PIC16(L)F18455/56
28-Pin Full-Featured, Low Pin Count Microcontrollers with
XLP
Description
PIC16(L)F184XX microcontrollers feature Intelligent Analog, Core Independent Peripherals (CIPs) and
communication peripherals combined with eXtreme Low-Power (XLP) for a wide range of general purpose and lowpower applications. Features such as a 12-bit Analog-to-Digital Converter with Computation (ADC2), Memory Access
Partitioning (MAP), the Device Information Area (DIA), Power-Saving operating modes, and Peripheral Pin Select
(PPS), offer flexible solutions for a wide variety of custom applications.
Core Features
•
•
•
•
•
•
•
•
•
•
•
•
C Compiler Optimized RISC Architecture
Operating Speed:
– DC – 32 MHz clock input
– 125 ns minimum instruction cycle
Interrupt Capability
16-Level Deep Hardware Stack
Up to Four 8-Bit Timers
Up to Four 16-Bit Timers
Low-Current Power-on Reset (POR)
Configurable Power-up Timer (PWRT)
Brown-out Reset (BOR)
Low-Power BOR (LPBOR) Option
Windowed Watchdog Timer (WWDT):
– Variable prescaler selection
– Variable window size selection
– All sources configurable in hardware or software
Programmable Code Protection
Memory
•
•
•
•
•
•
•
Up to 28 KB Program Flash Memory
Up to 2 KB Data SRAM Memory
256B Data EEPROM
Direct, Indirect and Relative Addressing Modes
Memory Access Partition (MAP):
– Write-protect
– Customizable partition
Device Information Area (DIA)
Device Characteristics Information (DCI)
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 1
PIC16(L)F18455/56
Operating Characteristics
•
•
Operating Voltage Range:
– 1.8V to 3.6V (PIC16LF184XX)
– 2.3V to 5.5V (PIC16F184XX)
Temperature Range:
– Industrial: -40°C to 85°C
– Extended: -40°C to 125°C
eXtreme Low-Power (XLP) Features
•
•
•
•
•
Doze: CPU and Peripherals Running at Different Cycle Rates (Typically CPU is Lower)
Idle: CPU Halted While Peripherals Operate
Sleep: Lowest Power Consumption
Peripheral Module Disable (PMD):
– Ability to selectively disable hardware module to minimize active power consumption of unused peripherals
Extreme Low-Power Mode (XLP)
– Sleep: 500 nA typical @ 1.8V
– Sleep and Watchdog Timer: 900 nA typical @ 1.8V
Power-Saving Operation Modes
•
•
•
•
Sleep Mode: 50 nA @ 1.8V, Typical
Watchdog Timer: 500 nA @ 1.8V, Typical
Secondary Oscillator: 500 nA @ 32 kHz
Operating Current:
– 8 uA @ 32 kHz, 1.8V, typical
– 32 uA/MHz @ 1.8V, typical
Digital Peripherals
•
•
•
•
•
Configurable Logic Cell (CLC):
– Four CLCs
– Integrated combinational and sequential logic
Complementary Waveform Generator (CWG):
– Three CWGs
– Rising and falling edge dead-band control
– Full-bridge, half-bridge, 1-channel drive
– Multiple signal sources
Capture/Compare/PWM (CCP) Modules:
– Five CCPs
– 16-bit resolution for Capture/Compare modes
– 10-bit resolution for PWM mode
Pulse-Width Modulators (PWM):
– Two 10-bit PWMs
Numerically Controlled Oscillator (NCO):
– Precision linear frequency generator (@50% duty cycle) with 0.0001% step size of source input clock
– Input Clock: 0 Hz < fNCO < 32 MHz
– Resolution: fNCO/220
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 2
PIC16(L)F18455/56
•
•
•
•
•
Serial Communications:
– EUSART
• Two EUSART(s)
• RS-232, RS-485, LIN compatible
• Auto-Baud Detect, Auto-wake-up on Start.
– Master Synchronous Serial Port (MSSP)
• Two MSSP(s)
• SPI
• I2C, SMBus and PMBus™ compatible
Data Signal Modulator (DSM):
– Modulates a carrier signal with digital data to create custom carrier synchronized output waveforms
Up to 26 I/O Pins:
– Individually programmable pull-ups
– Slew rate control
– Interrupt-on-change with edge-select
– Input level selection control (ST or TTL)
– Digital open-drain enable
Peripheral Pin Select (PPS):
– I/O pin remapping of digital peripherals
Timer Modules:
– Timer0:
• 8/16-bit timer/counter
• Synchronous or asynchronous operation
• Programmable prescaler/postscaler
• Time base for capture/compare function
– Timer1/3/5 with gate control:
• 16-bit timer/counter
• Programmable internal or external clock sources
• Multiple gate sources
• Multiple gate modes
• Time base for capture/compare function
– Timer2/4/6 with Hardware Limit Timer:
• 8-bit timers
• Programmable prescaler/postscaler
• Time base for PWM function
• Hardware Limit (HLT) and one-shot extensions
• Selectable clock sources
– Signal Measurement Timer (SMT):
• Two SMT(s)
• 24-bit timer/counter with programmable prescaler
Analog Peripherals
•
12-bit Analog-to-Digital Converter with Computation (ADC2):
– up to 140 ksps
– up to 24 external channels
– Conversion available during Sleep
– Automated post-processing
– Automated math functions on input signals:
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 3
PIC16(L)F18455/56
•
•
•
•
•
• Averaging, filter calculations, oversampling and threshold comparison
– Integrated charge pump for low-voltage operation
– CVD support
Zero-Cross Detect (ZCD):
– AC high voltage zero-crossing detection
– Synchronized switching control and timing
Temperature Sensor Circuit
Comparator:
– Two Comparators
– Fixed Voltage Reference at (non)inverting input(s)
– Comparator outputs externally accessible
Digital-to-Analog Converter (DAC):
– 5-bit resolution, rail-to-rail
– Positive Reference Selection
– Unbuffered I/O pin output
– Internal connections to ADC2 and comparators
Fixed Voltage Reference with 1.024V, 2.048V and 4.096V Output Levels
Flexible Oscillator Structure
•
•
•
•
•
•
•
•
High-Precision Internal Oscillator:
– Software-selectable frequency range up to 32 MHz
– ±2% at calibration (nominal)
4x PLL for use with External Sources:
– up to 32 MHz (4-8 MHz input)
2x PLL for use with the HFINTOSC:
– up to 32 MHz
Low-Power Internal 31 kHz Oscillator (LFINTOSC)
External 32.768 kHz Crystal Oscillator (SOCS)
External Oscillator Block with:
– Three crystal/resonator modes up to 20 MHz
– Three external clock modes up to 32 MHz
Fail-Safe Clock Monitor:
– Detects clock source failure
Oscillator Start-up Timer (OST):
– Ensures stability of crystal oscillator sources
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 4
PIC16(L)F18455/56
PIC16(L)F184XX Family Types
NCO
EUSART
MSSP (I2C/SPI)
CLC
DSM
PPS
XLP
PMD
WWDT
MAP
DIA
ICD(2)
Clock Ref
4/4
4/4
PWM
CWG
1
1
CCP
Comparators
3
3
Timers (8/16-bit)
5-bit DAC
2
2
I/O’s(1)
1
1
RAM (B)
8 14 256 1024 26 24
16 28 256 2048 26 24
EEPROM (B)
12-bit ADC2 (ch)
PIC16(L)F18455
PIC16(L)F18456
Program Flash Memory (Kbytes)
Device
Program Flash Memory (KW)
Table 1. Devices Included In This Data Sheet
5
5
2
2
1
1
2
2
2
2
4
4
1
1
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
I
I
Note:
1. One pin is input-only.
2. Debugging Methods: (I) - Integrated on Chip; (E) - using Emulation Header.
DSM
PPS
XLP
PMD
WWDT
MAP
DIA
ICD(2)
4/4
4/4
4/4
4/4
4/4
4/4
CLC
1
1
1
1
1
1
MSSP (I2C/SPI)
2
2
2
2
2
2
EUSART
2
2
2
2
2
2
NCO
1
1
1
1
1
1
PWM
Clock Ref
11
11
11
17
17
17
CCP
CWG
12
12
12
18
18
18
Timers (8/16-bit)
Comparators
512
1024
2048
512
1024
2048
5-bit DAC
256
256
256
256
256
256
12-bit ADC2 (ch)
7
14
28
7
14
28
I/O’s(1)
EEPROM (B)
4
8
16
4
8
16
RAM (B)
Program Flash Memory (Kbytes)
PIC16(L)F18424
PIC16(L)F18425
PIC16(L)F18426
PIC16(L)F18444
PIC16(L)F18445
PIC16(L)F18446
Program Flash Memory (Words)
Device
Table 2. Devices Not Included In This Data Sheet
4
4
4
4
4
4
2
2
2
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
1
2
2
4
4
4
4
4
4
1
1
1
1
1
1
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
I
I
I
I
I
I
Data Sheet Index:
1.
2.
3.
DS40001985A, PIC16(L)F18426/46 Data Sheet, 14/20-Pin Full-Featured, Low Pin Count Microcontrollers with
XLP
DS40002000A, PIC16(L)F18424/44 Data Sheet, 14/20-Pin Full-Featured, Low Pin Count Microcontrollers with
XLP
DS40002002A, PIC16(L)F18425/45 Data Sheet, 14/20-Pin Full-Featured, Low Pin Count Microcontrollers with
XLP
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 5
PIC16(L)F18455/56
Packages
Packages
PIC16(L)F18455
PIC16(L)F18456
SPDIP
SOIC
SSOP
●
●
●
●
●
●
VQFN
(4x4)
●
●
Note: Pin details are subject to change.
Important: For other small form-factor package availability and marking information, visit
www.microchip.com/ packaging or contact your local sales office.
00-000028A.vsd
Pin Diagrams
Filename:
Title:
Last Edit:
First Used:
Notes:
28-pin DIP
10/3/2018
N/A
Generic 28-pin dual in-line diagram
28-Pin Diagrams
Figure 1. 28-pin SPDIP, SSOP, SOIC
Rev. 00-000028A
10/3/2018
MCLR/VPP/RE3
RA0
RA1
RA2
RA3
RA4
RA5
VSS
RA7
RA6
RC0
RC1
RC2
RC3
© 2019 Microchip Technology Inc.
28
27
26
25
24
23
22
21
20
19
18
17
16
15
1
2
3
4
5
6
7
8
9
10
11
12
13
14
Datasheet
RB7/ICSPDAT
RB6/ICSPCLK
RB5
RB4
RB3
RB2
RB1
RB0
VDD
VSS
RC7
RC6
RC5
RC4
DS40002038C-page 6
PIC16(L)F18455/56
RA1
RA0
RE3/MCLR/VPP
RB7/ICSPDAT
RB6/ICSPCLK
RB5
RB4
Figure 2. 28-pin VQFN
Rev. 00-000028B
6/23/2017
28 27 26 25 24 23 22
RA2
RA3
RA4
RA5
VSS
RA7
RA6
1
21 RB3
20 RB2
2
3
19 RB1
18 RB0
4
5
17 VDD
16 VSS
6
7
15 RC7
RC0
RC1
RC2
RC3
RC4
RC5
RC6
8 9 10 11 12 13 14
Note: It is recommended that the exposed bottom pad be connected to VSS.
See Table 3 for more information.
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 7
PIC16(L)F18455/56
Pin Allocation Tables
Pull-up
—
—
—
—
—
—
—
—
—
CLCIN0(1)
—
IOCA0
Y
—
RA1
3
28
ANA1
—
C1IN1C2IN1-
—
—
—
—
—
—
—
—
—
—
CLCIN1(1)
—
IOCA1
Y
—
RA2
4
1
ANA2
ADCVREF-
C1IN0+
C2IN0+
—
DAC1VREFDAC1OUT1
—
—
—
—
—
—
—
—
—
—
IOCA2
Y
—
—
CLC
ZCD
CWG
CCP
DSM
DAC
NCO
Reference
ADC
Basic
Interrupts
—
CLKR
C1IN0C2IN0-
EUSART
—
MSSP
ANA0
PWM
27
Timers
2
Comparator
28-pin VQFN
RA0
I/O
28-pin SPDIP/SOIC/SSOP
Table 3. 28-Pin Allocation Table
RA3
5
2
ANA3
ADCVREF+
C1IN1+
—
DAC1VREF+
MDCARL(1)
—
—
—
—
—
—
—
—
—
IOCA3
Y
RA4
6
3
ANA4
—
—
—
—
MDCARH(1)
T0CKI(1)
CCP5IN(1)
—
—
—
—
—
—
—
IOCA4
Y
—
RA5
7
4
ANA5
—
—
—
—
MDSRC(1)
—
—
—
—
SS1(1)
—
—
—
—
IOCA5
Y
—
RA6
10
7
ANA6
—
—
—
—
—
—
—
—
—
—
—
—
—
—
IOCA6
Y
OSC2
CLKOUT
RA7
9
6
ANA7
—
—
—
—
—
—
—
—
—
—
—
—
—
—
IOCA7
Y
OSC1
CLKIN
RB0
21
18
ANB0
—
C2IN1+
—
—
—
—
CCP4IN(1)
—
CWG1IN(1)
—
ZCD1
—
—
—
IOCB0
Y
INT(1)
SCK1(1)
SCL1(1,3,4)
—
—
—
—
IOCB1
Y
—
RB1
22
19
ANB1
—
C1IN3C2IN3-
—
—
—
—
—
—
CWG2IN(1)
RB2
23
20
ANB2
—
—
—
—
—
—
—
—
CWG3IN(1)
SDI1(1)
SDA1(1,3,4)
SS1(1)
—
—
—
—
IOCB2
Y
—
RB3
24
21
ANB3
—
C1IN2C2IN2-
—
—
—
—
—
—
—
—
—
—
—
—
IOCB3
Y
—
RB4
25
22
ANB4
ADACT(1)
—
—
—
—
—
T5G(1)
SMT2WIN(1)
—
—
—
—
—
—
—
—
IOCB4
Y
—
CCP3IN(1)
—
—
—
—
—
—
—
IOCB5
Y
—
T1G(1)
RB5
26
23
ANB5
—
—
—
—
—
SMT2SIG(1)
RB6
27
24
ANB6
—
—
—
—
—
—
—
—
—
SDI2(1)
SDA2(1,3,4)
SS2(1)
—
CK2(1,3)
CLCIN2(1)
—
IOCB6
Y
ICSPCLK
ICDCLK
RB7
28
25
ANB7
—
—
—
DAC1OUT2
—
T6IN(1)
—
—
—
SCK2(1)
SCL2(1,3,4)
—
RX2(1)
DT2(1,3)
—
—
IOCB7
Y
ICSPDAT
ICDDAT
RC0
11
8
ANC0
—
—
—
—
—
T1CKI(1)
T3CKI(1)
T3G(1)
SMT1WIN(1)
—
—
—
—
—
—
—
—
IOCC0
Y
SOSCO
RC1
12
9
ANC1
—
—
—
—
—
SMT1SIG(1)
CCP2IN(1)
—
—
—
—
—
—
—
IOCC1
Y
SOSCI
RC2
13
10
ANC2
—
—
—
—
—
T5CKI(1)
CCP1IN(1)
—
—
—
—
—
—
—
IOCC2
Y
—
—
—
—
—
IOCC3
Y
—
RC3
14
11
ANC3
—
—
—
—
—
T2IN(1)
—
—
—
SCK1(1)
SCL1(1,3,4)
RC4
15
12
ANC4
—
—
—
—
—
—
—
—
—
SDI1(1)
SDA1(1,3,4)
—
—
—
—
IOCC4
Y
—
RC5
16
13
ANC5
—
—
—
—
—
T4IN(1)
—
—
—
—
—
—
—
—
IOCC5
Y
—
—
CK1(1,3)
—
IOCC6
Y
—
—
IOCC7
Y
—
RC6
17
14
ANC6
—
—
—
—
—
—
—
—
—
—
—
RC7
18
15
ANC7
—
—
—
—
—
—
—
—
—
—
—
—
RX1(1)
DT1(1,3)
RE3
1
26
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
IOCE3
Y
MCLR
VPP
VDD
20
17
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
VDD
VSS
8
5
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
VSS
VSS
19
16
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
VSS
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 8
PIC16(L)F18455/56
—
DSM1OUT
TMR0OUT
CCP1OUT
PWM6OUT
CWG1A
CWG2A
CWG3A
SDO1 SDO2
—
DT1(3)
DT2(3)
CLC1OUT
CLKR
—
—
—
—
—
ADCGRDB
—
C2OUT
—
—
—
—
CCP2OUT
PWM7OUT
CWG1B
CWG2B
CWG3B
SCK1 SCK2
—
CK1(3)
CK2(3)
CLC2OUT
—
—
—
—
—
—
—
—
—
—
—
—
—
CCP3OUT
—
CWG1C
CWG2C
CWG3C
SCL1(3)
SCL2(3)
—
TX1
TX2
CLC3OUT
—
—
—
—
—
—
—
—
—
—
—
—
—
CCP4OUT
—
CWG1D
CWG2D
CWG3D
SDA1(3)
SDA2(3)
—
—
CLC4OUT
—
—
—
—
—
—
—
—
—
—
—
—
—
CCP5OUT
—
—
—
—
—
—
—
—
—
ZCD
CWG
DSM
DAC
NCO
Reference
OUT(2)
Note:
1. Default peripheral input. Input can be moved to any other pin with the PPS input selections registers.
2. All pin outputs default to PORT latch data. Any pin can be selected as a digital peripherals output with the PPS
output selection registers.
3. These peripheral functions are bidirectional. The output pin selections must be the same as the input pin
selections.
4. These pins are configured for I2C logic levels; clock and data signals may be assigned to any of these pins.
Assignments to the other pins (e.g., RA5) will operate, but logic levels will be standard TTL/ST as selected y
the INLVL register.
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 9
Basic
CLKR
NCO1OUT
Pull-up
CLC
C1OUT
Interrupts
PWM
—
EUSART
CCP
ADCGRDA
MSSP
ADC
—
Timers
28-pin VQFN
—
Comparator
28-pin SPDIP/SOIC/SSOP
I/O
...........continued
PIC16(L)F18455/56
Table of Contents
Description..................................................................................................................................................... 1
Core Features................................................................................................................................................ 1
Memory.......................................................................................................................................................... 1
Operating Characteristics...............................................................................................................................2
eXtreme Low-Power (XLP) Features............................................................................................................. 2
Power-Saving Operation Modes.................................................................................................................... 2
Digital Peripherals.......................................................................................................................................... 2
Analog Peripherals......................................................................................................................................... 3
Flexible Oscillator Structure........................................................................................................................... 4
PIC16(L)F184XX Family Types......................................................................................................................5
Packages........................................................................................................................................................6
Pin Diagrams..................................................................................................................................................6
Pin Allocation Tables...................................................................................................................................... 8
1.
Device Overview................................................................................................................................... 13
2.
Guidelines for Getting Started with PIC16(L)F18455/56 Microcontrollers............................................ 19
3.
Enhanced Mid-Range CPU...................................................................................................................24
4.
Device Configuration.............................................................................................................................26
5.
Memory Organization............................................................................................................................39
6.
NVM - Nonvolatile Memory Control ......................................................................................................76
7.
Interrupts............................................................................................................................................... 98
8.
OSC - Oscillator Module..................................................................................................................... 123
9.
REFCLK - Reference Clock Output Module........................................................................................144
10. Resets................................................................................................................................................. 149
11. WWDT - Windowed Watchdog Timer .................................................................................................162
12. Power-Saving Operation Modes......................................................................................................... 173
13. PMD - Peripheral Module Disable.......................................................................................................182
14. I/O Ports.............................................................................................................................................. 192
15. IOC - Interrupt-On-Change................................................................................................................. 225
16. PPS - Peripheral Pin Select Module .................................................................................................. 240
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 10
PIC16(L)F18455/56
17. CLC - Configurable Logic Cell.............................................................................................................252
18. TMR0 - Timer0 Module....................................................................................................................... 275
19. TMR1 - Timer1 Module with Gate Control...........................................................................................283
20. TMR2 - Timer2 Module....................................................................................................................... 301
21. SMT - Signal Measurement Timer...................................................................................................... 323
22. Capture/Compare/PWM Module......................................................................................................... 346
23. CCP/PWM Timer Resource Selection.................................................................................................359
24. PWM - Pulse-Width Modulation.......................................................................................................... 363
25. CWG - Complementary Waveform Generator.................................................................................... 371
26. NCO - Numerically Controlled Oscillator.............................................................................................398
27. DSM - Data Signal Modulator Module.................................................................................................408
28. EUSART - Enhanced Universal Synchronous Asynchronous Receiver Transmitter.......................... 419
29. MSSP - Master Synchronous Serial Port Module............................................................................... 449
30. FVR - Fixed Voltage Reference.......................................................................................................... 508
31. Temperature Indicator Module............................................................................................................ 512
32. ADC2 - Analog-to-Digital Converter.....................................................................................................515
33. DAC - 5-Bit Digital-to-Analog Converter..............................................................................................561
34. CMP - Comparator Module................................................................................................................. 567
35. ZCD - Zero-Cross Detection Module...................................................................................................579
36. Register Summary.............................................................................................................................. 586
37. Instruction Set Summary..................................................................................................................... 611
38. ICSP™ - In-Circuit Serial Programming™........................................................................................... 631
39. Development Support......................................................................................................................... 634
40. Electrical Specifications...................................................................................................................... 638
41. DC and AC Characteristics Graphs and Tables.................................................................................. 670
42. Packaging Information........................................................................................................................ 691
43. Revision History.................................................................................................................................. 702
The Microchip Website...............................................................................................................................703
Product Change Notification Service..........................................................................................................703
Customer Support...................................................................................................................................... 703
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 11
PIC16(L)F18455/56
Product Identification System.....................................................................................................................704
Microchip Devices Code Protection Feature.............................................................................................. 704
Legal Notice............................................................................................................................................... 705
Trademarks................................................................................................................................................ 705
Quality Management System..................................................................................................................... 705
Worldwide Sales and Service.....................................................................................................................706
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 12
PIC16(L)F18455/56
Device Overview
1.
Device Overview
This document contains device-specific information for the following devices:
•
PIC16F18455
•
PIC16LF18455
•
PIC16F18456
•
PIC16LF18456
1.1
New Core Features
1.1.1
XLP Technology
All of the devices in the PIC16(L)F184XX family incorporate a range of features that can significantly reduce power
consumption during operation. Key items include:
•
•
•
•
1.1.2
Alternate Run Modes: By clocking the controller from the secondary oscillator or the internal oscillator block,
power consumption during code execution can be reduced by as much as 90%.
Multiple Idle Modes: The controller can also run with its CPU core disabled but the peripherals still active. In
these states, power consumption can be reduced even further, to as little as 4% of normal operation
requirements.
On-the-Fly Mode Switching: The power-managed modes are invoked by user code during operation, allowing
the user to incorporate power-saving ideas into their application’s software design.
Peripheral Module Disable: Modules that are not being used in the code can be selectively disabled using the
PMD module. This further reduces the power consumption.
Multiple Oscillator Options and Features
All of the devices in the PIC16(L)F184XX family offer several different oscillator options. The PIC16(L)F184XX family
can be clocked from several different sources:
•
•
•
•
•
•
1.2
HFINTOSC
– 1-32 MHz precision digitally controlled internal oscillator
LFINTOSC
– 31 kHz internal oscillator
EXTOSC
– External clock (EC)
– Low-power oscillator (LP)
– Medium-power oscillator (XT)
– High-power oscillator (HS)
SOSC
– Secondary oscillator circuit optimized for 32 kHz clock crystals
A Phase Lock Loop (PLL) frequency multiplier (2x/4x) is available to the External Oscillator modes enabling
clock speeds of up to 32 MHz
Fail-Safe Clock Monitor: This option constantly monitors the main clock source against a reference signal
provided by the LFINTOSC. If a clock failure occurs, the controller is switched to the internal oscillator block,
allowing for continued operation or a safe application shutdown.
Other Special Features
•
12-bit A/D Converter with Computation: This module incorporates programmable acquisition time, allowing for a
channel to be selected and a conversion to be initiated without waiting for a sampling period and thus, reduce
code overhead. It has a new module called ADC2 with computation features, which provides a digital filter and
threshold interrupt functions.
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 13
PIC16(L)F18455/56
Device Overview
•
•
•
•
1.3
Memory Endurance: The Flash cells for both program memory and data EEPROM are rated to last for many
thousands of erase/write cycles – up to 10K for program memory and 100K for EEPROM. Data retention without
refresh is conservatively estimated to be greater than 40 years.
Self-programmability: These devices can write to their own program memory spaces under internal software
control. By using a boot loader routine located in the protected Boot Block at the top of program memory, it
becomes possible to create an application that can update itself in the field.
Enhanced Peripheral Pin Select: The Peripheral Pin Select (PPS) module connects peripheral inputs and
outputs to the device I/O pins. Only digital signals are included in the selections. All analog inputs and outputs
remain fixed to their assigned pins.
Windowed Watchdog Timer (WWDT):
– Timer monitoring of overflow and underflow events
– Variable prescaler selection
– Variable window size selection
– All sources configurable in hardware or software
Details on Individual Family Members
The devices of the PIC16(L)F184XX family described in the current datasheet are available in 28-pin packages. The
block diagram for this device is shown in Figure 1-1.
The devices have the following differences:
1.
2.
3.
4.
5.
6.
7.
Program Flash Memory
Data Memory SRAM
Data Memory EEPROM
A/D channels
I/O ports
Enhanced USART
Input Voltage Range/Power Consumption
All other features for devices in this family are identical. These are summarized in the following Device Features
table.
The pinouts for all devices are listed in the pin summary tables.
Table 1-1. Device Features
Features
PIC16(L)F18455
PIC16(L)F18456
14
28
Program Memory (Instructions)
8192
16384
Data Memory (Bytes)
1024
2048
Data EEPROM Memory (Bytes)
256
256
28 - SPDIP
28 - SPDIP
28 - SSOP
28 - SSOP
28 - SOIC (7.5 mm)
28 - SOIC (7.5 mm)
28 - VQFN (4x4)
28 - VQFN (4x4)
A, B, C
A, B, C
Capture/Compare/PWM Modules
(CCP)
5
5
Configurable Logic Cell (CLC)
4
4
10-Bit Pulse-Width Modulator (PWM)
2
2
Program Memory (KBytes)
Packages
I/O Ports
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 14
PIC16(L)F18455/56
Device Overview
...........continued
Features
PIC16(L)F18455
PIC16(L)F18456
12-Bit Analog-to-Digital Module
(ADC2) with Computation Accelerator
24 channels
24 channels
5-Bit Digital-to-Analog Module (DAC)
1
1
Comparators
2
2
Numerical Contolled Oscillator
(NCO)
1
1
Interrupt Sources
47
47
Timers (16-/8-bit)
4
4
2 MSSP
2 MSSP
2 EUSART
2 EUSART
Complementary Waveform
Generator (CWG)
3
3
Zero-Cross Detect (ZCD)
1
1
Data Signal Modulator (DSM)
1
1
Reference Clock Output Module
1
1
Peripheral Pin Select (PPS)
YES
YES
Peripheral Module Disable (PMD)
YES
YES
Programmable Brown-out Reset
(BOR)
YES
YES
Serial Communications
Resets (and Delays)
Instruction Set
Operating Frequency
© 2019 Microchip Technology Inc.
POR, BOR, RESET Instruction, Stack POR, BOR, RESET Instruction, Stack
Overflow, Stack Underflow (PWRT,
Overflow, Stack Underflow (PWRT,
OST), MCLR, WDT
OST), MCLR, WDT
50 instructions
50 instructions
16-levels hardware stack
16-levels hardware stack
DC – 32 MHz
DC – 32 MHz
Datasheet
DS40002038C-page 15
Filename:
Title:
Last Edit:
First Used:
Notes:
10-000039AA.vsd
PIC16(L)F18455/56
7/7/2017
Device Overview
Figure 1-1. PIC16(L)F18455/56 Device Block Diagram
Program
Flash Memory
Rev. 10-000039A
7/7/2017
RAM
PORTA
Timing
Generation
CLKOUT/OSC2
PORTB
EXTOSC
Oscillator
CLKIN/OSC1
PORTC
CPU
PORTE
Secondary
Oscillator
(SOSC)
SOSCI
SOSCO
MCLR
WDT
Temp
Indicator
CWG3
NCO1
CWG2
PWM7
CWG1
PWM6
SMT2
Timer6
SMT1
Timer5
Timer4
EUSART2 EUSART1
MSSP2
Timer3
Timer2
MSSP1
CLC4
Timer1
CLC3
Timer0
CLC2
C2
C1
CLC1
CCP5
ADC2
12-bit
CCP4
DAC1
CCP3
FVR
CCP2
CCP1
Note:
1. See applicable chapters for more information on peripherals.
1.4
1.4.1
Register and Bit Naming Conventions
Register Names
When there are multiple instances of the same peripheral in a device, the Peripheral Control registers will be depicted
as the concatenation of a peripheral identifier, peripheral instance, and control identifier. The control registers section
will show just one instance of all the register names with an ‘x’ in the place of the peripheral instance number. This
naming convention may also be applied to peripherals when there is only one instance of that peripheral in the device
to maintain compatibility with other devices in the family that contain more than one.
1.4.2
Bit Names
There are two variants for bit names:
•
•
1.4.2.1
Short name: Bit function abbreviation
Long name: Peripheral abbreviation + short name
Short Bit Names
Short bit names are an abbreviation for the bit function. For example, some peripherals are enabled with the EN bit.
The bit names shown in the registers are the short name variant.
Short bit names are useful when accessing bits in C programs. The general format for accessing bits by the short
name is RegisterNamebits.ShortName. For example, the enable bit, EN, in the CM1CON0 register can be set in C
programs with the instruction CM1CON0bits.EN = 1.
Short names are generally not useful in assembly programs because the same name may be used by different
peripherals in different bit positions. When this occurs, during the include file generation, all instances of that short bit
name are appended with an underscore plus the name of the register in which the bit resides to avoid naming
contentions.
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 16
PIC16(L)F18455/56
Device Overview
1.4.2.2
Long Bit Names
Long bit names are constructed by adding a peripheral abbreviation prefix to the short name. The prefix is unique to
the peripheral, thereby making every long bit name unique. The long bit name for the COG1 enable bit is the COG1
prefix, G1, appended with the enable bit short name, EN, resulting in the unique bit name G1EN.
Important: The COG1 peripheral is used as an example. Not all devices have the COG peripheral.
Long bit names are useful in both C and assembly programs. For example, in C the COG1CON0 enable bit can be
set with the G1EN = 1 instruction. In assembly, this bit can be set with the BSF COG1CON0,G1EN instruction.
1.4.2.3
Bit Fields
Bit fields are two or more adjacent bits in the same register. Bit fields adhere only to the short bit naming convention.
For example, the three Least Significant bits of the COG1CON0 register contain the Mode Control bits. The short
name for this field is MD. There is no long bit name variant. Bit field access is only possible in C programs. The
following example demonstrates a C program instruction for setting the COG1 to the Push-Pull mode:
COG1CON0bits.MD = 0x5;
Individual bits in a bit field can also be accessed with long and short bit names. Each bit is the field name appended
with the number of the bit position within the field. For example, the Most Significant mode bit has the short bit name
MD2 and the long bit name is G1MD2. The following two examples demonstrate assembly program sequences for
setting the COG1 to Push-Pull mode:
Example 1:
MOVLW
ANDWF
MOVLW
IORWF
~(1UTH
101
Interrupt if ERR≤UTH
100
Interrupt if ERRUTH
011
Interrupt if ERR>LTH and ERR CxVN
CxVP < CxVN
CxVP < CxVN
CxVP > CxVN
Bit 4 – POL Comparator Output Polarity Select bit
Value
Description
1
Comparator output is inverted
0
Comparator output is not inverted
Bit 1 – HYS Comparator Hysteresis Enable bit
Value
Description
1
Comparator hysteresis enabled
0
Comparator hysteresis disabled
Bit 0 – SYNC Comparator Output Synchronous Mode bit
Output updated on the falling edge of prescaled Timer1 clock.
Value
Description
1
Comparator output to Timer1 and I/O pin is synchronous to changes on the prescaled Timer1 clock.
