PIC16F15256/74/75/76
PIC16F15256/74/75/76 28/40-Pin Microcontrollers
Introduction
The PIC16F152 microcontroller family is available in 8/14/16/20/28/40/44-pin packages for cost-sensitive sensor
and real-time control applications. The PIC16F152 family’s simplified feature set includes a 10-bit Analog-to-Digital
Converter (ADC), Peripheral Pin Select (PPS), digital communication peripherals, timers and waveform generators.
This microcontroller family also provides memory features, such as the Memory Access Partition (MAP) to support
users in data protection and bootloader applications, and a Device Information Area (DIA) that stores Fixed Voltage
Reference (FVR) offset values to help improve ADC accuracy.
PIC16F152 Family Types
SMBus Compatible I/O Pads
External Interrupt Pins
2/2
17/2
1
1
Y
1
25
Y
PIC16F15274
7k
512
Y/Y
36/Y
1/2
2/2
28/2
1
1
Y
1
25
Y
PIC16F15275
14k
1024
Y/Y
36/Y
1/2
2/2
28/2
1
1
Y
1
25
Y
PIC16F15276
28k
2048
Y/Y
36/Y
1/2
2/2
28/2
1
1
Y
1
25
Y
Device
© 2021 Microchip Technology Inc.
Preliminary Datasheet
Watchdog Timer
EUSART
1/2
Interrupt-on-Change Pins
MSSP
25/Y
10-Bit ADC Channels
(External/Internal)
10-Bit PWM/
CCP
Y/Y
I/O Pins(1)/
Peripheral Pin Select
2048
Memory Access Partition/
Device Information Area
28k
Data SRAM
(bytes)
PIC16F15256
Program Flash Memory
(bytes)
8-Bit Timers with HLT/
16-Bit Timers(2)
Table 1. Devices Included in This Data Sheet
DS40002305B-page 1
PIC16F15256/74/75/76
Notes:
1. Total I/O count includes one pin (MCLR) that is input-only.
2. Timer0 can be configured as either an 8 or 16-bit timer.
Core Features
•
•
•
•
•
•
•
C Compiler Optimized RISC Architecture
Operating Speed:
– DC – 32 MHz clock input
– 125 ns minimum instruction time
16-Level Deep Hardware Stack
Low-Current Power-on Reset (POR)
Configurable Power-up Timer (PWRT)
Brown-out Reset (BOR)
Watchdog Timer (WDT)
Memory
•
•
•
•
•
•
•
Up to 28 KB of Program Flash Memory
Up to 2 KB of Data SRAM Memory
Memory Access Partition (MAP): The Program Flash Memory Can Be Partitioned into:
– Application Block
– Boot Block
– Storage Area Flash (SAF) Block
Programmable Code Protection and Write Protection
Device Information Area (DIA) Stores:
– Fixed Voltage Reference (FVR) measurement data
– Microchip unique identifier
Device Characteristics Area (DCI) Stores:
– Program/erase row sizes
– Pin count details
Direct, Indirect and Relative Addressing Modes
Operating Characteristics
•
•
Operating Voltage Range:
– 1.8V to 5.5V
Temperature Range:
– Industrial: -40°C to 85°C
– Extended: -40°C to 125°C
Power-Saving Functionality
•
•
Sleep:
– Reduce device power consumption
– Reduce system electrical noise while performing ADC conversions
Low-Power Mode Features:
– Sleep:
• < 900 nA typical @ 3V/25°C (WDT enabled)
© 2021 Microchip Technology Inc.
