0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
PIC16F84A-04I/SO

PIC16F84A-04I/SO

  • 厂商:

    ACTEL(微芯科技)

  • 封装:

    SOIC18

  • 描述:

    IC MCU 8BIT 1.75KB FLASH 18SOIC

  • 数据手册
  • 价格&库存
PIC16F84A-04I/SO 数据手册
PIC16F84A 18-pin Enhanced FLASH/EEPROM 8-Bit Microcontroller High Performance RISC CPU Features: • 13 I/O pins with individual direction control • High current sink/source for direct LED drive - 25 mA sink max. per pin - 25 mA source max. per pin • TMR0: 8-bit timer/counter with 8-bit programmable prescaler Special Microcontroller Features: • 10,000 erase/write cycles Enhanced FLASH Program memory typical • 10,000,000 typical erase/write cycles EEPROM Data memory typical • EEPROM Data Retention > 40 years • In-Circuit Serial Programming™ (ICSP™) - via two pins • Power-on Reset (POR), Power-up Timer (PWRT), Oscillator Start-up Timer (OST) • Watchdog Timer (WDT) with its own On-Chip RC Oscillator for reliable operation • Code protection • Power saving SLEEP mode • Selectable oscillator options  2001-2013 Microchip Technology Inc. RA2 1 18 RA1 RA3 2 17 RA0 RA4/T0CKI 3 16 OSC1/CLKIN MCLR 4 15 OSC2/CLKOUT VSS 5 14 VDD RB0/INT 6 13 RB7 RB1 7 12 RB6 RB2 8 11 RB5 RB3 9 10 RB4 RA2 1 20 RA1 RA3 2 19 RA0 RA4/T0CKI 3 18 OSC1/CLKIN MCLR VSS 4 17 OSC2/CLKOUT 16 VDD VSS 6 15 RB0/INT 7 14 VDD RB7 RB1 8 13 RB6 RB2 9 12 RB5 RB3 10 11 RB4 SSOP 5 PIC16F84A Peripheral Features: PDIP, SOIC PIC16F84A • Only 35 single word instructions to learn • All instructions single-cycle except for program branches which are two-cycle • Operating speed: DC - 20 MHz clock input DC - 200 ns instruction cycle • 1024 words of program memory • 68 bytes of Data RAM • 64 bytes of Data EEPROM • 14-bit wide instruction words • 8-bit wide data bytes • 15 Special Function Hardware registers • Eight-level deep hardware stack • Direct, indirect and relative addressing modes • Four interrupt sources: - External RB0/INT pin - TMR0 timer overflow - PORTB interrupt-on-change - Data EEPROM write complete Pin Diagrams CMOS Enhanced FLASH/EEPROM Technology: • Low power, high speed technology • Fully static design • Wide operating voltage range: - Commercial: 2.0V to 5.5V - Industrial: 2.0V to 5.5V • Low power consumption: - < 2 mA typical @ 5V, 4 MHz - 15 A typical @ 2V, 32 kHz - < 0.5 A typical standby current @ 2V DS35007C-page 1 PIC16F84A Table of Contents 1.0 Device Overview .......................................................................................................................................................................... 3 2.0 Memory Organization ................................................................................................................................................................... 5 3.0 Data EEPROM Memory ............................................................................................................................................................. 13 4.0 I/O Ports ..................................................................................................................................................................................... 15 5.0 Timer0 Module ........................................................................................................................................................................... 19 6.0 Special Features of the CPU ...................................................................................................................................................... 21 7.0 Instruction Set Summary ............................................................................................................................................................ 35 8.0 Development Support................................................................................................................................................................. 43 9.0 Electrical Characteristics ............................................................................................................................................................ 47 10.0 DC/AC Characteristic Graphs .................................................................................................................................................... 59 11.0 Packaging Information................................................................................................................................................................ 69 Appendix A: Revision History .............................................................................................................................................................. 77 Appendix B: Conversion Considerations.............................................................................................................................................. 78 Appendix C: Migration from Baseline to Mid-range Devices80 INDEX .................................................................................................................................................................................................. 81 The Microchip Web Site ....................................................................................................................................................................... 85 Customer Change Notification Service ................................................................................................................................................ 85 Customer Support ................................................................................................................................................................................ 85 Reader Response ................................................................................................................................................................................ 86 PIC16F84A Product Identification System ........................................................................................................................................... 87 TO OUR VALUED CUSTOMERS It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced. If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at docerrors@microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We welcome your feedback. Most Current Data Sheet To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at: http://www.microchip.com You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000). Errata An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies. To determine if an errata sheet exists for a particular device, please check with one of the following: • Microchip’s Worldwide Web site; http://www.microchip.com • Your local Microchip sales office (see last page) When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using. Customer Notification System Register on our web site at www.microchip.com to receive the most current information on all of our products. DS35007C-page 2  2001-2013 Microchip Technology Inc. PIC16F84A 1.0 DEVICE OVERVIEW The program memory contains 1K words, which translates to 1024 instructions, since each 14-bit program memory word is the same width as each device instruction. The data memory (RAM) contains 68 bytes. Data EEPROM is 64 bytes. This document contains device specific information for the operation of the PIC16F84A device. Additional information may be found in the PIC® Mid-Range Reference Manual, (DS33023), which may be downloaded from the Microchip website. The Reference Manual should be considered a complementary document to this data sheet, and is highly recommended reading for a better understanding of the device architecture and operation of the peripheral modules. There are also 13 I/O pins that are user-configured on a pin-to-pin basis. Some pins are multiplexed with other device functions. These functions include: • External interrupt • Change on PORTB interrupt • Timer0 clock input The PIC16F84A belongs to the mid-range family of the PIC® microcontroller devices. A block diagram of the device is shown in Figure 1-1. FIGURE 1-1: Table 1-1 details the pinout of the device with descriptions and details for each pin. PIC16F84A BLOCK DIAGRAM Data Bus 13 8 Program Counter EEPROM Data Memory FLASH Program Memory 8 Level Stack (13-bit) 1K x 14 Program Bus 14 RAM File Registers EEDATA 68 x 8 7 RAM Addr EEPROM Data Memory 64 x 8 EEADR Addr Mux Instruction Register 7 Direct Addr 5 TMR0 Indirect Addr FSR reg RA4/T0CKI STATUS reg 8 MUX Power-up Timer Instruction Decode & Control Timing Generation Oscillator Start-up Timer 8 ALU Power-on Reset Watchdog Timer I/O Ports RA3:RA0 W reg RB7:RB1 RB0/INT OSC2/CLKOUT OSC1/CLKIN MCLR  2001-2013 Microchip Technology Inc. VDD, VSS DS35007C-page 3 PIC16F84A TABLE 1-1: PIC16F84A PINOUT DESCRIPTION PDIP No. SOIC No. SSOP No. I/O/P Type OSC1/CLKIN 16 16 18 I OSC2/CLKOUT 15 15 19 O — Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. In RC mode, OSC2 pin outputs CLKOUT, which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate. MCLR 4 4 4 I/P ST Master Clear (Reset) input/programming voltage input. This pin is an active low RESET to the device. Pin Name Buffer Type Description ST/CMOS(3) Oscillator crystal input/external clock source input. PORTA is a bi-directional I/O port. RA0 17 17 19 I/O TTL RA1 18 18 20 I/O TTL RA2 1 1 1 I/O TTL RA3 2 2 2 I/O TTL RA4/T0CKI 3 3 3 I/O ST Can also be selected to be the clock input to the TMR0 timer/counter. Output is open drain type. PORTB is a bi-directional I/O port. PORTB can be software programmed for internal weak pull-up on all inputs. RB0/INT 6 6 7 I/O TTL/ST(1) RB1 7 7 8 I/O TTL RB2 8 8 9 I/O TTL RB3 9 9 10 I/O TTL RB4 10 10 11 I/O TTL RB5 