0
Comparator output to Timer1 and I/O pin is asynchronous
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 575
PIC16(L)F18455/56
CMP - Comparator Module
34.15.3 CMxCON1
Name:
Address:
CMxCON1
0x991,0x995
Comparator x Control Register 1
Bit
7
6
5
4
3
2
Access
Reset
1
INTP
R/W
0
0
INTN
R/W
0
Bit 1 – INTP Comparator Interrupt on Positive-Going Edge Enable bit
Value
Description
1
The CxIF interrupt flag will be set upon a positive-going edge of the CxOUT bit
0
No interrupt flag will be set on a positive-going edge of the CxOUT bit
Bit 0 – INTN Comparator Interrupt on Negative-Going Edge Enable bit
Value
Description
1
The CxIF interrupt flag will be set upon a negative-going edge of the CxOUT bit
0
No interrupt flag will be set on a negative-going edge of the CxOUT bit
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 576
PIC16(L)F18455/56
CMP - Comparator Module
34.15.4 CMxNCH
Name:
Address:
CMxNCH
0x992,0x996
Comparator x Inverting Channel Select Register
Bit
7
6
5
4
3
Access
Reset
2
R/W
0
1
NCH[2:0]
R/W
0
0
R/W
0
Bits 2:0 – NCH[2:0] Comparator Inverting Input Channel Select bits
NCH
Negative Input Sources
111
CxVN connects to AVSS
110
CxVN connects to FVR Buffer 2
101
CxVN not connected
100
CxVN not connected
011
CxVN connects to CxIN3- pin
010
CxVN connects to CxIN2- pin
001
CxVN connects to CxIN1- pin
000
CxVN connects to CxIN0- pin
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 577
PIC16(L)F18455/56
CMP - Comparator Module
34.15.5 CMxPCH
Name:
Address:
CMxPCH
0x993,0x997
Comparator x Non-Inverting Channel Select Register
Bit
7
6
5
4
3
Access
Reset
2
R/W
0
1
PCH[2:0]
R/W
0
0
R/W
0
Bits 2:0 – PCH[2:0] Comparator Non-Inverting Input Channel Select bits
PCH
Positive Input Source
111
CxVP connects to VSS
110
CxVP connects to FVR Buffer 2
101
CxVP connects to DAC1 output
100
CxVP not connected
011
CxVP not connected
010
CxVP not connected
001
CxVP connects to CxIN1+ pin
000
CxVP connects to CxIN0+ pin
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 578
PIC16(L)F18455/56
ZCD - Zero-Cross Detection Module
35.
ZCD - Zero-Cross Detection Module
The Zero-Cross Detection (ZCD) module detects when an A/C signal crosses through the ground potential. The
actual zero crossing threshold is the zero crossing reference voltage, ZCPINV, which is typically 0.75V above ground.
The connection to the signal to be detected is through a series current-limiting resistor. The module applies a current
source or sink to the ZCD pin to maintain a constant voltage on the pin, thereby preventing the pin voltage from
Filename:
10-000194B.vsd
forward
biasing the ESD
protection diodes. When the applied voltage is greater than the reference voltage, the
Title:
ZERO CROSS DETECT BLOCK DIAGRAM
module
sinks current. When
the applied voltage is less than the reference voltage, the module sources current. The
Last Edit:
5/14/2014
currentFirst
source
and
sink
action
keeps the pin voltage constant over the full range of the applied voltage. The ZCD
Used:
PIC16(L)F1615
module
is shown in the following simplified block diagram.
Notes:
Figure 35-1. Simplified ZCD Block Diagram
VPULLUP
Rev. 10-000194B
5/14/2014
optional
VDD
RPULLUP
-
Zcpinv
ZCDxIN
RSERIES
RPULLDOWN
+
External
voltage
source
optional
ZCDx_output
D
ZCDxPOL
Q
ZCDxOUT bit
Q1
Interrupt
det
ZCDxINTP
ZCDxINTN
Set
ZCDIF
flag
Interrupt
det
The ZCD module is useful when monitoring an A/C waveform for, but not limited to, the following purposes:
•
•
•
•
A/C period measurement
Accurate long term time measurement
Dimmer phase delayed drive
Low EMI cycle switching
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 579
PIC16(L)F18455/56
ZCD - Zero-Cross Detection Module
35.1
External Resistor Selection
The ZCD module requires a current-limiting resistor in series with the external voltage source. The impedance and
rating of this resistor depends on the external source peak voltage. Select a resistor value that will drop all of the
peak voltage when the current through the resistor is nominally 300 μA. Make sure that the ZCD I/O pin internal weak
pull-up is disabled so it does not interfere with the current source and sink.
Equation 35-1. External Resistor
�����
������� =
3 × 10−4
Figure 35-2. External Voltage Source
Rev. 30-000001A
7/18/2017
VMAXPEAK
VMINPEAK
VPEAK
Z CPINV
35.2
ZCD Logic Output
The ZCD module includes a Status bit, which can be read to determine whether the current source or sink is active.
The OUT bit is set when the current sink is active, and cleared when the current source is active. The OUT bit is
affected by the polarity bit.
The OUT signal can also be used as input to other modules. This is controlled by the registers of the corresponding
module. OUT can be used as follows:
•
•
•
35.3
Gate source for TMR1/3/5
Clock source for TMR2/4/6
Reset source for TMR2/4/6
ZCD Logic Polarity
The POL bit inverts the OUT bit relative to the current source and sink output. When the POL bit is set, a OUT high
indicates that the current source is active, and a low output indicates that the current sink is active.
The POL bit affects the ZCD interrupts.
35.4
ZCD Interrupts
An interrupt will be generated upon a change in the ZCD logic output when the appropriate interrupt enables are set.
A rising edge detector and a falling edge detector are present in the ZCD for this purpose.
The ZCDIF bit of the PIR2 register will be set when either edge detector is triggered and its associated enable bit is
set. The INTP bit in the ZCDxCON register enables rising edge interrupts and the INTN bit in the ZCDxCON register
enables falling edge interrupts.
To fully enable the interrupt, the following bits must be set:
•
•
•
ZCDIE bit of the PIE2 register
INTP bit for rising edge detection
INTN bit for falling edge detection
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 580
PIC16(L)F18455/56
ZCD - Zero-Cross Detection Module
•
PEIE and GIE bits of the INTCON register
Changing the POL bit will cause an interrupt, regardless of the level of the SEN bit.
The ZCDIF bit of the PIR2 register must be cleared in software as part of the interrupt service. If another edge is
detected while this flag is being cleared, the flag will still be set at the end of the sequence.
Related Links
5.8.10 INTCON
7.7.4 PIR2
35.5
Correction for ZCPINV Offset
The actual voltage at which the ZCD switches is the reference voltage at the non-inverting input of the ZCD op amp.
For external voltage source waveforms other than square waves, this voltage offset from zero causes the zero-cross
event to occur either too early or too late.
35.5.1
Correction by AC Coupling
When the external voltage source is sinusoidal, the effects of the ZCPINV offset can be eliminated by isolating the
external voltage source from the ZCD pin with a capacitor, in addition to the voltage reducing resistor. The capacitor
will cause a phase shift resulting in the ZCD output switch in advance of the actual zero crossing event. The phase
shift will be the same for both rising and falling zero crossings, which can be compensated for by either delaying the
CPU response to the ZCD switch by a timer or other means, or selecting a capacitor value large enough that the
phase shift is negligible.
To determine the series resistor and capacitor values for this configuration, start by computing the impedance, Z, to
obtain a peak current of 300 μA. Next, arbitrarily select a suitably large non-polar capacitor and compute its
reactance, XC, at the external voltage source frequency. Finally, compute the series resistor, capacitor peak voltage,
and phase shift by the formulas shown below.
When this technique is used and the input signal is not present, the ZCD will tend to oscillate. To avoid this
oscillation, connect the ZCD pin to VDD or GND with a high-impedance resistor such as 200K.
Equation 35-2. R-C Equations
VPEAK = external voltage source peak voltage
f = external voltage source frequency
C = series capacitor
R = series resistor
VC = Peak capacitor voltage
Φ = Capacitor induced zero crossing phase advance in radians
TΦ = Time ZC event occurs before actual zero crossing
�=
�����
3 × 10−4
�� =
�=
1
2���
�2 − ��2
�� = �� 3 × 10−4
Φ = tan −1�
�Φ =
Φ
2��
��
�
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 581
PIC16(L)F18455/56
ZCD - Zero-Cross Detection Module
Equation 35-3. R-C Calcuation Example
���� = 120
����� = ���� × 2 = 169.7
� = 60 ��
� = 0.1 ��
�=
�����
−4
3 × 10
�� =
�=
=
169.7
3 × 10−4
= 565.7 �Ω
1
1
= 26.53 �Ω
=
2���
2� × 60 × 10−7
�2 − ��2 = 565.1 �Ω ��������
�� = 560 �٠����
�� =
��2 + ��2 = 560.6 �Ω
����� =
�����
= 302.7 × 10−6�
��
�� = �� × ����� = 8.0 �
Φ = tan −1�
�Φ =
35.5.2
��
= 0.047�������
�
Φ
= 125.6��
2��
Correction By Offset Current
When the waveform is varying relative to VSS, then the zero cross is detected too early as the waveform falls and too
late as the waveform rises. When the waveform is varying relative to VDD, then the zero cross is detected too late as
the waveform rises and too early as the waveform falls. The actual offset time can be determined for sinusoidal
waveforms with the corresponding equations shown below.
Equation 35-4. ZCD Event Offset
When External Voltage source is relative to VSS
������
sin−1 �
����
������� =
2��
When External Voltage source is relative to VDD
������� =
sin−1
��� − ������
�����
2��
This offset time can be compensated for by adding a pull-up or pull-down biasing resistor to the ZCD pin. A pull-up
resistor is used when the external voltage source is varying relative to VSS. A pull-down resistor is used when the
voltage is varying relative to VDD. The resistor adds a bias to the ZCD pin so that the target external voltage source
must go to zero to pull the pin voltage to the ZCPINV switching voltage. The pull-up or pull-down value can be
determined with the equations shown below.
Equation 35-5. ZCD Pull-up/Pull-down Resistor
When External Voltage source is relative to VSS
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 582
PIC16(L)F18455/56
ZCD - Zero-Cross Detection Module
������� =
������� ������� − ������
������
When External Voltage source is relative to VDD
��������� =
35.6
������� ������
��� − ������
Handling VPEAK Variations
If the peak amplitude of the external voltage is expected to vary, the series resistor must be selected to keep the ZCD
current source and sink below the design maximum range of ± 600 μA and above a reasonable minimum range. A
general rule of thumb is that the maximum peak voltage can be no more than six times the minimum peak voltage. To
ensure that the maximum current does not exceed ± 600 μA and the minimum is at least ± 100 μA, compute the
series resistance as shown in Equation 35-6. The compensating pull-up for this series resistance can be determined
with the equations shown in Equation 35-5 because the pull-up value is independent from the peak voltage.
Equation 35-6. Series R for V range
����_���� + ����_����
������� =
7 × 10−4
35.7
Operation During Sleep
The ZCD current sources and interrupts are unaffected by Sleep.
35.8
Effects of a Reset
The ZCD circuit can be configured to default to the Active or Inactive state on Power-on Reset (POR). When the ZCD
Configuration bit is cleared, the ZCD circuit will be active at POR. When the ZCD Configuration bit is set, the SEN bit
must be set to enable the ZCD module.
35.9
Disabling the ZCD Module
The ZCD module can be disabled in two ways:
1.
2.
The ZCD Configuration bit disables the ZCD module when set. When this is the case then the ZCD module will
be enabled by setting the SEN bit. When the ZCD bit is cleared, the ZCD is always enabled and the SEN bit
has no effect.
The ZCD can also be disabled using the ZCDMD bit of the PMD3 register. This is subject to the status of the
ZCD bit.
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 583
PIC16(L)F18455/56
ZCD - Zero-Cross Detection Module
35.10
Address
0x00
...
0x091E
0x091F
35.11
Register Summary: ZCD Control
Name
Bit Pos.
Reserved
ZCDCON
7:0
SEN
OUT
POL
INTP
INTN
Register Definitions: ZCD Control
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 584
PIC16(L)F18455/56
ZCD - Zero-Cross Detection Module
35.11.1 ZCDCON
Name:
Address:
ZCDCON
0x91F
Zero-Cross Detect Control Register
Bit
Access
Reset
7
SEN
R/W
0
6
5
OUT
RO
x
4
POL
R/W
0
3
2
1
INTP
R/W
0
0
INTN
R/W
0
Bit 7 – SEN Zero-Cross Detect Software Enable bit
This bit is ignored when ZCD fuse is cleared.
Value
Condition
Description
X
ZCD Config fuse = 0 Zero-cross detect is always enabled. This bit is ignored.
1
ZCD Config fuse = 1 Zero-cross detect is enabled. ZCD pin is forced to output to source and sink
current.
0
ZCD Config fuse = 1 Zero-cross detect is disabled. ZCD pin operates according to PPS and TRIS
controls.
Bit 5 – OUT Zero-Cross Detect Data Output bit
Value
Condition
Description
1
POL = 0
ZCD pin is sinking current
0
POL = 0
ZCD pin is sourcing current
1
POL = 1
ZCD pin is sourcing current
0
POL = 1
ZCD pin is sinking current
Bit 4 – POL Zero-Cross Detect Polarity bit
Value
Description
1
ZCD logic output is inverted
0
ZCD logic output is not inverted
Bit 1 – INTP Zero-Cross Detect Positive-Going Edge Interrupt Enable bit
Value
Description
1
ZCDIF bit is set on low-to-high ZCD_output transition
0
ZCDIF bit is unaffected by low-to-high ZCD_output transition
Bit 0 – INTN Zero-Cross Detect Negative-Going Edge Interrupt Enable bit
Value
Description
1
ZCDIF bit is set on high-to-low ZCD_output transition
0
ZCDIF bit is unaffected by high-to-low ZCD_output transition
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 585
PIC16(L)F18455/56
Register Summary
36.
Register Summary
Address
Name
Bit Pos.
0x00
0x01
0x02
0x03
INDF0
INDF1
PCL
STATUS
7:0
7:0
7:0
7:0
7:0
15:8
7:0
15:8
7:0
7:0
7:0
7:0
7:0
7:0
7:0
0x04
FSR0
0x06
FSR1
0x08
0x09
0x0A
0x0B
0x0C
0x0D
0x0E
0x0F
0x10
0x11
0x12
0x13
0x14
0x15
...
0x17
0x18
0x19
0x1A
0x1B
...
0x7F
0x80
0x81
0x82
0x83
BSR
WREG
PCLATH
INTCON
PORTA
PORTB
PORTC
Reserved
PORTE
Reserved
TRISA
TRISB
TRISC
INDF0[7:0]
INDF1[7:0]
PCL[7:0]
TO
PD
Z
DC
C
RA2
RB2
RC2
RA1
RB1
RC1
INTEDG
RA0
RB0
RC0
FSR0[7:0]
FSR0[15:8]
FSR1[7:0]
FSR1[15:8]
BSR[5:0]
WREG[7:0]
PCLATH[6:0]
GIE
RA7
RB7
RC7
PEIE
RA6
RB6
RC6
RA5
RB5
RC5
RA4
RB4
RC4
RA3
RB3
RC3
7:0
RE3
7:0
7:0
7:0
TRISA7
TRISB7
TRISC7
TRISA6
TRISB6
TRISC6
TRISA5
TRISB5
TRISC5
TRISA4
TRISB4
TRISC4
TRISA3
TRISB3
TRISC3
TRISA2
TRISB2
TRISC2
TRISA1
TRISB1
TRISC1
TRISA0
TRISB0
TRISC0
7:0
7:0
7:0
LATA7
LATB7
LATC7
LATA6
LATB6
LATC6
LATA5
LATB5
LATC5
LATA4
LATB4
LATC4
LATA3
LATB3
LATC3
LATA2
LATB2
LATC2
LATA1
LATB1
LATC1
LATA0
LATB0
LATC0
Z
DC
C
Reserved
LATA
LATB
LATC
Reserved
INDF0
INDF1
PCL
STATUS
0x84
FSR0
0x86
FSR1
0x88
0x89
0x8A
0x8B
BSR
WREG
PCLATH
INTCON
0x8C
ADLTH
0x8E
ADUTH
0x90
ADERR
0x92
ADSTPT
0x94
ADFLTR
0x96
ADACC
0x99
ADCNT
7:0
7:0
7:0
7:0
7:0
15:8
7:0
15:8
7:0
7:0
7:0
7:0
7:0
15:8
7:0
15:8
7:0
15:8
7:0
15:8
7:0
15:8
7:0
15:8
23:16
7:0
INDF0[7:0]
INDF1[7:0]
PCL[7:0]
TO
PD
FSR0[7:0]
FSR0[15:8]
FSR1[7:0]
FSR1[15:8]
BSR[5:0]
WREG[7:0]
PCLATH[6:0]
GIE
© 2019 Microchip Technology Inc.
PEIE
INTEDG
LTH[7:0]
LTH[15:8]
UTH[7:0]
UTH[15:8]
ERR[7:0]
ERR[15:8]
STPT[7:0]
STPT[15:8]
FLTR[7:0]
FLTR[15:8]
ACC[7:0]
ACC[15:8]
ACC[17:16]
CNT[7:0]
Datasheet
DS40002038C-page 586
PIC16(L)F18455/56
Register Summary
...........continued
Address
Name
Bit Pos.
7:0
7:0
RPT[7:0]
PREV[7:0]
15:8
7:0
15:8
7:0
PREV[15:8]
RES[7:0]
RES[15:8]
7:0
7:0
7:0
7:0
7:0
15:8
7:0
15:8
7:0
7:0
7:0
7:0
7:0
15:8
7:0
7:0
15:8
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
15:8
7:0
7:0
7:0
INDF0[7:0]
INDF1[7:0]
PCL[7:0]
0x9A
ADRPT
0x9B
ADPREV
0x9D
ADRES
0x9F
0xA0
...
0xFF
0x0100
0x0101
0x0102
0x0103
ADPCH
PCH[5:0]
Reserved
INDF0
INDF1
PCL
STATUS
0x0104
FSR0
0x0106
FSR1
0x0108
0x0109
0x010A
0x010B
BSR
WREG
PCLATH
INTCON
0x010C
ADACQ
0x010E
ADCAP
0x010F
ADPRE
0x0111
0x0112
0x0113
0x0114
0x0115
0x0116
0x0117
0x0118
0x0119
0x011A
ADCON0
ADCON1
ADCON2
ADCON3
ADSTAT
ADREF
ADACT
ADCLK
RC1REG
TX1REG
0x011B
SP1BRG
0x011D
0x011E
0x011F
0x0120
...
0x017F
0x0180
0x0181
0x0182
0x0183
RC1STA
TX1STA
BAUD1CON
TO
PD
Z
DC
C
FSR0[7:0]
FSR0[15:8]
FSR1[7:0]
FSR1[15:8]
BSR[5:0]
WREG[7:0]
PCLATH[6:0]
GIE
PEIE
INTEDG
ACQ[7:0]
ACQ[12:8]
CAP[4:0]
PRE[7:0]
ON
PPOL
PSIS
CONT
IPEN
OV
UTHR
PRE[12:8]
FRM
CS
GPOL
CRS[2:0]
CALC[2:0]
LTHR
ACLR
SOI
GO
DSEN
MD[2:0]
TMD[2:0]
STAT[2:0]
PREF[1:0]
MATH
NREF
ACT[4:0]
CS[5:0]
SPEN
CSRC
ABDOVF
RX9
TX9
RCIDL
SREN
TXEN
RCREG[7:0]
TXREG[7:0]
SPBRG[7:0]
SPBRG[15:8]
CREN
ADDEN
SYNC
SENDB
SCKP
BRG16
BRGH
FERR
OERR
TRMT
WUE
RX9D
TX9D
ABDEN
Z
DC
C
Reserved
INDF0
INDF1
PCL
STATUS
0x0184
FSR0
0x0186
FSR1
0x0188
0x0189
0x018A
0x018B
0x018C
0x018D
0x018E
BSR
WREG
PCLATH
INTCON
SSP1BUF
SSP1ADD
SSP1MSK
7:0
7:0
7:0
7:0
7:0
15:8
7:0
15:8
7:0
7:0
7:0
7:0
7:0
7:0
7:0
INDF0[7:0]
INDF1[7:0]
PCL[7:0]
TO
PD
FSR0[7:0]
FSR0[15:8]
FSR1[7:0]
FSR1[15:8]
BSR[5:0]
WREG[7:0]
PCLATH[6:0]
GIE
© 2019 Microchip Technology Inc.
PEIE
INTEDG
BUF[7:0]
ADD[7:0]
MSK[6:0]
Datasheet
MSK0
DS40002038C-page 587
PIC16(L)F18455/56
Register Summary
...........continued
Address
Name
Bit Pos.
0x018F
0x0190
SSP1STAT
SSP1CON1
7:0
7:0
SMP
WCOL
CKE
SSPOV
D/A
SSPEN
P
CKP
S
0x0191
0x0192
0x0193
...
0x0195
0x0196
0x0197
0x0198
0x0199
0x019A
0x019B
0x019C
0x019D
...
0x01FF
0x0200
0x0201
0x0202
0x0203
SSP1CON2
SSP1CON3
7:0
7:0
GCEN
ACKTIM
ACKSTAT
PCIE
ACKDT
SCIE
ACKEN
BOEN
RCEN
SDAHT
0x0204
FSR0
0x0206
FSR1
0x0208
0x0209
0x020A
0x020B
BSR
WREG
PCLATH
INTCON
0x020C
TMR1
0x020E
0x020F
0x0210
0x0211
T1CON
T1GCON
TMR1GATE
TMR1CLK
0x0212
TMR3
0x0214
0x0215
0x0216
0x0217
T3CON
T3GCON
TMR3GATE
TMR3CLK
0x0218
TMR5
0x021A
0x021B
0x021C
0x021D
0x021E
0x021F
0x0220
...
0x027F
0x0280
0x0281
0x0282
0x0283
T5CON
T5GCON
TMR5GATE
TMR5CLK
CCPTMRS0
CCPTMRS1
0x0284
R/W
UA
SSPM[3:0]
PEN
SBCDE
RSEN
AHEN
BF
SEN
DHEN
Reserved
SSP2BUF
SSP2ADD
SSP2MSK
SSP2STAT
SSP2CON1
SSP2CON2
SSP2CON3
7:0
7:0
7:0
7:0
7:0
7:0
7:0
SMP
WCOL
GCEN
ACKTIM
CKE
SSPOV
ACKSTAT
PCIE
D/A
SSPEN
ACKDT
SCIE
BUF[7:0]
ADD[7:0]
MSK[6:0]
P
S
CKP
ACKEN
RCEN
BOEN
SDAHT
R/W
UA
SSPM[3:0]
PEN
RSEN
SBCDE
AHEN
MSK0
BF
SEN
DHEN
Reserved
INDF0
INDF1
PCL
STATUS
7:0
7:0
7:0
7:0
7:0
15:8
7:0
15:8
7:0
7:0
7:0
7:0
7:0
15:8
7:0
7:0
7:0
7:0
7:0
15:8
7:0
7:0
7:0
7:0
7:0
15:8
7:0
7:0
7:0
7:0
7:0
7:0
INDF0[7:0]
INDF1[7:0]
PCL[7:0]
TO
PD
Z
DC
C
FSR0[7:0]
FSR0[15:8]
FSR1[7:0]
FSR1[15:8]
BSR[5:0]
WREG[7:0]
PCLATH[6:0]
GIE
PEIE
INTEDG
TMRx[7:0]
TMRx[15:8]
GE
GPOL
CKPS[1:0]
GTM
GSPM
SYNC
GVAL
GSS[4:0]
CS[4:0]
RD16
ON
SYNC
GVAL
GSS[4:0]
CS[4:0]
RD16
ON
SYNC
GVAL
GSS[4:0]
CS[4:0]
C2TSEL[1:0]
P6TSEL[1:0]
RD16
ON
GGO/DONE
TMRx[7:0]
TMRx[15:8]
GE
GPOL
CKPS[1:0]
GTM
GSPM
GGO/DONE
TMRx[7:0]
TMRx[15:8]
GE
GPOL
C4TSEL[1:0]
CKPS[1:0]
GTM
GSPM
GGO/DONE
C3TSEL[1:0]
P7TSEL[1:0]
C1TSEL[1:0]
Reserved
INDF0
INDF1
PCL
STATUS
FSR0
7:0
7:0
7:0
7:0
7:0
15:8
© 2019 Microchip Technology Inc.
INDF0[7:0]
INDF1[7:0]
PCL[7:0]
TO
PD
Z
DC
C
FSR0[7:0]
FSR0[15:8]
Datasheet
DS40002038C-page 588
PIC16(L)F18455/56
Register Summary
...........continued
Address
Name
Bit Pos.
0x0286
FSR1
7:0
15:8
FSR1[7:0]
FSR1[15:8]
0x0288
0x0289
0x028A
0x028B
0x028C
0x028D
0x028E
0x028F
0x0290
0x0291
0x0292
0x0293
0x0294
0x0295
0x0296
0x0297
0x0298
0x0299
0x029A
0x029B
0x029C
0x029D
0x029E
0x029F
0x02A0
...
0x02FF
0x0300
0x0301
0x0302
0x0303
BSR
WREG
PCLATH
INTCON
T2TMR
T2PR
T2CON
T2HLT
T2CLKCON
T2RST
T4TMR
T4PR
T4CON
T4HLT
T4CLKCON
T4RST
T6TMR
T6PR
T6CON
T6HLT
T6CLKCON
T6RST
Reserved
ADCPCON0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
BSR[5:0]
WREG[7:0]
PCLATH[6:0]
7:0
GIE
PEIE
INTEDG
TxTMR[7:0]
TxPR[7:0]
ON
PSYNC
CPOL
CKPS[2:0]
CSYNC
OUTPS[3:0]
MODE[4:0]
CS[3:0]
RSEL[3:0]
TxTMR[7:0]
TxPR[7:0]
ON
PSYNC
CPOL
CKPS[2:0]
CSYNC
OUTPS[3:0]
MODE[4:0]
CS[3:0]
RSEL[3:0]
TxTMR[7:0]
TxPR[7:0]
ON
PSYNC
CPOL
CKPS[2:0]
CSYNC
OUTPS[3:0]
MODE[4:0]
CS[3:0]
RSEL[3:0]
CPON
CPRDY
Reserved
INDF0
INDF1
PCL
STATUS
0x0304
FSR0
0x0306
FSR1
0x0308
0x0309
0x030A
0x030B
BSR
WREG
PCLATH
INTCON
0x030C
CCPR1
0x030E
0x030F
CCP1CON
CCP1CAP
0x0310
CCPR2
0x0312
0x0313
CCP2CON
CCP2CAP
0x0314
CCPR3
0x0316
0x0317
CCP3CON
CCP3CAP
0x0318
CCPR4
0x031A
0x031B
CCP4CON
CCP4CAP
0x031C
CCPR5
7:0
7:0
7:0
7:0
7:0
15:8
7:0
15:8
7:0
7:0
7:0
7:0
7:0
15:8
7:0
7:0
7:0
15:8
7:0
7:0
7:0
15:8
7:0
7:0
7:0
15:8
7:0
7:0
7:0
15:8
INDF0[7:0]
INDF1[7:0]
PCL[7:0]
TO
PD
Z
DC
C
FSR0[7:0]
FSR0[15:8]
FSR1[7:0]
FSR1[15:8]
BSR[5:0]
WREG[7:0]
PCLATH[6:0]
GIE
EN
EN
EN
EN
© 2019 Microchip Technology Inc.
PEIE
INTEDG
OUT
CCPR[7:0]
CCPR[15:8]
FMT
OUT
CCPR[7:0]
CCPR[15:8]
FMT
OUT
CCPR[7:0]
CCPR[15:8]
FMT
OUT
CCPR[7:0]
CCPR[15:8]
FMT
MODE[3:0]
CTS[2:0]
MODE[3:0]
CTS[2:0]
MODE[3:0]
CTS[2:0]
MODE[3:0]
CTS[2:0]
CCPR[7:0]
CCPR[15:8]
Datasheet
DS40002038C-page 589
PIC16(L)F18455/56
Register Summary
...........continued
Address
Name
Bit Pos.
0x031E
0x031F
CCP5CON
CCP5CAP
7:0
7:0
0x0320
...
0x037F
0x0380
0x0381
0x0382
0x0383
OUT
FMT
MODE[3:0]
CTS[2:0]
Reserved
INDF0
INDF1
PCL
STATUS
0x0384
FSR0
0x0386
FSR1
0x0388
0x0389
0x038A
0x038B
BSR
WREG
PCLATH
INTCON
0x038C
PWM6DC
0x038E
0x038F
PWM6CON
Reserved
0x0390
PWM7DC
0x0392
0x0393
...
0x03FF
0x0400
0x0401
0x0402
0x0403
PWM7CON
7:0
7:0
7:0
7:0
7:0
15:8
7:0
15:8
7:0
7:0
7:0
7:0
7:0
15:8
7:0
7:0
15:8
7:0
INDF0[7:0]
INDF1[7:0]
PCL[7:0]
TO
PD
Z
DC
C
FSR0[7:0]
FSR0[15:8]
FSR1[7:0]
FSR1[15:8]
BSR[5:0]
WREG[7:0]
PCLATH[6:0]
GIE
PEIE
INTEDG
DCL[1:0]
DCH[7:0]
EN
OUT
POL
OUT
POL
DCL[1:0]
DCH[7:0]
EN
Reserved
INDF0
INDF1
PCL
STATUS
0x0404
FSR0
0x0406
FSR1
0x0408
0x0409
0x040A
0x040B
0x040C
...
0x047F
0x0480
0x0481
0x0482
0x0483
BSR
WREG
PCLATH
INTCON
7:0
7:0
7:0
7:0
7:0
15:8
7:0
15:8
7:0
7:0
7:0
7:0
INDF0[7:0]
INDF1[7:0]
PCL[7:0]
TO
PD
Z
DC
C
FSR0[7:0]
FSR0[15:8]
FSR1[7:0]
FSR1[15:8]
BSR[5:0]
WREG[7:0]
PCLATH[6:0]
GIE
PEIE
INTEDG
Reserved
INDF0
INDF1
PCL
STATUS
0x0484
FSR0
0x0486
FSR1
0x0488
0x0489
0x048A
0x048B
BSR
WREG
PCLATH
INTCON
0x048C
EN
SMT1TMR
7:0
7:0
7:0
7:0
7:0
15:8
7:0
15:8
7:0
7:0
7:0
7:0
7:0
15:8
23:16
INDF0[7:0]
INDF1[7:0]
PCL[7:0]
TO
PD
Z
DC
C
FSR0[7:0]
FSR0[15:8]
FSR1[7:0]
FSR1[15:8]
BSR[5:0]
WREG[7:0]
PCLATH[6:0]
GIE
© 2019 Microchip Technology Inc.
PEIE
INTEDG
TMR[7:0]
TMR[15:8]
TMR[23:16]
Datasheet
DS40002038C-page 590
PIC16(L)F18455/56
Register Summary
...........continued
Address
Name
Bit Pos.
0x048F
SMT1CPR
7:0
15:8
CPR[7:0]
CPR[15:8]
23:16
7:0
15:8
23:16
7:0
15:8
23:16
7:0
7:0
7:0
7:0
7:0
7:0
CPR[23:16]
CPW[7:0]
CPW[15:8]
CPW[23:16]
PR[7:0]
PR[15:8]
PR[23:16]
WPOL
SPOL
0x0492
SMT1CPW
0x0495
SMT1PR
0x0498
0x0499
0x049A
0x049B
0x049C
0x049D
0x049E
...
0x04FF
0x0500
0x0501
0x0502
0x0503
SMT1CON0
SMT1CON1
SMT1STAT
SMT1CLK
SMT1SIG
SMT1WIN
EN
GO
CPRUP
STP
REPEAT
CPWUP
RST
CPOL
PS[1:0]
MODE[3:0]
TS
WS
AS
CSEL[2:0]
SSEL[4:0]
WSEL[4:0]
Reserved
INDF0
INDF1
PCL
STATUS
0x0504
FSR0
0x0506
FSR1
0x0508
0x0509
0x050A
0x050B
BSR
WREG
PCLATH
INTCON
0x050C
SMT2TMR
0x050F
SMT2CPR
0x0512
SMT2CPW
0x0515
SMT2PR
0x0518
0x0519
0x051A
0x051B
0x051C
0x051D
0x051E
...
0x057F
0x0580
0x0581
0x0582
0x0583
SMT2CON0
SMT2CON1
SMT2STAT
SMT2CLK
SMT2SIG
SMT2WIN
7:0
7:0
7:0
7:0
7:0
15:8
7:0
15:8
7:0
7:0
7:0
7:0
7:0
15:8
23:16
7:0
15:8
23:16
7:0
15:8
23:16
7:0
15:8
23:16
7:0
7:0
7:0
7:0
7:0
7:0
INDF0[7:0]
INDF1[7:0]
PCL[7:0]
TO
PD
Z
DC
C
FSR0[7:0]
FSR0[15:8]
FSR1[7:0]
FSR1[15:8]
BSR[5:0]
WREG[7:0]
PCLATH[6:0]
GIE
EN
GO
CPRUP
PEIE
INTEDG
STP
REPEAT
CPWUP
TMR[7:0]
TMR[15:8]
TMR[23:16]
CPR[7:0]
CPR[15:8]
CPR[23:16]
CPW[7:0]
CPW[15:8]
CPW[23:16]
PR[7:0]
PR[15:8]
PR[23:16]
WPOL
SPOL
RST
CPOL
PS[1:0]
MODE[3:0]
TS
WS
AS
CSEL[2:0]
SSEL[4:0]
WSEL[4:0]
Reserved
INDF0
INDF1
PCL
STATUS
0x0584
FSR0
0x0586
FSR1
7:0
7:0
7:0
7:0
7:0
15:8
7:0
15:8
© 2019 Microchip Technology Inc.
INDF0[7:0]
INDF1[7:0]
PCL[7:0]
TO
PD
Z
DC
C
FSR0[7:0]
FSR0[15:8]
FSR1[7:0]
FSR1[15:8]
Datasheet
DS40002038C-page 591
PIC16(L)F18455/56
Register Summary
...........continued
Address
Name
Bit Pos.
