 PIC16C711-10 VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 µA typ. at 4V Freq: 4 MHz max. VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 µA typ. at 4V Freq: 4 MHz max. VDD: 4.5V to 5.5V IDD: 30 mA max. at 5.5V IPD: 1.5 µA typ. at 4.5V Freq: 10 MHz max. PIC16C710-20 PIC16C711-20 VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 µA typ. at 4V Freq: 4 MHz max. VDD: 4.5V to 5.5V IDD: 2.7 mA typ. at 5.5V IPD: 1.5 µA typ. at 4V Freq: 4 MHz max. VDD: 4.5V to 5.5V IDD: 30 mA max. at 5.5V IPD: 1.5 µA typ. at 4.5V Freq:20 MHz max. Not recommended for use in LP mode Not recommended for use in LP mode  1997 Microchip Technology Inc. PIC16LC710-04 PIC16LC711-04 VDD: 2.5V to 6.0V IDD: 3.8 mA typ. at 3.0V IPD: 5.0 µA typ. at 3V Freq: 4 MHz max. VDD: 2.5V to 6.0V IDD: 3.8 mA typ. at 3.0V IPD: 5.0 µA typ. at 3V Freq: 4 MHz max. PIC16C710/JW PIC16C711/JW VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 21 µA max. at 4V Freq:4 MHz max. VDD: 4.0V to 6.0V IDD: 5 mA max. at 5.5V IPD: 21 µA max. at 4V Freq: 4 MHz max. VDD: 4.5V to 5.5V IDD: 30 mA max. at Not recommended for 5.5V use in HS mode IPD: 1.5 µA typ. at 4.5V Freq: 10 MHz max. VDD: 2.5V to 6.0V VDD: 2.5V to 6.0V IDD: 48 µA max. at IDD: 48 µA max. at 32 kHz, 3.0V 32 kHz, 3.0V IPD: 5.0 µA max. at 3.0V IPD: 5.0 µA max. at Freq: 200 kHz max. 3.0V Freq: 200 kHz max. DS30272A-page 89 PIC16C71X Applicable Devices 11.1 710 71 711 715 DC Characteristics: PIC16C710-04 (Commercial, Industrial, Extended) PIC16C711-04 (Commercial, Industrial, Extended) PIC16C710-10 (Commercial, Industrial, Extended) PIC16C711-10 (Commercial, Industrial, Extended) PIC16C710-20 (Commercial, Industrial, Extended) PIC16C711-20 (Commercial, Industrial, Extended) Standard Operating Conditions (unless otherwise stated) Operating temperature 0˚C ≤ TA ≤ +70˚C (commercial) -40˚C ≤ TA ≤ +85˚C (industrial) -40˚C ≤ TA ≤ +125˚C (extended) DC CHARACTERISTICS Param. No. Characteristic Sym Min Typ† Max Units Conditions D001 D001A Supply Voltage VDD 4.0 4.5 - 6.0 5.5 V V D002* RAM Data Retention Voltage (Note 1) VDR - 1.5 - V D003 VDD start voltage to ensure internal Poweron Reset signal VPOR - VSS - V D004* VDD rise rate to ensure internal Power-on Reset signal SVDD 0.05 - - D005 Brown-out Reset Voltage BVDD 3.7 4.0 4.3 3.7 4.0 4.4 V D010 Supply Current (Note 2) IDD - 2.7 5 mA XT, RC osc configuration FOSC = 4 MHz, VDD = 5.5V (Note 4) - 13.5 30 mA HS osc configuration FOSC = 20 MHz, VDD = 5.5V D013 XT, RC and LP osc configuration HS osc configuration See section on Power-on Reset for details V/ms See section on Power-on Reset for details V BODEN configuration bit is enabled Extended Range Only D015 Brown-out Reset Current ∆IBOR (Note 5) - 300* 500 µA BOR enabled VDD = 5.0V D020 D021 D021A D021B Power-down Current (Note 3) - 10.5 1.5 1.5 1.5 42 21 24 30 µA µA µA µA VDD = 4.0V, WDT enabled, -40°C to +85°C VDD = 4.0V, WDT disabled, -0°C to +70°C VDD = 4.0V, WDT disabled, -40°C to +85°C VDD = 4.0V, WDT disabled, -40°C to +125°C D023 Brown-out Reset Current ∆IBOR (Note 5) - 300* 500 µA BOR enabled VDD = 5.0V * † Note 1: 2: 3: 4: 5: IPD These parameters are characterized but not tested. Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not tested. This is the limit to which VDD can be lowered without losing RAM data. The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption. The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD MCLR = VDD; WDT enabled/disabled as specified. The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS. For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm. The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement. DS30272A-page 90  1997 Microchip Technology Inc. PIC16C71X Applicable Devices 11.2 DC Characteristics: PIC16LC710-04 (Commercial, Industrial, Extended) PIC16LC711-04 (Commercial, Industrial, Extended) Standard Operating Conditions (unless otherwise stated) Operating temperature 0˚C ≤ TA ≤ +70˚C (commercial) -40˚C ≤ TA ≤ +85˚C (industrial) -40˚C ≤ TA ≤ +125˚C (extended) DC CHARACTERISTICS Param No. D001 710 71 711 715 Characteristic Sym Min Typ† Max Units Supply Voltage Commercial/Industrial Extended VDD VDD 2.5 3.0 - 6.0 6.0 V V Conditions LP, XT, RC osc configuration (DC - 4 MHz) LP, XT, RC osc configuration (DC - 4 MHz) D002* RAM Data Retention Voltage (Note 1) VDR - 1.5 - V D003 VDD start voltage to ensure internal Poweron Reset signal VPOR - VSS - V D004* VDD rise rate to ensure internal Power-on Reset signal SVDD 0.05 - - D005 Brown-out Reset Voltage BVDD 3.7 4.0 4.3 V BODEN configuration bit is enabled D010 Supply Current (Note 2) IDD - 2.0 3.8 mA XT, RC osc configuration FOSC = 4 MHz, VDD = 3.0V (Note 4) - 22.5 48 µA ∆IBOR - 300* 500 µA LP osc configuration FOSC = 32 kHz, VDD = 3.0V, WDT disabled BOR enabled VDD = 5.0V IPD - 7.5 0.9 0.9 0.9 300* 30 5 5 10 500 µA µA µA µA µA VDD = 3.0V, WDT enabled, -40°C to +85°C VDD = 3.0V, WDT disabled, 0°C to +70°C VDD = 3.0V, WDT disabled, -40°C to +85°C VDD = 3.0V, WDT disabled, -40°C to +125°C BOR enabled VDD = 5.0V D010A D015 Brown-out Reset Current (Note 5) D020 D021 D021A D021B D023 Power-down Current (Note 3) * † Note 1: 2: 3: 4: 5: Brown-out Reset Current (Note 5) ∆IBOR See section on Power-on Reset for details V/ms See section on Power-on Reset for details These parameters are characterized but not tested. Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not tested. This is the limit to which VDD can be lowered without losing RAM data. The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption. The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD MCLR = VDD; WDT enabled/disabled as specified. The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS. For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm. The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.  1997 Microchip Technology Inc. DS30272A-page 91 PIC16C71X Applicable Devices 11.3 710 71 711 715 DC Characteristics: PIC16C710-04 (Commercial, Industrial, Extended) PIC16C711-04 (Commercial, Industrial, Extended) PIC16C710-10 (Commercial, Industrial, Extended) PIC16C711-10 (Commercial, Industrial, Extended) PIC16C710-20 (Commercial, Industrial, Extended) PIC16C711-20 (Commercial, Industrial, Extended) PIC16LC710-04 (Commercial, Industrial, Extended) PIC16LC711-04 (Commercial, Industrial, Extended) DC CHARACTERISTICS Param No. D030 D030A D031 D032 D033 D040 D040A D041 D042 D042A D043 D070 Characteristic Input Low Voltage I/O ports with TTL buffer with Schmitt Trigger buffer MCLR, OSC1 (in RC mode) OSC1 (in XT, HS and LP) Input High Voltage I/O ports with TTL buffer D060 with Schmitt Trigger buffer MCLR, RB0/INT OSC1 (XT, HS and LP) OSC1 (in RC mode) PORTB weak pull-up current Input Leakage Current (Notes 2, 3) I/O ports D061 D063 MCLR, RA4/T0CKI OSC1 Standard Operating Conditions (unless otherwise stated) Operating temperature 0˚C ≤ TA ≤ +70˚C (commercial) -40˚C ≤ TA ≤ +85˚C (industrial) -40˚C ≤ TA ≤ +125˚C (extended) Operating voltage VDD range as described in DC spec Section 11.1 and Section 11.2. Sym Min Typ Max Units Conditions † VIL VSS VSS VSS VSS - 0.15VDD 0.8V - 0.2VDD - 0.2VDD V V V V For entire VDD range 4.5 ≤ VDD ≤ 5.5V VSS - 0.3VDD V Note1 VDD VDD V V 4.5 ≤ VDD ≤ 5.5V For entire VDD range VDD VDD VDD VDD 400 V For entire VDD range V V Note1 V µA VDD = 5V, VPIN = VSS VIH 2.0 0.25VDD + 0.8V 0.8VDD 0.8VDD 0.7VDD 0.9VDD IPURB 50 250 IIL - - ±1 - - ±5 ±5 µA Vss ≤ VPIN ≤ VDD, Pin at hiimpedance µA Vss ≤ VPIN ≤ VDD µA Vss ≤ VPIN ≤ VDD, XT, HS and LP osc configuration * † These parameters are characterized but not tested. Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C7X be driven with external clock in RC mode. 2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages. 3: Negative current is defined as current sourced by the pin. DS30272A-page 92  1997 Microchip Technology Inc. PIC16C71X Applicable Devices DC CHARACTERISTICS Param No. Characteristic Output Low Voltage I/O ports D080 Standard Operating Conditions (unless otherwise stated) Operating temperature 0˚C ≤ TA ≤ +70˚C (commercial) -40˚C ≤ TA ≤ +85˚C (industrial) -40˚C ≤ TA ≤ +125˚C (extended) Operating voltage VDD range as described in DC spec Section 11.1 and Section 11.2. Sym Min Typ Max Units Conditions † VOL - - 0.6 V - - 0.6 V - - 0.6 V - - 0.6 V VOH VDD - 0.7 - - V VDD - 0.7 - - V VDD - 0.7 - - V VDD - 0.7 - - V D080A D083 OSC2/CLKOUT (RC osc config) D083A Output High Voltage I/O ports (Note 3) D090 D090A D092 OSC2/CLKOUT (RC osc config) D092A D130* D100 Open-Drain High Voltage Capacitive Loading Specs on Output Pins OSC2 pin 710 71 711 715 VOD - - 14 V COSC2 - - 15 pF IOL = 8.5 mA, VDD = 4.5V, -40°C to +85°C IOL = 7.0 mA, VDD = 4.5V, -40°C to +125°C IOL = 1.6 mA, VDD = 4.5V, -40°C to +85°C IOL = 1.2 mA, VDD = 4.5V, -40°C to +125°C IOH = -3.0 mA, VDD = 4.5V, -40°C to +85°C IOH = -2.5 mA, VDD = 4.5V, -40°C to +125°C IOH = -1.3 mA, VDD = 4.5V, -40°C to +85°C IOH = -1.0 mA, VDD = 4.5V, -40°C to +125°C RA4 pin In XT, HS and LP modes when external clock is used to drive OSC1. D101 All I/O pins and OSC2 (in RC mode) CIO 50 pF These parameters are characterized but not tested. Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16C7X be driven with external clock in RC mode. 2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages. 3: Negative current is defined as current sourced by the pin. * †  1997 Microchip Technology Inc. DS30272A-page 93 PIC16C71X Applicable Devices 11.4 710 71 711 715 Timing Parameter Symbology The timing parameter symbols have been created following one of the following formats: 1. TppS2ppS 2. TppS T F Frequency Lowercase letters (pp) and their meanings: pp cc CCP1 ck CLKOUT cs CS di SDI do SDO dt Data in io I/O port mc MCLR Uppercase letters and their meanings: S F Fall H High I Invalid (Hi-impedance) L Low T Time osc rd rw sc ss t0 t1 wr OSC1 RD RD or WR SCK SS T0CKI T1CKI WR P R V Z Period Rise Valid Hi-impedance FIGURE 11-1: LOAD CONDITIONS Load condition 2 Load condition 1 VDD/2 RL CL Pin VSS CL Pin VSS RL = 464Ω CL = 50 pF 15 pF DS30272A-page 94 for all pins except OSC2 for OSC2 output  1997 Microchip Technology Inc. PIC16C71X Applicable Devices 11.5 710 71 711 715 Timing Diagrams and Specifications FIGURE 11-2: EXTERNAL CLOCK TIMING Q4 Q1 Q2 Q3 Q4 Q1 OSC1 1 3 3 4 4 2 CLKOUT TABLE 11-2: Parameter No. EXTERNAL CLOCK TIMING REQUIREMENTS Sym Characteristic Fosc External CLKIN Frequency (Note 1) Min Typ† Max Units Conditions DC — 4 MHz XT osc mode DC — 4 MHz HS osc mode (-04) DC — 10 MHz HS osc mode (-10) DC — 20 MHz HS osc mode (-20) DC — 200 kHz LP osc mode Oscillator Frequency DC — 4 MHz RC osc mode (Note 1) 0.1 — 4 MHz XT osc mode 4 — 20 MHz HS osc mode 5 — 200 kHz LP osc mode 1 Tosc External CLKIN Period 250 — — ns XT osc mode (Note 1) 250 — — ns HS osc mode (-04) 100 — — ns HS osc mode (-10) 50 — — ns HS osc mode (-20) 5 — — µs LP osc mode Oscillator Period 250 — — ns RC osc mode (Note 1) 250 — 10,000 ns XT osc mode 250 — 250 ns HS osc mode (-04) 100 — 250 ns HS osc mode (-10) 50 — 250 ns HS osc mode (-20) 5 — — µs LP osc mode — DC ns TCY = 4/FOSC 2 TCY Instruction Cycle Time (Note 1) 200 3 TosL, External Clock in (OSC1) High 50 — — ns XT oscillator TosH or Low Time 2.5 — — µs LP oscillator 10 — — ns HS oscillator 4 TosR, External Clock in (OSC1) Rise — — 25 ns XT oscillator TosF or Fall Time — — 50 ns LP oscillator — — 15 ns HS oscillator † Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices. OSC2 is disconnected (has no loading) for the PIC16C710/711.  1997 Microchip Technology Inc. DS30272A-page 95 PIC16C71X Applicable Devices 710 71 711 715 FIGURE 11-3: CLKOUT AND I/O TIMING Q1 Q4 Q2 Q3 OSC1 11 10 CLKOUT 13 19 14 12 18 16 I/O Pin (input) 15 17 I/O Pin (output) new value old value 20, 21 Note: Refer to Figure 11-1 for load conditions. TABLE 11-3: CLKOUT AND I/O TIMING REQUIREMENTS Parameter Sym No. Characteristic Min Typ† Max Units Conditions 10* TosH2ckL OSC1↑ to CLKOUT↓ — 15 30 ns Note 1 11* TosH2ckH OSC1↑ to CLKOUT↑ — 15 30 ns Note 1 12* TckR CLKOUT rise time — 5 15 ns Note 1 13* TckF CLKOUT fall time — 5 15 ns Note 1 14* TckL2ioV CLKOUT ↓ to Port out valid 15* TioV2ckH Port in valid before CLKOUT ↑ 16* TckH2ioI 17* TosH2ioV 18* TosH2ioI 19* 20* 21* — — 0.5TCY + 20 ns Note 1 0.25TCY + 25 — — ns Note 1 Port in hold after CLKOUT ↑ 0 — — ns Note 1 OSC1↑ (Q1 cycle) to Port out valid — — 80 - 100 ns OSC1↑ (Q2 cycle) to Port input invalid (I/O in hold time) TBD — — ns TioV2osH Port input valid to OSC1↑ (I/O in setup time) TBD — — ns TioR Port output rise time PIC16C710/711 — 10 25 ns PIC16LC710/711 — — 60 ns PIC16C710/711 — 10 25 ns PIC16LC710/711 — — 60 ns TioF Port output fall time 22††* Tinp INT pin high or low time 20 — — ns 23††* Trbp RB7:RB4 change INT high or low time 20 — — ns * † These parameters are characterized but not tested. Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not tested. †† These parameters are asynchronous events not related to any internal clock edges. Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x TOSC. DS30272A-page 96  1997 Microchip Technology Inc. PIC16C71X Applicable Devices 710 71 711 715 FIGURE 11-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING VDD MCLR 30 Internal POR 33 PWRT Time-out 32 OSC Time-out Internal RESET Watchdog Timer RESET 31 34 34 I/O Pins Note: Refer to Figure 11-1 for load conditions. FIGURE 11-5: BROWN-OUT RESET TIMING BVDD VDD 35 TABLE 11-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER, AND BROWN-OUT RESET REQUIREMENTS Parameter No. Sym Characteristic 30 TmcL MCLR Pulse Width (low) 1 — — µs VDD = 5V, -40˚C to +125˚C 31 Twdt Watchdog Timer Time-out Period (No Prescaler) 7* 18 33* ms VDD = 5V, -40˚C to +125˚C Oscillation Start-up Timer Period — 1024TOSC — — TOSC = OSC1 period Power up Timer Period 28* 72 132* ms VDD = 5V, -40˚C to +125˚C — — 1.1 µs 100 — — µs 32 Tost 33 Tpwrt 34 TIOZ I/O Hi-impedance from MCLR Low or Watchdog Timer Reset 35 TBOR Brown-out Reset pulse width * † Min Typ† Max Units Conditions 3.8V ≤ VDD ≤ 4.2V These parameters are characterized but not tested. Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not tested.  1997 Microchip Technology Inc. DS30272A-page 97 PIC16C71X Applicable Devices 710 71 711 715 FIGURE 11-6: TIMER0 EXTERNAL CLOCK TIMINGS RA4/T0CKI 41 40 42 TMR0 Note: Refer to Figure 11-1 for load conditions. TABLE 11-5: TIMER0 EXTERNAL CLOCK REQUIREMENTS Param No. Sym Characteristic 40 Tt0H T0CKI High Pulse Width 41 Tt0L T0CKI Low Pulse Width Min No Prescaler With Prescaler No Prescaler With Prescaler 42 Tt0P 48 T0CKI Period Tcke2tmrI Delay from external clock edge to timer increment * † 0.5TCY + 20* Typ† Max Units Conditions — — ns 10* — — ns 0.5TCY + 20* — — ns 10* — — ns Greater of: 20 ns or TCY + 40* N — — ns 2Tosc — 7Tosc — Must also meet parameter 42 Must also meet parameter 42 N = prescale value (2, 4,..., 256) These parameters are characterized but not tested. Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not tested. DS30272A-page 98  1997 Microchip Technology Inc. PIC16C71X Applicable Devices TABLE 11-6: A/D CONVERTER CHARACTERISTICS: PIC16C710/711-04 (COMMERCIAL, INDUSTRIAL, EXTENDED) PIC16C710/711-10 (COMMERCIAL, INDUSTRIAL, EXTENDED) PIC16C710/711-20 (COMMERCIAL, INDUSTRIAL, EXTENDED) PIC16LC710/711-04 (COMMERCIAL, INDUSTRIAL, EXTENDED) Param Sym Characteristic No. A01 NR A02 710 71 711 715 Resolution EABS Absolute error Min Typ† Max Units bit Conditions VREF = VDD, VSS ≤ AIN ≤ VREF — — 8-bits — — VDD) .............................................................................................................± 20 mA Maximum output current sunk by any I/O pin..........................................................................................................25 mA Maximum output current sourced by any I/O pin ....................................................................................................20 mA Maximum current sunk by PORTA ..........................................................................................................................80 mA Maximum current sourced by PORTA .....................................................................................................................50 mA Maximum current sunk by PORTB........................................................................................................................150 mA Maximum current sourced by PORTB...................................................................................................................100 mA Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - ∑ IOH} + ∑ {(VDD-VOH) x IOH} + ∑(VOl x IOL) Note 2: Voltage spikes below VSS at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a “low” level to the MCLR pin rather than pulling this pin directly to VSS. † NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. TABLE 15-1: OSC CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES) PIC16C71-04 PIC16C71-20 PIC16LC71-04 JW Devices RC VDD: 4.0V to 6.0V IDD: 3.3 mA max. at 5.5V IPD: 14 µA max. at 4V Freq:4 MHz max. VDD: 4.5V to 5.5V IDD: 1.8 mA typ. at 5.5V IPD: 1.0 µA typ. at 4V Freq: 4 MHz max. VDD: 3.0V to 6.0V IDD: 1.4 mA typ. at 3.0V IPD: 0.6 µA typ. at 3V Freq: 4 MHz max. VDD: 4.0V to 6.0V IDD: 3.3 mA max. at 5.5V IPD: 14 µA max. at 4V Freq:4 MHz max. XT VDD: 4.0V to 6.0V IDD: 3.3 mA max. at 5.5V IPD: 14 µA max. at 4V Freq: 4 MHz max. VDD: 4.5V to 5.5V IDD: 1.8 mA typ. at 5.5V IPD: 1.0 µA typ. at 4V Freq: 4 MHz max. VDD: 3.0V to 6.0V IDD: 1.4 mA typ. at 3.0V IPD: 0.6 µA typ. at 3V Freq: 4 MHz max. VDD: 4.0V to 6.0V IDD: 3.3 mA max. at 5.5V IPD: 14 µA max. at 4V Freq: 4 MHz max. VDD: 4.5V to 5.5V VDD: 4.5V to 5.5V IDD: 13.5 mA typ. at 5.5V IDD: 30 mA max. at 5.5V IPD: 1.0 µA typ. at 4.5V IPD: 1.0 µA typ. at 4.5V Freq: 4 MHz max. Freq: 20 MHz max. HS LP VDD: 4.0V to 6.0V IDD: 15 µA typ. at 32 kHz, 4.0V IPD: 0.6 µA typ. at 4.0V Freq: 200 kHz max. Not recommended for use in LP mode VDD: 4.5V to 5.5V Not recommended for use in HS mode IDD: 30 mA max. at 5.5V IPD: 1.0 µA typ. at 4.5V Freq: 20 MHz max. VDD: 3.0V to 6.0V IDD: 32 µA max. at 32 kHz, 3.0V IPD: 9 µA max. at 3.0V Freq: 200 kHz max. VDD: 3.0V to 6.0V IDD: 32 µA max. at 32 kHz, 3.0V IPD: 9 µA max. at 3.0V Freq: 200 kHz max. The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended that the user select the device type that ensures the specifications required.  1997 Microchip Technology Inc. DS30272A-page 135 PIC16C71X Applicable Devices 15.1 710 71 711 715 DC Characteristics: PIC16C71-04 (Commercial, Industrial) PIC16C71-20 (Commercial, Industrial) Standard Operating Conditions (unless otherwise stated) Operating temperature 0˚C ≤ TA ≤ +70˚C (commercial) -40˚C ≤ TA ≤ +85˚C (industrial) DC CHARACTERISTICS Param No. Characteristic Sym Min D001 Supply Voltage D001A VDD 4.0 4.5 - 6.0 5.5 V V D002* RAM Data Retention Voltage (Note 1) VDR - 1.5 - V D003 VDD start voltage to ensure internal Power-on Reset signal VPOR - VSS - V D004* VDD rise rate to ensure internal Power-on Reset signal SVDD 0.05 - - D010 Supply Current (Note 2) IDD - 1.8 3.3 mA XT, RC osc configuration FOSC = 4 MHz, VDD = 5.5V (Note 4) - 13.5 30 mA HS osc configuration FOSC = 20 MHz, VDD = 5.5V - 7 1.0 1.0 28 14 16 µA µA µA VDD = 4.0V, WDT enabled, -40°C to +85°C VDD = 4.0V, WDT disabled, -0°C to +70°C VDD = 4.0V, WDT disabled, -40°C to +85°C D013 D020 Power-down Current D021 (Note 3) D021A * † Note 1: 2: 3: 4: IPD Typ† Max Units Conditions XT, RC and LP osc configuration HS osc configuration See section on Power-on Reset for details V/ms See section on Power-on Reset for details These parameters are characterized but not tested. Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not tested. This is the limit to which VDD can be lowered without losing RAM data. The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption. The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD MCLR = VDD; WDT enabled/disabled as specified. The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS. For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm. DS30272A-page 136  1997 Microchip Technology Inc. PIC16C71X Applicable Devices 15.2 DC Characteristics: PIC16LC71-04 (Commercial, Industrial) Standard Operating Conditions (unless otherwise stated) OOperating temperature 0˚C ≤ TA ≤ +70˚C (commercial) -40˚C ≤ TA ≤ +85˚C (industrial) DC CHARACTERISTICS Param No. Characteristic 710 71 711 715 Sym Min Typ† Max Units Conditions D001 Supply Voltage VDD 3.0 - 6.0 V D002* RAM Data Retention Voltage (Note 1) VDR - 1.5 - V D003 VDD start voltage to ensure internal Power-on Reset signal VPOR - VSS - V D004* VDD rise rate to ensure internal Power-on Reset signal SVDD 0.05 - - D010 Supply Current (Note 2) IDD - 1.4 2.5 mA XT, RC osc configuration FOSC = 4 MHz, VDD = 3.0V (Note 4) - 15 32 µA LP osc configuration FOSC = 32 kHz, VDD = 3.0V, WDT disabled - 5 0.6 0.6 20 9 12 µA µA µA VDD = 3.0V, WDT enabled, -40°C to +85°C VDD = 3.0V, WDT disabled, 0°C to +70°C VDD = 3.0V, WDT disabled, -40°C to +85°C D010A D020 D021 D021A * † Note 1: 2: 3: 4: Power-down Current (Note 3) IPD XT, RC, and LP osc configuration See section on Power-on Reset for details V/ms See section on Power-on Reset for details These parameters are characterized but not tested. Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not tested. This is the limit to which VDD can be lowered without losing RAM data. The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption. The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD MCLR = VDD; WDT enabled/disabled as specified. The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS. For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.  1997 Microchip Technology Inc. DS30272A-page 137 PIC16C71X Applicable Devices 15.3 710 71 711 715 DC Characteristics: PIC16C71-04 (Commercial, Industrial) PIC16C71-20 (Commercial, Industrial) PIC16LC71-04 (Commercial, Industrial) DC CHARACTERISTICS Param No. D030 D031 D032 D033 D040 D040A D041 D042 D042A D043 D070 Characteristic Input Low Voltage I/O ports with TTL buffer with Schmitt Trigger buffer MCLR, OSC1 (in RC mode) OSC1 (in XT, HS and LP) Input High Voltage I/O ports (Note 4) with TTL buffer D060 with Schmitt Trigger buffer MCLR, RB0/INT OSC1 (XT, HS and LP) OSC1 (in RC mode) PORTB weak pull-up current Input Leakage Current (Notes 2, 3) I/O ports D061 D063 MCLR, RA4/T0CKI OSC1 D080 Output Low Voltage I/O ports D083 OSC2/CLKOUT (RC osc config) D090 Output High Voltage I/O ports (Note 3) D092 D130* † Note 1: 2: 3: 4: Standard Operating Conditions (unless otherwise stated) OOperating temperature 0˚C ≤ TA ≤ +70˚C (commercial) -40˚C ≤ TA ≤ +85˚C (industrial) Operating voltage VDD range as described in DC spec Section 15.1 and Section 15.2. Sym Min Typ Max Units Conditions † VIL VSS VSS VSS VSS - 0.15V 0.8V 0.2VDD 0.3VDD V V V V For entire VDD range 4.5 ≤ VDD ≤ 5.5V Note1 VIH 2.0 VDD 0.25VDD VDD + 0.8V VDD 0.85VDD 0.85VDD VDD 0.7VDD VDD 0.9VDD VDD IPURB 50 250 †400 IIL VOL V For entire VDD range V V Note1 V µA VDD = 5V, VPIN = VSS - - ±1 - - ±5 ±5 - - 0.6 V - - 0.6 V - V VOH VDD - 0.7 - 4.5 ≤ VDD ≤ 5.5V For entire VDD range µA Vss ≤ VPIN ≤ VDD, Pin at hiimpedance µA Vss ≤ VPIN ≤ VDD µA Vss ≤ VPIN ≤ VDD, XT, HS and LP osc configuration IOL = 8.5mA, VDD = 4.5V, -40°C to +85°C IOL = 1.6mA, VDD = 4.5V, -40°C to +85°C IOH = -3.0mA, VDD = 4.5V, -40°C to +85°C OSC2/CLKOUT (RC osc config) VDD - 0.7 V IOH = -1.3mA, VDD = 4.5V, -40°C to +85°C Open-Drain High Voltage VOD 14 V RA4 pin Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. In RC oscillator configuration, the OSC1 pin is a Schmitt trigger input. It is not recommended that the PIC16C71 be driven with external clock in RC mode. The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages. Negative current is defined as current sourced by the pin. PIC16C71 Rev. "Ax" INT pin has a TTL input buffer. PIC16C71 Rev. "Bx" INT pin has a Schmitt Trigger input buffer. DS30272A-page 138  1997 Microchip Technology Inc. PIC16C71X Applicable Devices DC CHARACTERISTICS Param No. Characteristic Capacitive Loading Specs on Output Pins OSC2 pin D100 D101 † Note 1: 2: 3: 4: 710 71 711 715 Standard Operating Conditions (unless otherwise stated) OOperating temperature 0˚C ≤ TA ≤ +70˚C (commercial) -40˚C ≤ TA ≤ +85˚C (industrial) Operating voltage VDD range as described in DC spec Section 15.1 and Section 15.2. Sym Min Typ Max Units Conditions † COSC2 15 pF In XT, HS and LP modes when external clock is used to drive OSC1. All I/O pins and OSC2 (in RC mode) CIO 50 pF Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. In RC oscillator configuration, the OSC1 pin is a Schmitt trigger input. It is not recommended that the PIC16C71 be driven with external clock in RC mode. The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages. Negative current is defined as current sourced by the pin. PIC16C71 Rev. "Ax" INT pin has a TTL input buffer. PIC16C71 Rev. "Bx" INT pin has a Schmitt Trigger input buffer.  1997 Microchip Technology Inc. DS30272A-page 139 PIC16C71X Applicable Devices 15.4 710 71 711 715 Timing Parameter Symbology The timing parameter symbols have been created following one of the following formats: 1. TppS2ppS 2. TppS T F Frequency Lowercase letters (pp) and their meanings: pp cc CCP1 ck CLKOUT cs CS di SDI do SDO dt Data in io I/O port mc MCLR Uppercase letters and their meanings: S F Fall H High I Invalid (Hi-impedance) L Low T Time osc rd rw sc ss t0 t1 wr OSC1 RD RD or WR SCK SS T0CKI T1CKI WR P R V Z Period Rise Valid Hi-impedance FIGURE 15-1: LOAD CONDITIONS Load condition 1 Load condition 2 VDD/2 RL CL Pin CL Pin VSS VSS RL = 464Ω CL = 50 pF 15 pF DS30272A-page 140 for all pins except OSC2/CLKOUT for OSC2 output  1997 Microchip Technology Inc. PIC16C71X Applicable Devices 15.5 710 71 711 715 Timing Diagrams and Specifications FIGURE 15-2: EXTERNAL CLOCK TIMING Q4 Q1 Q2 Q3 Q4 Q1 OSC1 3 1 3 4 4 2 CLKOUT TABLE 15-2: Parameter No. EXTERNAL CLOCK TIMING REQUIREMENTS Sym Characteristic Fosc External CLKIN Frequency (Note 1) Min Typ† Max Units Conditions DC — 4 MHz XT osc mode DC — 4 MHz HS osc mode (-04) DC — 20 MHz HS osc mode (-20) DC — 200 kHz LP osc mode Oscillator Frequency DC — 4 MHz RC osc mode (Note 1) 0.1 — 4 MHz XT osc mode 1 — 4 MHz HS osc mode 1 — 20 MHz HS osc mode 1 Tosc External CLKIN Period 250 — — ns XT osc mode (Note 1) 250 — — ns HS osc mode (-04) 50 — — ns HS osc mode (-20) 5 — — µs LP osc mode Oscillator Period 250 — — ns RC osc mode (Note 1) 250 — 10,000 ns XT osc mode 250 — 1,000 ns HS osc mode (-04) 50 — 1,000 ns HS osc mode (-20) 5 — — µs LP osc mode 1.0 TCY DC µs TCY = 4/Fosc 2 TCY Instruction Cycle Time (Note 1) 3 TosL, External Clock in (OSC1) High or 50 — — ns XT oscillator TosH Low Time 2.5 — — µs LP oscillator 10 — — ns HS oscillator 4 TosR, External Clock in (OSC1) Rise or 25 — — ns XT oscillator TosF Fall Time 50 — — ns LP oscillator 15 — — ns HS oscillator † Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices. OSC2 is disconnected (has no loading) for the PIC16C71.  1997 Microchip Technology Inc. DS30272A-page 141 PIC16C71X Applicable Devices 710 71 711 715 FIGURE 15-3: CLKOUT AND I/O TIMING Q1 Q4 Q2 Q3 OSC1 11 10 CLKOUT 13 19 14 12 18 16 I/O Pin (input) 15 17 I/O Pin (output) new value old value 20, 21 Note: Refer to Figure 15-1 for load conditions. TABLE 15-3: CLKOUT AND I/O TIMING REQUIREMENTS Parameter Sym No. Characteristic Min Typ† Max Units Conditions 10* TosH2ckL OSC1↑ to CLKOUT↓ — 15 30 ns Note 1 11* TosH2ckH OSC1↑ to CLKOUT↑ — 15 30 ns Note 1 12* TckR CLKOUT rise time — 5 15 ns Note 1 13* TckF CLKOUT fall time — 5 15 ns Note 1 14* TckL2ioV CLKOUT ↓ to Port out valid 15* TioV2ckH Port in valid before CLKOUT ↑ 16* TckH2ioI 17* TosH2ioV 18* TosH2ioI OSC1↑ (Q2 cycle) to Port input invalid (I/O in hold time) — — 0.5TCY + 20 ns Note 1 0.25TCY + 25 — — ns Note 1 Port in hold after CLKOUT ↑ 0 — — ns Note 1 OSC1↑ (Q1 cycle) to Port out valid — — 80 - 100 ns PIC16C71 100 — — ns PIC16LC71 200 — — ns 19* TioV2osH Port input valid to OSC1↑ (I/O in setup time) 0 — — ns 20* TioR Port output rise time PIC16C71 — 10 25 ns PIC16LC71 — — 60 ns PIC16C71 — 10 25 ns PIC16LC71 — — 60 ns 21* TioF Port output fall time 22††* Tinp INT pin high or low time 20 — — ns 23††* Trbp RB7:RB4 change INT high or low time 20 — — ns * These parameters are characterized but not tested. †Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not tested. †† These parameters are asynchronous events not related to any internal clock edges. Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x TOSC. DS30272A-page 142  1997 Microchip Technology Inc. PIC16C71X Applicable Devices 710 71 711 715 FIGURE 15-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING VDD MCLR 30 Internal POR 33 PWRT Time-out 32 OSC Time-out Internal RESET Watchdog Timer RESET 31 34 34 I/O Pins Note: Refer to Figure 15-1 for load conditions. TABLE 15-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER REQUIREMENTS Parameter No. Sym Characteristic Min 200 — — ns VDD = 5V, -40˚C to +85˚C 7* 18 33* ms VDD = 5V, -40˚C to +85˚C Oscillation Start-up Timer Period — 1024 TOSC — — TOSC = OSC1 period Power-up Timer Period 28* 72 132* ms VDD = 5V, -40˚C to +85˚C I/O High Impedance from MCLR Low — — 100 ns 30 TmcL MCLR Pulse Width (low) 31 Twdt Watchdog Timer Time-out Period 32 Tost 33 Tpwrt 34 TIOZ Typ† Max Units Conditions (No Prescaler) * † These parameters are characterized but not tested. Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not tested.  1997 Microchip Technology Inc. DS30272A-page 143 PIC16C71X Applicable Devices 710 71 711 715 FIGURE 15-5: TIMER0 EXTERNAL CLOCK TIMINGS RA4/T0CKI 41 40 42 TMR0 Note: Refer to Figure 15-1 for load conditions. TABLE 15-5: Param No. 40* TIMER0 EXTERNAL CLOCK REQUIREMENTS Sym Characteristic Tt0H T0CKI High Pulse Width Min No Prescaler With Prescaler 41* Tt0L T0CKI Low Pulse Width No Prescaler With Prescaler 42* Tt0P T0CKI Period No Prescaler With Prescaler * † Typ† Max Units Conditions 0.5TCY + 20 — — ns 10 — — ns 0.5TCY + 20 — — ns 10 — — ns TCY + 40 — — ns Greater of: 20 ns or TCY + 40 N Must also meet parameter 42 Must also meet parameter 42 N = prescale value (2, 4,..., 256) These parameters are characterized but not tested. Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not tested. DS30272A-page 144  1997 Microchip Technology Inc. PIC16C71X Applicable Devices TABLE 15-6: Param No. A01 A02 A/D CONVERTER CHARACTERISTICS Sym Characteristic NR Resolution EABS Absolute error PIC16C71 PIC16LC71 A03 EIL Integral linearity error A04 EDL Differential linearity error A05 EFS Full scale error A06 EOFF Offset error PIC16C71 PIC16LC71 PIC16C71 PIC16LC71 PIC16C71 PIC16LC71 PIC16C71 PIC16LC71 A10 — 710 71 711 715 Monotonicity Min Typ† Max Units Conditions — — 8 bits bits VREF = VDD = 5.12V, VSS ≤ VAIN ≤ VREF — — < ±1 LSb VREF = VDD = 5.12V, VSS ≤ VAIN ≤ VREF — — < ±2 LSb VREF = VDD = 3.0V (Note 3) — — < ±1 LSb VREF = VDD = 5.12V, VSS ≤ VAIN ≤ VREF — — < ±2 LSb VREF = VDD = 3.0V (Note 3) — — < ±1 LSb VREF = VDD = 5.12V, VSS ≤ VAIN ≤ VREF — — < ±2 LSb VREF = VDD = 3.0V (Note 3) — — < ±1 LSb VREF = VDD = 5.12V, VSS ≤ VAIN ≤ VREF — — < ±2 LSb VREF = VDD = 3.0V (Note 3) — — < ±1 LSb VREF = VDD = 5.12V, VSS ≤ VAIN ≤ VREF — — < ±2 LSb VREF = VDD = 3.0V (Note 3) — guaranteed — — 3.0V — VDD + 0.3 V VSS - 0.3 — VREF V VSS ≤ VAIN ≤ VREF A20 VREF Reference voltage A25 VAIN Analog input voltage A30 ZAIN Recommended impedance of analog voltage source — — 10.0 kΩ A40 IAD — 180 — µA Average current consumption when A/D is on. (Note 1) A50 IREF VREF input current (Note 2) 10 — 1000 µA — — 40 µA During VAIN acquisition. Based on differential of VHOLD to VAIN. To charge CHOLD see Section 7.1. During A/D Conversion cycle — — 1 mA — — 10 µA A/D conversion current (VDD) PIC16C71 PIC16LC71 During VAIN acquisition. Based on differential of VHOLD to VAIN. To charge CHOLD see Section 7.1. During A/D Conversion cycle * † These parameters are characterized but not tested. Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes any such leakage from the A/D module. 2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input. 3: These specifications apply if VREF = 3.0V and if VDD ≥ 3.0V. VAIN must be between VSS and VREF.  1997 Microchip Technology Inc. DS30272A-page 145 PIC16C71X Applicable Devices 710 71 711 715 FIGURE 15-6: A/D CONVERSION TIMING BSF ADCON0, GO 1 Tcy (TOSC/2) (1) 131 Q4 130 132 A/D CLK 7 A/D DATA 6 5 4 3 2 1 0 NEW_DATA OLD_DATA ADRES ADIF GO DONE SAMPLING STOPPED SAMPLE Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEP instruction to be executed. TABLE 15-7: A/D CONVERSION REQUIREMENTS Param No. Sym Characteristic 130 TAD A/D clock period Min Typ† Max Units PIC16C71 2.0 — — µs TOSC based, VREF ≥ 3.0V PIC16LC71 2.0 — — µs TOSC based, VREF full range PIC16C71 2.0 4.0 6.0 µs A/D RC Mode PIC16LC71 3.0 6.0 9.0 µs A/D RC Mode — 9.5 — TAD Note 2 20 — µs 5* — — µs The minimum time is the amplifier settling time. This may be used if the "new" input voltage has not changed by more than 1 LSb (i.e., 19.5 mV @ 5.12V) from the last sampled voltage (as stated on CHOLD). — Tosc/2§ — — If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEP instruction to be executed. 1.5§ — — TAD 131 TCNV Conversion time (not including S/H time) (Note 1) 132 TACQ Acquisition time 134 TGO 135 TSWC Conditions Q4 to A/D clock start Switching from convert → sample time * † These parameters are characterized but not tested. Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. § These specifications ensured by design. Note 1: ADRES register may be read on the following TCY cycle. 2: See Section 7.1 for min conditions. DS30272A-page 146  1997 Microchip Technology Inc. PIC16C71X Applicable Devices 16.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES FOR PIC16C71 FIGURE 16-2: TYPICAL RC OSCILLATOR FREQUENCY VS. VDD 5.0 R = 4.7k The graphs and tables provided in this section are for design guidance and are not tested or guaranteed. In some graphs or tables the data presented are outside specified operating range (e.g. outside specified VDD range). This is for information only and devices are guaranteed to operate properly only within the specified range. The data presented in this section is a statistical summary of data collected on units from different lots over a period of time and matrix samples. 'Typical' represents the mean of the distribution while 'max' or 'min' represents (mean + 3σ) and (mean - 3σ) respectively where σ is standard deviation. 4.5 4.0 3.5 3.0 R = 10k 2.5 Fosc (MHz) Note: 2.0 1.5 Cext = 20 pF, T = 25°C FIGURE 16-1: TYPICAL RC OSCILLATOR FREQUENCY VS. TEMPERATURE 1.0 R = 100k 0.5 Fosc Fosc (25°C) Frequency Normalized to 25°C 0.0 3.0 1.050 1.025 3.5 4.0 4.5 5.0 5.5 6.0 VDD (Volts) Rext = 10k Cext = 100 pF FIGURE 16-3: TYPICAL RC OSCILLATOR FREQUENCY VS. VDD 1.000 VDD = 5.5V 0.975 710 71 711 715 2.0 0.950 R = 3.3k 1.8 VDD = 3.5V 0.925 0.900 1.6 0.875 1.4 R = 4.7k 0.850 0 10 20 30 40 50 60 70 1.2 T(°C) Fosc (MHz) 1.0 0.8 R = 10k 0.6 Cext = 100 pF, T = 25°C 0.4 0.2 0.0 3.0 R = 100k 3.5 4.0 4.5 5.0 5.5 6.0 VDD (Volts)  1997 Microchip Technology Inc. DS30272A-page 147 PIC16C71X Applicable Devices 710 71 711 715 FIGURE 16-4: TYPICAL RC OSCILLATOR FREQUENCY VS. VDD TABLE 16-1: RC OSCILLATOR FREQUENCIES .8 Average R = 3.3k Cext Rext FOSC @ 5V, 25°C .7 20 pF 4.7k 10k 100k 3.3k 4.7k 10k 100k 3.3k 4.7k 10k 100k R = 4.7k .6 Fosc (MHz) 100 pF .5 300 pF .4 R = 10k .3 Cext = 300 pF, T = 25°C R = 100k 0 3.0 3.5 4.0 ±17.35% ±10.10% ±11.90% ±9.43% ±9.83% ±10.92% ±16.03% ±10.97% ±10.14% ±10.43% ±11.24% The percentage variation indicated here is part to part variation due to normal process distribution. The variation indicated is ±3 standard deviation from average value for VDD = 5V. .1 4.5 5.0 5.5 6.0 FIGURE 16-6: TYPICAL IPD VS. VDD WATCHDOG TIMER ENABLED 25°C VDD (Volts) 14 FIGURE 16-5: TYPICAL IPD VS. VDD WATCHDOG TIMER DISABLED 25°C 12 0.6 10 IPD (µA) 0.5 0.4 8 6 IPD (µA) Data based on matrix samples. See first page of this section for details. .2 4.52 MHz 2.47 MHz 290.86 kHz 1.92 MHz 1.49 MHz 788.77 kHz 88.11 kHz 726.89 kHz 573.95 kHz 307.31 kHz 33.82 kHz 0.3 4 0.2 2 0 0.1 3.0 3.5 4.0 4.5 5.0 5.5 6.0 VDD (Volts) 0.0 3.0 3.5 4.0 4.5 5.0 5.5 6.0 VDD (Volts) DS30272A-page 148  1997 Microchip Technology Inc. PIC16C71X Applicable Devices FIGURE 16-7: MAXIMUM IPD VS. VDD WATCHDOG DISABLED 710 71 711 715 FIGURE 16-8: MAXIMUM IPD VS. VDD WATCHDOG ENABLED 45 25 -55°C -40°C 40 125°C 35 20 30 125°C 25 20 0°C 70°C 85°C 15 10 85°C 70°C 10 5 5 0 3.0 3.5 4.0 4.5 5.0 VDD (Volts) 5.5 0°C -40°C -55°C 6.0 0 3.0 3.5 4.0 4.5 5.0 5.5 6.0 VDD (Volts) IPD, with Watchdog Timer enabled, has two components: The leakage current which increases with higher temperature and the operating current of the Watchdog Timer logic which increases with lower temperature. At -40°C, the latter dominates explaining the apparently anomalous behavior. FIGURE 16-9: VTH (INPUT THRESHOLD VOLTAGE) OF I/O PINS VS. VDD 2.00 1.80 Max (-40˚C to 85˚C) VTH (Volts) 1.60 25˚C, TYP 1.40 1.20 Min (-40˚C to 85˚C) 1.00 0.80 0.60 2.5  1997 Microchip Technology Inc. 3.0 3.5 4.0 4.5 VDD (Volts) 5.0 5.5 6.0 DS30272A-page 149 Data based on matrix samples. See first page of this section for details. IPD (µA) IPD (µA) 15 PIC16C71X Applicable Devices 710 71 711 715 FIGURE 16-10: VIH, VIL OF MCLR, T0CKI AND OSC1 (IN RC MODE) VS. VDD 4.50 VIH, Max (-40°C to 85°C) VIH, Typ (25°C) 4.00 VIH, Min (-40°C to 85°C) VIH, VIL (Volts) 3.50 3.00 2.50 2.00 1.50 VIL, Max (-40°C to 85°C) 1.00 VIL, Typ (25°C) VIL, Min (-40°C to 85°C) 0.50 0.00 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 Note: These input pins have a Schmitt Trigger input buffer. FIGURE 16-11: VTH (INPUT THRESHOLD VOLTAGE) OF OSC1 INPUT (IN XT, HS, AND LP MODES) VS. VDD Min (-40°C to 85°C) 3.60 3.40 TYP (25°C) Max (-40°C to 85°C) 3.20 3.00 2.80 2.60 VTH (Volts) Data based on matrix samples. See first page of this section for details. VDD (Volts) Min (-40°C to 85°C) 2.40 2.20 2.00 1.80 1.60 1.40 1.20 1.00 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 VDD (Volts) DS30272A-page 150  1997 Microchip Technology Inc. PIC16C71X Applicable Devices 710 71 711 715 FIGURE 16-12: TYPICAL IDD VS. FREQ (EXT CLOCK, 25°C) 10,000 6.0 5.5 5.0 4.5 4.0 3.5 3.0 100 10 1 10,000 100,000 1,000,000 100,000,000 10,000,000 Frequency (Hz) FIGURE 16-13: MAXIMUM, IDD VS. FREQ (EXT CLOCK, -40° TO +85°C) 10,000 6.0 5.5 5.0 4.5 4.0 3.5 3.0 IDD (µA) 1,000 100 10 10,000 100,000 1,000,000 10,000,000 100,000,000 Frequency (Hz)  1997 Microchip Technology Inc. DS30272A-page 151 Data based on matrix samples. See first page of this section for details. IDD (µA) 1,000 PIC16C71X Applicable Devices 710 71 711 715 FIGURE 16-14: MAXIMUM IDD VS. FREQ WITH A/D OFF (EXT CLOCK, -55° TO +125°C) 10,000 6.0 5.5 5.0 4.5 4.0 3.5 3.0 IDD (µA) 1,000 10 10,000 100,000 1,000,000 100,000,000 10,000,000 Frequency (Hz) FIGURE 16-15: WDT TIMER TIME-OUT PERIOD VS. VDD FIGURE 16-16: TRANSCONDUCTANCE (gm) OF HS OSCILLATOR VS. VDD 9000 50 8000 45 7000 40 Max, -40°C 35 gm (µA/V) 6000 WDT Period (ms) Data based on matrix samples. See first page of this section for details. 100 Max, 85°C Max, 70°C 30 25 5000 4000 Typ, 25°C 3000 20 Min, 85°C 2000 Typ, 25°C Min, 0°C 1000 15 0 10 2 Min, -40°C 3 4 5 6 7 VDD (Volts) 5 2 3 4 5 6 7 VDD (Volts) DS30272A-page 152  1997 Microchip Technology Inc. PIC16C71X Applicable Devices FIGURE 16-17: TRANSCONDUCTANCE (gm) OF LP OSCILLATOR VS. VDD 710 71 711 715 FIGURE 16-19: IOH VS. VOH, VDD = 3V 0 225 200 -5 Max, -40°C Min, 85°C 175 -10 Typ, 25°C IOH (mA) gm (µA/V) 150 125 100 Min, 85°C Typ, 25°C -15 Max, -40°C 50 -20 25 0 3.0 3.5 4.0 4.5 VDD (Volts) 5.0 5.5 6.0 FIGURE 16-18: TRANSCONDUCTANCE (gm) OF XT OSCILLATOR VS. VDD -25 0.0 0.5 1.0 1.5 2.0 VOH (Volts) 2.5 3.0 FIGURE 16-20: IOH VS. VOH, VDD = 5V 0 2500 -5 Max, -40°C -10 2000 IOH (mA) -15 gm (µA/V) Typ, 25°C 1500 -20 Min @ 85°C -25 Typ @ 25°C -30 1000 -35 -40 Max @ -40°C Min, 85°C 500 -45 -50 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 0 2 3 4 5 VDD (Volts)  1997 Microchip Technology Inc. 6 7 VOH (Volts) DS30272A-page 153 Data based on matrix samples. See first page of this section for details. 75 PIC16C71X Applicable Devices 710 71 711 715 FIGURE 16-22: IOL VS. VOL, VDD = 5V FIGURE 16-21: IOL VS. VOL, VDD = 3V 35 90 Max @ -40°C 30 80 Max @ -40°C 70 25 60 Typ @ 25°C Typ @ 25°C 15 Min @ +85°C IOL (mA) IOL (mA) 20 50 Min @ +85°C 40 30 10 20 Data based on matrix samples. See first page of this section for details. 