11 11 12 I/O TTL RB0/INT can also be selected as an external interrupt pin. Interrupt-on-change pin. Interrupt-on-change pin. (2) Interrupt-on-change pin. Serial programming clock. RB6 12 12 13 I/O TTL/ST RB7 13 13 14 I/O TTL/ST(2) VSS 5 5 5,6 P — Ground reference for logic and I/O pins. VDD 14 14 15,16 P — Positive supply for logic and I/O pins. Interrupt-on-change pin. Serial programming data. Legend: I= input O = Output I/O = Input/Output P = Power — = Not used TTL = TTL input ST = Schmitt Trigger input Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt. 2: This buffer is a Schmitt Trigger input when used in Serial Programming mode. 3: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise. DS35007C-page 4  2001-2013 Microchip Technology Inc. PIC16F84A MEMORY ORGANIZATION There are two memory blocks in the PIC16F84A. These are the program memory and the data memory. Each block has its own bus, so that access to each block can occur during the same oscillator cycle. The data memory can further be broken down into the general purpose RAM and the Special Function Registers (SFRs). The operation of the SFRs that control the “core” are described here. The SFRs used to control the peripheral modules are described in the section discussing each individual peripheral module. The data memory area also contains the data EEPROM memory. This memory is not directly mapped into the data memory, but is indirectly mapped. That is, an indirect address pointer specifies the address of the data EEPROM memory to read/write. The 64 bytes of data EEPROM memory have the address range 0h-3Fh. More details on the EEPROM memory can be found in Section 3.0. FIGURE 2-1: PROGRAM MEMORY MAP AND STACK - PIC16F84A PC 13 CALL, RETURN RETFIE, RETLW Stack Level 1    Stack Level 8 RESET Vector 0000h Peripheral Interrupt Vector 0004h User Memory Space 2.0 Additional information on device memory may be found in the PIC® Mid-Range Reference Manual, (DS33023). 2.1 Program Memory Organization The PIC16FXX has a 13-bit program counter capable of addressing an 8K x 14 program memory space. For the PIC16F84A, the first 1K x 14 (0000h-03FFh) are physically implemented (Figure 2-1). Accessing a location above the physically implemented address will cause a wraparound. For example, for locations 20h, 420h, 820h, C20h, 1020h, 1420h, 1820h, and 1C20h, the instruction will be the same. 3FFh 1FFFh The RESET vector is at 0000h and the interrupt vector is at 0004h.  2001-2013 Microchip Technology Inc. DS35007C-page 5 PIC16F84A 2.2 Data Memory Organization The data memory is partitioned into two areas. The first is the Special Function Registers (SFR) area, while the second is the General Purpose Registers (GPR) area. The SFRs control the operation of the device. Portions of data memory are banked. This is for both the SFR area and the GPR area. The GPR area is banked to allow greater than 116 bytes of general purpose RAM. The banked areas of the SFR are for the registers that control the peripheral functions. Banking requires the use of control bits for bank selection. These control bits are located in the STATUS Register. Figure 2-2 shows the data memory map organization. Instructions MOVWF and MOVF can move values from the W register to any location in the register file (“F”), and vice-versa. The entire data memory can be accessed either directly using the absolute address of each register file or indirectly through the File Select Register (FSR) (Section 2.5). Indirect addressing uses the present value of the RP0 bit for access into the banked areas of data memory. Data memory is partitioned into two banks which contain the general purpose registers and the special function registers. Bank 0 is selected by clearing the RP0 bit (STATUS). Setting the RP0 bit selects Bank 1. Each Bank extends up to 7Fh (128 bytes). The first twelve locations of each Bank are reserved for the Special Function Registers. The remainder are General Purpose Registers, implemented as static RAM. 2.2.1 FIGURE 2-2: REGISTER FILE MAP PIC16F84A File Address File Address 00h Indirect addr.(1) Indirect addr.(1) 80h 01h TMR0 OPTION_REG 81h 02h PCL PCL 82h 03h STATUS STATUS 83h 04h FSR FSR 84h 05h PORTA TRISA 85h 06h PORTB TRISB 86h 07h — — 87h 08h EEDATA EECON1 88h 09h EEADR EECON2(1) 89h 0Ah PCLATH PCLATH 8Ah 0Bh INTCON INTCON 8Bh 8Ch 0Ch 68 General Purpose Registers (SRAM) Mapped (accesses) in Bank 0 4Fh 50h CFh D0h GENERAL PURPOSE REGISTER FILE Each General Purpose Register (GPR) is 8-bits wide and is accessed either directly or indirectly through the FSR (Section 2.5). The GPR addresses in Bank 1 are mapped to addresses in Bank 0. As an example, addressing location 0Ch or 8Ch will access the same GPR. DS35007C-page 6 FFh 7Fh Bank 0 Bank 1 Unimplemented data memory location, read as '0'. Note 1: Not a physical register.  2001-2013 Microchip Technology Inc. PIC16F84A 2.3 Special Function Registers The special function registers can be classified into two sets, core and peripheral. Those associated with the core functions are described in this section. Those related to the operation of the peripheral features are described in the section for that specific feature. The Special Function Registers (Figure 2-2 and Table 2-1) are used by the CPU and Peripheral functions to control the device operation. These registers are static RAM. TABLE 2-1: Addr SPECIAL FUNCTION REGISTER FILE SUMMARY Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on Power-on RESET Details on page Bank 0 00h INDF Uses contents of FSR to address Data Memory (not a physical register) ---- ---- 11 01h TMR0 8-bit Real-Time Clock/Counter xxxx xxxx 20 02h PCL Low Order 8 bits of the Program Counter (PC) 0000 0000 11 0001 1xxx 8 (2) 03h STATUS 04h FSR 05h PORTA(4) 06h PORTB(5) IRP RP1 RP0 TO PD Z DC C RA0 Indirect Data Memory Address Pointer 0 — — — RA4/T0CKI RA3 RA2 RA1 RB7 RB6 RB5 RB4 RB3 RB2 RB1 07h — 08h EEDATA EEPROM Data Register 09h EEADR EEPROM Address Register xxxx xxxx 11 ---x xxxx 16 RB0/INT xxxx xxxx 18 Unimplemented location, read as '0' 0Ah PCLATH — — — 0Bh INTCON GIE EEIE T0IE Write Buffer for upper 5 bits of the PC INTE RBIE T0IF (1) INTF RBIF — — xxxx xxxx 13,14 xxxx xxxx 13,14 ---0 0000 11 0000 000x 10 ---- ---- 11 1111 1111 9 0000 0000 11 0001 1xxx 8 Bank 1 80h INDF 81h OPTION_REG Uses Contents of FSR to address Data Memory (not a physical register) 82h PCL 83h STATUS (2) 84h FSR 85h TRISA 86h TRISB RBPU INTEDG T0CS T0SE PSA PS2 PS1 PS0 PD Z DC C Low order 8 bits of Program Counter (PC) IRP RP1 RP0 TO Indirect data memory address pointer 0 — — — PORTA Data Direction Register PORTB Data Direction Register 87h — 88h EECON1 89h EECON2 Unimplemented location, read as '0' — — — EEIF WRERR WREN WR RD EEPROM Control Register 2 (not a physical register) 0Ah PCLATH — — — 0Bh INTCON GIE EEIE T0IE Write buffer for upper 5 bits of the PC INTE RBIE T0IF (1) INTF RBIF xxxx xxxx 11 ---1 1111 16 1111 1111 18 — — ---0 x000 13 ---- ---- 14 ---0 0000 11 0000 000x 10 Legend: x = unknown, u = unchanged. - = unimplemented, read as '0', q = value depends on condition Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a slave register for PC. The contents of PCLATH can be transferred to the upper byte of the program counter, but the contents of PC are never transferred to PCLATH. 2: The TO and PD status bits in the STATUS register are not affected by a MCLR Reset. 3: Other (non power-up) RESETS include: external RESET through MCLR and the Watchdog Timer Reset. 4: On any device RESET, these pins are configured as inputs. 5: This is the value that will be in the port output latch.  2001-2013 Microchip Technology Inc. DS35007C-page 7 PIC16F84A 2.3.1 STATUS REGISTER Note 1: The IRP and RP1 bits (STATUS) are not used by the PIC16F84A and should be programmed as cleared. Use of these bits as general purpose R/W bits is NOT recommended, since this may affect upward compatibility with future products. The STATUS register contains the arithmetic status of the ALU, the RESET status and the bank select bit for data memory. As with any register, the STATUS register can be the destination for any instruction. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended. 2: The C and DC bits operate as a borrow and digit borrow out bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples. 3: When the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. The specified bit(s) will be updated according to device logic For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as 000u u1uu (where u = unchanged). Only the BCF, BSF, SWAPF and MOVWF instructions should be used to alter the STATUS register (Table 7-2), because these instructions do not affect any status bit. REGISTER 2-1: STATUS REGISTER (ADDRESS 03h, 83h) R/W-0 R/W-0 R/W-0 R-1 R-1 R/W-x R/W-x R/W-x IRP RP1 RP0 TO PD Z DC C bit 7 bit 0 bit 7-6 Unimplemented: Maintain as ‘0’ bit 5 RP0: Register Bank Select bits (used for direct addressing) 01 = Bank 1 (80h - FFh) 00 = Bank 0 (00h - 7Fh) bit 4 TO: Time-out bit 1 = After power-up, CLRWDT instruction, or SLEEP instruction 0 = A WDT time-out occurred bit 3 PD: Power-down bit 1 = After power-up or by the CLRWDT instruction 0 = By execution of the SLEEP instruction bit 2 Z: Zero bit 1 = The result of an arithmetic or logic operation is zero 0 = The result of an arithmetic or logic operation is not zero bit 1 DC: Digit carry/borrow bit (ADDWF, ADDLW,SUBLW,SUBWF instructions) (for borrow, the polarity is reversed) 1 = A carry-out from the 4th low order bit of the result occurred 0 = No carry-out from the 4th low order bit of the result bit 0 C: Carry/borrow bit (ADDWF, ADDLW,SUBLW,SUBWF instructions) (for borrow, the polarity is