0x0588
0x0589
BSR
WREG
7:0
7:0
0x058A
0x058B
PCLATH
INTCON
7:0
7:0
7:0
15:8
23:16
7:0
15:8
23:16
7:0
7:0
0x058C
NCO1ACC
0x058F
NCO1INC
0x0592
0x0593
0x0594
...
0x059B
0x059C
0x059D
0x059E
0x059F
0x05A0
...
0x05FF
0x0600
0x0601
0x0602
0x0603
NCO1CON
NCO1CLK
BSR[5:0]
WREG[7:0]
PCLATH[6:0]
GIE
PEIE
INTEDG
ACC[7:0]
ACC[15:8]
ACC[23:16]
INC[7:0]
INC[15:8]
INC[19:16]
EN
OUT
POL
PFM
PWS[2:0]
CKS[3:0]
Reserved
TMR0L
TMR0H
T0CON0
T0CON1
7:0
7:0
7:0
7:0
T0EN
T0OUT
T0CS[2:0]
TMR0L[7:0]
TMR0H[7:0]
T016BIT
T0ASYNC
T0OUTPS[3:0]
T0CKPS[3:0]
Reserved
INDF0
INDF1
PCL
STATUS
0x0604
FSR0
0x0606
FSR1
0x0608
0x0609
0x060A
0x060B
0x060C
0x060D
0x060E
0x060F
0x0610
0x0611
0x0612
0x0613
0x0614
0x0615
0x0616
0x0617
0x0618
0x0619
0x061A
0x061B
0x061C
0x061D
0x061E
0x061F
...
0x067F
0x0680
0x0681
0x0682
BSR
WREG
PCLATH
INTCON
CWG1CLK
CWG1ISM
CWG1DBR
CWG1DBF
CWG1CON0
CWG1CON1
CWG1AS0
CWG1AS1
CWG1STR
Reserved
CWG2CLK
CWG2ISM
CWG2DBR
CWG2DBF
CWG2CON0
CWG2CON1
CWG2AS0
CWG2AS1
CWG2STR
7:0
7:0
7:0
7:0
7:0
15:8
7:0
15:8
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
INDF0[7:0]
INDF1[7:0]
PCL[7:0]
TO
PD
Z
DC
C
FSR0[7:0]
FSR0[15:8]
FSR1[7:0]
FSR1[15:8]
BSR[5:0]
WREG[7:0]
PCLATH[6:0]
GIE
PEIE
INTEDG
CS
ISM[3:0]
DBR[5:0]
DBF[5:0]
EN
LD
IN
SHUTDOWN
REN
OVRD
OVRC
LSBD[1:0]
AS5E
AS4E
OVRB
OVRA
POLD
POLC
LSAC[1:0]
AS3E
AS2E
STRD
STRC
MODE[2:0]
POLB
POLA
AS1E
STRB
AS0E
STRA
CS
ISM[3:0]
DBR[5:0]
DBF[5:0]
EN
LD
IN
SHUTDOWN
REN
OVRD
OVRC
LSBD[1:0]
AS5E
AS4E
OVRB
OVRA
POLD
POLC
LSAC[1:0]
AS3E
AS2E
STRD
STRC
MODE[2:0]
POLB
POLA
AS1E
STRB
AS0E
STRA
Reserved
INDF0
INDF1
PCL
7:0
7:0
7:0
© 2019 Microchip Technology Inc.
INDF0[7:0]
INDF1[7:0]
PCL[7:0]
Datasheet
DS40002038C-page 592
PIC16(L)F18455/56
Register Summary
...........continued
Address
Name
Bit Pos.
0x0683
STATUS
0x0684
FSR0
7:0
7:0
0x0686
FSR1
0x0688
0x0689
0x068A
0x068B
0x068C
0x068D
0x068E
0x068F
0x0690
0x0691
0x0692
0x0693
0x0694
0x0695
...
0x06FF
0x0700
0x0701
0x0702
0x0703
BSR
WREG
PCLATH
INTCON
CWG3CLK
CWG3ISM
CWG3DBR
CWG3DBF
CWG3CON0
CWG3CON1
CWG3AS0
CWG3AS1
CWG3STR
15:8
7:0
15:8
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
TO
PD
Z
DC
C
FSR0[7:0]
FSR0[15:8]
FSR1[7:0]
FSR1[15:8]
BSR[5:0]
WREG[7:0]
PCLATH[6:0]
GIE
PEIE
INTEDG
CS
ISM[3:0]
DBR[5:0]
DBF[5:0]
EN
LD
IN
SHUTDOWN
REN
OVRD
OVRC
LSBD[1:0]
AS5E
AS4E
OVRB
OVRA
POLD
POLC
LSAC[1:0]
AS3E
AS2E
STRD
STRC
MODE[2:0]
POLB
POLA
AS1E
STRB
AS0E
STRA
DC
C
Reserved
INDF0
INDF1
PCL
STATUS
0x0704
FSR0
0x0706
FSR1
0x0708
0x0709
0x070A
0x070B
0x070C
0x070D
0x070E
0x070F
0x0710
0x0711
0x0712
0x0713
0x0714
0x0715
0x0716
0x0717
0x0718
0x0719
0x071A
0x071B
0x071C
0x071D
0x071E
0x071F
...
0x077F
0x0780
0x0781
0x0782
0x0783
BSR
WREG
PCLATH
INTCON
PIR0
PIR1
PIR2
PIR3
PIR4
PIR5
PIR6
PIR7
PIR8
Reserved
PIE0
PIE1
PIE2
PIE3
PIE4
PIE5
PIE6
PIE7
PIE8
7:0
7:0
7:0
7:0
7:0
15:8
7:0
15:8
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
INDF0[7:0]
INDF1[7:0]
PCL[7:0]
TO
PD
Z
FSR0[7:0]
FSR0[15:8]
FSR1[7:0]
FSR1[15:8]
BSR[5:0]
WREG[7:0]
PCLATH[6:0]
GIE
PEIE
TMR0IF
OSFIF
RC2IF
CSWIF
ZCDIF
TX2IF
CLC4IF
CLC3IF
RC1IF
TMR6IF
CL24IF
TX1IF
TMR5IF
CLC1IF
CCP5IF
NVMIF
NCO1IF
SMT2PWAIF SMT2PRAIF
TMR0IE
OSFIE
RC2IE
CSWIE
ZCDIE
TX2IE
CLC4IE
CLC3IE
ADTIF
C2IF
SSP2IF
BCL1IF
TMR3IF
TMR2IF
TMR5GIF
TMR3GIF
CCP3IF
CCP2IF
CWG3IF
CWG2IF
SMT1PWAIF SMT1PRAIF
INTEDG
INTF
ADIF
C1IF
SSP1IF
TMR1IF
TMR1GIF
CCP1IF
CWG1IF
SMT1IF
ADTIE
C2IE
SSP2IE
BCL1IE
TMR3IE
TMR2IE
TMR5GIE
TMR3GIE
CCP3IE
CCP2IE
CWG3IE
CWG2IE
SMT1PWAIE SMT1PRAIE
INTE
ADIE
C1IE
SSP1IE
TMR1IE
TMR1GIE
CCP1IE
CWG1IE
SMT1IE
IOCIF
BCL2IF
TMR4IF
CCP4IF
SMT2IF
IOCIE
RC1IE
TMR6IE
CLC2IE
TX1IE
TMR5IE
CLC1IE
CCP5IE
NVMIE
NCO1IE
SMT2PWAIE SMT2PRAIE
BCL2IE
TMR4IE
CCP4IE
SMT2IE
Reserved
INDF0
INDF1
PCL
STATUS
7:0
7:0
7:0
7:0
© 2019 Microchip Technology Inc.
INDF0[7:0]
INDF1[7:0]
PCL[7:0]
TO
Datasheet
PD
Z
DC
C
DS40002038C-page 593
PIC16(L)F18455/56
Register Summary
...........continued
Address
Name
Bit Pos.
0x0784
FSR0
7:0
15:8
FSR0[7:0]
FSR0[15:8]
0x0786
FSR1
FSR1[7:0]
FSR1[15:8]
0x0788
0x0789
0x078A
0x078B
0x078C
...
0x0795
0x0796
0x0797
0x0798
0x0799
0x079A
0x079B
0x079C
0x079D
0x079E
...
0x07FF
0x0800
0x0801
0x0802
0x0803
BSR
WREG
PCLATH
INTCON
7:0
15:8
7:0
7:0
7:0
7:0
BSR[5:0]
WREG[7:0]
PCLATH[6:0]
GIE
PEIE
SYSCMD
FVRMD
TMR6MD
INTEDG
Reserved
PMD0
PMD1
PMD2
PMD3
PMD4
PMD5
PMD6
PMD7
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
TMR5MD
TMR4MD
TMR3MD
NVMMD
TMR2MD
CLKRMD
TMR1MD
IOCMD
TMR0MD
CCP5MD
CCP4MD
C2MD
CCP3MD
C1MD
CCP2MD
ZCDMD
CCP1MD
UART1MD
CLC4MD
CLC3MD
CLC2MD
MSSP2MD
CLC1MD
MSSP1MD
DSM1MD
Z
DC
C
NCO1MD
CWG3MD
DAC1MD
PWM7MD
CWG2MD
SMT2MD
ADCMD
PWM6MD
CWG1MD
UART2MD
SMT1MD
Reserved
INDF0
INDF1
PCL
STATUS
0x0804
FSR0
0x0806
FSR1
0x0808
0x0809
0x080A
0x080B
0x080C
0x080D
0x080E
0x080F
0x0810
0x0811
0x0812
0x0813
0x0814
0x0815
...
0x0819
BSR
WREG
PCLATH
INTCON
WDTCON0
WDTCON1
WDTPSL
WDTPSH
WDTTMR
BORCON
VREGCON
PCON0
PCON1
0x081A
NVMADR
0x081C
NVMDAT
0x081E
0x081F
0x0820
...
0x087F
0x0880
0x0881
0x0882
0x0883
NVMCON1
NVMCON2
7:0
7:0
7:0
7:0
7:0
15:8
7:0
15:8
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
INDF0[7:0]
INDF1[7:0]
PCL[7:0]
TO
PD
FSR0[7:0]
FSR0[15:8]
FSR1[7:0]
FSR1[15:8]
BSR[5:0]
WREG[7:0]
PCLATH[6:0]
GIE
PEIE
INTEDG
SEN
WDTPS[4:0]
WDTCS[2:0]
WINDOW[2:0]
PSCNTL[7:0]
PSCNTH[7:0]
WDTTMR[4:0]
STATE
SBOREN
STKOVF
STKUNF
WDTWV
RWDT
RMCLR
RI
PSCNT[1:0]
BORRDY
VREGPM
POR
BOR
MEMV
Reserved
7:0
15:8
7:0
15:8
7:0
7:0
NVMREGS
LWLO
NVMADR[7:0]
NVMADR[14:8]
NVMDAT[7:0]
NVMDAT[13:8]
FREE
WRERR
WREN
NVMCON2[7:0]
WR
RD
DC
C
Reserved
INDF0
INDF1
PCL
STATUS
7:0
7:0
7:0
7:0
© 2019 Microchip Technology Inc.
INDF0[7:0]
INDF1[7:0]
PCL[7:0]
TO
Datasheet
PD
Z
DS40002038C-page 594
PIC16(L)F18455/56
Register Summary
...........continued
Address
Name
Bit Pos.
0x0884
FSR0
7:0
15:8
FSR0[7:0]
FSR0[15:8]
0x0886
FSR1
FSR1[7:0]
FSR1[15:8]
0x0888
0x0889
0x088A
0x088B
0x088C
0x088D
0x088E
0x088F
0x0890
0x0891
0x0892
0x0893
0x0894
0x0895
0x0896
0x0897
0x0898
0x0899
0x089A
0x089B
0x089C
...
0x08FF
0x0900
0x0901
0x0902
0x0903
BSR
WREG
PCLATH
INTCON
CPUDOZE
OSCCON1
OSCCON2
OSCCON3
OSCSTAT
OSCEN
OSCTUNE
OSCFRQ
Reserved
CLKRCON
CLKRCLK
MD1CON0
MD1CON1
MD1SRC
MD1CARL
MD1CARH
7:0
15:8
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
BSR[5:0]
WREG[7:0]
PCLATH[6:0]
GIE
IDLEN
PEIE
DOZEN
CSWHOLD
EXTOR
EXTOEN
SOSCPWR
HFOR
HFOEN
INTEDG
ROI
NOSC[2:0]
COSC[2:0]
MFOR
MFOEN
DOE
DOZE[2:0]
NDIV[3:0]
CDIV[3:0]
ORDY
LFOR
LFOEN
NOSCR
SOR
ADOR
SOSCEN
ADOEN
HFTUN[5:0]
PLLR
HFFRQ[2:0]
EN
DC[1:0]
EN
OUT
CHPOL
DIV[2:0]
CLK[3:0]
OPOL
CHSYNC
CLPOL
BIT
CLSYNC
SRCS[4:0]
CLS[3:0]
CHS[3:0]
Reserved
INDF0
INDF1
PCL
STATUS
0x0904
FSR0
0x0906
FSR1
0x0908
0x0909
0x090A
0x090B
0x090C
0x090D
0x090E
0x090F
0x0910
...
0x091E
0x091F
0x0920
...
0x097F
0x0980
0x0981
0x0982
0x0983
BSR
WREG
PCLATH
INTCON
FVRCON
Reserved
DAC1CON0
DAC1CON1
7:0
7:0
7:0
7:0
7:0
15:8
7:0
15:8
7:0
7:0
7:0
7:0
7:0
INDF0[7:0]
INDF1[7:0]
PCL[7:0]
TO
PD
Z
DC
C
FSR0[7:0]
FSR0[15:8]
FSR1[7:0]
FSR1[15:8]
BSR[5:0]
WREG[7:0]
PCLATH[6:0]
GIE
PEIE
FVREN
FVRRDY
INTEDG
TSEN
TSRNG
7:0
7:0
EN
OE1
OE2
7:0
SEN
OUT
POL
CDAFVR[1:0]
ADFVR[1:0]
PSS[1:0]
DAC1R[4:0]
NSS
Reserved
ZCDCON
INTP
INTN
DC
C
Reserved
INDF0
INDF1
PCL
STATUS
0x0984
FSR0
0x0986
FSR1
0x0988
BSR
7:0
7:0
7:0
7:0
7:0
15:8
7:0
15:8
7:0
© 2019 Microchip Technology Inc.
INDF0[7:0]
INDF1[7:0]
PCL[7:0]
TO
PD
Z
FSR0[7:0]
FSR0[15:8]
FSR1[7:0]
FSR1[15:8]
BSR[5:0]
Datasheet
DS40002038C-page 595
PIC16(L)F18455/56
Register Summary
...........continued
Address
Name
Bit Pos.
0x0989
0x098A
WREG
PCLATH
7:0
7:0
0x098B
0x098C
...
0x098E
0x098F
0x0990
0x0991
0x0992
0x0993
0x0994
0x0995
0x0996
0x0997
0x0998
...
0x09FF
0x0A00
0x0A01
0x0A02
0x0A03
INTCON
7:0
WREG[7:0]
PCLATH[6:0]
GIE
PEIE
INTEDG
EN
OUT
POL
EN
OUT
POL
Reserved
CMOUT
CM1CON0
CM1CON1
CM1NCH
CM1PCH
CM2CON0
CM2CON1
CM2NCH
CM2PCH
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
MC2OUT
HYS
INTP
NCH[2:0]
PCH[2:0]
HYS
INTP
NCH[2:0]
PCH[2:0]
MC1OUT
SYNC
INTN
DC
C
SYNC
INTN
Reserved
INDF0
INDF1
PCL
STATUS
0x0A04
FSR0
0x0A06
FSR1
0x0A08
0x0A09
0x0A0A
0x0A0B
0x0A0C
...
0x0A18
0x0A19
0x0A1A
BSR
WREG
PCLATH
INTCON
7:0
7:0
7:0
7:0
7:0
15:8
7:0
15:8
7:0
7:0
7:0
7:0
INDF0[7:0]
INDF1[7:0]
PCL[7:0]
TO
PD
Z
FSR0[7:0]
FSR0[15:8]
FSR1[7:0]
FSR1[15:8]
BSR[5:0]
WREG[7:0]
PCLATH[6:0]
GIE
PEIE
INTEDG
Reserved
RC2REG
TX2REG
0x0A1B
SP2BRG
0x0A1D
0x0A1E
0x0A1F
0x0A20
...
0x0A7F
0x0A80
0x0A81
0x0A82
0x0A83
RC2STA
TX2STA
BAUD2CON
7:0
7:0
7:0
15:8
7:0
7:0
7:0
SPEN
CSRC
ABDOVF
RX9
TX9
RCIDL
SREN
TXEN
RCREG[7:0]
TXREG[7:0]
SPBRG[7:0]
SPBRG[15:8]
CREN
ADDEN
SYNC
SENDB
SCKP
BRG16
FERR
BRGH
OERR
TRMT
WUE
RX9D
TX9D
ABDEN
Z
DC
C
Reserved
INDF0
INDF1
PCL
STATUS
0x0A84
FSR0
0x0A86
FSR1
0x0A88
0x0A89
0x0A8A
0x0A8B
0x0A8C
...
0x0AFF
0x0B00
BSR
WREG
PCLATH
INTCON
7:0
7:0
7:0
7:0
7:0
15:8
7:0
15:8
7:0
7:0
7:0
7:0
INDF0[7:0]
INDF1[7:0]
PCL[7:0]
TO
PD
FSR0[7:0]
FSR0[15:8]
FSR1[7:0]
FSR1[15:8]
BSR[5:0]
WREG[7:0]
PCLATH[6:0]
GIE
PEIE
INTEDG
Reserved
INDF0
7:0
© 2019 Microchip Technology Inc.
INDF0[7:0]
Datasheet
DS40002038C-page 596
PIC16(L)F18455/56
Register Summary
...........continued
Address
Name
Bit Pos.
0x0B01
0x0B02
INDF1
PCL
7:0
7:0
0x0B03
STATUS
7:0
7:0
15:8
7:0
15:8
7:0
7:0
7:0
7:0
0x0B04
FSR0
0x0B06
FSR1
0x0B08
0x0B09
0x0B0A
0x0B0B
0x0B0C
...
0x0B7F
0x0B80
0x0B81
0x0B82
0x0B83
BSR
WREG
PCLATH
INTCON
INDF1[7:0]
PCL[7:0]
TO
PD
Z
DC
C
FSR0[7:0]
FSR0[15:8]
FSR1[7:0]
FSR1[15:8]
BSR[5:0]
WREG[7:0]
PCLATH[6:0]
GIE
PEIE
INTEDG
Reserved
INDF0
INDF1
PCL
STATUS
0x0B84
FSR0
0x0B86
FSR1
0x0B88
0x0B89
0x0B8A
0x0B8B
0x0B8C
...
0x0BFF
0x0C00
0x0C01
0x0C02
0x0C03
BSR
WREG
PCLATH
INTCON
7:0
7:0
7:0
7:0
7:0
15:8
7:0
15:8
7:0
7:0
7:0
7:0
INDF0[7:0]
INDF1[7:0]
PCL[7:0]
TO
PD
Z
DC
C
FSR0[7:0]
FSR0[15:8]
FSR1[7:0]
FSR1[15:8]
BSR[5:0]
WREG[7:0]
PCLATH[6:0]
GIE
PEIE
INTEDG
Reserved
INDF0
INDF1
PCL
STATUS
0x0C04
FSR0
0x0C06
FSR1
0x0C08
0x0C09
0x0C0A
0x0C0B
0x0C0C
...
0x0C7F
0x0C80
0x0C81
0x0C82
0x0C83
BSR
WREG
PCLATH
INTCON
7:0
7:0
7:0
7:0
7:0
15:8
7:0
15:8
7:0
7:0
7:0
7:0
INDF0[7:0]
INDF1[7:0]
PCL[7:0]
TO
PD
Z
DC
C
FSR0[7:0]
FSR0[15:8]
FSR1[7:0]
FSR1[15:8]
BSR[5:0]
WREG[7:0]
PCLATH[6:0]
GIE
PEIE
INTEDG
Reserved
INDF0
INDF1
PCL
STATUS
0x0C84
FSR0
0x0C86
FSR1
0x0C88
0x0C89
0x0C8A
0x0C8B
0x0C8C
...
0x0CFF
BSR
WREG
PCLATH
INTCON
7:0
7:0
7:0
7:0
7:0
15:8
7:0
15:8
7:0
7:0
7:0
7:0
INDF0[7:0]
INDF1[7:0]
PCL[7:0]
TO
PD
Z
DC
C
FSR0[7:0]
FSR0[15:8]
FSR1[7:0]
FSR1[15:8]
BSR[5:0]
WREG[7:0]
PCLATH[6:0]
GIE
PEIE
INTEDG
Reserved
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 597
PIC16(L)F18455/56
Register Summary
...........continued
Address
Name
Bit Pos.
0x0D00
0x0D01
INDF0
INDF1
7:0
7:0
0x0D02
0x0D03
PCL
STATUS
7:0
7:0
7:0
15:8
7:0
15:8
7:0
7:0
7:0
7:0
0x0D04
FSR0
0x0D06
FSR1
0x0D08
0x0D09
0x0D0A
0x0D0B
0x0D0C
...
0x0D7F
0x0D80
0x0D81
0x0D82
0x0D83
BSR
WREG
PCLATH
INTCON
Reserved
0x0D84
FSR0
0x0D86
FSR1
0x0D88
0x0D89
0x0D8A
0x0D8B
0x0D8C
...
0x0DFF
0x0E00
0x0E01
0x0E02
0x0E03
BSR
WREG
PCLATH
INTCON
INDF0
INDF1
PCL
STATUS
PCL[7:0]
TO
PD
Z
DC
C
FSR0[7:0]
FSR0[15:8]
FSR1[7:0]
FSR1[15:8]
BSR[5:0]
WREG[7:0]
PCLATH[6:0]
GIE
PEIE
INTEDG
INDF0[7:0]
INDF1[7:0]
PCL[7:0]
TO
PD
Z
DC
C
FSR0[7:0]
FSR0[15:8]
FSR1[7:0]
FSR1[15:8]
BSR[5:0]
WREG[7:0]
PCLATH[6:0]
GIE
PEIE
INTEDG
Reserved
INDF0
INDF1
PCL
STATUS
0x0E04
FSR0
0x0E06
FSR1
0x0E08
0x0E09
0x0E0A
0x0E0B
0x0E0C
...
0x0E7F
0x0E80
0x0E81
0x0E82
0x0E83
7:0
7:0
7:0
7:0
7:0
15:8
7:0
15:8
7:0
7:0
7:0
7:0
INDF0[7:0]
INDF1[7:0]
BSR
WREG
PCLATH
INTCON
7:0
7:0
7:0
7:0
7:0
15:8
7:0
15:8
7:0
7:0
7:0
7:0
INDF0[7:0]
INDF1[7:0]
PCL[7:0]
TO
PD
Z
DC
C
FSR0[7:0]
FSR0[15:8]
FSR1[7:0]
FSR1[15:8]
BSR[5:0]
WREG[7:0]
PCLATH[6:0]
GIE
PEIE
INTEDG
Reserved
INDF0
INDF1
PCL
STATUS
0x0E84
FSR0
0x0E86
FSR1
0x0E88
0x0E89
0x0E8A
0x0E8B
BSR
WREG
PCLATH
INTCON
7:0
7:0
7:0
7:0
7:0
15:8
7:0
15:8
7:0
7:0
7:0
7:0
INDF0[7:0]
INDF1[7:0]
PCL[7:0]
TO
PD
Z
DC
C
FSR0[7:0]
FSR0[15:8]
FSR1[7:0]
FSR1[15:8]
BSR[5:0]
WREG[7:0]
PCLATH[6:0]
GIE
© 2019 Microchip Technology Inc.
PEIE
INTEDG
Datasheet
DS40002038C-page 598
PIC16(L)F18455/56
Register Summary
...........continued
Address
0x0E8C
...
0x0EFF
0x0F00
0x0F01
0x0F02
0x0F03
Name
Bit Pos.
Reserved
INDF0
INDF1
PCL
STATUS
0x0F04
FSR0
0x0F06
FSR1
0x0F08
0x0F09
0x0F0A
0x0F0B
0x0F0C
...
0x0F7F
0x0F80
0x0F81
0x0F82
0x0F83
BSR
WREG
PCLATH
INTCON
7:0
7:0
7:0
7:0
7:0
15:8
7:0
15:8
7:0
7:0
7:0
7:0
INDF0[7:0]
INDF1[7:0]
PCL[7:0]
TO
PD
Z
DC
C
FSR0[7:0]
FSR0[15:8]
FSR1[7:0]
FSR1[15:8]
BSR[5:0]
WREG[7:0]
PCLATH[6:0]
GIE
PEIE
INTEDG
Reserved
INDF0
INDF1
PCL
STATUS
0x0F84
FSR0
0x0F86
FSR1
0x0F88
0x0F89
0x0F8A
0x0F8B
0x0F8C
...
0x0FFF
0x1000
0x1001
0x1002
0x1003
BSR
WREG
PCLATH
INTCON
7:0
7:0
7:0
7:0
7:0
15:8
7:0
15:8
7:0
7:0
7:0
7:0
INDF0[7:0]
INDF1[7:0]
PCL[7:0]
TO
PD
Z
DC
C
FSR0[7:0]
FSR0[15:8]
FSR1[7:0]
FSR1[15:8]
BSR[5:0]
WREG[7:0]
PCLATH[6:0]
GIE
PEIE
INTEDG
Reserved
INDF0
INDF1
PCL
STATUS
0x1004
FSR0
0x1006
FSR1
0x1008
0x1009
0x100A
0x100B
0x100C
...
0x107F
0x1080
0x1081
0x1082
0x1083
BSR
WREG
PCLATH
INTCON
7:0
7:0
7:0
7:0
7:0
15:8
7:0
15:8
7:0
7:0
7:0
7:0
INDF0[7:0]
INDF1[7:0]
PCL[7:0]
TO
PD
Z
DC
C
FSR0[7:0]
FSR0[15:8]
FSR1[7:0]
FSR1[15:8]
BSR[5:0]
WREG[7:0]
PCLATH[6:0]
GIE
PEIE
INTEDG
Reserved
INDF0
INDF1
PCL
STATUS
0x1084
FSR0
0x1086
FSR1
0x1088
0x1089
0x108A
BSR
WREG
PCLATH
7:0
7:0
7:0
7:0
7:0
15:8
7:0
15:8
7:0
7:0
7:0
© 2019 Microchip Technology Inc.
INDF0[7:0]
INDF1[7:0]
PCL[7:0]
TO
PD
Z
DC
C
FSR0[7:0]
FSR0[15:8]
FSR1[7:0]
FSR1[15:8]
BSR[5:0]
WREG[7:0]
PCLATH[6:0]
Datasheet
DS40002038C-page 599
PIC16(L)F18455/56
Register Summary
...........continued
Address
Name
Bit Pos.
0x108B
0x108C
...
0x10FF
0x1100
0x1101
0x1102
0x1103
INTCON
7:0
GIE
PEIE
INTEDG
Reserved
INDF0
INDF1
PCL
STATUS
0x1104
FSR0
0x1106
FSR1
0x1108
0x1109
0x110A
0x110B
0x110C
...
0x117F
0x1180
0x1181
0x1182
0x1183
BSR
WREG
PCLATH
INTCON
7:0
7:0
7:0
7:0
7:0
15:8
7:0
15:8
7:0
7:0
7:0
7:0
INDF0[7:0]
INDF1[7:0]
PCL[7:0]
TO
PD
Z
DC
C
FSR0[7:0]
FSR0[15:8]
FSR1[7:0]
FSR1[15:8]
BSR[5:0]
WREG[7:0]
PCLATH[6:0]
GIE
PEIE
INTEDG
Reserved
INDF0
INDF1
PCL
STATUS
0x1184
FSR0
0x1186
FSR1
0x1188
0x1189
0x118A
0x118B
0x118C
...
0x11FF
0x1200
0x1201
0x1202
0x1203
BSR
WREG
PCLATH
INTCON
7:0
7:0
7:0
7:0
7:0
15:8
7:0
15:8
7:0
7:0
7:0
7:0
INDF0[7:0]
INDF1[7:0]
PCL[7:0]
TO
PD
Z
DC
C
FSR0[7:0]
FSR0[15:8]
FSR1[7:0]
FSR1[15:8]
BSR[5:0]
WREG[7:0]
PCLATH[6:0]
GIE
PEIE
INTEDG
Reserved
INDF0
INDF1
PCL
STATUS
0x1204
FSR0
0x1206
FSR1
0x1208
0x1209
0x120A
0x120B
0x120C
...
0x127F
0x1280
0x1281
0x1282
0x1283
BSR
WREG
PCLATH
INTCON
7:0
7:0
7:0
7:0
7:0
15:8
7:0
15:8
7:0
7:0
7:0
7:0
INDF0[7:0]
INDF1[7:0]
PCL[7:0]
TO
PD
Z
DC
C
FSR0[7:0]
FSR0[15:8]
FSR1[7:0]
FSR1[15:8]
BSR[5:0]
WREG[7:0]
PCLATH[6:0]
GIE
PEIE
INTEDG
Reserved
INDF0
INDF1
PCL
STATUS
0x1284
FSR0
0x1286
FSR1
0x1288
0x1289
BSR
WREG
7:0
7:0
7:0
7:0
7:0
15:8
7:0
15:8
7:0
7:0
© 2019 Microchip Technology Inc.
INDF0[7:0]
INDF1[7:0]
PCL[7:0]
TO
PD
Z
DC
C
FSR0[7:0]
FSR0[15:8]
FSR1[7:0]
FSR1[15:8]
BSR[5:0]
WREG[7:0]
Datasheet
DS40002038C-page 600
PIC16(L)F18455/56
Register Summary
...........continued
Address
Name
Bit Pos.
0x128A
0x128B
PCLATH
INTCON
7:0
7:0
0x128C
...
0x12FF
0x1300
0x1301
0x1302
0x1303
PCLATH[6:0]
GIE
PEIE
INTEDG
Reserved
INDF0
INDF1
PCL
STATUS
0x1304
FSR0
0x1306
FSR1
0x1308
0x1309
0x130A
0x130B
0x130C
...
0x137F
0x1380
0x1381
0x1382
0x1383
BSR
WREG
PCLATH
INTCON
7:0
7:0
7:0
7:0
7:0
15:8
7:0
15:8
7:0
7:0
7:0
7:0
INDF0[7:0]
INDF1[7:0]
PCL[7:0]
TO
PD
Z
DC
C
FSR0[7:0]
FSR0[15:8]
FSR1[7:0]
FSR1[15:8]
BSR[5:0]
WREG[7:0]
PCLATH[6:0]
GIE
PEIE
INTEDG
Reserved
INDF0
INDF1
PCL
STATUS
0x1384
FSR0
0x1386
FSR1
0x1388
0x1389
0x138A
0x138B
0x138C
...
0x13FF
0x1400
0x1401
0x1402
0x1403
BSR
WREG
PCLATH
INTCON
Reserved
0x1404
FSR0
0x1406
FSR1
0x1408
0x1409
0x140A
0x140B
0x140C
...
0x147F
0x1480
0x1481
0x1482
0x1483
BSR
WREG
PCLATH
INTCON
INDF0
INDF1
PCL
STATUS
7:0
7:0
7:0
7:0
7:0
15:8
7:0
15:8
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
15:8
7:0
15:8
7:0
7:0
7:0
7:0
INDF0[7:0]
INDF1[7:0]
PCL[7:0]
TO
PD
Z
DC
C
FSR0[7:0]
FSR0[15:8]
FSR1[7:0]
FSR1[15:8]
BSR[5:0]
WREG[7:0]
PCLATH[6:0]
GIE
PEIE
INTEDG
INDF0[7:0]
INDF1[7:0]
PCL[7:0]
TO
PD
Z
DC
C
FSR0[7:0]
FSR0[15:8]
FSR1[7:0]
FSR1[15:8]
BSR[5:0]
WREG[7:0]
PCLATH[6:0]
GIE
PEIE
INTEDG
Reserved
INDF0
INDF1
PCL
STATUS
0x1484
FSR0
0x1486
FSR1
0x1488
BSR
7:0
7:0
7:0
7:0
7:0
15:8
7:0
15:8
7:0
© 2019 Microchip Technology Inc.
INDF0[7:0]
INDF1[7:0]
PCL[7:0]
TO
PD
Z
DC
C
FSR0[7:0]
FSR0[15:8]
FSR1[7:0]
FSR1[15:8]
BSR[5:0]
Datasheet
DS40002038C-page 601
PIC16(L)F18455/56
Register Summary
...........continued
Address
Name
Bit Pos.
0x1489
0x148A
WREG
PCLATH
7:0
7:0
0x148B
0x148C
...
0x14FF
0x1500
0x1501
0x1502
0x1503
INTCON
7:0
WREG[7:0]
PCLATH[6:0]
GIE
PEIE
INTEDG
Reserved
INDF0
INDF1
PCL
STATUS
0x1504
FSR0
0x1506
FSR1
0x1508
0x1509
0x150A
0x150B
0x150C
...