5 10 0 0.0 0.5 1.0 1.5 VOL (Volts) 2.0 2.5 3.0 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 VOL (Volts) DS30272A-page 154  1997 Microchip Technology Inc. PIC16C71X 17.0 PACKAGING INFORMATION 17.1 18-Lead Ceramic CERDIP Dual In-line with Window (300 mil) (JW) N α C E1 E eA eB Pin No. 1 Indicator Area D S S1 Base Plane Seating Plane L B1 A1 A3 A e1 B A2 D1 Package Group: Ceramic CERDIP Dual In-Line (CDP) Millimeters Symbol Min Max Inches Notes Min Max α 0° 10° 0° 10° A A1 A2 A3 B B1 C D D1 E E1 e1 eA eB L N S S1 — 0.381 3.810 3.810 0.355 1.270 0.203 22.352 20.320 7.620 5.588 2.540 7.366 7.620 3.175 18 0.508 0.381 5.080 1.7780 4.699 4.445 0.585 1.651 0.381 23.622 20.320 8.382 7.874 2.540 8.128 10.160 3.810 18 1.397 1.270 — 0.015 0.150 0.150 0.014 0.050 0.008 0.880 0.800 0.300 0.220 0.100 0.290 0.300 0.125 18 0.020 0.015 0.200 0.070 0.185 0.175 0.023 0.065 0.015 0.930 0.800 0.330 0.310 0.100 0.320 0.400 0.150 18 0.055 0.050  1997 Microchip Technology Inc. Typical Typical Reference Reference Typical Notes Typical Typical Reference Reference Typical DS30272A-page 155 PIC16C71X 17.2 18-Lead Plastic Dual In-line (300 mil) (P) N α C E1 E eA eB Pin No. 1 Indicator Area D S S1 Base Plane Seating Plane L B1 A1 A2 A e1 B D1 Package Group: Plastic Dual In-Line (PLA) Millimeters Symbol Min Max α 0° A A1 A2 B B1 C D D1 E E1 e1 eA eB L N S S1 – 0.381 3.048 0.355 1.524 0.203 22.479 20.320 7.620 6.096 2.489 7.620 7.874 3.048 18 0.889 0.127 DS30272A-page 156 Inches Notes Min Max 10° 0° 10° 4.064 – 3.810 0.559 1.524 0.381 23.495 20.320 8.255 7.112 2.591 7.620 9.906 3.556 18 – – – 0.015 0.120 0.014 0.060 0.008 0.885 0.800 0.300 0.240 0.098 0.300 0.310 0.120 18 0.035 0.005 0.160 – 0.150 0.022 0.060 0.015 0.925 0.800 0.325 0.280 0.102 0.300 0.390 0.140 18 – – Reference Typical Reference Typical Reference Notes Reference Typical Reference Typical Reference  1997 Microchip Technology Inc. PIC16C71X 17.3 18-Lead Plastic Surface Mount (SOIC - Wide, 300 mil Body)(SO) e B h x 45° N Index Area E H α C Chamfer h x 45° L 1 2 3 D Seating Plane Base Plane CP A1 A Package Group: Plastic SOIC (SO) Millimeters Symbol Min Max Inches Notes Min Max α 0° 8° 0° 8° A A1 B C D E e H h L N CP 2.362 0.101 0.355 0.241 11.353 7.416 1.270 10.007 0.381 0.406 18 – 2.642 0.300 0.483 0.318 11.735 7.595 1.270 10.643 0.762 1.143 18 0.102 0.093 0.004 0.014 0.009 0.447 0.292 0.050 0.394 0.015 0.016 18 – 0.104 0.012 0.019 0.013 0.462 0.299 0.050 0.419 0.030 0.045 18 0.004  1997 Microchip Technology Inc. Reference Notes Reference DS30272A-page 157 PIC16C71X 17.4 20-Lead Plastic Surface Mount (SSOP - 209 mil Body 5.30 mm) (SS) N Index area E H α C L 1 2 3 B e A Base plane CP Seating plane D A1 Package Group: Plastic SSOP Millimeters Symbol Min Max α 0° A A1 B C D E e H L N CP 1.730 0.050 0.250 0.130 7.070 5.200 0.650 7.650 0.550 20 - Inches Notes Min Max 8° 0° 8° 1.990 0.210 0.380 0.220 7.330 5.380 0.650 7.900 0.950 20 0.102 0.068 0.002 0.010 0.005 0.278 0.205 0.026 0.301 0.022 20 - 0.078 0.008 0.015 0.009 0.289 0.212 0.026 0.311 0.037 20 0.004 Reference Notes Reference Note 1: Dimensions D1 and E1 do not include mold protrusion. Allowable mold protrusion is 0.25m/m (0.010”) per side. D1 and E1 dimensions including mold mismatch. 2: Dimension “b” does not include Dambar protrusion, allowable Dambar protrusion shall be 0.08m/m (0.003”)max. 3: This outline conforms to JEDEC MS-026. DS30272A-page 158  1997 Microchip Technology Inc. PIC16C71X 17.5 Package Marking Information 18-Lead PDIP Example MMMMMMMMMMMMM XXXXXXXXXXXXXXXX AABBCDE 18-Lead SOIC PIC16C711-04/P 9452CBA Example MMMMMMMMMM XXXXXXXXXXXX XXXXXXXXXXXX AABBCDE PIC16C715 -20/50 9447CBA 18-Lead CERDIP Windowed Example MMMMMM XXXXXXXX AABBCDE 20-Lead SSOP Example XXXXXXXX XXXXXXXX PIC16C710 20I/SS025 AABBCAE Legend: 9517SBP MM...M XX...X AA BB C D1 E Note: PIC16C71 /JW 945/CBT Microchip part number information Customer specific information* Year code (last 2 digits of calender year) Week code (week of January 1 is week '01’) Facility code of the plant at which wafer is manufactured. C = Chandler, Arizona, U.S.A. S = Tempe, Arizona, U.S.A. Mask revision number for microcontroller Assembly code of the plant or country of origin in which part was assembled. In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line thus limiting the number of available characters for customer specific information. * Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask revision number, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.  1997 Microchip Technology Inc. DS30272A-page 159 PIC16C71X NOTES: DS30272A-page 160  1997 Microchip Technology Inc. PIC16C71X APPENDIX A: APPENDIX B: COMPATIBILITY The following are the list of modifications over the PIC16C5X microcontroller family: To convert code written for PIC16C5X to PIC16CXX, the user should take the following steps: 1. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. Instruction word length is increased to 14-bits. This allows larger page sizes both in program memory (1K now as opposed to 512 before) and register file (68 bytes now versus 32 bytes before). A PC high latch register (PCLATH) is added to handle program memory paging. Bits PA2, PA1, PA0 are removed from STATUS register. Data memory paging is redefined slightly. STATUS register is modified. Four new instructions have been added: RETURN, RETFIE, ADDLW, and SUBLW. Two instructions TRIS and OPTION are being phased out although they are kept for compatibility with PIC16C5X. OPTION and TRIS registers are made addressable. Interrupt capability is added. Interrupt vector is at 0004h. Stack size is increased to 8 deep. Reset vector is changed to 0000h. Reset of all registers is revisited. Five different reset (and wake-up) types are recognized. Registers are reset differently. Wake up from SLEEP through interrupt is added. Two separate timers, Oscillator Start-up Timer (OST) and Power-up Timer (PWRT) are included for more reliable power-up. These timers are invoked selectively to avoid unnecessary delays on power-up and wake-up. PORTB has weak pull-ups and interrupt on change feature. T0CKI pin is also a port pin (RA4) now. FSR is made a full eight bit register. “In-circuit serial programming” is made possible. The user can program PIC16CXX devices using only five pins: VDD, VSS, MCLR/VPP, RB6 (clock) and RB7 (data in/out). PCON status register is added with a Power-on Reset status bit (POR). Code protection scheme is enhanced such that portions of the program memory can be protected, while the remainder is unprotected. Brown-out protection circuitry has been added. Controlled by configuration word bit BODEN. Brown-out reset ensures the device is placed in a reset condition if VDD dips below a fixed setpoint.  1997 Microchip Technology Inc. 2. 3. 4. 5. Remove any program memory page select operations (PA2, PA1, PA0 bits) for CALL, GOTO. Revisit any computed jump operations (write to PC or add to PC, etc.) to make sure page bits are set properly under the new scheme. Eliminate any data memory page switching. Redefine data variables to reallocate them. Verify all writes to STATUS, OPTION, and FSR registers since these have changed. Change reset vector to 0000h. DS30272A-page 161 PIC16C71X APPENDIX C: WHAT’S NEW APPENDIX D: WHAT’S CHANGED 1. 1. Consolidated all pin compatible 18-pin A/D based devices into one data sheet. 2. 3. DS30272A-page 162 Minor changes, spelling and grammatical changes. Low voltage operation on the PIC16LC710/711/ 715 has been reduced from 3.0V to 2.5V. Part numbers of the PIC16C70 and PIC16C71A have changed to PIC16C710 and PIC16C711, respectively.  1997 Microchip Technology Inc. PIC16C71X INDEX A A/D Accuracy/Error ........................................................... 44 ADIF bit ...................................................................... 39 Analog Input Model Block Diagram ............................ 40 Analog-to-Digital Converter ........................................ 37 Configuring Analog Port Pins ..................................... 41 Configuring the Interrupt ............................................ 39 Configuring the Module .............................................. 39 Connection Considerations ........................................ 44 Conversion Clock ....................................................... 41 Conversion Time ........................................................ 43 Conversions ............................................................... 42 Converter Characteristics .......................... 99, 122, 145 Delays ........................................................................ 40 Effects of a Reset ....................................................... 44 Equations ................................................................... 40 Faster Conversion - Lower Resolution Trade-off ....... 43 Flowchart of A/D Operation ........................................ 45 GO/DONE bit ............................................................. 39 Internal Sampling Switch (Rss) Impedence ............... 40 Minimum Charging Time ............................................ 40 Operation During Sleep ............................................. 44 Sampling Requirements ............................................. 40 Source Impedence ..................................................... 40 Time Delays ............................................................... 40 Transfer Function ....................................................... 45 Absolute Maximum Ratings ............................... 89, 111, 135 AC Characteristics PIC16C710 .............................................................. 101 PIC16C711 .............................................................. 101 PIC16C715 .............................................................. 125 ADCON0 Register .............................................................. 37 ADCON1 ............................................................................ 37 ADCON1 Register ........................................................ 14, 37 ADCS0 bit .......................................................................... 37 ADCS1 bit .......................................................................... 37 ADIE bit ........................................................................ 19, 20 ADIF bit ........................................................................ 21, 37 ADON bit ............................................................................ 37 ADRES Register .................................................... 15, 37, 39 ALU ...................................................................................... 7 Application Notes AN546 ........................................................................ 37 AN552 ........................................................................ 27 AN556 ........................................................................ 23 AN607, Power-up Trouble Shooting .......................... 53 Architecture Harvard ........................................................................ 7 Overview ...................................................................... 7 von Neumann ............................................................... 7 Assembler MPASM Assembler .................................................... 86 B Block Diagrams Analog Input Model .................................................... 40 On-Chip Reset Circuit ................................................ 52 PIC16C71X .................................................................. 8 RA3/RA0 Port Pins .................................................... 25 RA4/T0CKI Pin ........................................................... 25 RB3:RB0 Port Pins .................................................... 27 RB7:RB4 Pins ............................................................ 28  1997 Microchip Technology Inc. RB7:RB4 Port Pins .....................................................28 Timer0 ........................................................................31 Timer0/WDT Prescaler ...............................................34 Watchdog Timer .........................................................65 BODEN bit ..........................................................................48 BOR bit ........................................................................ 22, 54 Brown-out Reset (BOR) ......................................................53 C C bit ....................................................................................17 C16C71 ..............................................................................47 Carry bit ................................................................................7 CHS0 bit .............................................................................37 CHS1 bit .............................................................................37 Clocking Scheme ................................................................10 Code Examples Call of a Subroutine in Page 1 from Page 0 ...............24 Changing Prescaler (Timer0 to WDT) ........................35 Changing Prescaler (WDT to Timer0) ........................35 Doing an A/D Conversion ...........................................42 I/O Programming ........................................................30 Indirect Addressing .....................................................24 Initializing PORTA ......................................................25 Initializing PORTB ......................................................27 Saving STATUS and W Registers in RAM .................64 Code Protection ........................................................... 47, 67 Computed GOTO ...............................................................23 Configuration Bits ...............................................................47 CP0 bit ......................................................................... 47, 48 CP1 bit ................................................................................48 D DC bit ..................................................................................17 DC Characteristics ........................................................... 147 PIC16C71 ................................................................ 136 PIC16C710 ........................................................ 90, 101 PIC16C711 ........................................................ 90, 101 PIC16C715 ...................................................... 113, 125 Development Support .................................................... 3, 85 Development Tools .............................................................85 Diagrams - See Block Diagrams Digit Carry bit ........................................................................7 Direct Addressing ...............................................................24 E Electrical Characteristics PIC16C71 ................................................................ 135 PIC16C710 .................................................................89 PIC16C711 .................................................................89 PIC16C715 .............................................................. 