Preliminary Datasheet
DS40002305B-page 2
PIC16F15256/74/75/76
• < 600 nA typical @ 3V/25°C (WDT disabled)
– Operating Current:
• 48 µA typical @ 32 kHz, 3V/25°C
• < 1 mA typical @ 4 MHz, 5V/25°C
Digital Peripherals
•
•
•
•
•
•
•
•
•
Two Capture/Compare/PWM (CCP) Modules:
– 16-bit resolution for Capture/Compare modes
– 10-bit resolution for PWM mode
Two Pulse-Width Modulators (PWM):
– 10-bit resolution
– Independent pulse outputs
One Configurable 8/16-Bit Timer (TMR0)
One 16-Bit Timer (TMR1) with Gate Control
One 8-Bit Timer (TMR2) with Hardware Limit Timer (HLT)
One Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART):
– RS-232, RS-485, LIN compatible
– Auto-wake-up on Start
One Host Synchronous Serial Port (MSSP):
– Serial Peripheral Interface (SPI) mode
• Client Select Synchronization
– Inter-Integrated Circuit (I2C) mode
• 7/10-bit Addressing modes
Peripheral Pin Select (PPS):
– Enables pin mapping of digital I/O
Device I/O Port Features:
– Up to 35 I/O pins
– 1 input-only pin
– Individual I/O direction, open-drain, input threshold, slew rate and weak pull-up control
– Interrupt-on-change (IOC) on all pins
– One external interrupt pin
Analog Peripherals
•
•
Analog-to-Digital Converter (ADC):
– 10-bit resolution
– Up to 28 external input channels
– Two internal input channels
– Internal ADC oscillator (ADCRC)
– Operates in Sleep
– Selectable auto-conversion trigger sources
Fixed Voltage Reference (FVR):
– Selectable 1.024V, 2.048V and 4.096V output levels
– Internally connected to ADC
Clocking Structure
•
High-Precision Internal Oscillator Block (HFINTOSC):
© 2021 Microchip Technology Inc.
Preliminary Datasheet
DS40002305B-page 3
PIC16F15256/74/75/76
•
•
– Selectable frequencies up to 32 MHz
– ±2% at calibration
Internal 31 kHz Oscillator (LFINTOSC)
External High-Frequency Clock Input:
– Two External Clock (EC) power modes
Programming/Debug Features
• In-Circuit Serial Programming™ (ICSP™) via Two Pins
• In-Circuit Debug (ICD) with One Breakpoint via Two Pins
•Filename:
Debug Integrated
On-Chip
59B0S BLOCK DIAGRAM.vsdx
Title:
Last Edit:
First Used:
Notes:
12/1/2020
Block Diagram
Figure 1. PIC16F15256/74/75/76 Block Diagram
Ports
PORTA
PORTB
PORTC
PORTD(1)
PORTE
PPS Module
Peripherals
Memory
Data Bus
MSSP1
Timers
Program
Flash Memory
CCP
Instruction Bus
EUSART
Interconnect Bus
Data Memory
(RAM)
ADC
PWM
FVR
MCLR
Single-Supply
Programming
In-Circuit
Debugger
Power-up
Timer
Brown-out
Reset
Power-on
Reset
WDT
CPU
Interrupt
Controller
Program, Debug and
Supervisory Modules
Oscillator and Clock
Precision Band Gap Reference
OSC1
ECIN
EXTOSC
HFINTOSC
with
Active Clock
Tuning
LFINTOSC
Note: 40-pin devices only.
© 2021 Microchip Technology Inc.
Preliminary Datasheet
DS40002305B-page 4
PIC16F15256/74/75/76
Table of Contents
Introduction.....................................................................................................................................................1
PIC16F152 Family Types............................................................................................................................... 1
Core Features................................................................................................................................................ 2
1.
Packages................................................................................................................................................ 7
2.
Pin Diagrams...........................................................................................................................................8
3.
Pin Allocation Tables............................................................................................................................. 11
4.
Guidelines for Getting Started with PIC16F152 Microcontrollers..........................................................14
5.
Register and Bit Naming Conventions.................................................................................................. 17
6.
Register Legend....................................................................................................................................19
7.
Enhanced Mid-Range CPU...................................................................................................................20
8.
Device Configuration.............................................................................................................................22
9.