0x157F
0x1580
0x1581
0x1582
0x1583
BSR
WREG
PCLATH
INTCON
7:0
7:0
7:0
7:0
7:0
15:8
7:0
15:8
7:0
7:0
7:0
7:0
INDF0[7:0]
INDF1[7:0]
PCL[7:0]
TO
PD
Z
DC
C
FSR0[7:0]
FSR0[15:8]
FSR1[7:0]
FSR1[15:8]
BSR[5:0]
WREG[7:0]
PCLATH[6:0]
GIE
PEIE
INTEDG
Reserved
INDF0
INDF1
PCL
STATUS
0x1584
FSR0
0x1586
FSR1
0x1588
0x1589
0x158A
0x158B
0x158C
...
0x15FF
0x1600
0x1601
0x1602
0x1603
BSR
WREG
PCLATH
INTCON
7:0
7:0
7:0
7:0
7:0
15:8
7:0
15:8
7:0
7:0
7:0
7:0
INDF0[7:0]
INDF1[7:0]
PCL[7:0]
TO
PD
Z
DC
C
FSR0[7:0]
FSR0[15:8]
FSR1[7:0]
FSR1[15:8]
BSR[5:0]
WREG[7:0]
PCLATH[6:0]
GIE
PEIE
INTEDG
Reserved
INDF0
INDF1
PCL
STATUS
0x1604
FSR0
0x1606
FSR1
0x1608
0x1609
0x160A
0x160B
0x160C
...
0x167F
0x1680
0x1681
0x1682
0x1683
BSR
WREG
PCLATH
INTCON
7:0
7:0
7:0
7:0
7:0
15:8
7:0
15:8
7:0
7:0
7:0
7:0
INDF0[7:0]
INDF1[7:0]
PCL[7:0]
TO
PD
Z
DC
C
FSR0[7:0]
FSR0[15:8]
FSR1[7:0]
FSR1[15:8]
BSR[5:0]
WREG[7:0]
PCLATH[6:0]
GIE
PEIE
INTEDG
Reserved
INDF0
INDF1
PCL
STATUS
0x1684
FSR0
0x1686
FSR1
7:0
7:0
7:0
7:0
7:0
15:8
7:0
15:8
© 2019 Microchip Technology Inc.
INDF0[7:0]
INDF1[7:0]
PCL[7:0]
TO
PD
Z
DC
C
FSR0[7:0]
FSR0[15:8]
FSR1[7:0]
FSR1[15:8]
Datasheet
DS40002038C-page 602
PIC16(L)F18455/56
Register Summary
...........continued
Address
Name
Bit Pos.
0x1688
0x1689
BSR
WREG
7:0
7:0
0x168A
0x168B
0x168C
...
0x16FF
0x1700
0x1701
0x1702
0x1703
PCLATH
INTCON
7:0
7:0
PCLATH[6:0]
GIE
PEIE
INTEDG
Reserved
INDF0
INDF1
PCL
STATUS
0x1704
FSR0
0x1706
FSR1
0x1708
0x1709
0x170A
0x170B
0x170C
...
0x177F
0x1780
0x1781
0x1782
0x1783
BSR
WREG
PCLATH
INTCON
7:0
7:0
7:0
7:0
7:0
15:8
7:0
15:8
7:0
7:0
7:0
7:0
INDF0[7:0]
INDF1[7:0]
PCL[7:0]
TO
PD
Z
DC
C
FSR0[7:0]
FSR0[15:8]
FSR1[7:0]
FSR1[15:8]
BSR[5:0]
WREG[7:0]
PCLATH[6:0]
GIE
PEIE
INTEDG
Reserved
INDF0
INDF1
PCL
STATUS
0x1784
FSR0
0x1786
FSR1
0x1788
0x1789
0x178A
0x178B
0x178C
...
0x17FF
0x1800
0x1801
0x1802
0x1803
BSR
WREG
PCLATH
INTCON
7:0
7:0
7:0
7:0
7:0
15:8
7:0
15:8
7:0
7:0
7:0
7:0
INDF0[7:0]
INDF1[7:0]
PCL[7:0]
TO
PD
Z
DC
C
FSR0[7:0]
FSR0[15:8]
FSR1[7:0]
FSR1[15:8]
BSR[5:0]
WREG[7:0]
PCLATH[6:0]
GIE
PEIE
INTEDG
Reserved
INDF0
INDF1
PCL
STATUS
0x1804
FSR0
0x1806
FSR1
0x1808
0x1809
0x180A
0x180B
0x180C
...
0x187F
0x1880
0x1881
0x1882
0x1883
BSR
WREG
PCLATH
INTCON
0x1884
BSR[5:0]
WREG[7:0]
7:0
7:0
7:0
7:0
7:0
15:8
7:0
15:8
7:0
7:0
7:0
7:0
INDF0[7:0]
INDF1[7:0]
PCL[7:0]
TO
PD
Z
DC
C
FSR0[7:0]
FSR0[15:8]
FSR1[7:0]
FSR1[15:8]
BSR[5:0]
WREG[7:0]
PCLATH[6:0]
GIE
PEIE
INTEDG
Reserved
INDF0
INDF1
PCL
STATUS
FSR0
7:0
7:0
7:0
7:0
7:0
15:8
© 2019 Microchip Technology Inc.
INDF0[7:0]
INDF1[7:0]
PCL[7:0]
TO
PD
Z
DC
C
FSR0[7:0]
FSR0[15:8]
Datasheet
DS40002038C-page 603
PIC16(L)F18455/56
Register Summary
...........continued
Address
Name
Bit Pos.
0x1886
FSR1
7:0
15:8
FSR1[7:0]
FSR1[15:8]
0x1888
0x1889
0x188A
0x188B
0x188C
...
0x18FF
0x1900
0x1901
0x1902
0x1903
BSR
WREG
PCLATH
INTCON
7:0
7:0
7:0
7:0
BSR[5:0]
WREG[7:0]
PCLATH[6:0]
GIE
PEIE
INTEDG
Reserved
INDF0
INDF1
PCL
STATUS
0x1904
FSR0
0x1906
FSR1
0x1908
0x1909
0x190A
0x190B
0x190C
...
0x197F
0x1980
0x1981
0x1982
0x1983
BSR
WREG
PCLATH
INTCON
7:0
7:0
7:0
7:0
7:0
15:8
7:0
15:8
7:0
7:0
7:0
7:0
INDF0[7:0]
INDF1[7:0]
PCL[7:0]
TO
PD
Z
DC
C
FSR0[7:0]
FSR0[15:8]
FSR1[7:0]
FSR1[15:8]
BSR[5:0]
WREG[7:0]
PCLATH[6:0]
GIE
PEIE
INTEDG
Reserved
INDF0
INDF1
PCL
STATUS
0x1984
FSR0
0x1986
FSR1
0x1988
0x1989
0x198A
0x198B
0x198C
...
0x19FF
0x1A00
0x1A01
0x1A02
0x1A03
BSR
WREG
PCLATH
INTCON
7:0
7:0
7:0
7:0
7:0
15:8
7:0
15:8
7:0
7:0
7:0
7:0
INDF0[7:0]
INDF1[7:0]
PCL[7:0]
TO
PD
Z
DC
C
FSR0[7:0]
FSR0[15:8]
FSR1[7:0]
FSR1[15:8]
BSR[5:0]
WREG[7:0]
PCLATH[6:0]
GIE
PEIE
INTEDG
Reserved
INDF0
INDF1
PCL
STATUS
0x1A04
FSR0
0x1A06
FSR1
0x1A08
0x1A09
0x1A0A
0x1A0B
0x1A0C
...
0x1A7F
0x1A80
0x1A81
0x1A82
0x1A83
BSR
WREG
PCLATH
INTCON
7:0
7:0
7:0
7:0
7:0
15:8
7:0
15:8
7:0
7:0
7:0
7:0
INDF0[7:0]
INDF1[7:0]
PCL[7:0]
TO
PD
Z
DC
C
FSR0[7:0]
FSR0[15:8]
FSR1[7:0]
FSR1[15:8]
BSR[5:0]
WREG[7:0]
PCLATH[6:0]
GIE
PEIE
INTEDG
Reserved
INDF0
INDF1
PCL
STATUS
7:0
7:0
7:0
7:0
© 2019 Microchip Technology Inc.
INDF0[7:0]
INDF1[7:0]
PCL[7:0]
TO
Datasheet
PD
Z
DC
C
DS40002038C-page 604
PIC16(L)F18455/56
Register Summary
...........continued
Address
Name
Bit Pos.
0x1A84
FSR0
7:0
15:8
FSR0[7:0]
FSR0[15:8]
0x1A86
FSR1
FSR1[7:0]
FSR1[15:8]
0x1A88
0x1A89
0x1A8A
0x1A8B
0x1A8C
...
0x1AFF
0x1B00
0x1B01
0x1B02
0x1B03
BSR
WREG
PCLATH
INTCON
7:0
15:8
7:0
7:0
7:0
7:0
BSR[5:0]
WREG[7:0]
PCLATH[6:0]
GIE
PEIE
INTEDG
Reserved
INDF0
INDF1
PCL
STATUS
0x1B04
FSR0
0x1B06
FSR1
0x1B08
0x1B09
0x1B0A
0x1B0B
0x1B0C
...
0x1B7F
0x1B80
0x1B81
0x1B82
0x1B83
BSR
WREG
PCLATH
INTCON
7:0
7:0
7:0
7:0
7:0
15:8
7:0
15:8
7:0
7:0
7:0
7:0
INDF0[7:0]
INDF1[7:0]
PCL[7:0]
TO
PD
Z
DC
C
FSR0[7:0]
FSR0[15:8]
FSR1[7:0]
FSR1[15:8]
BSR[5:0]
WREG[7:0]
PCLATH[6:0]
GIE
PEIE
INTEDG
Reserved
INDF0
INDF1
PCL
STATUS
0x1B84
FSR0
0x1B86
FSR1
0x1B88
0x1B89
0x1B8A
0x1B8B
0x1B8C
...
0x1BFF
0x1C00
0x1C01
0x1C02
0x1C03
BSR
WREG
PCLATH
INTCON
7:0
7:0
7:0
7:0
7:0
15:8
7:0
15:8
7:0
7:0
7:0
7:0
INDF0[7:0]
INDF1[7:0]
PCL[7:0]
TO
PD
Z
DC
C
FSR0[7:0]
FSR0[15:8]
FSR1[7:0]
FSR1[15:8]
BSR[5:0]
WREG[7:0]
PCLATH[6:0]
GIE
PEIE
INTEDG
Reserved
INDF0
INDF1
PCL
STATUS
0x1C04
FSR0
0x1C06
FSR1
0x1C08
0x1C09
0x1C0A
0x1C0B
0x1C0C
...
0x1C7F
0x1C80
0x1C81
0x1C82
BSR
WREG
PCLATH
INTCON
7:0
7:0
7:0
7:0
7:0
15:8
7:0
15:8
7:0
7:0
7:0
7:0
INDF0[7:0]
INDF1[7:0]
PCL[7:0]
TO
PD
Z
DC
C
FSR0[7:0]
FSR0[15:8]
FSR1[7:0]
FSR1[15:8]
BSR[5:0]
WREG[7:0]
PCLATH[6:0]
GIE
PEIE
INTEDG
Reserved
INDF0
INDF1
PCL
7:0
7:0
7:0
© 2019 Microchip Technology Inc.
INDF0[7:0]
INDF1[7:0]
PCL[7:0]
Datasheet
DS40002038C-page 605
PIC16(L)F18455/56
Register Summary
...........continued
Address
Name
Bit Pos.
0x1C83
STATUS
0x1C84
FSR0
7:0
7:0
0x1C86
FSR1
0x1C88
0x1C89
0x1C8A
0x1C8B
0x1C8C
...
0x1CFF
0x1D00
0x1D01
0x1D02
0x1D03
BSR
WREG
PCLATH
INTCON
15:8
7:0
15:8
7:0
7:0
7:0
7:0
TO
PD
Z
DC
C
FSR0[7:0]
FSR0[15:8]
FSR1[7:0]
FSR1[15:8]
BSR[5:0]
WREG[7:0]
PCLATH[6:0]
GIE
PEIE
INTEDG
Reserved
INDF0
INDF1
PCL
STATUS
0x1D04
FSR0
0x1D06
FSR1
0x1D08
0x1D09
0x1D0A
0x1D0B
0x1D0C
...
0x1D7F
0x1D80
0x1D81
0x1D82
0x1D83
BSR
WREG
PCLATH
INTCON
7:0
7:0
7:0
7:0
7:0
15:8
7:0
15:8
7:0
7:0
7:0
7:0
INDF0[7:0]
INDF1[7:0]
PCL[7:0]
TO
PD
Z
DC
C
FSR0[7:0]
FSR0[15:8]
FSR1[7:0]
FSR1[15:8]
BSR[5:0]
WREG[7:0]
PCLATH[6:0]
GIE
PEIE
INTEDG
Reserved
INDF0
INDF1
PCL
STATUS
0x1D84
FSR0
0x1D86
FSR1
0x1D88
0x1D89
0x1D8A
0x1D8B
0x1D8C
...
0x1DFF
0x1E00
0x1E01
0x1E02
0x1E03
BSR
WREG
PCLATH
INTCON
7:0
7:0
7:0
7:0
7:0
15:8
7:0
15:8
7:0
7:0
7:0
7:0
INDF0[7:0]
INDF1[7:0]
PCL[7:0]
TO
PD
Z
DC
C
FSR0[7:0]
FSR0[15:8]
FSR1[7:0]
FSR1[15:8]
BSR[5:0]
WREG[7:0]
PCLATH[6:0]
GIE
PEIE
INTEDG
Reserved
INDF0
INDF1
PCL
STATUS
0x1E04
FSR0
0x1E06
FSR1
0x1E08
0x1E09
0x1E0A
0x1E0B
0x1E0C
...
0x1E0E
0x1E0F
0x1E10
BSR
WREG
PCLATH
INTCON
7:0
7:0
7:0
7:0
7:0
15:8
7:0
15:8
7:0
7:0
7:0
7:0
INDF0[7:0]
INDF1[7:0]
PCL[7:0]
GIE
7:0
7:0
EN
TO
PD
Z
DC
C
FSR0[7:0]
FSR0[15:8]
FSR1[7:0]
FSR1[15:8]
BSR[5:0]
WREG[7:0]
PCLATH[6:0]
PEIE
INTEDG
Reserved
CLCDATA
CLC1CON
© 2019 Microchip Technology Inc.
OUT
INTP
Datasheet
MLC4OUT
INTN
MLC3OUT
MLC2OUT
MODE[2:0]
MLC1OUT
DS40002038C-page 606
PIC16(L)F18455/56
Register Summary
...........continued
Address
Name
Bit Pos.
0x1E11
0x1E12
CLC1POL
CLC1SEL0
7:0
7:0
0x1E13
0x1E14
0x1E15
0x1E16
0x1E17
0x1E18
0x1E19
0x1E1A
0x1E1B
0x1E1C
0x1E1D
0x1E1E
0x1E1F
0x1E20
0x1E21
0x1E22
0x1E23
0x1E24
0x1E25
0x1E26
0x1E27
0x1E28
0x1E29
0x1E2A
0x1E2B
0x1E2C
0x1E2D
0x1E2E
0x1E2F
0x1E30
0x1E31
0x1E32
0x1E33
0x1E34
0x1E35
0x1E36
0x1E37
0x1E38
...
0x1E7F
0x1E80
0x1E81
0x1E82
0x1E83
CLC1SEL1
CLC1SEL2
CLC1SEL3
CLC1GLS0
CLC1GLS1
CLC1GLS2
CLC1GLS3
CLC2CON
CLC2POL
CLC2SEL0
CLC2SEL1
CLC2SEL2
CLC2SEL3
CLC2GLS0
CLC2GLS1
CLC2GLS2
CLC2GLS3
CLC3CON
CLC3POL
CLC3SEL0
CLC3SEL1
CLC3SEL2
CLC3SEL3
CLC3GLS0
CLC3GLS1
CLC3GLS2
CLC3GLS3
CLC4CON
CLC4POL
CLC4SEL0
CLC4SEL1
CLC4SEL2
CLC4SEL3
CLC4GLS0
CLC4GLS1
CLC4GLS2
CLC4GLS3
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
POL
G4POL
G3POL
D1S[5:0]
G1D4T
G2D4T
G3D4T
G4D4T
EN
POL
G1D4N
G2D4N
G3D4N
G4D4N
G1D4T
G2D4T
G3D4T
G4D4T
EN
POL
G1D4N
G2D4N
G3D4N
G4D4N
G1D4T
G2D4T
G3D4T
G4D4T
EN
POL
G1D4N
G2D4N
G3D4N
G4D4N
G1D4T
G2D4T
G3D4T
G4D4T
G1D4N
G2D4N
G3D4N
G4D4N
G1D3T
G2D3T
G3D3T
G4D3T
OUT
G1D3T
G2D3T
G3D3T
G4D3T
OUT
G1D3T
G2D3T
G3D3T
G4D3T
OUT
G1D3T
G2D3T
G3D3T
G4D3T
G1D3N
G2D3N
G3D3N
G4D3N
INTP
G1D3N
G2D3N
G3D3N
G4D3N
INTP
G1D3N
G2D3N
G3D3N
G4D3N
INTP
G1D3N
G2D3N
G3D3N
G4D3N
D2S[5:0]
D3S[5:0]
D4S[5:0]
G1D2T
G1D2N
G2D2T
G2D2N
G3D2T
G3D2N
G4D2T
G4D2N
INTN
G4POL
G3POL
D1S[5:0]
D2S[5:0]
D3S[5:0]
D4S[5:0]
G1D2T
G1D2N
G2D2T
G2D2N
G3D2T
G3D2N
G4D2T
G4D2N
INTN
G4POL
G3POL
D1S[5:0]
D2S[5:0]
D3S[5:0]
D4S[5:0]
G1D2T
G1D2N
G2D2T
G2D2N
G3D2T
G3D2N
G4D2T
G4D2N
INTN
G4POL
G3POL
D1S[5:0]
D2S[5:0]
D3S[5:0]
D4S[5:0]
G1D2T
G1D2N
G2D2T
G2D2N
G3D2T
G3D2N
G4D2T
G4D2N
G2POL
G1POL
G1D1T
G2D1T
G3D1T
G4D1T
MODE[2:0]
G2POL
G1D1N
G2D1N
G3D1N
G4D1N
G1D1T
G2D1T
G3D1T
G4D1T
MODE[2:0]
G2POL
G1POL
G1D1N
G2D1N
G3D1N
G4D1N
G1POL
G1D1T
G2D1T
G3D1T
G4D1T
MODE[2:0]
G2POL
G1D1N
G2D1N
G3D1N
G4D1N
G1POL
G1D1T
G2D1T
G3D1T
G4D1T
G1D1N
G2D1N
G3D1N
G4D1N
DC
C
Reserved
INDF0
INDF1
PCL
STATUS
0x1E84
FSR0
0x1E86
FSR1
0x1E88
0x1E89
0x1E8A
0x1E8B
0x1E8C
...
0x1E8E
0x1E8F
0x1E90
BSR
WREG
PCLATH
INTCON
7:0
7:0
7:0
7:0
7:0
15:8
7:0
15:8
7:0
7:0
7:0
7:0
INDF0[7:0]
INDF1[7:0]
PCL[7:0]
TO
PD
Z
FSR0[7:0]
FSR0[15:8]
FSR1[7:0]
FSR1[15:8]
BSR[5:0]
WREG[7:0]
PCLATH[6:0]
GIE
PEIE
INTEDG
Reserved
PPSLOCK
INTPPS
7:0
7:0
© 2019 Microchip Technology Inc.
PPSLOCKED
PORT[1:0]
Datasheet
PIN[2:0]
DS40002038C-page 607
PIC16(L)F18455/56
Register Summary
...........continued
Address
Name
Bit Pos.
0x1E91
0x1E92
T0CKIPPS
T1CKIPPS
7:0
7:0
PORT[1:0]
PORT[1:0]
PIN[2:0]
PIN[2:0]
0x1E93
0x1E94
0x1E95
0x1E96
0x1E97
0x1E98
...
0x1E9B
0x1E9C
0x1E9D
0x1E9E
0x1E9F
...
0x1EA0
0x1EA1
0x1EA2
0x1EA3
0x1EA4
0x1EA5
0x1EA6
...
0x1EA8
0x1EA9
0x1EAA
0x1EAB
0x1EAC
0x1EAD
...
0x1EB0
0x1EB1
0x1EB2
0x1EB3
0x1EB4
...
0x1EB7
0x1EB8
0x1EB9
0x1EBA
0x1EBB
0x1EBC
0x1EBD
0x1EBE
0x1EBF
...
0x1EC2
0x1EC3
0x1EC4
0x1EC5
0x1EC6
0x1EC7
0x1EC8
0x1EC9
0x1ECA
0x1ECB
0x1ECC
0x1ECD
0x1ECE
T1GPPS
T3CKIPPS
T3GPPS
T5CKIPPS
T5GPPS
7:0
7:0
7:0
7:0
7:0
PORT[1:0]
PORT[1:0]
PORT[1:0]
PORT[1:0]
PORT[1:0]
PIN[2:0]
PIN[2:0]
PIN[2:0]
PIN[2:0]
PIN[2:0]
7:0
7:0
7:0
PORT[1:0]
PORT[1:0]
PORT[1:0]
PIN[2:0]
PIN[2:0]
PIN[2:0]
7:0
7:0
7:0
7:0
7:0
PORT[1:0]
PORT[1:0]
PORT[1:0]
PORT[1:0]
PORT[1:0]
PIN[2:0]
PIN[2:0]
PIN[2:0]
PIN[2:0]
PIN[2:0]
7:0
7:0
7:0
7:0
PORT[1:0]
PORT[1:0]
PORT[1:0]
PORT[1:0]
PIN[2:0]
PIN[2:0]
PIN[2:0]
PIN[2:0]
7:0
7:0
7:0
PORT[1:0]
PORT[1:0]
PORT[1:0]
PIN[2:0]
PIN[2:0]
PIN[2:0]
7:0
7:0
7:0
7:0
7:0
7:0
7:0
PORT[1:0]
PORT[1:0]
PORT[1:0]
PORT[1:0]
PORT[1:0]
PORT[1:0]
PORT[1:0]
PIN[2:0]
PIN[2:0]
PIN[2:0]
PIN[2:0]
PIN[2:0]
PIN[2:0]
PIN[2:0]
7:0
PORT[1:0]
PIN[2:0]
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
PORT[1:0]
PORT[1:0]
PORT[1:0]
PORT[1:0]
PORT[1:0]
PORT[1:0]
PORT[1:0]
PORT[1:0]
PORT[1:0]
PORT[1:0]
PIN[2:0]
PIN[2:0]
PIN[2:0]
PIN[2:0]
PIN[2:0]
PIN[2:0]
PIN[2:0]
PIN[2:0]
PIN[2:0]
PIN[2:0]
Reserved
T2INPPS
T4INPPS
T6INPPS
Reserved
CCP1PPS
CCP2PPS
CCP3PPS
CCP4PPS
CCP5PPS
Reserved
SMT1WINPPS
SMT1SIGPPS
SMT2WINPPS
SMT2SIGPPS
Reserved
CWG1PPS
CWG2PPS
CWG3PPS
Reserved
MDCARLPPS
MDCARHPPS
MDSRCPPS
CLCIN0PPS
CLCIN1PPS
CLCIN2PPS
CLCIN3PPS
Reserved
ADACTPPS
Reserved
SSP1CLKPPS
SSP1DATPPS
SSP1SSPPS
SSP2CLKPPS
SSP2DATPPS
SSP2SSPPS
RX1PPS
CK1PPS
RX2PPS
CK2PPS
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 608
PIC16(L)F18455/56
Register Summary
...........continued
Address
0x1ECF
...
0x1EFF
0x1F00
0x1F01
0x1F02
0x1F03
Name
Bit Pos.
Reserved
INDF0
INDF1
PCL
STATUS
0x1F04
FSR0
0x1F06
FSR1
0x1F08
0x1F09
0x1F0A
0x1F0B
0x1F0C
...
0x1F0F
0x1F10
0x1F11
0x1F12
0x1F13
0x1F14
0x1F15
0x1F16
0x1F17
0x1F18
0x1F19
0x1F1A
0x1F1B
0x1F1C
0x1F1D
0x1F1E
0x1F1F
0x1F20
0x1F21
0x1F22
0x1F23
0x1F24
0x1F25
0x1F26
0x1F27
0x1F28
...
0x1F37
0x1F38
0x1F39
0x1F3A
0x1F3B
0x1F3C
0x1F3D
0x1F3E
0x1F3F
0x1F40
...
0x1F42
0x1F43
0x1F44
0x1F45
BSR
WREG
PCLATH
INTCON
7:0
7:0
7:0
7:0
7:0
15:8
7:0
15:8
7:0
7:0
7:0
7:0
INDF0[7:0]
INDF1[7:0]
PCL[7:0]
TO
PD
Z
DC
C
FSR0[7:0]
FSR0[15:8]
FSR1[7:0]
FSR1[15:8]
BSR[5:0]
WREG[7:0]
PCLATH[6:0]
GIE
PEIE
INTEDG
Reserved
RA0PPS
RA1PPS
RA2PPS
RA3PPS
RA4PPS
RA5PPS
RA6PPS
RA7PPS
RB0PPS
RB1PPS
RB2PPS
RB3PPS
RB4PPS
RB5PPS
RB6PPS
RB7PPS
RC0PPS
RC1PPS
RC2PPS
RC3PPS
RC4PPS
RC5PPS
RC6PPS
RC7PPS
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
PPS[5:0]
PPS[5:0]
PPS[5:0]
PPS[5:0]
PPS[5:0]
PPS[5:0]
PPS[5:0]
PPS[5:0]
PPS[5:0]
PPS[5:0]
PPS[5:0]
PPS[5:0]
PPS[5:0]
PPS[5:0]
PPS[5:0]
PPS[5:0]
PPS[5:0]
PPS[5:0]
PPS[5:0]
PPS[5:0]
PPS[5:0]
PPS[5:0]
PPS[5:0]
PPS[5:0]
Reserved
ANSELA
WPUA
ODCONA
SLRCONA
INLVLA
IOCAP
IOCAN
IOCAF
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
ANSELA7
WPUA7
ODCA7
SLRA7
INLVLA7
IOCAP7
IOCAN7
IOCAF7
ANSELA6
WPUA6
ODCA6
SLRA6
INLVLA6
IOCAP6
IOCAN6
IOCAF6
ANSELA5
WPUA5
ODCA5
SLRA5
INLVLA5
IOCAP5
IOCAN5
IOCAF5
ANSELA4
WPUA4
ODCA4
SLRA4
INLVLA4
IOCAP4
IOCAN4
IOCAF4
ANSELA3
WPUA3
ODCA3
SLRA3
INLVLA3
IOCAP3
IOCAN3
IOCAF3
ANSELA2
WPUA2
ODCA2
SLRA2
INLVLA2
IOCAP2
IOCAN2
IOCAF2
ANSELA1
WPUA1
ODCA1
SLRA1
INLVLA1
IOCAP1
IOCAN1
IOCAF1
ANSELA0
WPUA0
ODCA0
SLRA0
INLVLA0
IOCAP0
IOCAN0
IOCAF0
7:0
7:0
7:0
ANSELB7
WPUB7
ODCB7
ANSELB6
WPUB6
ODCB6
ANSELB5
WPUB5
ODCB5
ANSELB4
WPUB4
ODCB4
ANSELB3
WPUB3
ODCB3
ANSELB2
WPUB2
ODCB2
ANSELB1
WPUB1
ODCB1
ANSELB0
WPUB0
ODCB0
Reserved
ANSELB
WPUB
ODCONB
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 609
PIC16(L)F18455/56
Register Summary
...........continued
Address
Name
Bit Pos.
0x1F46
0x1F47
SLRCONB
INLVLB
7:0
7:0
SLRB7
INLVLB7
SLRB6
INLVLB6
SLRB5
INLVLB5
SLRB4
INLVLB4
SLRB3
INLVLB3
SLRB2
INLVLB2
SLRB1
INLVLB1
SLRB0
INLVLB0
0x1F48
0x1F49
0x1F4A
0x1F4B
...
0x1F4D
0x1F4E
0x1F4F
0x1F50
0x1F51
0x1F52
0x1F53
0x1F54
0x1F55
0x1F56
...
0x1F64
0x1F65
0x1F66
...
0x1F67
0x1F68
0x1F69
0x1F6A
0x1F6B
0x1F6C
...
0x1F7F
0x1F80
0x1F81
0x1F82
0x1F83
IOCBP
IOCBN
IOCBF
7:0
7:0
7:0
IOCBP7
IOCBN7
IOCBF7
IOCBP6
IOCBN6
IOCBF6
IOCBP5
IOCBN5
IOCBF5
IOCBP4
IOCBN4
IOCBF4
IOCBP3
IOCBN3
IOCBF3
IOCBP2
IOCBN2
IOCBF2
IOCBP1
IOCBN1
IOCBF1
IOCBP0
IOCBN0
IOCBF0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
7:0
ANSELC7
WPUC7
ODCC7
SLRC7
INLVLC7
IOCCP7
IOCCN7
IOCCF7
ANSELC6
WPUC6
ODCC6
SLRC6
INLVLC6
IOCCP6
IOCCN6
IOCCF6
ANSELC5
WPUC5
ODCC5
SLRC5
INLVLC5
IOCCP5
IOCCN5
IOCCF5
ANSELC4
WPUC4
ODCC4
SLRC4
INLVLC4
IOCCP4
IOCCN4
IOCCF4
ANSELC3
WPUC3
ODCC3
SLRC3
INLVLC3
IOCCP3
IOCCN3
IOCCF3
ANSELC2
WPUC2
ODCC2
SLRC2
INLVLC2
IOCCP2
IOCCN2
IOCCF2
ANSELC1
WPUC1
ODCC1
SLRC1
INLVLC1
IOCCP1
IOCCN1
IOCCF1
ANSELC0
WPUC0
ODCC0
SLRC0
INLVLC0
IOCCP0
IOCCN0
IOCCF0
Z
DC
C
Reserved
ANSELC
WPUC
ODCONC
SLRCONC
INLVLC
IOCCP
IOCCN
IOCCF
Reserved
WPUE
WPUE3
7:0
7:0
7:0
7:0
INLVLE3
IOCEP3
IOCEN3
IOCEF3
Reserved
INLVLE
IOCEP
IOCEN
IOCEF
Reserved
INDF0
INDF1
PCL
STATUS
0x1F84
FSR0
0x1F86
FSR1
0x1F88
0x1F89
0x1F8A
0x1F8B
0x1F8C
...
0x1FE3
0x1FE4
0x1FE5
0x1FE6
0x1FE7
STATUS_SHAD
WREG_SHAD
BSR_SHAD
PCLATH_SHAD
0x1FE8
FSR0_SHAD
0x1FEA
FSR1_SHAD
0x1FEC
0x1FED
Reserved
STKPTR
0x1FEE
7:0
BSR
WREG
PCLATH
INTCON
7:0
7:0
7:0
7:0
7:0
15:8
7:0
15:8
7:0
7:0
7:0
7:0
INDF0[7:0]
INDF1[7:0]
PCL[7:0]
TO
PD
FSR0[7:0]
FSR0[15:8]
FSR1[7:0]
FSR1[15:8]
BSR[5:0]
WREG[7:0]
PCLATH[6:0]
GIE
PEIE
INTEDG
Reserved
TOS
7:0
7:0
7:0
7:0
7:0
15:8
7:0
15:8
7:0
7:0
15:8
© 2019 Microchip Technology Inc.
TO
PD
Z
DC
C
WREG[7:0]
BSR[5:0]
PCLATH[6:0]
FSR0_SHAD[7:0]
FSR1_SHAD[7:0]
STKPTR[4:0]
TOS[7:0]
TOS[15:8]
Datasheet
DS40002038C-page 610
PIC16(L)F18455/56
Instruction Set Summary
37.
Instruction Set Summary
PIC16(L)F18455/56 devices incorporate the standard set of 50 PIC16 core instructions. Each instruction is a 14-bit
word containing the operation code (opcode) and all required operands. The opcodes are broken into three broad
categories:
• Byte Oriented
• Bit Oriented
• Literal and Control
The literal and control category contains the most varied instruction word format.
The Instruction Set table lists the instructions recognized by the MPASM™ assembler.
All instructions are executed within a single instruction cycle, with the following exceptions, which may take two or
three cycles:
• Subroutine entry takes two cycles (CALL, CALLW)
•
Returns from interrupts or subroutines take two cycles (RETURN, RETLW, RETFIE)
•
Program branching takes two cycles (GOTO, BRA, BRW, BTFSS, BTFSC, DECFSZ, INCSFZ)
•
One additional instruction cycle will be used when any instruction references an indirect file register and the file
select register is pointing to program memory.
One instruction cycle consists of 4 oscillator cycles; for an oscillator frequency of 4 MHz, this gives a nominal
instruction execution rate of 1 MHz.
All instruction examples use the format ‘0xhh’ to represent a hexadecimal number, where ‘h’ signifies a hexadecimal
digit.
37.1
Read-Modify-Write Operations
Any WRITE instruction that specifies a file register as part of the instruction performs a Read-Modify-Write (R-M-W)
operation. The register is read, the data is modified, and the result is stored according to either the working (W)
register, or the originating file register, depending on the state of the destination designator 'd' (see the table below for
more information). A read operation is performed on a register even if the instruction writes to that register.