111 External Brown-out Protection Circuit .................................60 External Power-on Reset Circuit ........................................60 F Family of Devices PIC16C71X ...................................................................4 FOSC0 bit .................................................................... 47, 48 FOSC1 bit .................................................................... 47, 48 FSR Register ......................................................... 15, 16, 24 Fuzzy Logic Dev. System (fuzzyTECH-MP) .....................87 G General Description ..............................................................3 GIE bit .......................................................................... 19, 61 GO/DONE bit ......................................................................37 DS30390D-page 163 PIC16C71X I I/O Ports PORTA ....................................................................... 25 PORTB ....................................................................... 27 Section ....................................................................... 25 I/O Programming Considerations ....................................... 30 ICEPIC Low-Cost PIC16CXXX In-Circuit Emulator ........... 85 In-Circuit Serial Programming ...................................... 47, 67 INDF Register ........................................................ 14, 16, 24 Indirect Addressing ............................................................ 24 Instruction Cycle ................................................................. 10 Instruction Flow/Pipelining ................................................. 10 Instruction Format .............................................................. 69 Instruction Set ADDLW ...................................................................... 71 ADDWF ...................................................................... 71 ANDLW ...................................................................... 71 ANDWF ...................................................................... 71 BCF ............................................................................ 72 BSF ............................................................................ 72 BTFSC ....................................................................... 72 BTFSS ....................................................................... 73 CALL .......................................................................... 73 CLRF .......................................................................... 74 CLRW ........................................................................ 74 CLRWDT .................................................................... 74 COMF ........................................................................ 75 DECF ......................................................................... 75 DECFSZ ..................................................................... 75 GOTO ........................................................................ 76 INCF ........................................................................... 76 INCFSZ ...................................................................... 77 IORLW ....................................................................... 77 IORWF ....................................................................... 78 MOVF ......................................................................... 78 MOVLW ..................................................................... 78 MOVWF ..................................................................... 78 NOP ........................................................................... 79 OPTION ..................................................................... 79 RETFIE ...................................................................... 79 RETLW ...................................................................... 80 RETURN .................................................................... 80 RLF ............................................................................ 81 RRF ............................................................................ 81 SLEEP ....................................................................... 82 SUBLW ...................................................................... 82 SUBWF ...................................................................... 83 SWAPF ...................................................................... 83 TRIS ........................................................................... 83 XORLW ...................................................................... 84 XORWF ...................................................................... 84 Section ....................................................................... 69 Summary Table .......................................................... 70 INT Interrupt ....................................................................... 63 INTCON Register ............................................................... 19 INTE bit .............................................................................. 19 INTEDG bit ................................................................... 18, 63 Internal Sampling Switch (Rss) Impedence ....................... 40 Interrupts ............................................................................ 47 A/D ............................................................................. 61 External ...................................................................... 61 PORTB Change ......................................................... 61 PortB Change ............................................................ 63 RB7:RB4 Port Change ............................................... 27 Section ....................................................................... 61 TMR0 ......................................................................... 63 DS30390D-page 164 TMR0 Overflow .......................................................... 61 INTF bit .............................................................................. 19 IRP bit ................................................................................ 17 K KeeLoq Evaluation and Programming Tools ................... 87 L Loading of PC .................................................................... 23 LP ...................................................................................... 54 M MCLR ........................................................................... 52, 56 Memory Data Memory ............................................................. 12 Program Memory ....................................................... 11 Register File Maps PIC16C71 .......................................................... 12 PIC16C710 ........................................................ 12 PIC16C711 ........................................................ 13 PIC16C715 ........................................................ 13 MP-DriveWay - Application Code Generator .................. 87 MPEEN bit ................................................................... 22, 48 MPLAB C ........................................................................ 87 MPLAB Integrated Development Environment Software ............................................................................. 86 O OPCODE ........................................................................... 69 OPTION Register ............................................................... 18 Orthogonal ........................................................................... 7 OSC selection .................................................................... 47 Oscillator HS ........................................................................ 49, 54 LP ........................................................................ 49, 54 RC ............................................................................. 49 XT ........................................................................ 49, 54 Oscillator Configurations .................................................... 49 Oscillator Start-up Timer (OST) ......................................... 53 P Packaging 18-Lead CERDIP w/Window ................................... 155 18-Lead PDIP .......................................................... 156 18-Lead SOIC .......................................................... 157 20-Lead SSOP ........................................................ 158 Paging, Program Memory .................................................. 23 PCL Register ................................................... 14, 15, 16, 23 PCLATH ....................................................................... 57, 58 PCLATH Register ............................................ 14, 15, 16, 23 PCON Register ............................................................ 22, 54 PD bit ..................................................................... 17, 52, 55 PER bit ............................................................................... 22 PIC16C71 ........................................................................ 147 AC Characteristics ................................................... 147 PICDEM-1 Low-Cost PIC16/17 Demo Board .................... 86 PICDEM-2 Low-Cost PIC16CXX Demo Board .................. 86 PICDEM-3 Low-Cost PIC16CXXX Demo Board ............... 86 PICMASTER In-Circuit Emulator ..................................... 85 PICSTART Plus Entry Level Development System ......... 85 PIE1 Register ..................................................................... 20 Pin Functions MCLR/VPP ................................................................... 9 OSC1/CLKIN ............................................................... 9 OSC2/CLKOUT ........................................................... 9 RA0/AN0 ...................................................................... 9 RA1/AN1 ...................................................................... 9  1997 Microchip Technology Inc. PIC16C71X RA2/AN2 ...................................................................... 9 RA3/AN3/VREF ............................................................. 9 RA4/T0CKI ................................................................... 9 RB0/INT ....................................................................... 9 RB1 .............................................................................. 9 RB2 .............................................................................. 9 RB3 .............................................................................. 9 RB4 .............................................................................. 9 RB5 .............................................................................. 9 RB6 .............................................................................. 9 RB7 .............................................................................. 9 VDD .............................................................................. 9 VSS ............................................................................... 9 Pinout Descriptions PIC16C71 .................................................................... 9 PIC16C710 .................................................................. 9 PIC16C711 .................................................................. 9 PIC16C715 .................................................................. 9 PIR1 Register ..................................................................... 21 POP ................................................................................... 23 POR ............................................................................. 53, 54 Oscillator Start-up Timer (OST) ........................... 47, 53 Power Control Register (PCON) ................................ 54 Power-on Reset (POR) ............................ 47, 53, 57, 58 Power-up Timer (PWRT) ..................................... 47, 53 Time-out Sequence .................................................... 54 Time-out Sequence on Power-up .............................. 59 TO ........................................................................ 52, 55 POR bit ........................................................................ 22, 54 Port RB Interrupt ................................................................ 63 PORTA ......................................................................... 57, 58 PORTA Register .................................................... 14, 15, 25 PORTB ......................................................................... 57, 58 PORTB Register .................................................... 14, 15, 27 Power-down Mode (SLEEP) .............................................. 66 Prescaler, Switching Between Timer0 and WDT ............... 35 PRO MATE II Universal Programmer .............................. 85 Program Branches ............................................................... 7 Program Memory Paging ........................................................................ 23 Program Memory Maps PIC16C71 .................................................................. 11 PIC16C710 ................................................................ 11 PIC16C711 ................................................................ 11 PIC16C715 ................................................................ 11 Program Verification .......................................................... 67 PS0 bit ............................................................................... 18 PS1 bit ............................................................................... 18 PS2 bit ............................................................................... 