Memory Organization............................................................................................................................32
10. Resets................................................................................................................................................... 65
11. OSC - Oscillator Module....................................................................................................................... 77
12. Interrupts............................................................................................................................................... 87
13. Sleep Mode......................................................................................................................................... 100
14. WDT - Watchdog Timer.......................................................................................................................102
15. NVM - Nonvolatile Memory Control ....................................................................................................106
16. I/O Ports.............................................................................................................................................. 127
17. IOC - Interrupt-on-Change.................................................................................................................. 143
18. PPS - Peripheral Pin Select Module................................................................................................... 149
19. TMR0 - Timer0 Module....................................................................................................................... 158
20. TMR1 - Timer1 Module with Gate Control...........................................................................................166
21. TMR2 - Timer2 Module....................................................................................................................... 181
22. CCP - Capture/Compare/PWM Module.............................................................................................. 204
23. PWM - Pulse-Width Modulation.......................................................................................................... 217
24. EUSART - Enhanced Universal Synchronous Asynchronous Receiver Transmitter.......................... 225
25. MSSP - Host Synchronous Serial Port Module...................................................................................255
26. FVR - Fixed Voltage Reference.......................................................................................................... 315
© 2021 Microchip Technology Inc.
Preliminary Datasheet
DS40002305B-page 5
PIC16F15256/74/75/76
27. ADC - Analog-to-Digital Converter...................................................................................................... 318
28. Charge Pump...................................................................................................................................... 334
29. Instruction Set Summary.....................................................................................................................337
30. ICSP™ - In-Circuit Serial Programming™........................................................................................... 357
31. Register Summary.............................................................................................................................. 360
32. Electrical Specifications...................................................................................................................... 365
33. DC and AC Characteristics Graphs and Tables.................................................................................. 388
34. Packaging Information........................................................................................................................ 389
35. Appendix A: Revision History..............................................................................................................409
The Microchip Website...............................................................................................................................410
Product Change Notification Service..........................................................................................................410
Customer Support...................................................................................................................................... 410
Product Identification System..................................................................................................................... 411
Microchip Devices Code Protection Feature.............................................................................................. 411
Legal Notice............................................................................................................................................... 412
Trademarks................................................................................................................................................ 412
Quality Management System..................................................................................................................... 413
Worldwide Sales and Service.....................................................................................................................414
© 2021 Microchip Technology Inc.
Preliminary Datasheet
DS40002305B-page 6
1.
Device
14-Pin
TSSOP
14Pin
SOIC
16-Pin
VQFN
3x3x0.9
20Pin
PDIP
20-Pin
SSOP
20Pin
SOIC
20-Pin
VQFN
3x3x0.9
Preliminary Datasheet
28Pin
SOIC
28-Pin
SSOP
28-Pin
VQFN
4x4x1
40Pin
PDIP
40-Pin
VQFN
5x5x0.9
44-Pin
TQFP
10x10x1
PIC16F15223
•
•
•
PIC16F15224
•
•
•
PIC16F15225
•
•
•
PIC16F15243
•
•
•
•
PIC16F15244
•
•
•
•
PIC16F15245
•
•
•
•
PIC16F15254
•
•
•
PIC16F15255
•
•
•
PIC16F15256
•
•
•
PIC16F15274
•
•
•
PIC16F15275
•
•
•
PIC16F15276
•
•
•
rotatethispage90
8-Pin 8-Pin
SOIC DFN
PIC16F15213
•
•
PIC16F15214
•
•
Packages
© 2021 Microchip Technology Inc.
Table 1-1. Packages
PIC16F15256/74/75/76
Packages
DS40002305B-page 7
PIC16F15256/74/75/76
Pin Diagrams
Pin Diagrams
Figure 2-1.
28-Pin SPDIP
28-Pin SSOP
28-Pin SOIC
MCLR/VPP/RE3
RA0
RA1
RA2
RA3
RA4
RA5
VSS
RA7
RA6
RC0
RC1
RC2
RC3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
28
27
26
25
24
23
22
21
20
19
18
17
16
15
RB7/ICSPDAT
RB6/ICSPCLK
RB5
RB4
RB3
RB2
RB1
RB0
VDD
VSS
RC7
RC6
RC5
RC4
RA1
RA0
RE3/MCLR/VPP
RB7/ICSPDAT
RB6/ICSPCLK
RB5
RB4
Figure 2-2.
28-Pin VQFN
28 27 26 25 24 23 22
RA2
RA3
RA4
RA5
VSS
RA7
RA6
1
21 RB3
2
20 RB2
3
19 RB1
4
18 RB0
5
17 VDD
6
16 VSS
7
15 RC7
8
9 10 11 12 13 14
RC0
RC1
RC2
RC3
RC4
RC5
RC6
2.