Table 37-1. Opcode Field Descriptions
Field
Description
f
Register file address (0x00 to 0x7F)
W
Working register (accumulator)
b
Bit address within an 8-bit file register
k
Literal field, constant data or label
x
Don’t care location (= 0 or 1).
The assembler will generate code with x = 0.
It is the recommended form of use for compatibility with all Microchip software tools.
d
Destination select; d = 0: store result in W, d = 1: store result in file register f.
n
FSR or INDF number. (0-1)
mm
Prepost increment-decrement mode selection
Table 37-2. Abbreviation Descriptions
Field
Description
PC
Program Counter
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 611
PIC16(L)F18455/56
Instruction Set Summary
...........continued
37.2
Field
Description
TO
Time-Out bit
C
Carry bit
DC
Digit Carry bit
Z
Zero bit
PD
Power-Down bit
Standard Instruction Set
Table 37-3. Instruction Set
Mnemonic,
Operands
ADDWF
f, d
ADDWFC f, d
Description
Cycles
BYTE-ORIENTED OPERATIONS
Add WREG and f
1
Add WREG and CARRY bit to f
1
ANDWF
f, d
AND WREG with f
1
ASRF
f, d
Arithmetic Right Shift
1
LSLF
f, d
Logical Left Shift
1
LSRF
f, d
Logical Right Shift
1
CLRF
f
Clear f
1
CLRW
–
Clear WREG
1
COMF
f, d
Complement f
1
DECF
f, d
Decrement f
1
INCF
f, d
Increment f
1
IORWF
f, d
Inclusive OR WREG with f
1
MOVF
f, d
Move f
1
MOVWF
f
Move WREG to f
1
RLF
f, d
Rotate Left f through Carry
1
RRF
f, d
Rotate Right f through Carry
1
© 2019 Microchip Technology Inc.
Datasheet
14-Bit Opcode
MSb
LSb
00
0111
dfff
ffff
11
1101
dfff
ffff
00
0101
dfff
ffff
11
0111
dfff
ffff
11
0101
dfff
ffff
11
0110
dfff
ffff
00
0001
lfff
ffff
00
0001
0000
00xx
00
1001
dfff
ffff
00
0011
dfff
ffff
00
1010
dfff
ffff
00
0100
dfff
ffff
00
1000
dfff
ffff
00
0000
1fff
ffff
00
1101
dfff
ffff
00
1100
dfff
ffff
Status
Affected Notes
C, DC, Z
2
C, DC, Z
2
Z
2
C, Z
2
C, Z
2
C, Z
2
Z
2
Z
Z
2
Z
2
Z
2
Z
2
Z
2
None
2
C
2
C
2
DS40002038C-page 612
PIC16(L)F18455/56
Instruction Set Summary
...........continued
Mnemonic,
Operands
Description
Cycles
SUBWF
f, d
Subtract WREG from f
1
SUBWFB
f, d
Subtract WREG from f with
borrow
1
SWAPF
f, d
Swap nibbles in f
1
XORWF
f, d
Exclusive OR WREG with f
1
DECFSZ
INCFSZ
14-Bit Opcode
MSb
LSb
00
0010
dfff
ffff
11
1011
dfff
ffff
00
1110
dfff
ffff
00
0110
dfff
ffff
f, d
BYTE ORIENTED SKIP OPERATIONS
Decrement f, Skip if 0
1(2)
00
1011
dfff
ffff
f, d
Increment f, Skip if 0
1111
dfff
ffff
00bb
bfff
ffff
01
01bb
bfff
ffff
BIT-ORIENTED SKIP OPERATIONS
Bit Test f, Skip if Clear
1(2)
01
10bb
bfff
ffff
1010
11bb
bfff
ffff
11
1110
kkkk
kkkk
11
1001
kkkk
kkkk
11
1000
kkkk
kkkk
00
000
0k
kkkk
11
0001
1kkk
kkkk
11
0000
kkkk
kkkk
11
1100
kkkk
kkkk
11
1010
kkkk
kkkk
BCF
f, b
BSF
f, b
1(2)
00
BIT-ORIENTED FILE REGISTER OPERATIONS
Bit Clear f
1
01
Bit Set f
1
BTFSC
f, b
BTFSS
f, b
ADDLW
k
LITERAL OPERATIONS
Add literal and WREG
1
ANDLW
k
AND literal with WREG
1
IORLW
k
Inclusive OR literal with WREG
1
MOVLB
k
Move literal to BSR
1
MOVLP
k
Move literal to PCLATH
1
MOVLW
k
Move literal to W
1
SUBLW
k
Subtract W from literal
1
XORLW
k
Exclusive OR literal with W
1
Bit Test f, Skip if Set
1(2)
Status
Affected Notes
C, DC, Z
2
C, DC, Z
2
None
2
Z
2
None
1, 2
None
1, 2
None
2
None
2
None
1, 2
None
1, 2
C, DC, Z
Z
Z
None
None
None
C, DC, Z
Z
CONTROL OPERATIONS
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 613
PIC16(L)F18455/56
Instruction Set Summary
...........continued
Mnemonic,
Operands
Description
Cycles
BRA
k
Relative Branch
2
BRW
—
Relative Branch with WREG
2
CALL
k
Call Subroutine
2
CALLW
—
Call Subroutine with WREG
2
GOTO
k
Go to address
2
RETFIE
k
Return from interrupt
2
RETLW
k
Return with literal in WREG
2
RETURN
—
Return from Subroutine
2
14-Bit Opcode
MSb
LSb
11
001k
kkkk
kkkk
00
0000
0000
1011
10
0kkk
kkkk
kkkk
00
0000
0000
1010
10
1kkk
kkkk
kkkk
00
0000
0000
1001
11
0100
kkkk
kkkk
00
0000
0000
1000
00
0000
0110
0100
00
0000
0000
0000
00
0000
0000
0001
00
0000
0110
0011
00
0000
0110
0fff
11
0001
0nkk
kkkk
00
0000
0001
0nmm
11
1111
0nkk
kkkk
00
0000
0001
1nmm
11
1111
1nkk
kkkk
Status
Affected Notes
None
None
None
None
None
None
None
None
INHERENT OPERATIONS
CLRWDT
—
Clear Watchdog Timer
1
NOP
—
No Operation
1
RESET
—
Software device Reset
1
SLEEP
—
Go into Standby or Idle mode
1
TRIS
f
Load TRIS register with WREG
1
ADDFSR n, k
MOVIW
MOVWI
C-COMPILER OPTIMIZED
Add Literal k to FSRn
1
n, mm
Move Indirect FSRn to WREG with pre/post inc/dec
modifier, mm
1
k[n]
Move INDFn to WREG, Indexed Indirect.
1
n, mm
Move WREG to Indirect FSRn with pre/post inc/dec
modifier, mm
1
k[n]
Move WREG to INDFn, Indexed Indirect.
1
TO, PD
None
None
TO, PD
None
None
Z
Z
3.
2, 3
None
2
If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will
require one additional instruction cycle.
Details on MOVIW and MOVWI instruction descriptions are available in the next section.
© 2019 Microchip Technology Inc.
Datasheet
2
None
Note:
1. If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The
second cycle is executed as a NOP.
2.
2, 3
DS40002038C-page 614
PIC16(L)F18455/56
Instruction Set Summary
37.2.1
Standard Instruction Set
ADDFSR
Add Literal to FSRn
Syntax:
[ label ] ADDFSR FSRn, k
Operands:
-32 ≤ k ≤ 31;
n ∈ [ 0, 1]
Operation:
FSR(n) + k → FSR(n)
Status
Affected:
None
Description:
The signed 6-bit literal ‘k’ is added to the contents of the FSRnH:FSRnL register pair.
FSRn is limited to the range 0000h-FFFFh. Moving beyond these bounds will cause the FSR to
wrap-around.
ADDLW
ADD literal to W
Syntax:
[ label ] ADDLW k
Operands:
0 ≤ k ≤ 255
Operation:
(W) + k → (W)
Status Affected:
C, DC, Z
Description:
The contents of W are added to the 8-bit literal ‘k’ and the result is placed in W.
ADDWF
ADD W to f
Syntax:
[ label ] ADDWF f, d
Operands:
0 ≤ f ≤ 127
d ∈ [0,1]
Operation:
(W) + (f) → dest
Status Affected: C, DC, Z
Description:
Add the contents of the W register with register ‘f’. If ‘d’ is ‘0’, the result is stored in the W register.
If ‘d’ is ‘1’, the result is stored back in register ‘f’.
ADDWFC
ADD W and CARRY bit to f
Syntax:
[ label ] ADDWFC f {,d}
Operands:
0 ≤ f ≤ 127
d ∈ [0,1]
Operation:
(W) + (f) + (C) → dest
Status Affected:
C, DC, Z
Description:
Add W, the Carry flag and data memory location ‘f’. If ‘d’ is ‘0’, the result is placed in W.
If ‘d’ is ‘1’, the result is placed in data memory location ‘f’.
ANDLW
AND literal with W
Syntax:
[ label ] ANDLW k
Operands:
0 ≤ k ≤ 255
Operation:
(W) .AND. k → (W)
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 615
PIC16(L)F18455/56
Instruction Set Summary
...........continued
ANDLW
AND literal with W
Status Affected:
Z
Description:
The contents of W are AND’ed with the 8-bit literal ‘k’.
The result is placed in W.
ANDWF
AND W with f
Syntax:
[ label ] ANDWF f, d
Operands:
0 ≤ f ≤ 127
d ∈ [0,1]
Operation:
(W) .AND. (f) → dest
Status Affected:
Z
Description:
AND the W register with register ‘f’. If ‘d’ is ‘0’, the result is stored in the W register.
If ‘d’ is ‘1’, the result is stored back in register ‘f’.
ASRF
Arithmetic Right Shift
Syntax:
[ label ] ASRF f, d
Operands:
0 ≤ f ≤ 127
d ∈ [0,1]
(f[7]) → dest[7]
Operation:
(f[7:1]) → dest[6:0]
(f[0]) → C
Status Affected:
C, Z
Description:
The contents of register ‘f’ are shifted one bit to the right through the Carry flag.
The MSb remains unchanged.
If ‘d’ is ‘0’, the result is placed in W.
If ‘d’ is ‘1’, the result is stored back in register ‘f’.
Register f → C
BCF
Bit Clear f
Syntax:
[ label ] BCF f, b
Operands:
0 ≤ f ≤ 127
0≤b≤7
Operation:
0 → f[b]
Status Affected:
None
Description:
Bit ‘b’ in register ‘f’ is cleared.
BRA
Relative Branch
Syntax:
[ label ] BRA label
[ label ] BRA $+k
Operands:
-256 ≤ label - PC + ≤ 255
-256 ≤ k ≤ 255
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 616
PIC16(L)F18455/56
Instruction Set Summary
...........continued
BRA
Relative Branch
Operation:
(PC) + 1 + k → PC
Status
Affected:
None
Description:
Add the signed 9-bit literal ‘k’ to the PC.
Since the PC will have incremented to fetch the next instruction, the new address will be PC + 1 +
k.
This instruction is a 2-cycle instruction. This branch has a limited range.
BRW
Relative Branch with W
Syntax:
[ label ] BRW
Operands:
None
Operation:
(PC) + (W) → PC
Status Affected: None
Description:
Add the contents of W (unsigned) to the PC.
Since the PC will have incremented to fetch the next instruction, the new address will be PC + 1 +
(W).
This instruction is a 2-cycle instruction.
BSF
Bit Set f
Syntax:
[ label ] BSF f, b
Operands:
0 ≤ f ≤ 127
0≤b≤7
Operation:
1 → (f[b])
Status Affected:
None
Description:
Bit ‘b’ in register ‘f’ is set.
BTFSC
Bit Test File, Skip if Clear
Syntax:
[ label ] BTFSC f, b
Operands:
0 ≤ f ≤ 127
0≤b≤7
Operation:
skip if (f[b]) = 0
Status Affected:
None
Description:
If bit ‘b’ in register ‘f’ is ‘1’, the next instruction is executed.
If bit ‘b’, in register ‘f’, is ‘0’, the next instruction is discarded,
and a NOP is executed instead, making this a 2-cycle instruction.
BTFSS
Bit Test File, Skip if Set
Syntax:
[ label ] BTFSS f, b
Operands:
0 ≤ f ≤ 127
0≤b k
Description
C = 1, W ≤ k
DC = 0, W[3:0] > k[3:0]
DC = 1, W[3:0] ≤ k[3:0]
SUBWF
Subtract W from f
Syntax:
[ label ] SUBWF f, d
Operands:
0 ≤ f ≤ 127
d ∈ [0,1]
Operation:
(f) - (W) → (dest)
Status Affected:
C, DC, Z
Description
Subtract (2’s complement method) W register from register ‘f’.
If ‘d’ is ‘0’, the result is stored in the W register.
If ‘d’ is ‘1’, the result is stored back in register ‘f.
C =0, W > f
C = 1, W ≤ f
DC = 0, W[3:0] > f[3:0]
DC = 1, W[3:0] ≤ f[3:0]
SUBFWB
Subtract W from f with Borrow
Syntax:
[ label ] SUBFWB f {,d}
Operands:
0 ≤ f ≤ 127
d ∈ [0,1]
Operation:
(W) – (f) – (B) → dest
Status Affected:
C, DC, Z
Description:
Subtract W and the BORROW flag (CARRY) from register ‘f’ (2’s complement method).
If ‘d’ is ‘0’, the result is stored in W.
If ‘d’ is ‘1’, the result is stored back in register ‘f’.
SWAPF
Swap Nibbles in f
Syntax:
[ label ] SWAPF f, d
Operands:
0 ≤ f ≤ 127
d ∈ [0,1]
Operation:
(f[3:0]) → dest[7:4],
(f[7:4]) → dest[3:0]
Status Affected:
None
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 629
PIC16(L)F18455/56
Instruction Set Summary
...........continued
SWAPF
Swap Nibbles in f
Description:
The upper and lower nibbles of register ‘f’ are exchanged.
If ‘d’ is ‘0’, the result is placed in W.
If ‘d’ is ‘1’, the result is placed in register ‘f’ (default).
TRIS
Load TRIS Register with W
Syntax:
[ label ] TRIS f
Operands:
5≤f≤7
Operation:
(W) → TRIS register ‘f’
Status Affected:
None
Description:
Move data from W register to TRIS register.
When ‘f’ = 5, TRISA is loaded.
When ‘f’ = 6, TRISB is loaded.
When ‘f’ = 7, TRISC is loaded.
XORLW
Exclusive OR literal with W
Syntax:
[ label ] XORLW k
Operands:
0 ≤ k ≤ 255
Operation:
(W) .XOR. k → (W)
Status Affected:
Z
Description:
The contents of W are XORed with the 8-bit literal ‘k’.
The result is placed in W.
XORWF
Exclusive OR W with f
Syntax:
[ label ] XORWF f, d
Operands:
0 ≤ f ≤ 127
d ∈ [0,1]
Operation:
(W) .XOR. (f) → dest
Status Affected:
Z
Description:
Exclusive OR the contents of the W register with register ‘f’.
If ‘d’ is ‘0’, the result is stored in the W register.
If ‘d’ is ‘1’, the result is stored back in register ‘f’.
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 630
PIC16(L)F18455/56
ICSP™
38.
- In-Circuit Serial Programming™
ICSP™ - In-Circuit Serial Programming™
ICSP™ programming allows customers to manufacture circuit boards with unprogrammed devices. Programming can
be done after the assembly process, allowing the device to be programmed with the most recent firmware or a
custom firmware. Five pins are needed for ICSP™ programming:
•
•
•
•
•
ICSPCLK
ICSPDAT
MCLR/VPP
VDD
VSS
In Program/Verify mode the program memory, User IDs and the Configuration Words are programmed through serial
communications. The ICSPDAT pin is a bidirectional I/O used for transferring the serial data and the ICSPCLK pin is
the clock input. For more information on ICSP™ refer to “Memory Programming Specification” (DS40001970).
38.1
High-Voltage Programming Entry Mode
The device is placed into High-Voltage Programming Entry mode by holding the ICSPCLK and ICSPDAT pins low
then raising the voltage on MCLR/VPP to VIHH.
38.2
Low-Voltage Programming Entry Mode
®
The Low-Voltage Programming Entry mode allows the PIC Flash MCUs to be programmed using VDD only, without
high voltage. When the LVP bit of Configuration Word 4 is set to ‘1’, the low-voltage ICSP programming entry is
enabled. To disable the Low-Voltage ICSP mode, the LVP bit must be programmed to ‘0’.
Entry into the Low-Voltage Programming Entry mode requires the following steps:
1.
2.
MCLR is brought to VIL.
A 32-bit key sequence is presented on ICSPDAT, while clocking ICSPCLK.
Once the key sequence is complete, MCLR must be held at VIL for as long as Program/Verify mode is to be
maintained.
If low-voltage programming is enabled (LVP = 1), the MCLR Reset function is automatically enabled and cannot be
disabled. See the MCLR Section for more information.
The LVP bit can only be reprogrammed to ‘0’ by using the High-Voltage Programming mode.
Related Links
10.4 MCLR Reset
38.3
Common Programming Interfaces
Connection to a target device is typically done through an ICSP™ header. A commonly found connector on
development tools is the RJ-11 in the 6P6C (6-pin, 6-connector) configuration. See Figure 38-1.
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 631
PIC16(L)F18455/56
ICSP™
- In-Circuit Serial Programming™
Figure 38-1. ICD RJ-11 Style Connector Interface
VDD
ICSPDAT
NC
2 4 6
ICSPCLK
1 3 5
Target
VPP/MCLR
VSS
PC Board
Bottom Side
Pin Description*
1 = VPP/MCLR
2 = VDD Target
3 = VSS (ground)
4 = ICSPDAT
5 = ICSPCLK
6 = No Connect
Another connector often found in use with the PICkit™ programmers is a standard 6-pin header with 0.1 inch spacing.
Refer to Figure 38-2.
For additional interface recommendations, refer to the specific device programmer manual prior to PCB design.
It is recommended that isolation devices be used to separate the programming pins from other circuitry. The type of
isolation is highly dependent on the specific application and may include devices such as resistors, diodes, or even
jumpers. See Figure 38-3 for more information.
Figure 38-2. PICkit™ Programmer Style Connector Interface
Pin 1 Indicator
1
2
3
4
5
6
Pin Description(1)
1 = VPP/MCLR
2 = VDD Target
3 = VSS (ground)
4 = ICSPDAT
5 = ICSPCLK
6 = No Connect
Note:
1. Note: The 6-pin header (0.100" spacing) accepts 0.025" square pins.
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 632
PIC16(L)F18455/56
ICSP™
Figure 38-3. Typical Connection for ICSP™ Programming
External
Programming
VDD
Signals
- In-Circuit Serial Programming™
Device to be
Programmed
VDD
VDD
VPP
MCLR/VPP
VSS
VSS
Data
ICSPDAT
Clock
ICSPCLK
*
*
*
To Normal Connections
* Isolation devices (as required).
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 633
PIC16(L)F18455/56
Development Support
39.
Development Support
The PIC® microcontrollers (MCU) and dsPIC® digital signal controllers (DSC) are supported with a full range of
software and hardware development tools:
•
•
•
•
•
•
•
•
39.1
Integrated Development Environment
– MPLAB® X IDE Software
Compilers/Assemblers/Linkers
– MPLAB XC Compiler
– MPASM™ Assembler
– MPLINK™ Object Linker/
MPLIB™ Object Librarian
– MPLAB Assembler/Linker/Librarian for
Various Device Families
Simulators
– MPLAB X SIM Software Simulator
Emulators
– MPLAB REAL ICE™ In-Circuit Emulator
In-Circuit Debuggers/Programmers
– MPLAB ICD 3
– PICkit™ 3 In-Circuit Debugger
Device Programmers
– MPLAB PM3 Device Programmer
Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
Third-party development tools
MPLAB X Integrated Development Environment Software
The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware
®
®
development tool that runs on Windows , Linux and Mac OS X. Based on the NetBeans IDE, MPLAB X IDE is an
entirely new IDE with a host of free software components and plug-ins for high-performance application development
and debugging. Moving between tools and upgrading from software simulators to hardware debugging and
programming tools is simple with the seamless user interface.
With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that
includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the
ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for
the needs of experienced users.
Feature-Rich Editor:
•
•
•
•
Color syntax highlighting
Smart code completion makes suggestions and provides hints as you type
Automatic code formatting based on user-defined rules
Live parsing
User-Friendly, Customizable Interface:
•
•
Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
Call graph window
Project-Based Workspaces:
•
•
•
Multiple projects
Multiple tools
Multiple configurations
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 634
PIC16(L)F18455/56
Development Support
•
Simultaneous debugging sessions
File History and Bug Tracking:
•
•
39.2
Local file history feature
Built-in support for Bugzilla issue tracker
MPLAB XC Compilers
The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip’s 8, 16, and 32-bit MCU and DSC
devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use.
MPLAB XC Compilers run on Windows, Linux or MAC OS X.
For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.
The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and
offer sufficient code optimization for most applications.
MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that
can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC
Compiler uses the assembler to produce its object file. Notable features of the assembler include:
•
•
•
•
•
•
39.3
Support for the entire device instruction set
Support for fixed-point and floating-point data
Command-line interface
Rich directive set
Flexible macro language
MPLAB X IDE compatibility
MPASM Assembler
The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.
®
The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel standard HEX files,
MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated
machine code, and COFF files for debugging.
The MPASM Assembler features include:
•
•
•
•
39.4
Integration into MPLAB X IDE projects
User-defined macros to streamline
assembly code
Conditional assembly for multipurpose
source files
Directives that allow complete control over the assembly process
MPLINK Object Linker/MPLIB Object Librarian
The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable
objects from precompiled libraries, using directives from a linker script.
The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a
routine from a library is called from a source file, only the modules that contain that routine will be linked in with the
application. This allows large libraries to be used efficiently in many different applications.
The object linker/library features include:
•
•
•
Efficient linking of single libraries instead of many smaller files
Enhanced code maintainability by grouping related modules together
Flexible creation of libraries with easy module listing, replacement, deletion and extraction
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 635
PIC16(L)F18455/56
Development Support
39.5
MPLAB Assembler, Linker and Librarian for Various Device Families
MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and
dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates
relocatable object files that can then be archived or linked with other relocatable object files and archives to create an
executable file. Notable features of the assembler include:
•
•
•
•
•
•
39.6
Support for the entire device instruction set
Support for fixed-point and floating-point data
Command-line interface
Rich directive set
Flexible macro language
MPLAB X IDE compatibility
MPLAB X SIM Software Simulator
The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC
MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified
and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further runtime analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track
program execution, actions on I/O, most peripherals and internal registers.
The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the
MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of
the hardware laboratory environment, making it an excellent, economical software development tool.
39.7
MPLAB REAL ICE In-Circuit Emulator System
The MPLAB REAL ICE In-Circuit Emulator System is Microchip’s next generation high-speed emulator for Microchip
Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-touse, powerful graphical user interface of the MPLAB X IDE.
The emulator is connected to the design engineer’s PC using a high-speed USB 2.0 interface and is connected to the
target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise
tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).
The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers
significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace
analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters)
interconnection cables.
39.8
MPLAB ICD 3 In-Circuit Debugger System
The MPLAB ICD 3 In-Circuit Debugger System is Microchip’s most cost-effective, high-speed hardware debugger/
programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and
dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.
The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer’s PC using a high-speed USB 2.0
interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE
systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.
39.9
PICkit 3 In-Circuit Debugger/Programmer
The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most
affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is
connected to the design engineer’s PC using a full-speed USB interface and can be connected to the target via a
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 636
PIC16(L)F18455/56
Development Support
Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two
device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming™ (ICSP™).
39.10
MPLAB PM3 Device Programmer
The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage
verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and
error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable
assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify
and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3
connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and
optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage
and data applications.
39.11
Demonstration/Development Boards, Evaluation Kits, and Starter Kits
A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows
quick application development on fully functional systems. Most boards include prototyping areas for adding custom
circuitry and provide application firmware and source code for examination and modification.
The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232
interfaces, LCD displays, potentiometers and additional EEPROM memory.
The demonstration and development boards can be used in teaching environments, for prototyping custom circuits
and for learning about various microcontroller applications.
In addition to the PICDEM™ and dsPICDEM™ demonstration/development board series of circuits, Microchip has a
®
®
line of evaluation kits and demonstration software for analog filter design, KeeLoq security ICs, CAN, IrDA ,
®
PowerSmart battery management, SEEVAL evaluation system, Sigma-Delta ADC, flow rate sensing, plus many
more.
Also available are starter kits that contain everything needed to experience the specified device. This usually includes
a single application and debug capability, all on one board.
Check the Microchip webpage (www.microchip.com) for the complete list of demonstration, development and
evaluation kits.
39.12
Third-Party Development Tools
Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer
good value and unique functionality.
•
•
•
•
•
Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
Software Tools from companies, such as Gimpel and Trace Systems
Protocol Analyzers from companies, such as Saleae and Total Phase
®
Demonstration Boards from companies, such as MikroElektronika, Digilent and Olimex
®
Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 637
PIC16(L)F18455/56
Electrical Specifications
40.
Electrical Specifications
40.1
Absolute Maximum Ratings(†)
Parameter
Ambient temperature under bias
Storage temperature
Voltage on pins with respect to VSS
•
Rating
-40°C to +125°C
-65°C to +150°C
on VDD pin:
PIC16LF18455/56
-0.3V to +4.0V
PIC16F18455/56
-0.3V to +6.5V
•
on MCLR pin:
-0.3V to +9.0V
•
on all other pins:
-0.3V to (VDD + 0.3V)
Maximum current
•
on VSS pin(1)
•
on VDD pin(1)
•
on any standard I/O pin
-40°C ≤ TA ≤ +85°C
85°C < TA ≤ +125°C
-40°C ≤ TA ≤ +85°C
85°C < TA ≤ +125°C
250 mA
120 mA
250 mA
85 mA
±50 mA
Clamp current, IK (VPIN < 0 or VPIN > VDD)
Total power dissipation(2)
±20 mA
800 mW
Important:
1. Maximum current rating requires even load distribution across I/O pins. Maximum current rating
may be limited by the device package power dissipation characterizations, see Thermal
Characteristics to calculate device specifications.
2. Power dissipation is calculated as follows:
PDIS = VDD x {IDD - Σ IOH} + Σ {(VDD - VOH) x IOH} + Σ (VOI x IOL)
3. Internal Power Dissipation is calculated as follows: PINTERNAL = IDD x VDD where IDD is current to run
the chip alone without driving any load on the output pins.
4. I/O Power Dissipation is calculated as follows: PI/O =Σ(IOL*VOL)+Σ(IOH*(VDD-VOH))
5. Derated Power is calculated as follows: PDER = PDMAX(TJ-TA)/θJA where TA=Ambient Temperature,
TJ = Junction Temperature.
NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the
device. This is a stress rating only and functional operation of the device at those or any other conditions above those
indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for
extended periods may affect device reliability.
40.2
Standard Operating Conditions
The standard operating conditions for any device are defined as:
Operating Voltage:
© 2019 Microchip Technology Inc.
VDDMIN ≤ VDD ≤ VDDMAX
Datasheet
DS40002038C-page 638
PIC16(L)F18455/56
Electrical Specifications
TA_MIN ≤ TA ≤ TA_MAX
Operating Temperature:
Parameter
VDD — Operating Supply Voltage(1)
Ratings
VDDMIN (FOSC ≤ 16 MHz)
VDDMIN (FOSC ≤ 32 MHz)
VDDMAX
VDDMIN (FOSC ≤ 16 MHz)
PIC16F18455/56
VDDMIN (FOSC ≤ 32 MHz)
VDDMAX
TA — Operating Ambient Temperature Range
TA_MIN
Industrial Temperature
TA_MAX
TA_MIN
Extended Temperature
TA_MAX
Note:
1. See Parameter D002, DC Characteristics: Supply Voltage.
+1.8V
+2.5V
+3.6V
+2.3V
+2.5V
+5.5V
PIC16LF18455/56
-40°C
+85°C
-40°C
+125°C
Figure 40-1. Voltage Frequency Graph, -40°C ≤ TA≤ +125°C, for PIC16F18455/56 only
Rev. 30-000069C
10/27/2016
VDD (V)
5.5
2.5
2.3
0
4
10
16
32
Frequency (MHz)
Note:
1. The shaded region indicates the permissible combinations of voltage and frequency.
2. Refer to 40.4.1 External Clock/Oscillator Timing Requirements for each Oscillator mode’s supported
frequencies.
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 639
PIC16(L)F18455/56
Electrical Specifications
Figure 40-2. Voltage Frequency Graph, -40°C ≤ TA≤ +125°C, for PIC16LF18455/56 Devices only
VDD (V)
Rev. 30-000070B
10/27/2017
3.6
2.5
1.8
4
0
10
16
32
Frequency (MHz)
Note:
1. The shaded region indicates the permissible combinations of voltage and frequency.
2. Refer to 40.4.1 External Clock/Oscillator Timing Requirements for each Oscillator mode’s supported
frequencies.
Related Links
40.3.1 Supply Voltage
40.3
40.3.1
DC Characteristics
Supply Voltage
Table 40-1.
PIC16LF18455/56 only
Standard Operating Conditions (unless otherwise stated)
Param. No.
Sym.
Characteristic
Min.
Typ.†
Max.
Units
Conditions
1.8
—
3.6
V
FOSC ≤ 16 MHz
2.5
—
3.6
V
FOSC > 16 MHz
1.5
—
—
V
Device in Sleep
mode
Supply Voltage
D002
VDD
RAM Data Retention(1)
D003
VDR
Power-on Reset Release Voltage(2)
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 640
PIC16(L)F18455/56
Electrical Specifications
...........continued
PIC16LF18455/56 only
Standard Operating Conditions (unless otherwise stated)
Param. No.
Sym.
D004
VPOR
Characteristic
Min.
Typ.†
Max.
Units
Conditions
—
1.6
—
V
BOR or LPBOR
disabled(3)
—
0.8
—
V
BOR or LPBOR
disabled(3)
—
—
V/ms
BOR or LPBOR
disabled(3)
Power-on Reset Rearm Voltage(2)
D005
VPORR
VDD Rise Rate to ensure internal Power-on Reset signal(2)
D006
SVDD
0.05
† - Data in “Typ.” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only
and are not tested.
Note:
1. This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.
2. See the following figure, POR and POR REARM with Slow Rising VDD.
3. Please see 40.4.5 Reset, WDT, Oscillator Start-up Timer, Power-up Timer, Brown-Out Reset and Low-Power
Brown-Out Reset Specifications for BOR and LPBOR trip point information.
PIC16F18455/56 only
Standard Operating Conditions (unless otherwise stated)
Param. No.
Sym.
Characteristic
Min.
Typ.†
Max.
Units
Conditions
2.3
—
5.5
V
FOSC ≤ 16 MHz
2.5
—
5.5
V
FOSC > 16 MHz
1.7
—
—
V
Device in Sleep
mode
—
1.6
—
V
BOR or LPBOR
disabled(3)
—
1.5
—
V
BOR or LPBOR
disabled(3)
—
—
V/ms
BOR or LPBOR
disabled(3)
Supply Voltage
D002
VDD
RAM Data Retention(1)
D003
VDR
Power-on Reset Release Voltage(2)
D004
VPOR
Power-on Reset Rearm Voltage(2)
D005
VPORR
VDD Rise Rate to ensure internal Power-on Reset signal(2)
D006
SVDD
© 2019 Microchip Technology Inc.
0.05
Datasheet
DS40002038C-page 641
PIC16(L)F18455/56
Electrical Specifications
...........continued
PIC16F18455/56 only
Standard Operating Conditions (unless otherwise stated)
Param. No.
Sym.
Characteristic
Min.
Typ.†
Max.
Units
Conditions
† - Data in “Typ.” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only
and
are not tested.POR AND POR REARM WITH SLOW RISING VDD.vsdx
Filename:
Title:
Note:
Last Edit:
7/31/2019
First
1. Used:
This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.
Notes:
2. See the following figure, POR and POR REARM with Slow Rising VDD.
3. Please see 40.4.5 Reset, WDT, Oscillator Start-up Timer, Power-up Timer, Brown-Out Reset and Low-Power
Brown-Out Reset Specifications for BOR and LPBOR trip point information.
Figure 40-3. POR and POR Rearm with Slow Rising VDD
VDD
VPOR
VPORR
SVDD
VSS
NPOR (1)
POR REARM
VSS
Note:
1. When NPOR is low, the device is held in Reset.
40.3.2
Supply Current (IDD)(1,2,4)
Table 40-2.
PIC16LF18455/56 only
Standard Operating Conditions (unless otherwise stated)
Param. No. Sym.
Device
Characteristics
D100
IDDXT4
D101
IDDHFO16
Conditions
Min.
Typ.†
Max.
Units
XT = 4 MHz
—
460
675
μA
3.0V
HFINTOSC = 16
MHz
—
2.1
2.6
mA
3.0V
© 2019 Microchip Technology Inc.
Datasheet
VDD
Note
DS40002038C-page 642
PIC16(L)F18455/56
Electrical Specifications
...........continued
PIC16LF18455/56 only
Standard Operating Conditions (unless otherwise stated)
Conditions
Param. No. Sym.