18 PSA bit ............................................................................... 18 PUSH ................................................................................. 23 PWRT Power-up Timer (PWRT) ........................................... 53 PWRTE bit ................................................................... 47, 48 R RBIE bit .............................................................................. 19 RBIF bit .................................................................. 19, 27, 63 RBPU bit ............................................................................ 18 RC ...................................................................................... 54 RC Oscillator ................................................................ 51, 54 Read-Modify-Write ............................................................. 30 Register File ....................................................................... 12 Registers Maps PIC16C71 .......................................................... 12 PIC16C710 ........................................................ 12  1997 Microchip Technology Inc. PIC16C711 .........................................................13 PIC16C715 .........................................................13 Reset Conditions ........................................................56 Summary ............................................................. 14–?? Reset ........................................................................... 47, 52 Reset Conditions for Special Registers ..............................56 RP0 bit ......................................................................... 12, 17 RP1 bit ................................................................................17 S SEEVAL Evaluation and Programming System ...............87 Services One-Time-Programmable (OTP) Devices ....................5 Quick-Turnaround-Production (QTP) Devices ..............5 Serialized Quick-Turnaround Production (SQTP) Devices .........................................................................5 SLEEP ......................................................................... 47, 52 Software Simulator (MPLAB SIM) ...................................87 Special Features of the CPU ..............................................47 Special Function Registers PIC16C71 ...................................................................14 PIC16C710 .................................................................14 PIC16C711 .................................................................14 Special Function Registers, Section ...................................14 Stack ...................................................................................23 Overflows ....................................................................23 Underflow ...................................................................23 STATUS Register ...............................................................17 T T0CS bit ..............................................................................18 T0IE bit ...............................................................................19 T0IF bit ...............................................................................19 TAD .....................................................................................41 Timer0 RTCC ................................................................... 57, 58 Timers Timer0 Block Diagram ....................................................31 External Clock ....................................................33 External Clock Timing ........................................33 Increment Delay .................................................33 Interrupt ..............................................................31 Interrupt Timing ..................................................32 Prescaler ............................................................34 Prescaler Block Diagram ....................................34 Section ...............................................................31 Switching Prescaler Assignment ........................35 Synchronization ..................................................33 T0CKI .................................................................33 T0IF ....................................................................63 Timing .................................................................31 TMR0 Interrupt ...................................................63 Timing Diagrams A/D Conversion ....................................... 100, 124, 146 Brown-out Reset .................................................. 53, 97 CLKOUT and I/O ....................................... 96, 119, 142 External Clock Timing ................................ 95, 118, 141 Power-up Timer ................................................. 97, 143 Reset ................................................................. 97, 143 Start-up Timer .................................................... 97, 143 Time-out Sequence ....................................................59 Timer0 ................................................. 31, 98, 121, 144 Timer0 Interrupt Timing ..............................................32 Timer0 with External Clock .........................................33 Wake-up from SLEEP through Interrupt .....................67 Watchdog Timer ................................................ 97, 143 DS30390D-page 165 PIC16C71X TO bit ................................................................................. 17 TOSE bit ............................................................................. 18 TRISA Register ...................................................... 14, 16, 25 TRISB Register ...................................................... 14, 16, 27 Two’s Complement .............................................................. 7 LIST OF EXAMPLES U Example 4-2: Example 5-1: Example 5-2: Example 5-3: Upward Compatibility ........................................................... 3 UV Erasable Devices ........................................................... 5 W W Register ALU .............................................................................. 7 Wake-up from SLEEP ........................................................ 66 Watchdog Timer (WDT) ................................... 47, 52, 56, 65 WDT ................................................................................... 56 Block Diagram ............................................................ 65 Programming Considerations .................................... 65 Timeout ................................................................ 57, 58 WDT Period ........................................................................ 65 WDTE bit ...................................................................... 47, 48 Z Z bit .................................................................................... 17 Zero bit ................................................................................. 7 Example 3-1: Example 4-1: Example 6-1: Example 6-2: Equation 7-1: Example 7-1: Example 7-2: Example 7-3: Example 8-1: LIST OF FIGURES Figure 3-1: Figure 3-2: Figure 4-1: Figure 4-2: Figure 4-3: Figure 4-4: Figure 4-5: Figure 4-6: Figure 4-7: Figure 4-8: Figure 4-9: Figure 4-10: Figure 4-11: Figure 4-12: Figure 4-13: Figure 4-14: Figure 4-15: Figure 5-1: Figure 5-2: Figure 5-3: Figure 5-4: Figure 5-5: Figure 5-6: Figure 6-1: Figure 6-2: Figure 6-3: Figure 6-4: Figure 6-5: Figure 6-6: Figure 7-1: Figure 7-2: DS30390D-page 166 Instruction Pipeline Flow ........................... 10 Call of a Subroutine in Page 1 from Page 0 ...................................................... 24 Indirect Addressing ................................... 24 Initializing PORTA..................................... 25 Initializing PORTB..................................... 27 Read-Modify-Write Instructions on an I/O Port ........................................... 30 Changing Prescaler (Timer0→WDT) ........ 35 Changing Prescaler (WDT→Timer0) ........ 35 A/D Minimum Charging Time.................... 40 Calculating the Minimum Required Aquisition Time ......................................... 40 A/D Conversion......................................... 42 4-bit vs. 8-bit Conversion Times ............... 43 Saving STATUS and W Registers in RAM ...................................................... 64 PIC16C71X Block Diagram ........................ 8 Clock/Instruction Cycle ............................. 10 PIC16C710 Program Memory Map and Stack .................................................. 11 PIC16C71/711 Program Memory Map and Stack .................................................. 11 PIC16C715 Program Memory Map and Stack .................................................. 11 PIC16C710/71 Register File Map ............. 12 PIC16C711 Register File Map .................. 13 PIC16C715 Register File Map .................. 13 Status Register (Address 03h, 83h).......... 17 OPTION Register (Address 81h, 181h) .... 18 INTCON Register (Address 0Bh, 8Bh) ..... 19 PIE1 Register (Address 8Ch) ................... 20 PIR1 Register (Address 0Ch) ................... 21 PCON Register (Address 8Eh), PIC16C710/711 ........................................ 22 PCON Register (Address 8Eh), PIC16C715 ............................................... 22 Loading of PC In Different Situations........ 23 Direct/Indirect Addressing......................... 24 Block Diagram of RA3:RA0 Pins .............. 25 Block Diagram of RA4/T0CKI Pin ............. 25 Block Diagram of RB3:RB0 Pins .............. 27 Block Diagram of RB7:RB4 Pins (PIC16C71) ............................................... 28 Block Diagram of RB7:RB4 Pins (PIC16C710/711/715) ............................... 28 Successive I/O Operation ......................... 30 Timer0 Block Diagram .............................. 31 Timer0 Timing: Internal Clock/ No Prescale .............................................. 31 Timer0 Timing: Internal Clock/ Prescale 1:2 .............................................. 32 Timer0 Interrupt Timing ............................ 32 Timer0 Timing with External Clock ........... 33 Block Diagram of the Timer0/ WDT Prescaler ......................................... 34 ADCON0 Register (Address 08h), PIC16C710/71/711 ................................... 37 ADCON0 Register (Address 1Fh), PIC16C715 ............................................... 38  1997 Microchip Technology Inc. PIC16C71X Figure 7-3: Figure 7-4: Figure 7-5: Figure 7-6: Figure 7-7: Figure 8-1: Figure 8-2: Figure 8-3: Figure 8-4: Figure 8-5: Figure 8-6: Figure 8-7: Figure 8-8: Figure 8-9: Figure 8-10: Figure 8-11: Figure 8-12: Figure 8-13: Figure 8-14: Figure 8-15: Figure 8-16: Figure 8-17: Figure 8-18: Figure 8-19: Figure 8-20: Figure 8-21: Figure 8-22: Figure 8-23: Figure 9-1: Figure 11-1: Figure 11-2: Figure 11-3: Figure 11-4: Figure 11-5: Figure 11-6: Figure 11-7: Figure 12-1: Figure 12-2: Figure 12-3: Figure 12-4: Figure 12-5: Figure 12-6: Figure 12-7: Figure 12-8: ADCON1 Register, PIC16C710/71/711 (Address 88h), PIC16C715 (Address 9Fh)........................ 38 A/D Block Diagram.................................... 39 Analog Input Model ................................... 40 A/D Transfer Function ............................... 45 Flowchart of A/D Operation....................... 45 Configuration Word for PIC16C71 ............ 47 Configuration Word, PIC16C710/711........ 48 Configuration Word, PIC16C715............... 48 Crystal/Ceramic Resonator Operation (HS, XT or LP OSC Configuration) ........... 49 External Clock Input Operation (HS, XT or LP OSC Configuration) ........... 49 External Parallel Resonant Crystal Oscillator Circuit ........................................ 51 External Series Resonant Crystal Oscillator Circuit ........................................ 51 RC Oscillator Mode ................................... 51 Simplified Block Diagram of On-chip Reset Circuit.............................................. 52 Brown-out Situations ................................. 53 Time-out Sequence on Power-up (MCLR not Tied to VDD): Case 1............... 59 Time-out Sequence on Power-up (MCLR Not Tied To VDD): Case 2............. 59 Time-out Sequence on Power-up (MCLR Tied to VDD) .................................. 59 External Power-on Reset Circuit (for Slow VDD Power-up)........................... 60 External Brown-out Protection Circuit 1 .... 60 External Brown-out Protection Circuit 2 .... 60 Interrupt Logic, PIC16C710, 71, 711......... 62 Interrupt Logic, PIC16C715....................... 62 INT Pin Interrupt Timing ............................ 63 Watchdog Timer Block Diagram ............... 65 Summary of Watchdog Timer Registers ... 65 Wake-up from Sleep Through Interrupt..... 67 Typical In-Circuit Serial Programming Connection ................................................ 67 General Format for Instructions ................ 69 Load Conditions ........................................ 94 External Clock Timing ............................... 95 CLKOUT and I/O Timing ........................... 96 Reset, Watchdog Timer, Oscillator Start-up Timer and Power-up Timer Timing ....................................................... 97 Brown-out Reset Timing............................ 97 Timer0 External Clock Timings ................. 98 A/D Conversion Timing ........................... 100 Typical IPD vs. VDD (WDT Disabled, RC Mode) ..................... 101 Maximum IPD vs. VDD (WDT Disabled, RC Mode) ..................... 101 Typical IPD vs. VDD @ 25°C (WDT Enabled, RC Mode) ...................... 102 Maximum IPD vs. VDD (WDT Enabled, RC Mode) ...................... 102 Typical RC Oscillator Frequency vs. VDD .................................................... 102 Typical RC Oscillator Frequency vs. VDD .................................................... 