Note: It is recommended that the exposed bottom pad be connected to VSS; however, it must not be the only VSS
connection to the device.
Figure 2-3.
40-Pin PDIP
© 2021 Microchip Technology Inc.
Preliminary Datasheet
DS40002305B-page 8
PIC16F15256/74/75/76
Pin Diagrams
MCLR/VPP/RE3
RA0
RA1
RA2
RA3
RA4
RA5
RE0
RE1
RE2
VDD
VSS
RA7
RA6
RC0
RC1
RC2
RC3
RD0
RD1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
RB7/ICSPDAT
RB6/ICSPCLK
RB5
RB4
RB3
RB2
RB1
RB0
VDD
VSS
RD7
RD6
RD5
RD4
RC7
RC6
RC5
RC4
RD3
RD2
RC6
RC5
RC4
RD3
RD2
RD1
RD0
RC3
RC2
RC1
Figure 2-4.
40-Pin VQFN
40 39 38 37 36 35 34 33 32 31
RC7
RD4
RD5
RD6
RD7
VSS
VDD
RB0
RB1
RB2
1
30 RC0
2
29 RA6
3
28
4
27
5
26
6
25
7
24
8
23
9
22
10
21
RA7
VSS
VDD
RE2
RE1
RE0
RA5
RA4
RB3
RB4
RB5
ICSPCLK/RB6
ICSPDAT/RB7
VPP/MCLR/RE3
RA0
RA1
RA2
RA3
11 12 13 14 15 16 17 18 19 20
Note: It is recommended that the exposed bottom pad be connected to VSS; however, it must not be the only VSS
connection to the device.
Figure 2-5.
44-Pin TQFP
© 2021 Microchip Technology Inc.
Preliminary Datasheet
DS40002305B-page 9
PIC16F15256/74/75/76
RC6
RC5
RC4
RD3
RD2
RD1
RD0
RC3
RC2
RC1
NC
Pin Diagrams
44 43 42 41 40 39 38 37 36 35 34
RC7
RD4
RD5
RD6
RD7
VSS
VDD
RB0
RB1
RB2
RB3
1
33
2
32
3
31
4
30
5
29
6
28
7
27
8
26
9
25
10
24
11
23
NC
RC0
RA6
RA7
VSS
VDD
RE2
RE1
RE0
RA5
RA4
NC
NC
RB4
RB5
ICSPCLK/RB6
ICSPDAT/RB7
VPP/MCLR/RE3
RA0
RA1
RA2
RA3
12 13 14 15 16 17 18 19 20 21 22
© 2021 Microchip Technology Inc.
Preliminary Datasheet
DS40002305B-page 10
PIC16F15256/74/75/76
Pin Allocation Tables
3.
Pin Allocation Tables
Table 3-1. 28-Pin Allocation Table
I/O
28-PinSPDIP
SSOP
SOIC
28-Pin
VQFN
ADC
Reference
Timers
CCP
10-Bit
PWM
MSSP
EUSART
IOC
Interrupt
Basic
RA0
2
27
ANA0
—
—
—
—
—
—
IOCA0
—
—
RA1
3
28
ANA1
—
—
—
—
—
—
IOCA1
—
—
RA2
4
1
ANA2
—
—
—
—
—
—
IOCA2
—
—
RA3
5
2
ANA3
VREF+ (ADC)
—
—
—
—
—
IOCA3
—
—
—
T0CKI(1)
—
—
—
—
IOCA4
—
—
—
—
SS1(1)
—
IOCA5
—
—
RA4
6
RA5
7
3
4
—
ANA5
—
—
RA6
10
7
—
—
—
—
—
—
—
IOCA6
—
CLKOUT
RA7
9
6
—
—
—
—
—
—
—
IOCA7
—
CLKIN
RB0
21
18
ANB0
—
—
—
—
—
—
IOCB0
INT(1)
—
RB1
22
19
ANB1
—
—
—
—
—
—
IOCB1
—
—
RB2
23
20
ANB2
—
—
—
—
—
—
IOCB2
—
—
RB3
24
21
ANB3
—
—
—
—
—
—
IOCB3
—
—
RB4
25
22
ANB4
ADACT(1)
—
—
—
—
—
—
IOCB4
—
—
RB5
26
23
ANB5
—
T1G(1)
—
—
—
—
IOCB5
—
—
RB6
27
24
—
—
—
—
—
—
—
IOCB6
—
ICSPCLK
ICDCLK
RB7
28
25
—
—
—
—
