PIC18(L)F2X/4XK22
28/40/44-Pin, Low-Power, High-Performance
Microcontrollers with XLP Technology
High-Performance RISC CPU:
• C Compiler Optimized Architecture:
- Optional extended instruction set designed to
optimize re-entrant code
• Up to 1024 Bytes Data EEPROM
• Up to 64 Kbytes Linear Program Memory
Addressing
• Up to 3896 Bytes Linear Data Memory Addressing
• Up to 16 MIPS Operation
• 16-bit Wide Instructions, 8-bit Wide Data Path
• Priority Levels for Interrupts
• 31-Level, Software Accessible Hardware Stack
• 8 x 8 Single-Cycle Hardware Multiplier
screens and capacitive switches
eXtreme Low-Power Features (XLP)
(PIC18(L)F2X/4XK22):
•
•
•
•
Special Microcontroller Features:
•
•
•
•
Flexible Oscillator Structure:
• Precision 16 MHz Internal Oscillator Block:
- Factory-calibrated to ± 1%
- Selectable frequencies, 31 kHz to 16 MHz
- 64 MHz performance available using PLL –
no external components required
• Four Crystal modes up to 64 MHz
• Two External Clock modes up to 64 MHz
• 4x Phase Lock Loop (PLL)
• Secondary Oscillator using Timer1 @ 32 kHz
• Fail-Safe Clock Monitor:
- Allows for safe shutdown if peripheral clock
stops
- Two-Speed Oscillator Start-up
Analog Features:
• Analog-to-Digital Converter (ADC) module:
- 10-bit resolution, up to 30 external channels
- Auto-acquisition capability
- Conversion available during Sleep
- Fixed Voltage Reference (FVR) channel
- Independent input multiplexing
• Analog Comparator module:
- Two rail-to-rail analog comparators
- Independent input multiplexing
• Digital-to-Analog Converter (DAC) module:
- Fixed Voltage Reference (FVR) with 1.024V,
2.048V and 4.096V output levels
- 5-bit rail-to-rail resistive DAC with positive
and negative reference selection
• Charge Time Measurement Unit (CTMU) module:
- Supports capacitive touch sensing for touch
2010-2021 Microchip Technology Inc.
Sleep mode: 20 nA, typical
Watchdog Timer: 300 nA, typical
Timer1 Oscillator: 800 nA @ 32 kHz
Peripheral Module Disable
•
•
•
•
2.3V to 5.5V Operation – PIC18FXXK22 devices
1.8V to 3.6V Operation – PIC18LFXXK22 devices
Self-Programmable under Software Control
High/Low-Voltage Detection (HLVD) module:
- Programmable 16-Level
- Interrupt on High/Low-Voltage Detection
Programmable Brown-out Reset (BOR):
- With software enable option
- Configurable shutdown in Sleep
Extended Watchdog Timer (WDT):
- Programmable period from 4 ms to 131s
In-Circuit Serial Programming™ (ICSP™):
- Single-Supply 3V
In-Circuit Debug (ICD)
Peripheral Highlights:
• Up to 35 I/O Pins plus One Input-Only Pin:
- High-Current Sink/Source 25 mA/25 mA
- Three programmable external interrupts
- Four programmable interrupt-on-change
- Nine programmable weak pull-ups
- Programmable slew rate
• SR Latch:
- Multiple Set/Reset input options
• Two Capture/Compare/PWM (CCP) modules
• Three Enhanced CCP (ECCP) modules:
- One, two or four PWM outputs
- Selectable polarity
- Programmable dead time
- Auto-Shutdown and Auto-Restart
- PWM steering
• Two Host Synchronous Serial Port (MSSP) modules:
- 3-wire SPI (supports all four modes)
- I2C Host and Client modes with address
mask
DS40001412H-page 1
PIC18(L)F2X/4XK22
• Two Enhanced Universal Synchronous
Asynchronous Receiver Transmitter (EUSART)
modules:
- Supports RS-485, RS-232 and LIN
- RS-232 operation using internal oscillator
- Auto-Wake-up on Break
- Auto-Baud Detect
TABLE 1:
PIC18(L)F2X/4XK22 FAMILY TYPES
SRAM
(Bytes)
EEPROM
(Bytes)
I/O(1)
10-bit
A/D Channels(2)
CCP
ECCP
(Full-Bridge)
ECCP
(Half-Bridge)
SPI
I2C
EUSART
Comparator
CTMU
BOR/LVD
SR Latch
8-bit Timer
16-bit Timer
MSSP
# Single-Word
Instructions
Data
Memory
Flash
(Bytes)
Program
Memory
PIC18(L)F23K22
8K
4096
512
256
25
19
2
1
2
2
2
2
2
Y
Y
Y
3
4
PIC18(L)F24K22
16K
8192
768
256
25
19
2
1
2
2
2
2
2
Y
Y
Y
3
4
PIC18(L)F25K22
32K
16384
1536
256
25
19
2
1
2
2
2
2
2
Y
Y
Y
3
4
PIC18(L)F26K22
64k
32768
3896
1024
25
19
2
1
2
2
2
2
2
Y
Y
Y
3
4
PIC18(L)F43K22
8K
4096
512
256
36
30
2
2
1
2
2
2
2
Y
Y
Y
3
4
PIC18(L)F44K22
16K
8192
768
256
36
30
2
2
1
2
2
2
2
Y
Y
Y
3
4
PIC18(L)F45K22
32K
16384
1536
256
36
30
2
2
1
2
2
2
2
Y
Y
Y
3
4
PIC18(L)F46K22
64k
32768
3896
1024
36
30
2
2
1
2
2
2
2
Y
Y
Y
3
4
Device
Note 1:
2:
One pin is input only.
Channel count includes internal FVR and DAC channels.
DS40001412H-page 2
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
28-PIN PDIP, SOIC, SSOP DIAGRAM
MCLR/VPP/RE3
RA0
RA1
RA2
RA3
RA4
RA5
VSS
RA7
RA6
RC0
RC1
RC2
RC3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
PIC18(L)F2XK22
FIGURE 1:
28
27
26
25
24
23
22
21
20
19
18
17
16
15
RB7/PGD
RB6/PGC
RB5
RB4
RB3
RB2
RB1
RB0
VDD
VSS
RC7
RC6
RC5
RC4
28-PIN QFN, UQFN(1) DIAGRAM
RA1
RA0
MCLR/VPP/RE3
RB7/PGD
RB6/PGC
RB5
RB4
FIGURE 2:
28 27 26 25 24 23 22
1
2
3
4 PIC18(L)F2XK22
5
6
7
8 9 10 11 12 13 14
21
20
19
18
17
16
15
RB3
RB2
RB1
RB0
VDD
VSS
RC7
RC0
RC1
RC2
RC3
RC4
RC5
RC6
RA2
RA3
RA4
RA5/
VSS
RA7
RA6
Note
1:
The 28-pin UQFN package is available only for PIC18(L)F23K22 and PIC18(L)F24K22.
2010-2021 Microchip Technology Inc.
DS40001412H-page 3
PIC18(L)F2X/4XK22
40-PIN PDIP DIAGRAM
MCLR/VPP/RE3
RA0
RA1
RA2
RA3
RA4
RA5
RE0
RE1
RE2
VDD
VSS
RA7
RA6
RC0
RC1
RC2
RC3
RD0
RD1
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
RB7/PGD
RB6/PGC
RB5
RB4
RB3
RB2
RB1
RB0
VDD
VSS
RD7
RD6
RD5
RD4
RC7
RC6
RC5
RC4
RD3
RD2
40-PIN UQFN DIAGRAM
40
39
38
37
36
35
34
33
32
31
RC6
RC5
RC4
RD3
RD2
RD1
RD0
RC3
RC2
RC1
FIGURE 4:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
PIC18(L)F4XK22
FIGURE 3:
1
2
3
4
5 PIC18(L)F4XK22
6
7
8
9
10
30
29
28
27
26
25
24
23
22
21
RC0
RA6
RA7
VSS
VDD
RE2
RE1
RE0
RA5
RA4
RB3
RB4
RB5
PGC/RB6
PGD/RB7
MCLR/VPP/RE3
RA0
RA1
RA2
RA3
11
12
13
14
15
16
17
18
19
20
RC7
RD4
RD5
RD6
RD7
VSS
VDD
RB0
RB1
RB2
DS40001412H-page 4
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
44-PIN TQFP DIAGRAM
1
2
3
4
5
6 PIC18(L)F4XK22
7
8
9
10
11
33
32
31
30
29
28
27
26
25
24
23
NC
RC0
RA6
RA7
VSS
VDD
RE2
RE1
RE0
RA5
RA4
NC
NC
RB4
RB5
PGC/RB6
PGD/RB7
MCLR/VPP/RE3
RA0
RA1
RA2
RA3
22
21
20
19
18
17
16
15
14
13
12
RC7
RD4
RD5
RD6
RD7
VSS
VDD
RB0
RB1
RB2
RB3
44
43
42
41
40
39
38
37
36
35
34
RC6
RC5
RC4
RD3
RD2
RD1
RD0
RC3
RC2
RC1
NC
FIGURE 5:
44-PIN QFN DIAGRAM
1
2
3
4
5
6 PIC18(L)F4XK22
7
8
9
10
11
33 RA6
32 RA7
31 VSS
30 VSS
29 VDD
28 VDD
27 RE2
26 RE1
25 RE0
24 RA5
23 RA4
RB3
NC
RB4
RB5
PGC/RB6
PGD/RB7
MCLR/VPP/RE3
RA0
RA1
RA2
RA3
22
21
20
19
18
17
16
15
14
13
12
RC7
RD4
RD5
RD6
RD7
VSS
VDD
VDD
RB0
RB1
RB2
44
43
42
41
40
39
38
37
36
35
34
RC6
RC5
RC4
RD3
RD2
RD1
RD0
RC3
RC2
RC1
RC0
FIGURE 6:
2010-2021 Microchip Technology Inc.
DS40001412H-page 5
PIC18(L)F2X/4XK22
C2IN+
AN3
Basic
AN2
Pull-up
RA2
Interrupts
1
Timers
C12IN1-
4
MSSP
C12IN0-
AN1
EUSART
AN0
RA1
(E)CCP
Comparator
RA0
28
Reference
Analog
27
3
SR Latch
I/O
2
CTMU
28-QFN, UQFN
PIC18(L)F2XK22 PIN SUMMARY
28-SSOP, SOIC
28-SPDIP
TABLE 2:
VREFDACOUT
5
2
RA3
6
3
RA4
7
4
RA5
10
7
RA6
OSC2
CLKO
9
6
RA7
OSC1
CLKI
21
18
RB0
AN12
22
19
RB1
AN10
23
20
RB2
AN8
24
21
RB3
AN9
25
22
RB4
AN11
P1D
T5G
IOC
Y
26
23
RB5
AN13
CCP3
P3A(4)
P2B(3)
T1G
T3CKI(2)
IOC
Y
AN4
C1IN+
VREF+
C1OUT
SRQ
C2OUT
SRNQ
SRI
T0CKI
SS1
CCP4
FLT0
SS2
INT0
Y
P1C
SCK2
SCL2
INT1
Y
CTED1
P1B
SDI2
SDA2
INT2
Y
CTED2
CCP2
P2A(1)
SDO2
C12IN3-
C12IN2-
CCP5
HLVDIN
Y
27
24
RB6
TX2/CK2
IOC
Y
PGC
28
25
RB7
RX2/DT2
IOC
Y
PGD
11
8
RC0
P2B(3)
SOSCO
T1CKI
T3CKI(2)
T3G
12
9
RC1
CCP2
P2A(1)
SOSCI
13
10
RC2
AN14
CCP1
P1A
T5CKI
14
11
RC3
AN15
SCK1
SCL1
15
12
RC4
AN16
SDI1
SDA1
CTPLS
16
13
RC5
AN17
17
14
RC6
AN18
CCP3
P3A(4)
TX1/CK1
18
15
RC7
AN19
P3B
RX1/DT1
1
26
RE3
MCLR
VPP
VSS
VSS
VDD
VDD
8, 19 5, 16
19
16
20
17
Note 1:
2:
3:
4:
SDO1
CCP2/P2A multiplexed in fuses.
T3CKI multiplexed in fuses.
P2B multiplexed in fuses.
CCP3/P3A multiplexed in fuses.
DS40001412H-page 6
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
Basic
Pull-up
Interrupts
Timers
MSSP
EUSART
(E)CCP
Reference
SR Latch
CTMU
Comparator
Analog
I/O
44-QFN
PIC18(L)F4XK22 PIN SUMMARY
44-TQFP
40-UQFN
40-PDIP
TABLE 3:
2
17
19
19
RA0
AN0
C12IN0-
3
18
20
20
RA1
AN1
C12IN1-
4
19
21
21
RA2
AN2
C2IN+
5
20
22
22
RA3
AN3
6
21
23
23
RA4
7
22
24
24
RA5
14
29
31
33
RA6
OSC2
CLKO
13
28
30
32
RA7
OSC1
CLKI
33
8
8
9
RB0
AN12
34
9
9
10
RB1
AN10
35
10
10
11
RB2
AN8
36
11
11
12
RB3
AN9
AN4
37
12
14
14
RB4
AN11
38
13
15
15
RB5
AN13
VREFDACOU
T
C1IN+
VREF+
C1OUT
SRQ
C2OUT
SRNQ
SRI
T0CKI
HLVDIN
SS1
FLT0
C12IN3CTED1
C12IN2-
CTED2
INT0
Y
INT1
Y
INT2
Y
CCP2
P2A(1)
Y
CCP3
P3A(3)
T5G
IOC
Y
T1G
T3CKI(2)
IOC
Y
39
14
16
16
RB6
IOC
Y
PGC
40
15
17
17
RB7
IOC
Y
PGD
15
30
32
34
RC0
P2B(4)
SOSCO
T1CKI
T3CKI(2)
T3G
16
31
35
35
RC1
CCP2(1)
P2A
SOSCI
17
32
36
36
RC2
AN14
CCP1
P1A
T5CKI
18
33
37
37
RC3
AN15
SCK1
SCL1
23
38
42
42
RC4
AN16
SDI1
SDA1
CTPLS
24
39
43
43
RC5
AN17
25
40
44
44
RC6
AN18
TX1
CK1
26
1
1
1
RC7
AN19
RX1
DT1
19
34
38
38
RD0
AN20
20
35
39
39
RD1
AN21
CCP4
21
36
40
40
RD2
AN22
P2B(4)
22
37
41
41
RD3
AN23
P2C
SS2
27
2
2
2
RD4
AN24
P2D
SD02
28
3
3
3
RD5
AN25
P1B
29
4
4
4
RD6
AN26
P1C
TX2
CK2
30
5
5
5
RD7
AN27
P1D
RX2
DT2
8
23
25
25
RE0
AN5
CCP3
P3A(3)
Note 1:
2:
3:
4:
SDO1
SCK2
SCL2
SDI2
SDA2
CCP2 multiplexed in fuses.
T3CKI multiplexed in fuses.
CCP3/P3A multiplexed in fuses.
P2B multiplexed in fuses.
2010-2021 Microchip Technology Inc.
DS40001412H-page 7
PIC18(L)F2X/4XK22
CCP5
Interrupts
Timers
Basic
AN7
Pull-up
P3B
MSSP
AN6
EUSART
RE1
(E)CCP
Analog
26
Reference
I/O
26
SR Latch
44-QFN
24
CTMU
44-TQFP
9
Comparator
40-UQFN
PIC18(L)F4XK22 PIN SUMMARY (CONTINUED)
40-PDIP
TABLE 3:
Y
MCLR
VPP
10
25
27
27
RE2
1
16
18
18
RE3
11,
32
7, 26
7,
28
7,8
28, 29
VDD
VDD
12,
31
6, 27
6,
29
6,
30, 31
VSS
VSS
—
—
12, 13
33, 34
13
NC
Note 1:
2:
3:
4:
CCP2 multiplexed in fuses.
T3CKI multiplexed in fuses.
CCP3/P3A multiplexed in fuses.
P2B multiplexed in fuses.
DS40001412H-page 8
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
Table of Contents
1.0 Device Overview ........................................................................................................................................................................ 11
2.0 Oscillator Module (With Fail-Safe Clock Monitor)) .................................................................................................................... 25
3.0 Power-Managed Modes ............................................................................................................................................................ 44
4.0 Reset ......................................................................................................................................................................................... 55
5.0 Memory Organization ................................................................................................................................................................ 64
6.0 Flash Program Memory............................................................................................................................................................. 90
7.0 Data EEPROM Memory ............................................................................................................................................................ 99
8.0 8 x 8 Hardware Multiplier......................................................................................................................................................... 104
9.0 Interrupts ................................................................................................................................................................................. 106
10.0 I/O Ports .................................................................................................................................................................................. 127
11.0 Timer0 Module ........................................................................................................................................................................ 154
12.0 Timer1/3/5 Module with Gate Control...................................................................................................................................... 157
13.0 Timer2/4/6 Module .................................................................................................................................................................. 169
14.0 Capture/Compare/PWM Modules ........................................................................................................................................... 173
15.0 Host Synchronous Serial Port (MSSP1 and MSSP2) Module................................................................................................. 204
16.0 Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART) .............................................................. 259
17.0 Analog-to-Digital Converter (ADC) Module ............................................................................................................................. 288
18.0 Comparator Module................................................................................................................................................................. 302
19.0 Charge Time Measurement Unit (CTMU)................................................................................................................................. 311
20.0 SR LATCH ................................................................................................................................................................................. 326
21.0 Fixed Voltage Reference (FVR) .............................................................................................................................................. 331
22.0 Digital-to-Analog Converter (DAC) Module ............................................................................................................................. 333
23.0 High/Low-Voltage Detect (HLVD) ............................................................................................................................................ 337
24.0 Special Features of the CPU................................................................................................................................................... 343
25.0 Instruction Set Summary ......................................................................................................................................................... 360
26.0 Development Support.............................................................................................................................................................. 410
27.0 Electrical Specifications........................................................................................................................................................... 414
28.0 DC and AC Characteristics Graphs and Tables ...................................................................................................................... 453
29.0 Packaging Information............................................................................................................................................................. 509
Appendix A: Revision History............................................................................................................................................................ 534
Appendix B: Device Differences........................................................................................................................................................ 535
The Microchip Web Site .................................................................................................................................................................... 536
Customer Change Notification Service ............................................................................................................................................. 536
Customer Support ............................................................................................................................................................................. 536
Product Identification System ........................................................................................................................................................... 537
2010-2021 Microchip Technology Inc.
DS40001412H-page 9
PIC18(L)F2X/4XK22
TO OUR VALUED CUSTOMERS
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and
enhanced as new volumes and updates are introduced.
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via
E-mail at docerrors@microchip.com. We welcome your feedback.
Most Current Data Sheet
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Website at:
http://www.microchip.com
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.
The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).
Errata
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision
of silicon and revision of document to which it applies.
To determine if an errata sheet exists for a particular device, please check with one of the following:
• Microchip’s Worldwide Website; http://www.microchip.com
• Your local Microchip sales office (see last page)
When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are
using.
Customer Notification System
Register on our website at www.microchip.com to receive the most current information on all of our products.
DS40001412H-page 10
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
1.0
DEVICE OVERVIEW
This document contains device specific information for
the following devices:
• PIC18F23K22
• PIC18LF23K22
• PIC18F24K22
• PIC18LF24K22
• PIC18F25K22
• PIC18LF25K22
• PIC18F26K22
• PIC18LF26K22
• PIC18F43K22
• PIC18LF43K22
• PIC18F44K22
• PIC18LF44K22
• PIC18F45K22
• PIC18LF45K22
• PIC18F46K22
• PIC18LF46K22
This family offers the advantages of all PIC18
microcontrollers – namely, high computational
performance at an economical price – with the addition
of high-endurance, Flash program memory. On top of
these features, the PIC18(L)F2X/4XK22 family
introduces design enhancements that make these
microcontrollers a logical choice for many highperformance, power sensitive applications.
1.1
1.1.1
New Core Features
XLP TECHNOLOGY
All of the devices in the PIC18(L)F2X/4XK22 family
incorporate a range of features that can significantly
reduce power consumption during operation. Key
items include:
• Alternate Run Modes: By clocking the controller
from the Timer1 source or the internal oscillator
block, power consumption during code execution
can be reduced by as much as 90%.
• Multiple Idle Modes: The controller can also run
with its CPU core disabled but the peripherals still
active. In these states, power consumption can be
reduced even further, to as little as 4% of normal
operation requirements.
• On-the-fly Mode Switching: The powermanaged modes are invoked by user code during
operation, allowing the user to incorporate powersaving ideas into their application’s software
design.
• Low Consumption in Key Modules: The power
requirements for both Timer1 and the Watchdog
Timer are minimized. See Section 27.0
“Electrical Specifications” for values.
2010-2021 Microchip Technology Inc.
1.1.2
MULTIPLE OSCILLATOR OPTIONS
AND FEATURES
All of the devices in the PIC18(L)F2X/4XK22 family
offer ten different oscillator options, allowing users a
wide range of choices in developing application
hardware. These include:
• Four Crystal modes, using crystals or ceramic
resonators
• Two External Clock modes, offering the option of
using two pins (oscillator input and a divide-by-4
clock output) or one pin (oscillator input, with the
second pin reassigned as general I/O)
• Two External RC Oscillator modes with the same
pin options as the External Clock modes
• An internal oscillator block which contains a
16 MHz HFINTOSC oscillator and a 31 kHz
LFINTOSC oscillator, which together provide eight
user selectable clock frequencies, from 31 kHz to
16 MHz. This option frees the two oscillator pins
for use as additional general purpose I/O.
• A Phase Lock Loop (PLL) frequency multiplier,
available to both external and internal oscillator
modes, which allows clock speeds of up to
64 MHz. Used with the internal oscillator, the PLL
gives users a complete selection of clock speeds,
from 31 kHz to 64 MHz – all without using an
external crystal or clock circuit.
Besides its availability as a clock source, the internal
oscillator block provides a stable reference source that
gives the family additional features for robust
operation:
• Fail-Safe Clock Monitor: This option constantly
monitors the main clock source against a
reference signal provided by the LFINTOSC. If a
clock failure occurs, the controller is switched to
the internal oscillator block, allowing for continued
operation or a safe application shutdown.
• Two-Speed Start-up: This option allows the
internal oscillator to serve as the clock source
from Power-on Reset, or Wake-up from Sleep
mode, until the primary clock source is available.
DS40001412H-page 11
PIC18(L)F2X/4XK22
1.2
Other Special Features
• Memory Endurance: The Flash cells for both
program memory and data EEPROM are rated to
last for many thousands of erase/write cycles – up to
10K for program memory and 100K for EEPROM.
Data retention without refresh is conservatively
estimated to be greater than 40 years.
• Self-programmability: These devices can write
to their own program memory spaces under internal software control. By using a bootloader routine
located in the protected Boot Block at the top of
program memory, it becomes possible to create
an application that can update itself in the field.
• Extended Instruction Set: The PIC18(L)F2X/
4XK22 family introduces an optional extension to
the PIC18 instruction set, which adds eight new
instructions and an Indexed Addressing mode.
This extension, enabled as a device configuration
option, has been specifically designed to optimize
re-entrant application code originally developed in
high-level languages, such as C.
• Enhanced CCP module: In PWM mode, this
module provides one, two or four modulated
outputs for controlling half-bridge and full-bridge
drivers. Other features include:
- Auto-Shutdown, for disabling PWM outputs
on interrupt or other select conditions
- Auto-Restart, to reactivate outputs once the
condition has cleared
- Output steering to selectively enable one or
more of four outputs to provide the PWM
signal.
• Enhanced Addressable EUSART: This serial
communication module is capable of standard
RS-232 operation and provides support for the LIN
bus protocol. Other enhancements include
automatic baud rate detection and a 16-bit Baud
Rate Generator for improved resolution. When the
microcontroller is using the internal oscillator
block, the EUSART provides stable operation for
applications that talk to the outside world without
using an external crystal (or its accompanying
power requirement).
• 10-bit A/D Converter: This module incorporates
programmable acquisition time, allowing for a
channel to be selected and a conversion to be
initiated without waiting for a sampling period and
thus, reduce code overhead.
• Extended Watchdog Timer (WDT): This
enhanced version incorporates a 16-bit
postscaler, allowing an extended time-out range
that is stable across operating voltage and
temperature. See Section 27.0 “Electrical
Specifications” for time-out periods.
• Charge Time Measurement Unit (CTMU)
• SR Latch Output:
DS40001412H-page 12
1.3
Details on Individual Family
Members
Devices in the PIC18(L)F2X/4XK22 family are
available in 28-pin and 40/44-pin packages. The block
diagram for the device family is shown in Figure 1-1.
The devices have the following differences:
1.
2.
3.
4.
5.
6.
7.
Flash program memory
Data Memory SRAM
Data Memory EEPROM
A/D channels
I/O ports
ECCP modules (Full/Half Bridge)
Input Voltage Range/Power Consumption
All other features for devices in this family are identical.
These are summarized in Table 1-1.
The pinouts for all devices are listed in the pin summary
tables: Table 2 and Table 3, and I/O description tables:
Table 1-2 and Table 1-3.
2010-2021 Microchip Technology Inc.
2010-2021 Microchip Technology Inc.
TABLE 1-1:
DEVICE FEATURES
PIC18F23K22
PIC18LF23K22
PIC18F24K22
PIC18LF24K22
PIC18F25K22
PIC18(L)F25K22
PIC18F26K22
PIC18LF26K22
PIC18F43K22
PIC18LF43K22
PIC18F44K22
PIC18LF44K22
PIC18F45K22
PIC18LF45K22
PIC18F46K22
PIC18LF46K22
Program Memory (Bytes)
8192
16384
32768
65536
8192
16384
32768
65536
Program Memory
(Instructions)
4096
8192
16384
32768
4096
8192
16384
32768
Features
Data Memory (Bytes)
512
768
1536
3896
512
768
1536
3896
Data EEPROM Memory (Bytes)
256
256
256
1024
256
256
256
1024
A, B, C, E(1)
A, B, C, E(1)
A, B, C, E(1)
A, B, C, E(1)
A, B, C, D, E
A, B, C, D, E
A, B, C, D, E
A, B, C, D, E
Capture/Compare/PWM Modules
(CCP)
2
2
2
2
2
2
2
2
Enhanced CCP Modules (ECCP) Half Bridge
2
2
2
2
1
1
1
1
Enhanced CCP Modules (ECCP) Full Bridge
1
1
1
1
2
2
2
2
2 internal
17 input
2 internal
17 input
2 internal
17 input
2 internal
17 input
2 internal
28 input
2 internal
28 input
2 internal
28 input
2 internal
28 input
28-pin PDIP
28-pin SOIC
28-pin SSOP
28-pin QFN
28-pin UQFN
28-pin PDIP
28-pin SOIC
28-pin SSOP
28-pin QFN
28-pin UQFN
28-pin PDIP
28-pin SOIC
28-pin SSOP
28-pin QFN
28-pin PDIP
28-pin SOIC
28-pin SSOP
28-pin QFN
40-pin PDIP
40-pin UQFN
44-pin QFN
44-pin TQFP
40-pin PDIP
40-pin UQFN
44-pin QFN
44-pin TQFP
40-pin PDIP
40-pin UQFN
44-pin QFN
44-pin TQFP
40-pin PDIP
40-pin UQFN
44-pin QFN
44-pin TQFP
I/O Ports
10-bit Analog-to-Digital Module (ADC)
Packages
Interrupt Sources
Timers (16-bit)
33
4
2 MSSP,
2 EUSART
SR Latch
Yes
Charge Time Measurement Unit
Module (CTMU)
Yes
Programmable
High/Low-Voltage Detect (HLVD)
Yes
Programmable Brown-out Reset
(BOR)
Yes
Resets (and Delays)
DS40001412H-page 13
Instruction Set
75 Instructions;
83 with Extended Instruction Set enabled
Operating Frequency
Note
1:
POR, BOR,
RESET Instruction,
Stack Overflow,
Stack Underflow
(PWRT, OST),
MCLR, WDT
PORTE contains the single RE3 read-only bit.
DC - 64 MHz
PIC18(L)F2X/4XK22
Serial Communications
PIC18(L)F2X/4XK22
FIGURE 1-1:
PIC18(L)F2X/4XK22 FAMILY BLOCK DIAGRAM
Data Bus
Table Pointer
Data Latch
8
8
inc/dec logic
Data Memory
PCLATU PCLATH
21
PORTA
Address Latch
20
PCU PCH PCL
Program Counter
RA0:RA7
12
Data Address
31-Level Stack
4
BSR
Address Latch
Program Memory
(8/16/32/64 Kbytes)
STKPTR
12
FSR0
FSR1
FSR2
Data Latch
8
PORTB
12
RB0:RB7
inc/dec
logic
Table Latch
Instruction Bus
4
Access
Bank
Address
Decode
ROM Latch
PORTC
RC0:RC7
IR
Instruction
Decode and
Control
8
State machine
control signals
PRODH PRODL
PORTD
8 x 8 Multiply
3
8
W
BITOP
8
Internal
Oscillator
Block
OSC1(2)
(2)
OSC2
LFINTOSC
Oscillator
SOSCI
16 MHz
Oscillator
SOSCO
Single-Supply
Programming
In-Circuit
Debugger
MCLR(1)
BOR
HLVD
FVR
DAC
Note
Comparators
C1/C2
Data
EEPROM
ECCP1
ECCP2(3)
ECCP3
Power-up
Timer
8
8
8
8
Oscillator
Start-up Timer
Power-on
Reset
Watchdog
Timer
Brown-out
Reset
Fail-Safe
Clock Monitor
PORTE
ALU
RE0:RE2
RE3(1)
8
Precision
Band Gap
Reference
RD0:RD7
FVR
Timer0
Timer1
Timer3
Timer5
Timer2
Timer4
Timer6
CTMU
DAC
CCP4
CCP5
MSSP1
MSSP2
EUSART1
EUSART2
SR Latch
ADC
10-bit
FVR
1:
RE3 is only available when MCLR functionality is disabled.
2:
OSC1/CLKIN and OSC2/CLKOUT are only available in select oscillator modes and when these pins are not being used as digital I/O.
Refer to Section 2.0 “Oscillator Module (With Fail-Safe Clock Monitor)” for additional information.
3:
Full-Bridge operation for PIC18(L)F4XK22, half-bridge operation for PIC18(L)F2XK22.
DS40001412H-page 14
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
TABLE 1-2:
PIC18(L)F2XK22 PINOUT I/O DESCRIPTIONS
Pin Number
PDIP,
SOIC
QFN,
UQFN
2
27
3
28
4
1
5
2
6
3
7
4
10
7
Legend:
Note 1:
2:
Pin Name
Pin
Type
Buffer
Type
Description
RA0/C12IN0-/AN0
RA0
I/O
TTL
C12IN0-
I
Analog
Comparators C1 and C2 inverting input.
Digital I/O.
AN0
I
Analog
Analog input 0.
RA1/C12IN1-/AN1
RA1
I/O
TTL
C12IN1-
I
Analog
Comparators C1 and C2 inverting input.
Digital I/O.
AN1
I
Analog
Analog input 1.
RA2/C2IN+/AN2/DACOUT/VREFRA2
I/O
TTL
C2IN+
I
Analog
Digital I/O.
Comparator C2 noninverting input.
AN2
I
Analog
Analog input 2.
DACOUT
O
Analog
DAC Reference output.
VREF-
I
Analog
A/D reference voltage (low) input.
RA3/C1IN+/AN3/VREF+
RA3
I/O
TTL
C1IN+
I
Analog
Digital I/O.
Comparator C1 noninverting input.
AN3
I
Analog
Analog input 3.
VREF+
I
Analog
A/D reference voltage (high) input.
RA4/CCP5/C1OUT/SRQ/T0CKI
RA4
I/O
ST
Digital I/O.
CCP5
I/O
ST
Capture 5 input/Compare 5 output/PWM 5 output.
C1OUT
O
CMOS
SRQ
O
TTL
SR latch Q output.
T0CKI
I
ST
Timer0 external clock input.
RA5
I/O
TTL
Digital I/O.
C2OUT
O
CMOS
SRNQ
O
TTL
SR latch Q output.
Comparator C1 output.
RA5/C2OUT/SRNQ/SS1/HLVDIN/AN4
Comparator C2 output.
SS1
I
TTL
SPI client select input (MSSP).
HLVDIN
I
Analog
High/Low-Voltage Detect input.
AN4
I
Analog
Analog input 4.
TTL
RA6/CLKO/OSC2
RA6
I/O
CLKO
O
Digital I/O.
In RC mode, OSC2 pin outputs CLKOUT which has
1/4 the frequency of OSC1 and denotes the instruction
cycle rate.
OSC2
O
Oscillator crystal output. Connects to crystal or resonator
in Crystal Oscillator mode.
TTL = TTL compatible input CMOS = CMOS compatible input or output; ST = Schmitt Trigger input with CMOS levels;
I = Input; O = Output; P = Power.
Default pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and
CCP2MX are set.
Alternate pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and
CCP2MX are clear.
2010-2021 Microchip Technology Inc.