Device
Characteristics
Min.
Typ.†
Max.
Units
D102
IDDHFOPLL
HFINTOSC = 32
MHz
—
3.9
4.8
mA
3.0V
D103
IDDHSPLL32
HS+PLL = 32 MHz
—
3.5
4.3
mA
3.0V
D104
IDDIDLE
IDLE mode,
HFINTOSC = 16
MHz
—
1.5
1.9
mA
3.0V
DOZE mode,
HFINTOSC = 16
MHz, Doze Ratio =
16
—
1.5
—
mA
3.0V
D105
IDDDOZE
(3)
VDD
Note
† - Data in “Typ.” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only
and are not tested.
Note:
1. The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave,
from
rail-to-rail; all I/O pins are outputs driven low; MCLR = VDD; WDT disabled.
2. The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin
loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an
impact on the current consumption.
3. IDDDOZE = [IDDIDLE*(N-1)/N] + IDDHFO16/N where N = DOZE Ratio (see CPUDOZE register).
4. PMD bits are all in the default state, no modules are disabled.
PIC16F18455/56 only
Standard Operating Conditions (unless otherwise stated)
Param. No. Sym.
Device
Characteristics
D100
IDDXT4
D101
Conditions
Min.
Typ.†
Max.
Units
XT = 4 MHz
—
510
725
μA
3.0V
IDDHFO16
HFINTOSC = 16
MHz
—
2.2
2.7
mA
3.0V
D102
IDDHFOPLL
HFINTOSC = 32
MHz
—
4.0
4.9
mA
3.0V
D103
IDDHSPLL32
HS+PLL = 32 MHz
—
3.6
4.4
mA
3.0V
D104
IDDIDLE
IDLE mode,
HFINTOSC = 16
MHz
—
1.6
2.0
mA
3.0V
DOZE mode,
HFINTOSC = 16
MHz, Doze Ratio =
16
—
1.6
—
mA
3.0V
D105
IDDDOZE
(3)
© 2019 Microchip Technology Inc.
Datasheet
VDD
Note
DS40002038C-page 643
PIC16(L)F18455/56
Electrical Specifications
...........continued
PIC16F18455/56 only
Standard Operating Conditions (unless otherwise stated)
Param. No. Sym.
Device
Characteristics
Min.
Typ.†
Max.
Conditions
Units
VDD
Note
† - Data in “Typ.” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only
and are not tested.
Note:
1. The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave,
from
rail-to-rail; all I/O pins are outputs driven low; MCLR = VDD; WDT disabled.
2. The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin
loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an
impact on the current consumption.
3. IDDDOZE = [IDDIDLE*(N-1)/N] + IDDHFO16/N where N = DOZE Ratio (see CPUDOZE register).
4. PMD bits are all in the default state, no modules are disabled.
Related Links
12.5.2 CPUDOZE
40.3.3
Power-Down Current (IPD)(1,2)
Table 40-3.
PIC16LF18455/56 only
Standard Operating Conditions (unless otherwise stated)
Param.
No.
Sym.
Device
Characteristics
D200
IPD
D201
Conditions
Min.
Typ.†
Max.
+85°C
Max.
+125°C
Units
IPD Base
—
0.08
2.0
7
μA
3.0V
IPD_WDT
Low-Frequency
Internal
Oscillator/WDT
—
0.8
2.8
8
μA
3.0V
D202
IPD_SOSC
Secondary
Oscillator (SOSC)
—
1.0
3.8
9.0
μA
3.0V
D203
IPD_FVR
FVR
—
46
76
77
μA
3.0V
D204
IPD_BOR
Brown-out Reset
(BOR)
—
10
15
18
μA
3.0V
D205
IPD_LPBOR
Low-Power
Brown-out Reset
(LPBOR)
—
0.13
2.2
8
μA
3.0V
D207
IPD_ADCA
ADC - Nonconverting
—
0.08
2.0
7.0
μA
3.0V
D208
IPD_CMP
Comparator
—
30
57
58
μA
3.0V
© 2019 Microchip Technology Inc.
Datasheet
VDD
Note
ADC not
converting (4)
DS40002038C-page 644
PIC16(L)F18455/56
Electrical Specifications
...........continued
PIC16LF18455/56 only
Standard Operating Conditions (unless otherwise stated)
Param.
No.
Sym.
Device
Characteristics
Min.
Typ.†
Max.
+85°C
Max.
+125°C
Units
Conditions
VDD
Note
† - Data in “Typ.” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only
and are not tested.
Note:
1. The peripheral current is the sum of the base IDD and the additional current consumed when this peripheral is
enabled. The peripheral ∆ current can be determined by subtracting the base IDD or IPDcurrent from this limit.
Max. values should be used when calculating total current consumption.
2. The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is
measured with the part in Sleep mode with all I/O pins in high-impedance state and tied to VSS.
3. All peripheral currents listed are on a per-peripheral basis if more than one instance of a peripheral is
available.
4. ADC clock source is FRC.
PIC16F18455/56 only
Standard Operating Conditions (unless otherwise stated), VREGPM = 1
Param.
No.
Sym.
Device
Characteristics
IPD
IPD Base
D201
IPD_WDT
D202
Conditions
Min.
Typ.†
Max.
+85°C
Max.
+125°C
Units
—
0.4
2.5
8
μA
3.0V
—
18
25
30
μA
3.0V
Low-Frequency
Internal
Oscillator/WDT
—
0.9
2.9
9
μA
3.0V
IPD_SOSC
Secondary
Oscillator (SOSC)
—
1.2
4.3
9.2
μA
3.0V
D203
IPD_FVR
FVR
—
40
69
70
μA
3.0V
D204
IPD_BOR
Brown-out Reset
(BOR)
—
11
16
19
μA
3.0V
D207
IPD_ADCA
ADC - Nonconverting
—
0.38
2.5
8.0
μA
3.0V
D208
IPD_CMP
Comparator
—
31
58
59
μA
3.0V
D200
D200A
VDD
Note
VREGPM = 0
ADC not
converting (4)
† - Data in “Typ.” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only
and are not tested.
Note:
1. The peripheral current is the sum of the base IDD and the additional current consumed when this peripheral is
enabled. The peripheral ∆ current can be determined by subtracting the base IDD or IPDcurrent from this limit.
Max. values should be used when calculating total current consumption.
2. The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is
measured with the part in Sleep mode with all I/O pins in high-impedance state and tied to VSS.
3. All peripheral currents listed are on a per-peripheral basis if more than one instance of a peripheral is
available.
4. ADC clock source is FRC.
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 645
PIC16(L)F18455/56
Electrical Specifications
40.3.4
I/O Ports
Table 40-4.
Standard Operating Conditions (unless otherwise stated)
Param. No. Sym.
Device Characteristics
Min.
Input Low Voltage
VIL
I/O PORT:
D300
—
• with TTL buffer
D301
—
D302
—
• with Schmitt
Trigger buffer
Typ.†
Max.
Units
—
—
—
0.8
0.15 VDD
0.2 VDD
V
V
V
Conditions
4.5V≤VDD≤5.5V
1.8V≤VDD≤4.5V
2.0V≤VDD≤5.5V
D303
•
with I2C levels
—
—
0.3 VDD
V
D304
•
with SMBus levels
—
—
0.8
V
—
—
0.2 VDD
V
2.0
0.25 VDD+0.8
0.8VDD
—
—
—
—
—
—
V
V
V
0.7 VDD
—
—
V
2.1
—
—
V
0.7 VDD
—
—
V
—
±5
±125
nA
VSS≤VPIN≤VDD,
Pin at high-impedance,
85°C
—
±5
±1000
nA
VSS≤VPIN≤VDD,
Pin at high-impedance,
125°C
—
±50
±200
nA
VSS≤VPIN≤VDD,
Pin at high-impedance,
85°C
25
120
200
μA
VDD=3.0V, VPIN=VSS
D305
Input High Voltage
VIH
D320
D321
D322
MCLR
I/O PORT:
•
with TTL buffer
•
with Schmitt
Trigger buffer
D323
•
with I2C levels
D324
•
with SMBus levels
D325
MCLR
(1)
Input Leakage Current
D340
IIL
I/O PORTS
D341
MCLR(2)
D342
2.7V≤VDD≤5.5V
Weak Pull-up Current
D350
IPUR
Output Low Voltage
© 2019 Microchip Technology Inc.
Datasheet
4.5V≤VDD≤5.5V
1.8V≤VDD≤4.5V
2.0V≤VDD≤5.5V
2.7V≤VDD≤5.5V
DS40002038C-page 646
PIC16(L)F18455/56
Electrical Specifications
...........continued
Standard Operating Conditions (unless otherwise stated)
Param. No. Sym.
Device Characteristics
Min.
D360
VOL
Standard I/O PORTS
—
D360A
High-Drive I/O PORTS
Typ.†
—
Max.
0.6
Units
V
—
—
—
0.6
0.6
—
V
V
—
0.6
—
V
Conditions
IOL = 8 mA, VDD = 5.0V
IOL = 6 mA, VDD = 3.3V
IOL = 1.8 mA, VDD = 1.8V
I
OL
= 10 mA, V
DD
= 2.3V, HIDCx = 1
IOL = 32 mA, VDD = 3.0V,
HIDCx = 1
IOL = 51 mA, VDD = 5.0V,
HIDCx = 1
Output High Voltage
D370
VOH
Standard I/O PORTS
VDD-0.7
—
—
V
D370A
High-Drive I/O PORTS
VDD-0.7
—
VDD-0.7
—
—
V
V
VDD-0.7
—
V
IOH = 3.5 mA, VDD = 5.0V
IOH = 3 mA, VDD = 3.3V
IOH = 1 mA, VDD = 1.8V
IOH = 10 mA, VDD = 2.3V,
HIDCx = 1
IOH = 37 mA, VDD = 3.0V,
HIDCx = 1
IOH = 54 mA, VDD = 5.0V,
HIDCx = 1
All I/O Pins
D380
CIO
—
5
50
pF
† - Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
Note:
1. Negative current is defined as current sourced by the pin.
2. The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal
operating conditions. Higher leakage current may be measured at different input voltages.
40.3.5
Memory Programming Specifications
Table 40-5.
Standard Operating Conditions (unless otherwise stated)
Param
No.
Sym.
Device
Characteristics
Min.
Typ†
Max.
Units
Conditions
(Note 2, Note 3)
High Voltage Entry Programming Mode Specifications
MEM01
VIHH
Voltage on
MCLR/VPP pin to
enter programming
mode
8
—
9
V
MEM02
IPPGM
Current on
MCLR/VPP pin during
programming mode
—
1
—
mA
(Note 2)
Programming Mode Specifications
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 647
PIC16(L)F18455/56
Electrical Specifications
...........continued
Standard Operating Conditions (unless otherwise stated)
Param
No.
Sym.
Device
Characteristics
Min.
Typ†
Max.
Units
Conditions
MEM10
VBE
VDD for Bulk Erase
—
—
—
V
(Note 4)
MEM11
IDDPGM
Supply Current during
Programming
operation
—
—
10
mA
100k
—
—
E/W
-40°C≤TA≤+85°C
Year
Provided no
other
specifications are
violated
Data EEPROM Memory Specifications
MEM20
ED
DataEE Byte
Endurance
MEM21
TD_RET
Characteristic
Retention
MEM22
ND_REF
Total Erase/Write
Cycles before
Refresh
MEM23
VD_RW
VDD for Read or
Erase/Write operation
MEM24
TD_BEW
Byte Erase and Write
Cycle Time
—
40
—
—
—
VDDMIN
—
VDDMAX
V
—
4.0
5.0
ms
10k
—
—
E/W
-40°C≤Ta≤+85°C
(Note 1)
Provided no
other
specifications are
violated
100k
E/W
Program Flash Memory Specifications
MEM30
EP
Flash Memory Cell
Endurance
MEM32
TP_RET
Characteristic
Retention
—
40
—
Year
MEM33
VP_RD
VDD for Read
operation
VDDMIN
—
VDDMAX
V
MEM34
VP_REW
VDD for Row Erase or
Write operation
VDDMIN
—
VDDMAX
V
MEM35
TP_REW
Self-Timed Row
Erase or Self-Timed
Write
—
2.0
2.8
ms
† - Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only
and are not tested.
Note:
1. Flash Memory Cell Endurance for the Flash memory is defined as: One Row Erase operation and one SelfTimed Write.
2. Required only if CONFIG4, bit LVP is disabled.
3. The MPLAB® ICD2 does not support variable VPP output. Circuitry to limit the ICD2 VPP voltage must be
placed between the ICD2 and target system when programming or debugging with the ICD2.
4. Refer to the “PIC16(L)F184XX Memory Programming Specification” document for description.
Related Links
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 648
PIC16(L)F18455/56
Electrical Specifications
4.7.4 CONFIG4
40.3.6
Thermal Characteristics
Table 40-6.
Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C ≤ TA ≤ +125°C
Param No. Sym.
TH01
TH02
θJA
θJC
Characteristic
Typ. Units Conditions
Thermal Resistance Junction to Ambient
Thermal Resistance Junction to Case
55
°C/W 28-pin SPDIP package
74
°C/W 28-pin SOIC package
67.1 °C/W 28-pin SSOP package
—
°C/W 28-pin VQFN 4x4 mm package
36
°C/W 28-pin SPDIP package
19
°C/W 28-pin SOIC package
23.9 °C/W 28-pin SSOP package
—
°C/W 28-pin VQFN 4x4 mm package
TH03
TJMAX
Maximum Junction Temperature
—
°C
TJMAX = TAMAX + (PDMAX x θJA)(2)
TH04
PD
Power Dissipation
—
W
PD = PINTERNAL+PI/O
TH05
PINTERNAL Internal Power Dissipation
—
W
PINTERNAL = IDDxVDD(1)
TH06
PI/O
I/O Power Dissipation
—
W
PI/O=Σ(IOL*VOL)+Σ(IOH*(VDD-VOH))
TH07
PDER
Derated Power
—
W
PDER = PDMAX (TJ-TA)/θJA(2)
Note:
1. IDD is current to run the chip Filename:
alone without driving
any load on the output pins.
10-000133A.vsd
LOAD CONDITION
2. TA = Ambient Temperature, TTitle:
J = Junction Temperature.
Last Edit:
First Used:
Note:
40.4
8/1/2013
PIC16F1508/9
AC Characteristics
Figure 40-4. Load Conditions
Rev. 10-000133A
8/1/2013
Load Condition
Pin
CL
VSS
Legend: CL=50 pF for all pins
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 649
Filename:
Title:
Last Edit:
First Used:
Notes:
40.4.1
Ext Clock Osc Timing Requirements.vsdx
PIC16(L)F18455/56
8/1/2019
Electrical Specifications
External Clock/Oscillator Timing Requirements
Figure 40-5. Clock Timing
Rev. Ext Clock
8/1/2019
OS2,
OS4,
OS6
Q4
CLKIN
Q1
OS1,OS3,OS5
OS7,OS8,OS9
Q2
Q3
Q4
Q1
OS10,OS20
CLKOUT
OS21
Note: See table below.
Table 40-7.
Standard Operating Conditions (unless otherwise stated)
Param No.
Sym.
Characteristic
Min.
Typ. †
Max.
Units
Conditions
ECL Oscillator
OS1
FECL
Clock Frequency
—
—
500
kHz
OS2
TECL_DC
Clock Duty Cycle
40
—
60
%
ECM Oscillator
OS3
FECM
Clock Frequency
—
—
4
MHz
OS4
TECM_DC
Clock Duty Cycle
40
—
60
%
ECH Oscillator
OS5
FECH
Clock Frequency
—
—
32
MHz
OS6
TECH_DC
Clock Duty Cycle
40
—
60
%
Clock Frequency
—
—
100
kHz
Note 4
Clock Frequency
—
—
4
MHz
Note 4
Clock Frequency
—
—
20
MHz
Note 4
Clock Frequency
32.4
32.768
33.1
kHz
Note 4
—
—
32
MHz
(Note 2, Note 3)
LP Oscillator
OS7
FLP
XT Oscillator
OS8
FXT
HS Oscillator
OS9
FHS
Secondary Oscillator
OS10
FSEC
System Oscillator
OS20
FOSC
System Clock
Frequency
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 650
PIC16(L)F18455/56
Electrical Specifications
...........continued
Standard Operating Conditions (unless otherwise stated)
Param No.
Sym.
Characteristic
OS21
FCY
Instruction
Frequency
OS22
TCY
Instruction Period
Min.
Typ. †
Max.
Units
—
FOSC/4
—
MHz
125
1/FCY
—
ns
Conditions
* These parameters are characterized but not tested.
† - Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only
and are not tested.
Note:
1. Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are
based on characterization data for that particular oscillator type under standard operating conditions with the
device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or
higher than expected current consumption. All devices are tested to operate at “min” values with an external
clock applied to OSC1 pin. When an external clock input is used, the “max” cycle time limit is “DC” (no clock)
for all devices.
2. The system clock frequency (FOSC) is selected by the “main clock switch controls” as described in the
“Oscillator Module (with Fail-Safe Clock Monitor)” section.
3. The system clock frequency (FOSC) must meet the voltage requirements defined in the “Standard Operating
Conditions” section.
4. LP, XT and HS oscillator modes require an appropriate crystal or resonator to be connected to the device.
For clocking the device with the external square wave, one of the EC mode selections must be used.
Related Links
8. OSC - Oscillator Module
40.2 Standard Operating Conditions
40.4.2
Internal Oscillator Parameters(1)
Table 40-8.
Standard Operating Conditions (unless otherwise stated)
Param No. Sym.
Characteristic
OS50
Precision Calibrated
HFINTOSC
Frequency
FHFOSC
Min.
Typ. †
Max.
Units
Conditions
—
4
—
MHz
(Note 2)
8
12
16
32
OS51
FHFOSCLP
Low-Power
Optimized
HFINTOSC
Frequency
0.92
1
1.08
MHz
-40ºC to 85ºC
1.84
2
2.16
MHz
-40ºC to 85ºC
0.88
1
1.12
MHz
-40ºC to 125ºC
1.76
2
2.24
MHz
-40ºC to 125ºC
OS52
FMFOSC
Internal Calibrated
MFINTOSC
Frequency
—
500
—
kHz
OS53
FLFOSC
Internal LFINTOSC
Frequency
—
31
—
kHz
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 651
PIC16(L)F18455/56
Electrical Specifications
...........continued
Standard Operating Conditions (unless otherwise stated)
Param No. Sym.
Characteristic
OS54
THFOSCST
OS56
TLFOSCST
Min.
Typ. †
Max.
Units
Conditions
HFINTOSC Wake-up
from Sleep Start-up
Time
—
11
20
μs
VREGPM=0
—
85
—
μs
VREGPM=1
LFINTOSC Wake-up
from Sleep Start-up
Time
—
0.2
—
ms
† - Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only
and are not tested.
Note:
1. To ensure these oscillator frequency tolerances, VDD and VSS must be capacitively decoupled as close to the
device as possible. 0.1 μF and 0.01 μF values in parallel are recommended.
2. See the figure below.
Figure 40-6. Precision Calibrated HFINTOSC Frequency Accuracy Over Device VDD and Temperature
125
± 5%
Temperature (°C)
85
± 3%
60
± 2%
0
± 5%
-40
1.8
2.0
2.3
3.0
3.5
4.0
4.5
5.0
5.5
VDD (V)
40.4.3
PLL Specifications
Table 40-9.
Standard Operating Conditions (unless otherwise stated)
Param No.
Sym.
Characteristic
PLL01
FPLLIN
PLL02
FPLLOUT
© 2019 Microchip Technology Inc.
Min.
Typ. †
Max.
Units
PLL Input Frequency
Range
4
—
16
MHz
PLL Output Frequency
Range
16
—
32
MHz
Datasheet
Conditions
(Note 1)
DS40002038C-page 652
PIC16(L)F18455/56
Electrical Specifications
...........continued
Standard Operating Conditions (unless otherwise stated)
Param No.
Sym.
Characteristic
PLL03
FPLLST
PLL Lock Time from
Start-up
PLL04
FPLLJIT
PLL Output Frequency
Stability (Jitter)
Min.
Typ. †
Max.
Units
—
200
—
μs
-0.25
—
0.25
%
Conditions
* - These parameters are characterized but not tested.
CLKOUTis
and
Timing.vsdx
† - Filename:
Data in “Typ” column
atIO5.0V,
25°C unless otherwise stated. These parameters are for design guidance only
Title:
andLast
areEdit:
not tested.8/1/2019
First Used:
Note:
Notes:
1. The output frequency of the PLL must meet the FOSC requirements listed in Parameter D002.
40.4.4
I/O and CLKOUT Timing Specifications
Figure 40-7. CLKOUT and I/O Timing
Rev. CLK OUT and
8/1/2019
Cycle
Read
Q2
Fetch
Q1
Write
Q4
Execute
Q3
FOSC
IO1
IO2
IO5
CLKOUT
IO8, IO9
IO4
IO6, IO7
I/O pin
(Input)
IO3
IO10, IO11
I/O pin
(Output)
Table 40-10. I/O and CLKOUT Timing Specifications
Standard Operating Conditions (unless otherwise stated)
Param No. Sym.
Characteristic
IO1*
TCLKOUTH
CLKOUT rising edge delay (rising edge FOSC
(Q1 cycle) to falling edge CLKOUT
—
—
70
ns
IO2*
TCLKOUTL
CLKOUT falling edge delay (rising edge FOSC
(Q3 cycle) to rising edge CLKOUT
—
—
72
ns
IO3*
TIO_VALID
Port output valid time (rising edge FOSC (Q1
cycle) to port valid)
—
50
70
ns
IO4*
TIO_SETUP
Port input setup time (Setup time before rising
edge FOSC – Q2 cycle)
20
—
—
ns
© 2019 Microchip Technology Inc.
Min. Typ. † Max. Units Conditions
Datasheet
DS40002038C-page 653
PIC16(L)F18455/56
Electrical Specifications
...........continued
Standard Operating Conditions (unless otherwise stated)
Param No. Sym.
Characteristic
Min. Typ. † Max. Units Conditions
IO5*
TIO_HOLD
Port input hold time (Hold time after rising edge
FOSC – Q2 cycle)
IO6*
50
—
—
ns
TIOR_SLREN Port I/O rise time, slew rate enabled
—
25
—
ns
VDD=3.0V
IO7*
TIOR_SLRDIS Port I/O rise time, slew rate disabled
—
5
—
ns
VDD=3.0V
IO8*
TIOF_SLREN
Port I/O fall time, slew rate enabled
—
25
—
ns
VDD=3.0V
IO9*
TIOF_SLRDIS Port I/O fall time, slew rate disabled
—
5
—
ns
VDD=3.0V
IO10*
TINT
INT pin high or low time to trigger an interrupt
25
—
—
ns
IO11*
TIOC
Interrupt-on-Change minimum high or low time
to trigger interrupt
25
—
—
ns
* - These parameters are characterized but not tested.
40.4.5
Reset, WDT, Oscillator Start-up Timer, Power-up Timer, Brown-Out Reset and Low-Power BrownOut Reset Specifications
Figure 40-8. Reset, Watchdog Timer, Oscillator Start-up Timer and Power-up Timer Timing
Rev. 30-000075A
4/6/2017
VDD
MCLR
RST01
Internal
POR
PWRT
Time-out
RST04
RST05
OSC
Start-up Time
Internal Reset(1)
Watchdog Timer
Reset(1)
RST02
RST03
RST02
I/O pins
Note:
1. Asserted low.
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 654
PIC16(L)F18455/56
Electrical Specifications
Figure 40-9. Brown-out Reset Timing and Characteristics
Rev. 30-000076A
4/6/2017
VDD
VBOR and VHYST
VBOR
(Device in Brown-out Reset)
(Device not in Brown-out Reset)
RST08
Reset
RST04(1)
(due to BOR)
Note:
1. Only if PWRTE bit in the Configuration Word register is programmed to ‘1’; 2 ms delay if PWRTE = 0.
Table 40-11.
Standard Operating Conditions (unless otherwise stated)
Param No. Sym.
Characteristic
Min.
RST01*
TMCLR
MCLR Pulse Width
2
Low to ensure Reset
RST02*
TIOZ
I/O high-impedance
—
from Reset detection
RST03
TWDT
Watchdog Timer
—
Time-out Period
RST04*
TPWRT
Power-up Timer
—
Period
RST05
TOST
Oscillator Start-up
—
Timer Period(1, 2)
RST06
VBOR
Brown-out Reset
2.55
Voltage
2.30
1.80
Typ. †
—
Max.
—
Units
μs
—
2
μs
16
—
ms
65
—
ms
1024
—
TOSC
2.7
2.85
2.45
2.60(3)
V
V
1.90
2.05
V
Conditions
1:512 Prescaler
BORV=0
BORV=1(F
devices only)
BORV=1(LF
Devices only)
RST07
VBORHYS
Brown-out Reset
—
Hysteresis
RST08
TBORDC
Brown-out Reset
—
Response Time
RST09
VLPBOR
Low-Power Brown-out
1.8
Reset Voltage
* - These parameters are characterized but not tested.
40
—
mV
3
—
μs
1.9
2.2
V
† Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and
are not tested.
Note:
1. By design, the Oscillator Start-up Timer (OST) counts the first 1024 cycles, independent of frequency.
2. To ensure these voltage tolerances, VDD and VSS must be capacitively decoupled as close to the device as
possible. 0.1 μF and 0.01 μF values in parallel are recommended.
3. This value corresponds to VBORMAX
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 655
PIC16(L)F18455/56
Electrical Specifications
40.4.6
Temperature Indicator Requirements
Table 40-12.
Standard Operating Conditions (unless otherwise stated)
Param. No.
Sym.
Characteristic
Min.
TS01
TACQMIN
Minimum ADC Acquisition
Time Delay
TS02
Mv
Voltage
Sensitivity
Max.
Units
Conditions
—
25
—
μs
High Range
—
-3.684
—
mV/°C
TSRNG = 1
Low Range
—
-3.456
—
mV/°C
TSRNG = 0
* - These parameters are characterized but not tested.
† Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only
and are not tested.
40.4.7
Analog-to-Digital Converter (ADC) Accuracy Specifications(1,2)
Table 40-13.
Standard Operating Conditions (unless otherwise stated)
VDD = 3.0V, TA = 25°C, TAD = 1μs
Param No. Sym.
Characteristic
Min.
Typ. †
Max.
AD01
NR
AD02
Units Conditions
Resolution
—
—
12
bit
EIL
Integral Error
—
±0.2
±2.0
Lsb
ADCREF+=3.0V, ADCREF= 0V
AD03
EDL
Differential Error
—
±1.0
±1.0
Lsb
ADCREF+=3.0V, ADCREF= 0V
AD04
EOFF
Offset Error
—
0.5
6.5
Lsb
ADCREF+=3.0V, ADCREF= 0V
AD05
EGN
Gain Error
—
±0.2
±6.0
Lsb
ADCREF+=3.0V, ADCREF= 0V
AD06
VADREF ADC Reference Voltage
(ADREF+ - ADREF-)
1.8
—
VDD
V
AD07
VAIN
Full-Scale Range
ADREF-
—
ADREF+
V
AD08
ZAIN
Recommended Impedance of
Analog Voltage Source
—
10
—
kΩ
AD09
RVREF
ADC Voltage Reference Ladder
Impedance
—
50
—
kΩ
* - These parameters are characterized but not tested.
† Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only
and are not tested.
Note:
1. Total Absolute Error is the sum of the offset, gain and integral non-linearity (INL) errors.
2. The ADC conversion result never decreases with an increase in the input and has no missing codes.
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 656
PIC16(L)F18455/56
Electrical Specifications
40.4.8
Analog-to-Digital Converter (ADC) Conversion Timing Specifications
Table 40-14.
Standard Operating Conditions (unless otherwise stated)
Param No. Sym. Characteristic
AD20
TAD
ADC Clock Period
AD21
TCNV Conversion Time(1)
AD22
Min.
Typ. †
Max. Units Conditions
0.5
—
9
μs
Using FOSC as the ADC clock
source ADCS = 1
—
2
—
μs
Using FRC as the ADC clock
source ADCS = 0
—
14TAD+2TCY
—
—
Using FOSC as the ADC clock
source ADCS = 1
—
16TAD+2TCY
—
—
Using FRC as the ADC clock
source ADCS = 0
AD23
TACQ Acquisition Time
—
2
—
μs
AD24
THCD Sample and Hold Capacitor
Disconnect Time
—
2TAD+1TCY
—
—
Using FOSC as the ADC clock
source ADCS = 1
—
3TAD+2TCY
—
—
Using FRC as the ADC clock
source ADCS = 0
* - These parameters are characterized but not tested.
† Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only
and are not tested.
Note:
1. Does not apply for the FRC oscillator.
Figure 40-10. ADC Conversion Timing (ADC Clock FOSC-Based)
Rev. 10-000321B
7/31/2019
BSF ADCON0, GO
1 TCY
AD22
AD23
1 TCY
1 TCY
AD20
ADC_clk
ADRES
OLD DATA
NEW DATA
ADIF
GO
Sample
© 2019 Microchip Technology Inc.
DONE
Sampling Stopped
Datasheet
DS40002038C-page 657
PIC16(L)F18455/56
Electrical Specifications
Figure 40-11. ADC Conversion Timing (ADC Clock from FRC)
Rev. 10-000328B
7/31/2019
BSF ADCON0, GO
1 TCY
AD22
AD23
2 TCY(1)
AD21
ADC_clk
ADRES
OLD DATA
NEW DATA
ADIF
GO
DONE
Sample
Sampling Stopped
Note:
1. If the ADC clock source is selected as FRC, a time of TCY is added before the ADC clock starts. This allows the
SLEEP instruction to be executed.
40.4.9
Comparator Specifications
Table 40-15.
Standard Operating Conditions (unless otherwise stated)
VDD = 3.0V, TA = 25°C
Param No.
Sym.
Characteristic
Min.
Typ. †
Max.
Units
Conditions
CM01
VIOFF
Input Offset Voltage
—
—
±60
mV
VICM = VDD/2
CM02
VICM
Input Common Mode
Range
GND
—
VDD
V
CM03
CMRR
Common Mode Input
Rejection Ratio
—
50
—
dB
CM04
VHYST
Comparator Hysteresis
15
25
35
mV
CM05
TRESP(1)
Response Time, Rising
Edge
—
300
600
ns
Response Time, Falling
Edge
—
220
500
ns
Mode Change to Valid
Output
—
—
10
ns
CM06*
TMCV2VO(2)
* - These parameters are characterized but not tested.
† Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only
and are not tested.
Note:
1. Response time measured with one comparator input at VDD/2, while the other input transitions from VSS to
VDD.
2. A mode change includes changing any of the control register values, including module enable.
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 658
PIC16(L)F18455/56
Electrical Specifications
40.4.10 5-Bit DAC Specifications
Table 40-16.
Standard Operating Conditions (unless otherwise stated)
VDD = 3.0V, TA = 25°C
Param No.
Sym.
Characteristic
DSB01
VLSB
DSB02
DSB03*
DSB04*
Min.
Typ. †
Max.
Units
Step Size
—
(VDACREF+VDACREF-)/32
—
V
VACC
Absolute Accuracy
—
—
±0.5
LSb
RUNIT
Unit Resistor Value
—
5000
—
Ω
—
—
10
μs
TST
Settling
Time(1)
Conditions
* - These parameters are characterized but not tested.
† Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only
and are not tested.
Note:
1. Settling time measured while DACR[4:0] transitions from ‘00000’ to ‘01111’.
40.4.11 Fixed Voltage Reference (FVR) Specifications
Table 40-17.
Standard Operating Conditions (unless otherwise stated)
Param No.
Sym.
Characteristic
Min.
Typ. †
Max.
Units
FVR01
VFVR1
FVR02
Conditions
1x Gain (1.024V)
-4
—
+4
%
VDD≥2.5V, -40°C to 85°C
VFVR2
2x Gain (2.048V)
-4
—
+4
%
VDD≥2.5V, -40°C to 85°C
FVR03
VFVR4
4x Gain (4.096V)
-5
—
+5
%
VDD≥4.75V, -40°C to 85°C
FVR04
TFVRST
FVR Start-up Time
—
60
—
μs
40.4.12 Zero-Cross Detect (ZCD) Specifications
Table 40-18.
Standard Operating Conditions (unless otherwise stated)
VDD = 3.0V, TA = 25°C
Param No.
Sym.
Characteristic
Min.
Typ. †
Max.
Units
ZC01
VPINZC
Voltage on Zero Cross
Pin
—
0.75
—
V
ZC02
IZCD_MAX
Maximum source or
sink current
—
—
600
μA
ZC03
TRESPH
Response Time,
Rising Edge
—
1
—
μs
TRESPL
Response Time,
Falling Edge
—
1
—
μs
Conditions
† Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only
and are not tested.
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 659
PIC16(L)F18455/56
Electrical Specifications
40.4.13 Timer0 and Timer1 External Clock Requirements
Table 40-19.
Standard Operating Conditions (unless otherwise stated)
Operating Temperature: -40°C≤TA≤+125°C
Param
No.
Sym.
Characteristic
40*
TT0H
41*
TT0L
Min.
Typ. †
Max.