—
—
—
IOCB7
—
ICSPDAT
ICDDAT
RC0
11
8
—
—
T1CKI(1)
—
—
—
—
IOCC0
—
—
RC1
12
9
—
—
—
CCP2(1)
—
—
—
IOCC1
—
—
RC2
13
10
ANC2
—
—
CCP1(1)
—
—
—
IOCC2
—
—
RC3
14
11
ANC3
—
T2IN(1)
—
—
SCL1(1,3,4)
SCK1(1,3,4)
—
IOCC3
—
—
RC4
15
12
ANC4
—
—
—
—
SDA1(1,3,4)
SDI1(1,3,4)
—
IOCC4
—
—
RC5
16
13
ANC5
—
—
—
—
—
—
IOCC5
—
—
RC6
17
14
ANC6
—
—
—
—
—
CK1(1,3)
IOCC6
—
—
RC7
18
15
ANC7
—
—
—
—
—
RX1(1)
DT1(1,3)
IOCC7
—
—
RE3
1
26
—
—
—
—
—
—
—
IOCE3
—
MCLR
VPP
VDD
20
17
—
—
—
—
—
—
—
—
—
VDD
VSS
8
19
5
16
—
—
—
—
—
—
—
—
—
VSS
OUT(2)
—
—
—
—
TMR0
CCP1
CCP2
PWM3
PWM4
SCL1
SCK1
SDA1
SDO1
TX1
DT1
CK1
—
—
—
© 2021 Microchip Technology Inc.
Preliminary Datasheet
DS40002305B-page 11
PIC16F15256/74/75/76
Pin Allocation Tables
Notes:
1.
This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins. Refer to the
PPS input table in the device data sheet for details on which PORT pins may be used for this signal.
2.
All output signals shown in this row are PPS remappable.
3.
This is a bidirectional signal. For normal operation, user software must map this signal to the same pin via the PPS input and PPS output registers.
4.
These pins can be configured for I2C or SMBus logic levels via the RxyI2C registers. The SCL1/SDA1 signals may be assigned to these pins for expected
operation. PPS assignments of these signals to other pins will operate; however, the logic levels will be standard TTL/ST as selected by the INLVL register.
Table 3-2. 40/44-Pin Allocation Table
I/O
40-Pin
PDIP
40-Pin
VQFN
44-Pin
TQFP
ADC
Reference
Timers
CCP
10-Bit
PWM
MSSP
EUSART
IOC
Interrupt
Basic
RA0
2
17
19
ANA0
—
—
—
—
—
—
IOCA0
—
—
RA1
3
18
20
ANA1
—
—
—
—
—
—
IOCA1
—
—
RA2
4
19
21
ANA2
—
—
—
—
—
—
IOCA2
—
—
RA3
5
20
22
ANA3
VREF+ (ADC)
—
—
—
—
—
IOCA3
—
—
RA4
6
21
23
—
—
T0CKI(1)
—
—
—
—
IOCA4
—
—
RA5
7
22
24
ANA5
—
—
—
—
SS1(1)
—
IOCA5
—
—
RA6
14
29
31
—
—
—
—
—
—
—
IOCA6
—
CLKOUT
RA7
13
28
30
—
—
—
—
—
—
—
IOCA7
—
CLKIN
—
RB0
33
8
8
ANB0
—
—
—
—
—
—
IOCB0
INT(1)
RB1
34
9
9
ANB1
—
—
—
—
—
—
IOCB1
—
—
RB2
35
10
10
ANB2
—
—
—
—
—
—
IOCB2
—
—
RB3
36
11
11
ANB3
—
—
—
—
—
—
IOCB3
—
—
RB4
37
12
14
ANB4
ADACT(1)
—
—
—
—
—
—
IOCB4
—
—
RB5
38
13
15
ANB5
—
T1G(1)
—
—
—
—
IOCB5
—
—
RB6
39
14
16
—
—
—
—
—
—
—
IOCB6
—
ICSPCLK
ICDCLK
RB7
40
15
17
—
—
—
—
—
—
—
IOCB7
—
ICSPDAT
ICDDAT
RC0
15
30
32
—
—
T1CKI(1)
—
—
—
—
IOCC0
—
—
—
CCP2(1)