DS40001412H-page 15
PIC18(L)F2X/4XK22
TABLE 1-2:
PIC18(L)F2XK22 PINOUT I/O DESCRIPTIONS (CONTINUED)
Pin Number
PDIP,
SOIC
QFN,
UQFN
9
6
21
18
22
19
23
20
24
21
Legend:
Note 1:
2:
Pin Name
Pin
Type
Buffer
Type
Description
RA7/CLKI/OSC1
RA7
I/O
TTL
CLKI
I
CMOS
External clock source input. Always associated with pin
function OSC1.
Digital I/O.
OSC1
I
ST
Oscillator crystal input or external clock source input ST
buffer when configured in RC mode; CMOS otherwise.
RB0/INT0/CCP4/FLT0/SRI/SS2/AN12
RB0
I/O
TTL
Digital I/O.
INT0
I
ST
External interrupt 0.
CCP4
I/O
ST
Capture 4 input/Compare 4 output/PWM 4 output.
FLT0
I
ST
PWM Fault input for ECCP Auto-Shutdown.
SRI
I
ST
SR latch input.
SS2
I
TTL
SPI client select input (MSSP).
AN12
I
Analog
Analog input 12.
RB1/INT1/P1C/SCK2/SCL2/C12IN3-/AN10
RB1
I/O
TTL
Digital I/O.
INT1
I
ST
External interrupt 1.
P1C
O
CMOS
SCK2
I/O
ST
Synchronous serial clock input/output for SPI mode
(MSSP).
SCL2
I/O
ST
Synchronous serial clock input/output for I2C mode
(MSSP).
C12IN3-
I
Analog
Comparators C1 and C2 inverting input.
AN10
I
Analog
Analog input 10.
Enhanced CCP1 PWM output.
RB2/INT2/CTED1/P1B/SDI2/SDA2/AN8
RB2
I/O
TTL
Digital I/O.
INT2
I
ST
External interrupt 2.
CTED1
I
ST
CTMU Edge 1 input.
P1B
O
CMOS
SDI2
I
ST
SPI data in (MSSP).
Enhanced CCP1 PWM output.
SDA2
I/O
ST
I2C data I/O (MSSP).
AN8
I
Analog
Analog input 8.
RB3/CTED2/P2A/CCP2/SDO2/C12IN2-/AN9
RB3
I/O
TTL
CTED2
I
ST
Digital I/O.
P2A
O
CMOS
CCP2(2)
I/O
ST
Capture 2 input/Compare 2 output/PWM 2 output.
SDO2
O
—
SPI data out (MSSP).
C12IN2-
I
Analog
Comparators C1 and C2 inverting input.
AN9
I
Analog
Analog input 9.
CTMU Edge 2 input.
Enhanced CCP2 PWM output.
TTL = TTL compatible input CMOS = CMOS compatible input or output; ST = Schmitt Trigger input with CMOS levels;
I = Input; O = Output; P = Power.
Default pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and
CCP2MX are set.
Alternate pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and
CCP2MX are clear.
DS40001412H-page 16
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
TABLE 1-2:
PIC18(L)F2XK22 PINOUT I/O DESCRIPTIONS (CONTINUED)
Pin Number
PDIP,
SOIC
QFN,
UQFN
25
22
26
23
Pin Name
24
28
25
11
8
12
9
Note 1:
2:
Description
RB4
I/O
TTL
Digital I/O.
IOC0
I
TTL
Interrupt-on-change pin.
P1D
O
CMOS
T5G
I
ST
AN11
I
Analog
Enhanced CCP1 PWM output.
Timer5 external clock gate input.
Analog input 11.
RB5/IOC1/P2B/P3A/CCP3/T3CKI/T1G/AN13
I/O
TTL
Digital I/O.
Interrupt-on-change pin.
IOC1
I
TTL
P2B(1)
O
CMOS
P3A(1)
O
CMOS
CCP3(1)
I/O
ST
Capture 3 input/Compare 3 output/PWM 3 output.
T3CKI(2)
I
ST
Timer3 clock input.
T1G
I
ST
AN13
I
Analog
Enhanced CCP2 PWM output.
Enhanced CCP3 PWM output.
Timer1 external clock gate input.
Analog input 13.
RB6/IOC2/TX2/CK2/PGC
RB6
I/O
TTL
Digital I/O.
IOC2
I
TTL
Interrupt-on-change pin.
TX2
O
—
EUSART asynchronous transmit.
CK2
I/O
ST
EUSART synchronous clock (see related RXx/DTx).
PGC
I/O
ST
In-Circuit Debugger and ICSP™ programming clock pin.
RB7/IOC3/RX2/DT2/PGD
RB7
I/O
TTL
Digital I/O.
IOC3
I
TTL
Interrupt-on-change pin.
RX2
I
ST
EUSART asynchronous receive.
DT2
I/O
ST
EUSART synchronous data (see related TXx/CKx).
PGD
I/O
ST
In-Circuit Debugger and ICSP™ programming data pin.
Digital I/O.
RC0/P2B/T3CKI/T3G/T1CKI/SOSCO
RC0
I/O
ST
P2B(2)
O
CMOS
T3CKI(1)
I
ST
Timer3 clock input.
T3G
I
ST
Timer3 external clock gate input.
T1CKI
I
ST
Timer1 clock input.
SOSCO
O
—
Secondary oscillator output.
I/O
ST
Digital I/O.
Enhanced CCP1 PWM output.
RC1/P2A/CCP2/SOSCI
RC1
Legend:
Buffer
Type
RB4/IOC0/P1D/T5G/AN11
RB5
27
Pin
Type
P2A
O
CMOS
CCP2(1)
I/O
ST
SOSCI
I
Analog
Enhanced CCP2 PWM output.
Capture 2 input/Compare 2 output/PWM 2 output.
Secondary oscillator input.
TTL = TTL compatible input CMOS = CMOS compatible input or output; ST = Schmitt Trigger input with CMOS levels;
I = Input; O = Output; P = Power.
Default pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and
CCP2MX are set.
Alternate pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and
CCP2MX are clear.
2010-2021 Microchip Technology Inc.
DS40001412H-page 17
PIC18(L)F2X/4XK22
TABLE 1-2:
PIC18(L)F2XK22 PINOUT I/O DESCRIPTIONS (CONTINUED)
Pin Number
PDIP,
SOIC
QFN,
UQFN
Pin Name
13
10
RC2/CTPLS/P1A/CCP1/T5CKI/AN14
14
11
15
12
16
13
17
14
15
1
26
Legend:
Note 1:
2:
Buffer
Type
Description
RC2
I/O
ST
CTPLS
O
—
CTMU pulse generator output.
P1A
O
CMOS
Enhanced CCP1 PWM output.
Digital I/O.
CCP1
I/O
ST
Capture 1 input/Compare 1 output/PWM 1 output.
T5CKI
I
ST
Timer5 clock input.
AN14
I
Analog
Analog input 14.
RC3/SCK1/SCL1/AN15
RC3
I/O
ST
Digital I/O.
SCK1
I/O
ST
Synchronous serial clock input/output for SPI mode
(MSSP).
SCL1
I/O
ST
Synchronous serial clock input/output for I2C mode
(MSSP).
AN15
I
Analog
Analog input 15.
RC4/SDI1/SDA1/AN16
RC4
I/O
ST
Digital I/O.
SDI1
I
ST
SPI data in (MSSP).
SDA1
I/O
ST
I2C data I/O (MSSP).
AN16
I
Analog
Analog input 16.
RC5/SDO1/AN17
RC5
I/O
ST
Digital I/O.
SDO1
O
—
SPI data out (MSSP).
AN17
I
Analog
Analog input 17.
RC6/P3A/CCP3/TX1/CK1/AN18
RC6
I/O
ST
P3A(2)
O
CMOS
CCP3
18
Pin
Type
(2)
Digital I/O.
Enhanced CCP3 PWM output.
I/O
ST
Capture 3 input/Compare 3 output/PWM 3 output.
TX1
O
—
EUSART asynchronous transmit.
CK1
I/O
ST
EUSART synchronous clock (see related RXx/DTx).
AN18
I
Analog
Analog input 18.
RC7/P3B/RX1/DT1/AN19
RC7
I/O
ST
P3B
O
CMOS
Digital I/O.
RX1
I
ST
EUSART asynchronous receive.
DT1
I/O
ST
EUSART synchronous data (see related TXx/CKx).
AN19
I
Analog
RE3
I
ST
VPP
P
MCLR
I
Enhanced CCP3 PWM output.
Analog input 19.
RE3/VPP/MCLR
Digital input.
Programming voltage input.
ST
Active-Low Master Clear (device Reset) input.
TTL = TTL compatible input CMOS = CMOS compatible input or output; ST = Schmitt Trigger input with CMOS levels;
I = Input; O = Output; P = Power.
Default pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and
CCP2MX are set.
Alternate pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and
CCP2MX are clear.
DS40001412H-page 18
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
TABLE 1-2:
PIC18(L)F2XK22 PINOUT I/O DESCRIPTIONS (CONTINUED)
Pin Number
QFN,
UQFN
Pin Name
Pin
Type
Buffer
Type
20
17
VDD
P
—
Positive supply for logic and I/O pins.
8, 19
5, 16
VSS
P
—
Ground reference for logic and I/O pins.
PDIP,
SOIC
Legend:
TTL = TTL compatible input CMOS = CMOS compatible input or output; ST = Schmitt Trigger input with CMOS levels;
I = Input; O = Output; P = Power.
Default pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and
CCP2MX are set.
Alternate pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and
CCP2MX are clear.
Note 1:
2:
TABLE 1-3:
PIC18(L)F4XK22 PINOUT I/O DESCRIPTIONS
Pin Number
PDIP
TQFP
QFN
UQFN
2
19
19
17
3
4
5
6
20
21
22
23
Legend:
Note
Description
20
21
22
23
18
19
20
21
Pin Name
Pin
Type
Buffer
Type
Description
RA0/C12IN0-/AN0
RA0
I/O
C12IN0-
I
Analog Comparators C1 and C2 inverting input.
TTL
Digital I/O.
AN0
I
Analog Analog input 0.
RA1/C12IN1-/AN1
RA1
I/O
C12IN1-
I
Analog Comparators C1 and C2 inverting input.
TTL
Digital I/O.
AN1
I
Analog Analog input 1.
RA2/C2IN+/AN2/DACOUT/VREFRA2
I/O
C2IN+
I
TTL
Digital I/O.
Analog Comparator C2 noninverting input.
AN2
I
Analog Analog input 2.
DACOUT
O
Analog DAC Reference output.
VREF-
I
Analog A/D reference voltage (low) input.
RA3/C1IN+/AN3/VREF+
RA3
I/O
C1IN+
I
TTL
Digital I/O.
Analog Comparator C1 noninverting input.
AN3
I
Analog Analog input 3.
VREF+
I
Analog A/D reference voltage (high) input.
RA4/C1OUT/SRQ/T0CKI
RA4
I/O
C1OUT
O
ST
Digital I/O.
SRQ
O
TTL
SR latch Q output.
T0CKI
I
ST
Timer0 external clock input.
CMOS Comparator C1 output.
TTL = TTL compatible input CMOS = CMOS compatible input or output; ST = Schmitt Trigger input with CMOS levels; I
= Input; O = Output; P = Power.
1:
Default pin assignment for P2B, T3CKI, CCP3/P3A and CCP2/P2A when Configuration bits PB2MX, T3CMX, CCP3MX
and CCP2MX are set.
2:
Alternate pin assignment for P2B, T3CKI, CCP3/P3A and CCP2/P2A when Configuration bits PB2MX, T3CMX,
CCP3MX and CCP2MX are clear.
2010-2021 Microchip Technology Inc.
DS40001412H-page 19
PIC18(L)F2X/4XK22
TABLE 1-3:
PIC18(L)F4XK22 PINOUT I/O DESCRIPTIONS (CONTINUED)
Pin Number
PDIP
TQFP
QFN
UQFN
7
24
24
22
14
13
33
34
35
36
31
30
8
Note
32
9
9
10
10
11
Legend:
33
11
12
29
28
8
9
10
11
Pin Name
Pin
Type
Buffer
Type
Description
RA5/C2OUT/SRNQ/SS1/HLVDIN/AN4
RA5
I/O
TTL
Digital I/O.
C2OUT
O
SRNQ
O
TTL
SR latch Q output.
SS1
I
TTL
SPI client select input (MSSP1).
HLVDIN
I
Analog High/Low-Voltage Detect input.
AN4
I
Analog Analog input 4.
CMOS Comparator C2 output.
RA6/CLKO/OSC2
RA6
I/O
TTL
CLKO
O
—
In RC mode, OSC2 pin outputs CLKOUT which
has 1/4 the frequency of OSC1 and denotes the
instruction cycle rate.
Digital I/O.
OSC2
O
—
Oscillator crystal output. Connects to crystal or
resonator in Crystal Oscillator mode.
RA7/CLKI/OSC1
RA7
I/O
CLKI
I
TTL
OSC1
I
ST
Digital I/O.
CMOS External clock source input. Always associated
with pin function OSC1.
Oscillator crystal input or external clock source
input ST buffer when configured in RC mode;
CMOS otherwise.
RB0/INT0/FLT0/SRI/AN12
RB0
I/O
TTL
Digital I/O.
INT0
I
ST
External interrupt 0.
FLT0
I
ST
PWM Fault input for ECCP Auto-Shutdown.
SRI
I
ST
SR latch input.
AN12
I
Analog Analog input 12.
RB1/INT1/C12IN3-/AN10
RB1
I/O
TTL
Digital I/O.
INT1
I
ST
External interrupt 1.
C12IN3-
I
Analog Comparators C1 and C2 inverting input.
AN10
I
Analog Analog input 10.
RB2/INT2/CTED1/AN8
RB2
I/O
TTL
Digital I/O.
INT2
I
ST
External interrupt 2.
CTED1
I
ST
CTMU Edge 1 input.
AN8
I
Analog Analog input 8.
RB3/CTED2/P2A/CCP2/C12IN2-/AN9
RB3
I/O
TTL
Digital I/O.
CTED2
I
ST
CTMU Edge 2 input.
P2A(2)
O
CCP2(2)
I/O
C12IN2-
I
Analog Comparators C1 and C2 inverting input.
AN9
I
Analog Analog input 9.
CMOS Enhanced CCP2 PWM output.
ST
Capture 2 input/Compare 2 output/PWM 2 output.
TTL = TTL compatible input CMOS = CMOS compatible input or output; ST = Schmitt Trigger input with CMOS levels; I
= Input; O = Output; P = Power.
1:
Default pin assignment for P2B, T3CKI, CCP3/P3A and CCP2/P2A when Configuration bits PB2MX, T3CMX, CCP3MX
and CCP2MX are set.
2:
Alternate pin assignment for P2B, T3CKI, CCP3/P3A and CCP2/P2A when Configuration bits PB2MX, T3CMX,
CCP3MX and CCP2MX are clear.
DS40001412H-page 20
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
TABLE 1-3:
PIC18(L)F4XK22 PINOUT I/O DESCRIPTIONS (CONTINUED)
Pin Number
PDIP
TQFP
QFN
UQFN
37
14
14
12
38
15
15
13
Pin
Type
Buffer
Type
RB4
I/O
TTL
Digital I/O.
IOC0
I
TTL
Interrupt-on-change pin.
T5G
I
ST
Timer5 external clock gate input.
AN11
I
Pin Name
RB4/IOC0/T5G/AN11
40
15
16
16
17
32
35
16
17
34
35
14
15
30
31
RB5
I/O
TTL
Digital I/O.
IOC1
I
TTL
Interrupt-on-change pin.
P3A(1)
O
CCP3(1)
I/O
ST
Capture 3 input/Compare 3 output/PWM 3 output.
(2)
36
Legend:
Note
36
32
CMOS Enhanced CCP3 PWM output.
I
ST
Timer3 clock input.
T1G
I
ST
Timer1 external clock gate input.
AN13
I
Analog Analog input 13.
RB6/IOC2/PGC
RB6
I/O
TTL
Digital I/O.
IOC2
I
TTL
Interrupt-on-change pin.
PGC
I/O
ST
In-Circuit Debugger and ICSP™ programming
clock pin.
RB7/IOC3/PGD
RB7
I/O
TTL
Digital I/O.
IOC3
I
TTL
Interrupt-on-change pin.
PGD
I/O
ST
In-Circuit Debugger and ICSP™ programming
data pin.
ST
Digital I/O.
RC0/P2B/T3CKI/T3G/T1CKI/SOSCO
RC0
I/O
P2B(2)
O
T3CKI(1)
I
ST
Timer3 clock input.
T3G
I
ST
Timer3 external clock gate input.
T1CKI
I
ST
Timer1 clock input.
SOSCO
O
—
Secondary oscillator output.
I/O
ST
Digital I/O.
CMOS Enhanced CCP1 PWM output.
RC1/P2A/CCP2/SOSCI
RC1
17
Analog Analog input 11.
RB5/IOC1/P3A/CCP3/T3CKI/T1G/AN13
T3CKI
39
Description
P2A(1)
O
CCP2(1)
I/O
SOSCI
I
CMOS Enhanced CCP2 PWM output.
ST
Capture 2 input/Compare 2 output/PWM 2 output.
Analog Secondary oscillator input.
RC2/CTPLS/P1A/CCP1/T5CKI/AN14
RC2
I/O
ST
Digital I/O.
CTPLS
O
—
CTMU pulse generator output.
P1A
O
CCP1
I/O
T5CKI
I
AN14
I
CMOS Enhanced CCP1 PWM output.
ST
Capture 1 input/Compare 1 output/PWM 1 output.
ST
Timer5 clock input.
Analog Analog input 14.
TTL = TTL compatible input CMOS = CMOS compatible input or output; ST = Schmitt Trigger input with CMOS levels; I
= Input; O = Output; P = Power.
1:
Default pin assignment for P2B, T3CKI, CCP3/P3A and CCP2/P2A when Configuration bits PB2MX, T3CMX, CCP3MX
and CCP2MX are set.
2:
Alternate pin assignment for P2B, T3CKI, CCP3/P3A and CCP2/P2A when Configuration bits PB2MX, T3CMX,
CCP3MX and CCP2MX are clear.
2010-2021 Microchip Technology Inc.
DS40001412H-page 21
PIC18(L)F2X/4XK22
TABLE 1-3:
PIC18(L)F4XK22 PINOUT I/O DESCRIPTIONS (CONTINUED)
Pin Number
PDIP
TQFP
QFN
UQFN
18
37
37
33
23
24
25
26
19
20
42
43
44
1
Note
43
44
1
38
39
Legend:
42
38
39
38
39
40
1
34
35
Pin
Type
Buffer
Type
RC3
I/O
ST
Digital I/O.
SCK1
I/O
ST
Synchronous serial clock input/output for SPI
mode (MSSP).
SCL1
I/O
ST
Synchronous serial clock input/output for I2C
mode (MSSP).
AN15
I
Pin Name
Description
RC3/SCK1/SCL1/AN15
Analog Analog input 15.
RC4/SDI1/SDA1/AN16
RC4
I/O
ST
Digital I/O.
SDI1
I
ST
SPI data in (MSSP).
SDA1
I/O
ST
I2C data I/O (MSSP).
AN16
I
Analog Analog input 16.
RC5/SDO1/AN17
RC5
I/O
ST
Digital I/O.
SDO1
O
—
SPI data out (MSSP).
AN17
I
Analog Analog input 17.
RC6/TX1/CK1/AN18
RC6
I/O
ST
Digital I/O.
TX1
O
—
EUSART asynchronous transmit.
CK1
I/O
ST
EUSART synchronous clock (see related RXx/
DTx).
AN18
I
Analog Analog input 18.
RC7/RX1/DT1/AN19
RC7
I/O
ST
Digital I/O.
RX1
I
ST
EUSART asynchronous receive.
DT1
I/O
ST
EUSART synchronous data (see related TXx/
CKx).
AN19
I
Analog Analog input 19.
RD0/SCK2/SCL2/AN20
RD0
I/O
ST
Digital I/O.
SCK2
I/O
ST
Synchronous serial clock input/output for SPI
mode (MSSP).
SCL2
I/O
ST
Synchronous serial clock input/output for I2C
mode (MSSP).
AN20
I
Analog Analog input 20.
RD1/CCP4/SDI2/SDA2/AN21
RD1
I/O
ST
Digital I/O.
CCP4
I/O
ST
Capture 4 input/Compare 4 output/PWM 4 output.
SDI2
I
ST
SPI data in (MSSP).
SDA2
I/O
ST
I2C data I/O (MSSP).
AN21
I
Analog Analog input 21.
TTL = TTL compatible input CMOS = CMOS compatible input or output; ST = Schmitt Trigger input with CMOS levels; I
= Input; O = Output; P = Power.
1:
Default pin assignment for P2B, T3CKI, CCP3/P3A and CCP2/P2A when Configuration bits PB2MX, T3CMX, CCP3MX
and CCP2MX are set.
2:
Alternate pin assignment for P2B, T3CKI, CCP3/P3A and CCP2/P2A when Configuration bits PB2MX, T3CMX,
CCP3MX and CCP2MX are clear.
DS40001412H-page 22
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
TABLE 1-3:
PIC18(L)F4XK22 PINOUT I/O DESCRIPTIONS (CONTINUED)
Pin Number
PDIP
TQFP
QFN
UQFN
21
40
40
36
22
27
28
29
30
8
9
41
2
Note
2
3
3
4
4
5
5
25
26
Legend:
41
25
26
37
2
3
4
5
23
24
Pin
Type
Buffer
Type
RD2
I/O
ST
P2B(1)
O
CMOS Enhanced CCP2 PWM output.
AN22
I
Analog Analog input 22.
Pin Name
Description
RD2/P2B/AN22
Digital I/O
RD3/P2C/SS2/AN23
RD3
I/O
P2C
O
SS2
I
AN23
I
ST
Digital I/O.
CMOS Enhanced CCP2 PWM output.
TTL
SPI client select input (MSSP).
Analog Analog input 23.
RD4/P2D/SDO2/AN24
RD4
I/O
P2D
O
SDO2
O
AN24
I
ST
Digital I/O.
CMOS Enhanced CCP2 PWM output.
—
SPI data out (MSSP).
Analog Analog input 24.
RD5/P1B/AN25
RD5
I/O
P1B
O
CMOS Enhanced CCP1 PWM output.
ST
Digital I/O.
AN25
I
Analog Analog input 25.
RD6/P1C/TX2/CK2/AN26
RD6
I/O
P1C
O
ST
Digital I/O.
TX2
O
—
EUSART asynchronous transmit.
CK2
I/O
ST
EUSART synchronous clock (see related RXx/
DTx).
AN26
I
CMOS Enhanced CCP1 PWM output.
Analog Analog input 26.
RD7/P1D/RX2/DT2/AN27
RD7
I/O
P1D
O
ST
Digital I/O.
RX2
I
ST
EUSART asynchronous receive.
DT2
I/O
ST
EUSART synchronous data (see related TXx/
CKx).
AN27
I
CMOS Enhanced CCP1 PWM output.
Analog Analog input 27.
RE0/P3A/CCP3/AN5
RE0
I/O
P3A(2)
O
CCP3(2)
I/O
AN5
I
ST
Digital I/O.
CMOS Enhanced CCP3 PWM output.
ST
Capture 3 input/Compare 3 output/PWM 3 output.
Analog Analog input 5.
RE1/P3B/AN6
RE1
I/O
P3B
O
CMOS Enhanced CCP3 PWM output.
ST
Digital I/O.
AN6
I
Analog Analog input 6.
TTL = TTL compatible input CMOS = CMOS compatible input or output; ST = Schmitt Trigger input with CMOS levels; I
= Input; O = Output; P = Power.
1:
Default pin assignment for P2B, T3CKI, CCP3/P3A and CCP2/P2A when Configuration bits PB2MX, T3CMX, CCP3MX
and CCP2MX are set.
2:
Alternate pin assignment for P2B, T3CKI, CCP3/P3A and CCP2/P2A when Configuration bits PB2MX, T3CMX,
CCP3MX and CCP2MX are clear.
2010-2021 Microchip Technology Inc.
DS40001412H-page 23
PIC18(L)F2X/4XK22
TABLE 1-3:
PIC18(L)F4XK22 PINOUT I/O DESCRIPTIONS (CONTINUED)
Pin Number
PDIP
TQFP
QFN
UQFN
10
27
27
25
1
18
18
16
Pin
Type
Buffer
Type
RE2
I/O
ST
Digital I/O.
CCP5
I/O
ST
Capture 5 input/Compare 5 output/PWM 5 output
AN7
I
Pin Name
Description
RE2/CCP5/AN7
Analog Analog input 7.
RE3/VPP/MCLR
RE3
I
ST
Digital input.
VPP
P
MCLR
I
ST
Active-low Master Clear (device Reset) input.
Programming voltage input.
11,32
7, 28
7, 8,
28, 29
7, 26
VDD
P
—
Positive supply for logic and I/O pins.
12,31
6, 29
6,30,
31
6, 27
VSS
P
—
Ground reference for logic and I/O pins.
12,13,
33,34
13
Legend:
Note
NC
TTL = TTL compatible input CMOS = CMOS compatible input or output; ST = Schmitt Trigger input with CMOS levels; I
= Input; O = Output; P = Power.
1:
Default pin assignment for P2B, T3CKI, CCP3/P3A and CCP2/P2A when Configuration bits PB2MX, T3CMX, CCP3MX
and CCP2MX are set.
2:
Alternate pin assignment for P2B, T3CKI, CCP3/P3A and CCP2/P2A when Configuration bits PB2MX, T3CMX,
CCP3MX and CCP2MX are clear.
DS40001412H-page 24
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
2.0
OSCILLATOR MODULE (WITH
FAIL-SAFE CLOCK MONITOR)
2.1
Overview
The oscillator module has a wide variety of clock
sources and selection features that allow it to be used
in a wide range of applications while maximizing
performance and minimizing power consumption.
Figure 2-1 illustrates a block diagram of the oscillator
module.
Clock sources can be configured from external
oscillators, quartz crystal resonators, ceramic resonators
and Resistor-Capacitor (RC) circuits. In addition, the
system clock source can be configured from one of three
internal oscillators, with a choice of speeds selectable via
software. Additional clock features include:
• Selectable system clock source between external
or internal sources via software.
• Two-Speed Start-up mode, which minimizes
latency between external oscillator start-up and
code execution.
• Fail-Safe Clock Monitor (FSCM) designed to
detect a failure of the external clock source (LP,
XT, HS, EC or RC modes) and switch
automatically to the internal oscillator.
• Oscillator Start-up Timer (OST) ensures stability
of crystal oscillator sources.
2010-2021 Microchip Technology Inc.
The primary clock module can be configured to provide
one of six clock sources as the primary clock.
1.
2.
3.
4.
5.
6.
RC
LP
XT
INTOSC
HS
EC
External Resistor/Capacitor
Low-Power Crystal
Crystal/Resonator
Internal Oscillator
High-Speed Crystal/Resonator
External Clock
The HS and EC oscillator circuits can be optimized for
power consumption and oscillator speed using settings
in FOSC. Additional FOSC selections
enable RA6 to be used as I/O or CLKO (FOSC/4) for
RC, EC and INTOSC Oscillator modes.
Primary Clock modes are selectable by the
FOSC bits of the CONFIG1H Configuration
register. The primary clock operation is further defined
by these Configuration and register bits:
1.
2.
3.
4.
5.
6.
7.
8.
PRICLKEN (CONFIG1H)
PRISD (OSCCON2)
PLLCFG (CONFIG1H)
PLLEN (OSCTUNE)
HFOFST (CONFIG3H)
IRCF (OSCCON)
MFIOSEL (OSCCON2)
INTSRC (OSCTUNE)
The HFINTOSC, MFINTOSC and LFINTOSC are
factory calibrated high, medium and low-frequency
oscillators, respectively, which are used as the internal
clock sources.
DS40001412H-page 25
PIC18(L)F2X/4XK22
FIGURE 2-1:
SIMPLIFIED OSCILLATOR SYSTEM BLOCK DIAGRAM
Secondary Oscillator(1)
SOSCO
Secondary
Oscillator
(SOSC)
SOSCI
Low-Power Mode
Event Switch
(SCS)
SOSCOUT
2
Primary Clock Module
Secondary
Oscillator
PRICLKEN
PRISD
PLL_Select(3) (4)
OSC2
OSC1
FOSC(5)
Primary
Oscillator(2)
( OSC)
Primary Oscillator
INTOSC
0
4xPLL
0
Primary
Clock
00
1
1
INTOSC
Clock Switch MUX
EN
01
1x
Internal Oscillator
IRCF
MFIOSEL
INTSRC
3
3
INTOSC
Divide
Circuit
HF-16 MHZ
HF-8 MHZ
HF-4 MHZ
HF-2 MHZ
HF-1 MHZ
HF-500 kHZ
HF-250 kHZ
HF-31.25 kHZ
MFINTOSC
(500 kHz)
MF-500 kHZ
MF-250 kHZ
MF-31.25 kHZ
LFINTOSC
Internal Oscillator MUX(3)
HFINTOSC
(16 MHz)
INTOSC
LF-31.25 kHz
(31.25 kHz)
Note 1: Details in Figure 2-4.
2: Details in Figure 2-2.
3: Details in Figure 2-3.
4: Details in Table 2-1.
5: The Primary Oscillator MUX uses the INTOSC branch when FOSC = 100x.
DS40001412H-page 26
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
2.2
Oscillator Control
The OSCCON, OSCCON2 and OSCTUNE registers
(Register 2-1 to Register 2-3) control several aspects
of the device clock’s operation, both in full-power
operation and in power-managed modes.
•
•
•
•
•
•
Main System Clock Selection (SCS)
Primary Oscillator Circuit Shutdown (PRISD)
Secondary Oscillator Enable (SOSCGO)
Primary Clock Frequency 4x multiplier (PLLEN)
Internal Frequency selection bits (IRCF, INTSRC)
Clock Status bits (OSTS, HFIOFS, MFIOFS,
LFIOFS. SOSCRUN, PLLRDY)
• Power management selection (IDLEN)
2.2.1
MAIN SYSTEM CLOCK SELECTION
The System Clock Select bits, SCS, select the
main clock source. The available clock sources are
• Primary clock defined by the FOSC bits of
CONFIG1H. The primary clock can be the primary
oscillator, an external clock, or the internal
oscillator block.
• Secondary clock (secondary oscillator)
• Internal oscillator block (HFINTOSC, MFINTOSC
and LFINTOSC).
2.2.3
LOW FREQUENCY SELECTION
When a nominal output frequency of 31.25 kHz is
selected (IRCF = 000), users may choose
which internal oscillator acts as the source. This is
done with the INTSRC bit of the OSCTUNE register
and MFIOSEL bit of the OSCCON2 register. See
Figure 2-2 and Register 2-1 for specific 31.25 kHz
selection. This option allows users to select a
31.25 kHz clock (MFINTOSC or HFINTOSC) that can
be tuned using the TUN bits in OSCTUNE
register, while maintaining power savings with a very
low clock speed. LFINTOSC always remains the
clock source for features such as the Watchdog Timer
and the Fail-Safe Clock Monitor, regardless of the
setting of INTSRC and MFIOSEL bits
This option allows users to select the tunable and more
precise HFINTOSC as a clock source, while
maintaining power savings with a very low clock speed.
2.2.4
POWER MANAGEMENT
The IDLEN bit of the OSCCON register determines
whether the device goes into Sleep mode or one of the
Idle modes when the SLEEP instruction is executed.
The clock source changes immediately after one or
more of the bits is written to, following a brief clock
transition interval. The SCS bits are cleared to select
the primary clock on all forms of Reset.
2.2.2
INTERNAL FREQUENCY
SELECTION
The Internal Oscillator Frequency Select bits
(IRCF) select the frequency output of the internal
oscillator block. The choices are the LFINTOSC source
(31.25 kHz), the MFINTOSC source (31.25 kHz,
250 kHz or 500 kHz) and the HFINTOSC source
(16 MHz) or one of the frequencies derived from the
HFINTOSC postscaler (31.25 kHz to 8 MHz). If the
internal oscillator block is supplying the main clock,
changing the states of these bits will have an immediate change on the internal oscillator’s output. On
device Resets, the output frequency of the internal
oscillator is set to the default frequency of 1 MHz.
2010-2021 Microchip Technology Inc.