T0CKI High No Prescaler
Pulse Width
With Prescaler
0.5TCY+20
—
—
ns
10
—
—
ns
T0CKI Low No Prescaler
Pulse Width
With Prescaler
0.5TCY+20
—
—
ns
10
—
—
ns
Greater of:
20 or (TCY
+40)/N
—
—
ns
Synchronous, No
Prescaler
0.5TCY+20
—
—
ns
Synchronous, with
Prescaler
15
—
—
ns
Asynchronous
30
—
—
ns
Synchronous, No
Prescaler
0.5TCY+20
—
—
ns
Synchronous, with
Prescaler
15
—
—
ns
Asynchronous
30
—
—
ns
Greater of:
30 or (TCY
+40)/N
—
—
ns
60
—
—
ns
2 TOSC
—
7 TOSC
—
42*
TT0P
T0CKI Period
45*
TT1H
T1CKI High
Time
46*
47*
TT1L
TT1P
T1CKI Low
Time
T1CKI Input Synchronous
Period
Asynchronous
49*
TCKEZTMR1 Delay from External Clock Edge
to Timer Increment
Units Conditions
N = Prescale
value
N = Prescale
value
Timers in Sync
mode
* - These parameters are characterized but not tested.
† Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only
and are not tested.
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 660
PIC16(L)F18455/56
Electrical Specifications
Figure 40-12. Timer0 and Timing1 External Clock Timings
Rev. 30-000079A
4/6/2017
T0CKI
40
41
42
T1CKI
45
46
49
47
TMR0 or
TMR1
40.4.14 Capture/Compare/PWM Requirements (CCP)
Table 40-20.
Standard Operating Conditions (unless otherwise stated)
Operating Temperature: -40°C≤TA≤+125°C
Param No.
Sym.
Characteristic
CC01*
TCCL
CCPx Input
Low Time
CC02*
CC03*
TCCH
TCCP
CCPx Input
High Time
Min.
Typ. †
Max.
No Prescaler
0.5TCY+20
—
—
ns
With Prescaler
20
—
—
ns
No Prescaler
0.5TCY+20
—
—
ns
With Prescaler
20
—
—
ns
(3TCY+40)/N
—
—
ns
CCPx Input
Period
Units
Conditions
N = Prescale
value
* - These parameters are characterized but not tested.
† Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only
and are not tested.
Figure 40-13. Capture/Compare/PWM Timings (CCP)
Rev. 30-000080A
4/6/2017
CCPx
(Capture mode)
CC01
CC02
CC03
Note: Refer to Figure 40-4 for load conditions.
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 661
PIC16(L)F18455/56
Electrical Specifications
40.4.15 Configurable Logic Cell (CLC) Characteristics
Table 40-21.
Standard Operating Conditions (unless otherwise stated)
Operating Temperature: -40°C≤TA≤+125°C
Param No.
Sym.
Characteristic
Min.
Typ. †
Max.
Units
Conditions
CLC01*
TCLCIN
CLC input time
—
7
OS5
ns
(Note1)
CLC02*
TCLC
CLC module input to output
propagation time
—
24
—
ns
VDD = 1.8V
—
12
—
ns
VDD > 3.6V
CLC output time
Rise Time
—
OS7
—
—
(Note1)
Fall Time
—
OS8
—
—
(Note1)
—
32
FOSC
CLC03*
CLC04*
TCLCOUT
FCLCMAX
CLC maximum switching
frequency
MHz
* - These parameters are characterized but not tested.
† - Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only
and are not tested.
Note:
1. See “I/O and CLKOUT Timing Specifications” for OS5, OS7 and OS8 rise and fall times.
Figure 40-14. CLC Propagation Timing
Rev. 30-000153A
10/27/2017
CLCxINn
CLC
Input time
CLCxINn
CLC
Input time
LCx_in[n](1)
LCx_in[n](1)
CLC01
CLC
Module
LCx_out(1)
CLC
Output time
CLCx
CLC
Module
LCx_out(1)
CLC
Output time
CLCx
CLC02
CLC03
Related Links
40.4.4 I/O and CLKOUT Timing Specifications
40.4.16 EUSART Synchronous Transmission Requirements
Table 40-22.
Standard Operating Conditions (unless otherwise stated)
Param No.
Sym.
Characteristic
US120
TCKH2DTV
© 2019 Microchip Technology Inc.
Min.
Max.
Units
SYNC XMIT (Master and Slave)
—
80
ns
3.0V≤VDD≤5.5V
Clock high to data-out valid
—
100
ns
1.8V≤VDD≤5.5V
Datasheet
Conditions
DS40002038C-page 662
PIC16(L)F18455/56
Electrical Specifications
...........continued
Standard Operating Conditions (unless otherwise stated)
Param No.
Sym.
Characteristic
US121
TCKRF
US122
TDTRF
Min.
Max.
Units
Conditions
Clock out rise time and fall time
—
45
ns
3.0V≤VDD≤5.5V
(Master mode)
—
50
ns
1.8V≤VDD≤5.5V
Data-out rise time and fall time
—
45
ns
3.0V≤VDD≤5.5V
—
50
ns
1.8V≤VDD≤5.5V
Figure 40-15. EUSART Synchronous Transmission (Master/Slave) Timing
Rev. 30-000081A
4/6/2017
CK
US121
US121
DT
US122
US120
Note: Refer to Figure 40-4 for load conditions.
40.4.17 EUSART Synchronous Receive Requirements
Table 40-23.
Standard Operating Conditions (unless otherwise stated)
Param No.
Sym.
Characteristic
US125
TDTV2CKL
SYNC RCV (Master and Slave)
Min.
Max.
Units
10
—
ns
15
—
ns
Conditions
Data-setup before CK ↓ (DT hold time)
US126
TCKL2DTL
Data-hold after CK ↓ (DT hold time)
Figure 40-16. EUSART Synchronous Receive (Master/Slave) Timing
Rev. 30-000082A
4/6/2017
CK
US125
DT
US126
Note: Refer to Figure 40-4 for load conditions.
40.4.18 SPI Mode Requirements
Table 40-24.
Standard Operating Conditions (unless otherwise stated)
Param No.
Sym.
Characteristic
SP70*
TSSL2SCH,
SS↓ to SCK↓ or SCK↑
input
TSSL2SCL
© 2019 Microchip Technology Inc.
Min.
Typ. †
Max.
Units
2.25*TCY
—
—
ns
Datasheet
Conditions
DS40002038C-page 663
PIC16(L)F18455/56
Electrical Specifications
...........continued
Standard Operating Conditions (unless otherwise stated)
Param No.
Sym.
Characteristic
Min.
Typ. †
Max.
Units
SP71*
TSCH
SP72*
SP73*
SCK input high time (Slave
mode)
TCY + 20
—
—
ns
TSCL
SCK input low time (Slave
mode)
TCY + 20
—
—
ns
TDIV2SCH,
Setup time of SDI data
input to SCK edge
100
—
—
ns
Hold time of SDI data input
to SCK edge
100
—
—
ns
SDO data output rise time
—
10
25
ns
3.0V≤VDD≤5.5V
—
25
50
ns
1.8V≤VDD≤5.5V
TDIV2SCL
SP74*
TSCH2DIL,
TSCL2DIL
SP75*
TDOR
Conditions
SP76*
TDOF
SDO data output fall time
—
10
25
ns
SP77*
TSSH2DOZ
SS↑ to SDO output highimpedance
10
—
50
ns
SP78*
TSCR
SCK output rise time
(Master mode)
—
10
25
ns
3.0V≤VDD≤5.5V
—
25
50
ns
1.8V≤VDD≤5.5V
SP79*
TSCF
SCK output fall time
(Master mode)
—
10
25
ns
SP80*
TSCH2DOV,
SDO data output valid after
SCK edge
—
—
50
ns
3.0V≤VDD≤5.5V
—
—
145
ns
1.8V≤VDD≤5.5V
1 TCY
—
—
ns
—
—
50
ns
1.5 TCY + 40
—
—
ns
TSCL2DOV
SP81*
TDOV2SCH,
TDOV2SCL
SDO data output setup to
SCK edge
SP82*
TSSL2DOV
SDO data output valid after
SS↓ edge
SP83*
TSCH2SSH,
SS ↑after SCK edge
TSCL2SSH
* - These parameters are characterized but not tested.
† Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only
and are not tested.
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 664
PIC16(L)F18455/56
Electrical Specifications
Figure 40-17. SPI Master Mode Timing (CKE = 0, SMP = 0)
Rev. 30-000083A
4/6/2017
SS
SP81
SCK
(CKP = 0)
SP71
SP72
SP78
SP79
SP79
SP78
SCK
(CKP = 1)
SP80
bit 6 - - - - - -1
MSb
SDO
LSb
SP75, SP76
SDI
MSb In
bit 6 - - - -1
LSb In
SP74
SP73
Note: Refer to Figure 40-4 for load conditions.
Figure 40-18. SPI Master Mode Timing (CKE = 1, SMP = 1)
Rev. 30-000084A
4/6/2017
SS
SP81
SCK
(CKP = 0)
SP71
SP72
SP79
SP73
SCK
(CKP = 1)
SP80
SDO
MSb
SP78
LSb
bit 6 - - - - - -1
SP75, SP76
SDI
MSb In
bit 6 - - - -1
LSb In
SP74
Note: Refer to Figure 40-4 for load conditions.
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 665
PIC16(L)F18455/56
Electrical Specifications
Figure 40-19. SPI Slave Mode Timing (CKE = 0)
Rev. 30-000085A
4/6/2017
SS
SP70
SCK
(CKP = 0)
SP83
SP71
SP72
SP78
SP79
SP79
SP78
SCK
(CKP = 1)
SP80
MSb
SDO
LSb
bit 6 - - - - - -1
SP77
SP75, SP76
SDI
MSb In
bit 6 - - - -1
LSb In
SP74
SP73
Note: Refer to Figure 40-4 for load conditions.
Figure 40-20. SPI Slave Mode Timing (CKE = 1)
Rev. 30-000086A
4/6/2017
SS
SP82
SP70
SP83
SCK
(CKP = 0)
SP71
SP72
SCK
(CKP = 1)
SP80
MSb
SDO
bit 6 - - - - - -1
LSb
SP77
SP75, SP76
SDI
MSb In
bit 6 - - - -1
LSb In
SP74
Note: Refer to Figure 40-4 for load conditions.
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 666
PIC16(L)F18455/56
Electrical Specifications
40.4.19 I2C Bus Start/Stop Bits Requirements
Table 40-25.
Standard Operating Conditions (unless otherwise stated)
Param. No. Sym.
SP90*
Characteristic
TSU:STA Start condition 100 kHz mode 4700
—
—
600
—
—
THD:STA Start condition 100 kHz mode 4000
—
—
600
—
—
TSU:STO Stop condition 100 kHz mode 4700
—
—
600
—
—
THD:STO Stop condition 100 kHz mode 4000
—
—
—
—
Setup time
SP91*
Hold time
SP92*
Setup time
SP93*
Min. Typ. † Max. Units Conditions
Hold time
400 kHz mode
400 kHz mode
400 kHz mode
400 kHz mode
600
ns
Only relevant for Repeated
Start Setup time 400 kHz mode
600 condition
ns
After this period, the first clock
Hold time 400 kHz mode 600
— — pulse is generated
ns
ns
* - These parameters are characterized but not tested.
Figure 40-21. I2C Bus Start/Stop Bits Timing
Rev. 30-000087A
4/6/2017
SCL
SP93
SP91
SP90
SP92
SDA
Stop
Condition
Start
Condition
Note: Refer to Figure 40-4 for load conditions.
40.4.20 I2C Bus Data Requirements
Table 40-26.
Standard Operating Conditions (unless otherwise stated)
Param. No.
Sym.
Characteristic
Min.
Max.
Units
SP100*
THIGH
Clock high
time
100 kHz
mode
4.0
—
μs
Device must
operate at a
minimum of 1.5
MHz
400 kHz
mode
0.6
—
μs
Device must
operate at a
minimum of 10
MHz
1.5TCY
—
SSP module
© 2019 Microchip Technology Inc.
Datasheet
Conditions
DS40002038C-page 667
PIC16(L)F18455/56
Electrical Specifications
...........continued
Standard Operating Conditions (unless otherwise stated)
Param. No.
Sym.
Characteristic
Min.
Max.
Units
SP101*
TLOW
Clock low
time
100 kHz
mode
4.7
—
μs
Device must
operate at a
minimum of 1.5
MHz
400 kHz
mode
1.3
—
μs
Device must
operate at a
minimum of 10
MHz
1.5TCY
—
100 kHz
mode
—
1000
ns
400 kHz
mode
20 + 0.1CB
300
ns
—
250
ns
400 kHz
mode
20 + 0.1CB
250
ns
100 kHz
mode
0
—
ns
400 kHz
mode
0
0.9
μs
100 kHz
mode
250
—
ns
400 kHz
mode
100
—
ns
100 kHz
mode
—
3500
ns
400 kHz
mode
—
—
ns
Bus free time 100 kHz
mode
4.7
—
μs
400 kHz
mode
1.3
—
μs
—
400
pF
SSP module
SP102*
SP103*
SP106*
SP107*
SP109*
SP110*
SP111
TR
TF
THD:DAT
TSU:DAT
TAA
TBUF
CB
SDA and
SCL rise
time
SDA and
100 kHz
SCL fall time mode
Data input
hold time
Data input
setup time
Output valid
from clock
Bus capacitive loading
Conditions
CB is specified to
be from 10-400 pF
CB is specified to
be from 10-400 pF
(Note 2)
(Note 1)
Time the bus must
be free before a
new transmission
can start
* - These parameters are characterized but not tested.
Note:
1. As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region
(min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.
2. A Fast mode (400 kHz) I2C bus device can be used in a Standard mode (100 kHz) I2C bus system, but the
requirement TSU:DAT≥250 ns must then be met. This will automatically be the case if the device does not
stretch the low period of the SCL signal. If such a device does stretch the low period of the SCL signal, it
must output the next data bit to the SDA line TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the
Standard mode I2C bus specification), before the SCL line is released.
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 668
PIC16(L)F18455/56
Electrical Specifications
Figure 40-22. I2C Bus Data Timing
Rev. 30-000088A
4/6/2017
SP103
SCL
SP100
SP90
SP102
SP101
SP106
SP107
SP91
SDA
In
SP92
SP110
SP109
SP109
SDA
Out
Note: Refer to Figure 40-4 for load conditions.
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 669
PIC16(L)F18455/56
DC and AC Characteristics Graphs and Tables
41.
DC and AC Characteristics Graphs and Tables
The graphs and tables provided in this section are for design guidance and are not tested. In some graphs or tables,
the data presented are outside specified operating range (i.e., outside specified VDD range). This is for information
only and devices are ensured to operate properly only within the specified range. Unless otherwise noted, all graphs
apply to both the L and LF devices.
Note: The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein are not
tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range
(e.g., outside specified power supply range) and therefore, outside the warranted range.
Note: “Typical” represents the mean of the distribution at 25°C. “Maximum”, “Max.”, “Minimum” or “Min.” represents
(mean + 3σ) or (mean - 3σ) respectively, where σ is a standard deviation, over each temperature range.
Graphs
Figure 41-1. IPD Base, Low-Power Sleep Mode
PIC16LF18455/56 only
Figure 41-2. IPD Watchdog Timer (WDT)
PIC16LF18455/56 only
1200
2.0
Max: 85°C + 3σ
Typical: 25°C
Max: 85°C + 3σ
Typical: 25°C
1.8
1000
1.6
1.4
IPD (µA)
800
IPD (nA)
41.1
Max.
600
1.2
Typical
1.0
0.8
400
Max.
0.6
200
0.4
Typical
0.2
0
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
0.0
1.6
VDD (V)
© 2019 Microchip Technology Inc.
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
VDD (V)
Datasheet
DS40002038C-page 670
PIC16(L)F18455/56
DC and AC Characteristics Graphs and Tables
Figure 41-3. IPD Watchdog Timer (WDT)
PIC16F18455/56 only
Figure 41-4. IPD Fixed Voltage Reference (FVR)
PIC16LF18455/56 only
60
1.6
Max: 85°C + 3σ
Typical: 25°C
Max.
55
1.4
1.2
50
Typical
Max.
45
IPD (µA)
IPD (µA)
1.0
0.8
40
Typical
35
0.6
30
0.4
Max: 85°C + 3σ
Typical: 25°C
0.2
25
0.0
20
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
1.6
1.8
2.0
2.2
2.4
VDD (V)
2.6
2.8
3.0
3.2
3.4
3.6
3.8
VDD (V)
Figure 41-5. IPD Fixed Voltage Reference (FVR)
PIC16F18455/56 only
Figure 41-6. IPD Brown-Out Reset (BOR), BORV = 1
PIC16LF18455/56 only
60
14
Max: 85°C + 3σ
Typical: 25°C
55
13
50
Max.
12
IPD (µA)
Idd (µA)
45
40
11
Typical
35
10
30
Max: 85°C + 3σ
Typical: 25°C
25
20
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
Typical
9
8
6.0
1.6
1.8
2.0
2.2
2.4
VDD (V)
2.6
2.8
3.0
3.2
3.4
3.6
3.8
VDD (V)
Figure 41-7. IPD Brown-Out Reset (BOR), BORV = 1
PIC16F18455/56 only
Figure 41-8. IPD Low-Power Brown-Out Reset,
LPBOR = 0 PIC16LF18455/56 only
1.1
16
Max: 85°C + 3σ
Typical: 25°C
1
14
0.9
Max.
0.8
0.7
10
IPD (nA)
IPD (µA)
12
Typical
0.6
0.5
0.4
8
0.3
Max: 85°C + 3σ
Typical: 25°C
0.2
6
Typical
0.1
0
4
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
1.6
© 2019 Microchip Technology Inc.
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
VDD (V)
VDD (V)
Datasheet
DS40002038C-page 671
PIC16(L)F18455/56
DC and AC Characteristics Graphs and Tables
Figure 41-9. IPD Comparator PIC16LF18455/56 only
Figure 41-10. IPD Comparator PIC16F18455/56 only
45
40
Max: 85°C + 3σ
Typical: 25°C
38
36
35
34
Max.
30
32
Typical
IPD (µA)
IPD (µA)
Max: 85°C + 3σ
Typical: 25°C
40
Max.
30
Typical
25
20
28
15
26
10
24
5
22
0
20
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
2.0
3.8
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
VDD (V)
VDD (V)
Figure 41-11. IPD Base, 01 PIC16F18455/56 only
Figure 41-12. IPD Base, 11 PIC16F18455/56 only
0.9
35
Max.
Max: 85°C + 3σ
Typical: 25°C
30
Max: 85°C + 3σ
Typical: 25°C
0.8
Max.
0.7
0.6
Typical
20
IPD (µA)
IPD (µA)
25
0.5
Typical
0.4
15
0.3
10
0.2
5
0.1
0
0
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
2.0
6.0
2.5
3.0
3.5
Figure 41-13. IDD XT Oscillator 4 MHz,
PIC16LF18455/56 only
5.0
5.5
6.0
Figure 41-14. IDD XT Oscillator 4 MHz,
PIC16F18455/56 only
700
700
Max: 85°C + 3σ
Typical: 25°C
Typical
500
Max
400
Max
Max: 85°C + 3σ
Typical: 25°C
600
500
Typical
Idd (µA)
Idd (µA)
4.5
VDD (V)
VDD (V)
600
4.0
300
400
300
200
200
100
100
0
0
1.6
1.8
2.0
2.2
2.4
© 2019 Microchip Technology Inc.
2.6
2.8
3.0
3.2
3.4
3.6
3.8
2.0
Datasheet
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
DS40002038C-page 672
PIC16(L)F18455/56
DC and AC Characteristics Graphs and Tables
Figure 41-15. IDD HS Oscillator 32 MHz,
PIC16LF18455/56 only
Figure 41-16. IDD HS Oscillator 32 MHz,
PIC16F18455/56 only
5.0
6.0
Max: 85°C + 3σ
Typical: 25°C
Max
4.0
Typical
3.5
4.0
Max
3.0
Idd (mA)
Idd (mA)
Max: 85°C + 3σ
Typical: 25°C
4.5
5.0
3.0
Typical
2.0
2.5
2.0
1.5
1.0
1.0
0.5
0.0
0.0
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
2.0
3.8
Figure 41-17. IDD HFINTOSC Mode, FOSC= 32 MHz,
PIC16LF18455/56 only
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
Figure 41-18. IDD HFINTOSC Mode, FOSC= 32 MHz,
PIC16F18455/56 only
5.0
6.0
Max: 85°C + 3σ
Typical: 25°C
5.0
Max
Max: 85°C + 3σ
Typical: 25°C
4.5
4.0
Typical
3.5
Max
4.0
3.0
Idd (mA)
Idd (mA)
3.0
Typical
2.0
2.5
2.0
1.5
1.0
1.0
0.5
0.0
0.0
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
2.0
3.8
Figure 41-19. IDD HFINTOSC Mode, FOSC= 16 MHz,
PIC16LF18455/56 only
3.0
3.5
4.0
4.5
5.0
5.5
6.0
Figure 41-20. IDD HFINTOSC Mode, FOSC= 16 MHz,
PIC16F18455/56 only
3.0
3.0
Max: 85°C + 3σ
Typical: 25°C
Max: 85°C + 3σ
Typical: 25°C
Max
2.5
2.5
Max
Typical
1.5
Typical-
2.0
Idd (mA)
2.0
Idd (mA)
2.5
1.5
1.0
1.0
0.5
0.5
0.0
0.0
1.6
1.8
2.0
2.2
2.4
© 2019 Microchip Technology Inc.
2.6
2.8
3.0
3.2
3.4
3.6
3.8
2.0
Datasheet
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
DS40002038C-page 673
PIC16(L)F18455/56
DC and AC Characteristics Graphs and Tables
Figure 41-21. IDD HFINTOSC Idle Mode, FOSC= 16
MHz, PIC16LF18455/56 only
Figure 41-22. IDD HFINTOSC Idle Mode, FOSC= 16
MHz, PIC16F18455/56 only
2,000
2,000
1,800
Max: 85°C + 3σ
Typical: 25°C
Max
1,200
Idd (µA)
Idd (µA)
1,200
Typical
1,000
1,000
800
800
600
600
400
400
200
200
0
0
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
2.0
3.8
Figure 41-23. IDD HFINTOSC Doze Mode, FOSC= 16
MHz, PIC16LF18455/56 only
2.5
3.0
3.5
2,000
Max: 85°C + 3σ
Typical: 25°C
4.5
5.0
5.5
Max
Max: 85°C + 3σ
Typical: 25°C
1,800
1,600
4.0
Figure 41-24. IDD HFINTOSC Doze Mode, FOSC= 16
MHz, PIC16F18455/56 only
2,000
1,600
Max
1,400
Typical
1,400
1,200
1,200
Typical
Idd (µA)
Idd (µA)
Typical
1,400
1,400
1,000
1,000
800
800
600
600
400
400
200
200
0
0
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
Figure 41-25. LFINTOSC Frequency,
PIC16LF18455/56 only
3.8
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
Figure 41-26. LFINTOSC Frequency, PIC16F18455/56
only
36,000
36,000
35,000
35,000
34,000
34,000
33,000
33,000
Frequency (Hz)
Frequency (Hz)
Max
1,600
1,600
1,800
Max: 85°C + 3σ
Typical: 25°C
1,800
32,000
31,000
32,000
31,000
30,000
30,000
29,000
29,000
28,000
28,000
1.7
2.0
2.3
2.6
2.9
3.2
3.5
2.2
2.4
2.6
2.8
Typical 25°C
+3 Sigma (-40°C to 125°C)
© 2019 Microchip Technology Inc.
3
3.2
3.4
3.6
3.8
4
4.2
4.4
4.6
4.8
5
5.2
5.4
5.6
VDD (V)
VDD (V)
Typical 25°C
-3 Sigma (-40°C to 125°C)
Datasheet
+3 Sigma (-40°C to 125°C)
-3 Sigma (-40°C to 125°C)
DS40002038C-page 674
PIC16(L)F18455/56
DC and AC Characteristics Graphs and Tables
Figure 41-27. HFINTOSC Typical Frequency Error,
PIC16LF18455/56 only
Figure 41-28. HFINTOSC Typical Frequency Error,
PIC16F18455/56 only
2.0%
3.0%
1.5%
2.0%
1.0%
1.0%
0.5%
Error (%)
Error (%)
0.0%
-1.0%
-2.0%
0.0%
-0.5%
-1.0%
-1.5%
-3.0%
-2.0%
-4.0%
-2.5%
-3.0%
-5.0%
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
2.2 2.4 2.6 2.8
3.8
3
3.2 3.4 3.6 3.8
Typical 25°C
+3σ (-40°C to +125°C)
Typical 25°C
-3σ (-40°C to +125°C)
Figure 41-29. HFINTOSC Frequency Error VDD = 3V,
All devices
4.2 4.4 4.6 4.8
5
5.2 5.4 5.6
+3σ (-40°C to +125°C)
-3σ (-40°C to +125°C)
Figure 41-30. Weak Pull-Up Current, PIC16F18455/56
only
300.0
1.5%
1.0%
Pull-Up Current (uA)
250.0
0.5%
Error (%)
4
VDD (V)
VDD (V)
0.0%
-0.5%
200.0
150.0
100.0
-1.0%
50.0
-1.5%
-2.0%
0.0
-60
-40
-20
0
20
40
60
80
100
120
140
2.1
2.4
2.7
3.0
3.3
Typical
+3 Sigma
Typical 25°C
-3 Sigma
Figure 41-31. Weak Pull-Up Current,
PIC16LF18455/56 only
3.9
4.2
4.5
4.8
5.1
5.4
5.7
+ 3σ (-40°C to +125°C)
- 3σ (-40°C to +125°C)
Figure 41-32. VOH vs. IOH Overtemperature, VDD =
5.5V, PIC16F18455/56 only
6
180.0
160.0
Graph represents 3σ Limits
5
140.0
-40°C
120.0
4
100.0
VOH (V)
Pull-Up Current (uA)
3.6
VDD (V)
Temperature (°C)
80.0
3
25°C
60.0
2
40.0
20.0
1
0.0
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
Typical 25°C
+ 3σ (-40°C to +125°C)
© 2019 Microchip Technology Inc.
3.8
0
-45
VDD (V)
-40
-35
-30
-25
-20
-15
-10
-5
0
IOH (mA)
- 3σ (-40°C to +125°C)
Datasheet
DS40002038C-page 675
PIC16(L)F18455/56
DC and AC Characteristics Graphs and Tables
Figure 41-33. VOL vs. IOL Overtemperature, VDD =
5.5V, PIC16F18455/56 only
Figure 41-34. VOH vs. IOH Overtemperature, VDD =
3.0V, All devices
3
3.5
Graph represents 3σ Limits
Graph represents 3σ Limits
3.0
2.5
VOH (V)
VOL (V)
2
2.0
1.5
125°C
25°C
1
1.0
-40°C
0.5
0.0
0
0
10
20
30
40
50
-30
60
-25
-20
-15
IOL (mA)
Figure 41-35. VOL vs. IOL Overtemperature, VDD =
3.0V, All devices
-5
0
Figure 41-36. VOH vs. IOH Overtemperature, VDD =
1.8V, PIC16LF1855/56 only
2.0
3.0
Graph represents 3σ Limits
1.8
Graph represents 3σ Limits
2.5
1.6
1.4
VOH (V)
2.0
VOL (V)
-10
IOH (mA)
1.5
-40°C
1.2
125°C
1.0
Typical
0.8
1.0
0.6
0.4
0.5
0.2
0.0
0.0
0
5
10
15
20
25
30
35
40
45
50
55
-8
60
-7.5
-7
-6.5
-6
-5.5
-5
-4.5
IOL (mA)
Figure 41-37. VOL vs. IOL Overtemperature, VDD =
1.8V, PIC16LF18455/56 only
-3.5
-3
-2.5
-2
-1.5
-1
-0.5
0
Figure 41-38. Brown-Out Reset Voltage, Trip Point
BORV = 00, All devices
1.8
3.00
Graph represents 3σ Limits
1.6
2.95
2.90
1.4
2.85
1.2
Typical
125°C
2.80
-40°C
Voltage (V)
VOL (V)
-4
IOH (mA)
1
0.8
2.75
2.70
2.65
2.60
0.6
2.55
0.4
2.50
2.45
0.2
2.40
-60
0
0
1
2
3
4
5
6
7
8
9
-20
0
20
40
60
80
100
120
140
Temperature (°C)
IOL (mA)
© 2019 Microchip Technology Inc.
-40
10 11 12 13 14 15 16 17 18 19 20
+3 Sigma
Datasheet
-3 Sigma
Typical
DS40002038C-page 676
PIC16(L)F18455/56
DC and AC Characteristics Graphs and Tables
Figure 41-39. Brown-Out Reset Hysteresis, Low Trip
Point BORV = 00, All devices
Figure 41-40. Brown-Out Reset Voltage, Low Trip
Point BORV = 01, PIC16LF18455/56 only
70.0
2.00
60.0
1.95
40.0
Voltage (V)
Voltage (mV)
50.0
30.0
20.0
1.90
1.85
10.0
1.80
0.0
-60
-40
-20
0
20
40
60
80
100
120
-60
140
-40
-20
0
Typical
20
40
60
80
100
120
140
Temperature (°C)
Temperature (°C)
+3 Sigma
+3 Sigma
-3 Sigma
Figure 41-41. Brown-Out Reset Hysteresis, Trip
Point BORV = 01, PIC16LF18455/56 only
-3 Sigma
Typical
Figure 41-42. Brown-Out Reset Voltage, Trip Point
BORV = 01, PIC16F18455/56 only
2.70
40.0
2.65
35.0
2.60
30.0
2.55
Voltage (V)
Voltage (mV)
25.0
20.0
15.0
2.50
2.45
2.40
2.35
10.0
2.30
5.0
2.25
0.0
-60
-40
-20
0
20
40
60
80
100
120
2.20
140
-60
-40
-20
0
Temperature (°C)
Typical
40
60
80
100
120
140
Temperature (°C)
+3 Sigma
-3 Sigma
+3 Sigma
Figure 41-43. Brown-Out Reset Hysteresis, Trip
Point BORV = 01, PIC16F18455/56 only
-3 Sigma
Typical
Figure 41-44. LPBOR Reset Voltage, All devices
2.60
50.0
2.50
45.0
2.40
2.30
Voltage (V)
40.0
Voltage (mV)
20
35.0
30.0
2.20
2.10
2.00
25.0
1.90
20.0
1.80
15.0
1.70
-60
-40
-20
0
20
40
60
80
100
120
140
Temperature (°C)
10.0
-60
-40
-20
0
20
40
60
80
100
120
140
+3 Sigma
Temperature (°C)
Typical
+3 Sigma
© 2019 Microchip Technology Inc.
Typical
-3 Sigma
-3 Sigma
Datasheet
DS40002038C-page 677
PIC16(L)F18455/56
DC and AC Characteristics Graphs and Tables
Figure 41-45. LPBOR Reset Hysteresis, All devices
Figure 41-46. BOR Response Time,
PIC16LF18455/56 only
50
45
5.0
40
4.5
35
4.0
3.5
25
Time (us)
Voltage (mV)
30
20
15
10
3.0
2.5
2.0
1.5
5
1.0
0
-60
-40
-20
0
20
40
60
80
100
120
140
0.5
Temperature (°C)
0.0
2.6
Typical
+3 Sigma
2.7
2.8
2.9
3.0
-3 Sigma
3.1
3.2
3.3
3.4
3.5
3.6
3.7
VDD (V)
Typical 25°C
Figure 41-47. BOR Response Time, PIC16F18455/56
only
+3 Sigma 125°C
Figure 41-48. ADC 12-Bit Mode, Single-Ended
Typical DNL, VDD = 3.0V, VREF = 3.0V, TAD = 0.5 uS,
25ºC, All devices
7
6
Time (us)
5
4
3
2
1
0
2.6
2.8
3
3.2
3.4
3.6
3.8
4
4.2
4.4
4.6
4.8
5
5.2
5.4
5.6
VDD (V)
Typical 25°C
+3 Sigma 125°C
Figure 41-49. ADC 12-Bit Mode, Single-Ended DNL,
VDD = 3.0V, VREF = 3.0V, TAD = 1 uS, 25ºC, All devices
© 2019 Microchip Technology Inc.