reversed) 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred Note: A subtraction is executed by adding the two’s complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low order bit of the source register. Legend: DS35007C-page 8 R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ - n = Value at POR ’1’ = Bit is set ’0’ = Bit is cleared x = Bit is unknown  2001-2013 Microchip Technology Inc. PIC16F84A 2.3.2 OPTION REGISTER Note: The OPTION register is a readable and writable register which contains various control bits to configure the TMR0/WDT prescaler, the external INT interrupt, TMR0, and the weak pull-ups on PORTB. REGISTER 2-2: When the prescaler is assigned to the WDT (PSA = '1'), TMR0 has a 1:1 prescaler assignment. OPTION REGISTER (ADDRESS 81h) R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 RBPU INTEDG T0CS T0SE PSA PS2 PS1 PS0 bit 7 bit 0 bit 7 RBPU: PORTB Pull-up Enable bit 1 = PORTB pull-ups are disabled 0 = PORTB pull-ups are enabled by individual port latch values bit 6 INTEDG: Interrupt Edge Select bit 1 = Interrupt on rising edge of RB0/INT pin 0 = Interrupt on falling edge of RB0/INT pin bit 5 T0CS: TMR0 Clock Source Select bit 1 = Transition on RA4/T0CKI pin 0 = Internal instruction cycle clock (CLKOUT) bit 4 T0SE: TMR0 Source Edge Select bit 1 = Increment on high-to-low transition on RA4/T0CKI pin 0 = Increment on low-to-high transition on RA4/T0CKI pin bit 3 PSA: Prescaler Assignment bit 1 = Prescaler is assigned to the WDT 0 = Prescaler is assigned to the Timer0 module bit 2-0 PS2:PS0: Prescaler Rate Select bits Bit Value TMR0 Rate WDT Rate 000 001 010 011 100 101 110 111 1:2 1:4 1:8 1 : 16 1 : 32 1 : 64 1 : 128 1 : 256 1:1 1:2 1:4 1:8 1 : 16 1 : 32 1 : 64 1 : 128 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ - n = Value at POR ’1’ = Bit is set ’0’ = Bit is cleared  2001-2013 Microchip Technology Inc. x = Bit is unknown DS35007C-page 9 PIC16F84A 2.3.3 INTCON REGISTER Note: The INTCON register is a readable and writable register that contains the various enable bits for all interrupt sources. REGISTER 2-3: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON). INTCON REGISTER (ADDRESS 0Bh, 8Bh) R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-x GIE EEIE T0IE INTE RBIE T0IF INTF RBIF bit 7 bit 0 bit 7 GIE: Global Interrupt Enable bit 1 = Enables all unmasked interrupts 0 = Disables all interrupts bit 6 EEIE: EE Write Complete Interrupt Enable bit 1 = Enables the EE Write Complete interrupts 0 = Disables the EE Write Complete interrupt bit 5 T0IE: TMR0 Overflow Interrupt Enable bit 1 = Enables the TMR0 interrupt 0 = Disables the TMR0 interrupt bit 4 INTE: RB0/INT External Interrupt Enable bit 1 = Enables the RB0/INT external interrupt 0 = Disables the RB0/INT external interrupt bit 3 RBIE: RB Port Change Interrupt Enable bit 1 = Enables the RB port change interrupt 0 = Disables the RB port change interrupt bit 2 T0IF: TMR0 Overflow Interrupt Flag bit 1 = TMR0 register has overflowed (must be cleared in software) 0 = TMR0 register did not overflow bit 1 INTF: RB0/INT External Interrupt Flag bit 1 = The RB0/INT external interrupt occurred (must be cleared in software) 0 = The RB0/INT external interrupt did not occur bit 0 RBIF: RB Port Change Interrupt Flag bit 1 = At least one of the RB7:RB4 pins changed state (must be cleared in software) 0 = None of the RB7:RB4 pins have changed state Legend: DS35007C-page 10 R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ - n = Value at POR ’1’ = Bit is set ’0’ = Bit is cleared x = Bit is unknown  2001-2013 Microchip Technology Inc. PIC16F84A 2.4 PCL and PCLATH The program counter (PC) specifies the address of the instruction to fetch for execution. The PC is 13 bits wide. The low byte is called the PCL register. This register is readable and writable. The high byte is called the PCH register. This register contains the PC bits and is not directly readable or writable. If the program counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP. All updates to the PCH register go through the PCLATH register. 2.4.1 STACK The stack allows a combination of up to 8 program calls and interrupts to occur. The stack contains the return address from this branch in program execution. Mid-range devices have an 8 level deep x 13-bit wide hardware stack. The stack space is not part of either program or data space and the stack pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not modified when the stack is PUSHed or POPed. After the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on). 2.5 Indirect Addressing; INDF and FSR Registers The INDF register is not a physical register. Addressing INDF actually addresses the register whose address is contained in the FSR register (FSR is a pointer). This is indirect addressing. EXAMPLE 2-1: INDIRECT ADDRESSING • • • • Register file 05 contains the value 10h Register file 06 contains the value 0Ah Load the value 05 into the FSR register A read of the INDF register will return the value of 10h • Increment the value of the FSR register by one (FSR = 06) • A read of the INDF register now will return the value of 0Ah. Reading INDF itself indirectly (FSR = 0) will produce 00h. Writing to the INDF register indirectly results in a no-operation (although STATUS bits may be affected). A simple program to clear RAM locations 20h-2Fh using indirect addressing is shown in Example 2-2. EXAMPLE 2-2: movlw movwf NEXT clrf incf btfss goto CONTINUE : HOW TO CLEAR RAM USING INDIRECT ADDRESSING 0x20 FSR INDF FSR FSR,4 NEXT ;initialize pointer ;to RAM ;clear INDF register ;inc pointer ;all done? ;NO, clear next ;YES, continue An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS), as shown in Figure 2-3. However, IRP is not used in the PIC16F84A.  2001-2013 Microchip Technology Inc. DS35007C-page 11 PIC16F84A FIGURE 2-3: DIRECT/INDIRECT ADDRESSING Indirect Addressing Direct Addressing RP1 RP0 6 From Opcode 0 IRP (2) 7 (FSR) 0 (2) Bank Select Location Select Bank Select 00 Location Select 01 00h 80h 0Bh 0Ch Addresses map back to Bank 0 Data Memory(1) 4Fh 50h 7Fh (3) (3) Bank 0 Bank 1 FFh Note 1: For memory map detail, see Figure 2-2. 2: Maintain as clear for upward compatibility with future products. 3: Not implemented. DS35007C-page 12  2001-2013 Microchip Technology Inc. PIC16F84A 3.0 DATA EEPROM MEMORY The EEPROM data memory is readable and writable during normal operation (full VDD range). This memory is not directly mapped in the register file space. Instead it is indirectly addressed through the Special Function Registers. There are four SFRs used to read and write this memory. These registers are: The EEPROM data memory allows byte read and write. A byte write automatically erases the location and writes the new data (erase before write). The EEPROM data memory is rated for high erase/write cycles. The write time is controlled by an on-chip timer. The writetime will vary with voltage and temperature as well as from chip to chip. Please refer to AC specifications for exact limits. • • • • EECON1 EECON2 (not a physically implemented register) EEDATA EEADR When the device is code protected, the CPU may continue to read and write the data EEPROM memory. The device programmer can no longer access this memory. EEDATA holds the 8-bit data for read/write, and EEADR holds the address of the EEPROM location being accessed. PIC16F84A devices have 64 bytes of data EEPROM with an address range from 0h to 3Fh. Additional information on the Data EEPROM is available in the PIC® Mid-Range Reference Manual (DS33023). REGISTER 3-1: EECON1 REGISTER (ADDRESS 88h) U-0 U-0 U-0 R/W-0 R/W-x R/W-0 R/S-0 R/S-0 — — — EEIF WRERR WREN WR RD bit 7 bit 0 bit 7-5 Unimplemented: Read as '0' bit 4 EEIF: EEPROM Write Operation Interrupt Flag bit 1 = The write operation completed (must be cleared in software) 0 = The write operation is not complete or has not been started bit 3 WRERR: EEPROM Error Flag bit 1 = A write operation is prematurely terminated (any MCLR Reset or any WDT Reset during normal operation) 0 = The write operation completed bit 2 WREN: EEPROM Write Enable bit 1 = Allows write cycles 0 = Inhibits write to the EEPROM bit 1 WR: Write Control bit 1 = Initiates a write cycle. The bit is cleared by hardware once write is complete. The WR bit can only be set (not cleared) in software. 0 = Write cycle to the EEPROM is complete bit 0 RD: Read Control bit 1 = Initiates an EEPROM read RD is cleared in hardware. The RD bit can only be set (not cleared) in software. 