—
—
—
IOCC1
—
—
—
—
CCP1(1)
—
—
—
IOCC2
—
—
—
—
SCL1(1,3,4)
SCK1(1,3,4)
—
IOCC3
—
—
RC1
RC2
16
17
31
32
35
36
—
ANC2
—
RC3
18
33
37
ANC3
—
T2IN(1)
RC4
23
38
42
ANC4
—
—
—
—
SDA1(1,3,4)
SDI1(1,3,4)
—
IOCC4
—
—
RC5
24
39
43
ANC5
—
—
—
—
—
—
IOCC5
—
—
—
CK1(1,3)
IOCC6
—
—
IOCC7
—
—
RC6
25
40
44
ANC6
—
—
—
—
RC7
26
1
1
ANC7
—
—
—
—
—
RX1(1)
DT1(1,3)
RD0
19
34
38
AND0
—
—
—
—
—
—
—
—
—
RD1
20
35
39
AND1
—
—
—
—
—
—
—
—
—
RD2
21
36
40
AND2
—
—
—
—
—
—
—
—
—
RD3
22
37
41
AND3
—
—
—
—
—
—
—
—
—
RD4
27
2
2
AND4
—
—
—
—
—
—
—
—
—
© 2021 Microchip Technology Inc.
Preliminary Datasheet
DS40002305B-page 12
PIC16F15256/74/75/76
Pin Allocation Tables
...........continued
I/O
40-Pin
PDIP
40-Pin
VQFN
44-Pin
TQFP
ADC
Reference
Timers
CCP
10-Bit
PWM
MSSP
EUSART
IOC
Interrupt
Basic
RD5
28
3
3
AND5
—
—
—
—
—
—
—
—
—
RD6
29
4
4
AND6
—
—
—
—
—
—
—
—
—
RD7
30
5
5
AND7
—
—
—
—
—
—
—
—
—
RE0
8
23
25
ANE0
—
—
—
—
—
—
—
—
—
RE1
9
24
26
ANE1
—
—
—
—
—
—
—
—
—
RE2
10
25
27
ANE2
—
—
—
—
—
—
—
—
—
RE3
1
16
18
—
—
—
—
—
—
—
IOCE3
—
MCLR
VPP
VDD
11
32
7
26
7
28
—
—
—
—
—
—
—
—
—
VDD
VSS
12
31
6
27
6
29
—
—
—
—
—
—
—
—
—
VSS
OUT(2)
—
—
—
—
TMR0
CCP1
CCP2
PWM3
PWM4
SCL1
SCK1
SDA1
SDO1
TX1
DT1
CK1
—
—
—
Notes:
1.
This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins. Refer to the
PPS input table in the device data sheet for details on which PORT pins may be used for this signal.
2.
All output signals shown in this row are PPS remappable.
3.
This is a bidirectional signal. For normal operation, user software must map this signal to the same pin via the PPS input and PPS output registers.
These pins can be configured for I2C or SMBus logic levels via the RxyI2C registers. The SCL1/SDA1 signals may be assigned to these pins for expected
operation. PPS assignments of these signals to other pins will operate; however, the logic levels will be standard TTL/ST as selected by the INLVL register.
4.
© 2021 Microchip Technology Inc.
Preliminary Datasheet
DS40002305B-page 13
PIC16F15256/74/75/76
Guidelines for Getting Started with PIC16F152 Micr...
4.
Guidelines for Getting Started with PIC16F152 Microcontrollers
4.1
Basic Connection Requirements
Getting started with the PIC16F152 family of 8-bit microcontrollers requires attention to a minimal set of device pin
connections before proceeding with development.