102 Typical RC Oscillator Frequency vs. VDD .................................................... 102 Typical IPD vs. VDD Brown-out Detect Enabled (RC Mode) ................................ 103  1997 Microchip Technology Inc. Figure 12-9: Figure 12-10: Figure 12-11: Figure 12-12: Figure 12-13: Figure 12-14: Figure 12-15: Figure 12-16: Figure 12-17: Figure 12-18: Figure 12-19: Figure 12-20: Figure 12-21: Figure 12-22: Figure 12-23: Figure 12-24: Figure 12-25: Figure 12-26: Figure 12-27: Figure 12-28: Figure 12-29: Figure 12-30: Figure 13-1: Figure 13-2: Figure 13-3: Figure 13-4: Figure 13-5: Figure 13-6: Figure 13-7: Figure 14-1: Figure 14-2: Figure 14-3: Figure 14-4: Figure 14-5: Maximum IPD vs. VDD Brown-out Detect Enabled (85°C to -40°C, RC Mode)........ 103 Typical IPD vs. Timer1 Enabled (32 kHz, RC0/RC1 = 33 pF/33 pF, RC Mode) ............................................... 103 Maximum IPD vs. Timer1 Enabled (32 kHz, RC0/RC1 = 33 pF/33 pF, 85°C to -40°C, RC Mode) ....................... 103 Typical IDD vs. Frequency (RC Mode @ 22 pF, 25°C) ..................... 104 Maximum IDD vs. Frequency (RC Mode @ 22 pF, -40°C to 85°C) ....... 104 Typical IDD vs. Frequency (RC Mode @ 100 pF, 25°C) ................... 105 Maximum IDD vs. Frequency (RC Mode @ 100 pF, -40°C to 85°C) ..... 105 Typical IDD vs. Frequency (RC Mode @ 300 pF, 25°C) ................... 106 Maximum IDD vs. Frequency (RC Mode @ 300 pF, -40°C to 85°C) ..... 106 Typical IDD vs. Capacitance @ 500 kHz (RC Mode) ........................... 107 Transconductance(gm) of HS Oscillator vs. VDD .............................. 107 Transconductance(gm) of LP Oscillator vs. VDD .............................. 107 Transconductance(gm) of XT Oscillator vs. VDD .............................. 107 Typical XTAL Startup Time vs. VDD (LP Mode, 25°C) ............................. 108 Typical XTAL Startup Time vs. VDD (HS Mode, 25°C)............................. 108 Typical XTAL Startup Time vs. VDD (XT Mode, 25°C) ............................. 108 Typical IDD vs. Frequency (LP Mode, 25°C) ..................................... 109 Maximum IDD vs. Frequency (LP Mode, 85°C to -40°C)....................... 109 Typical IDD vs. Frequency (XT Mode, 25°C)..................................... 109 Maximum IDD vs. Frequency (XT Mode, -40°C to 85°C) ...................... 109 Typical IDD vs. Frequency (HS Mode, 25°C) .................................... 110 Maximum IDD vs. Frequency (HS Mode, -40°C to 85°C) ...................... 110 Load Conditions...................................... 117 External Clock Timing............................. 118 CLKOUT and I/O Timing......................... 119 Reset, Watchdog Timer, Oscillator Start-Up Timer, and Power-Up Timer Timing ..................................................... 120 Brown-out Reset Timing ......................... 120 Timer0 Clock Timings ............................. 121 A/D Conversion Timing........................... 124 Typical IPD vs. VDD (WDT Disabled, RC Mode) ..................... 125 Maximum IPD vs. VDD (WDT Disabled, RC Mode) ..................... 125 Typical IPD vs. VDD @ 25°C (WDT Enabled, RC Mode)...................... 126 Maximum IPD vs. VDD (WDT Enabled, RC Mode)...................... 126 Typical RC Oscillator Frequency vs. VDD ......................................................... 126 DS30390D-page 167 PIC16C71X Figure 14-6: Figure 14-7: Figure 14-8: Figure 14-9: Figure 14-10: Figure 14-11: Figure 14-12: Figure 14-13: Figure 14-14: Figure 14-15: Figure 14-16: Figure 14-17: Figure 14-18: Figure 14-19: Figure 14-20: Figure 14-21: Figure 14-22: Figure 14-23: Figure 14-24: Figure 14-25: Figure 14-26: Figure 14-27: Figure 14-28: Figure 14-29: Figure 14-30: Figure 15-1: Figure 15-2: Figure 15-3: Figure 15-4: Figure 15-5: Figure 15-6: Figure 16-1: Figure 16-2: Figure 16-3: Typical RC Oscillator Frequency vs. VDD .......................................................... 126 Typical RC Oscillator Frequency vs. VDD .......................................................... 126 Typical IPD vs. VDD Brown-out Detect Enabled (RC Mode) ................................ 127 Maximum IPD vs. VDD Brown-out Detect Enabled (85°C to -40°C, RC Mode) ...................... 127 Typical IPD vs. Timer1 Enabled (32 kHz, RC0/RC1 = 33 pF/33 pF, RC Mode) ....... 127 Maximum IPD vs. Timer1 Enabled (32 kHz, RC0/RC1 = 33 pF/33 pF, 85°C to -40°C, RC Mode)........................ 127 Typical IDD vs. Frequency (RC Mode @ 22 pF, 25°C)...................... 128 Maximum IDD vs. Frequency (RC Mode @ 22 pF, -40°C to 85°C)........ 128 Typical IDD vs. Frequency (RC Mode @ 100 pF, 25°C).................... 129 Maximum IDD vs. Frequency (RC Mode @ 100 pF, -40°C to 85°C)...... 129 Typical IDD vs. Frequency (RC Mode @ 300 pF, 25°C).................... 130 Maximum IDD vs. Frequency (RC Mode @ 300 pF, -40°C to 85°C)...... 130 Typical IDD vs. Capacitance @ 500 kHz (RC Mode)............................................... 131 Transconductance(gm) of HS Oscillator vs. VDD .............................. 131 Transconductance(gm) of LP Oscillator vs. VDD ............................... 131 Transconductance(gm) of XT Oscillator vs. VDD .............................. 131 Typical XTAL Startup Time vs. VDD (LP Mode, 25°C).............................. 132 Typical XTAL Startup Time vs. VDD (HS Mode, 25°C) ............................. 132 Typical XTAL Startup Time vs. VDD (XT Mode, 25°C).............................. 132 Typical IDD vs. Frequency (LP Mode, 25°C) ..................................... 133 Maximum IDD vs. Frequency (LP Mode, 85°C to -40°C) ....................... 133 Typical IDD vs. Frequency (XT Mode, 25°C) ..................................... 133 Maximum IDD vs. Frequency (XT Mode, -40°C to 85°C) ....................... 133 Typical IDD vs. Frequency (HS Mode, 25°C)..................................... 134 Maximum IDD vs. Frequency (HS Mode, -40°C to 85°C)....................... 134 Load Conditions ...................................... 140 External Clock Timing ............................. 141 CLKOUT and I/O Timing ......................... 142 Reset, Watchdog Timer, Oscillator Start-up Timer and Power-up Timer Timing ..................................................... 143 Timer0 External Clock Timings ............... 144 A/D Conversion Timing ........................... 146 Typical RC Oscillator Frequency vs. Temperature............................................ 147 Typical RC Oscillator Frequency vs. VDD .......................................................... 147 Typical RC Oscillator Frequency vs. VDD .......................................................... 147 DS30390D-page 168 Figure 16-4: Figure 16-5: Figure 16-6: Figure 16-7: Figure 16-8: Figure 16-9: Figure 16-10: Figure 16-11: Figure 16-12: Figure 16-13: Figure 16-14: Figure 16-15: Figure 16-16: Figure 16-17: Figure 16-18: Figure 16-19: Figure 16-20: Figure 16-21: Figure 16-22: Typical RC Oscillator Frequency vs. VDD ......................................................... 148 Typical Ipd vs. VDD Watchdog Timer Disabled 25°C......................................... 148 Typical Ipd vs. VDD Watchdog Timer Enabled 25°C.......................................... 148 Maximum Ipd vs. VDD Watchdog Disabled .................................................. 149 Maximum Ipd vs. VDD Watchdog Enabled................................................... 149 Vth (Input Threshold Voltage) of I/O Pins vs. VDD ...................................... 149 VIH, VIL of MCLR, T0CKI and OSC1 (in RC Mode) vs. VDD ............................. 150 VTH (Input Threshold Voltage) of OSC1 Input (in XT, HS, and LP Modes) vs. VDD ................................. 150 Typical IDD vs. Freq (Ext Clock, 25°C).... 151 Maximum, IDD vs. Freq (Ext Clock, -40° to +85°C) ......................................... 151 Maximum IDD vs. Freq with A/D Off (Ext Clock, -55° to +125°C) .................... 152 WDT Timer Time-out Period vs. VDD ...... 152 Transconductance (gm) of HS Oscillator vs. VDD .............................. 152 Transconductance (gm) of LP Oscillator vs. VDD .............................. 153 Transconductance (gm) of XT Oscillator vs. VDD .............................. 153 IOH vs. VOH, VDD = 3V .......................... 153 IOH vs. VOH, VDD = 5V .......................... 153 IOL vs. VOL, VDD = 3V ........................... 154 IOL vs. VOL, VDD = 5V ........................... 154  1997 Microchip Technology Inc. PIC16C71X LIST OF TABLES Table 1-1: Table 3-1: Table 4-1: Table 4-2: Table 5-1: Table 5-2: Table 5-3: Table 5-4: Table 6-1: Table 7-1: Table 7-2: Table 7-3: Table 7-4: Table 8-1: Table 8-2: Table 8-3: Table 8-4: Table 8-5: Table 8-6: Table 8-7: Table 8-8: Table 8-9: Table 8-10: Table 8-11: Table 8-12: Table 8-13: Table 9-1: Table 9-2: Table 10-1: Table 11-1: Table 11-2: Table 11-3: Table 11-4: Table 11-5: PIC16C71X Family of Devices.................... 4 PIC16C710/71/711/715 Pinout Description .................................................. 9 PIC16C710/71/711 Special Function Register Summary .................................... 14 PIC16C715 Special Function Register Summary................................................... 15 PORTA Functions ..................................... 26 Summary of Registers Associated with PORTA...................................................... 26 PORTB Functions ..................................... 28 Summary of Registers Associated with PORTB...................................................... 29 Registers Associated with Timer0............. 35 TAD vs. Device Operating Frequencies, PIC16C71.................................................. 41 TAD vs. Device Operating Frequencies, PIC16C710/711, PIC16C715 .................... 41 Registers/Bits Associated with A/D, PIC16C710/71/711.................................... 46 Registers/Bits Associated with A/D, PIC16C715................................................ 46 Ceramic Resonators, PIC16C71............... 49 Capacitor Selection For Crystal Oscillator, PIC16C71................................. 49 Ceramic Resonators, PIC16C710/711/715.................................. 50 Capacitor Selection for Crystal Oscillator, PIC16C710/711/715................. 50 Time-out in Various Situations, PIC16C71.................................................. 54 Time-out in Various Situations, PIC16C710/711/715.................................. 54 Status Bits and Their Significance, PIC16C71.................................................. 55 Status Bits and Their Significance, PIC16C710/711......................................... 55 Status Bits and Their Significance, PIC16C715................................................ 55 Reset Condition for Special Registers, PIC16C710/71/711.................................... 56 Reset Condition for Special Registers, PIC16C715................................................ 56 Initialization Conditions For All Registers, PIC16C710/71/711.................................... 57 Initialization Conditions for All Registers, PIC16C715................................................ 58 Opcode Field Descriptions ........................ 69 PIC16CXX Instruction Set......................... 70 Development Tools From Microchip ......... 88 Cross Reference of Device Specs for Oscillator Configurations and Frequencies of Operation (Commercial Devices)............................... 89 External Clock Timing Requirements........ 95 CLKOUT and I/O Timing Requirements.... 96 Reset, Watchdog Timer, Oscillator Start-up Timer, Power-up Timer, and Brown-out Reset Requirements ......... 97 Timer0 External Clock Requirements ....... 98  1997 Microchip Technology Inc. Table 11-6: Table 11-7: Table 12-1: Table 12-2: Table 13-1: Table 13-2: Table 13-3: Table 13-4: Table 13-5: Table 13-6: Table 13-7: Table 13-8: Table 14-1: Table 14-2: Table 15-1: Table 15-2: Table 15-3: Table 15-4: Table 15-5: Table 15-6: Table 15-7: Table 16-1: A/D Converter Characteristics: PIC16C710/711-04 (Commercial, Industrial, Extended) PIC16C710/711-10 (Commercial, Industrial, Extended) PIC16C710/711-20 (Commercial, Industrial, Extended) PIC16LC710/711-04 (Commercial, Industrial, Extended) ...........99 A/D Conversion Requirements ............... 100 RC Oscillator Frequencies...................... 107 Capacitor Selection for Crystal Oscillators ............................................... 108 Cross Reference of Device Specs for Oscillator Configurations and Frequencies of Operation (Commercial Devices) ............................ 112 Clock Timing Requirements.................... 118 CLKOUT and I/O Timing Requirements . 119 Reset, Watchdog Timer, Oscillator Start-up Timer, Power-up Timer, and Brown-out Reset Requirements....... 120 Timer0 Clock Requirements ................... 121 A/D Converter Characteristics: PIC16C715-04 (Commercial, Industrial, Extended) PIC16C715-10 (Commercial, Industrial, Extended) PIC16C715-20 (Commercial, Industrial, Extended) ........ 122 A/D Converter Characteristics: PIC16LC715-04 (Commercial, Industrial) ................................................ 123 A/D Conversion Requirements ............... 124 RC Oscillator Frequencies...................... 131 Capacitor Selection for Crystal Oscillators ............................................... 132 Cross Reference of Device Specs for Oscillator Configurations and Frequencies of Operation (Commercial Devices) ............................ 135 External Clock Timing Requirements ..... 141 CLKOUT and I/O Timing Requirements . 142 Reset, Watchdog Timer, Oscillator Start-up Timer and Power-up Timer Requirements ......................................... 143 Timer0 External Clock Requirements ..... 144 A/D Converter Characteristics ................ 145 A/D Conversion Requirements ............... 146 RC Oscillator Frequencies...................... 