DS40001412H-page 27
PIC18(L)F2X/4XK22
FIGURE 2-2:
INTERNAL OSCILLATOR
MUX BLOCK DIAGRAM
FIGURE 2-3:
FOSC = 100x
PLLCFG
IRCF
MFIOSEL
INTSRC
3
HF-16 MHZ
HF-8 MHZ
HF-4 MHZ
HF-2 MHZ
HF-1 MHZ
PLLEN
PLL_Select
111
110
101
100
011
MF-500 KHZ
1
HF-500 KHZ
500 kHZ
010
250 kHZ
001
0
MF-250 KHZ
1
HF-250 KHZ
INTOSC
0
HF-31.25 KHZ 11
MF-31.25 KHZ 10
LF-31.25 KHZ
0X
TABLE 2-1:
PLL_SELECT BLOCK
DIAGRAM
31.25 kHZ
000
PLL_SELECT TRUTH TABLE
Primary Clock MUX Source
FOSC
PLLCFG
PLLEN
PLL_Select
FOSC (any source)
0000-1111
0
0
0
OSC1/OSC2 (external source)
0000-0111
1010-1111
1
x
1
0
1
1
1000-1001
x
0
0
x
1
1
INTOSC (internal source)
DS40001412H-page 28
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
FIGURE 2-4:
SECONDARY OSCILLATOR AND EXTERNAL CLOCK INPUTS
SOSCGO
T1SOSCEN
T3SOSCEN
T5SOSCEN
SOSCEN
To Clock Switch Module
SOSCI
EN
SOSCOUT
Secondary
Oscillator
SOSCO
T1CKI
T3G
T3CKI
1
T1CLK_EXT_SRC
SOSCEN
0
T1SOSCEN
SOSCEN
T3G
SOSCEN
1
T3CLK_EXT_SRC
0
0
1
T3CKI
T1G
T3SOSCEN
T3CMX
T1G
1
T5CLK_EXT_SRC
0
T5CKI
T5SOSCEN
T5G
2010-2021 Microchip Technology Inc.
T5G
DS40001412H-page 29
PIC18(L)F2X/4XK22
2.3
Register Definitions: Oscillator Control
REGISTER 2-1:
R/W-0
OSCCON: OSCILLATOR CONTROL REGISTER
R/W-0
IDLEN
R/W-1
R/W-1
R-q
R-0
(1)
IRCF
OSTS
HFIOFS
R/W-0
R/W-0
SCS
bit 7
bit 0
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
q = depends on condition
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 7
IDLEN: Idle Enable bit
1 = Device enters Idle mode on SLEEP instruction
0 = Device enters Sleep mode on SLEEP instruction
bit 6-4
IRCF: Internal RC Oscillator Frequency Select bits(2)
111 = HFINTOSC – (16 MHz)
110 = HFINTOSC/2 – (8 MHz)
101 = HFINTOSC/4 – (4 MHz)
100 = HFINTOSC/8 – (2 MHz)
011 = HFINTOSC/16 – (1 MHz)(3)
If INTSRC = 0 and MFIOSEL = 0:
010 = HFINTOSC/32 – (500 kHz)
001 = HFINTOSC/64 – (250 kHz)
000 = LFINTOSC – (31.25 kHz)
If INTSRC = 1 and MFIOSEL = 0:
010 = HFINTOSC/32 – (500 kHz)
001 = HFINTOSC/64 – (250 kHz)
000 = HFINTOSC/512 – (31.25 kHz)
If INTSRC = 0 and MFIOSEL = 1:
010 = MFINTOSC – (500 kHz)
001 = MFINTOSC/2 – (250 kHz)
000 = LFINTOSC – (31.25 kHz)
If INTSRC = 1 and MFIOSEL = 1:
010 = MFINTOSC – (500 kHz)
001 = MFINTOSC/2 – (250 kHz)
000 = MFINTOSC/16 – (31.25 kHz)
bit 3
OSTS: Oscillator Start-up Time-out Status bit
1 = Device is running from the clock defined by FOSC of the CONFIG1H register
0 = Device is running from the internal oscillator (HFINTOSC, MFINTOSC or LFINTOSC)
bit 2
HFIOFS: HFINTOSC Frequency Stable bit
1 = HFINTOSC frequency is stable
0 = HFINTOSC frequency is not stable
bit 1-0
SCS: System Clock Select bit
1x = Internal oscillator block
01 = Secondary (SOSC) oscillator
00 = Primary clock (determined by FOSC in CONFIG1H).
Note 1:
2:
3:
Reset state depends on state of the IESO Configuration bit.
INTOSC source may be determined by the INTSRC bit in OSCTUNE and the MFIOSEL bit in OSCCON2.
Default output frequency of HFINTOSC on Reset.
DS40001412H-page 30
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
REGISTER 2-2:
OSCCON2: OSCILLATOR CONTROL REGISTER 2
R-0/0
R-0/q
U-0
PLLRDY
SOSCRUN
—
R/W-0/0
MFIOSEL
R/W-0/u
SOSCGO
(1)
R/W-1/1
R-x/u
R-0/0
PRISD
MFIOFS
LFIOFS
bit 7
bit 0
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
q = depends on condition
-n/n = Value at POR and BOR/Value at all other Resets
bit 7
PLLRDY: PLL Run Status bit
1 = System clock comes from 4xPLL
0 = System clock comes from an oscillator, other than 4xPLL
bit 6
SOSCRUN: SOSC Run Status bit
1 = System clock comes from secondary SOSC
0 = System clock comes from an oscillator, other than SOSC
bit 5
Unimplemented: Read as ‘0’.
bit 4
MFIOSEL: MFINTOSC Select bit
1 = MFINTOSC is used in place of HFINTOSC frequencies of 500 kHz, 250 kHz and 31.25 kHz
0 = MFINTOSC is not used
bit 3
SOSCGO(1): Secondary Oscillator Start Control bit
1 = Secondary oscillator is enabled.
0 = Secondary oscillator is shut off if no other sources are requesting it.
bit 2
PRISD: Primary Oscillator Drive Circuit Shutdown bit
1 = Oscillator drive circuit on
0 = Oscillator drive circuit off (zero power)
bit 1
MFIOFS: MFINTOSC Frequency Stable bit
1 = MFINTOSC is stable
0 = MFINTOSC is not stable
bit 0
LFIOFS: LFINTOSC Frequency Stable bit
1 = LFINTOSC is stable
0 = LFINTOSC is not stable
Note 1:
The SOSCGO bit is only reset on a POR Reset.
2010-2021 Microchip Technology Inc.
DS40001412H-page 31
PIC18(L)F2X/4XK22
2.4
Clock Source Modes
Clock Source modes can be classified as external or
internal.
2.5
External Clock Modes
2.5.1
OSCILLATOR START-UP TIMER (OST)
• External Clock modes rely on external circuitry for
the clock source. Examples are: Clock modules
(EC mode), quartz crystal resonators or ceramic
resonators (LP, XT and HS modes) and ResistorCapacitor (RC mode) circuits.
• Internal clock sources are contained internally
within the Oscillator block. The Oscillator block
has three internal oscillators: the 16 MHz HighFrequency Internal Oscillator (HFINTOSC),
500 kHz Medium-Frequency Internal Oscillator
(MFINTOSC) and the 31.25 kHz Low-Frequency
Internal Oscillator (LFINTOSC).
When the oscillator module is configured for LP, XT or
HS modes, the Oscillator Start-up Timer (OST) counts
1024 oscillations from OSC1. This occurs following a
Power-on Reset (POR) and when the Power-up Timer
(PWRT) has expired (if configured), or a wake-up from
Sleep. During this time, the program counter does not
increment and program execution is suspended. The
OST ensures that the oscillator circuit, using a quartz
crystal resonator or ceramic resonator, has started and
is providing a stable system clock to the oscillator
module. When switching between clock sources, a
delay is required to allow the new clock to stabilize.
These oscillator delays are shown in Table 2-2.
The system clock can be selected between external or
internal clock sources via the System Clock Select
(SCS) bits of the OSCCON register. See
Section 2.11 “Clock Switching” for additional
information.
In order to minimize latency between external oscillator
start-up and code execution, the Two-Speed Clock
Start-up mode can be selected (see Section 2.12
“Two-Speed Clock Start-up Mode”).
TABLE 2-2:
OSCILLATOR DELAY EXAMPLES
Switch From
Switch To
Frequency
Sleep/POR/BOR
LFINTOSC
MFINTOSC
HFINTOSC
31.25 kHz
31.25 kHz to 500 kHz
31.25 kHz to 16 MHz
Sleep/POR/BOR
EC, RC
DC – 64 MHz
LFINTOSC (31.25 kHz)
Sleep/POR/BOR
Sleep/POR/BOR
LFINTOSC (31.25 kHz)
2.5.2
EC, RC
DC – 64 MHz
LP, XT, HS
32 kHz to 40 MHz
4xPLL
32 MHz to 64 MHz
LFINTOSC
HFINTOSC
31.25 kHz to 16 MHz
EC MODE
The External Clock (EC) mode allows an externally
generated logic level as the system clock source. When
operating in this mode, an external clock source is
connected to the OSC1 input and the OSC2 is available
for general purpose I/O. Figure 2-5 shows the pin
connections for EC mode.
The External Clock (EC) offers different power modes,
Low Power (ECLP), Medium Power (ECMP) and High
Power (ECHP), selectable by the FOSC bits.
Each mode is best suited for a certain range of
frequencies. The ranges are:
• ECLP – below 500 kHz
• ECMP – between 500 kHz and 16 MHz
• ECHP – above 16 MHz
The Oscillator Start-up Timer (OST) is disabled when
EC mode is selected. Therefore, there is no delay in
operation after a Power-on Reset (POR) or wake-up
from Sleep.
DS40001412H-page 32
Oscillator Delay
Oscillator Start-up Delay (TIOSC_ST)
2 instruction cycles
1 cycle of each
1024 Clock Cycles (OST)
1024 Clock Cycles (OST) + 2 ms
1 s (approx.)
Because the PIC® MCU design is fully static, stopping
the external clock input will have the effect of halting the
device while leaving all data intact. Upon restarting the
external clock, the device will resume operation as if no
time had elapsed.
FIGURE 2-5:
EXTERNAL CLOCK (EC)
MODE OPERATION
OSC1/CLKIN
Clock from
Ext. System
PIC® MCU
I/O
Note 1:
OSC2/CLKOUT(1)
Alternate pin functions are listed in
Section 1.0 “Device Overview”.
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
2.5.3
LP, XT, HS MODES
The LP, XT and HS modes support the use of quartz
crystal resonators or ceramic resonators connected to
OSC1 and OSC2 (Figure 2-6). The mode selects a low,
medium or high gain setting of the internal inverteramplifier to support various resonator types and speed.
LP Oscillator mode selects the lowest gain setting of the
internal inverter-amplifier. LP mode current consumption
is the least of the three modes. This mode is best suited
to drive resonators with a low drive level specification, for
example, tuning fork type crystals.
Note 1: Quartz
crystal
characteristics
vary
according to type, package and
manufacturer. The user may consult the
manufacturer data sheets for specifications
and recommended application.
2: Always verify oscillator performance over
the VDD and temperature range that is
expected for the application.
3: For oscillator design assistance, refer to the
following Microchip Application Notes:
• AN826, “Crystal Oscillator Basics and
Crystal Selection for rfPIC® and PIC®
Devices” (DS00826)
• AN849, “Basic PIC® Oscillator Design”
(DS00849)
• AN943, “Practical PIC® Oscillator
Analysis and Design” (DS00943)
• AN949, “Making Your Oscillator Work”
(DS00949)
XT Oscillator mode selects the intermediate gain
setting of the internal inverter-amplifier. XT mode
current consumption is the medium of the three modes.
This mode is best suited to drive resonators with a
medium drive level specification.
HS Oscillator mode offers a Medium Power (MP) and a
High Power (HP) option selectable by the FOSC
bits. The MP selections are best suited for oscillator
frequencies between 4 MHz and 16 MHz. The HP
selection has the highest gain setting of the internal
inverter-amplifier and is best suited for frequencies
above 16 MHz. HS mode is best suited for resonators
that require a high drive setting.
FIGURE 2-6:
CERAMIC RESONATOR
OPERATION
(XT OR HS MODE)
QUARTZ CRYSTAL
OPERATION (LP, XT OR
HS MODE)
PIC® MCU
C1
PIC® MCU
OSC1/CLKIN
C1
To Internal
Logic
RP(3)
OSC1/CLKIN
RF(2)
Sleep
To Internal
Logic
Quartz
Crystal
C2
FIGURE 2-7:
RS(1)
RF(2)
Sleep
OSC2/CLKOUT
Note 1:
A series resistor (RS) may be required for
quartz crystals with low drive level.
2:
The value of RF varies with the Oscillator mode
selected (typically between 2 M to 10 M.
2010-2021 Microchip Technology Inc.
C2 Ceramic
RS(1)
Resonator
OSC2/CLKOUT
Note 1: A series resistor (RS) may be required for
ceramic resonators with low drive level.
2: The value of RF varies with the Oscillator mode
selected (typically between 2 M to 10 M.
3: An additional parallel feedback resistor (RP)
may be required for proper ceramic resonator
operation.
DS40001412H-page 33
PIC18(L)F2X/4XK22
2.5.4
2.6
EXTERNAL RC MODES
The external Resistor-Capacitor (RC) modes support
the use of an external RC circuit. This allows the
designer maximum flexibility in frequency choice while
keeping costs to a minimum when clock accuracy is not
required. There are two modes: RC and RCIO.
2.5.4.1
FIGURE 2-8:
EXTERNAL RC MODES
VDD
PIC® MCU
REXT
OSC1/CLKIN
Internal
Clock
CEXT
VSS
FOSC/4 or
I/O(2)
OSC2/CLKOUT(1)
Recommended values: 10 k REXT 100 k
CEXT > 20 pF
Note 1:
2:
2.5.4.2
The oscillator module has three independent, internal
oscillators that can be configured or selected as the
system clock source.
1.
RC Mode
In RC mode, the RC circuit connects to OSC1. OSC2/
CLKOUT outputs the RC oscillator frequency divided
by four. This signal may be used to provide a clock for
external circuitry, synchronization, calibration, test or
other application requirements. Figure 2-8 shows the
external RC mode connections.
Alternate pin functions are listed in
Section 1.0 “Device Overview”.
Output depends upon RC or RCIO clock mode.
RCIO Mode
In RCIO mode, the RC circuit is connected to OSC1.
OSC2 becomes a general purpose I/O pin.
The RC oscillator frequency is a function of the supply
voltage, the resistor (REXT) and capacitor (CEXT) values
and the operating temperature. Other factors affecting
the oscillator frequency are:
Internal Clock Modes
2.
3.
The HFINTOSC (High-Frequency Internal
Oscillator) is factory calibrated and operates at
16 MHz. The frequency of the HFINTOSC can
be user-adjusted via software using the
OSCTUNE register (Register 2-3).
The MFINTOSC (Medium-Frequency Internal
Oscillator) is factory calibrated and operates
at 500 kHz. The frequency of the MFINTOSC
can be user-adjusted via software using the
OSCTUNE register (Register 2-3).
The LFINTOSC (Low-Frequency Internal
Oscillator) is factory calibrated and operates at
31.25 kHz. The LFINTOSC cannot be useradjusted, but is designed to be stable over
temperature and voltage.
The system clock speed can be selected via software
using the Internal Oscillator Frequency select bits
IRCF of the OSCCON register.
The system clock can be selected between external or
internal clock sources via the System Clock Selection
(SCS) bits of the OSCCON register. See
Section 2.11 “Clock Switching” for more information.
2.6.1
INTOSC WITH I/O OR CLOCKOUT
Two of the clock modes selectable with the FOSC
bits of the CONFIG1H Configuration register configure
the internal oscillator block as the primary oscillator.
Mode selection determines whether the OSC2/
CLKOUT pin will be configured as general purpose I/O
or FOSC/4 (CLKOUT). In both modes, the OSC1/CLKIN
pin is configured as general purpose I/O. See
Section 24.0 “Special Features of the CPU” for more
information.
The CLKOUT signal may be used to provide a clock for
external circuitry, synchronization, calibration, test or
other application requirements.
• input threshold voltage variation
• component tolerances
• packaging variations in capacitance
The user also needs to take into account variation due
to tolerance of external RC components used.
DS40001412H-page 34
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
2.6.1.1
OSCTUNE Register
The OSCTUNE register also implements the INTSRC
and PLLEN bits, which control certain features of the
internal oscillator block.
The HFINTOSC/MFINTOSC oscillator circuits are
factory calibrated but can be adjusted in software by
writing to the TUN bits of the OSCTUNE register
(Register 2-3).
The INTSRC bit allows users to select which internal
oscillator provides the clock source when the
31.25 kHz frequency option is selected. This is covered
in greater detail in Section 2.2.3 “Low Frequency
Selection”.
The default value of the TUN is ‘000000’. The
value is a 6-bit two’s complement number.
When the OSCTUNE register is modified, the
HFINTOSC/MFINTOSC frequency will begin shifting to
the new frequency. Code execution continues during this
shift. There is no indication that the shift has occurred.
The PLLEN bit controls the operation of the frequency
multiplier, PLL, for all primary external clock sources
and internal oscillator modes. However, the PLL is
intended for operation with clock sources between
4 MHz and 16 MHz. For more details about the function
of the PLLEN bit, see Section 2.8.2 “PLL in HFINTOSC Modes”
The TUN bits in OSCTUNE do not affect the
LFINTOSC frequency. Operation of features that
depend on the LFINTOSC clock source frequency, such
as the Power-up Timer (PWRT), Watchdog Timer
(WDT), Fail-Safe Clock Monitor (FSCM) and
peripherals, are not affected by the change in frequency.
2.7
Register Definitions: Oscillator Tuning
REGISTER 2-3:
OSCTUNE: OSCILLATOR TUNING REGISTER
R/W-0
R/W-0
INTSRC
PLLEN
R/W-0
(1)
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
TUN
bit 7
bit 0
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 7
INTSRC: Internal Oscillator Low-Frequency Source Select bit
1 = 31.25 kHz device clock derived from the MFINTOSC or HFINTOSC source
0 = 31.25 kHz device clock derived directly from LFINTOSC internal oscillator
bit 6
PLLEN: Frequency Multiplier 4xPLL for HFINTOSC Enable bit(1)
1 = PLL enabled
0 = PLL disabled
bit 5-0
TUN: Frequency Tuning bits – use to adjust MFINTOSC and HFINTOSC frequencies
011111 = Maximum frequency
011110 =
•••
000001 =
000000 = Oscillator module (HFINTOSC and MFINTOSC) are running at the factory calibrated
frequency.
111111 =
•••
100000 = Minimum frequency
Note 1:
The PLLEN bit is active for all the primary clock sources (internal or external) and is designed to operate
with clock frequencies between 4 MHz and 16 MHz.
2010-2021 Microchip Technology Inc.
DS40001412H-page 35
PIC18(L)F2X/4XK22
2.7.1
LFINTOSC
The Low-Frequency Internal Oscillator (LFINTOSC) is
a 31.25 kHz internal clock source. The LFINTOSC is
not tunable, but is designed to be stable across
temperature and voltage. See Section 27.0
“Electrical Specifications” for the LFINTOSC
accuracy specifications.
The output of the LFINTOSC can be a clock source to
the primary clock or the INTOSC clock (see Figure 2-1).
The LFINTOSC is also the clock source for the Powerup Timer (PWRT), Watchdog Timer (WDT) and Fail-Safe
Clock Monitor (FSCM).
2.7.2
FREQUENCY SELECT BITS (IRCF)
The HFINTOSC (16 MHz) and MFINTOSC (500 MHz)
outputs connect to a divide circuit that provides
frequencies of 16 MHz to 31.25 kHz. These divide
circuit frequencies, along with the 31.25 kHz
LFINTOSC output, are multiplexed to provide a single
INTOSC clock output (see Figure 2-1). The IRCF
bits of the OSCCON register, the MFIOSEL bit of the
OSCCON2 register and the INTSRC bit of the
OSCTUNE register, select the output frequency of the
internal oscillators. One of eight frequencies can be
selected via software:
•
•
•
•
•
•
•
•
16 MHz
8 MHz
4 MHz
2 MHz
1 MHz (default after Reset)
500 kHz (MFINTOSC or HFINTOSC)
250 kHz (MFINTOSC or HFINTOSC)
31 kHz (LFINTOSC, MFINTOSC or HFINTOSC)
2.7.3
INTOSC FREQUENCY DRIFT
The factory calibrates the internal oscillator block outputs
(HFINTOSC/MFINTOSC) for 16 MHz/500 kHz. However,
this frequency may drift as VDD or temperature changes.
It is possible to adjust the HFINTOSC/MFINTOSC
frequency by modifying the value of the TUN bits in
the OSCTUNE register. This has no effect on the
LFINTOSC clock source frequency.
2.7.3.1
Compensating with the EUSART
An adjustment may be required when the EUSART
begins to generate framing errors or receives data with
errors while in Asynchronous mode. Framing errors
indicate that the device clock frequency is too high; to
adjust for this, decrement the value in OSCTUNE to
reduce the clock frequency. On the other hand, errors
in data may suggest that the clock speed is too low; to
compensate, increment OSCTUNE to increase the
clock frequency.
2.7.3.2
Compensating with the Timers
This technique compares device clock speed to some
reference clock. Two timers may be used; one timer is
clocked by the peripheral clock, while the other is
clocked by a fixed reference source, such as the
Timer1 oscillator.
Both timers are cleared, but the timer clocked by the
reference generates interrupts. When an interrupt
occurs, the internally clocked timer is read and both
timers are cleared. If the internally clocked timer value
is greater than expected, then the internal oscillator
block is running too fast. To adjust for this, decrement
the OSCTUNE register.
2.7.3.3
Compensating with the CCP Module
in Capture Mode
A CCP module can use free running Timer1, Timer3 or
Timer5 clocked by the internal oscillator block and an
external event with a known period (i.e., AC power
frequency). The time of the first event is captured in the
CCPRxH:CCPRxL registers and is recorded for use later.
When the second event causes a capture, the time of the
first event is subtracted from the time of the second
event. Since the period of the external event is known,
the time difference between events can be calculated.
If the measured time is much greater than the
calculated time, the internal oscillator block is running
too fast; to compensate, decrement the OSCTUNE
register. If the measured time is much less than the
calculated time, the internal oscillator block is running
too slow; to compensate, increment the OSCTUNE
register.
Tuning the HFINTOSC/MFINTOSC source requires
knowing when to make the adjustment, in which
direction it may be made and, in some cases, how large
a change is needed. Three possible compensation
techniques are discussed in the following sections.
However, other techniques may be used.
DS40001412H-page 36
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
2.8
PLL Frequency Multiplier
A Phase-Locked Loop (PLL) circuit is provided as an
option for users who wish to use a lower frequency
oscillator circuit or to clock the device up to its highest
rated frequency from the crystal oscillator. This may be
useful for customers who are concerned with EMI due
to high-frequency crystals or users who require higher
clock speeds from an internal oscillator.
2.8.1
PLL IN EXTERNAL OSCILLATOR
MODES
The PLL can be enabled for any of the external
oscillator modes using the OSC1/OSC2 pins by either
setting the PLLCFG bit (CONFIG1H), or setting the
PLLEN bit (OSCTUNE). The PLL is designed for
input frequencies of 4 MHz up to 16 MHz. The PLL then
multiplies the oscillator output frequency by four to
produce an internal clock frequency up to 64 MHz.
Oscillator frequencies below 4 MHz may not be used
with the PLL.
2.8.2
PLL IN HFINTOSC MODES
The 4x frequency multiplier can be used with the
internal oscillator block to produce faster device clock
speeds than are normally possible with the internal
oscillator. When enabled, the PLL multiplies the
HFINTOSC by four to produce clock rates up to
64 MHz.
Unlike external clock modes, when internal clock
modes are enabled, the PLL can only be controlled
through software. The PLLEN control bit of the
OSCTUNE register is used to enable or disable the
PLL operation when the HFINTOSC is used.
The PLL is designed for input frequencies of 4 MHz up
to 16 MHz.
2010-2021 Microchip Technology Inc.
DS40001412H-page 37
PIC18(L)F2X/4XK22
2.9
Effects of Power-Managed Modes
on the Various Clock Sources
For more information about the modes discussed in this
section see Section 3.0 “Power-Managed Modes”. A
quick reference list is also available in Table 3-1.
When PRI_IDLE mode is selected, the designated
primary oscillator continues to run without interruption.
For all other power-managed modes, the oscillator
using the OSC1 pin is disabled. The OSC1 pin (and
OSC2 pin, if used by the oscillator) will stop oscillating.
In secondary clock modes (SEC_RUN and
SEC_IDLE), the secondary oscillator (SOSC) is
operating and providing the device clock. The
secondary oscillator may also run in all powermanaged modes if required to clock Timer1, Timer3 or
Timer5.
In internal oscillator modes (INTOSC_RUN and
INTOSC_IDLE), the internal oscillator block provides
the device clock source. The 31.25 kHz LFINTOSC
output can be used directly to provide the clock and
may be enabled to support various special features,
regardless of the power-managed mode (see
Section 24.3
“Watchdog
Timer
(WDT)”,
Section 2.12 “Two-Speed Clock Start-up Mode” and
Section 2.13 “Fail-Safe Clock Monitor” for more
information on WDT, Fail-Safe Clock Monitor and TwoSpeed Start-up). The HFINTOSC and MFINTOSC
outputs may be used directly to clock the device or may
be divided down by the postscaler. The HFINTOSC
and MFINTOSC outputs are disabled when the clock is
provided directly from the LFINTOSC output.
When the Sleep mode is selected, all clock sources are
stopped. Since all the transistor switching currents
have been stopped, Sleep mode achieves the lowest
current consumption of the device (only leakage
currents).
Enabling any on-chip feature that will operate during
Sleep will increase the current consumed during Sleep.
The LFINTOSC is required to support WDT operation.
Other features may be operating that do not require a
device clock source (i.e., SSP client, PSP, INTn pins
and others). Peripherals that may add significant
current consumption are listed in Section 27.8 “DC
Characteristics: Input/Output Characteristics,
PIC18(L)F2X/4XK22”.
DS40001412H-page 38
2.10
Power-up Delays
Power-up delays are controlled by two timers, so that
no external Reset circuitry is required for most
applications. The delays ensure that the device is kept
in Reset until the device power supply is stable under
normal circumstances and the primary clock is
operating and stable. For additional information on
power-up delays, see Section 4.6 “Device Reset
Timers”.
The first timer is the Power-up Timer (PWRT), which
provides a fixed delay on power-up. It is enabled by
clearing (= 0) the PWRTEN Configuration bit.
The second timer is the Oscillator Start-up Timer
(OST), intended to keep the chip in Reset until the
crystal oscillator is stable (LP, XT and HS modes). The
OST does this by counting 1024 oscillator cycles
before allowing the oscillator to clock the device.
When the PLL is enabled with external oscillator
modes, the device is kept in Reset for an additional
2 ms, following the OST delay, so the PLL can lock to
the incoming clock frequency.
There is a delay of interval TCSD, following POR, while
the controller becomes ready to execute instructions.
This delay runs concurrently with any other delays.
This may be the only delay that occurs when any of the
EC, RC or INTIOSC modes are used as the primary
clock source.
When the HFINTOSC is selected as the primary clock,
the main system clock can be delayed until the
HFINTOSC is stable. This is user selectable by the
HFOFST bit of the CONFIG3H Configuration register.
When the HFOFST bit is cleared, the main system
clock is delayed until the HFINTOSC is stable. When
the HFOFST bit is set, the main system clock starts
immediately.
In either case, the HFIOFS bit of the OSCCON register
can be read to determine whether the HFINTOSC is
operating and stable.
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
TABLE 2-3:
OSC1 AND OSC2 PIN STATES IN SLEEP MODE
OSC Mode
OSC1 Pin
OSC2 Pin
RC, INTOSC with CLKOUT Floating, external resistor may pull high
At logic low (clock/4 output)
RC with IO
Configured as PORTA, bit 6
Floating, external resistor may pull high
INTOSC with IO
Configured as PORTA, bit 7
Configured as PORTA, bit 6
EC with IO
Floating, pulled by external clock
Configured as PORTA, bit 6
EC with CLKOUT
Floating, pulled by external clock
At logic low (clock/4 output)
LP, XT, HS
Feedback inverter disabled at quiescent
voltage level
Feedback inverter disabled at quiescent
voltage level
Note:
2.11
See Table 4-2 in Section 4.0 “Reset” for time-outs due to Sleep and MCLR Reset.
Clock Switching
The system clock source can be switched between
external and internal clock sources via software using
the System Clock Select (SCS) bits of the
OSCCON register.
PIC18(L)F2X/4XK22 devices contain circuitry to prevent clock “glitches” when switching between clock
sources. A short pause in the device clock occurs
during the clock switch. The length of this pause is the
sum of two cycles of the old clock source and three to
four cycles of the new clock source. This formula
assumes that the new clock source is stable.
Clock transitions are discussed in greater detail in
Section 3.1.2 “Entering Power-Managed Modes”.
2.11.1
SYSTEM CLOCK SELECT
(SCS) BITS
The System Clock Select (SCS) bits of the
OSCCON register select the system clock source that
is used for the CPU and peripherals.
• When SCS = 00, the system clock source is
determined by configuration of the FOSC
bits in the CONFIG1H Configuration register.
• When SCS = 10, the system clock source is
chosen by the internal oscillator frequency
selected by the INTSRC bit of the OSCTUNE
register, the MFIOSEL bit of the OSCCON2
register and the IRCF bits of the OSCCON
register.
• When SCS = 01, the system clock source is
the 32.768 kHz secondary oscillator shared with
Timer1, Timer3 and Timer5.
2010-2021 Microchip Technology Inc.
After a Reset, the SCS bits of the OSCCON
register are always cleared.
Note:
2.11.2
Any automatic clock switch, which may
occur from Two-Speed Start-up or FailSafe Clock Monitor, does not update the
SCS bits of the OSCCON register.
The user can monitor the SOSCRUN,
MFIOFS and LFIOFS bits of the
OSCCON2 register, and the HFIOFS and
OSTS bits of the OSCCON register to
determine the current system clock source.
OSCILLATOR START-UP TIME-OUT
STATUS (OSTS) BIT
The Oscillator Start-up Time-out Status (OSTS) bit of
the OSCCON register indicates whether the system
clock is running from the external clock source, as
defined by the FOSC bits in the CONFIG1H
Configuration register, or from the internal clock
source. In particular, when the primary oscillator is the
source of the primary clock, OSTS indicates that the
Oscillator Start-up Timer (OST) has timed out for LP,
XT or HS modes.
DS40001412H-page 39
PIC18(L)F2X/4XK22
2.11.3
CLOCK SWITCH TIMING
When switching between one oscillator and another,
the new oscillator may not be operating which saves
power (see Figure 2-9). If this is the case, there is a
delay after the SCS bits of the OSCCON register
are modified before the frequency change takes place.
The OSTS and IOFS bits of the OSCCON register will
reflect the current active status of the external and
HFINTOSC oscillators. The timing of a frequency
selection is as follows:
1.
2.
3.
4.
5.
6.
7.
SCS bits of the OSCCON register are modified.
The old clock continues to operate until the new
clock is ready.
Clock switch circuitry waits for two consecutive
rising edges of the old clock after the new clock
ready signal goes true.
The system clock is held low starting at the next
falling edge of the old clock.
Clock switch circuitry waits for an additional two
rising edges of the new clock.
On the next falling edge of the new clock the low
hold on the system clock is released and new
clock is switched in as the system clock.
Clock switch is complete.
See Figure 2-1 for more details.
If the HFINTOSC is the source of both the old and new
frequency, there is no start-up delay before the new
frequency is active. This is because the old and new
frequencies are derived from the HFINTOSC via the
postscaler and multiplexer.
Start-up delay specifications are located in
Section 27.0 “Electrical Specifications”, under AC
Specifications (Oscillator Module).
2.12
Two-Speed Clock Start-up Mode
Two-Speed Start-up mode provides additional power
savings by minimizing the latency between external
oscillator start-up and code execution. In applications
that make heavy use of the Sleep mode, Two-Speed
Start-up will remove the external oscillator start-up
time from the time spent awake and can reduce the
overall power consumption of the device.
This mode allows the application to wake up from
Sleep, perform a few instructions using the HFINTOSC
as the clock source and go back to Sleep without
waiting for the primary oscillator to become stable.
Note:
Executing a SLEEP instruction will abort
the oscillator start-up time and will cause
the OSTS bit of the OSCCON register to
remain clear.
When the oscillator module is configured for LP, XT or
HS modes, the Oscillator Start-up Timer (OST) is
enabled (see Section 2.5.1 “Oscillator Start-up Timer
(OST)”). The OST will suspend program execution until
1024 oscillations are counted. Two-Speed Start-up
mode minimizes the delay in code execution by
operating from the internal oscillator as the OST is
counting. When the OST count reaches 1024 and the
OSTS bit of the OSCCON register is set, program
execution switches to the external oscillator.
2.12.1
TWO-SPEED START-UP MODE
CONFIGURATION
Two-Speed Start-up mode is enabled when all of the
following settings are configured as noted:
• Two-Speed Start-up mode is enabled when the
IESO of the CONFIG1H Configuration register is
set.
• SCS (of the OSCCON register) = 00.
• FOSC bits of the CONFIG1H Configuration
register are configured for LP, XT or HS mode.
Two-Speed Start-up mode becomes active after:
• Power-on Reset (POR) and, if enabled, after
Power-up Timer (PWRT) has expired, or
• Wake-up from Sleep.
DS40001412H-page 40
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
2.12.2
1.
2.
3.
4.
5.
6.
TWO-SPEED START-UP
SEQUENCE
2.12.3
Wake-up from Power-on Reset or Sleep.