Filename:
Recommended Minimum Connections.vsdx
Last Edit:
1/2/2020
The following pins must
Title: always be connected:
•
•
All VDD and VSS
pins
(see 4.2 Power Supply Pins)
First
Used:
MCLR pin (seeNotes:
4.3 Master Clear (MCLR) Pin)
These pins must also be connected if they are being used in the end application:
•
•
PGC/PGD pins used for In-Circuit Serial Programming™ (ICSP™) and debugging purposes (see 4.4 In-Circuit
Serial Programming (ICSP) Pins)
CLKIN pin when an external clock source is used.
Additionally, the following may be required:
•
VREF+/VREF- pins are used when external voltage reference for analog modules is implemented
The minimum recommended connections are shown in the figure below.
Figure 4-1. Minimum Recommended Connections
VDD
V DD
R1
R2
Vss
C2
MCLR
C1
PIC MCU
Vss
Key (all values are recommendations):
C1: 10 nF, 16V ceramic
C2: 0.1 F, 16V ceramic
R1: 10 kΩ
R2: 100Ω to 470Ω
4.2
Power Supply Pins
4.2.1
Decoupling Capacitors
The use of decoupling capacitors on every pair of power supply pins (VDD and VSS) is required.
Consider the following criteria when using decoupling capacitors:
•
•
Value and type of capacitor: A 0.1 μF (100 nF), 10-25V capacitor is recommended. The capacitor may be
a low-ESR device, with a resonance frequency in the range of 200 MHz and higher. Ceramic capacitors are
recommended.
Placement on the printed circuit board: The decoupling capacitors may be placed as close to the pins as
possible. It is recommended to place the capacitors on the same side of the board as the device. If space is
constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace
length from the pin to the capacitor is no greater than 0.25 inch (6 mm).
© 2021 Microchip Technology Inc.
Preliminary Datasheet
DS40002305B-page 14
PIC16F15256/74/75/76
Guidelines for Getting Started with PIC16F152 Micr...
•
•
4.2.2
Handling high-frequency noise: If the board is experiencing high-frequency noise (upward of tens of MHz),
add a second ceramic type capacitor in parallel to the above described decoupling capacitor. The value of the
second capacitor can be in the range of 0.01 μF to 0.001 μF. Place this second capacitor next to each primary
decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as
close to the power and ground pins as possible (e.g., 0.1 μF in parallel with 0.001 μF).
Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to
the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first
in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a
minimum, thereby reducing PCB trace inductance.
Tank Capacitors
With on boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for
integrated circuits, including microcontrollers, to supply a local power source. The value of the tank capacitor may be
determined based on the trace resistance that connects the power supply source to the device, and the maximum
current drawn by the device in the application. In other words, select the tank capacitor that meets the acceptable
voltage sag at the device. Typical values range from 4.7 μF to 47 μF.
4.3
Master Clear (MCLR) Pin
The MCLR pin provides two specific device functions: Device Reset, and device programming and debugging. If
programming and debugging are not required in the end application, a direct connection to VDD may be all that
is required. The addition of other components, to help increase the application’s resistance to spurious Resets
from voltage sags, may be beneficial. A typical configuration is shown in Figure 4-1. Other circuit designs may be
implemented, depending on the application’s requirements.
During programming and debugging, the resistance and capacitance that can be added to the pin must be
considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (VIH
and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R1 and C1 will need
to be adjusted based on the application and PCB requirements. For example, it is recommended that the capacitor,
C1, be isolated from the MCLR pin during programming and debugging operations by using a jumper (Figure 4-2).
The jumper is replaced for normal run-time operations.
Any components associated with the MCLR pin may be placed within 0.25 inch (6 mm) of the pin.
Figure 4-2. Example of MCLR Pin Connections
VDD
Rev. 30-000058A
4/5/2017
R1
R2
JP
MCLR
PIC MCU
C1
Notes:
1. R1 ≤ 10 kΩ is recommended. A suggested starting value is 10 kΩ. Ensure that the MCLR pin VIH and VIL
specifications are met.