0 = Does not initiate an EEPROM read Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ - n = Value at POR ’1’ = Bit is set ’0’ = Bit is cleared  2001-2013 Microchip Technology Inc. x = Bit is unknown DS35007C-page 13 PIC16F84A 3.1 Reading the EEPROM Data Memory Additionally, the WREN bit in EECON1 must be set to enable write. This mechanism prevents accidental writes to data EEPROM due to errant (unexpected) code execution (i.e., lost programs). The user should keep the WREN bit clear at all times, except when updating EEPROM. The WREN bit is not cleared by hardware. To read a data memory location, the user must write the address to the EEADR register and then set control bit RD (EECON1). The data is available, in the very next cycle, in the EEDATA register; therefore, it can be read in the next instruction. EEDATA will hold this value until another read or until it is written to by the user (during a write operation). EXAMPLE 3-1: BCF MOVLW MOVWF BSF BSF BCF MOVF 3.2 After a write sequence has been initiated, clearing the WREN bit will not affect this write cycle. The WR bit will be inhibited from being set unless the WREN bit is set. At the completion of the write cycle, the WR bit is cleared in hardware and the EE Write Complete Interrupt Flag bit (EEIF) is set. The user can either enable this interrupt or poll this bit. EEIF must be cleared by software. DATA EEPROM READ STATUS, RP0 CONFIG_ADDR EEADR STATUS, RP0 EECON1, RD STATUS, RP0 EEDATA, W ; ; ; ; ; ; ; Bank 0 Address to read Bank 1 EE Read Bank 0 W = EEDATA 3.3 Depending on the application, good programming practice may dictate that the value written to the Data EEPROM should be verified (Example 3-3) to the desired value to be written. This should be used in applications where an EEPROM bit will be stressed near the specification limit. Writing to the EEPROM Data Memory To write an EEPROM data location, the user must first write the address to the EEADR register and the data to the EEDATA register. Then the user must follow a specific sequence to initiate the write for each byte. Required Sequence EXAMPLE 3-2: Generally, the EEPROM write failure will be a bit which was written as a '0', but reads back as a '1' (due to leakage off the bit). EXAMPLE 3-3: DATA EEPROM WRITE BSF BCF BSF MOVLW STATUS, RP0 INTCON, GIE EECON1, WREN 55h ; Bank 1 ; Disable INTs. ; Enable Write ; MOVWF MOVLW MOVWF BSF EECON2 AAh EECON2 EECON1,WR BSF INTCON, GIE ; ; ; ; ; ; Address WRITE VERIFY BCF STATUS,RP0 ; Bank 0 : ; Any code : ; can go here MOVF EEDATA,W ; Must be in Bank 0 BSF STATUS,RP0 ; Bank 1 Write 55h READ BSF ; YES, Read the ; value written BCF STATUS, RP0 ; Bank 0 ; ; Is the value written ; (in W reg) and ; read (in EEDATA) ; the same? ; SUBWF EEDATA, W ; BTFSS STATUS, Z ; Is difference 0? GOTO WRITE_ERR ; NO, Write error Write AAh Set WR bit begin write Enable INTs. The write will not initiate if the above sequence is not exactly followed (write 55h to EECON2, write AAh to EECON2, then set WR bit) for each byte. We strongly recommend that interrupts be disabled during this code segment. TABLE 3-1: Write Verify EECON1, RD REGISTERS/BITS ASSOCIATED WITH DATA EEPROM Name Bit 7 Bit 6 Bit 5 08h EEDATA EEPROM Data Register 09h EEADR EEPROM Address Register 88h EECON1 89h EECON2 — — — Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on Power-on Reset Value on all other RESETS xxxx xxxx uuuu uuuu xxxx xxxx uuuu uuuu EEIF EEPROM Control Register 2 WRERR WREN WR RD ---0 x000 ---0 q000 ---- ---- ---- ---- Legend: x = unknown, u = unchanged, - = unimplemented, read as '0', q = value depends upon condition. Shaded cells are not used by data EEPROM. DS35007C-page 14  2001-2013 Microchip Technology Inc. PIC16F84A 4.0 I/O PORTS FIGURE 4-1: Some pins for these I/O ports are multiplexed with an alternate function for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin. Additional information on I/O ports may be found in the PIC® Mid-Range Reference Manual (DS33023). 4.1 Data Bus BLOCK DIAGRAM OF PINS RA3:RA0 D Q VDD WR Port Q CK P Data Latch PORTA and TRISA Registers N PORTA is a 5-bit wide, bi-directional port. The corresponding data direction register is TRISA. Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., put the corresponding output driver in a Hi-Impedance mode). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., put the contents of the output latch on the selected pin). Note: Pin RA4 is multiplexed with the Timer0 module clock input to become the RA4/T0CKI pin. The RA4/T0CKI pin is a Schmitt Trigger input and an open drain output. All other RA port pins have TTL input levels and full CMOS output drivers. EXAMPLE 4-1: BSF MOVLW MOVWF WR TRIS Q VSS Q CK TRIS Latch TTL Input Buffer On a Power-on Reset, these pins are configured as inputs and read as '0'. Reading the PORTA register reads the status of the pins, whereas writing to it will write to the port latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read. This value is modified and then written to the port data latch. BCF CLRF D RD TRIS Q Initialize PORTA by clearing output data latches Select Bank 1 Value used to initialize data direction Set RA as inputs RA4 as output TRISA are always read as '0'. D EN RD Port Note: I/O pins have protection diodes to VDD and VSS. FIGURE 4-2: BLOCK DIAGRAM OF PIN RA4 INITIALIZING PORTA STATUS, RP0 ; PORTA ; ; ; STATUS, RP0 ; 0x0F ; ; ; TRISA ; ; ; ; I/O pin Data Bus WR Port D Q CK Q N Data Latch WR TRIS D Q CK Q RA4 pin VSS TRIS Latch Schmitt Trigger Input Buffer RD TRIS Q D EN EN RD Port TMR0 Clock Input Note:  2001-2013 Microchip Technology Inc. I/O pins have protection diodes to VDD and VSS. DS35007C-page 15 PIC16F84A TABLE 4-1: PORTA FUNCTIONS Name Bit0 Buffer Type RA0 RA1 RA2 RA3 RA4/T0CKI bit0 bit1 bit2 bit3 bit4 TTL TTL TTL TTL ST Function Input/output Input/output Input/output Input/output Input/output or external clock input for TMR0. Output is open drain type. Legend: TTL = TTL input, ST = Schmitt Trigger input TABLE 4-2: Address Name SUMMARY OF REGISTERS ASSOCIATED WITH PORTA Bit 7 Bit 6 Bit 5 Bit 4 05h PORTA — — — RA4/T0CKI 85h TRISA — — — TRISA4 Bit 3 Bit 2 Bit 1 Bit 0 RA3 RA2 RA1 RA0 Value on Power-on Reset Value on all other RESETS ---x xxxx ---u uuuu TRISA3 TRISA2 TRISA1 TRISA0 ---1 1111 ---1 1111 Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are unimplemented, read as '0'. DS35007C-page 16  2001-2013 Microchip Technology Inc. PIC16F84A 4.2 PORTB and TRISB Registers PORTB is an 8-bit wide, bi-directional port. The corresponding data direction register is TRISB. Setting a TRISB bit (= 1) will make the corresponding PORTB pin an input (i.e., put the corresponding output driver in a Hi-Impedance mode). Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output (i.e., put the contents of the output latch on the selected pin). EXAMPLE 4-2: BCF CLRF BSF MOVLW MOVWF VDD RBPU(1) Weak P Pull-up Data Latch Data Bus D Q I/O pin(2) WR Port CK TRIS Latch D Initialize PORTB by clearing output data latches Select Bank 1 Value used to initialize data direction Set RB as inputs RB as outputs RB as inputs Four of PORTB’s pins, RB7:RB4, have an interrupt-onchange feature. Only pins configured as inputs can cause this interrupt to occur (i.e., any RB7:RB4 pin configured as an output is excluded from the interrupton-change comparison). The input pins (of RB7:RB4) are compared with the old value latched on the last read of PORTB. The “mismatch” outputs of RB7:RB4 are OR’ed together to generate the RB Port Change Interrupt with flag bit RBIF (INTCON). This interrupt can wake the device from SLEEP. The user, in the Interrupt Service Routine, can clear the interrupt in the following manner: b) BLOCK DIAGRAM OF PINS RB7:RB4 INITIALIZING PORTB STATUS, RP0 ; PORTB ; ; ; STATUS, RP0 ; 0xCF ; ; ; TRISB ; ; ; Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is performed by clearing bit RBPU (OPTION). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset. a) FIGURE 4-3: Any read or write of PORTB. This will end the mismatch condition. Clear flag bit RBIF. WR TRIS TTL Input Buffer CK RD TRIS Latch Q Q From other RB7:RB4 pins D EN RD Port Note 1: 2: TRISB = '1' enables weak pull-up (if RBPU = '0' in the OPTION_REG register). I/O pins have diode protection to VDD and VSS. FIGURE 4-4: BLOCK DIAGRAM OF PINS RB3:RB0 VDD RBPU(1) Data Bus WR Port Weak P Pull-up Data Latch D Q I/O pin(2) CK TRIS Latch D WR TRIS Q TTL Input Buffer CK RD TRIS Q RD Port D EN RB0/INT Schmitt Trigger Buffer Note 1: 2:  2001-2013 Microchip Technology Inc. D EN RD Port Set RBIF A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition and allow flag bit RBIF to be cleared. The interrupt-on-change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt-on-change feature. Polling of PORTB is not recommended while using the interrupt-on-change feature. Q RD Port TRISB = '1' enables weak pull-up (if RBPU = '0' in the OPTION_REG register). I/O pins have diode protection to VDD and VSS. DS35007C-page 17 PIC16F84A TABLE 4-3: PORTB FUNCTIONS Name RB0/INT Bit Buffer Type bit0 TTL/ST(1) I/O Consistency Function Input/output pin or external interrupt input. Internal software programmable weak pull-up. RB1 bit1 TTL Input/output pin. Internal software programmable weak pull-up. RB2 bit2 TTL Input/output pin. Internal software programmable weak pull-up. RB3 bit3 TTL Input/output pin. Internal software programmable weak pull-up. RB4 bit4 TTL Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up. RB5 bit5 TTL Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up. Input/output pin (with interrupt-on-change). RB6 bit6 TTL/ST(2) Internal software programmable weak pull-up. Serial programming clock. Input/output pin (with interrupt-on-change). RB7 bit7 TTL/ST(2) Internal software programmable weak pull-up. Serial programming data. Legend: TTL = TTL input, ST = Schmitt Trigger. Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt. 2: This buffer is a Schmitt Trigger input when used in Serial Programming mode. TABLE 4-4: Address SUMMARY OF REGISTERS ASSOCIATED WITH PORTB Name 06h PORTB 86h TRISB 81h OPTION_REG 0Bh,8Bh INTCON Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 RB7 RB6 RB5 RB4 RB3 RB2 RB1 TRISB7 TRISB6 TRISB5 TRISB4 TRISB3 TRISB2 TRISB1 Bit 0 Value on Power-on Reset Value on all other RESETS RB0/INT xxxx xxxx uuuu uuuu TRISB0 1111 1111 1111 1111 RBPU INTEDG T0CS T0SE PSA PS2 PS1 PS0 1111 1111 1111 1111 GIE EEIE T0IE INTE RBIE T0IF INTF RBIF 0000 000x 0000 000u Legend: x = unknown, u = unchanged. Shaded cells are not used by PORTB. DS35007C-page 18  2001-2013 Microchip Technology Inc. PIC16F84A 5.0 TIMER0 MODULE Additional information on external clock requirements is available in the PIC® Mid-Range Reference Manual, (DS33023). The Timer0 module timer/counter has the following features: • • • • • • 5.2 8-bit timer/counter Readable and writable Internal or external clock select Edge select for external clock 8-bit software programmable prescaler Interrupt-on-overflow from FFh to 00h An 8-bit counter is available as a prescaler for the Timer0 module, or as a postscaler for the Watchdog Timer, respectively (Figure 5-2). For simplicity, this counter is being referred to as “prescaler” throughout this data sheet. Note that there is only one prescaler available which is mutually exclusively shared between the Timer0 module and the Watchdog Timer. Thus, a prescaler assignment for the Timer0 module means that there is no prescaler for the Watchdog Timer, and vice-versa. Figure 5-1 is a simplified block diagram of the Timer0 module. Additional information on timer modules is available in the PIC® Mid-Range Reference Manual (DS33023). 