Instructions begin executing by the internal
oscillator at the frequency set in the IRCF
bits of the OSCCON register.
OST enabled to count 1024 external clock
cycles.
OST timed out. External clock is ready.
OSTS is set.
Clock switch finishes according to Figure 2-9
FIGURE 2-9:
High Speed
CHECKING TWO-SPEED CLOCK
STATUS
Checking the state of the OSTS bit of the OSCCON
register will confirm if the microcontroller is running
from the external clock source, as defined by the
FOSC bits in CONFIG1H Configuration register,
or the internal oscillator. OSTS = 0 when the external
oscillator is not ready, which indicates that the system
is running from the internal oscillator.
CLOCK SWITCH TIMING
Low Speed
Old Clock
Start-up Time(1)
Clock Sync
Running
New Clock
New Clk Ready
IRCF Select Old
Select New
System Clock
Low Speed
High Speed
Old Clock
Start-up Time(1)
Clock Sync
Running
New Clock
New Clk Ready
IRCF Select Old
Select New
System Clock
Note 1: Start-up time includes TOST (1024 TOSC) for external clocks, plus TPLL (approx. 2 ms) for HSPLL mode.
2010-2021 Microchip Technology Inc.
DS40001412H-page 41
PIC18(L)F2X/4XK22
2.13
Fail-Safe Clock Monitor
2.13.3
The Fail-Safe Clock Monitor (FSCM) allows the device
to continue operating if the external oscillator fails. The
FSCM can detect oscillator failure any time after the
Oscillator Start-up Timer (OST) has expired. The
FSCM is enabled by setting the FCMEN bit in the
CONFIG1H Configuration register. mayThe FSCM is
applicable to all external oscillator modes (LP, XT, HS,
EC, RC and RCIO).
FIGURE 2-10:
FSCM BLOCK DIAGRAM
Clock Monitor
Latch
External
Clock
S
LFINTOSC
Oscillator
÷ 64
31 kHz
(~32 s)
488 Hz
(~2 ms)
R
2.13.1
Clock
Failure
Detected
Both of these conditions restart the OST. While the
OST is running, the device continues to operate from
the INTOSC selected in OSCCON. When the OST
times out, the Fail-Safe condition is cleared and the
device automatically switches over to the external clock
source. The Fail-Safe condition need not be cleared
before the OSCFIF flag is cleared.
RESET OR WAKE-UP FROM SLEEP
Note:
Due to the wide range of oscillator start-up
times, the Fail-Safe circuit is not active
during oscillator start-up (i.e., after exiting
Reset or Sleep). After an appropriate
amount of time, the user may check the
OSTS bit of the OSCCON register to verify
the oscillator start-up and that the system
clock
switchover
has
successfully
completed.
Note:
When the device is configured for FailSafe clock monitoring in either HS, XT, or
LS Oscillator modes then the IESO configuration bit may also be set so that the
clock will automatically switch from the
internal clock to the external oscillator
when the OST times out.
FAIL-SAFE DETECTION
The FSCM module detects a failed oscillator by
comparing the external oscillator to the FSCM sample
clock. The sample clock is generated by dividing the
LFINTOSC by 64 (see Figure 2-10). Inside the fail
detector block is a latch. The external clock sets the
latch on each falling edge of the external clock. The
sample clock clears the latch on each rising edge of the
sample clock. A failure is detected when an entire halfcycle of the sample clock elapses before the primary
clock goes low.
2.13.2
• Any Reset
• By toggling the SCS1 bit of the OSCCON register
The FSCM is designed to detect an oscillator failure
after the Oscillator Start-up Timer (OST) has expired.
The OST is used after waking up from Sleep and after
any type of Reset. The OST is not used with the EC or
RC Clock modes so that the FSCM will be active as
soon as the Reset or wake-up has completed.
Q
Sample Clock
The Fail-Safe condition is cleared by either one of the
following:
2.13.4
Q
FAIL-SAFE CONDITION CLEARING
FAIL-SAFE OPERATION
When the external clock fails, the FSCM switches the
device clock to an internal clock source and sets the bit
flag OSCFIF of the PIR2 register. The OSCFIF flag will
generate an interrupt if the OSCFIE bit of the PIE2
register is also set. The device firmware can then take
steps to mitigate the problems that may arise from a
failed clock. The system clock will continue to be
sourced from the internal clock source until the device
firmware successfully restarts the external oscillator
and switches back to external operation. An automatic
transition back to the failed clock source will not occur.
The internal clock source chosen by the FSCM is
determined by the IRCF bits of the OSCCON
register. This allows the internal oscillator to be
configured before a failure occurs.
DS40001412H-page 42
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
FIGURE 2-11:
FSCM TIMING DIAGRAM
Sample Clock
Oscillator
Failure
System
Clock
Output
Clock Monitor Output
(Q)
Failure
Detected
OSCFIF
Test
Note:
TABLE 2-4:
Name
INTCON
IPR2
OSCCON
Test
Test
The system clock is normally at a much higher frequency than the sample clock. The relative frequencies in
this example have been chosen for clarity.
REGISTERS ASSOCIATED WITH CLOCK SOURCES
Bit 7
Bit 6
GIE/GIEH PEIE/GIEL
OSCFIP
C1IP
IDLEN
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Register
on Page
TMR0IE
INT0IE
RBIE
TMR0IF
INT0IF
RBIF
109
C2IP
EEIP
BCL1IP
HLVDIP
TMR3IP CCP2IP
122
OSTS
HFIOFS
SCS
30
PRISD
MFIOFS LFIOFS
31
IRCF
MFIOSEL SOSCGO
OSCCON2
PLLRDY SOSCRUN
OSCTUNE
INTSRC
PLLEN
PIE2
OSCFIE
C1IE
C2IE
EEIE
BCL1IE
HLVDIE
TMR3IE CCP2IE
118
PIR2
OSCFIF
C1IF
C2IF
EEIF
BCL1IF
HLVDIF
TMR3IF CCP2IF
113
—
TUN
35
Legend: — = unimplemented locations, read as ‘0’. Shaded bits are not used by clock sources.
TABLE 2-5:
Name
CONFIGURATION REGISTERS ASSOCIATED WITH CLOCK SOURCES
Bit 7
Bit 6
Bit 5
CONFIG1H
IESO
CONFIG2L
—
—
—
CONFIG3H
MCLRE
—
P2BMX
Bit 4
Bit 3
FCMEN PRICLKEN PLLCFG
Bit 1
Bit 0
FOSC
BORV
T3CMX
Bit 2
BOREN
Register
on Page
345
PWRTEN
346
HFOFST CCP3MX PBADEN CCP2MX
348
Legend: — = unimplemented locations, read as ‘0’. Shaded bits are not used for clock sources.
2010-2021 Microchip Technology Inc.
DS40001412H-page 43
PIC18(L)F2X/4XK22
3.0
POWER-MANAGED MODES
3.1.1
The SCS bits allow the selection of one of three
clock sources for power-managed modes. They are:
PIC18(L)F2X/4XK22 devices offer a total of seven
operating modes for more efficient power
management. These modes provide a variety of
options for selective power conservation in applications
where resources may be limited (i.e., battery-powered
devices).
• the primary clock, as defined by the FOSC
Configuration bits
• the secondary clock (the SOSC oscillator)
• the internal oscillator block
There are three categories of power-managed modes:
3.1.2
• Run modes
• Idle modes
• Sleep mode
ENTERING POWER-MANAGED
MODES
Switching from one power-managed mode to another
begins by loading the OSCCON register. The
SCS bits select the clock source and determine
which Run or Idle mode is to be used. Changing these
bits causes an immediate switch to the new clock
source, assuming that it is running. The switch may
also be subject to clock transition delays. Refer to
Section 2.11 “Clock Switching” for more information.
These categories define which portions of the device
are clocked and sometimes, what speed. The Run and
Idle modes may use any of the three available clock
sources (primary, secondary or internal oscillator
block). The Sleep mode does not use a clock source.
The power-managed modes include several powersaving features offered on previous PIC® microcontroller
devices. One of the clock switching features allows the
controller to use the secondary oscillator (SOSC) in
place of the primary oscillator. Also included is the Sleep
mode, offered by all PIC microcontroller devices, where
all device clocks are stopped.
3.1
CLOCK SOURCES
Entry to the power-managed Idle or Sleep modes is
triggered by the execution of a SLEEP instruction. The
actual mode that results depends on the status of the
IDLEN bit.
Depending on the current mode and the mode being
switched to, a change to a power-managed mode does
not always require setting all of these bits. Many
transitions may be done by changing the oscillator select
bits, or changing the IDLEN bit, prior to issuing a SLEEP
instruction. If the IDLEN bit is already configured
correctly, it may only be necessary to perform a SLEEP
instruction to switch to the desired mode.
Selecting Power-Managed Modes
Selecting a power-managed mode requires two
decisions:
• Whether or not the CPU is to be clocked
• The selection of a clock source
The IDLEN bit (OSCCON) controls CPU clocking,
while the SCS bits (OSCCON) select the
clock source. The individual modes, bit settings, clock
sources and affected modules are summarized in
Table 3-1.
TABLE 3-1:
POWER-MANAGED MODES
OSCCON Bits
Mode
(1)
IDLEN
Module Clocking
Available Clock and Oscillator Source
SCS
CPU
Peripherals
0
N/A
Off
Off
PRI_RUN
N/A
00
Clocked
Clocked
Primary – LP, XT, HS, RC, EC and Internal
Oscillator Block(2).
This is the normal full-power execution mode.
SEC_RUN
N/A
01
Clocked
Clocked
Secondary – SOSC Oscillator
RC_RUN
N/A
1x
Clocked
Clocked
Internal Oscillator Block(2)
PRI_IDLE
1
00
Off
Clocked
Primary – LP, XT, HS, HSPLL, RC, EC
SEC_IDLE
1
01
Off
Clocked
Secondary – SOSC Oscillator
RC_IDLE
1
1x
Off
Clocked
Internal Oscillator Block(2)
Sleep
Note 1:
2:
None – All clocks are disabled
IDLEN reflects its value when the SLEEP instruction is executed.
Includes HFINTOSC and HFINTOSC postscaler, as well as the LFINTOSC source.
DS40001412H-page 44
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
3.1.3
MULTIPLE FUNCTIONS OF THE
SLEEP COMMAND
The power-managed mode that is invoked with the
SLEEP instruction is determined by the value of the
IDLEN bit at the time the instruction is executed. If
IDLEN = 0, when SLEEP is executed, the device enters
the Sleep mode and all clocks stop and minimum
power is consumed. If IDLEN = 1, when SLEEP is
executed, the device enters the IDLE mode and the
system clock continues to supply a clock to the
peripherals but is disconnected from the CPU.
3.2
Run Modes
In the Run modes, clocks to both the core and
peripherals are active. The difference between these
modes is the clock source.
3.2.1
PRI_RUN MODE
The PRI_RUN mode is the normal, full-power
execution mode of the microcontroller. This is also the
default mode upon a device Reset, unless Two-Speed
Start-up is enabled (see Section 2.12 “Two-Speed
Clock Start-up Mode” for details). In this mode, the
device is operated off the oscillator defined by the
FOSC bits of the CONFIG1H Configuration
register.
3.2.2
SEC_RUN MODE
In SEC_RUN mode, the CPU and peripherals are
clocked from the secondary external oscillator. This
gives users the option of lower power consumption
while still using a high accuracy clock source.
SEC_RUN mode is entered by setting the SCS
bits to ‘01’. When SEC_RUN mode is active, all of the
following are true:
• The device clock source is switched to the SOSC
oscillator (see Figure 3-1)
• The primary oscillator is shut down
• The SOSCRUN bit (OSCCON2) is set
• The OSTS bit (OSCCON2) is cleared
Note:
The secondary external oscillator may
already be running prior to entering
SEC_RUN mode. If the SOSCGO bit or
any of the TxSOSCEN bits are not set
when the SCS bits are set to ‘01’,
entry to SEC_RUN mode will not occur
until SOSCGO bit is set and secondary
external oscillator is ready.
Figure 3-2). When the clock switch is complete, the
SOSCRUN bit is cleared, the OSTS bit is set and the
primary clock is providing the clock. The IDLEN and
SCS bits are not affected by the wake-up and the
SOSC oscillator continues to run.
3.2.3
RC_RUN MODE
In RC_RUN mode, the CPU and peripherals are
clocked from the internal oscillator block using the
INTOSC multiplexer. In this mode, the primary clock is
shut down. When using the LFINTOSC source, this
mode provides the best power conservation of all the
Run modes, while still executing code. It works well for
user applications which are not highly timing-sensitive
or do not require high-speed clocks at all times. If the
primary clock source is the internal oscillator block –
either LFINTOSC or INTOSC (MFINTOSC or
HFINTOSC) – there are no distinguishable differences
between the PRI_RUN and RC_RUN modes during
execution. Entering or exiting RC_RUN mode,
however, causes a clock switch delay. Therefore, if the
primary clock source is the internal oscillator block,
using RC_RUN mode is not recommended.
This mode is entered by setting the SCS1 bit to ‘1’. To
maintain software compatibility with future devices, it is
recommended that the SCS0 bit also be cleared, even
though the bit is ignored. When the clock source is
switched to the INTOSC multiplexer (see Figure 3-1),
the primary oscillator is shut down and the OSTS bit is
cleared. The IRCF bits (OSCCON) may be
modified at any time to immediately change the clock
speed.
When the IRCF bits and the INTSRC bit are all clear,
the INTOSC output (HFINTOSC/MFINTOSC) is not
enabled and the HFIOFS and MFIOFS bits will remain
clear. There will be no indication of the current clock
source. The LFINTOSC source is providing the device
clocks.
If the IRCF bits are changed from all clear (thus,
enabling the INTOSC output) or if INTSRC or MFIOSEL
is set, then the HFIOFS or MFIOFS bit is set after the
INTOSC output becomes stable. For details, see
Table 3-2.
Clocks to the device continue while the INTOSC source
stabilizes after an interval of TIOBST.
If the IRCF bits were previously at a non-zero value, or
if INTSRC was set before setting SCS1 and the
INTOSC source was already stable, then the HFIOFS
or MFIOFS bit will remain set.
On transitions from SEC_RUN mode to PRI_RUN
mode, the peripherals and CPU continue to be clocked
from the SOSC oscillator, while the primary clock is
started. When the primary clock becomes ready, a
clock switch back to the primary clock occurs (see
2010-2021 Microchip Technology Inc.
DS40001412H-page 45
PIC18(L)F2X/4XK22
On transitions from RC_RUN mode to PRI_RUN mode,
the device continues to be clocked from the INTOSC
multiplexer while the primary clock is started. When the
primary clock becomes ready, a clock switch to the primary clock occurs (see Figure 3-3). When the clock
switch is complete, the HFIOFS or MFIOFS bit is
cleared, the OSTS bit is set and the primary clock is
providing the device clock. The IDLEN and SCS bits
are not affected by the switch. The LFINTOSC source
will continue to run if either the WDT or the Fail-Safe
Clock Monitor is enabled.
FIGURE 3-1:
TRANSITION TIMING FOR ENTRY TO SEC_RUN MODE
Q1 Q2 Q3 Q4 Q1
Q2
1
SOSCI
2
3
n-1
Q3
Q4
Q1
Q2
Q3
n
Clock Transition(1)
OSC1
CPU
Clock
Peripheral
Clock
Program
Counter
PC
PC + 2
PC + 4
Note 1: Clock transition typically occurs within 2-4 TOSC.
FIGURE 3-2:
TRANSITION TIMING FROM SEC_RUN MODE TO PRI_RUN MODE (HSPLL)
Q1
Q2
Q3
Q4
Q1
Q2 Q3 Q4 Q1 Q2 Q3
SOSC
OSC1
TOST(1)
TPLL(1)
1
PLL Clock
Output
2
n-1 n
Clock
Transition(2)
CPU Clock
Peripheral
Clock
Program
Counter
SCS bits Changed
PC + 2
PC
PC + 4
OSTS bit Set
Note1: TOST = 1024 TOSC; TPLL = 2 ms (approx). These intervals are not shown to scale.
2: Clock transition typically occurs within 2-4 TOSC.
DS40001412H-page 46
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
TABLE 3-2:
INTERNAL OSCILLATOR FREQUENCY STABILITY BITS
IRCF
INTSRC
MFIOSEL
Selected Oscillator
Selected Oscillator Stable when:
000
0
x
LFINTOSC
LFIOFS = 1
000
1
0
HFINTOSC
HFIOFS = 1
000
1
1
MFINTOSC
MFIOFS = 1
010 or 001
x
0
HFINTOSC
HFIOFS = 1
010 or 001
x
1
MFINTOSC
MFIOFS = 1
011 – 111
x
x
HFINTOSC
HFIOFS = 1
FIGURE 3-3:
TRANSITION TIMING FROM RC_RUN MODE TO PRI_RUN MODE
Q1
Q2
Q3
Q4
Q2 Q3 Q4 Q1 Q2 Q3
Q1
INTOSC
Multiplexer
OSC1
TOST(1)
TPLL(1)
1
PLL Clock
Output
2
n-1 n
Clock
Transition(2)
CPU Clock
Peripheral
Clock
Program
Counter
PC + 2
PC
SCS bits Changed
PC + 4
OSTS bit Set
Note1: TOST = 1024 TOSC; TPLL = 2 ms (approx). These intervals are not shown to scale.
2: Clock transition typically occurs within 2-4 TOSC.
2010-2021 Microchip Technology Inc.
DS40001412H-page 47
PIC18(L)F2X/4XK22
3.3
Sleep Mode
3.4
The Power-Managed Sleep mode in the PIC18(L)F2X/
4XK22 devices is identical to the legacy Sleep mode
offered in all other PIC microcontroller devices. It is
entered by clearing the IDLEN bit of the OSCCON
register and executing the SLEEP instruction. This shuts
down the selected oscillator (Figure 3-4) and all clock
source Status bits are cleared.
Idle Modes
The Idle modes allow the controller’s CPU to be
selectively shut down while the peripherals continue to
operate. Selecting a particular Idle mode allows users
to further manage power consumption.
If the IDLEN bit is set to a ‘1’ when a SLEEP instruction is
executed, the peripherals will be clocked from the clock
source selected by the SCS bits; however, the CPU
will not be clocked. The clock source status bits are not
affected. Setting IDLEN and executing a SLEEP instruction provides a quick method of switching from a given
Run mode to its corresponding Idle mode.
Entering the Sleep mode from either Run or Idle mode
does not require a clock switch. This is because no
clocks are needed once the controller has entered
Sleep. If the WDT is selected, the LFINTOSC source
will continue to operate. If the SOSC oscillator is
enabled, it will also continue to run.
If the WDT is selected, the LFINTOSC source will
continue to operate. If the SOSC oscillator is enabled,
it will also continue to run.
When a wake event occurs in Sleep mode (by interrupt,
Reset or WDT time-out), the device will not be clocked
until the clock source selected by the SCS bits
becomes ready (see Figure 3-5), or it will be clocked
from the internal oscillator block if either the Two-Speed
Start-up or the Fail-Safe Clock Monitor are enabled
(see Section 24.0 “Special Features of the CPU”). In
either case, the OSTS bit is set when the primary clock
is providing the device clocks. The IDLEN and SCS bits
are not affected by the wake-up.
Since the CPU is not executing instructions, the only
exits from any of the Idle modes are by interrupt, WDT
time-out, or a Reset. When a wake event occurs, CPU
execution is delayed by an interval of TCSD while it
becomes ready to execute code. When the CPU
begins executing code, it resumes with the same clock
source for the current Idle mode. For example, when
waking from RC_IDLE mode, the internal oscillator
block will clock the CPU and peripherals (in other
words, RC_RUN mode). The IDLEN and SCS bits are
not affected by the wake-up.
While in any Idle mode or the Sleep mode, a WDT
time-out will result in a WDT wake-up to the Run mode
currently specified by the SCS bits.
FIGURE 3-4:
TRANSITION TIMING FOR ENTRY TO SLEEP MODE
Q1 Q2 Q3 Q4 Q1
OSC1
CPU
Clock
Peripheral
Clock
Sleep
Program
Counter
PC
DS40001412H-page 48
PC + 2
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
FIGURE 3-5:
TRANSITION TIMING FOR WAKE FROM SLEEP (HSPLL)
Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
Q1
OSC1
TOST(1)
PLL Clock
Output
TPLL(1)
CPU Clock
Peripheral
Clock
Program
Counter
PC
Wake Event
PC + 2
PC + 4
PC + 6
OSTS bit set
Note1: TOST = 1024 TOSC; TPLL = 2 ms (approx). These intervals are not shown to scale.
3.4.1
3.4.2
PRI_IDLE MODE
This mode is unique among the three low-power Idle
modes, in that it does not disable the primary device
clock. For timing sensitive applications, this allows for
the fastest resumption of device operation with its more
accurate primary clock source, since the clock source
does not have to “warm-up” or transition from another
oscillator.
PRI_IDLE mode is entered from PRI_RUN mode by
setting the IDLEN bit and executing a SLEEP instruction. If the device is in another Run mode, set IDLEN
first, then clear the SCS bits and execute SLEEP.
Although the CPU is disabled, the peripherals continue
to be clocked from the primary clock source specified
by the FOSC Configuration bits. The OSTS bit
remains set (see Figure 3-6).
When a wake event occurs, the CPU is clocked from the
primary clock source. A delay of interval TCSD is
required between the wake event and when code
execution starts. This is required to allow the CPU to
become ready to execute instructions. After the wakeup, the OSTS bit remains set. The IDLEN and SCS bits
are not affected by the wake-up (see Figure 3-7).
FIGURE 3-6:
SEC_IDLE MODE
In SEC_IDLE mode, the CPU is disabled but the
peripherals continue to be clocked from the SOSC
oscillator. This mode is entered from SEC_RUN by
setting the IDLEN bit and executing a SLEEP
instruction. If the device is in another Run mode, set the
IDLEN bit first, then set the SCS bits to ‘01’ and
execute SLEEP. When the clock source is switched to
the SOSC oscillator, the primary oscillator is shut down,
the OSTS bit is cleared and the SOSCRUN bit is set.
When a wake event occurs, the peripherals continue to
be clocked from the SOSC oscillator. After an interval
of TCSD following the wake event, the CPU begins executing code being clocked by the SOSC oscillator. The
IDLEN and SCS bits are not affected by the wake-up;
the SOSC oscillator continues to run (see Figure 3-7).
Note:
The SOSC oscillator may already be
running prior to entering SEC_IDLE
mode. At least one of the secondary
oscillator
enable
bits
(SOSCGO,
T1SOSCEN, T3SOSCEN or T5SOSCEN)
must be set when the SLEEP instruction is
executed. Otherwise, the main system
clock will continue to operate in the
previously selected mode and the
corresponding IDLE mode will be entered
(i.e., PRI_IDLE or RC_IDLE).
TRANSITION TIMING FOR ENTRY TO IDLE MODE
Q1
Q3
Q2
Q4
Q1
OSC1
CPU Clock
Peripheral
Clock
Program
Counter
PC
2010-2021 Microchip Technology Inc.
PC + 2
DS40001412H-page 49
PIC18(L)F2X/4XK22
FIGURE 3-7:
TRANSITION TIMING FOR WAKE FROM IDLE TO RUN MODE
Q1
Q2
Q3
Q4
OSC1
TCSD
CPU Clock
Peripheral
Clock
Program
Counter
PC
Wake Event
3.4.3
RC_IDLE MODE
In RC_IDLE mode, the CPU is disabled but the peripherals continue to be clocked from the internal oscillator
block from the HFINTOSC multiplexer output. This
mode allows for controllable power conservation during
Idle periods.
From RC_RUN, this mode is entered by setting the
IDLEN bit and executing a SLEEP instruction. If the
device is in another Run mode, first set IDLEN, then set
the SCS1 bit and execute SLEEP. It is recommended
that SCS0 also be cleared, although its value is
ignored, to maintain software compatibility with future
devices. The HFINTOSC multiplexer may be used to
select a higher clock frequency by modifying the IRCF
bits before executing the SLEEP instruction. When the
clock source is switched to the HFINTOSC multiplexer,
the primary oscillator is shut down and the OSTS bit is
cleared.
Clocks to the peripherals continue while the
HFINTOSC source stabilizes. The HFIOFS and
MFIOFS bits will remain set if the IRCF bits were
previously set at a nonzero value or if INTSRC was set
before the SLEEP instruction was executed and the
HFINTOSC source was already stable. If the IRCF bits
and INTSRC are all clear, the HFINTOSC output will
not be enabled, the HFIOFS and MFIOFS bits will
remain clear and there will be no indication of the
current clock source.
When a wake event occurs, the peripherals continue to
be clocked from the HFINTOSC multiplexer output.
After a delay of TCSD following the wake event, the CPU
begins executing code being clocked by the
HFINTOSC multiplexer. The IDLEN and SCS bits are
not affected by the wake-up. The LFINTOSC source
will continue to run if either the WDT or the Fail-Safe
Clock Monitor is enabled.
If the IRCF bits are set to any nonzero value, or either
the INTSRC or MFIOSEL bits are set, the HFINTOSC
output is enabled. Either the HFIOFS or the MFIOFS
bits become set, after the HFINTOSC output stabilizes
after an interval of TIOBST. For information on the
HFIOFS and MFIOFS bits, see Table 3-2.
DS40001412H-page 50
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
3.5
Exiting Idle and Sleep Modes
An exit from Sleep mode or any of the Idle modes is
triggered by any one of the following:
• an interrupt
• a Reset
• a Watchdog Time-out
This section discusses the triggers that cause exits
from power-managed modes. The clocking subsystem
actions are discussed in each of the power-managed
modes (see Section 3.2 “Run Modes”, Section 3.3
“Sleep Mode” and Section 3.4 “Idle Modes”).
3.5.1
EXIT BY INTERRUPT
Any of the available interrupt sources can cause the
device to exit from an Idle mode or the Sleep mode to
a Run mode. To enable this functionality, an interrupt
source must be enabled by setting its enable bit in one
of the INTCON or PIE registers. The exit sequence is
initiated when the corresponding interrupt flag bit is set.
The instruction immediately following the SLEEP
instruction is executed on all exits by interrupt from Idle
or Sleep modes. Code execution then branches to the
interrupt vector if the GIE/GIEH bit of the INTCON
register is set, otherwise code execution continues
without branching (see Section 9.0 “Interrupts”).
A fixed delay of interval TCSD following the wake event
is required when leaving Sleep and Idle modes. This
delay is required for the CPU to prepare for execution.
Instruction execution resumes on the first clock cycle
following this delay.
3.5.2
EXIT BY WDT TIME-OUT
A WDT time-out will cause different actions depending
on which power-managed mode the device is in when
the time-out occurs.
If the device is not executing code (all Idle modes and
Sleep mode), the time-out will result in an exit from the
power-managed mode (see Section 3.2 “Run
Modes” and Section 3.3 “Sleep Mode”). If the device
is executing code (all Run modes), the time-out will
result in a WDT Reset (see Section 24.3 “Watchdog
Timer (WDT)”).
The WDT timer and postscaler are cleared by any one
of the following:
• executing a SLEEP instruction
• executing a CLRWDT instruction
• the loss of the currently selected clock source
when the Fail-Safe Clock Monitor is enabled
• modifying the IRCF bits in the OSCCON register
when the internal oscillator block is the device
clock source
3.5.3
EXIT BY RESET
Exiting Sleep and Idle modes by Reset causes code
execution to restart at address ‘0’. See Section 4.0
“Reset” for more details.
The exit delay time from Reset to the start of code
execution depends on both the clock sources before
and after the wake-up and the type of oscillator.
3.5.4
EXIT WITHOUT AN OSCILLATOR
START-UP DELAY
Certain exits from power-managed modes do not
invoke the OST at all. There are two cases:
• PRI_IDLE mode, where the primary clock source
is not stopped and
• the primary clock source is not any of the LP, XT,
HS or HSPLL modes.
In these instances, the primary clock source either
does not require an oscillator start-up delay since it is
already running (PRI_IDLE), or normally does not
require an oscillator start-up delay (RC, EC, INTOSC,
and INTOSCIO modes). However, a fixed delay of
interval TCSD following the wake event is still required
when leaving Sleep and Idle modes to allow the CPU
to prepare for execution. Instruction execution resumes
on the first clock cycle following this delay.
2010-2021 Microchip Technology Inc.
DS40001412H-page 51
PIC18(L)F2X/4XK22
3.6
Selective Peripheral Module
Control
Idle mode allows users to substantially reduce power
consumption by stopping the CPU clock. Even so,
peripheral modules still remain clocked, and thus,
consume power. There may be cases where the
application needs what IDLE mode does not provide:
the allocation of power resources to the CPU
processing with minimal power consumption from the
peripherals. PIC18(L)F2X/4XK22 family devices
address this requirement by allowing peripheral
modules to be selectively disabled, reducing or
eliminating their power consumption. This can be done
with control bits in the Peripheral Module Disable
(PMD) registers. These bits generically named XXXMD
are located in control registers PMD0, PMD1 or PMD2.
3.7
Setting the PMD bit for a module disables all clock
sources to that module, reducing its power
consumption to an absolute minimum. In this state,
power to the control and status registers associated
with the peripheral is removed. Writes to these
registers have no effect and read values are invalid.
Clearing a set PMD bit restores power to the
associated control and status registers, thereby setting
those registers to their default values.
Register Definitions: Peripheral Module Disable
REGISTER 3-1:
PMD0: PERIPHERAL MODULE DISABLE REGISTER 0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
UART2MD
UART1MD
TMR6MD
TMR5MD
TMR4MD
TMR3MD
TMR2MD
TMR1MD
bit 7
bit 0
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 7
UART2MD: UART2 Peripheral Module Disable Control bit
1 = Module is disabled, Clock Source is disconnected, module does not draw digital power
0 = Module is enabled, Clock Source is connected, module draws digital power
bit 6
UART1MD: UART1 Peripheral Module Disable Control bit
1 = Module is disabled, Clock Source is disconnected, module does not draw digital power
0 = Module is enabled, Clock Source is connected, module draws digital power
bit 5
TMR6MD: Timer6 Peripheral Module Disable Control bit
1 = Module is disabled, Clock Source is disconnected, module does not draw digital power
0 = Module is enabled, Clock Source is connected, module draws digital power
bit 4
TMR5MD: Timer5 Peripheral Module Disable Control bit
1 = Module is disabled, Clock Source is disconnected, module does not draw digital power
0 = Module is enabled, Clock Source is connected, module draws digital power
bit 3
TMR4MD: Timer4 Peripheral Module Disable Control bit
1 = Module is disabled, Clock Source is disconnected, module does not draw digital power
0 = Module is enabled, Clock Source is connected, module draws digital power
bit 2
TMR3MD: Timer3 Peripheral Module Disable Control bit
1 = Module is disabled, Clock Source is disconnected, module does not draw digital power
0 = Module is enabled, Clock Source is connected, module draws digital power
bit 1
TMR2MD: Timer2 Peripheral Module Disable Control bit
1 = Module is disabled, Clock Source is disconnected, module does not draw digital power
0 = Module is enabled, Clock Source is connected, module draws digital power
bit 0
TMR1MD: Timer1 Peripheral Module Disable Control bit
1 = Module is disabled, Clock Source is disconnected, module does not draw digital power
0 = Module is enabled, Clock Source is connected, module draws digital power
DS40001412H-page 52
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
REGISTER 3-2:
PMD1: PERIPHERAL MODULE DISABLE REGISTER 1
R/W-0
R/W-0
MSSP2MD
MSSP1MD
U-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
—
CCP5MD
CCP4MD
CCP3MD
CCP2MD
CCP1MD
bit 7
bit 0
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 7
MSSP2MD: MSSP2 Peripheral Module Disable Control bit
1 = Module is disabled, Clock Source is disconnected, module does not draw digital power
0 = Module is enabled, Clock Source is connected, module draws digital power
bit 6
MSSP1MD: MSSP1 Peripheral Module Disable Control bit
1 = Module is disabled, Clock Source is disconnected, module does not draw digital power
0 = Module is enabled, Clock Source is connected, module draws digital power
bit 5
Unimplemented: Read as ‘0’
bit 4
CCP5MD: CCP5 Peripheral Module Disable Control bit
1 = Module is disabled, Clock Source is disconnected, module does not draw digital power
0 = Module is enabled, Clock Source is connected, module draws digital power
bit 3
CCP4MD: CCP4 Peripheral Module Disable Control bit
1 = Module is disabled, Clock Source is disconnected, module does not draw digital power
0 = Module is enabled, Clock Source is connected, module draws digital power
bit 2
CCP3MD: CCP3 Peripheral Module Disable Control bit
1 = Module is disabled, Clock Source is disconnected, module does not draw digital power
0 = Module is enabled, Clock Source is connected, module draws digital power
bit 1
CCP2MD: CCP2 Peripheral Module Disable Control bit
1 = Module is disabled, Clock Source is disconnected, module does not draw digital power
0 = Module is enabled, Clock Source is connected, module draws digital power
bit 0
CCP1MD: CCP1 Peripheral Module Disable Control bit
1 = Module is disabled, Clock Source is disconnected, module does not draw digital power
0 = Module is enabled, Clock Source is connected, module draws digital power
2010-2021 Microchip Technology Inc.