148 DS30390D-page 169 PIC16C71X NOTES: DS30390D-page 170  1997 Microchip Technology Inc. PIC16C71X ON-LINE SUPPORT Microchip provides two methods of on-line support. These are the Microchip BBS and the Microchip World Wide Web (WWW) site. Use Microchip's Bulletin Board Service (BBS) to get current information and help about Microchip products. Microchip provides the BBS communication channel for you to use in extending your technical staff with microcontroller and memory experts. To provide you with the most responsive service possible, the Microchip systems team monitors the BBS, posts the latest component data and software tool updates, provides technical help and embedded systems insights, and discusses how Microchip products provide project solutions. The web site, like the BBS, is used by Microchip as a means to make files and information easily available to customers. To view the site, the user must have access to the Internet and a web browser, such as Netscape or Microsoft Explorer. Files are also available for FTP download from our FTP site. Connecting to the Microchip Internet Web Site The Microchip web site is available by using your favorite Internet browser to attach to: www.microchip.com The file transfer site is available by using an FTP service to connect to: ftp://ftp.futureone.com/pub/microchip The web site and file transfer site provide a variety of services. Users may download files for the latest Development Tools, Data Sheets, Application Notes, User's Guides, Articles and Sample Programs. A variety of Microchip specific business information is also available, including listings of Microchip sales offices, distributors and factory representatives. Other data available for consideration is: • Latest Microchip Press Releases • Technical Support Section with Frequently Asked Questions • Design Tips • Device Errata • Job Postings • Microchip Consultant Program Member Listing • Links to other useful web sites related to Microchip Products Connecting to the Microchip BBS Connect worldwide to the Microchip BBS using either the Internet or the CompuServe communications network. Internet: You can telnet or ftp to the Microchip BBS at the address: mchipbbs.microchip.com CompuServe Communications Network: When using the BBS via the Compuserve Network, in most cases, a local call is your only expense. The Microchip BBS connection does not use CompuServe membership services, therefore you do not need CompuServe membership to join Microchip's BBS. There is no charge for connecting to the Microchip BBS.  1997 Microchip Technology Inc. The procedure to connect will vary slightly from country to country. Please check with your local CompuServe agent for details if you have a problem. CompuServe service allow multiple users various baud rates depending on the local point of access. The following connect procedure applies in most locations. 1. Set your modem to 8-bit, No parity, and One stop (8N1). This is not the normal CompuServe setting which is 7E1. 2. Dial your local CompuServe access number. 3. Depress the key and a garbage string will appear because CompuServe is expecting a 7E1 setting. 4. Type +, depress the key and “Host Name:” will appear. 5. Type MCHIPBBS, depress the key and you will be connected to the Microchip BBS. In the United States, to find the CompuServe phone number closest to you, set your modem to 7E1 and dial (800) 848-4480 for 300-2400 baud or (800) 331-7166 for 9600-14400 baud connection. After the system responds with “Host Name:”, type NETWORK, depress the key and follow CompuServe's directions. For voice information (or calling from overseas), you may call (614) 723-1550 for your local CompuServe number. Microchip regularly uses the Microchip BBS to distribute technical information, application notes, source code, errata sheets, bug reports, and interim patches for Microchip systems software products. For each SIG, a moderator monitors, scans, and approves or disapproves files submitted to the SIG. No executable files are accepted from the user community in general to limit the spread of computer viruses. Systems Information and Upgrade Hot Line The Systems Information and Upgrade Line provides system users a listing of the latest versions of all of Microchip's development systems software products. Plus, this line provides information on how customers can receive any currently available upgrade kits.The Hot Line Numbers are: 1-800-755-2345 for U.S. and most of Canada, and 1-602-786-7302 for the rest of the world. 970301 Trademarks: The Microchip name, logo, PIC, PICSTART, PICMASTER and PRO MATE are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. FlexROM, MPLAB and fuzzyLAB, are trademarks and SQTP is a service mark of Microchip in the U.S.A. fuzzyTECH is a registered trademark of Inform Software Corporation. IBM, IBM PC-AT are registered trademarks of International Business Machines Corp. Pentium is a trademark of Intel Corporation. Windows is a trademark and MS-DOS, Microsoft Windows are registered trademarks of Microsoft Corporation. CompuServe is a registered trademark of CompuServe Incorporated. All other trademarks mentioned herein are the property of their respective companies. DS30272A-page 171 PIC16C71X READER RESPONSE It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (602) 786-7578. Please list the following information, and use this outline to provide us with your comments about this Data Sheet. To: Technical Publications Manager RE: Reader Response Total Pages Sent From: Name Company Address City / State / ZIP / Country Telephone: (_______) _________ - _________ FAX: (______) _________ - _________ Application (optional): Would you like a reply? Device: PIC16C71X Y N Literature Number: DS30272A Questions: 1. What are the best features of this document? 2. How does this document meet your hardware and software development needs? 3. Do you find the organization of this data sheet easy to follow? If not, why? 4. What additions to the data sheet do you think would enhance the structure and subject? 5. What deletions from the data sheet could be made without affecting the overall usefulness? 6. Is there any incorrect or misleading information (what and where)? 7. How would you improve this document? 8. How would you improve our software, systems, and silicon products? DS30272A-page 172  1997 Microchip Technology Inc. PIC16C71X PIC16C71X PRODUCT IDENTIFICATION SYSTEM To order or obtain information, e.g., on pricing or delivery refer to the factory or the listed sales office. Examples PART NO. -XX X /XX XXX Pattern: Package: Temperature Range: Frequency Range: Device QTP, SQTP, Code or Special Requirements a) JW = Windowed CERDIP SO = SOIC SP = Skinny plastic dip P = PDIP SS = SSOP b) = 0°C to +70°C I = -40°C to +85°C E = -40°C to +125°C 04 = 200 kHz (PIC16C7X-04) 04 = 4 MHz 10 = 10 MHz 20 = 20 MHz PIC16C7X :VDD range 4.0V to 6.0V PIC16C7XT :VDD range 4.0V to 6.0V (Tape/Reel) PIC16LC7X :VDD range 2.5V to 6.0V PIC16LC7XT :VDD range 2.5V to 6.0V (Tape/Reel) PIC16C71 - 04/P 301 Commercial Temp., PDIP Package, 4 MHz, normal VDD limits, QTP pattern #301 * JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of each oscillator type (including LC devices). Sales and Support Products supported by a preliminary Data Sheet may possibly have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following: 1. Your local Microchip sales office (see below) 2. The Microchip Corporate Literature Center U.S. FAX: (602) 786-7277 3. The Microchip’s Bulletin Board, via your local CompuServe number (CompuServe membership NOT required). Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using. For latest version information and upgrade kits for Microchip Development Tools, please call 1-800-755-2345 or 1-602-786-7302.  1997 Microchip Technology Inc. DS30272A-page 173 PIC16C71X NOTES: DS30272A-page 174  1997 Microchip Technology Inc. PIC16C71X NOTES:  1997 Microchip Technology Inc. DS30272A-page 175 Note the following details of the code protection feature on PICmicro® MCUs. • • • • • • The PICmicro family meets the specifications contained in the Microchip Data Sheet. Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today, when used in the intended manner and under normal conditions. There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet. The person doing so may be engaged in theft of intellectual property. Microchip is willing to work with the customer who is concerned about the integrity of their code. Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable”. Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our product. If you have any further questions about this matter, please contact the local sales office nearest to you. Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip’s products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights. Trademarks The Microchip name and logo, the Microchip logo, FilterLab, KEELOQ, microID, MPLAB, PIC, PICmicro, PICMASTER, PICSTART, PRO MATE, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, MXDEV, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A. Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A. All other trademarks mentioned herein are property of their respective companies. © 2002, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved. Printed on recycled paper. Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999. The Company’s quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUs, KEELOQ® code hopping devices, Serial EEPROMs and microperipheral products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001 certified.  2002 Microchip Technology Inc. M WORLDWIDE SALES AND SERVICE AMERICAS ASIA/PACIFIC Japan Corporate Office Australia 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: 480-792-7627 Web Address: http://www.microchip.com Microchip Technology Australia Pty Ltd Suite 22, 41 Rawson Street Epping 2121, NSW Australia Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 Microchip Technology Japan K.K. Benex S-1 6F 3-18-20, Shinyokohama Kohoku-Ku, Yokohama-shi Kanagawa, 222-0033, Japan Tel: 81-45-471- 6166 Fax: 81-45-471-6122 Rocky Mountain China - Beijing 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7966 Fax: 480-792-7456 Microchip Technology Consulting (Shanghai) Co., Ltd., Beijing Liaison Office Unit 915 Bei Hai Wan Tai Bldg. No. 6 Chaoyangmen Beidajie Beijing, 100027, No. China Tel: 86-10-85282100 Fax: 86-10-85282104 Atlanta 500 Sugar Mill Road, Suite 200B Atlanta, GA 30350 Tel: 770-640-0034 Fax: 770-640-0307 Boston 2 Lan Drive, Suite 120 Westford, MA 01886 Tel: 978-692-3848 Fax: 978-692-3821 Chicago 333 Pierce Road, Suite 180 Itasca, IL 60143 Tel: 630-285-0071 Fax: 630-285-0075 Dallas 4570 Westgrove Drive, Suite 160 Addison, TX 75001 Tel: 972-818-7423 Fax: 972-818-2924 Detroit Tri-Atria Office Building 32255 Northwestern Highway, Suite 190 Farmington Hills, MI 48334 Tel: 248-538-2250 Fax: 248-538-2260 Kokomo 2767 S. Albright Road Kokomo, Indiana 46902 Tel: 765-864-8360 Fax: 765-864-8387 Los Angeles 18201 Von Karman, Suite 1090 Irvine, CA 92612 Tel: 949-263-1888 Fax: 949-263-1338 China - Chengdu Microchip Technology Consulting (Shanghai) Co., Ltd., Chengdu Liaison Office Rm. 2401, 24th Floor, Ming Xing Financial Tower No. 88 TIDU Street Chengdu 610016, China Tel: 86-28-6766200 Fax: 86-28-6766599 China - Fuzhou Microchip Technology Consulting (Shanghai) Co., Ltd., Fuzhou Liaison Office Unit 28F, World Trade Plaza No. 71 Wusi Road Fuzhou 350001, China Tel: 86-591-7503506 Fax: 86-591-7503521 China - Shanghai Microchip Technology Consulting (Shanghai) Co., Ltd. Room 701, Bldg. B Far East International Plaza No. 317 Xian Xia Road Shanghai, 200051 Tel: 86-21-6275-5700 Fax: 86-21-6275-5060 China - Shenzhen 150 Motor Parkway, Suite 202 Hauppauge, NY 11788 Tel: 631-273-5305 Fax: 631-273-5335 Microchip Technology Consulting (Shanghai) Co., Ltd., Shenzhen Liaison Office Rm. 1315, 13/F, Shenzhen Kerry Centre, Renminnan Lu Shenzhen 518001, China Tel: 86-755-2350361 Fax: 86-755-2366086 San Jose Hong Kong Microchip Technology Inc. 2107 North First Street, Suite 590 San Jose, CA 95131 Tel: 408-436-7950 Fax: 408-436-7955 Microchip Technology Hongkong Ltd. Unit 901-6, Tower 2, Metroplaza 223 Hing Fong Road Kwai Fong, N.T., Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 New York Toronto 6285 Northam Drive, Suite 108 Mississauga, Ontario L4V 1X5, Canada Tel: 905-673-0699 Fax: 905-673-6509 India Microchip Technology Inc. India Liaison Office Divyasree Chambers 1 Floor, Wing A (A3/A4) No. 11, O’Shaugnessey Road Bangalore, 560 025, India Tel: 91-80-2290061 Fax: 91-80-2290062 Korea Microchip Technology Korea 168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku Seoul, Korea 135-882 Tel: 82-2-554-7200 Fax: 82-2-558-5934 Singapore Microchip Technology Singapore Pte Ltd. 200 Middle Road #07-02 Prime Centre Singapore, 188980 Tel: 65-334-8870 Fax: 65-334-8850 Taiwan Microchip Technology Taiwan 11F-3, No. 207 Tung Hua North Road Taipei, 105, Taiwan Tel: 886-2-2717-7175 Fax: 886-2-2545-0139 EUROPE Denmark Microchip Technology Nordic ApS Regus Business Centre Lautrup hoj 1-3 Ballerup DK-2750 Denmark Tel: 45 4420 9895 Fax: 45 4420 9910 France Microchip Technology SARL Parc d’Activite du Moulin de Massy 43 Rue du Saule Trapu Batiment A - ler Etage 91300 Massy, France Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 Germany Microchip Technology GmbH Gustav-Heinemann Ring 125 D-81739 Munich, Germany Tel: 49-89-627-144 0 Fax: 49-89-627-144-44 Italy Microchip Technology SRL Centro Direzionale Colleoni Palazzo Taurus 1 V. Le Colleoni 1 20041 Agrate Brianza Milan, Italy Tel: 39-039-65791-1 Fax: 39-039-6899883 United Kingdom Arizona Microchip Technology Ltd. 505 Eskdale Road Winnersh Triangle Wokingham Berkshire, England RG41 5TU Tel: 44 118 921 5869 Fax: 44-118 921-5820 01/18/02  2002 Microchip Technology Inc.
PIC16C711-04/P 价格&库存

很抱歉,暂时无法提供与“PIC16C711-04/P”相匹配的价格&库存,您可以联系我们找货

免费人工找货