5.1 The prescaler is not readable or writable. The PSA and PS2:PS0 bits (OPTION_REG) determine the prescaler assignment and prescale ratio. Timer0 Operation Timer0 can operate as a timer or as a counter. Clearing bit PSA will assign the prescaler to the Timer0 module. When the prescaler is assigned to the Timer0 module, prescale values of 1:2, 1:4, ..., 1:256 are selectable. Timer mode is selected by clearing bit T0CS (OPTION_REG). In Timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If the TMR0 register is written, the increment is inhibited for the following two instruction cycles. The user can work around this by writing an adjusted value to the TMR0 register. Setting bit PSA will assign the prescaler to the Watchdog Timer (WDT). When the prescaler is assigned to the WDT, prescale values of 1:1, 1:2, ..., 1:128 are selectable. When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g., CLRF 1, MOVWF 1, BSF 1,etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the WDT. Counter mode is selected by setting bit T0CS (OPTION_REG). In Counter mode, Timer0 will increment, either on every rising or falling edge of pin RA4/T0CKI. The incrementing edge is determined by the Timer0 Source Edge Select bit, T0SE (OPTION_REG). Clearing bit T0SE selects the rising edge. Restrictions on the external clock input are discussed below. Note: When an external clock input is used for Timer0, it must meet certain requirements. The requirements ensure the external clock can be synchronized with the internal phase clock (TOSC). Also, there is a delay in the actual incrementing of Timer0 after synchronization. FIGURE 5-1: Prescaler Writing to TMR0 when the prescaler is assigned to Timer0 will clear the prescaler count, but will not change the prescaler assignment. TIMER0 BLOCK DIAGRAM Data Bus FOSC/4 0 PSOUT 1 1 Programmable Prescaler RA4/T0CKI pin 0 8 Sync with Internal Clocks TMR0 PSOUT (2 Cycle Delay) T0SE 3 PS2, PS1, PS0 PSA T0CS Set Interrupt Flag bit T0IF on Overflow Note 1: T0CS, T0SE, PSA, PS2:PS0 (OPTION_REG). 2: The prescaler is shared with Watchdog Timer (refer to Figure 5-2 for detailed block diagram).  2001-2013 Microchip Technology Inc. DS35007C-page 19 PIC16F84A 5.2.1 SWITCHING PRESCALER ASSIGNMENT 5.3 The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h. This overflow sets bit T0IF (INTCON). The interrupt can be masked by clearing bit T0IE (INTCON). Bit T0IF must be cleared in software by the Timer0 module Interrupt Service Routine before re-enabling this interrupt. The TMR0 interrupt cannot awaken the processor from SLEEP since the timer is shut-off during SLEEP. The prescaler assignment is fully under software control (i.e., it can be changed “on the fly” during program execution). Note: To avoid an unintended device RESET, a specific instruction sequence (shown in the PIC® Mid-Range Reference Manual, DS33023) must be executed when changing the prescaler assignment from Timer0 to the WDT. This sequence must be followed even if the WDT is disabled. FIGURE 5-2: Timer0 Interrupt BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER CLKOUT (= FOSC/4) Data Bus 0 RA4/T0CKI pin 8 M U X 1 M U X 0 1 SYNC 2 Cycles TMR0 reg T0SE T0CS 0 1 Watchdog Timer Set Flag bit T0IF on Overflow PSA 8-bit Prescaler M U X 8 8 - to - 1 MUX PS2:PS0 PSA 1 0 WDT Enable bit MUX PSA WDT Time-out Note: T0CS, T0SE, PSA, PS2:PS0 are (OPTION_REG). TABLE 5-1: Address REGISTERS ASSOCIATED WITH TIMER0 Name 01h TMR0 0Bh,8Bh INTCON 81h OPTION_REG 85h TRISA Bit 7 Bit 6 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on POR, BOR xxxx xxxx uuuu uuuu T0IE INTE RBIE T0IF INTF RBIF 0000 000x 0000 000u T0CS T0SE PSA PS2 PS1 PS0 1111 1111 1111 1111 ---1 1111 ---1 1111 Bit 5 Timer0 Module Register GIE EEIE RBPU INTEDG — — — PORTA Data Direction Register Value on all other RESETS Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Timer0. DS35007C-page 20  2001-2013 Microchip Technology Inc. PIC16F84A 6.0 SPECIAL FEATURES OF THE CPU the chip in RESET until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only. This design keeps the device in RESET while the power supply stabilizes. With these two timers on-chip, most applications need no external RESET circuitry. What sets a microcontroller apart from other processors are special circuits to deal with the needs of real time applications. The PIC16F84A has a host of such features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection. These features are: SLEEP mode offers a very low current power-down mode. The user can wake-up from SLEEP through external RESET, Watchdog Timer Time-out or through an interrupt. Several oscillator options are provided to allow the part to fit the application. The RC oscillator option saves system cost while the LP crystal option saves power. A set of configuration bits are used to select the various options. • OSC Selection • RESET - Power-on Reset (POR) - Power-up Timer (PWRT) - Oscillator Start-up Timer (OST) • Interrupts • Watchdog Timer (WDT) • SLEEP • Code Protection • ID Locations • In-Circuit Serial Programming™ (ICSP™) Additional information on special features is available in the PIC® Mid-Range Reference Manual (DS33023). 6.1 The configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. These bits are mapped in program memory location 2007h. The PIC16F84A has a Watchdog Timer which can be shut-off only through configuration bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep REGISTER 6-1: R/P-u CP Address 2007h is beyond the user program memory space and it belongs to the special test/configuration memory space (2000h - 3FFFh). This space can only be accessed during programming. PIC16F84A CONFIGURATION WORD R/P-u R/P-u R/P-u CP Configuration Bits CP CP R/P-u R/P-u R/P-u R/P-u R/P-u CP CP CP CP bit13 CP R/P-u CP R/P-u R/P-u PWRTE WDTE R/P-u R/P-u F0SC1 F0SC0 bit0 bit 13-4 CP: Code Protection bit 1 = Code protection disabled 0 = All program memory is code protected bit 3 PWRTE: Power-up Timer Enable bit 1 = Power-up Timer is disabled 0 = Power-up Timer is enabled bit 2 WDTE: Watchdog Timer Enable bit 1 = WDT enabled 0 = WDT disabled bit 1-0 FOSC1:FOSC0: Oscillator Selection bits 11 = RC oscillator 10 = HS oscillator 01 = XT oscillator 00 = LP oscillator  2001-2013 Microchip Technology Inc. DS35007C-page 21 PIC16F84A 6.2 Oscillator Configurations 6.2.1 FIGURE 6-2: OSCILLATOR TYPES The PIC16F84A can be operated in four different oscillator modes. The user can program two configuration bits (FOSC1 and FOSC0) to select one of these four modes: • • • • LP XT HS RC 6.2.2 EXTERNAL CLOCK INPUT OPERATION (HS, XT OR LP OSC CONFIGURATION) Low Power Crystal Crystal/Resonator High Speed Crystal/Resonator Resistor/Capacitor In XT, LP, or HS modes, a crystal or ceramic resonator is connected to the OSC1/CLKIN and OSC2/CLKOUT pins to establish oscillation (Figure 6-1). C1(1) CRYSTAL/CERAMIC RESONATOR OPERATION (HS, XT OR LP OSC CONFIGURATION) RF(3) OSC2 C2(1) TABLE 6-1: RS(2) Mode XT HS Note: To Internal Logic SLEEP PIC16FXX Note 1: See Table 6-1 for recommended values of C1 and C2. 2: A series resistor (RS) may be required for AT strip cut crystals. The PIC16F84A oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in XT, LP, or HS modes, the device can have an external clock source to drive the OSC1/CLKIN pin (Figure 6-2). DS35007C-page 22 OSC2 CAPACITOR SELECTION FOR CERAMIC RESONATORS Ranges Tested: OSC1 XTAL PIC16FXX Open CRYSTAL OSCILLATOR/CERAMIC RESONATORS FIGURE 6-1: OSC1 Clock from Ext. System Note: Freq OSC1/C1 OSC2/C2 455 kHz 47 - 100 pF 47 - 100 pF 2.0 MHz 15 - 33 pF 15 - 33 pF 4.0 MHz 15 - 33 pF 15 - 33 pF 15 - 33 pF 15 - 33 pF 8.0 MHz 10.0 MHz 15 - 33 pF 15 - 33 pF Recommended values of C1 and C2 are identical to the ranges tested in this table. Higher capacitance increases the stability of the oscillator, but also increases the start-up time. These values are for design guidance only. Since each resonator has its own characteristics, the user should consult the resonator manufacturer for the appropriate values of external components. When using resonators with frequencies above 3.5 MHz, the use of HS mode rather than XT mode, is recommended. HS mode may be used at any VDD for which the controller is rated.  2001-2013 Microchip Technology Inc. PIC16F84A TABLE 6-2: Mode LP XT HS Note: CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR Freq OSC1/C1 OSC2/C2 32 kHz 68 - 100 pF 68 - 100 pF 200 kHz 15 - 33 pF 15 - 33 pF 100 kHz 100 - 150 pF 100 - 150 pF 2 MHz 15 - 33 pF 15 - 33 pF 4 MHz 15 - 33 pF 15 - 33 pF 4 MHz 15 - 33 pF 15 - 33 pF 20 MHz 15 - 33 pF 15 - 33 pF Higher capacitance increases the stability of the oscillator, but also increases the start-up time. These values are for design guidance only. Rs may be required in HS mode, as well as XT mode, to avoid overdriving crystals with low drive level specification. Since each crystal has its own characteristics, the user should consult the crystal manufacturer for appropriate values of external components. For VDD > 4.5V, C1 = C2  30 pF is recommended. 