DS40001412H-page 53
PIC18(L)F2X/4XK22
REGISTER 3-3:
PMD2: PERIPHERAL MODULE DISABLE REGISTER 2
U-0
U-0
U-0
U-0
R/W-0
R/W-0
R/W-0
R/W-0
—
—
—
—
CTMUMD
CMP2MD
CMP1MD
ADCMD
bit 7
bit 0
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 7-4
Unimplemented: Read as ‘0’
bit 3
CTMUMD: CTMU Peripheral Module Disable Control bit
1 = Module is disabled, Clock Source is disconnected, module does not draw digital power
0 = Module is enabled, Clock Source is connected, module draws digital power
bit 2
CMP2MD: Comparator C2 Peripheral Module Disable Control bit
1 = Module is disabled, Clock Source is disconnected, module does not draw digital power
0 = Module is enabled, Clock Source is connected, module draws digital power
bit 1
CMP1MD: Comparator C1 Peripheral Module Disable Control bit
1 = Module is disabled, Clock Source is disconnected, module does not draw digital power
0 = Module is enabled, Clock Source is connected, module draws digital power
bit 0
ADCMD: ADC Peripheral Module Disable Control bit
1 = Module is disabled, Clock Source is disconnected, module does not draw digital power
0 = Module is enabled, Clock Source is connected, module draws digital power
DS40001412H-page 54
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
4.0
RESET
The PIC18(L)F2X/4XK22 devices differentiate between
various kinds of Reset:
a)
b)
c)
d)
e)
f)
g)
h)
Power-on Reset (POR)
MCLR Reset during normal operation
MCLR Reset during power-managed modes
Watchdog Timer (WDT) Reset (during
execution)
Programmable Brown-out Reset (BOR)
RESET Instruction
Stack Full Reset
Stack Underflow Reset
This section discusses Resets generated by MCLR,
POR and BOR and covers the operation of the various
start-up timers. Stack Reset events are covered in
Section 5.2.0.1 “Stack Full and Underflow Resets”.
WDT Resets are covered in Section 24.3 “Watchdog
Timer (WDT)”.
FIGURE 4-1:
A simplified block diagram of the On-Chip Reset Circuit
is shown in Figure 4-1.
4.1
RCON Register
Device Reset events are tracked through the RCON
register (Register 4-1). The lower five bits of the
register indicate that a specific Reset event has
occurred. In most cases, these bits can only be cleared
by the event and must be set by the application after
the event. The state of these flag bits, taken together,
can be read to indicate the type of Reset that just
occurred. This is described in more detail in
Section 4.7 “Reset State of Registers”.
The RCON register also has control bits for setting
interrupt priority (IPEN) and software control of the
BOR (SBOREN). Interrupt priority is discussed in
Section 9.0 “Interrupts”. BOR is covered in
Section 4.5 “Brown-out Reset (BOR)”.
SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT
RESET
Instruction
Stack Full/Underflow Reset
Stack
Pointer
External Reset
MCLRE
MCLR
( )_IDLE
Sleep
WDT
Time-out
VDD
Detect
POR
VDD
Brown-out
Reset
BOREN
S
OST/PWRT
OST(2) 1024 Cycles
10-bit Ripple Counter
OSC1
32 s
LFINTOSC
Chip_Reset
R
Q
PWRT(2) 65.5 ms
11-bit Ripple Counter
Enable PWRT
Enable OST(1)
Note 1:
2:
See Table 4-2 for time-out situations.
PWRT and OST counters are reset by POR and BOR. See Sections 4.4 and 4.5.
2010-2021 Microchip Technology Inc.
DS40001412H-page 55
PIC18(L)F2X/4XK22
4.2
Register Definitions: Reset Control
REGISTER 4-1:
R/W-0/0
IPEN
RCON: RESET CONTROL REGISTER
R/W-q/u
SBOREN
(1)
U-0
R/W-1/q
—
RI
R-1/q
R-1/q
TO
PD
R/W-q/u
(2)
POR
bit 7
R/W-0/q
BOR
bit 0
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
‘1’ = Bit is set
‘0’ = Bit is cleared
-n/n = Value at POR and BOR/Value at all other Resets
x = Bit is unknown
u = unchanged
q = depends on condition
bit 7
IPEN: Interrupt Priority Enable bit
1 = Enable priority levels on interrupts
0 = Disable priority levels on interrupts (PIC16CXXX Compatibility mode)
bit 6
SBOREN: BOR Software Enable bit(1)
If BOREN = 01:
1 = BOR is enabled
0 = BOR is disabled
If BOREN = 00, 10 or 11:
Bit is disabled and read as ‘0’.
bit 5
Unimplemented: Read as ‘0’
bit 4
RI: RESET Instruction Flag bit
1 = The RESET instruction was not executed (set by firmware or Power-on Reset)
0 = The RESET instruction was executed causing a device Reset (must be set in firmware after a
code-executed Reset occurs)
bit 3
TO: Watchdog Time-out Flag bit
1 = Set by power-up, CLRWDT instruction or SLEEP instruction
0 = A WDT time-out occurred
bit 2
PD: Power-down Detection Flag bit
1 = Set by power-up or by the CLRWDT instruction
0 = Set by execution of the SLEEP instruction
bit 1
POR: Power-on Reset Status bit(2)
1 = No Power-on Reset occurred
0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)
bit 0
BOR: Brown-out Reset Status bit(3)
1 = A Brown-out Reset has not occurred (set by firmware only)
0 = A Brown-out Reset occurred (must be set by firmware after a POR or Brown-out Reset occurs)
Note 1:
2:
3:
When CONFIG2L[2:1] = 01, then the SBOREN Reset state is ‘1’; otherwise, it is ‘0’.
The actual Reset value of POR is determined by the type of device Reset. See the notes following this
register and Section 4.7 “Reset State of Registers” for additional information.
See Table 4-1.
Note 1: Brown-out Reset is indicated when BOR is ‘0’ and POR is ‘1’ (assuming that both POR and BOR were set
to ‘1’ by firmware immediately after POR).
2: It is recommended that the POR bit be set after a Power-on Reset has been detected so that subsequent
Power-on Resets may be detected.
DS40001412H-page 56
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
4.3
Master Clear (MCLR)
The MCLR pin provides a method for triggering an
external Reset of the device. A Reset is generated by
holding the pin low. These devices have a noise filter in
the MCLR Reset path which detects and ignores small
pulses. An internal weak pull-up is enabled when the
pin is configured as the MCLR input.
FIGURE 4-2:
In PIC18(L)F2X/4XK22 devices, the MCLR input can
be disabled with the MCLRE Configuration bit. When
MCLR is disabled, the pin becomes a digital input. See
Section 10.6 “PORTE Registers” for more
information.
4.4
D
To take advantage of the POR circuitry either leave the
pin floating, or tie the MCLR pin through a resistor to
VDD. This will eliminate external RC components
usually needed to create a Power-on Reset delay. A
minimum rise rate for VDD is specified. For a slow rise
time, see Figure 4-2.
PIC® MCU
R
R1
MCLR
C
Note 1:
External Power-on Reset circuit is required
only if the VDD power-up slope is too slow.
The diode D helps discharge the capacitor
quickly when VDD powers down.
2:
15 k < R < 40 k is recommended to make
sure that the voltage drop across R does not
violate the device’s electrical specification.
3:
R1 1 k will limit any current flowing into
MCLR from external capacitor C, in the event
of MCLR/VPP pin breakdown, due to
Electrostatic Discharge (ESD) or Electrical
Overstress (EOS).
Power-on Reset (POR)
A Power-on Reset pulse is generated on-chip
whenever VDD rises above a certain threshold. This
allows the device to start in the initialized state when
VDD is adequate for operation.
VDD
VDD
The MCLR pin is not driven low by any internal Resets,
including the WDT.
EXTERNAL POWER-ON
RESET CIRCUIT (FOR
SLOW VDD POWER-UP)
When the device starts normal operation (i.e., exits the
Reset condition), device operating parameters
(voltage, frequency, temperature, etc.) must be met to
ensure proper operation. If these conditions are not
met, the device must be held in Reset until the
operating conditions are met.
POR events are captured by the POR bit of the RCON
register. The state of the bit is set to ‘0’ whenever a
POR occurs; it does not change for any other Reset
event. POR is not reset to ‘1’ by any hardware event.
To capture multiple events, the user must manually set
the bit to ‘1’ by software following any POR.
2010-2021 Microchip Technology Inc.
DS40001412H-page 57
PIC18(L)F2X/4XK22
4.5
Brown-out Reset (BOR)
PIC18(L)F2X/4XK22 devices implement a BOR circuit
that provides the user with a number of configuration and
power-saving options. The BOR is controlled by the
BORV and BOREN bits of the CONFIG2L
Configuration register. There are a total of four BOR
configurations which are summarized in Table 4-1.
The BOR threshold is set by the BORV bits. If
BOR is enabled (any values of BOREN, except
‘00’), any drop of VDD below VBOR for greater than
TBOR will reset the device. A Reset may or may not
occur if VDD falls below VBOR for less than TBOR. The
chip will remain in Brown-out Reset until VDD rises
above VBOR.
If the Power-up Timer is enabled, it will be invoked after
VDD rises above VBOR; it then will keep the chip in
Reset for an additional time delay, TPWRT. If VDD drops
below VBOR while the Power-up Timer is running, the
chip will go back into a Brown-out Reset and the
Power-up Timer will be initialized. Once VDD rises
above VBOR, the Power-up Timer will execute the
additional time delay.
BOR and the Power-on Timer (PWRT) are
independently configured. Enabling BOR Reset does
not automatically enable the PWRT.
The BOR circuit has an output that feeds into the POR
circuit and rearms the POR within the operating range
of the BOR. This early rearming of the POR ensures
that the device will remain in Reset in the event that VDD
falls below the operating range of the BOR circuitry.
4.5.1
DETECTING BOR
When BOR is enabled, the BOR bit always resets to ‘0’
on any BOR or POR event. This makes it difficult to
determine if a BOR event has occurred just by reading
the state of BOR alone. A more reliable method is to
simultaneously check the state of both POR and BOR.
This assumes that the POR and BOR bits are reset to
‘1’ by software immediately after any POR event. If
BOR is ‘0’ while POR is ‘1’, it can be reliably assumed
that a BOR event has occurred.
DS40001412H-page 58
4.5.2
SOFTWARE ENABLED BOR
When BOREN = 01, the BOR can be enabled or
disabled by the user in software. This is done with the
SBOREN control bit of the RCON register. Setting
SBOREN enables the BOR to function as previously
described. Clearing SBOREN disables the BOR
entirely. The SBOREN bit operates only in this mode;
otherwise it is read as ‘0’.
Placing the BOR under software control gives the user
the additional flexibility of tailoring the application to the
environment without having to reprogram the device to
change BOR configuration. It also allows the user to
tailor device power consumption in software by
eliminating the incremental current that the BOR
consumes. While the BOR current is typically very small,
it may have some impact in low-power applications.
Note:
4.5.3
Even when BOR is under software
control, the BOR Reset voltage level is still
set by the BORV Configuration bits.
It cannot be changed by software.
DISABLING BOR IN SLEEP MODE
When BOREN = 10, the BOR remains under
hardware control and operates as previously
described. Whenever the device enters Sleep mode,
however, the BOR is automatically disabled. When the
device returns to any other operating mode, BOR is
automatically re-enabled.
This mode allows for applications to recover from
brown-out situations, while actively executing code,
when the device requires BOR protection the most. At
the same time, it saves additional power in Sleep mode
by eliminating the small incremental BOR current.
4.5.4
MINIMUM BOR ENABLE TIME
Enabling the BOR also enables the Fixed Voltage
Reference (FVR) when no other peripheral requiring the
FVR is active. The BOR becomes active only after the
FVR stabilizes. Therefore, to ensure BOR protection,
the FVR settling time must be considered when
enabling the BOR in software or when the BOR is
automatically enabled after waking from Sleep. If the
BOR is disabled, in software or by reentering Sleep
before the FVR stabilizes, the BOR circuit will not sense
a BOR condition. The FVRST bit of the VREFCON0
register can be used to determine FVR stability.
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
TABLE 4-1:
BOR CONFIGURATIONS
BOR Configuration
BOREN1
BOREN0
Status of
SBOREN
(RCON)
0
0
Unavailable
0
1
Available
BOR Operation
BOR disabled; must be enabled by reprogramming the Configuration bits.
BOR enabled by software; operation controlled by SBOREN.
1
0
Unavailable
BOR enabled by hardware in Run and Idle modes, disabled during Sleep mode.
1
1
Unavailable
BOR enabled by hardware; must be disabled by reprogramming the Configuration bits.
4.6
Device Reset Timers
PIC18(L)F2X/4XK22 devices incorporate three
separate on-chip timers that help regulate the Poweron Reset process. Their main function is to ensure that
the device clock is stable before code is executed.
These timers are:
• Power-up Timer (PWRT)
• Oscillator Start-up Timer (OST)
• PLL Lock Time-out
4.6.1
POWER-UP TIMER (PWRT)
The Power-up Timer (PWRT) of PIC18(L)F2X/4XK22
devices is an 11-bit counter which uses the
LFINTOSC source as the clock input. This yields an
approximate time interval of 2048 x 32 s = 65.6 ms.
While the PWRT is counting, the device is held in
Reset.
The power-up time delay depends on the LFINTOSC
clock and will vary from chip-to-chip due to temperature
and process variation.
The PWRT is enabled by clearing the PWRTEN
Configuration bit.
4.6.2
OSCILLATOR START-UP TIMER
(OST)
The Oscillator Start-up Timer (OST) provides a 1024
oscillator cycle (from OSC1 input) delay after the
PWRT delay is over. This ensures that the crystal
oscillator or resonator has started and stabilized.
4.6.3
PLL LOCK TIME-OUT
With the PLL enabled, the time-out sequence following a
Power-on Reset is slightly different from other oscillator
modes. A separate timer is used to provide a fixed timeout that is sufficient for the PLL to lock to the main
oscillator frequency. This PLL lock time-out (TPLL) is
typically 2 ms and follows the oscillator start-up time-out.
4.6.4
TIME-OUT SEQUENCE
On power-up, the time-out sequence is as follows:
1.
2.
After the POR pulse has cleared, PWRT time-out
is invoked (if enabled).
Then, the OST is activated.
The total time-out will vary based on oscillator
configuration and the status of the PWRT. Figure 4-3,
Figure 4-4, Figure 4-5, Figure 4-6 and Figure 4-7 all
depict time-out sequences on power-up, with the
Power-up Timer enabled and the device operating in
HS Oscillator mode. Figures 4-3 through 4-6 also
apply to devices operating in XT or LP modes. For
devices in RC mode and with the PWRT disabled, on
the other hand, there will be no time-out at all.
Since the time-outs occur from the POR pulse, if MCLR
is kept low long enough, all time-outs will expire, after
which, bringing MCLR high will allow program
execution to begin immediately (Figure 4-5). This is
useful for testing purposes or to synchronize more than
one PIC® MCU device operating in parallel.
The OST time-out is invoked only for XT, LP and HS
modes and only on Power-on Reset, or on exit from all
power-managed modes that stop the external oscillator.
2010-2021 Microchip Technology Inc.
DS40001412H-page 59
PIC18(L)F2X/4XK22
TABLE 4-2:
TIME-OUT IN VARIOUS SITUATIONS
Power-up(2) and Brown-out
Oscillator
Configuration
HSPLL
PWRTEN = 1
Exit from
Power-Managed Mode
1024 TOSC + 2 ms(2)
1024 TOSC + 2 ms(2)
PWRTEN = 0
66 ms
(1)
(2)
+ 1024 TOSC + 2 ms
66 ms(1) + 1024 TOSC
HS, XT, LP
1024 TOSC
1024 TOSC
(1)
—
—
RC, RCIO
66
ms(1)
—
—
INTIO1, INTIO2
66 ms(1)
—
—
EC, ECIO
66 ms
Note 1: 66 ms (65.5 ms) is the nominal Power-up Timer (PWRT) delay.
2: 2 ms is the nominal time required for the PLL to lock.
FIGURE 4-3:
TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD, VDD RISE < TPWRT)
VDD
MCLR
INTERNAL POR
TPWRT
PWRT TIME-OUT
TOST
OST TIME-OUT
INTERNAL RESET
FIGURE 4-4:
TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1
VDD
MCLR
INTERNAL POR
TPWRT
PWRT TIME-OUT
TOST
OST TIME-OUT
INTERNAL RESET
DS40001412H-page 60
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
FIGURE 4-5:
TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2
VDD
MCLR
INTERNAL POR
TPWRT
PWRT TIME-OUT
TOST
OST TIME-OUT
INTERNAL RESET
FIGURE 4-6:
SLOW RISE TIME (MCLR TIED TO VDD, VDD RISE > TPWRT)
5V
VDD
0V
MCLR
INTERNAL POR
TPWRT
PWRT TIME-OUT
TOST
OST TIME-OUT
INTERNAL RESET
FIGURE 4-7:
TIME-OUT SEQUENCE ON POR W/PLL ENABLED (MCLR TIED TO VDD)
VDD
MCLR
INTERNAL POR
TPWRT
PWRT TIME-OUT
OST TIME-OUT
TOST
TPLL
PLL TIME-OUT
INTERNAL RESET
Note:
TOST = 1024 clock cycles.
TPLL 2 ms max. First three stages of the PWRT timer.
2010-2021 Microchip Technology Inc.
DS40001412H-page 61
PIC18(L)F2X/4XK22
4.7
Reset State of Registers
Table 5-2 describes the Reset states for all of the
Special Function Registers. The table identifies
differences
between
Power-On
Reset
(POR)/Brown-Out Reset (BOR) and all other Resets,
(i.e., Master Clear, WDT Resets, STKFUL, STKUNF,
etc.). Additionally, the table identifies register bits that
are changed when the device receives a wake-up from
WDT or other interrupts.
Some registers are unaffected by a Reset. Their status
is unknown on POR and unchanged by all other
Resets. All other registers are forced to a “Reset state”
depending on the type of Reset that occurred.
Most registers are not affected by a WDT wake-up,
since this is viewed as the resumption of normal
operation. Status bits from the RCON register, RI, TO,
PD, POR and BOR, are set or cleared differently in
different Reset situations, as indicated in Table 4-3.
These bits are used by software to determine the
nature of the Reset.
TABLE 4-3:
STATUS BITS, THEIR SIGNIFICANCE AND THE INITIALIZATION CONDITION
FOR RCON REGISTER
Program
Counter
Condition
RCON Register
SBOREN
RI
TO
PD
STKPTR Register
POR BOR STKFUL
STKUNF
Power-on Reset
0000h
1
1
1
1
0
0
0
0
RESET Instruction
0000h
u(2)
0
u
u
u
u
u
u
0000h
u(2)
1
1
1
u
0
u
u
MCLR during Power-Managed
Run Modes
0000h
u(2)
u
1
u
u
u
u
u
MCLR during Power-Managed
Idle Modes and Sleep Mode
0000h
u(2)
u
1
0
u
u
u
u
WDT Time-out during Full Power
or Power-Managed Run Mode
0000h
u(2)
u
0
u
u
u
u
u
MCLR during Full Power
Execution
0000h
u(2)
u
u
u
u
u
u
u
Stack Full Reset (STVREN = 1)
0000h
u(2)
u
u
u
u
u
1
u
Stack Underflow Reset
(STVREN = 1)
0000h
(2)
u
u
u
u
u
u
u
1
Stack Underflow Error (not an
actual Reset, STVREN = 0)
0000h
u(2)
u
u
u
u
u
u
1
WDT Time-out during PowerManaged Idle or Sleep Modes
PC + 2
u(2)
u
0
0
u
u
u
u
PC + 2(1)
u(2)
u
u
0
u
u
u
u
Brown-out Reset
Interrupt Exit from PowerManaged Modes
Legend: u = unchanged
Note 1: When the wake-up is due to an interrupt and the GIEH or GIEL bits are set, the PC is loaded with the
interrupt vector (008h or 0018h).
2: Reset state is ‘1’ for SBOREN and unchanged for all other Resets when software BOR is enabled
(BOREN Configuration bits = 01). Otherwise, the Reset state is ‘0’.
TABLE 4-4:
Name
RCON
STKPTR
REGISTERS ASSOCIATED WITH RESETS
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Register
on Page
IPEN
SBOREN
—
RI
TO
PD
POR
BOR
56
STKFUL
STKUNF
—
STKPTR
67
Legend: — = unimplemented locations, read as ‘0’. Shaded bits are not used for Resets.
DS40001412H-page 62
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
TABLE 4-5:
CONFIGURATION REGISTERS ASSOCIATED WITH RESETS
Name
Bit 7
Bit 6
Bit 5
CONFIG2L
—
—
—
CONFIG2H
—
—
Bit 4
Bit 3
BORV
Bit 2
BOREN
WDPS
CONFIG3H
MCLRE
—
P2BMX
T3CMX
CONFIG4L
DEBUG
XINST
—
—
Bit 0
Register
on Page
PWRTEN
346
WDTEN
HFOFST CCP3MX
—
Bit 1
LVP
347
PBADEN
CCP2MX
348
—
STRVEN
349
Legend: — = unimplemented locations, read as ‘0’. Shaded bits are not used for Resets.
2010-2021 Microchip Technology Inc.
DS40001412H-page 63
PIC18(L)F2X/4XK22
5.0
MEMORY ORGANIZATION
There are three types of memory in PIC18 Enhanced
microcontroller devices:
• Program Memory
• Data RAM
• Data EEPROM
As Harvard architecture devices, the data and program
memories use separate buses; this allows for
concurrent access of the two memory spaces. The data
EEPROM, for practical purposes, can be regarded as
a peripheral device, since it is addressed and accessed
through a set of control registers.
Additional detailed information on the operation of the
Flash program memory is provided in Section 6.0
“Flash Program Memory”. Data EEPROM is
discussed separately in Section 7.0 “Data EEPROM
Memory”.
5.1
Program Memory Organization
PIC18 microcontrollers implement a 21-bit program
counter, which is capable of addressing a 2-Mbyte
program memory space. Accessing a location between
the upper boundary of the physically implemented
memory and the 2-Mbyte address will return all ‘0’s (a
NOP instruction).
This family of devices contain the following:
• PIC18(L)F23K22, PIC18(L)F43K22: 8 Kbytes of
Flash Memory, up to 4,096 single-word instructions
• PIC18(L)F24K22, PIC18(L)F44K22: 16 Kbytes of
Flash Memory, up to 8,192 single-word instructions
• PIC18(L)F25K22, PIC18(L)F45K22: 32 Kbytes of
Flash Memory, up to 16,384 single-word
instructions
• PIC18(L)F26K22, PIC18(L)F46K22: 64 Kbytes of
Flash Memory, up to 37,768 single-word
instructions
PIC18 devices have two interrupt vectors. The Reset
vector address is at 0000h and the interrupt vector
addresses are at 0008h and 0018h.
The program memory map for PIC18(L)F2X/4XK22
devices is shown in Figure 5-1. Memory block details
are shown in Figure 20-2.
DS40001412H-page 64
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
FIGURE 5-1:
PROGRAM MEMORY MAP AND STACK FOR PIC18(L)F2X/4XK22 DEVICES
PC
21
CALL,RCALL,RETURN
RETFIE,RETLW
Stack Level 1
Stack Level 31
2000h
0000h
High Priority Interrupt Vector
0008h
Low Priority Interrupt Vector
0018h
On-Chip
Program Memory
3FFFh
4000h
PIC18(L)F23K22
PIC18(L)F43K22
On-Chip
Program Memory
User Memory Space
On-Chip
Program Memory
1FFFh
Reset Vector
On-Chip
Program Memory
PIC18(L)F24K22
PIC18(L)F44K22
7FFFh
8000h
PIC18(L)F25K22
PIC18(L)F45K22
Read ‘0’
Read ‘0’
Read ‘0’
FFFFh
10000h
PIC18(L)F26K22
PIC18(L)F46K22
Read ‘0’
5.1.1
PROGRAM COUNTER
The Program Counter (PC) specifies the address of the
instruction to fetch for execution. The PC is 21 bits wide
and is contained in three separate 8-bit registers. The
low byte, known as the PCL register, is both readable
and writable. The high byte, or PCH register, contains
the PC bits; it is not directly readable or writable.
Updates to the PCH register are performed through the
PCLATH register. The upper byte is called PCU. This
register contains the PC bits; it is also not
directly readable or writable. Updates to the PCU
register are performed through the PCLATU register.
The contents of PCLATH and PCLATU are transferred
to the program counter by any operation that writes
PCL. Similarly, the upper two bytes of the program
counter are transferred to PCLATH and PCLATU by an
operation that reads PCL. This is useful for computed
offsets to the PC (see Section 5.2.2.1 “Computed
GOTO”).
1FFFFFh
200000h
The PC increments by two to address sequential
instructions in the program memory.
The CALL, RCALL, GOTO and program branch
instructions write to the program counter directly. For
these instructions, the contents of PCLATH and
PCLATU are not transferred to the program counter.
5.1.2
RETURN ADDRESS STACK
The return address stack allows any combination of up
to 31 program calls and interrupts to occur. The PC is
pushed onto the stack when a CALL or RCALL
instruction is executed or an interrupt is Acknowledged.
The PC value is pulled off the stack on a RETURN,
RETLW or a RETFIE instruction. PCLATU and PCLATH
are not affected by any of the RETURN or CALL
instructions.
The stack operates as a 31-word by 21-bit RAM and a
5-bit Stack Pointer, STKPTR. The stack space is not
part of either program or data space.
The PC addresses bytes in the program memory. To
prevent the PC from becoming misaligned with word
instructions, the Least Significant bit of PCL is fixed to
a value of ‘0’.
2010-2021 Microchip Technology Inc.
DS40001412H-page 65
PIC18(L)F2X/4XK22
The Stack Pointer is readable and writable and the
address on the top of the stack is readable and writable
through the Top-of-Stack (TOS) Special File Registers.
Data can also be pushed to, or popped from the stack,
using these registers.
A CALL type instruction causes a push onto the stack;
the Stack Pointer is first incremented and the location
pointed to by the Stack Pointer is written with the
contents of the PC (already pointing to the instruction
following the CALL). A RETURN type instruction causes
a pop from the stack; the contents of the location
pointed to by the STKPTR are transferred to the PC
and then the Stack Pointer is decremented.
The Stack Pointer is initialized to ‘00000’ after all
Resets. There is no RAM associated with the location
corresponding to a Stack Pointer value of ‘00000’; this
is only a Reset value. Status bits indicate if the stack is
full or has overflowed or has underflowed.
FIGURE 5-2:
5.1.2.1
Top-of-Stack Access
Only the top of the return address stack (TOS) is readable
and writable. A set of three registers, TOSU:TOSH:TOSL,
hold the contents of the stack location pointed to by the
STKPTR register (Figure 5-2). This allows users to
implement a software stack if necessary. After a CALL,
RCALL or interrupt, the software can read the pushed
value by reading the TOSU:TOSH:TOSL registers. These
values can be placed on a user defined software stack. At
return time, the software can return these values to
TOSU:TOSH:TOSL and do a return.
The user must disable the Global Interrupt Enable (GIE)
bits while accessing the stack to prevent inadvertent
stack corruption.
RETURN ADDRESS STACK AND ASSOCIATED REGISTERS
Return Address Stack
11111
11110
11101
Top-of-Stack Registers
TOSU
00h
TOSH
1Ah
5.1.2.2
Return Stack Pointer (STKPTR)
The STKPTR register (Register 5-1) contains the Stack
Pointer value, the STKFUL (stack full) Status bit and
the STKUNF (Stack Underflow) Status bits. The value
of the Stack Pointer can be 0 through 31. The Stack
Pointer increments before values are pushed onto the
stack and decrements after values are popped off the
stack. On Reset, the Stack Pointer value will be zero.
The user may read and write the Stack Pointer value.
This feature can be used by a Real-Time Operating
System (RTOS) for return stack maintenance.
After the PC is pushed onto the stack 31 times (without
popping any values off the stack), the STKFUL bit is
set. The STKFUL bit is cleared by software or by a
POR.
The action that takes place when the stack becomes
full depends on the state of the STVREN (Stack Overflow Reset Enable) Configuration bit. (Refer to
Section 24.1 “Configuration Bits” for a description of
the device Configuration bits.) If STVREN is set
(default), the 31st push will push the (PC + 2) value
DS40001412H-page 66
STKPTR
00010
TOSL
34h
Top-of-Stack
Stack Pointer
001A34h
000D58h
00011
00010
00001
00000
onto the stack, set the STKFUL bit and reset the
device. The STKFUL bit will remain set and the Stack
Pointer will be set to zero.
If STVREN is cleared, the STKFUL bit will be set on the
31st push and the Stack Pointer will increment to 31.
Any additional pushes will not overwrite the 31st push
and STKPTR will remain at 31.
When the stack has been popped enough times to
unload the stack, the next pop will return a value of zero
to the PC and sets the STKUNF bit, while the Stack
Pointer remains at zero. The STKUNF bit will remain
set until cleared by software or until a POR occurs.
Note:
Returning a value of zero to the PC on an
underflow has the effect of vectoring the
program to the Reset vector, where the
stack conditions can be verified and
appropriate actions can be taken. This is
not the same as a Reset, as the contents
of the SFRs are not affected.
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
5.1.2.3
PUSH and POP Instructions
The PUSH instruction places the current PC value onto
the stack. This increments the Stack Pointer and loads
the current PC value onto the stack.
Since the Top-of-Stack is readable and writable, the
ability to push values onto the stack and pull values off
the stack without disturbing normal program execution
is a desirable feature. The PIC18 instruction set
includes two instructions, PUSH and POP, that permit
the TOS to be manipulated under software control.
TOSU, TOSH and TOSL can be modified to place data
or a return address on the stack.
5.2
The POP instruction discards the current TOS by
decrementing the Stack Pointer. The previous value
pushed onto the stack then becomes the TOS value.
Register Definitions: Stack Pointer
REGISTER 5-1:
R/C-0
STKPTR: STACK POINTER REGISTER
R/C-0
STKFUL(1)
STKUNF
U-0
(1)
R/W-0
R/W-0
—
R/W-0
R/W-0
R/W-0
STKPTR
bit 7
bit 0
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented
C = Clearable only bit
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 7
STKFUL: Stack Full Flag bit(1)
1 = Stack became full or overflowed
0 = Stack has not become full or overflowed
bit 6
STKUNF: Stack Underflow Flag bit(1)
1 = Stack Underflow occurred
0 = Stack Underflow did not occur
bit 5
Unimplemented: Read as ‘0’
bit 4-0
STKPTR: Stack Pointer Location bits
Note 1:
5.2.0.1
Bit 7 and bit 6 are cleared by user software or by a POR.
Stack Full and Underflow Resets
Device Resets on Stack Overflow and Stack Underflow
conditions are enabled by setting the STVREN bit in
Configuration Register 4L. When STVREN is set, a full
or underflow will set the appropriate STKFUL or
STKUNF bit and then cause a device Reset. When
STVREN is cleared, a full or underflow condition will set
the appropriate STKFUL or STKUNF bit but not cause
a device Reset. The STKFUL or STKUNF bits are
cleared by the user software or a Power-on Reset.
5.2.1
FAST REGISTER STACK
A fast register stack is provided for the Status, WREG
and BSR registers, to provide a “fast return” option for
interrupts. The stack for each register is only one level
deep and is neither readable nor writable. It is loaded
with the current value of the corresponding register
when the processor vectors for an interrupt. All
interrupt sources will push values into the stack
registers. The values in the registers are then loaded
back into their associated registers if the
RETFIE,FAST instruction is used to return from the
interrupt.
2010-2021 Microchip Technology Inc.
If both low and high priority interrupts are enabled, the
stack registers cannot be used reliably to return from
low priority interrupts. If a high priority interrupt occurs
while servicing a low priority interrupt, the stack register
values stored by the low priority interrupt will be
overwritten. In these cases, users must save the key
registers by software during a low priority interrupt.
If interrupt priority is not used, all interrupts may use the
fast register stack for returns from interrupt. If no
interrupts are used, the fast register stack can be used
to restore the Status, WREG and BSR registers at the
end of a subroutine call. To use the fast register stack
for a subroutine call, a CALL label, FAST instruction
must be executed to save the Status, WREG and BSR
registers to the fast register stack. A RETURN, FAST
instruction is then executed to restore these registers
from the fast register stack.
Example 5-1 shows a source code example that uses
the fast register stack during a subroutine call and
return.