Figure 41-50. ADC 12-Bit Mode, Single-Ended DNL,
VDD = 3.0V, VREF = 3.0V, TAD = 4 uS, 25ºC, All devices
Datasheet
DS40002038C-page 678
PIC16(L)F18455/56
DC and AC Characteristics Graphs and Tables
Figure 41-51. ADC 12-Bit Mode, Single-Ended
Typical INL, VDD = 3.0V, VREF = 3.0V, TAD = 0.5 uS,
25ºC, All devices
Figure 41-52. ADC 12-Bit Mode, Single-Ended INL,
VDD = 3.0V, VREF = 3.0V, TAD = 1 uS, 25ºC, All devices
Figure 41-53. ADC 12-Bit Mode, Single-Ended INL,
VDD = 3.0V, VREF = 3.0V, TAD = 4 uS, 25ºC, All devices
Figure 41-54. ADC 12-Bit Mode, Single-Ended DNL,
VDD = 3.0V, VREF = 3.0V, All devices
Figure 41-55. ADC 12-Bit Mode, Single-Ended INL,
VDD = 3.0V, VREF = 3.0V, All devices
Figure 41-56. ADC 12-Bit Mode, Single-Ended DNL,
VDD = 3.0V, TAD = 1 uS, All devices
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 679
PIC16(L)F18455/56
DC and AC Characteristics Graphs and Tables
Figure 41-57. ADC 12-Bit Mode, Single-Ended INL,
VDD = 3.0V, TAD = 1 uS, All devices
Figure 41-58. ADC 12-Bit Mode, Single-Ended Gain
Error, VDD = 3.0V, TAD = 1 uS, All devices
Figure 41-59. ADC 12-Bit Mode, Single-Ended Offset
Error, VDD = 3.0V, TAD = 1 uS, All devices
Figure 41-60. ADC 12-Bit Mode, Single-Ended DNL,
VDD = 3.0V, TAD = 4 uS, All devices
Figure 41-61. ADC 12-Bit Mode, Single-Ended INL,
VDD = 3.0V, TAD = 4 uS, All devices
Figure 41-62. ADC 12-Bit Mode, Single-Ended Gain
Error, VDD = 3.0V, TAD = 4 uS, All devices
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 680
PIC16(L)F18455/56
DC and AC Characteristics Graphs and Tables
Figure 41-63. ADC 12-Bit Mode, Single-Ended Offset
Error, VDD = 3.0V, TAD = 4 uS, All devices
Figure 41-64. ADC 12-Bit Mode, Single-Ended Gain
Error, VDD = 3.0V, VREF = 3.0V, -40ºC to 85ºC, All
devices
Figure 41-65. ADC 12-Bit Mode, Single-Ended Offset
Error, VDD = 3.0V, VREF = 3.0V, -40ºC to 85ºC, All
devices
Figure 41-66. ADC RC Oscillator Period,
PIC16LF18455/56 only
5.0
4.5
4.0
Time (us)
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0
1.7
1.9
2.1
Typical 25°C
Figure 41-67. ADC RC Oscillator Period,
PIC16F18455/56 only
2.5
2.7
VDD (V)
+3σ (-40°C to +125°C)
2.9
3.1
3.3
3.5
3.7
-3σ (-40°C to +125°C)
Figure 41-68. Typical DAC DNL Error, VDD = 3.0V,
VREF = External 3V, All devices
0.025
4.0
0.02
3.5
0.015
3.0
0.01
DNL (LSb)
2.5
Time (us)
2.3
2.0
1.5
0.005
-40°C
25°C
0
85°C
125°C
-0.005
1.0
-0.01
0.5
-0.015
0.0
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
3.8
4
4.2
4.4
4.6
4.8
5
5.2
VDD (V)
Typical 25°C
+3σ (-40°C to +125°C)
© 2019 Microchip Technology Inc.
5.4
5.6
-0.02
0
16 32 48 64 80 96 112 128 144 160 176 192 208 224 240
Output Code
-3σ (-40°C to +125°C)
Datasheet
DS40002038C-page 681
PIC16(L)F18455/56
DC and AC Characteristics Graphs and Tables
Figure 41-69. Typical DAC INL Error, VDD = 3.0V, VREF Figure 41-70. Typical DAC INL Error, VDD = 5.0V, VREF
= External 3V, All devices
= External 5V, PIC16F18455/56 only
0.020
0.00
-0.05
0.015
-0.10
0.010
-0.20
DNL (LSb)
INL (LSb)
-0.15
-40°C
25°C
-0.25
85°C
0.005
-40°C
25°C
0.000
85°C
125°C
125°C
-0.30
-0.005
-0.35
-0.010
-0.40
-0.015
-0.45
0 13 26 39 52 65 78 91 104117130143156169182195208221234247
0 13 26 39 52 65 78 91 104117130143156169182195208221234247
Output Code
Output Code
Figure 41-71. Typical DAC INL Error, VDD = 5.0V, VREF
= External 5V, PIC16F18455/56 only
Figure 41-72. DAC INL Error, VDD = 3.0V,
PIC16LF18455/56 only
0.00
24
-0.05
22
Max.
-0.10
20
-0.20
-40°C
25°C
-0.25
DNL (LSb)
INL (LSb)
-0.15
Typical
16
85°C
125°C
-0.30
18
14
-0.35
Min.
Max: Typical + 3σ (-40°C to
+125°C)
Typical; statistical mean @ 25°C
Min: Typical - 3σ (-40°C to
+125°C)
12
-0.40
10
-0.45
1.6
0 13 26 39 52 65 78 91 104117130143156169182195208221234247
1.8
2.0
2.2
Output Code
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
Output Code
Figure 41-73. Absolute Value of DAC DNL Error, VDD Figure 41-74. Absolute Value of DAC INL Error, VDD =
= 3.0V, VREF = VDD, All devices
3.0V, VREF = VDD, All devices
0.4
0.90
Vref = Int. Vdd
0.88
Vref = Ext. 1.8V
0.3
Vref = Int. Vdd
Vref = Ext. 1.8V
0.86
Vref = Ext. 3.0V
Absolute INL (LSb)
Absolute DNL (LSb)
Vref = Ext. 2.0V
0.2
Vref = Ext. 2.0V
Vref = Ext. 3.0V
0.84
0.82
0.1
0.80
0.0
-60
-40
-20
0
20
40
60
80
100
120
140
0.78
-60.0
Temperature (°C)
© 2019 Microchip Technology Inc.
-40.0
-20.0
0.0
20.0
40.0
60.0
80.0
100.0
120.0
140.0
Temperature (°C)
Datasheet
DS40002038C-page 682
PIC16(L)F18455/56
DC and AC Characteristics Graphs and Tables
Figure 41-75. Absolute Value of DAC DNL Error, VDD Figure 41-76. Absolute Value of DAC INL Error, VDD =
= 5.0V, VREF = VDD, PIC16F18455/56 only
5.0V, VREF = VDD, PIC16F18455/56 only
0.9
0.30
0.88
Vref = Int. Vdd
0.26
Vref = Int. Vdd
Vref = Ext. 1.8V
Vref = Ext. 1.8V
0.22
Vref = Ext. 2.0V
0.86
Absolute INL (LSb)
Absolute DNL (LSb)
Vref = Ext. 2.0V
Vref = Ext. 3.0V
Vref = Ext. 5.0V
0.18
Vref = Ext. 3.0V
Vref = Ext. 5.0V
0.84
0.82
0.14
0.10
-60.0
0.8
-40.0
-20.0
0.0
20.0
40.0
60.0
80.0
100.0
120.0
0.78
-60.0
140.0
-40.0
-20.0
0.0
20.0
Figure 41-77. Comparator Hysteresis, Normal Power
Mode (CxSP = 1), VDD = 3.0V, Typical Measured
Values, All devices
60.0
80.0
100.0
120.0
140.0
Figure 41-78. Comparator Offset, Normal Power
Mode (CxSP = 1), VDD = 3.0V, Typical Measured
Values at 25°C, All devices
30
45
25
43
-40°C
39
20
Offset Voltage (mV)
41
Hysteresis (mV)
40.0
Temperature (°C)
Temperature (°C)
25°C
37
85°C
35
125°
33
15
10
MAX
5
0
31
-5
29
-10
27
-15
MIN
-20
25
0.0
0.5
1.0
1.5
2.0
2.5
3.0
0.0
3.5
0.5
1.0
Common Mode Voltage (V)
1.5
2.0
2.5
3.0
Common Mode Voltage (V)
Figure 41-79. Comparator Offset, Normal Power
Mode (CxSP = 1), VDD = 3.0V, Typical Measured
Values from -40°C to 125°C, All devices
Figure 41-80. Comparator Hysteresis, Normal Power
Mode (CxSP = 1), VDD = 5.5V, Typical Measured
Values, PIC16F18455/56 only
30
50
25
45
15
Hysteresis (mV)
Offset Voltage (mV)
20
MAX
10
5
40
0
85°
30
-5
25°C
125°
35
-40°C
-10
25
MIN
-15
-20
20
0.0
0.5
1.0
1.5
2.0
2.5
3.0
0.0
© 2019 Microchip Technology Inc.
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
Common Mode Voltage (V)
Common Mode Voltage (V)
Datasheet
DS40002038C-page 683
PIC16(L)F18455/56
DC and AC Characteristics Graphs and Tables
Figure 41-81. Comparator Offset, Normal Power
Mode (CxSP = 1), VDD = 5.0V, Typical Measured
Values at 25°C, PIC16F18455/56 only
Figure 41-82. Comparator Offset, Normal Power
Mode (CxSP = 1), VDD = 5.5V, Typical Measured
Values from -40°C to 125°C, PIC16F18455/56 only
30
40
25
30
15
Offset Voltage (mV)
Hysteresis (mV)
20
MAX
10
5
0
20
MAX
10
0
-5
-10
-10
MIN
MIN
-15
-20
-20
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
0.0
0.5
1.0
1.5
Common Mode Voltage (V)
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
Common Mode Voltage (V)
Figure 41-83. Comparator Response Time
Figure 41-84. Comparator Response Time
Overvoltage, Normal Power Mode (CxSP = 1), Typical Overvoltage, Normal Power Mode (CxSP = 1), Typical
Measured Values, PIC16LF18455/56 only
Measured Values, PIC16F18455/56 only
140
90
Max: Typical + 3σ (-40°C to +125°C)
Typical; statistical mean @ 25°C
Min: Typical - 3σ (-40°C to +125°C)
120
Max: Typical + 3σ (-40°C to +125°C)
Typical; statistical mean @ 25°C
Min: Typical - 3σ (-40°C to +125°C)
80
70
125°C
60
125°C
Time (nS)
Time (nS)
100
80
25°C
60
50
25°C
40
30
40
20
-40°C
-40°C
20
10
0
0
1.7
2.0
2.3
2.6
2.9
3.2
3.5
2.2
2.5
2.8
3.1
3.4
VDD (V)
3.7
4.0
4.3
4.6
4.9
5.2
5.5
VDD (V)
Figure 41-85. Comparator Response Time Falling
Edge, PIC16LF18455/56 only
Figure 41-86. Comparator Response Time Falling
Edge, PIC16F18455/56 only
300
250
250
200
Time (ns)
Time (ns)
200
150
150
100
100
50
50
0
1.7
1.9
2.1
2.3
2.5
2.7
2.9
3.1
3.3
3.5
3.7
0
2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6
VDD (V)
Typical 25°C
© 2019 Microchip Technology Inc.
VDD (V)
+3 Sigma 125°C
Typical 25°C
Datasheet
+3 Sigma 125°C
DS40002038C-page 684
PIC16(L)F18455/56
DC and AC Characteristics Graphs and Tables
Figure 41-87. Comparator Response Time Rising
Edge, PIC16LF18455/56 only
Figure 41-88. Comparator Response Time Rising
Edge, PIC16F18455/56 only
700
900
800
600
700
600
400
Time (ns)
Time (ns)
500
300
500
400
300
200
200
100
100
0
0
1.7
1.9
2.1
2.3
2.5
2.7
2.9
3.1
3.3
3.5
2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6
3.7
VDD (V)
VDD (V)
Typical 25°C
+3 Sigma 125°C
Typical 25°C
Figure 41-89. Band Gap Ready Time,
PIC16LF18455/56 only
+3 Sigma 125°C
Figure 41-90. FVR Stabilization Period,
PIC16LF18455/56 only
70
70
60
60
50
Time (us)
Time (us)
50
40
40
30
30
20
20
10
Note:
The FVR Stabiliztion Period applies when coming out of
RESET or exiting sleep mode.
0
10
1.6
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
1.6
3.8
1.8
2.0
2.2
2.4
Typical 25°C
2.6
2.8
3.0
3.2
3.4
3.6
3.8
VDD (MV)
VDD (V)
Typical 25°C
+3σ (-40°C to +125°C)
Figure 41-91. Typical FVR Voltage 1x,
PIC16LF18455/56 only
+3σ (-40°C to +125°C)
Figure 41-92. FVR Voltage Error 1x, PIC16F18455/56
only
1.1%
1.2%
1.0%
1.0%
0.9%
0.8%
0.8%
Error (%)
Error (%)
0.7%
0.6%
0.5%
0.6%
0.4%
0.4%
0.3%
0.2%
0.2%
0.1%
0.0%
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4
3.5
3.6
3.7
0.0%
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
VDD (V)
Typical -40°C
Typical 25°C
© 2019 Microchip Technology Inc.
4.0
4.2
4.4
4.6
4.8
5.0
5.2
5.4
5.6
VDD (V)
Typical 85°C
Typical 125°C
Typical -40°C
Datasheet
Typical 25°C
Typical 85°C
Typical 125°C
DS40002038C-page 685
PIC16(L)F18455/56
DC and AC Characteristics Graphs and Tables
Figure 41-93. FVR Voltage Error 2x,
PIC16LF18455/56 only
Figure 41-94. FVR Voltage Error 2x, PIC16F18455/56
only
1.0%
1.0%
0.8%
0.8%
0.6%
0.4%
Error (%)
Error (%)
0.6%
0.2%
0.4%
0.2%
0.0%
0.0%
-0.2%
-0.2%
-0.4%
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4
3.5
3.6
2.4
3.7
2.6
2.8
3.0
3.2
3.4
3.6
3.8
VDD (V)
Typical -40°C
Typical 25°C
4.0
4.2
4.4
4.6
4.8
5.0
5.2
5.4
5.6
VDD (V)
Typical 85°C
Typical 125°C
Typical -40°C
Figure 41-95. FVR Voltage Error 4x, PIC16F18455/56
only
Typical 25°C
Typical 85°C
Typical 125°C
Figure 41-96. Schmitt Trigger High Values, All
devices
4
1.0%
3.5
0.8%
3
Voltage (V)
Error (%)
0.6%
0.4%
2.5
2
1.5
0.2%
1
0.0%
0.5
-0.2%
0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
-0.4%
4.7
4.8
4.9
5.0
5.1
5.2
5.3
5.4
5.5
5.6
VDD (V)
VDD (V)
Typical -40°C
Typical 25°C
Typical 85°C
Typical 25°C
Typical 125°C
Figure 41-97. Schmitt Trigger Low Values, All
devices
+3σ (-40°C to +125°C)
-3σ (-40°C to +125°C)
Figure 41-98. Input Level TTL, All devices
TTL Trip Thresholds
2.5
1.8
1.6
2
Voltage (V)
Voltage (V)
1.4
1.5
1
1.2
1
0.8
0.6
0.4
0.5
0.2
0
0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
1.5
2.0
Typical 25°C
+3σ (-40°C to +125°C)
© 2019 Microchip Technology Inc.
Typical 25°C
-3σ (-40°C to +125°C)
Datasheet
2.5
3.0
3.5
4.0
4.5
5.0
5.5
VDD (V)
VDD (V)
+3σ (-40°C to +125°C)
-3σ (-40°C to +125°C)
DS40002038C-page 686
PIC16(L)F18455/56
DC and AC Characteristics Graphs and Tables
Figure 41-99. Rise Time, Slew Rate Control Enabled, Figure 41-100. Fall Time, Slew Rate Control Enabled,
All devices
All devices
50
60
45
50
40
40
30
Time (ns)
Time (ns)
35
25
20
30
20
15
10
10
5
0
0
1.5
2.5
3.5
4.5
1.5
5.5
2.5
3.5
Typical 25°C
4.5
5.5
VDD (V)
VDD (V)
+3 Sigma (-40°C to 125°C)
Typical 25°C
+3 Sigma (-40°C to 125°C)
Figure 41-101. Rise Time, Slew Rate Control
Disabled, All devices
Figure 41-102. Rise Time, Slew Rate Control
Disabled, All devices
30
20
18
25
16
14
Time (ns)
Time (ns)
20
15
12
10
10
8
6
4
5
2
0
1.5
2
2.5
3
3.5
4
4.5
5
5.5
0
6
1.5
2
2.5
3
3.5
VDD (V)
Typical 25°C
+3 Sigma (-40°C to 125°C)
Typical 25°C
Figure 41-103. OSCTUNE Center Frequency,
PIC16LF18455/56 only
4.5
5
5.5
6
+3 Sigma (-40°C to 125°C)
Figure 41-104. POR Release Voltage, All devices
1.6
4.00%
1.55
Max: Typical + 3σ (-40°C to +125°C)
Typical; statistical mean @ 25°C
Min: Typical - 3σ (-40°C to +125°C)
3.00%
+3 Sigma
1.5
Voltage (V)
2.00%
1.00%
Error (%)
4
VDD (V)
Max
0.00%
1.45
Typical
1.4
1.35
Min
Average
-1.00%
-3 Sigma
1.3
1.25
-2.00%
1.2
-3.00%
-60
-40
-20
0
20
40
60
80
100
120
140
Temperature (°C)
-4.00%
-32
Min
-24
-16
-8
0
Center
8
16
24
32
Max
OSCTUNE Setting
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 687
PIC16(L)F18455/56
DC and AC Characteristics Graphs and Tables
Figure 41-105. POR REARM Voltage, Normal Power
Mode, PIC16F18455/56 only
Figure 41-106. PWRT Period, PIC16F18455/56 only
74.0
1.8
72.0
1.75
Voltage (V)
Time (ms)
70.0
+3 Sigma
1.7
66.0
Typical
1.65
68.0
64.0
1.6
62.0
-3 Sigma
1.55
60.0
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
VDD (V)
1.5
-60
-40
-20
0
20
40
60
80
100
120
140
Typical 25°C
+ 3σ (-40°C to +125°C)
- 3σ (-40°C to +125°C)
Temperature (°C)
Figure 41-107. PWRT Period, PIC16LF18455/56 only
Figure 41-108. Wake from Sleep, VREGPM = 0,
HFINTOSC = 4 MHz PIC16F18455/56 only
75.0
18
73.0
71.0
17
67.0
16
Time (us)
Time (ms)
69.0
65.0
63.0
61.0
15
14
59.0
13
57.0
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
VDD (V)
Typical 25°C
12
+ 3σ (-40°C to +125°C)
1.5
- 3σ (-40°C to +125°C)
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
VDD (V)
Typical 25°C
Figure 41-109. Wake from Sleep, VREGPM = 1,
HFINTOSC = 4 MHz PIC16F18455/56 only
+3σ (-40°C to +125°C)
Figure 41-110. Wake from Sleep, VREGPM = 1,
HFINTOSC = 16 MHz PIC16F18455/56 only
120
28
110
27
100
26
80
Time (us)
Time (us)
90
70
60
25
24
23
50
22
40
21
30
20
1.5
2.0
2.5
3.0
3.5
4.0
4.5
VDD (V)
Typical 25°C
© 2019 Microchip Technology Inc.
5.0
5.5
6.0
20
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
VDD (V)
+3σ (-40°C to +125°C)
Typical 25°C
Datasheet
+3σ (-40°C to +125°C)
DS40002038C-page 688
PIC16(L)F18455/56
DC and AC Characteristics Graphs and Tables
Figure 41-112. Wake from Sleep, VREGPM = 1,
PIC16F18455/56 only
120
700
110
650
100
600
90
550
Time (us)
Time (us)
Figure 41-111. Wake from Sleep, VREGPM = 1,
HFINTOSC = 16 MHz PIC16F18455/56 only
80
500
70
450
60
400
50
350
300
40
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
2.2
6.0
2.4
2.6
2.8
3.0
3.2
3.4
Typical 25°C
3.6
3.8
4.0
4.2
4.4
4.6
4.8
5.0
5.2
5.4
5.6
VDD (V)
VDD (V)
+3σ (-40°C to +125°C)
Typical 25°C
Figure 41-113. Wake from Sleep, PIC16LF18455/56
only
+ 3σ (-40°C to +125°C)
Figure 41-114. WDT Time-Out Period,
PIC16F18455/56 only
4.2
700
650
4.1
600
Time (ms)
Time (us)
550
500
4.0
450
3.9
400
350
3.8
300
1.7
1.9
2.1
2.3
2.5
2.7
2.9
3.1
3.3
3.5
3.7
2.0
2.5
3.0
© 2019 Microchip Technology Inc.
4.0
4.5
5.0
5.5
6.0
VDD (V)
VDD (V)
Typical 25°C
3.5
Typical 25°C
+ 3σ (-40°C to +125°C)
Datasheet
+3σ (-40°C to +125°C)
-3σ (-40°C to +125°C)
DS40002038C-page 689
PIC16(L)F18455/56
DC and AC Characteristics Graphs and Tables
Figure 41-115. WDT Time-Out Period, PIC16LF18455/56 only
4.2
Time (ms)
4.1
4.0
3.9
3.8
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
VDD (V)
Typical 25°C
© 2019 Microchip Technology Inc.
+3σ (-40°C to +125°C)
Datasheet
-3σ (-40°C to +125°C)
DS40002038C-page 690
PIC16(L)F18455/56
Packaging Information
42.
Packaging Information
Package Marking Information
Rev. 30-009000A
5/17/2017
Legend: XX...X
Y
YY
WW
NNN
Pe3
*
Note:
Customer-specific information or Microchip part number
Year code (last digit of calendar year)
Year code (last 2 digits of calendar year)
Week code (week of January 1 is week ‘01’)
Alphanumeric traceability code
b-free JEDEC ® designator for Matte Tin (Sn)
This package is Pb-free. The Pb-free JEDEC designator ( e3 )
can be found on the outer packaging for this package.
In the event the full Microchip part number cannot be marked on one line, it will
be carried over to the next line, thus limiting the number of available
characters for customer-specific information.
Rev. 30-009028A
5/17/2017
28-Lead SPDIP (.300”)
Example
PIC16F18455
/SP e3
1526017
Rev. 30-009028B
5/17/2017
28-Lead SOIC (7.50 mm)
XXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXX
Example
PIC16F18455
/SO e3
1526017
YYWWNNN
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 691
PIC16(L)F18455/56
Packaging Information
Rev. 30-009028C
5/17/2017
28-Lead SSOP (5.30 mm)
Example
PIC16F18455
/SS e3
1526017
Rev. 30-009028F4/2/2018
28-Lead VQFN (4x4x1 mm)
Example
PIN 1
PIN 1
PIC18
F27Q10
/MV e
526017
3
42.1
Package Details
The following sections give the technical details of the packages.
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 692
M
PIC16(L)F18455/56
Packaging Diagrams and Parameters
Packaging Information
28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]
Note:
For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
N
NOTE 1
E1
1
2 3
D
E
A2
A
L
c
b1
A1
b
e
eB
Units
Dimension Limits
Number of Pins
INCHES
MIN
N
NOM
MAX
28
Pitch
e
Top to Seating Plane
A
–
–
.200
Molded Package Thickness
A2
.120
.135
.150
Base to Seating Plane
A1
.015
–
–
Shoulder to Shoulder Width
E
.290
.310
.335
Molded Package Width
E1
.240
.285
.295
Overall Length
D
1.345
1.365
1.400
Tip to Seating Plane
L
.110
.130
.150
Lead Thickness
c
.008
.010
.015
b1
.040
.050
.070
b
.014
.018
.022
eB
–
–
Upper Lead Width
Lower Lead Width
Overall Row Spacing §
.100 BSC
.430
Notes:
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. § Significant Characteristic.
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
4. Dimensioning and tolerancing per ASME Y14.5M.
BSC: Basic Dimension. Theoretically exact value shown without tolerances.
Microchip Technology Drawing C04-070B
© 2007 Microchip Technology Inc.
© 2019 Microchip Technology Inc.
DS00049AR-page 57
Datasheet
DS40002038C-page 693
M
Note:
PIC16(L)F18455/56
Packaging Diagrams and Parameters
Packaging Information
For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
2009 Microchip Technology Inc.
DS00049BC-page 110
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 694
M
PIC16(L)F18455/56
Packaging Diagrams and Parameters
Packaging Information
Note:
For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
2009 Microchip Technology Inc.
© 2019 Microchip Technology Inc.
DS00049BC-page 109
Datasheet
DS40002038C-page 695
M
Note:
PIC16(L)F18455/56
Packaging Diagrams and Parameters
Packaging Information
For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
2009 Microchip Technology Inc.
DS00049BC-page 104
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 696
PIC16(L)F18455/56
Packaging Information
28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]
Note:
For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
D
A
B
N
(DATUM A)
(DATUM B)
E1 E
1 2
28X b
0.15
e
C A B
TOP VIEW
A
A1
C
A
A2
SEATING
PLANE
28X
0.10 C
SIDE VIEW
A
H
c
L
VIEW A-A
(L1)
Microchip Technology Drawing C04-073 Rev C Sheet 1 of 2
© 2017 Microchip Technology Inc.
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 697
PIC16(L)F18455/56
Packaging Information
28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]
Note:
For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
G1
28
SILK SCREEN
C
Y1
1 2
X1
E
RECOMMENDED LAND PATTERN
Units
Dimension Limits
Contact Pitch
E
Contact Pad Spacing
C
Contact Pad Width (X28)
X1
Contact Pad Length (X28)
Y1
Contact Pad to Center Pad (X26)
G1
MIN
MILLIMETERS
NOM
0.65 BSC
7.00
MAX
0.45
1.85
0.20
Notes:
1. Dimensioning and tolerancing per ASME Y14.5M
BSC: Basic Dimension. Theoretically exact value shown without tolerances.
2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during
reflow process
Microchip Technology Drawing C04-2073 Rev B
© 2017 Microchip Technology Inc.
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 698
PIC16(L)F18455/56
Packaging Information
28-Lead Very Thin Plastic Quad Flat, No Lead (STX) - 4x4 mm Body [VQFN]
With 2.65x2.65 mm Exposed Pad
Note:
For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
D
NOTE 1
A
B
N
1
2
E
(DATUM B)
(DATUM A)
2X
0.10 C
2X
TOP VIEW
0.10 C
0.10 C
C
A
A
SEATING
PLANE
28X
(A3)
0.08 C
SIDE VIEW
0.10
C A B
D2
L
0.10
C A B
E2
2
1
CH
(K)
N
NOTE 1
28X b
0.07
e
C A B
BOTTOM VIEW
Microchip Technology Drawing C04-456 Rev A Sheet 1 of 2
© 2017 Microchip Technology Inc.
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 699
PIC16(L)F18455/56
Packaging Information
28-Lead Very Thin Plastic Quad Flat, No Lead (STX) - 4x4 mm Body [VQFN]
With 2.65x2.65 mm Exposed Pad
Note:
For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
Units
Dimension Limits
N
Number of Terminals
e
Pitch
Overall Height
A
Standoff
A1
A3
Terminal Thickness
Overall Length
D
Exposed Pad Length
D2
E
Overall Width
Exposed Pad Width
E2
Exposed Pad Corner Chamfer
CH
b
Terminal Width
L
Terminal Length
Terminal-to-Exposed-Pad
K
MIN
0.80
0.00
2.55
2.55
0.15
0.30
MILLIMETERS
NOM
28
0.40 BSC
0.90
0.02
0.127 REF
4.00 BSC
2.65
4.00 BSC
2.65
0.25
0.20
0.40
0.275 REF
MAX
1.00
0.05
2.75
2.75
0.25
0.50
Notes:
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Package is saw singulated
3. Dimensioning and tolerancing per ASME Y14.5M
BSC: Basic Dimension. Theoretically exact value shown without tolerances.
REF: Reference Dimension, usually without tolerance, for information purposes only.
Microchip Technology Drawing C04-456 Rev A Sheet 2 of 2
© 2017 Microchip Technology Inc.
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 700
PIC16(L)F18455/56
Packaging Information
28-Lead Very Thin Plastic Quad Flat, No Lead (STX) - 4x4 mm Body [VQFN]
With 2.65x2.65 mm Exposed Pad
Note:
For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
C1
X2
EV
ØV
C2 Y2
EV
G1
Y1
SILK SCREEN
G2
X1
E
RECOMMENDED LAND PATTERN
Units
Dimension Limits
E
Contact Pitch
Optional Center Pad Width
X2
Optional Center Pad Length
Y2
Contact Pad Spacing
C1
Contact Pad Spacing
C2
Contact Pad Width (X28)
X1
Contact Pad Length (X28)
Y1
Contact Pad to Center Pad (X28)
G1
Contact Pad to Contact Pad (X24)
G2
Thermal Via Diameter
V
Thermal Via Pitch
EV
MIN
MILLIMETERS
NOM
0.40 BSC
MAX
2.75
2.75
4.00
4.00
0.20
0.80
0.23
0.20
0.30
1.00
Notes:
1. Dimensioning and tolerancing per ASME Y14.5M
BSC: Basic Dimension. Theoretically exact value shown without tolerances.
2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during
reflow process
Microchip Technology Drawing C04-2456 Rev A
© 2017 Microchip Technology Inc.
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 701
PIC16(L)F18455/56
Revision History
43.
Revision History
Doc Rev. Date
Comments
C
11/2019 Adding Electrical Specifications and DC and AC Characteristics Graphs and Tables. Other
minor corrections.
B
6/2018
Minor corrections to electrical specs and removed EOL packages QFN and UQFN.
A
5/2018
Initial release of this document.
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 702
PIC16(L)F18455/56
The Microchip Website
Microchip provides online support via our website at http://www.microchip.com/. This website is used to make files
and information easily available to customers. Some of the content available includes:
•
•
•
Product Support – Data sheets and errata, application notes and sample programs, design resources, user’s
guides and hardware support documents, latest software releases and archived software
General Technical Support – Frequently Asked Questions (FAQs), technical support requests, online
discussion groups, Microchip design partner program member listing
Business of Microchip – Product selector and ordering guides, latest Microchip press releases, listing of
seminars and events, listings of Microchip sales offices, distributors and factory representatives
Product Change Notification Service
Microchip’s product change notification service helps keep customers current on Microchip products. Subscribers will
receive email notification whenever there are changes, updates, revisions or errata related to a specified product
family or development tool of interest.
To register, go to http://www.microchip.com/pcn and follow the registration instructions.
Customer Support
Users of Microchip products can receive assistance through several channels:
•
•
•
•
Distributor or Representative
Local Sales Office
Embedded Solutions Engineer (ESE)
Technical Support
Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to
help customers. A listing of sales offices and locations is included in this document.
Technical support is available through the website at: http://www.microchip.com/support
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 703
PIC16(L)F18455/56
Product Identification System
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.
PART NO.
Device
[X](1)
–X
/XX
Tape Temperature
and Reel
Range
Device:
Tape & Reel Option:
Temperature Range:
Package:
Pattern:
Package
PIC16F18455, PIC16LF1845, PIC16F18456, PIC16LF18456
Blank
= Tube
T
= Tape & Reel
I
= -40°C to +85°C (Industrial)
E
= -40°C to +125°C (Extended)
SP
= 28-lead, SPDIP
SO
= 28-lead SOIC
SS
= 28-lead SSOP
STX
= 28-lead VQFN 4x4x1 mm
QTP, SQTP, Code or Special Requirements (blank otherwise)
Examples:
• PIC16F18455- E/P Extended temperature PDIP package
Note:
1. Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering
purposes and is not printed on the device package. Check with your Microchip Sales Office for package
availability with the Tape and Reel option.
2. Small form-factor packaging options may be available. Please check http://www.microchip.com/packaging for
small-form factor package availability, or contact your local Sales Office.
Microchip Devices Code Protection Feature
Note the following details of the code protection feature on Microchip devices:
•
•
•
•
•
Microchip products meet the specification contained in their particular Microchip Data Sheet.
Microchip believes that its family of products is one of the most secure families of its kind on the market today,
when used in the intended manner and under normal conditions.
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these
methods, to our knowledge, require using the Microchip products in a manner outside the operating
specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of
intellectual property.
Microchip is willing to work with the customer who is concerned about the integrity of their code.
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code
protection does not mean that we are guaranteeing the product as “unbreakable.”
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection
features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital
Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you
may have a right to sue for relief under that Act.
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 704
PIC16(L)F18455/56
Legal Notice
Information contained in this publication regarding device applications and the like is provided only for your
convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with
your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER
EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend,
indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such
use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless
otherwise stated.
Trademarks
The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime,
BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox,
KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST,
MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer,
QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon,
TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.
APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control,
HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus,
ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider,
Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.
Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BlueSky, BodyCom,
CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM,
dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP,
INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM, MPF,
MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM,
PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad
I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense,
ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A.
and other countries.
SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.
The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of
Microchip Technology Inc. in other countries.
GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip
Technology Inc., in other countries.
All other trademarks mentioned herein are property of their respective companies.
©
2019, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.
ISBN: 978-1-5224-5235-5
Quality Management System
For information regarding Microchip’s Quality Management Systems, please visit http://www.microchip.com/quality.
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 705
Worldwide Sales and Service
AMERICAS
ASIA/PACIFIC
ASIA/PACIFIC
EUROPE
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/support
Web Address:
http://www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC
Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078
Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing
Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing
Tel: 86-25-8473-2460
China - Qingdao
Tel: 86-532-8502-7355
China - Shanghai
Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou
Tel: 86-186-6233-1526
China - Wuhan
Tel: 86-27-5980-5300
China - Xian
Tel: 86-29-8833-7252
China - Xiamen
Tel: 86-592-2388138
China - Zhuhai
Tel: 86-756-3210040
India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune
Tel: 91-20-4121-0141
Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880- 3770
Korea - Daegu
Tel: 82-53-744-4301
Korea - Seoul
Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore
Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-72400
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-72884388
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820
© 2019 Microchip Technology Inc.
Datasheet
DS40002038C-page 706