6.2.3 RC OSCILLATOR For timing insensitive applications, the RC device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (REXT) values, capacitor (CEXT) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types also affects the oscillation frequency, especially for low CEXT values. The user needs to take into account variation, due to tolerance of the external R and C components. Figure 6-3 shows how an R/C combination is connected to the PIC16F84A. FIGURE 6-3: RC OSCILLATOR MODE VDD REXT CEXT PIC16FXX VSS FOSC/4 Recommended values:  2001-2013 Microchip Technology Inc. Internal Clock OSC1 OSC2/CLKOUT 5 k  REXT  100 k CEXT > 20pF DS35007C-page 23 PIC16F84A 6.3 RESET The PIC16F84A differentiates between various kinds of RESET: • • • • • Power-on Reset (POR) MCLR during normal operation MCLR during SLEEP WDT Reset (during normal operation) WDT Wake-up (during SLEEP) Figure 6-4 shows a simplified block diagram of the On-Chip RESET Circuit. The MCLR Reset path has a noise filter to ignore small pulses. The electrical specifications state the pulse width requirements for the MCLR pin. FIGURE 6-4: Some registers are not affected in any RESET condition; their status is unknown on a POR and unchanged in any other RESET. Most other registers are reset to a “RESET state” on POR, MCLR or WDT Reset during normal operation and on MCLR during SLEEP. They are not affected by a WDT Reset during SLEEP, since this RESET is viewed as the resumption of normal operation. Table 6-3 gives a description of RESET conditions for the program counter (PC) and the STATUS register. Table 6-4 gives a full description of RESET states for all registers. The TO and PD bits are set or cleared differently in different RESET situations (Section 6.7). These bits are used in software to determine the nature of the RESET. SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT External Reset MCLR SLEEP WDT Time-out Reset WDT Module VDD Rise Detect S Power-on Reset VDD OST/PWRT OST Chip_Reset 10-bit Ripple Counter R Q OSC1/ CLKIN On-Chip RC Osc(1) PWRT 10-bit Ripple Counter See Table 6-5 Enable PWRT Enable OST Note 1: This is a separate oscillator from the RC oscillator of the CLKIN pin. 2: See Table 6-5. TABLE 6-3: RESET CONDITION FOR PROGRAM COUNTER AND THE STATUS REGISTER Condition Program Counter STATUS Register Power-on Reset 000h 0001 1xxx MCLR during normal operation 000h 000u uuuu MCLR during SLEEP 000h 0001 0uuu WDT Reset (during normal operation) 000h 0000 1uuu PC + 1 uuu0 0uuu WDT Wake-up Interrupt wake-up from SLEEP PC + 1(1) uuu1 0uuu Legend: u = unchanged, x = unknown Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h). DS35007C-page 24  2001-2013 Microchip Technology Inc. PIC16F84A TABLE 6-4: Register RESET CONDITIONS FOR ALL REGISTERS MCLR during: – normal operation – SLEEP WDT Reset during normal operation Wake-up from SLEEP: – through interrupt – through WDT Time-out Address Power-on Reset — xxxx xxxx uuuu uuuu uuuu uuuu INDF 00h ---- ---- ---- ---- ---- ---- TMR0 01h xxxx xxxx uuuu uuuu uuuu uuuu PCL 02h 0000 0000 0000 0000 STATUS 03h 0001 1xxx 000q quuu(3) uuuq quuu(3) FSR 04h xxxx xxxx uuuu uuuu uuuu uuuu PORTA(4) 05h ---x xxxx ---u uuuu ---u uuuu PORTB(5) 06h xxxx xxxx uuuu uuuu uuuu uuuu EEDATA 08h xxxx xxxx uuuu uuuu uuuu uuuu EEADR 09h xxxx xxxx uuuu uuuu uuuu uuuu PCLATH 0Ah ---0 0000 ---0 0000 ---u uuuu INTCON 0Bh 0000 000x 0000 000u uuuu uuuu(1) INDF 80h ---- ---- ---- ---- ---- ---- OPTION_REG 81h 1111 1111 1111 1111 uuuu uuuu PCL 82h 0000 0000 0000 0000 PC + 1(2) STATUS 83h 0001 1xxx 000q quuu(3) uuuq quuu(3) FSR 84h xxxx xxxx uuuu uuuu uuuu uuuu TRISA 85h ---1 1111 ---1 1111 ---u uuuu TRISB 86h 1111 1111 1111 1111 uuuu uuuu EECON1 88h ---0 x000 ---0 q000 ---0 uuuu EECON2 89h ---- ---- ---- ---- ---- ---- PCLATH 8Ah ---0 0000 ---0 0000 ---u uuuu INTCON 8Bh 0000 000x 0000 000u uuuu uuuu(1) W PC + 1(2) Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition Note 1: One or more bits in INTCON will be affected (to cause wake-up). 2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h). 3: Table 6-3 lists the RESET value for each specific condition. 4: On any device RESET, these pins are configured as inputs. 5: This is the value that will be in the port output latch.  2001-2013 Microchip Technology Inc. DS35007C-page 25 PIC16F84A 6.4 Power-on Reset (POR) A Power-on Reset pulse is generated on-chip when VDD rise is detected (in the range of 1.2V - 1.7V). To take advantage of the POR, just tie the MCLR pin directly (or through a resistor) to VDD. This will eliminate external RC components usually needed to create Power-on Reset. A minimum rise time for VDD must be met for this to operate properly. See Electrical Specifications for details. 6.6 Oscillator Start-up Timer (OST) The Oscillator Start-up Timer (OST) provides a 1024 oscillator cycle delay (from OSC1 input) after the PWRT delay ends (Figure 6-6, Figure 6-7, Figure 6-8 and Figure 6-9). This ensures the crystal oscillator or resonator has started and stabilized. The OST time-out (TOST) is invoked only for XT, LP and HS modes and only on Power-on Reset or wake-up from SLEEP. When the device starts normal operation (exits the RESET condition), device operating parameters (voltage, frequency, temperature, etc.) must be met to ensure operation. If these conditions are not met, the device must be held in RESET until the operating conditions are met. When VDD rises very slowly, it is possible that the TPWRT time-out and TOST time-out will expire before VDD has reached its final value. In this case (Figure 6-9), an external Power-on Reset circuit may be necessary (Figure 6-5). For additional information, refer to Application Note AN607, "Power-up Trouble Shooting." FIGURE 6-5: EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD POWER-UP) The POR circuit does not produce an internal RESET when VDD declines. 6.5 Power-up Timer (PWRT) The Power-up Timer (PWRT) provides a fixed 72 ms nominal time-out (TPWRT) from POR (Figures 6-6 through 6-9). The Power-up Timer operates on an internal RC oscillator. The chip is kept in RESET as long as the PWRT is active. The PWRT delay allows the VDD to rise to an acceptable level (possible exception shown in Figure 6-9). A configuration bit, PWRTE, can enable/disable the PWRT. See Register 6-1 for the operation of the PWRTE bit for a particular device. The power-up time delay TPWRT will vary from chip to chip due to VDD, temperature, and process variation. See DC parameters for details. VDD VDD D R R1 MCLR C PIC16FXX Note 1: External Power-on Reset circuit is required only if VDD power-up rate is too slow. The diode D helps discharge the capacitor quickly when VDD powers down. 2: R < 40 k is recommended to make sure that voltage drop across R does not exceed 0.2V (max leakage current spec on MCLR pin is 5 A). A larger voltage drop will degrade VIH level on the MCLR pin. 3: R1 = 100 to 1 k will limit any current flowing into MCLR from external capacitor C, in the event of a MCLR pin breakdown due to ESD or EOS. DS35007C-page 26  2001-2013 Microchip Technology Inc. PIC16F84A FIGURE 6-6: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1 VDD MCLR INTERNAL POR TPWRT PWRT TIME-OUT TOST OST TIME-OUT INTERNAL RESET TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2 FIGURE 6-7: VDD MCLR INTERNAL POR TPWRT PWRT TIME-OUT TOST OST TIME-OUT INTERNAL RESET FIGURE 6-8: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD): FAST VDD RISE TIME VDD MCLR INTERNAL POR TPWRT PWRT TIME-OUT TOST OST TIME-OUT INTERNAL RESET  2001-2013 Microchip Technology Inc. DS35007C-page 27 PIC16F84A FIGURE 6-9: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD): SLOW VDD RISE TIME V1 VDD MCLR INTERNAL POR TPWRT PWRT TIME-OUT TOST OST TIME-OUT INTERNAL RESET When VDD rises very slowly, it is possible that the TPWRT time-out and TOST time-out will expire before VDD has reached its final value. In this example, the chip will reset properly if, and only if, V1  VDD min. 6.7 Time-out Sequence and Power-down Status Bits (TO/PD) On power-up (Figures 6-6 through 6-9), the time-out sequence is as follows: 1. 