DS40001412H-page 67
PIC18(L)F2X/4XK22
EXAMPLE 5-1:
CALL SUB1, FAST
RETURN, FAST
FAST REGISTER STACK
CODE EXAMPLE
;STATUS, WREG, BSR
;SAVED IN FAST REGISTER
;STACK
EXAMPLE 5-2:
ORG
TABLE
SUB1
5.2.2
;RESTORE VALUES SAVED
;IN FAST REGISTER STACK
LOOK-UP TABLES IN PROGRAM
MEMORY
There may be programming situations that require the
creation of data structures, or look-up tables, in
program memory. For PIC18 devices, look-up tables
can be implemented in two ways:
• Computed GOTO
• Table Reads
5.2.2.1
Computed GOTO
A computed GOTO is accomplished by adding an offset
to the program counter. An example is shown in
Example 5-2.
A look-up table can be formed with an ADDWF PCL
instruction and a group of RETLW nn instructions. The
W register is loaded with an offset into the table before
executing a call to that table. The first instruction of the
called routine is the ADDWF PCL instruction. The next
instruction executed will be one of the RETLW nn
instructions that returns the value ‘nn’ to the calling
function.
5.2.2.2
MOVF
CALL
nn00h
ADDWF
RETLW
RETLW
RETLW
.
.
.
COMPUTED GOTO USING
AN OFFSET VALUE
OFFSET, W
TABLE
PCL
nnh
nnh
nnh
Table Reads and Table Writes
A better method of storing data in program memory
allows two bytes of data to be stored in each instruction
location.
Look-up table data may be stored two bytes per
program word by using table reads and writes. The
Table Pointer (TBLPTR) register specifies the byte
address and the Table Latch (TABLAT) register
contains the data that is read from or written to program
memory. Data is transferred to or from program
memory one byte at a time.
Table read and table write operations are discussed
further in Section 6.1 “Table Reads and Table
Writes”.
The offset value (in WREG) specifies the number of
bytes that the program counter may advance and may
be multiples of two (LSb = 0).
In this method, only one data byte may be stored in
each instruction location and room on the return
address stack is required.
DS40001412H-page 68
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
5.3
PIC18 Instruction Cycle
5.3.1
5.3.2
An “Instruction Cycle” consists of four Q cycles: Q1
through Q4. The instruction fetch and execute are
pipelined in such a manner that a fetch takes one
instruction cycle, while the decode and execute take
another instruction cycle. However, due to the
pipelining, each instruction effectively executes in one
cycle. If an instruction causes the program counter to
change (e.g., GOTO), then two cycles are required to
complete the instruction (Example 5-3).
CLOCKING SCHEME
The microcontroller clock input, whether from an
internal or external source, is internally divided by four
to generate four nonoverlapping quadrature clocks
(Q1, Q2, Q3 and Q4). Internally, the program counter is
incremented on every Q1; the instruction is fetched
from the program memory and latched into the
instruction register during Q4. The instruction is
decoded and executed during the following Q1 through
Q4. The clocks and instruction execution flow are
shown in Figure 5-3.
FIGURE 5-3:
INSTRUCTION FLOW/PIPELINING
A fetch cycle begins with the Program Counter (PC)
incrementing in Q1.
In the execution cycle, the fetched instruction is latched
into the Instruction Register (IR) in cycle Q1. This
instruction is then decoded and executed during the
Q2, Q3 and Q4 cycles. Data memory is read during Q2
(operand read) and written during Q4 (destination
write).
CLOCK/INSTRUCTION CYCLE
Q1
Q2
Q3
Q4
Q1
Q2
Q3
Q4
Q1
Q2
Q3
Q4
OSC1
Q1
Q2
Internal
Phase
Clock
Q3
Q4
PC
PC
PC + 2
PC + 4
OSC2/CLKOUT
(RC mode)
Execute INST (PC – 2)
Fetch INST (PC)
EXAMPLE 5-3:
1. MOVLW 55h
4. BSF
TCY0
TCY1
Fetch 1
Execute 1
Fetch 2
SUB_1
PORTA, BIT3 (Forced NOP)
5. Instruction @ address SUB_1
Note:
Execute INST (PC + 2)
Fetch INST (PC + 4)
INSTRUCTION PIPELINE FLOW
2. MOVWF PORTB
3. BRA
Execute INST (PC)
Fetch INST (PC + 2)
TCY2
TCY3
TCY4
TCY5
Execute 2
Fetch 3
Execute 3
Fetch 4
Flush (NOP)
Fetch SUB_1 Execute SUB_1
All instructions are single cycle, except for any program branches. These take two cycles since the
fetch instruction is “flushed” from the pipeline while the new instruction is being fetched and then
executed.
2010-2021 Microchip Technology Inc.
DS40001412H-page 69
PIC18(L)F2X/4XK22
5.3.3
INSTRUCTIONS IN PROGRAM
MEMORY
The program memory is addressed in bytes.
Instructions are stored as either two bytes or four bytes
in program memory. The Least Significant Byte of an
instruction word is always stored in a program memory
location with an even address (LSb = 0). To maintain
alignment with instruction boundaries, the PC
increments in steps of two and the LSb will always read
‘0’ (see Section 5.1.1 “Program Counter”).
Figure 5-4 shows an example of how instruction words
are stored in the program memory.
FIGURE 5-4:
The CALL and GOTO instructions have the absolute
program memory address embedded into the
instruction. Since instructions are always stored on word
boundaries, the data contained in the instruction is a
word address. The word address is written to PC,
which accesses the desired byte address in program
memory. Instruction #2 in Figure 5-4 shows how the
instruction GOTO 0006h is encoded in the program
memory. Program branch instructions, which encode a
relative address offset, operate in the same manner. The
offset value stored in a branch instruction represents the
number of single-word instructions that the PC will be
offset by. Section 25.0 “Instruction Set Summary”
provides further details of the instruction set.
INSTRUCTIONS IN PROGRAM MEMORY
LSB = 1
LSB = 0
0Fh
EFh
F0h
C1h
F4h
55h
03h
00h
23h
56h
Program Memory
Byte Locations
5.3.4
Instruction 1:
Instruction 2:
MOVLW
GOTO
055h
0006h
Instruction 3:
MOVFF
123h, 456h
TWO-WORD INSTRUCTIONS
The standard PIC18 instruction set has four two-word
instructions: CALL, MOVFF, GOTO and LSFR. In all
cases, the second word of the instruction always has
‘1111’ as its four Most Significant bits; the other 12 bits
are literal data, usually a data memory address.
The use of ‘1111’ in the 4 MSbs of an instruction
specifies a special form of NOP. If the instruction is
executed in proper sequence – immediately after the
first word – the data in the second word is accessed
and used by the instruction sequence.
EXAMPLE 5-4:
Word Address
000000h
000002h
000004h
000006h
000008h
00000Ah
00000Ch
00000Eh
000010h
000012h
000014h
If the first word is skipped for some reason and the
second word is executed by itself, a NOP is executed
instead. This is necessary for cases when the two-word
instruction is preceded by a conditional instruction that
changes the PC. Example 5-4 shows how this works.
Note:
See Section 5.8 “PIC18 Instruction
Execution
and
the
Extended
Instruction Set” for information on
two-word instructions in the extended
instruction set.
TWO-WORD INSTRUCTIONS
CASE 1:
Object Code
0110 0110 0000
1100 0001 0010
1111 0100 0101
0010 0100 0000
0000
0011
0110
0000
Source Code
TSTFSZ
REG1
; is RAM location 0?
MOVFF
REG1, REG2 ; No, skip this word
; Execute this word as a NOP
ADDWF
REG3
; continue code
0000
0011
0110
0000
Source Code
TSTFSZ
REG1
; is RAM location 0?
MOVFF
REG1, REG2 ; Yes, execute this word
; 2nd word of instruction
ADDWF
REG3
; continue code
CASE 2:
Object Code
0110 0110 0000
1100 0001 0010
1111 0100 0101
0010 0100 0000
DS40001412H-page 70
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
5.4
Note:
Data Memory Organization
The operation of some aspects of data
memory are changed when the PIC18
extended instruction set is enabled. See
Section 5.7 “Data Memory and the
Extended Instruction Set” for more
information.
The data memory in PIC18 devices is implemented as
static RAM. Each register in the data memory has a
12-bit address, allowing up to 4096 bytes of data
memory. The memory space is divided into as many as
16 banks that contain 256 bytes each. Figures 5-5
through 5-7 show the data memory organization for the
PIC18(L)F2X/4XK22 devices.
The data memory contains Special Function Registers
(SFRs) and General Purpose Registers (GPRs). The
SFRs are used for control and status of the controller
and peripheral functions, while GPRs are used for data
storage and scratchpad operations in the user’s
application. Any read of an unimplemented location will
read as ‘0’s.
The instruction set and architecture allow operations
across all banks. The entire data memory may be
accessed by Direct, Indirect or Indexed Addressing
modes. Addressing modes are discussed later in this
subsection.
To ensure that commonly used registers (SFRs and
select GPRs) can be accessed in a single cycle, PIC18
devices implement an Access Bank. This is a 256-byte
memory space that provides fast access to SFRs and
the lower portion of GPR Bank 0 without using the Bank
Select Register (BSR). Section 5.4.2 “Access Bank”
provides a detailed description of the Access RAM.
5.4.1
BANK SELECT REGISTER (BSR)
Large areas of data memory require an efficient
addressing scheme to make rapid access to any
address possible. Ideally, this means that an entire
address does not need to be provided for each read or
write operation. For PIC18 devices, this is accomplished with a RAM banking scheme. This divides the
memory space into 16 contiguous banks of 256 bytes.
Depending on the instruction, each location can be
addressed directly by its full 12-bit address, or an 8-bit
low-order address and a 4-bit Bank Pointer.
Most instructions in the PIC18 instruction set make use
of the Bank Pointer, known as the Bank Select Register
(BSR). This SFR holds the 4 Most Significant bits of a
location’s address; the instruction itself includes the
8 Least Significant bits. Only the four lower bits of the
BSR are implemented (BSR). The upper four bits
are unused; they will always read ‘0’ and cannot be
written to. The BSR can be loaded directly by using the
MOVLB instruction.
The value of the BSR indicates the bank in data
memory; the eight bits in the instruction show the
location in the bank and can be thought of as an offset
from the bank’s lower boundary. The relationship
between the BSR’s value and the bank division in data
memory is shown in Figures 5-5 through 5-7.
Since up to 16 registers may share the same low-order
address, the user must always be careful to ensure that
the proper bank is selected before performing a data
read or write. For example, writing what may be
program data to an 8-bit address of F9h while the BSR
is 0Fh will end up resetting the program counter.
While any bank can be selected, only those banks that
are actually implemented can be read or written to.
Writes to unimplemented banks are ignored, while
reads from unimplemented banks will return ‘0’s. Even
so, the STATUS register will still be affected as if the
operation was successful. The data memory maps in
Figures 5-5 through 5-7 indicate which banks are
implemented.
In the core PIC18 instruction set, only the MOVFF
instruction fully specifies the 12-bit address of the
source and target registers. This instruction ignores the
BSR completely when it executes. All other instructions
include only the low-order address as an operand and
must use either the BSR or the Access Bank to locate
their target registers.
2010-2021 Microchip Technology Inc.
DS40001412H-page 71
PIC18(L)F2X/4XK22
FIGURE 5-5:
DATA MEMORY MAP FOR PIC18(L)F23K22 AND PIC18(L)F43K22 DEVICES
BSR
= 0000
= 0001
= 0010
= 0011
= 0100
= 0101
= 0110
= 0111
= 1000
= 1001
= 1010
= 1011
= 1100
= 1101
= 1110
= 1111
When ‘a’ = 0:
Data Memory Map
00h
Access RAM
FFh
00h
GPR
Bank 0
Bank 3
Bank 4
Bank 5
Bank 6
Bank 7
Bank 8
Bank 9
FFh
00h
1FFh
200h
FFh
00h
2FFh
300h
FFh
00h
3FFh
400h
FFh
00h
4FFh
500h
FFh
00h
5FFh
600h
FFh
00h
6FFh
700h
FFh
00h
Unused
Read 00h
FFh
00h
AFFh
B00h
FFh
00h
BFFh
C00h
FFh
Bank 13 00h
CFFh
D00h
FFh
00h
DFFh
E00h
Bank 12
Bank 14
FFh
00h
Bank 15
Unused
SFR(1)
EFFh
F00h
F37h
F38h
F5Fh
F60h
SFR
FFh
DS40001412H-page 72
When ‘a’ = 1:
The BSR specifies the Bank
used by the instruction.
Access Bank
Access RAM Low
00h
5Fh
Access RAM High 60h
(SFRs)
FFh
8FFh
900h
9FFh
A00h
Bank 11
The second 160 bytes are
Special Function Registers
(from Bank 15).
7FFh
800h
FFh
00h
FFh
00h
Bank 10
The first 96 bytes are
general purpose RAM
(from Bank 0).
GPR
Bank 1
Bank 2
The BSR is ignored and the
Access Bank is used.
000h
05Fh
060h
0FFh
100h
FFFh
Note 1:
Addresses F38h through F5Fh are
also used by SFRs, but are not
part of the Access RAM. Users
must always use the complete
address or load the proper BSR
value to access these registers.
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
FIGURE 5-6:
DATA MEMORY MAP FOR PIC18(L)F24K22 AND PIC18(L)F44K22 DEVICES
BSR
= 0000
= 0001
= 0010
= 0011
= 0100
= 0101
= 0110
= 0111
= 1000
= 1001
= 1010
= 1011
= 1100
= 1101
= 1110
= 1111
When ‘a’ = 0:
Data Memory Map
00h
Access RAM
FFh
00h
GPR
Bank 0
Bank 3
Bank 4
Bank 5
Bank 6
Bank 7
Bank 8
Bank 9
GPR
FFh
00h
2FFh
300h
FFh
00h
3FFh
400h
FFh
00h
4FFh
500h
FFh
00h
5FFh
600h
FFh
00h
6FFh
700h
FFh
00h
Unused
Read 00h
AFFh
B00h
FFh
00h
BFFh
C00h
FFh
Bank 13 00h
CFFh
D00h
FFh
00h
DFFh
E00h
Bank 14
FFh
00h
Bank 15
Unused
SFR(1)
EFFh
F00h
F37h
F38h
F5Fh
F60h
SFR
FFh
2010-2021 Microchip Technology Inc.
The BSR specifies the Bank
used by the instruction.
Access Bank
Access RAM Low
00h
5Fh
Access RAM High 60h
(SFRs)
FFh
8FFh
900h
FFh
00h
Bank 12
When ‘a’ = 1:
7FFh
800h
FFh
00h
9FFh
A00h
Bank 11
The second 160 bytes are
Special Function Registers
(from Bank 15).
1FFh
200h
FFh
00h
FFh
00h
Bank 10
The first 96 bytes are
general purpose RAM
(from Bank 0).
GPR
Bank 1
Bank 2
The BSR is ignored and the
Access Bank is used.
000h
05Fh
060h
0FFh
100h
FFFh
Note 1:
Addresses F38h through F5Fh are
also used by SFRs, but are not
part of the Access RAM. Users
must always use the complete
address or load the proper BSR
value to access these registers.
DS40001412H-page 73
PIC18(L)F2X/4XK22
FIGURE 5-7:
DATA MEMORY MAP FOR PIC18(L)F25K22 AND PIC18(L)F45K22 DEVICES
BSR
= 0000
= 0001
= 0010
= 0011
= 0100
= 0101
= 0110
= 0111
= 1000
= 1001
= 1010
= 1011
= 1100
= 1101
= 1110
= 1111
When ‘a’ = 0:
Data Memory Map
00h
Access RAM
FFh
00h
GPR
Bank 0
Bank 3
Bank 4
Bank 5
Bank 6
Bank 7
Bank 8
Bank 9
Bank 10
GPR
FFh
00h
2FFh
300h
GPR
4FFh
500h
FFh
00h
GPR
FFh
00h
5FFh
600h
FFh
00h
6FFh
700h
FFh
00h
7FFh
800h
FFh
00h
8FFh
900h
FFh
00h
Unused
Read 00h
BFFh
C00h
FFh
Bank 13 00h
CFFh
D00h
FFh
00h
DFFh
E00h
FFh
00h
Bank 15
Unused
SFR(1)
FFh
Access Bank
Access RAM Low
00h
5Fh
Access RAM High 60h
(SFRs)
FFh
9FFh
A00h
EFFh
F00h
F37h
F38h
F5Fh
F60h
SFR
DS40001412H-page 74
The BSR specifies the Bank
used by the instruction.
3FFh
400h
FFh
00h
FFh
00h
Bank 14
When ‘a’ = 1:
GPR
AFFh
B00h
Bank 12
The second 160 bytes are
Special Function Registers
(from Bank 15).
1FFh
200h
FFh
00h
FFh
00h
Bank 11
The first 96 bytes are
general purpose RAM
(from Bank 0).
GPR
Bank 1
Bank 2
The BSR is ignored and the
Access Bank is used.
000h
05Fh
060h
0FFh
100h
FFFh
Note 1:
Addresses F38h through F5Fh are
also used by SFRs, but are not
part of the Access RAM. Users
must always use the complete
address or load the proper BSR
value to access these registers.
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
FIGURE 5-8:
DATA MEMORY MAP FOR PIC18(L)F26K22 AND PIC18(L)F46K22 DEVICES
BSR
= 0000
= 0001
= 0010
= 0011
= 0100
= 0101
= 0110
= 0111
= 1000
= 1001
= 1010
= 1011
= 1100
= 1101
= 1110
= 1111
When ‘a’ = 0:
Data Memory Map
00h
Access RAM
FFh
00h
GPR
Bank 0
Bank 3
Bank 4
Bank 5
Bank 6
Bank 7
Bank 8
Bank 9
Bank 10
Bank 11
Bank 12
The second 160 bytes are
Special Function Registers
(from Bank 15).
1FFh
200h
FFh
00h
GPR
FFh
00h
2FFh
300h
When ‘a’ = 1:
The BSR specifies the Bank
used by the instruction.
GPR
3FFh
400h
FFh
00h
GPR
4FFh
500h
FFh
00h
GPR
5FFh
600h
FFh
00h
GPR
FFh
00h
Access Bank
6FFh
700h
Access RAM Low
GPR
GPR
FFh
00h
00h
5Fh
Access RAM High 60h
(SFRs)
FFh
7FFh
800h
FFh
00h
8FFh
900h
GPR
9FFh
A00h
FFh
00h
GPR
FFh
00h
FFh
00h
FFh
Bank 13 00h
Bank 14
The first 96 bytes are
general purpose RAM
(from Bank 0).
GPR
Bank 1
Bank 2
The BSR is ignored and the
Access Bank is used.
000h
05Fh
060h
0FFh
100h
FFh
00h
FFh
00h
Bank 15
AFFh
B00h
GPR
BFFh
C00h
GPR
CFFh
D00h
GPR
DFFh
E00h
GPR
GPR
SFR(1)
F00h
F37h
F38h
F5Fh
F60h
SFR
FFh
2010-2021 Microchip Technology Inc.
FFFh
Note 1:
Addresses F38h through F5Fh are
also used by SFRs, but are not
part of the Access RAM. Users
must always use the complete
address or load the proper BSR
value to access these registers.
DS40001412H-page 75
PIC18(L)F2X/4XK22
FIGURE 5-9:
USE OF THE BANK SELECT REGISTER (DIRECT ADDRESSING)
BSR(1)
7
0
0
0
0
Bank Select(2)
0
0
0
1
1
000h
Data Memory
00h
Bank 0
100h
Bank 1
200h
300h
Bank 2
FFh
00h
From Opcode(2)
7
1
1
1
1
1
1
0
1
1
FFh
00h
FFh
00h
Bank 3
through
Bank 13
E00h
Bank 14
F00h
FFFh
Note 1:
2:
Bank 15
FFh
00h
FFh
00h
FFh
The Access RAM bit of the instruction can be used to force an override of the selected bank (BSR) to
the registers of the Access Bank.
The MOVFF instruction embeds the entire 12-bit address in the instruction.
DS40001412H-page 76
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
5.4.2
ACCESS BANK
While the use of the BSR with an embedded 8-bit
address allows users to address the entire range of
data memory, it also means that the user must always
ensure that the correct bank is selected. Otherwise,
data may be read from or written to the wrong location.
This can be disastrous if a GPR is the intended target
of an operation, but an SFR is written to instead.
Verifying and/or changing the BSR for each read or
write to data memory can become very inefficient.
To streamline access for the most commonly used data
memory locations, the data memory is configured with
an Access Bank, which allows users to access a
mapped block of memory without specifying a BSR.
The Access Bank consists of the first 96 bytes of memory (00h-5Fh) in Bank 0 and the last 160 bytes of memory (60h-FFh) in Block 15. The lower half is known as
the “Access RAM” and is composed of GPRs. This
upper half is also where the device’s SFRs are
mapped. These two areas are mapped contiguously in
the Access Bank and can be addressed in a linear
fashion by an 8-bit address (Figures 5-5 through 5-7).
The Access Bank is used by core PIC18 instructions
that include the Access RAM bit (the ‘a’ parameter in
the instruction). When ‘a’ is equal to ‘1’, the instruction
uses the BSR and the 8-bit address included in the
opcode for the data memory address. When ‘a’ is ‘0’,
however, the instruction is forced to use the Access
Bank address map; the current value of the BSR is
ignored entirely.
5.4.3
GENERAL PURPOSE REGISTER
FILE
PIC18 devices may have banked memory in the GPR
area. This is data RAM, which is available for use by all
instructions. GPRs start at the bottom of Bank 0
(address 000h) and grow upwards towards the bottom of
the SFR area. GPRs are not initialized by a Power-on
Reset and are unchanged on all other Resets.
5.4.4
SPECIAL FUNCTION REGISTERS
The Special Function Registers (SFRs) are registers
used by the CPU and peripheral modules for controlling
the desired operation of the device. These registers are
implemented as static RAM. SFRs start at the top of
data memory (FFFh) and extend downward to occupy
the top portion of Bank 15 (F38h to FFFh). A list of
these registers is given in Table 5-1 and Table 5-2.
The SFRs can be classified into two sets: those
associated with the “core” device functionality (ALU,
Resets and interrupts) and those related to the
peripheral functions. The Reset and interrupt registers
are described in their respective chapters, while the
ALU’s STATUS register is described later in this
section. Registers related to the operation of a
peripheral feature are described in the chapter for that
peripheral.
The SFRs are typically distributed among the
peripherals whose functions they control. Unused SFR
locations are unimplemented and read as ‘0’s.
Using this “forced” addressing allows the instruction to
operate on a data address in a single cycle, without
updating the BSR first. For 8-bit addresses of 60h and
above, this means that users can evaluate and operate
on SFRs more efficiently. The Access RAM below 60h
is a good place for data values that the user might need
to access rapidly, such as immediate computational
results or common program variables. Access RAM
also allows for faster and more code efficient context
saving and switching of variables.
The mapping of the Access Bank is slightly different
when the extended instruction set is enabled (XINST
Configuration bit = 1). This is discussed in more detail
in Section 5.7.3 “Mapping the Access Bank in
Indexed Literal Offset Mode”.
2010-2021 Microchip Technology Inc.
DS40001412H-page 77
PIC18(L)F2X/4XK22
TABLE 5-1:
Address
SPECIAL FUNCTION REGISTER MAP FOR PIC18(L)F2X/4XK22 DEVICES
Name
Address
Name
Address
Name
Address
Name
Address
Name
FFFh
TOSU
FD7h
TMR0H
FAFh
SPBRG1
F87h
—(2)
F5Fh
CCPR3H
FFEh
TOSH
FD6h
TMR0L
FAEh
RCREG1
F86h
—(2)
F5Eh
CCPR3L
(2)
F5Dh
CCP3CON
F5Ch
PWM3CON
—
FFDh
TOSL
FD5h
T0CON
FADh
TXREG1
F85h
FFCh
STKPTR
FD4h
—(2)
FACh
TXSTA1
F84h
PORTE
FFBh
PCLATU
FD3h
OSCCON
FABh
RCSTA1
F83h
PORTD(3)
F5Bh
ECCP3AS
FFAh
PCLATH
FD2h
OSCCON2
FAAh
EEADRH(4)
F82h
PORTC
F5Ah
PSTR3CON
FF9h
PCL
FD1h
WDTCON
FA9h
EEADR
F81h
PORTB
F59h
CCPR4H
FF8h
TBLPTRU
FD0h
RCON
FA8h
EEDATA
F80h
PORTA
F58h
CCPR4L
FF7h
TBLPTRH
FCFh
TMR1H
FA7h
EECON2(1)
F7Fh
IPR5
F57h
CCP4CON
FF6h
TBLPTRL
FCEh
TMR1L
FA6h
EECON1
F7Eh
PIR5
F56h
CCPR5H
FF5h
TABLAT
FCDh
T1CON
FA5h
IPR3
F7Dh
PIE5
F55h
CCPR5L
FF4h
PRODH
FCCh
T1GCON
FA4h
PIR3
F7Ch
IPR4
F54h
CCP5CON
FF3h
PRODL
FCBh SSP1CON3
FA3h
PIE3
F7Bh
PIR4
F53h
TMR4
FF2h
INTCON
FCAh
SSP1MSK
FA2h
IPR2
F7Ah
PIE4
F52h
PR4
FF1h
INTCON2
FC9h
SSP1BUF
FA1h
PIR2
F79h
CM1CON0
F51h
T4CON
FF0h
INTCON3
FC8h
SSP1ADD
FA0h
PIE2
F78h
CM2CON0
F50h
TMR5H
FEFh
INDF0(1)
FC7h
SSP1STAT
F9Fh
IPR1
F77h
CM2CON1
F4Fh
TMR5L
FEEh
POSTINC0(1)
FC6h SSP1CON1
F9Eh
PIR1
F76h
SPBRGH2
F4Eh
T5CON
FEDh POSTDEC0(1)
FC5h SSP1CON2
F9Dh
PIE1
F75h
SPBRG2
F4Dh
T5GCON
FECh
PREINC0(1)
FC4h
ADRESH
F9Ch
HLVDCON
F74h
RCREG2
F4Ch
TMR6
FEBh
PLUSW0(1)
FC3h
ADRESL
F9Bh
OSCTUNE
F73h
TXREG2
F4Bh
PR6
FEAh
FSR0H
FC2h
ADCON0
F9Ah
—(2)
F72h
TXSTA2
F4Ah
T6CON
FE9h
FSR0L
FC1h
ADCON1
F99h
—(2)
F71h
RCSTA2
F49h
CCPTMRS0
FE8h
WREG
FC0h
ADCON2
F98h
—(2)
F70h
BAUDCON2
F48h
CCPTMRS1
FE7h
INDF1(1)
FBFh
CCPR1H
F97h
—(2)
F6Fh
SSP2BUF
F47h
SRCON0
FE6h POSTINC1(1)
FBEh
CCPR1L
F96h
TRISE
F6Eh
SSP2ADD
F46h
SRCON1
FE5h POSTDEC1(1)
FBDh
CCP1CON
F95h
TRISD(3)
F6Dh
SSP2STAT
F45h
CTMUCONH
FE4h
PREINC1(1)
FBCh
TMR2
F94h
TRISC
F6Ch
SSP2CON1
F44h
CTMUCONL
FE3h
PLUSW1(1)
FBBh
PR2
F93h
TRISB
F6Bh
SSP2CON2
F43h
CTMUICON
FE2h
FSR1H
FBAh
T2CON
F92h
TRISA
F6Ah
SSP2MSK
F42h
VREFCON0
FE1h
FSR1L
FB9h PSTR1CON
F91h
—(2)
F69h
SSP2CON3
F41h
VREFCON1
FE0h
BSR
FB8h BAUDCON1
F90h
—(2)
F68h
CCPR2H
F40h
VREFCON2
FDFh
INDF2(1)
FB7h PWM1CON
F8Fh
—(2)
F67h
CCPR2L
F3Fh
PMD0
FB6h
F8Eh
—(2)
F66h
CCP2CON
F3Eh
PMD1
F8Dh
(3)
LATE
F65h
PWM2CON
F3Dh
PMD2
F8Ch
LATD(3)
F64h
ECCP2AS
F3Ch
ANSELE
FDEh POSTINC2(1)
FDDh POSTDEC2
(1)
FDCh
PREINC2(1)
FDBh
FDAh
FB5h
ECCP1AS
—
(2)
FB4h
T3GCON
PLUSW2(1)
FB3h
TMR3H
F8Bh
LATC
F63h
PSTR2CON
F3Bh
ANSELD
FSR2H
FB2h
TMR3L
F8Ah
LATB
F62h
IOCB
F3Ah
ANSELC
FD9h
FSR2L
FB1h
T3CON
F89h
LATA
F61h
WPUB
F39h
ANSELB
FD8h
STATUS
FB0h
SPBRGH1
F88h
—(2)
F60h
SLRCON
F38h
ANSELA
Note 1:
2:
3:
4:
This is not a physical register.
Unimplemented registers are read as ‘0’.
PIC18(L)F4XK22 devices only.
PIC18(L)F26K22 and PIC18(L)F46K22 devices only.
DS40001412H-page 78
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
TABLE 5-2:
Address
REGISTER FILE SUMMARY FOR PIC18(L)F2X/4XK22 DEVICES
Name
Bit 7
Bit 6
Bit 5
—
—
—
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
FFFh
TOSU
FFEh
TOSH
Top-of-Stack, High Byte (TOS)
0000 0000
FFDh
TOSL
Top-of-Stack, Low Byte (TOS)
0000 0000
FFCh
STKPTR
STKFUL
STKUNF
—
STKPTR
00-0 0000
FFBh
PCLATU
—
—
—
Holding Register for PC
---0 0000
FFAh
PCLATH
Holding Register for PC
FF9h
PCL
Holding Register for PC
FF8h
TBLPTRU
FF7h
TBLPTRH
Program Memory Table Pointer High Byte(TBLPTR)
0000 0000
FF6h
TBLPTRL
Program Memory Table Pointer Low Byte(TBLPTR)
0000 0000
FF5h
TABLAT
Program Memory Table Latch
0000 0000
FF4h
PRODH
Product Register, High Byte
xxxx xxxx
FF3h
PRODL
Product Register, Low Byte
FF2h
INTCON
GIE/GIEH
PEIE/GIEL
TMR0IE
INT0IE
RBIE
TMR0IF
INT0IF
RBIF
FF1h
INTCON2
RBPU
INTEDG0
INTEDG1
INTEDG2
—
TMR0IP
—
RBIP
1111 -1-1
FF0h
INTCON3
INT2IP
INT1IP
—
INT2IE
INT1IE
—
INT2IF
INT1IF
11-0 0-00
FEFh
INDF0
Uses contents of FSR0 to address data memory – value of FSR0 not changed (not a physical register)
---- ----
FEEh
POSTINC0
Uses contents of FSR0 to address data memory – value of FSR0 post-incremented (not a physical register)
---- ----
FEDh
POSTDEC0
Uses contents of FSR0 to address data memory – value of FSR0 post-decremented (not a physical register)
---- ----
FECh
PREINC0
Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register)
---- ----
FEBh
PLUSW0
Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register) –
value of FSR0 offset by W
---- ----
—
Top-of-Stack, Upper Byte (TOS)
Value on
POR, BOR
—
---0 0000
0000 0000
0000 0000
Program Memory Table Pointer Upper Byte(TBLPTR)
--00 0000
xxxx xxxx
0000 000x
FEAh
FSR0H
FE9h
FSR0L
FE8h
WREG
FE7h
INDF1
FE6h
POSTINC1
Uses contents of FSR1 to address data memory – value of FSR1 post-incremented (not a physical register) ---- ----
FE5h
POSTDEC1
Uses contents of FSR1 to address data memory – value of FSR1 post-decremented (not a physical register) ---- ----
FE4h
PREINC1
FE3h
PLUSW1
FE2h
FSR1H
FE1h
FSR1L
FE0h
BSR
—
FDFh
INDF2
Uses contents of FSR2 to address data memory – value of FSR2 not changed (not a physical register)
FDEh
POSTINC2
Uses contents of FSR2 to address data memory – value of FSR2 post-incremented (not a physical register) ---- ----
FDDh
POSTDEC2
Uses contents of FSR2 to address data memory – value of FSR2 post-decremented (not a physical register) ---- ----
FDCh
PREINC2
FDBh
PLUSW2
FDAh
FSR2H
FD9h
FSR2L
FD8h
STATUS
FD7h
TMR0H
Timer0 Register, High Byte
FD6h
TMR0L
Timer0 Register, Low Byte
FD5h
T0CON
FD3h
OSCCON
IDLEN
FD2h
OSCCON2
PLLRDY
Legend:
Note 1:
2:
3:
4:
—
—
—
—
Indirect Data Memory Address Pointer 0, High Byte
Indirect Data Memory Address Pointer 0, Low Byte
xxxx xxxx
Working Register
xxxx xxxx
Uses contents of FSR1 to address data memory – value of FSR1 not changed (not a physical register)
Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented (not a physical register)
Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented (not a physical register) –
value of FSR1 offset by W
—
—
—
—
Indirect Data Memory Address Pointer 1, High Byte
Indirect Data Memory Address Pointer 1, Low Byte
—
—
---- 0000
—
---- ----
---- ------- ------- 0000
xxxx xxxx
Bank Select Register
---- 0000
---- ----
Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) ---- ---Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register) –
value of FSR2 offset by W
—
—
—
—
Indirect Data Memory Address Pointer 2, High Byte
Indirect Data Memory Address Pointer 2, Low Byte
—
TMR0ON
—
T08BIT
—
T0CS
N
T0SE
IRCF
SOSCRUN
—
MFIOSEL
OV
Z
---- ------- 0000
xxxx xxxx
DC
C
---x xxxx
0000 0000
xxxx xxxx
PSA
T0PS
OSTS
HFIOFS
SOSCGO
PRISD
1111 1111
SCS
MFIOFS
LFIOFS
0011 q000
00-0 01x0
x = unknown, u = unchanged, — = unimplemented, q = value depends on condition
PIC18(L)F4XK22 devices only.