2. R2 ≤ 470Ω will limit any current flowing into MCLR from the extended capacitor, C1, in the event of MCLR pin
breakdown, due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS). Ensure that the MCLR pin
VIH and VIL specifications are met.
4.4
In-Circuit Serial Programming™ (ICSP™) Pins
The ICSPCLK and ICSPDAT pins are used for ICSP and debugging purposes. It is recommended to keep the trace
length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is
expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of
ohms, not to exceed 100Ω.
© 2021 Microchip Technology Inc.
Preliminary Datasheet
DS40002305B-page 15
PIC16F15256/74/75/76
Guidelines for Getting Started with PIC16F152 Micr...
Pull-up resistors, series diodes and capacitors on the ICSPCLK and ICSPDAT pins are not recommended as they
can interfere with the programmer/debugger communications to the device. If such discrete components are an
application requirement, they may be removed from the circuit during programming and debugging. Alternatively,
refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming
specification for information on capacitive loading limits, and pin input voltage high (VIH) and input low (VIL)
requirements.
For device emulation, ensure that the Communication Channel Select (i.e., ICSPCLK/ICSPDAT pins), programmed
into the device, matches the physical connections for the ICSP to the Microchip debugger/emulator tool.
4.5
Unused I/Os
Unused I/O pins may be configured as outputs and driven to a logic low state. Alternatively, connect a 1 kΩ to 10 kΩ
resistor to VSS on unused pins to drive the output to logic low.
© 2021 Microchip Technology Inc.
Preliminary Datasheet
DS40002305B-page 16
PIC16F15256/74/75/76
Register and Bit Naming Conventions
5.
5.1
Register and Bit Naming Conventions
Register Names
When there are multiple instances of the same peripheral in a device, the Peripheral Control registers will be depicted
as the concatenation of a peripheral identifier, peripheral instance, and control identifier. The Control registers section
will show just one instance of all the register names with an ‘x’ in the place of the peripheral instance number. This
naming convention may also be applied to peripherals when there is only one instance of that peripheral in the device
to maintain compatibility with other devices in the family that contain more than one.
5.2
Bit Names
There are two variants for bit names:
•
•
5.2.1
Short name: Bit function abbreviation
Long name: Peripheral abbreviation + short name
Short Bit Names
Short bit names are an abbreviation for the bit function. For example, some peripherals are enabled with the EN bit.
The bit names shown in the registers are the short name variant.
Short bit names are useful when accessing bits in C programs. The general format for accessing bits by the short
name is RegisterNamebits.ShortName. For example, the enable bit, ON, in the ADCON0 register can be set in C
programs with the instruction ADCON0bits.ON = 1.
Short names are generally not useful in assembly programs because the same name may be used by different
peripherals in different bit positions. When this occurs, during the include file generation, all instances of that short
bit name are appended with an underscore plus the name of the register in which the bit resides to avoid naming
contentions.
5.2.2
Long Bit Names
Long bit names are constructed by adding a peripheral abbreviation prefix to the short name. The prefix is unique
to the peripheral, thereby making every long bit name unique. The long bit name for the ADC enable bit is the ADC
prefix, AD, appended with the enable bit short name, ON, resulting in the unique bit name ADON.
Long bit names are useful in both C and assembly programs. For example, in C the ADCON0 enable bit can be set
with the ADON = 1 instruction. In assembly, this bit can be set with the BSF ADCON0,ADON instruction.
5.2.3
Bit Fields
Bit fields are two or more adjacent bits in the same register. Bit fields adhere only to the short bit naming convention.
For example, the three Least Significant bits of the ADCON2 register contain the ADC Operating Mode Selection bit.
The short name for this field is MD and the long name is ADMD. Bit field access is only possible in C programs. The
following example demonstrates a C program instruction for setting the ADC to operate in Accumulate mode:
ADCON2bits.MD = 0b001;
Individual bits in a bit field can also be accessed with long and short bit names. Each bit is the field name appended
with the number of the bit position within the field. For example, the Most Significant MODE bit has the short bit name
MD2 and the long bit name is ADMD2. The following two examples demonstrate assembly program sequences for
setting the ADC to operate in Accumulate mode:
MOVLW
ANDWF
~(1