2. PWRT time-out is invoked after a POR has expired. Then, the OST is activated. The total time-out will vary based on oscillator configuration and PWRTE configuration bit status. For example, in RC mode with the PWRT disabled, there will be no time-out at all. TABLE 6-5: TIME-OUT IN VARIOUS SITUATIONS Power-up Oscillator Configuration XT, HS, LP RC PWRT Enabled PWRT Disabled 72 ms + 1024TOSC 1024TOSC 72 ms — DS35007C-page 28 Since the time-outs occur from the POR pulse, if MCLR is kept low long enough, the time-outs will expire. Then bringing MCLR high, execution will begin immediately (Figure 6-6). This is useful for testing purposes or to synchronize more than one PIC16F84A device when operating in parallel. Table 6-6 shows the significance of the TO and PD bits. Table 6-3 lists the RESET conditions for some special registers, while Table 6-4 lists the RESET conditions for all the registers. TABLE 6-6: TO PD 1 1 0 x x 0 0 1 0 0 1024TOSC 1 1 — 1 0 Wake-up from SLEEP STATUS BITS AND THEIR SIGNIFICANCE Condition Power-on Reset Illegal, TO is set on POR Illegal, PD is set on POR WDT Reset (during normal operation) WDT Wake-up MCLR during normal operation MCLR during SLEEP or interrupt wake-up from SLEEP  2001-2013 Microchip Technology Inc. PIC16F84A 6.8 6.8.1 Interrupts The PIC16F84A has 4 sources of interrupt: • • • • External interrupt RB0/INT pin TMR0 overflow interrupt PORTB change interrupts (pins RB7:RB4) Data EEPROM write complete interrupt The interrupt control register (INTCON) records individual interrupt requests in flag bits. It also contains the individual and global interrupt enable bits. The global interrupt enable bit, GIE (INTCON), enables (if set) all unmasked interrupts or disables (if cleared) all interrupts. Individual interrupts can be disabled through their corresponding enable bits in INTCON register. Bit GIE is cleared on RESET. The “return from interrupt” instruction, RETFIE, exits interrupt routine as well as sets the GIE bit, which re-enables interrupts. The RB0/INT pin interrupt, the RB port change interrupt and the TMR0 overflow interrupt flags are contained in the INTCON register. When an interrupt is responded to, the GIE bit is cleared to disable any further interrupt, the return address is pushed onto the stack and the PC is loaded with 0004h. For external interrupt events, such as the RB0/INT pin or PORTB change interrupt, the interrupt latency will be three to four instruction cycles. The exact latency depends when the interrupt event occurs. The latency is the same for both one and two cycle instructions. Once in the Interrupt Service Routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid infinite interrupt requests. Note: Individual interrupt flag bits are set regardless of the status of their corresponding mask bit or the GIE bit. FIGURE 6-10: INT INTERRUPT External interrupt on RB0/INT pin is edge triggered: either rising if INTEDG bit (OPTION_REG) is set, or falling if INTEDG bit is clear. When a valid edge appears on the RB0/INT pin, the INTF bit (INTCON) is set. This interrupt can be disabled by clearing control bit INTE (INTCON). Flag bit INTF must be cleared in software via the Interrupt Service Routine before re-enabling this interrupt. The INT interrupt can wake the processor from SLEEP (Section 6.11) only if the INTE bit was set prior to going into SLEEP. The status of the GIE bit decides whether the processor branches to the interrupt vector following wake-up. 6.8.2 TMR0 INTERRUPT An overflow (FFh  00h) in TMR0 will set flag bit T0IF (INTCON). The interrupt can be enabled/disabled by setting/clearing enable bit T0IE (INTCON) (Section 5.0). 6.8.3 PORTB INTERRUPT An input change on PORTB sets flag bit RBIF (INTCON). The interrupt can be enabled/disabled by setting/clearing enable bit RBIE (INTCON) (Section 4.2). Note: 6.8.4 For a change on the I/O pin to be recognized, the pulse width must be at least TCY wide. DATA EEPROM INTERRUPT At the completion of a data EEPROM write cycle, flag bit EEIF (EECON1) will be set. The interrupt can be enabled/disabled by setting/clearing enable bit EEIE (INTCON) (Section 3.0). INTERRUPT LOGIC T0IF T0IE INTF INTE Wake-up (If in SLEEP mode) Interrupt to CPU RBIF RBIE EEIF EEIE GIE  2001-2013 Microchip Technology Inc. DS35007C-page 29 PIC16F84A 6.9 Context Saving During Interrupts During an interrupt, only the return PC value is saved on the stack. Typically, users wish to save key register values during an interrupt (e.g., W register and STATUS register). This is implemented in software. The code in Example 6-1 stores and restores the STATUS and W register’s values. The user defined registers, W_TEMP and STATUS_TEMP are the temporary storage locations for the W and STATUS registers values. EXAMPLE 6-1: PUSH ISR POP 6.10 a) b) c) d) e) Stores the W register. Stores the STATUS register in STATUS_TEMP. Executes the Interrupt Service Routine code. Restores the STATUS (and bank select bit) register. Restores the W register. SAVING STATUS AND W REGISTERS IN RAM MOVWF SWAPF MOVWF : : : : SWAPF W_TEMP STATUS, W STATUS_TEMP MOVWF STATUS SWAPF SWAPF W_TEMP, W_TEMP, STATUS_TEMP,W F W ; ; ; : ; ; ; ; ; ; ; ; ; Copy W to TEMP register, Swap status to be saved into W Save status to STATUS_TEMP register Interrupt Service Routine should configure Bank as required Swap nibbles in STATUS_TEMP register and place result into W Move W into STATUS register (sets bank to original state) Swap nibbles in W_TEMP and place result in W_TEMP Swap nibbles in W_TEMP and place result into W Watchdog Timer (WDT) The Watchdog Timer is a free running On-Chip RC Oscillator which does not require any external components. This RC oscillator is separate from the RC oscillator of the OSC1/CLKIN pin. That means that the WDT will run even if the clock on the OSC1/CLKIN and OSC2/CLKOUT pins of the device has been stopped, for example, by execution of a SLEEP instruction. During normal operation, a WDT time-out generates a device RESET. If the device is in SLEEP mode, a WDT wake-up causes the device to wake-up and continue with normal operation. The WDT can be permanently disabled by programming configuration bit WDTE as a '0' (Section 6.1). DS35007C-page 30 Example 6-1 does the following: 6.10.1 WDT PERIOD The WDT has a nominal time-out period of 18 ms, (with no prescaler). The time-out periods vary with temperature, VDD and process variations from part to part (see DC specs). If longer time-out periods are desired, a prescaler with a division ratio of up to 1:128 can be assigned to the WDT under software control by writing to the OPTION_REG register. Thus, time-out periods up to 2.3 seconds can be realized. The CLRWDT and SLEEP instructions clear the WDT and the postscaler (if assigned to the WDT) and prevent it from timing out and generating a device RESET condition. The TO bit in the STATUS register will be cleared upon a WDT time-out.  2001-2013 Microchip Technology Inc. PIC16F84A 6.10.2 WDT PROGRAMMING CONSIDERATIONS It should also be taken into account that under worst case conditions (VDD = Min., Temperature = Max., Max. WDT Prescaler), it may take several seconds before a WDT time-out occurs. FIGURE 6-11: WATCHDOG TIMER BLOCK DIAGRAM From TMR0 Clock Source (Figure 5-2) 0 WDT Timer 1 • M Postscaler U 8 X PS2:PS0 8 - to -1 MUX PSA WDT Enable Bit • To TMR0 (Figure 5-2) 1 0 MUX PSA WDT Time-out Note: PSA and PS2:PS0 are bits in the OPTION_REG register. TABLE 6-7: Addr Name 2007h Config. bits 81h SUMMARY OF REGISTERS ASSOCIATED WITH THE WATCHDOG TIMER Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on Power-on Reset (2) (2) (2) (2) PWRTE(1) WDTE FOSC1 FOSC0 (2) INTEDG T0CS T0SE PSA PS2 PS1 PS0 OPTION_REG RBPU Value on all other RESETS 1111 1111 1111 1111 Legend: x = unknown. Shaded cells are not used by the WDT. Note 1: See Register 6-1 for operation of the PWRTE bit. 2: See Register 6-1 and Section 6.12 for operation of the code and data protection bits.  2001-2013 Microchip Technology Inc. DS35007C-page 31 PIC16F84A 6.11 6.11.2 Power-down Mode (SLEEP) A device may be powered down (SLEEP) and later powered up (wake-up from SLEEP). 6.11.1 SLEEP The Power-down mode is entered by executing the SLEEP instruction. If enabled, the Watchdog Timer is cleared (but keeps running), the PD bit (STATUS) is cleared, the TO bit (STATUS) is set, and the oscillator driver is turned off. The I/O ports maintain the status they had before the SLEEP instruction was executed (driving high, low, or hi-impedance). For the lowest current consumption in SLEEP mode, place all I/O pins at either VDD or VSS, with no external circuitry drawing current from the I/O pins, and disable external clocks. I/O pins that are hi-impedance inputs should be pulled high or low externally to avoid switching currents caused by floating inputs. The T0CKI input should also be at VDD or VSS. The contribution from on-chip pull-ups on PORTB should be considered. The MCLR pin must be at a logic high level (VIHMC). It should be noted that a RESET generated by a WDT time-out does not drive the MCLR pin low. FIGURE 6-12: WAKE-UP FROM SLEEP The device can wake-up from SLEEP through one of the following events: 1. 2. 3. External RESET input on MCLR pin. WDT wake-up (if WDT was enabled). Interrupt from RB0/INT pin, RB port change, or data EEPROM write complete. Peripherals cannot generate interrupts during SLEEP, since no on-chip Q clocks are present. The first event (MCLR Reset) will cause a device RESET. The two latter events are considered a continuation of program execution. The TO and PD bits can be used to determine the cause of a device RESET. The PD bit, which is set on power-up, is cleared when SLEEP is invoked. The TO bit is cleared if a WDT time-out occurred (and caused wake-up). While the SLEEP instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up occurs regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction and then branches to the interrupt address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction. WAKE-UP FROM SLEEP THROUGH INTERRUPT Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 OSC1 TOST(2) CLKOUT(4) INT pin INTF Flag (INTCON) GIE bit (INTCON) Interrupt Latency (Note 2) Processor in SLEEP INSTRUCTION FLOW PC PC Instruction Fetched Inst(PC) = SLEEP Instruction Inst(PC - 1) Executed Note 1: 2: 3: 4: PC+1 PC+2 PC+2 Inst(PC + 1) Inst(PC + 2) SLEEP Inst(PC + 1) PC + 2 Dummy cycle 0004h 0005h Inst(0004h) Inst(0005h) Dummy cycle Inst(0004h) XT, HS, or LP oscillator mode assumed. TOST = 1024TOSC (drawing not to scale). This delay will not be there for RC osc mode. GIE = '1' assumed. In this case after wake-up, the processor jumps to the interrupt routine. If GIE = '0', execution will continue in-line. CLKOUT is not available in these osc modes, but shown here for timing reference. DS35007C-page 32  2001-2013 Microchip Technology Inc. PIC16F84A 6.11.3 WAKE-UP USING INTERRUPTS When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur: • If the interrupt occurs before the execution of a SLEEP instruction, the SLEEP instruction will complete as a NOP. Therefore, the WDT and WDT postscaler will not be cleared, the TO bit will not be set and PD bits will not be cleared. • If the interrupt occurs during or after the execution of a SLEEP instruction, the device will immediately wake-up from SLEEP. The SLEEP instruction will be completely executed before the wake-up. Therefore, the WDT and WDT postscaler will be cleared, the TO bit will be set and the PD bit will be cleared. Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the PD bit. If the PD bit is set, the SLEEP instruction was executed as a NOP. To ensure that the WDT is cleared, a CLRWDT instruction should be executed before a SLEEP instruction. 6.12 Program Verification/Code Protection If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes. 6.13 ID Locations Four memory locations (2000h - 2004h) are designated as ID locations to store checksum or other code identification numbers. These locations are not accessible during normal execution but are readable and writable only during program/verify. Only the four Least Significant bits of ID location are usable. 6.14 In-Circuit Serial Programming PIC16F84A microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data, and three other lines for power, ground, and the programming voltage. Customers can manufacture boards with unprogrammed devices, and then program the microcontroller just before shipping the product, allowing the most recent firmware or custom firmware to be programmed. For complete details of Serial Programming, please refer to the In-Circuit Serial Programming™ (ICSP™) Guide, (DS30277).  2001-2013 Microchip Technology Inc. DS35007C-page 33 PIC16F84A NOTES: DS35007C-page 34  2001-2013 Microchip Technology Inc. PIC16F84A 7.0 INSTRUCTION SET SUMMARY Each PIC16CXX instruction is a 14-bit word, divided into an OPCODE which specifies the instruction type and one or more operands which further specify the operation of the instruction. The PIC16CXX instruction set summary in Table 7-2 lists byte-oriented, bit-oriented, and literal and control operations. Table 7-1 shows the opcode field descriptions. For byte-oriented instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction. The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction. For bit-oriented instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the address of the file in which the bit is located. For literal and control operations, 'k' represents an eight or eleven bit constant or literal value. All instructions are executed within one single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles with the second cycle executed as a NOP. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 s. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is 2 s. Table 7-2 lists the instructions recognized by the MPASM™ Assembler. Figure 7-1 shows the general formats that the instructions can have. Note: To maintain upward compatibility with future PIC16CXX products, do not use the OPTION and TRIS instructions. All examples use the following format to represent a hexadecimal number: 0xhh where h signifies a hexadecimal digit. FIGURE 7-1: TABLE 7-1: OPCODE FIELD DESCRIPTIONS Field Description f Register file address (0x00 to 0x7F) W Working register (accumulator) b Bit address within an 8-bit file register k Literal field, constant data or label x Don't care location (= 0 or 1) The assembler will generate code with x = 0. It is the recommended form of use for compatibility with all Microchip software tools. d Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1 PC Program Counter TO Time-out bit PD Power-down bit The instruction set is highly orthogonal and is grouped into three basic categories: • Byte-oriented operations • Bit-oriented operations • Literal and control operations GENERAL FORMAT FOR INSTRUCTIONS Byte-oriented file register operations 13 8 7 6 OPCODE d f (FILE #) 0 d = 0 for destination W d = 1 for destination f f = 7-bit file register address Bit-oriented file register operations 13 10 9 7 6 OPCODE b (BIT #) 0 f (FILE #) b = 3-bit bit address f = 7-bit file register address Literal and control operations General 13 8 7 OPCODE 0 k (literal) k = 8-bit immediate value CALL and GOTO instructions only 13 11 OPCODE 10 0 k (literal) k = 11-bit immediate value A description of each instruction is available in the PIC® Mid-Range Reference Manual (DS33023).  2001-2013 Microchip Technology Inc. DS35007C-page 35 PIC16F84A TABLE 7-2: PIC16CXXX INSTRUCTION SET Mnemonic, Operands 14-Bit Opcode Description Cycles MSb LSb Status Affected Notes BYTE-ORIENTED FILE REGISTER OPERATIONS ADDWF ANDWF CLRF CLRW COMF DECF DECFSZ INCF INCFSZ IORWF MOVF MOVWF NOP RLF RRF SUBWF SWAPF XORWF f, d f, d f f, d f, d f, d f, d f, d f, d f, d f f, d f, d f, d f, d f, d Add W and f AND W with f Clear f Clear W Complement f Decrement f Decrement f, Skip if 0 Increment f Increment f, Skip if 0 Inclusive OR W with f Move f Move W to f No Operation Rotate Left f through Carry Rotate Right f through Carry Subtract W from f Swap nibbles in f Exclusive OR W with f BCF BSF BTFSC BTFSS f, b f, b f, b f, b Bit Clear f Bit Set f Bit Test f, Skip if Clear Bit Test f, Skip if Set 1 1 1 1 1 1 1 (2) 1 1 (2) 1 1 1 1 1 1 1 1 1 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 dfff dfff lfff 0xxx dfff dfff dfff dfff dfff dfff dfff lfff 0xx0 dfff dfff dfff dfff dfff ffff ffff ffff xxxx ffff ffff ffff ffff ffff ffff ffff ffff 0000 ffff ffff ffff ffff ffff 00bb 01bb 10bb 11bb bfff bfff bfff bfff ffff ffff ffff ffff 111x 1001 0kkk 0000 1kkk 1000 00xx 0000 01xx 0000 0000 110x 1010 kkkk kkkk kkkk 0110 kkkk kkkk kkkk 0000 kkkk 0000 0110 kkkk kkkk kkkk kkkk kkkk 0100 kkkk kkkk kkkk 1001 kkkk 1000 0011 kkkk kkkk 0111 0101 0001 0001 1001 0011 1011 1010 1111 0100 1000 0000 0000 1101 1100 0010 1110 0110 C,DC,Z Z Z Z Z Z Z Z Z C C C,DC,Z Z 1,2 1,2 2 1,2 1,2 1,2,3 1,2 1,2,3 1,2 1,2 1,2 1,2 1,2 1,2 1,2 BIT-ORIENTED FILE REGISTER OPERATIONS 1 1 1 (2) 1 (2) 01 01 01 01 1,2 1,2 3 3 LITERAL AND CONTROL OPERATIONS ADDLW ANDLW CALL CLRWDT GOTO IORLW MOVLW RETFIE RETLW RETURN SLEEP SUBLW XORLW k k k k k k k k k Add literal and W AND literal with W Call subroutine Clear Watchdog Timer Go to address Inclusive OR literal with W Move literal to W Return from interrupt Return with literal in W Return from Subroutine Go into standby mode Subtract W from literal Exclusive OR literal with W 1 1 2 1 2 1 1 2 2 2 1 1 1 11 11 10 00 10 11 11 00 11 00 00 11 11 C,DC,Z Z TO,PD Z TO,PD C,DC,Z Z Note 1: When an I/O register is modified as a function of itself ( e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'. 2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 Module. 3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP. Note: Additional information on the mid-range instruction set is available in the PIC® Mid-Range MCU Family Reference Manual (DS33023). DS35007C-page 36  2001-2013 Microchip Technology Inc. PIC16F84A 7.1 Instruction Descriptions ADDLW Add Literal and W BCF Bit Clear f Syntax: [label] ADDLW Syntax: [label] BCF Operands: 0  f  127 0b7 k f,b Operands: 0  k  255 Operation: (W) + k  (W) Status Affected: C, DC, Z Operation: 0  (f) Description: The contents of the W register are added to the eight-bit literal 'k' and the result is placed in the W register. Status Affected: None Description: Bit 'b' in register 'f' is cleared. ADDWF Add W and f BSF Bit Set f Syntax: [label] ADDWF Syntax: [label] BSF Operands: 0  f  127 d  Operands: 0  f  127 0b7 Operation: (W) + (f)  (destination) Operation: 1  (f) Status Affected: C, DC, Z Status Affected: None Description: Add the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'. Description: Bit 'b' in register 'f' is set. ANDLW AND Literal with W BTFSS Bit Test f, Skip if Set Syntax: [label] ANDLW Syntax: [label] BTFSS f,b Operands: 0  f  127 0b3',3@ 1RWH )RUWKHPRVWFXUUHQWSDFNDJHGUDZLQJVSOHDVHVHHWKH0LFURFKLS3DFNDJLQJ6SHFLILFDWLRQORFDWHGDW KWWSZZZPLFURFKLSFRPSDFNDJLQJ  N NOTE 1 E1 1 2 3 D E A2 A L c A1 b1 b e eB 8QLWV 'LPHQVLRQ/LPLWV 1XPEHURI3LQV ,1&+(6 0,1 1 120 0$;  3LWFK H 7RSWR6HDWLQJ3ODQH $ ± ±  0ROGHG3DFNDJH7KLFNQHVV $    %DVHWR6HDWLQJ3ODQH $  ± ± 6KRXOGHUWR6KRXOGHU:LGWK (    0ROGHG3DFNDJH:LGWK (    2YHUDOO/HQJWK '    7LSWR6HDWLQJ3ODQH /    /HDG7KLFNQHVV F    E    E    H% ± ± 8SSHU/HDG:LGWK /RZHU/HDG:LGWK 2YHUDOO5RZ6SDFLQJ† %6&  1RWHV  3LQYLVXDOLQGH[IHDWXUHPD\YDU\EXWPXVWEHORFDWHGZLWKLQWKHKDWFKHGDUHD  †6LJQLILFDQW&KDUDFWHULVWLF  'LPHQVLRQV'DQG(GRQRWLQFOXGHPROGIODVKRUSURWUXVLRQV0ROGIODVKRUSURWUXVLRQVVKDOOQRWH[FHHGSHUVLGH  'LPHQVLRQLQJDQGWROHUDQFLQJSHU$60(6623@ 1RWH )RUWKHPRVWFXUUHQWSDFNDJHGUDZLQJVSOHDVHVHHWKH0LFURFKLS3DFNDJLQJ6SHFLILFDWLRQORFDWHGDW KWWSZZZPLFURFKLSFRPSDFNDJLQJ D N E E1 NOTE 1 1 2 e b c A2 A φ A1 L1 8QLWV 'LPHQVLRQ/LPLWV 1XPEHURI3LQV L 0,//,0(7(56 0,1 1 120 0$;  3LWFK H 2YHUDOO+HLJKW $ ± %6& ±  0ROGHG3DFNDJH7KLFNQHVV $    6WDQGRII $  ± ± 2YHUDOO:LGWK (    0ROGHG3DFNDJH:LGWK (    2YHUDOO/HQJWK '    )RRW/HQJWK /    )RRWSULQW / 5() /HDG7KLFNQHVV F  ± )RRW$QJOH  ƒ ƒ  ƒ /HDG:LGWK E  ±  1RWHV  3LQYLVXDOLQGH[IHDWXUHPD\YDU\EXWPXVWEHORFDWHGZLWKLQWKHKDWFKHGDUHD  'LPHQVLRQV'DQG(GRQRWLQFOXGHPROGIODVKRUSURWUXVLRQV0ROGIODVKRUSURWUXVLRQVVKDOOQRWH[FHHGPPSHUVLGH  'LPHQVLRQLQJDQGWROHUDQFLQJSHU$60(
PIC16F84A-04I/SO 价格&库存

很抱歉,暂时无法提供与“PIC16F84A-04I/SO”相匹配的价格&库存,您可以联系我们找货

免费人工找货
PIC16F84A-04I/SO
  •  国内价格 香港价格
  • 1+47.649601+5.69871

库存:265

PIC16F84A-04I/SO
  •  国内价格
  • 11+46.84143
  • 21+45.85924

库存:110

PIC16F84A-04I/SO
  •  国内价格
  • 1+51.03347
  • 11+48.99820
  • 21+47.51985

库存:110

PIC16F84A-04I/SO
  •  国内价格
  • 42+55.68723
  • 84+54.57341
  • 420+53.48287

库存:110

PIC16F84A-04I/SO
    •  国内价格
    • 1+37.95358
    • 10+37.10794
    • 30+34.79026
    • 100+34.22650

    库存:10