PIC18(L)F2XK22 devices only.
PIC18(L)F23/24K22 and PIC18(L)F43/44K22 devices only.
PIC18(L)F26K22 and PIC18(L)F46K22 devices only.
2010-2021 Microchip Technology Inc.
DS40001412H-page 79
PIC18(L)F2X/4XK22
TABLE 5-2:
Address
REGISTER FILE SUMMARY FOR PIC18(L)F2X/4XK22 DEVICES (CONTINUED)
Name
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
—
—
—
—
—
IPEN
SBOREN
—
RI
TO
Bit 2
Bit 0
—
—
SWDTEN
---- ---0
PD
POR
BOR
01-1 1100
FD1h
WDTCON
FD0h
RCON
FCFh
TMR1H
Holding Register for the Most Significant Byte of the 16-bit TMR1 Register
FCEh
TMR1L
Least Significant Byte of the 16-bit TMR1 Register
FCDh
T1CON
FCCh
T1GCON
TMR1GE
T1GPOL
T1GTM
FCBh
SSP1CON3
ACKTIM
PCIE
SCIE
FCAh
SSP1MSK
SSP1 MASK Register bits
FC9h
SSP1BUF
SSP1 Receive Buffer/Transmit Register
FC8h
SSP1ADD
FC7h
SSP1STAT
SMP
CKE
D/A
P
FC6h
SSP1CON1
WCOL
SSPOV
SSPEN
CKP
FC5h
SSP1CON2
GCEN
ACKSTAT
ACKDT
ACKEN
FC4h
ADRESH
A/D Result, High Byte
FC3h
ADRESL
A/D Result, Low Byte
FC2h
ADCON0
—
FC1h
ADCON1
TRIGSEL
—
FC0h
ADCON2
ADFM
—
TMR1CS
T1CKPS
T1SOSCEN
T1SYNC
T1GSPM
T1GGO/
DONE
T1GVAL
BOEN
SDAHT
SBCDE
xxxx xxxx
xxxx xxxx
T1RD16
TMR1ON
T1GSS
AHEN
DHEN
xxxx xxxx
R/W
PEN
UA
BF
RSEN
SEN
0000 0000
0000 0000
xxxx xxxx
GO/DONE
—
0000 0000
xxxx xxxx
CHS
—
0000 0000
0000 0000
SSPM
RCEN
0000 0000
0000 xx00
1111 1111
SSP1 Address Register in I2C Client Mode. SSP1 Baud Rate Reload Register in I2C Host Mode
S
Value on
POR, BOR
Bit 1
PVCFG
ADON
NVCFG
ACQT
ADCS
--00 0000
0--- 0000
0-00 0000
FBFh
CCPR1H
Capture/Compare/PWM Register 1, High Byte
xxxx xxxx
FBEh
CCPR1L
Capture/Compare/PWM Register 1, Low Byte
xxxx xxxx
FBDh
CCP1CON
FBCh
TMR2
FBBh
PR2
FBAh
T2CON
—
FB9h
PSTR1CON
—
—
—
STR1SYNC
STR1D
STR1C
STR1B
STR1A
---0 0001
FB8h
BAUDCON1
ABDOVF
RCIDL
DTRXP
CKTXP
BRG16
—
WUE
ABDEN
0100 0-00
P1M
DC1B
CCP1M
0000 0000
Timer2 Register
0000 0000
Timer2 Period Register
T2OUTPS
1111 1111
TMR2ON
T2CKPS
FB7h
PWM1CON
P1RSEN
FB6h
ECCP1AS
CCP1ASE
FB4h
T3GCON
TMR3GE
FB3h
TMR3H
Holding Register for the Most Significant Byte of the 16-bit TMR3 Register
FB2h
TMR3L
Least Significant Byte of the 16-bit TMR3 Register
FB1h
T3CON
FB0h
SPBRGH1
EUSART1 Baud Rate Generator, High Byte
0000 0000
FAFh
SPBRG1
EUSART1 Baud Rate Generator, Low Byte
0000 0000
FAEh
RCREG1
EUSART1 Receive Register
0000 0000
FADh
TXREG1
EUSART1 Transmit Register
FACh
TXSTA1
CSRC
TX9
TXEN
SYNC
SENDB
BRGH
TRMT
TX9D
FABh
RCSTA1
SPEN
RX9
SREN
CREN
ADDEN
FERR
OERR
RX9D
FAAh
EEADRH(5)
—
—
—
—
—
—
FA9h
EEADR
FA8h
EEDATA
EEPROM Data Register
FA7h
EECON2
EEPROM Control Register 2 (not a physical register)
FA6h
EECON1
EEPGD
CFGS
—
FREE
WRERR
WREN
WR
RD
xx-0 x000
FA5h
IPR3
SSP2IP
BCL2IP
RC2IP
TX2IP
CTMUIP
TMR5GIP
TMR3GIP
TMR1GIP
0000 0000
FA4h
PIR3
SSP2IF
BCL2IF
RC2IF
TX2IF
CTMUIF
TMR5GIF
TMR3GIF
TMR1GIF
0000 0000
FA3h
PIE3
SSP2IE
BCL2IE
RC2IE
TX2IE
CTMUIE
TMR5GIE
TMR3GIE
TMR1GIE
0000 0000
Legend:
Note 1:
2:
3:
4:
P1DC
-000 0000
CCP1AS
T3GPOL
TMR3CS
T3GTM
0000 0000
PSS1AC
T3GSPM
T3CKPS
T3GGO/
DONE
T3SOSCEN
PSS1BD
0000 0000
T3GSS
0000 0x00
T3GVAL
T3SYNC
xxxx xxxx
xxxx xxxx
T3RD16
TMR3ON
0000 0000
0000 0000
EEADR
EEADR
0000 0010
0000 000x
---- --00
0000 0000
0000 0000
---- --00
x = unknown, u = unchanged, — = unimplemented, q = value depends on condition
PIC18(L)F4XK22 devices only.
PIC18(L)F2XK22 devices only.
PIC18(L)F23/24K22 and PIC18(L)F43/44K22 devices only.
PIC18(L)F26K22 and PIC18(L)F46K22 devices only.
DS40001412H-page 80
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
TABLE 5-2:
Address
REGISTER FILE SUMMARY FOR PIC18(L)F2X/4XK22 DEVICES (CONTINUED)
Name
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Value on
POR, BOR
FA2h
IPR2
OSCFIP
C1IP
C2IP
EEIP
BCL1IP
HLVDIP
TMR3IP
CCP2IP
1111 1111
FA1h
PIR2
OSCFIF
C1IF
C2IF
EEIF
BCL1IF
HLVDIF
TMR3IF
CCP2IF
0000 0000
FA0h
PIE2
OSCFIE
C1IE
C2IE
EEIE
BCL1IE
HLVDIE
TMR3IE
CCP2IE
0000 0000
F9Fh
IPR1
—
ADIP
RC1IP
TX1IP
SSP1IP
CCP1IP
TMR2IP
TMR1IP
-111 1111
F9Eh
PIR1
—
ADIF
RC1IF
TX1IF
SSP1IF
CCP1IF
TMR2IF
TMR1IF
-000 0000
F9Dh
PIE1
—
ADIE
RC1IE
TX1IE
SSP1IE
CCP1IE
TMR2IE
TMR1IE
-000 0000
F9Ch
HLVDCON
VDIRMAG
BGVST
IRVST
HLVDEN
F9Bh
OSCTUNE
INTSRC
PLLEN
F96h
TRISE
WPUE3
—
F95h
TRISD(1)
TRISD7
TRISD6
TRISD5
TRISD4
TRISD3
TRISD2
F94h
TRISC
TRISC7
TRISC6
TRISC5
TRISC4
TRISC3
TRISC2
F93h
TRISB
TRISB7
TRISB6
TRISB5
TRISB4
TRISB3
TRISB2
TRISB1
TRISB0
1111 1111
F92h
TRISA
TRISA7
TRISA6
TRISA5
TRISA4
TRISA3
TRISA2
TRISA1
TRISA0
1111 1111
HLVDL
0000 0000
TUN
—
—
—
00xx xxxx
TRISE2(1)
TRISE1(1)
TRISE0(1)
1--- -111
TRISD1
TRISD0
1111 1111
TRISC1
TRISC0
1111 1111
F8Dh
LATE(1)
—
—
—
—
—
LATE2
LATE1
LATE0
---- -xxx
F8Ch
LATD(1)
LATD7
LATD6
LATD5
LATD4
LATD3
LATD2
LATD1
LATD0
xxxx xxxx
F8Bh
LATC
LATC7
LATC6
LATC5
LATC4
LATC3
LATC2
LATC1
LATC0
xxxx xxxx
F8Ah
LATB
LATB7
LATB6
LATB5
LATB4
LATB3
LATB2
LATB1
LATB0
xxxx xxxx
F89h
LATA
LATA7
LATA6
LATA5
LATA4
LATA3
LATA2
LATA1
LATA0
xxxx xxxx
PORTE(2)
—
—
—
—
RE3
—
—
—
---- x---
PORTE(1)
—
—
—
—
RE3
RE2
RE1
RE0
---- x000
F84h
F83h
PORTD(1)
RD7
RD6
RD5
RD4
RD3
RD2
RD1
RD0
0000 0000
F82h
PORTC
RC7
RC6
RC5
RC4
RC3
RC2
RC1
RC0
0000 00xx
F81h
PORTB
RB7
RB6
RB5
RB4
RB3
RB2
RB1
RB0
xxx0 0000
F80h
PORTA
RA7
RA6
RA5
RA4
RA3
RA2
RA1
RA0
xx0x 0000
F7Fh
IPR5
—
—
—
—
—
TMR6IP
TMR5IP
TMR4IP
---- -111
F7Eh
PIR5
—
—
—
—
—
TMR6IF
TMR5IF
TMR4IF
---- -111
F7Dh
PIE5
—
—
—
—
—
TMR6IE
TMR5IE
TMR4IE
---- -000
F7Ch
IPR4
—
—
—
—
—
CCP5IP
CCP4IP
CCP3IP
---- -000
F7Bh
PIR4
—
—
—
—
—
CCP5IF
CCP4IF
CCP3IF
---- -000
F7Ah
PIE4
—
—
—
—
—
CCP5IE
CCP4IE
CCP3IE
---- -000
F79h
CM1CON0
C1ON
C1OUT
C1OE
C1POL
C1SP
C1R
C1CH
0000 1000
F78h
CM2CON0
C2ON
C2OUT
C2OE
C2POL
C2SP
C2R
C2CH
0000 1000
F77h
CM2CON1
MC1OUT
MC2OUT
C1RSEL
C2RSEL
C1HYS
C2HYS
F76h
SPBRGH2
EUSART2 Baud Rate Generator, High Byte
0000 0000
F75h
SPBRG2
EUSART2 Baud Rate Generator, Low Byte
0000 0000
F74h
RCREG2
EUSART2 Receive Register
0000 0000
F73h
TXREG2
EUSART2 Transmit Register
F72h
TXSTA2
CSRC
TX9
TXEN
SYNC
SENDB
BRGH
TRMT
TX9D
0000 0010
F71h
RCSTA2
SPEN
RX9
SREN
CREN
ADDEN
FERR
OERR
RX9D
0000 000x
F70h
BAUDCON2
ABDOVF
RCIDL
DTRXP
CKTXP
BRG16
—
WUE
ABDEN
01x0 0-00
F6Fh
SSP2BUF
F6Eh
SSP2ADD
SSP2 Address Register in I2C Client Mode. SSP2 Baud Rate Reload Register in I 2C Host Mode
F6Dh
SSP2STAT
SMP
CKE
D/A
P
F6Ch
SSP2CON1
WCOL
SSPOV
SSPEN
CKP
F6Bh
SSP2CON2
GCEN
ACKSTAT
ACKDT
ACKEN
F6Ah
SSP2MSK
F69h
SSP2CON3
Legend:
Note 1:
2:
3:
4:
C1SYNC
C2SYNC
0000 0000
SSP2 Receive Buffer/Transmit Register
S
xxxx xxxx
R/W
0000 0000
UA
BF
PEN
RSEN
SEN
SBCDE
AHEN
DHEN
SSPM
RCEN
PCIE
SCIE
BOEN
SDAHT
0000 0000
0000 0000
SSP1 MASK Register bits
ACKTIM
0000 0000
0000 0000
1111 1111
0000 0000
x = unknown, u = unchanged, — = unimplemented, q = value depends on condition
PIC18(L)F4XK22 devices only.
PIC18(L)F2XK22 devices only.
PIC18(L)F23/24K22 and PIC18(L)F43/44K22 devices only.
PIC18(L)F26K22 and PIC18(L)F46K22 devices only.
2010-2021 Microchip Technology Inc.
DS40001412H-page 81
PIC18(L)F2X/4XK22
TABLE 5-2:
Address
REGISTER FILE SUMMARY FOR PIC18(L)F2X/4XK22 DEVICES (CONTINUED)
Name
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
F68h
CCPR2H
Capture/Compare/PWM Register 2, High Byte
F67h
CCPR2L
Capture/Compare/PWM Register 2, Low Byte
F66h
CCP2CON
F65h
PWM2CON
P2RSEN
F64h
ECCP2AS
CCP2ASE
F63h
PSTR2CON
F62h
F61h
P2M
DC2B
Bit 1
Bit 0
xxxx xxxx
xxxx xxxx
CCP2M
0000 0000
P2DC
CCP2AS
Value on
POR, BOR
0000 0000
PSS2AC
PSS2BD
0000 0000
—
—
—
STR2SYNC
STR2D
STR2C
STR2B
STR2A
---0 0001
IOCB
IOCB7
IOCB6
IOCB5
IOCB4
—
—
—
—
1111 ----
WPUB
WPUB7
WPUB6
WPUB5
WPUB4
WPUB3
WPUB2
WPUB1
WPUB0
1111 1111
F60h
SLRCON(2)
—
—
—
—
—
SLRC
SLRB
SLRA
---- -111
SLRCON(1)
—
—
—
SLRE
SLRD
SLRC
SLRB
SLRA
F5Fh
CCPR3H
F5Eh
CCPR3L
F5Dh
CCP3CON
F5Ch
PWM3CON
P3RSEN
F5Bh
ECCP3AS
CCP3ASE
F5Ah
PSTR3CON
F59h
CCPR4H
F58h
CCPR4L
F57h
CCP4CON
xxxx xxxx
Capture/Compare/PWM Register 3, Low Byte
xxxx xxxx
P3M
—
DC3B
CCP3M
0000 0000
P3DC
CCP3AS
—
—
0000 0000
PSS3AC
STR3SYNC
STR3D
PSS3BD
STR3C
STR3B
STR3A
Capture/Compare/PWM Register 4, High Byte
—
DC4B
0000 0000
---0 0001
xxxx xxxx
Capture/Compare/PWM Register 4, Low Byte
—
---1 1111
Capture/Compare/PWM Register 3, High Byte
xxxx xxxx
CCP4M
--00 0000
F56h
CCPR5H
Capture/Compare/PWM Register 5, High Byte
xxxx xxxx
F55h
CCPR5L
Capture/Compare/PWM Register 5, Low Byte
xxxx xxxx
F54h
CCP5CON
F53h
TMR4
F52h
PR4
F51h
T4CON
F50h
TMR5H
Holding Register for the Most Significant Byte of the 16-bit TMR5 Register
F4Fh
TMR5L
Least Significant Byte of the 16-bit TMR5 Register
F4Eh
T5CON
F4Dh
T5GCON
F4Ch
TMR6
Timer6 Register
F4Bh
PR6
Timer6 Period Register
F4Ah
T6CON
F49h
CCPTMRS0
—
—
DC5B
CCP5M
--00 0000
Timer4 Register
0000 0000
Timer4 Period Register
—
TMR5CS
TMR5GE
T5GPOL
—
T5CKPS
T5GTM
TMR4ON
T5SOSCEN
T5SYNC
T5GGO/
DONE
T5GVAL
T5GSPM
—
CCPTMRS1
F47h
SRCON0
SRLEN
F46h
SRCON1
SRSPE
SRSCKE
SRSC2E
F45h
CTMUCONH
CTMUEN
—
CTMUSIDL
F44h
CTMUCONL
EDG2POL
EDG2SEL
F43h
CTMUICON
F42h
VREFCON0
FVREN
FVRST
F41h
VREFCON1
DACEN
DACLPS
F40h
VREFCON2
—
—
—
F3Fh
PMD0
UART2MD
UART1MD
TMR6MD
TMR5MD
TMR4MD
F3Eh
PMD1
MSSP2MD
MSSP1MD
—
CCP5MD
F3Dh
PMD2
—
—
—
—
—
—
SRCLK
0000 0000
0000 0000
T5RD16
TMR5ON
T5GSS
0000 0000
0000 0x00
TMR6ON
T6CKPS
-000 0000
—
C1TSEL
00-0 0-00
C4TSEL
---- 0000
C5TSEL
SRQEN
SRNQEN
SRPS
SRPR
SRSC1E
SRRPE
SRRCKE
SRRC2E
SRRC1E
0000 0000
TGEN
EDGEN
EDGSEQEN
IDISSEN
CTTRIG
0000 0000
EDG1POL
EDG1SEL
FVRS
—
—
—
0000 0000
EDG2STAT EDG1STAT
0000 0000
IRNG
0000 0000
ITRIM
DACOE
-000 0000
1111 1111
C2TSEL
F48h
—
T4CKPS
0000 0000
T6OUTPS
C3TSEL
—
1111 1111
T4OUTPS
—
—
0001 ----
—
DACNSS
000- 00-0
TMR3MD
TMR2MD
TMR1MD
CCP4MD
CCP3MD
CCP2MD
CCP1MD
00-0 0000
CTMUMD
CMP2MD
CMP1MD
ADCMD
---- 0000
DACPSS
DACR
---0 0000
0000 0000
F3Ch
ANSELE(1)
—
—
—
—
—
ANSE2
ANSE1
ANSE0
---- -111
F3Bh
ANSELD(1)
ANSD7
ANSD6
ANSD5
ANSD4
ANSD3
ANSD2
ANSD1
ANSD0
1111 1111
Legend:
Note 1:
2:
3:
4:
x = unknown, u = unchanged, — = unimplemented, q = value depends on condition
PIC18(L)F4XK22 devices only.
PIC18(L)F2XK22 devices only.
PIC18(L)F23/24K22 and PIC18(L)F43/44K22 devices only.
PIC18(L)F26K22 and PIC18(L)F46K22 devices only.
DS40001412H-page 82
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
TABLE 5-2:
Address
Name
REGISTER FILE SUMMARY FOR PIC18(L)F2X/4XK22 DEVICES (CONTINUED)
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Value on
POR, BOR
F3Ah
ANSELC
ANSC7
ANSC6
ANSC5
ANSC4
ANSC3
ANSC2
—
—
1111 11--
F39h
ANSELB
—
—
ANSB5
ANSB4
ANSB3
ANSB2
ANSB1
ANSB0
--11 1111
F38h
ANSELA
—
—
ANSA5
—
ANSA3
ANSA2
ANSA1
ANSA0
--1- 1111
Legend:
Note 1:
2:
3:
4:
x = unknown, u = unchanged, — = unimplemented, q = value depends on condition
PIC18(L)F4XK22 devices only.
PIC18(L)F2XK22 devices only.
PIC18(L)F23/24K22 and PIC18(L)F43/44K22 devices only.
PIC18(L)F26K22 and PIC18(L)F46K22 devices only.
2010-2021 Microchip Technology Inc.
DS40001412H-page 83
PIC18(L)F2X/4XK22
5.4.5
STATUS REGISTER
The STATUS register, shown in Register 5-2, contains
the arithmetic status of the ALU. As with any other SFR,
it can be the operand for any instruction.
If the STATUS register is the destination for an instruction that affects the Z, DC, C, OV or N bits, the results
of the instruction are not written; instead, the STATUS
register is updated according to the instruction performed. Therefore, the result of an instruction with the
STATUS register as its destination may be different
than intended. As an example, CLRF STATUS will set
the Z bit and leave the remaining Status bits
unchanged (‘000u u1uu’).
5.5
It is recommended that only BCF, BSF, SWAPF, MOVFF
and MOVWF instructions are used to alter the STATUS
register, because these instructions do not affect the Z,
C, DC, OV or N bits in the STATUS register.
For other instructions that do not affect Status bits, see
the instruction set summaries in Section 25.2
“Extended Instruction Set” and Table 25-3.
Note:
The C and DC bits operate as the borrow
and digit borrow bits, respectively, in
subtraction.
Register Definitions: Status
REGISTER 5-2:
U-0
STATUS: STATUS REGISTER
U-0
—
—
U-0
—
R/W-x
N
R/W-x
OV
R/W-x
R/W-x
R/W-x
(1)
Z
DC
bit 7
C(1)
bit 0
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 7-5
Unimplemented: Read as ‘0’
bit 4
N: Negative bit
This bit is used for signed arithmetic (two’s complement). It indicates whether the result was negative
(ALU MSB = 1).
1 = Result was negative
0 = Result was positive
bit 3
OV: Overflow bit
This bit is used for signed arithmetic (two’s complement). It indicates an overflow of the 7-bit
magnitude which causes the sign bit (bit 7 of the result) to change state.
1 = Overflow occurred for signed arithmetic (in this arithmetic operation)
0 = No overflow occurred
bit 2
Z: Zero bit
1 = The result of an arithmetic or logic operation is zero
0 = The result of an arithmetic or logic operation is not zero
bit 1
DC: Digit Carry/Borrow bit (ADDWF, ADDLW,SUBLW,SUBWF instructions)(1)
1 = A carry-out from the 4th low-order bit of the result occurred
0 = No carry-out from the 4th low-order bit of the result
bit 0
C: Carry/Borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions)(1)
1 = A carry-out from the Most Significant bit of the result occurred
0 = No carry-out from the Most Significant bit of the result occurred
Note 1:
For Borrow, the polarity is reversed. A subtraction is executed by adding the two’s complement of the
second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high-order or low-order
bit of the source register.
DS40001412H-page 84
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
5.6
Data Addressing Modes
Note:
The execution of some instructions in the
core PIC18 instruction set are changed
when the PIC18 extended instruction set is
enabled. See Section 5.7 “Data Memory
and the Extended Instruction Set” for
more information.
While the program memory can be addressed in only
one way – through the program counter – information
in the data memory space can be addressed in several
ways. For most instructions, the addressing mode is
fixed. Other instructions may use up to three modes,
depending on which operands are used and whether or
not the extended instruction set is enabled.
The addressing modes are:
•
•
•
•
Inherent
Literal
Direct
Indirect
An additional addressing mode, Indexed Literal Offset,
is available when the extended instruction set is
enabled (XINST Configuration bit = 1). Its operation is
discussed in greater detail in Section 5.7.1 “Indexed
Addressing with Literal Offset”.
5.6.1
INHERENT AND LITERAL
ADDRESSING
Many PIC18 control instructions do not need any argument at all; they either perform an operation that globally affects the device or they operate implicitly on one
register. This addressing mode is known as Inherent
Addressing. Examples include SLEEP, RESET and DAW.
Other instructions work in a similar way but require an
additional explicit argument in the opcode. This is
known as Literal Addressing mode because they
require some literal value as an argument. Examples
include ADDLW and MOVLW, which respectively, add or
move a literal value to the W register. Other examples
include CALL and GOTO, which include a 20-bit
program memory address.
5.6.2
Purpose Register File”) or a location in the Access
Bank (Section 5.4.2 “Access Bank”) as the data
source for the instruction.
The Access RAM bit ‘a’ determines how the address is
interpreted. When ‘a’ is ‘1’, the contents of the BSR
(Section 5.4.1 “Bank Select Register (BSR)”) are
used with the address to determine the complete 12-bit
address of the register. When ‘a’ is ‘0’, the address is
interpreted as being a register in the Access Bank.
Addressing that uses the Access RAM is sometimes
also known as Direct Forced Addressing mode.
A few instructions, such as MOVFF, include the entire
12-bit address (either source or destination) in their
opcodes. In these cases, the BSR is ignored entirely.
The destination of the operation’s results is determined
by the destination bit ‘d’. When ‘d’ is ‘1’, the results are
stored back in the source register, overwriting its original contents. When ‘d’ is ‘0’, the results are stored in
the W register. Instructions without the ‘d’ argument
have a destination that is implicit in the instruction; their
destination is either the target register being operated
on or the W register.
5.6.3
INDIRECT ADDRESSING
Indirect addressing allows the user to access a location
in data memory without giving a fixed address in the
instruction. This is done by using File Select Registers
(FSRs) as pointers to the locations which are to be read
or written. Since the FSRs are themselves located in
RAM as Special File Registers, they can also be
directly manipulated under program control. This
makes FSRs very useful in implementing data structures, such as tables and arrays in data memory.
The registers for indirect addressing are also
implemented with Indirect File Operands (INDFs) that
permit automatic manipulation of the pointer value with
auto-incrementing, auto-decrementing or offsetting
with another value. This allows for efficient code, using
loops, such as the example of clearing an entire RAM
bank in Example 5-5.
EXAMPLE 5-5:
DIRECT ADDRESSING
LFSR
CLRF
Direct addressing specifies all or part of the source
and/or destination address of the operation within the
opcode itself. The options are specified by the
arguments accompanying the instruction.
NEXT
In the core PIC18 instruction set, bit-oriented and byteoriented instructions use some version of direct
addressing by default. All of these instructions include
some 8-bit literal address as their Least Significant
Byte. This address specifies either a register address in
one of the banks of data RAM (Section 5.4.3 “General
BRA
CONTINUE
2010-2021 Microchip Technology Inc.
BTFSS
HOW TO CLEAR RAM
(BANK 1) USING
INDIRECT ADDRESSING
FSR0, 100h ;
POSTINC0
; Clear INDF
; register then
; inc pointer
FSR0H, 1
; All done with
; Bank1?
NEXT
; NO, clear next
; YES, continue
DS40001412H-page 85
PIC18(L)F2X/4XK22
5.6.3.1
FSR Registers and the INDF
Operand
5.6.3.2
At the core of indirect addressing are three sets of registers: FSR0, FSR1 and FSR2. Each represents a pair
of 8-bit registers, FSRnH and FSRnL. Each FSR pair
holds a 12-bit value, therefore, the four upper bits of the
FSRnH register are not used. The 12-bit FSR value can
address the entire range of the data memory in a linear
fashion. The FSR register pairs, then, serve as pointers
to data memory locations.
In addition to the INDF operand, each FSR register pair
also has four additional indirect operands. Like INDF,
these are “virtual” registers which cannot be directly
read or written. Accessing these registers actually
accesses the location to which the associated FSR
register pair points, and also performs a specific action
on the FSR value. They are:
• POSTDEC: accesses the location to which the
FSR points, then automatically decrements the
FSR by 1 afterwards
• POSTINC: accesses the location to which the
FSR points, then automatically increments the
FSR by 1 afterwards
• PREINC: automatically increments the FSR by
one, then uses the location to which the FSR
points in the operation
• PLUSW: adds the signed value of the W register
(range of -127 to 128) to that of the FSR and uses
the location to which the result points in the
operation.
Indirect addressing is accomplished with a set of
Indirect File Operands, INDF0 through INDF2. These
can be thought of as “virtual” registers: they are
mapped in the SFR space but are not physically
implemented. Reading or writing to a particular INDF
register actually accesses its corresponding FSR
register pair. A read from INDF1, for example, reads
the data at the address indicated by FSR1H:FSR1L.
Instructions that use the INDF registers as operands
actually use the contents of their corresponding FSR as
a pointer to the instruction’s target. The INDF operand
is just a convenient way of using the pointer.
Because indirect addressing uses a full 12-bit address,
data RAM banking is not necessary. Thus, the current
contents of the BSR and the Access RAM bit have no
effect on determining the target address.
FIGURE 5-10:
FSR Registers and POSTINC,
POSTDEC, PREINC and PLUSW
In this context, accessing an INDF register uses the
value in the associated FSR register without changing
it. Similarly, accessing a PLUSW register gives the
FSR value an offset by that in the W register; however,
neither W nor the FSR is actually changed in the
operation. Accessing the other virtual registers
changes the value of the FSR register.
INDIRECT ADDRESSING
000h
Using an instruction with one of the
indirect addressing registers as the
operand....
Bank 0
ADDWF, INDF1, 1
100h
Bank 1
200h
...uses the 12-bit address stored in
the FSR pair associated with that
register....
300h
FSR1H:FSR1L
7
0
x x x x 1 1 1 0
7
0
Bank 2
Bank 3
through
Bank 13
1 1 0 0 1 1 0 0
...to determine the data memory
location to be used in that operation.
In this case, the FSR1 pair contains
ECCh. This means the contents of
location ECCh will be added to that
of the W register and stored back in
ECCh.
E00h
Bank 14
F00h
FFFh
Bank 15
Data Memory
DS40001412H-page 86
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
Operations on the FSRs with POSTDEC, POSTINC
and PREINC affect the entire register pair; that is,
rollovers of the FSRnL register from FFh to 00h carry
over to the FSRnH register. On the other hand, results
of these operations do not change the value of any
flags in the STATUS register (e.g., Z, N, OV, etc.).
The PLUSW register can be used to implement a form
of indexed addressing in the data memory space. By
manipulating the value in the W register, users can
reach addresses that are fixed offsets from pointer
addresses. In some applications, this can be used to
implement some powerful program control structure,
such as software stacks, inside of data memory.
5.6.3.3
Operations by FSRs on FSRs
Indirect addressing operations that target other FSRs
or virtual registers represent special cases. For
example, using an FSR to point to one of the virtual
registers will not result in successful operations. As a
specific case, assume that FSR0H:FSR0L contains
FE7h, the address of INDF1. Attempts to read the
value of the INDF1 using INDF0 as an operand will
return 00h. Attempts to write to INDF1 using INDF0 as
the operand will result in a NOP.
On the other hand, using the virtual registers to write to
an FSR pair may not occur as planned. In these cases,
the value will be written to the FSR pair but without any
incrementing or decrementing. Thus, writing to either
the INDF2 or POSTDEC2 register will write the same
value to the FSR2H:FSR2L.
Since the FSRs are physical registers mapped in the
SFR space, they can be manipulated through all direct
operations. Users may proceed cautiously when working on these registers, particularly if their code uses
indirect addressing.
Similarly, operations by indirect addressing are generally
permitted on all other SFRs. Users may exercise the
appropriate caution that they do not inadvertently change
settings that might affect the operation of the device.
5.7
Data Memory and the Extended
Instruction Set
Enabling the PIC18 extended instruction set (XINST
Configuration bit = 1) significantly changes certain
aspects of data memory and its addressing. Specifically, the use of the Access Bank for many of the core
PIC18 instructions is different; this is due to the introduction of a new addressing mode for the data memory
space.
5.7.1
INDEXED ADDRESSING WITH
LITERAL OFFSET
Enabling the PIC18 extended instruction set changes
the behavior of indirect addressing using the FSR2
register pair within Access RAM. Under the proper
conditions, instructions that use the Access Bank – that
is, most bit-oriented and byte-oriented instructions –
can invoke a form of indexed addressing using an
offset specified in the instruction. This special
addressing mode is known as Indexed Addressing with
Literal Offset, or Indexed Literal Offset mode.
When using the extended instruction set, this
addressing mode requires the following:
• The use of the Access Bank is forced (‘a’ = 0) and
• The file address argument is less than or equal to
5Fh.
Under these conditions, the file address of the
instruction is not interpreted as the lower byte of an
address (used with the BSR in direct addressing), or as
an 8-bit address in the Access Bank. Instead, the value
is interpreted as an offset value to an Address Pointer,
specified by FSR2. The offset and the contents of
FSR2 are added to obtain the target address of the
operation.
5.7.2
INSTRUCTIONS AFFECTED BY
INDEXED LITERAL OFFSET MODE
Any of the core PIC18 instructions that can use direct
addressing are potentially affected by the Indexed
Literal Offset Addressing mode. This includes all
byte-oriented and bit-oriented instructions, or almost
one-half of the standard PIC18 instruction set.
Instructions that only use Inherent or Literal Addressing
modes are unaffected.
Additionally, byte-oriented and bit-oriented instructions
are not affected if they do not use the Access Bank
(Access RAM bit is ‘1’), or include a file address of 60h
or above. Instructions meeting these criteria will
continue to execute as before. A comparison of the
different possible addressing modes when the
extended instruction set is enabled is shown in
Figure 5-11.
Those who desire to use byte-oriented or bit-oriented
instructions in the Indexed Literal Offset mode may
note the changes to assembler syntax for this mode.
This is described in more detail in Section 25.2.1
“Extended Instruction Syntax”.
What does not change is just as important. The size of
the data memory space is unchanged, as well as its
linear addressing. The SFR map remains the same.
Core PIC18 instructions can still operate in both Direct
and Indirect Addressing mode; inherent and literal
instructions do not change at all. Indirect addressing
with FSR0 and FSR1 also remain unchanged.
2010-2021 Microchip Technology Inc.
DS40001412H-page 87
PIC18(L)F2X/4XK22
FIGURE 5-11:
COMPARING ADDRESSING OPTIONS FOR BIT-ORIENTED AND
BYTE-ORIENTED INSTRUCTIONS (EXTENDED INSTRUCTION SET ENABLED)
EXAMPLE INSTRUCTION: ADDWF, f, d, a (Opcode: 0010 01da ffff ffff)
When ‘a’ = 0 and f 60h:
The instruction executes in
Direct Forced mode. ‘f’ is interpreted as a location in the
Access RAM between 060h
and 0FFh. This is the same as
locations F60h to FFFh
(Bank 15) of data memory.
Locations below 60h are not
available in this addressing
mode.
000h
060h
Bank 0
100h
00h
Bank 1
through
Bank 14
60h
Valid range
for ‘f’
Access RAM
F00h
FFh
Bank 15
F60h
SFRs
FFFh
When ‘a’ = 0 and f5Fh:
The instruction executes in
Indexed Literal Offset mode. ‘f’
is interpreted as an offset to the
address value in FSR2. The
two are added together to
obtain the address of the target
register for the instruction. The
address can be anywhere in
the data memory space.
Note that in this mode, the
correct syntax is now:
ADDWF [k], d
where ‘k’ is the same as ‘f’.
When ‘a’ = 1 (all values of f):
The instruction executes in
Direct mode (also known as
Direct Long mode). ‘f’ is interpreted as a location in one of
the 16 banks of the data
memory space. The bank is
designated by the Bank Select
Register (BSR). The address
can be in any implemented
bank in the data memory
space.
Data Memory
000h
060h
Bank 0
100h
001001da ffffffff
Bank 1
through
Bank 14
FSR2H
FSR2L
F00h
Bank 15
F60h
SFRs
FFFh
Data Memory
BSR
00000000
000h
060h
Bank 0
100h
Bank 1
through
Bank 14
001001da ffffffff
F00h
Bank 15
F60h
SFRs
FFFh
DS40001412H-page 88
Data Memory
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
5.7.3
MAPPING THE ACCESS BANK IN
INDEXED LITERAL OFFSET MODE
The use of Indexed Literal Offset Addressing mode
effectively changes how the first 96 locations of Access
RAM (00h to 5Fh) are mapped. Rather than containing
just the contents of the bottom section of Bank 0, this
mode maps the contents from a user defined “window”
that can be located anywhere in the data memory
space. The value of FSR2 establishes the lower boundary of the addresses mapped into the window, while the
upper boundary is defined by FSR2 plus 95 (5Fh).
Addresses in the Access RAM above 5Fh are mapped
as previously described (see Section 5.4.2 “Access
Bank”). An example of Access Bank remapping in this
addressing mode is shown in Figure 5-12.
FIGURE 5-12:
Remapping of the Access Bank applies only to operations using the Indexed Literal Offset mode. Operations
that use the BSR (Access RAM bit is ‘1’) will continue
to use direct addressing as before.
5.8
PIC18 Instruction Execution and
the Extended Instruction Set
Enabling the extended instruction set adds eight
additional commands to the existing PIC18 instruction
set. These instructions are executed as described in
Section 25.2 “Extended Instruction Set”.
REMAPPING THE ACCESS BANK WITH INDEXED LITERAL OFFSET
ADDRESSING
Example Situation:
ADDWF f, d, a
FSR2H:FSR2L = 120h
Locations in the region
from the FSR2 pointer
(120h) to the pointer plus
05Fh (17Fh) are mapped
to the bottom of the
Access RAM (000h-05Fh).
000h
Bank 0
100h
120h
17Fh
200h
Bank 1
Window
Bank 1
00h
Bank 1 “Window”
5Fh
60h
Special File Registers at
F60h through FFFh are
mapped to 60h through
FFh, as usual.
Bank 2
through
Bank 14
Bank 0 addresses below
5Fh can still be addressed
by using the BSR.
SFRs
FFh
Access Bank
F00h
Bank 15
F60h
FFFh
SFRs
Data Memory
2010-2021 Microchip Technology Inc.
DS40001412H-page 89
PIC18(L)F2X/4XK22
6.0
FLASH PROGRAM MEMORY
6.1
Table Reads and Table Writes
The Flash program memory is readable, writable and
erasable during normal operation over the entire VDD
range.
In order to read and write program memory, there are
two operations that allow the processor to move bytes
between the program memory space and the data RAM:
A read from program memory is executed one byte at
a time. A write to program memory is executed on
blocks of 64 bytes at a time. Program memory is
erased in blocks of 64 bytes at a time. A bulk erase
operation cannot be issued from user code.
• Table Read (TBLRD)
• Table Write (TBLWT)
Writing or erasing program memory will cease
instruction fetches until the operation is complete. The
program memory cannot be accessed during the write
or erase, therefore, code cannot execute. An internal
programming timer terminates program memory writes
and erases.
A value written to program memory does not need to be
a valid instruction. Executing a program memory
location that forms an invalid instruction results in a
NOP.
The program memory space is 16 bits wide, while the
data RAM space is 8 bits wide. Table reads and table
writes move data between these two memory spaces
through an 8-bit register (TABLAT).
The table read operation retrieves one byte of data
directly from program memory and places it into the
TABLAT register. Figure 6-1 shows the operation of a
table read.
The table write operation stores one byte of data from the
TABLAT register into a write block holding register. The
procedure to write the contents of the holding registers
into program memory is detailed in Section 6.6 “Writing
to Flash Program Memory”. Figure 6-2 shows the
operation of a table write with program memory and data
RAM.
Table operations work with byte entities. Tables
containing data, rather than program instructions, are
not required to be word aligned. Therefore, a table can
start and end at any byte address. If a table write is being
used to write executable code into program memory,
program instructions will need to be word aligned.
FIGURE 6-1:
TABLE READ OPERATION
Instruction: TBLRD*
Program Memory
Table Pointer(1)
TBLPTRU
TBLPTRH
Table Latch (8-bit)
TBLPTRL
TABLAT
Program Memory
(TBLPTR)
Note 1: Table Pointer register points to a byte in program memory.
DS40001412H-page 90
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
FIGURE 6-2:
TABLE WRITE OPERATION
Instruction: TBLWT*
Program Memory
Table Pointer(1)
TBLPTRU
TBLPTRH
Holding Registers
Table Latch (8-bit)
TBLPTRL
TABLAT
Program Memory
(TBLPTR)
Note 1: During table writes the Table Pointer does not point directly to Program Memory. The LSBs of TBLPRTL
actually point to an address within the write block holding registers. The MSBs of the Table Pointer determine where the write block will eventually be written. The process for writing the holding registers to the
program memory array is discussed in Section 6.6 “Writing to Flash Program Memory”.
6.2
Control Registers
Several control registers are used in conjunction with
the TBLRD and TBLWT instructions. These include the:
•
•
•
•
EECON1 register
EECON2 register
TABLAT register
TBLPTR registers
6.2.1
EECON1 AND EECON2 REGISTERS
The EECON1 register (Register 6-1) is the control
register for memory accesses. The EECON2 register is
not a physical register; it is used exclusively in the
memory write and erase sequences. Reading
EECON2 will read all ‘0’s.
The EEPGD control bit determines if the access will be
a program or data EEPROM memory access. When
EEPGD is clear, any subsequent operations will
operate on the data EEPROM memory. When EEPGD
is set, any subsequent operations will operate on the
program memory.
The CFGS control bit determines if the access will be
to the Configuration/Calibration registers or to program
memory/data EEPROM memory. When CFGS is set,
subsequent operations will operate on Configuration
registers regardless of EEPGD (see Section 24.0
“Special Features of the CPU”). When CFGS is clear,
memory selection access is determined by EEPGD.
2010-2021 Microchip Technology Inc.
The FREE bit allows the program memory erase
operation. When FREE is set, an erase operation is
initiated on the next WR command. When FREE is
clear, only writes are enabled.
The WREN bit, when set, will allow a write operation.
The WREN bit is clear on power-up.
The WRERR bit is set by hardware when the WR bit is
set and cleared when the internal programming timer
expires and the write operation is complete.
Note:
During normal operation, the WRERR is
read as ‘1’. This can indicate that a write
operation was prematurely terminated by
a Reset, or a write operation was
attempted improperly.
The WR control bit initiates write operations. The WR
bit cannot be cleared, only set, by firmware. Then WR
bit is cleared by hardware at the completion of the write
operation.
Note:
The EEIF interrupt flag bit of the PIR2
register is set when the write is complete.
The EEIF flag stays set until cleared by
firmware.
DS40001412H-page 91
PIC18(L)F2X/4XK22
6.3
Register Definitions: Memory Control
REGISTER 6-1:
R/W-x
EEPGD
EECON1: DATA EEPROM CONTROL 1 REGISTER
R/W-x
U-0
R/W-0
R/W-x
R/W-0
R/S-0
R/S-0
CFGS
—
FREE
WRERR
WREN
WR
RD
bit 7
bit 0
Legend:
R = Readable bit
W = Writable bit
S = Bit can be set by software, but not cleared
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘0’ = Bit is cleared
‘1’ = Bit is set
x = Bit is unknown
bit 7
EEPGD: Flash Program or Data EEPROM Memory Select bit
1 = Access Flash program memory
0 = Access data EEPROM memory
bit 6
CFGS: Flash Program/Data EEPROM or Configuration Select bit
1 = Access Configuration registers
0 = Access Flash program or data EEPROM memory
bit 5
Unimplemented: Read as ‘0’
bit 4
FREE: Flash Row (Block) Erase Enable bit
1 = Erase the program memory block addressed by TBLPTR on the next WR command
(cleared by completion of erase operation)
0 = Perform write-only
bit 3
WRERR: Flash Program/Data EEPROM Error Flag bit(1)
1 = A write operation is prematurely terminated (any Reset during self-timed programming in normal
operation, or an improper write attempt)
0 = The write operation completed
bit 2
WREN: Flash Program/Data EEPROM Write Enable bit
1 = Allows write cycles to Flash program/data EEPROM
0 = Inhibits write cycles to Flash program/data EEPROM
bit 1
WR: Write Control bit
1 = Initiates a data EEPROM erase/write cycle or a program memory erase cycle or write cycle.
(The operation is self-timed and the bit is cleared by hardware once write is complete.
The WR bit can only be set (not cleared) by software.)
0 = Write cycle to the EEPROM is complete
bit 0
RD: Read Control bit
1 = Initiates an EEPROM read (Read takes one cycle. RD is cleared by hardware. The RD bit can only
be set (not cleared) by software. RD bit cannot be set when EEPGD = 1 or CFGS = 1.)
0 = Does not initiate an EEPROM read
Note 1:
When a WRERR occurs, the EEPGD and CFGS bits are not cleared. This allows tracing of the
error condition.
DS40001412H-page 92
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
6.3.1
TABLAT – TABLE LATCH REGISTER
When a TBLRD is executed, all 22 bits of the TBLPTR
determine which byte is read from program memory
directly into the TABLAT register.
The Table Latch (TABLAT) is an 8-bit register mapped
into the SFR space. The Table Latch register is used to
hold 8-bit data during data transfers between program
memory and data RAM.
6.3.2
When a TBLWT is executed the byte in the TABLAT
register is written, not to Flash memory but, to a holding
register in preparation for a program memory write. The
holding registers constitute a write block which varies
depending on the device (see Table 6-1).The 3, 4, or 5
LSbs of the TBLPTRL register determine which specific
address within the holding register block is written to.
The MSBs of the Table Pointer have no effect during
TBLWT operations.
TBLPTR – TABLE POINTER
REGISTER
The Table Pointer (TBLPTR) register addresses a byte
within the program memory. The TBLPTR is comprised
of three SFR registers: Table Pointer Upper Byte, Table
Pointer High Byte and Table Pointer Low Byte
(TBLPTRU:TBLPTRH:TBLPTRL).
These
three
registers join to form a 22-bit wide pointer. The
low-order 21 bits allow the device to address up to 2
Mbytes of program memory space. The 22nd bit allows
access to the device ID, the user ID and the
Configuration bits.
When a program memory write is executed the entire
holding register block is written to the Flash memory at
the address determined by the MSbs of the TBLPTR.
The 3, 4, or 5 LSBs are ignored during Flash memory
writes. For more details, see Section 6.6 “Writing to
Flash Program Memory”.
When an erase of program memory is executed, the
16 MSbs of the Table Pointer register (TBLPTR)
point to the 64-byte block that will be erased. The Least
Significant bits (TBLPTR) are ignored.
The Table Pointer register, TBLPTR, is used by the
TBLRD and TBLWT instructions. These instructions can
update the TBLPTR in one of four ways based on the
table operation. These operations on the TBLPTR
affect only the low-order 21 bits.
6.3.3
Figure 6-3 describes the relevant boundaries of
TBLPTR based on Flash program memory operations.
TABLE POINTER BOUNDARIES
TBLPTR is used in reads, writes and erases of the
Flash program memory.
TABLE 6-1:
TABLE POINTER OPERATIONS WITH TBLRD AND TBLWT INSTRUCTIONS
Example
Operation on Table Pointer
TBLRD*
TBLWT*
TBLPTR is not modified
TBLRD*+
TBLWT*+
TBLPTR is incremented after the read/write
TBLRD*TBLWT*-
TBLPTR is decremented after the read/write
TBLRD+*
TBLWT+*
TBLPTR is incremented before the read/write
FIGURE 6-3:
21
TABLE POINTER BOUNDARIES BASED ON OPERATION
TBLPTRU
16
15
TBLPTRH
8
TABLE ERASE/WRITE
TBLPTR(1)
7
TBLPTRL
0
TABLE WRITE
TBLPTR(1)
TABLE READ – TBLPTR
Note 1: n = 6 for block sizes of 64 bytes.
2010-2021 Microchip Technology Inc.
DS40001412H-page 93
PIC18(L)F2X/4XK22
6.4
Reading the Flash Program
Memory
The TBLRD instruction retrieves data from program
memory and places it into data RAM. Table reads from
program memory are performed one byte at a time.
The internal program memory is typically organized by
words. The Least Significant bit of the address selects
between the high and low bytes of the word. Figure 6-4
shows the interface between the internal program
memory and the TABLAT.
TBLPTR points to a byte address in program space.
Executing TBLRD places the byte pointed to into
TABLAT. In addition, TBLPTR can be modified
automatically for the next table read operation.
FIGURE 6-4:
READS FROM FLASH PROGRAM MEMORY
Program Memory
(Even Byte Address)
(Odd Byte Address)
TBLPTR = xxxxx1
Instruction Register
(IR)
EXAMPLE 6-1:
FETCH
TBLPTR = xxxxx0
TABLAT
Read Register
TBLRD
READING A FLASH PROGRAM MEMORY WORD
MOVLW
MOVWF
MOVLW
MOVWF
MOVLW
MOVWF
CODE_ADDR_UPPER
TBLPTRU
CODE_ADDR_HIGH
TBLPTRH
CODE_ADDR_LOW
TBLPTRL
; Load TBLPTR with the base
; address of the word
READ_WORD
TBLRD*+
MOVF
MOVWF
TBLRD*+
MOVFW
MOVF
DS40001412H-page 94
TABLAT, W
WORD_EVEN
TABLAT, W
WORD_ODD
; read into TABLAT and increment
; get data
; read into TABLAT and increment
; get data
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
6.5
Erasing Flash Program Memory
The minimum erase block is 32 words or 64 bytes. Only
through the use of an external programmer, or through
ICSP™ control, can larger blocks of program memory
be bulk erased. Word erase in the Flash array is not
supported.
When initiating an erase sequence from the
microcontroller itself, a block of 64 bytes of program
memory is erased. The Most Significant 16 bits of the
TBLPTR point to the block being erased. The
TBLPTR bits are ignored.
The EECON1 register commands the erase operation.
The EEPGD bit must be set to point to the Flash
program memory. The WREN bit must be set to enable
write operations. The FREE bit is set to select an erase
operation.
The write initiate sequence for EECON2, shown as
steps 4 through 6 in Section 6.5.1 “Flash Program
Memory Erase Sequence”, is used to guard against
accidental writes. This is sometimes referred to as a
long write.
6.5.1
FLASH PROGRAM MEMORY
ERASE SEQUENCE
The sequence of events for erasing a block of internal
program memory is:
1.
2.
3.
4.
5.
6.
7.
8.
Load Table Pointer register with address of
block being erased.
Set the EECON1 register for the erase operation:
• set EEPGD bit to point to program memory;
• clear the CFGS bit to access program memory;
• set WREN bit to enable writes;
• set FREE bit to enable the erase.
Disable interrupts.
Write 55h to EECON2.
Write 0AAh to EECON2.
Set the WR bit. This will begin the block erase
cycle.
The CPU will stall for duration of the erase
(about 2 ms using internal timer).
Re-enable interrupts.
A long write is necessary for erasing the internal Flash.
Instruction execution is halted during the long write
cycle. The long write is terminated by the internal
programming timer.
EXAMPLE 6-2:
ERASING A FLASH PROGRAM MEMORY BLOCK
MOVLW
MOVWF
MOVLW
MOVWF
MOVLW
MOVWF
CODE_ADDR_UPPER
TBLPTRU
CODE_ADDR_HIGH
TBLPTRH
CODE_ADDR_LOW
TBLPTRL
; load TBLPTR with the base
; address of the memory block
BSF
BCF
BSF
BSF
BCF
MOVLW
MOVWF
MOVLW
MOVWF
BSF
BSF
EECON1,
EECON1,
EECON1,
EECON1,
INTCON,
55h
EECON2
0AAh
EECON2
EECON1,
INTCON,
;
;
;
;
;
ERASE_BLOCK
Required
Sequence
2010-2021 Microchip Technology Inc.
EEPGD
CFGS
WREN
FREE
GIE
point to Flash program memory
access Flash program memory
enable write to memory
enable block Erase operation
disable interrupts
; write 55h
WR
GIE
; write 0AAh
; start erase (CPU stall)
; re-enable interrupts
DS40001412H-page 95
PIC18(L)F2X/4XK22
6.6
Writing to Flash Program Memory
The programming block size is 64 bytes. Word or byte
programming is not supported.
The long write is necessary for programming the
internal Flash. Instruction execution is halted during a
long write cycle. The long write will be terminated by
the internal programming timer.
Table writes are used internally to load the holding
registers needed to program the Flash memory. There
are only as many holding registers as there are bytes
in a write block (64 bytes).
The EEPROM on-chip timer controls the write time.
The write/erase voltages are generated by an on-chip
charge pump, rated to operate over the voltage range
of the device.
Since the Table Latch (TABLAT) is only a single byte,
the TBLWT instruction needs to be executed 64 times
for each programming operation. All of the table write
operations will essentially be short writes because only
the holding registers are written. After all the holding
registers have been written, the programming
operation of that block of memory is started by
configuring the EECON1 register for a program
memory write and performing the long write sequence.
FIGURE 6-5:
Note:
The default value of the holding registers on
device Resets and after write operations is
FFh. A write of FFh to a holding register
does not modify that byte. This means that
individual bytes of program memory may
be modified, provided that the change does
not attempt to change any bit from a ‘0’ to a
‘1’. When modifying individual bytes, it is
not necessary to load all holding registers
before executing a long write operation.
TABLE WRITES TO FLASH PROGRAM MEMORY
TABLAT
Write Register
8
8
TBLPTR = xxxx00
TBLPTR = xxxx01
Holding Register
8
TBLPTR = xxxxYY(1)
TBLPTR = xxxx02
Holding Register
8
Holding Register
Holding Register
Program Memory
Note 1: YY = 3F for 64 byte write blocks.
6.6.1
FLASH PROGRAM MEMORY WRITE
SEQUENCE
The sequence of events for programming an internal
program memory location may be:
1.
2.
3.
4.
5.
6.
7.
Read 64 bytes into RAM.
Update data values in RAM as necessary.
Load Table Pointer register with address being
erased.
Execute the block erase procedure.
Load Table Pointer register with address of first
byte being written.
Write the 64-byte block into the holding registers
with auto-increment.
Set the EECON1 register for the write operation:
• set EEPGD bit to point to program memory;
• clear the CFGS bit to access program memory;
• set WREN to enable byte writes.
DS40001412H-page 96
8.
9.
10.
11.
12.
Disable interrupts.
Write 55h to EECON2.
Write 0AAh to EECON2.
Set the WR bit. This will begin the write cycle.
The CPU will stall for duration of the write (about
2 ms using internal timer).
13. Re-enable interrupts.
14. Verify the memory (table read).
This procedure will require about 6 ms to update each
write block of memory. An example of the required code
is given in Example 6-3.
Note:
Before setting the WR bit, the Table
Pointer address needs to be within the
intended address range of the bytes in the
holding registers.
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
EXAMPLE 6-3:
WRITING TO FLASH PROGRAM MEMORY
MOVLW
MOVWF
MOVLW
MOVWF
MOVLW
MOVWF
MOVLW
MOVWF
MOVLW
MOVWF
MOVLW
MOVWF
D'64’
COUNTER
BUFFER_ADDR_HIGH
FSR0H
BUFFER_ADDR_LOW
FSR0L
CODE_ADDR_UPPER
TBLPTRU
CODE_ADDR_HIGH
TBLPTRH
CODE_ADDR_LOW
TBLPTRL
; number of bytes in erase block
TBLRD*+
MOVF
MOVWF
DECFSZ
BRA
TABLAT, W
POSTINC0
COUNTER
READ_BLOCK
MOVLW
MOVWF
MOVLW
MOVWF
MOVLW
MOVWF
MOVLW
MOVWF
BUFFER_ADDR_HIGH
FSR0H
BUFFER_ADDR_LOW
FSR0L
NEW_DATA_LOW
POSTINC0
NEW_DATA_HIGH
INDF0
; point to buffer
MOVLW
MOVWF
MOVLW
MOVWF
MOVLW
MOVWF
BSF
BCF
BSF
BSF
BCF
MOVLW
MOVWF
MOVLW
MOVWF
BSF
BSF
TBLRD*MOVLW
MOVWF
MOVLW
MOVWF
CODE_ADDR_UPPER
TBLPTRU
CODE_ADDR_HIGH
TBLPTRH
CODE_ADDR_LOW
TBLPTRL
EECON1, EEPGD
EECON1, CFGS
EECON1, WREN
EECON1, FREE
INTCON, GIE
55h
EECON2
0AAh
EECON2
EECON1, WR
INTCON, GIE
; load TBLPTR with the base
; address of the memory block
MOVLW
MOVWF
MOVLW
MOVWF
BlockSize
COUNTER
D’64’/BlockSize
COUNTER2
MOVF
MOVWF
TBLWT+*
POSTINC0, W
TABLAT
; point to buffer
; Load TBLPTR with the base
; address of the memory block
READ_BLOCK
;
;
;
;
;
read into TABLAT, and inc
get data
store data
done?
repeat
MODIFY_WORD
; update buffer word
ERASE_BLOCK
Required
Sequence
BUFFER_ADDR_HIGH
FSR0H
BUFFER_ADDR_LOW
FSR0L
;
;
;
;
;
point to Flash program memory
access Flash program memory
enable write to memory
enable Erase operation
disable interrupts
; write 55h
;
;
;
;
;
write 0AAh
start erase (CPU stall)
re-enable interrupts
dummy read decrement
point to buffer
WRITE_BUFFER_BACK
; number of bytes in holding register
; number of write blocks in 64 bytes
WRITE_BYTE_TO_HREGS
2010-2021 Microchip Technology Inc.
;
;
;
;
get low byte of buffer data
present data to table latch
write data, perform a short write
to internal TBLWT holding register.
DS40001412H-page 97
PIC18(L)F2X/4XK22
EXAMPLE 6-3:
WRITING TO FLASH PROGRAM MEMORY (CONTINUED)
DECFSZ
BRA
COUNTER
WRITE_WORD_TO_HREGS
; loop until holding registers are full
BSF
BCF
BSF
BCF
MOVLW
MOVWF
MOVLW
MOVWF
BSF
DCFSZ
BRA
BSF
BCF
EECON1, EEPGD
EECON1, CFGS
EECON1, WREN
INTCON, GIE
55h
EECON2
0AAh
EECON2
EECON1, WR
COUNTER2
WRITE_BYTE_TO_HREGS
INTCON, GIE
EECON1, WREN
;
;
;
;
PROGRAM_MEMORY
Required
Sequence
6.6.2
WRITE VERIFY
UNEXPECTED TERMINATION OF
WRITE OPERATION
If a write is terminated by an unplanned event, such as
loss of power or an unexpected Reset, the memory
location just programmed may be verified and
reprogrammed if needed. If the write operation is
interrupted by a MCLR Reset or a WDT Time-out Reset
during normal operation, the WRERR bit will be set
which the user can check to decide whether a rewrite
of the location(s) is needed.
TABLE 6-2:
Name
TBLPTRU
; write 55h
;
;
;
;
;
;
write 0AAh
start program (CPU stall)
repeat for remaining write blocks
re-enable interrupts
disable write to memory
6.6.4
Depending on the application, good programming
practice may dictate that the value written to the
memory may be verified against the original value. This
may be used in applications where excessive writes
can stress bits near the specification limit.
6.6.3
point to Flash program memory
access Flash program memory
enable write to memory
disable interrupts
PROTECTION AGAINST
SPURIOUS WRITES
To protect against spurious writes to Flash program
memory, the write initiate sequence must also be
followed. See Section 24.0 “Special Features of the
CPU” for more details.
6.7
Flash Program Operation During
Code Protection
See Section 24.5 “Program Verification and Code
Protection” for details on code protection of Flash
program memory.
REGISTERS ASSOCIATED WITH PROGRAM FLASH MEMORY
Bit 7
—
Bit 6
—
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Program Memory Table Pointer Upper Byte (TBLPTR)
Reset
Values on
page
—
TBLPTRH
Program Memory Table Pointer High Byte (TBLPTR)
—
TBLPTRL
Program Memory Table Pointer Low Byte (TBLPTR)
—
TABLAT
INTCON
Program Memory Table Latch
GIE/GIEH
PEIE/GIEL
EECON1
EEPGD
CFGS
—
FREE
WRERR
EECON2
TMR0IE
INT0IE
RBIE
—
TMR0IF
INT0IF
RBIF
109
WREN
WR
RD
92
122
EEPROM Control Register 2 (not a physical register)
—
IPR2
OSCFIP
C1IP
C2IP
EEIP
BCL1IP
HLVDIP
TMR3IP
CCP2IP
PIR2
OSCFIF
C1IF
C2IF
EEIF
BCL1IF
HLVDIF
TMR3IF
CCP2IF
113
PIE2
OSCFIE
C1IE
C2IE
EEIE
BCL1IE
HLVDIE
TMR3IE
CCP2IE
118
Legend:
— = unimplemented, read as ‘0’. Shaded bits are not used during Flash/EEPROM access.
DS40001412H-page 98
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
7.0
DATA EEPROM MEMORY
The data EEPROM is a nonvolatile memory array,
separate from the data RAM and program memory,
which is used for long-term storage of program data. It
is not directly mapped in either the register file or
program memory space but is indirectly addressed
through the Special Function Registers (SFRs). The
EEPROM is readable and writable during normal
operation over the entire VDD range.
Four SFRs are used to read and write to the data
EEPROM as well as the program memory. They are:
•
•
•
•
•
EECON1
EECON2
EEDATA
EEADR
EEADRH
The data EEPROM allows byte read and write. When
interfacing to the data memory block, EEDATA holds
the 8-bit data for read/write and the EEADR:EEADRH
register pair hold the address of the EEPROM location
being accessed.
The EEPROM data memory is rated for high erase/write
cycle endurance. A byte write automatically erases the
location and writes the new data (erase-before-write).
The write time is controlled by an on-chip timer; it will
vary with voltage and temperature as well as from chipto-chip. Please refer to the Data EEPROM Memory
parameters in Section 27.0 “Electrical Specifications” for limits.
7.1
EEADR and EEADRH Registers
The EEADR register is used to address the data
EEPROM for read and write operations. The 8-bit
range of the register can address a memory range of
256 bytes (00h to FFh). The EEADRH register expands
the range to 1024 bytes by adding an additional two
address bits.
7.2
EECON1 and EECON2 Registers
Access to the data EEPROM is controlled by two
registers: EECON1 and EECON2. These are the same
registers which control access to the program memory
and are used in a similar manner for the data
EEPROM.
The EECON1 register (Register 7-1) is the control
register for data and program memory access. Control
bit EEPGD determines if the access will be to program
or data EEPROM memory. When the EEPGD bit is
clear, operations will access the data EEPROM
memory. When the EEPGD bit is set, program memory
is accessed.
Control bit, CFGS, determines if the access will be to
the Configuration registers or to program memory/data
EEPROM memory. When the CFGS bit is set,
subsequent operations access Configuration registers.
When the CFGS bit is clear, the EEPGD bit selects
either program Flash or data EEPROM memory.
The WREN bit, when set, will allow a write operation.
On power-up, the WREN bit is clear.
The WRERR bit is set by hardware when the WR bit is
set and cleared when the internal programming timer
expires and the write operation is complete.
Note:
During normal operation, the WRERR
may read as ‘1’. This can indicate that a
write operation was prematurely terminated by a Reset, or a write operation was
attempted improperly.
The WR control bit initiates write operations. The bit
can be set but not cleared by software. It is cleared only
by hardware at the completion of the write operation.
Note:
The EEIF interrupt flag bit of the PIR2
register is set when the write is complete.
It must be cleared by software.
Control bits, RD and WR, start read and erase/write
operations, respectively. These bits are set by firmware
and cleared by hardware at the completion of the
operation.
The RD bit cannot be set when accessing program
memory (EEPGD = 1). Program memory is read using
table read instructions. See Section 6.1 “Table Reads
and Table Writes” regarding table reads.
The EECON2 register is not a physical register. It is
used exclusively in the memory write and erase
sequences. Reading EECON2 will read all ‘0’s.
2010-2021 Microchip Technology Inc.
DS40001412H-page 99
PIC18(L)F2X/4XK22
REGISTER 7-1:
EECON1: DATA EEPROM CONTROL 1 REGISTER
R/W-x
R/W-x
U-0
R/W-0
R/W-x
R/W-0
R/S-0
R/S-0
EEPGD
CFGS
—
FREE
WRERR
WREN
WR
RD
bit 7
bit 0
Legend:
R = Readable bit
W = Writable bit
S = Bit can be set by software, but not cleared
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘0’ = Bit is cleared
‘1’ = Bit is set
x = Bit is unknown
bit 7
EEPGD: Flash Program or Data EEPROM Memory Select bit
1 = Access Flash program memory
0 = Access data EEPROM memory
bit 6
CFGS: Flash Program/Data EEPROM or Configuration Select bit
1 = Access Configuration registers
0 = Access Flash program or data EEPROM memory
bit 5
Unimplemented: Read as ‘0’
bit 4
FREE: Flash Row (Block) Erase Enable bit
1 = Erase the program memory block addressed by TBLPTR on the next WR command
(cleared by completion of erase operation)
0 = Perform write-only
bit 3
WRERR: Flash Program/Data EEPROM Error Flag bit(1)
1 = A write operation is prematurely terminated (any Reset during self-timed programming in normal
operation, or an improper write attempt)
0 = The write operation completed
bit 2
WREN: Flash Program/Data EEPROM Write Enable bit
1 = Allows write cycles to Flash program/data EEPROM
0 = Inhibits write cycles to Flash program/data EEPROM
bit 1
WR: Write Control bit
1 = Initiates a data EEPROM erase/write cycle or a program memory erase cycle or write cycle.
(The operation is self-timed and the bit is cleared by hardware once write is complete.
The WR bit can only be set (not cleared) by software.)
0 = Write cycle to the EEPROM is complete
bit 0
RD: Read Control bit
1 = Initiates an EEPROM read (Read takes one cycle. RD is cleared by hardware. The RD bit can only
be set (not cleared) by software. RD bit cannot be set when EEPGD = 1 or CFGS = 1.)
0 = Does not initiate an EEPROM read
Note 1:
When a WRERR occurs, the EEPGD and CFGS bits are not cleared. This allows tracing of the
error condition.
DS40001412H-page 100
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
7.3
Reading the Data EEPROM
Memory
To read a data memory location, the user must write the
address to the EEADR register, clear the EEPGD control bit of the EECON1 register and then set control bit,
RD. The data is available on the very next instruction
cycle; therefore, the EEDATA register can be read by
the next instruction. EEDATA will hold this value until
another read operation, or until it is written to by the
user (during a write operation).
The basic process is shown in Example 7-1.
7.4
Writing to the Data EEPROM
Memory
To write an EEPROM data location, the address must
first be written to the EEADR register and the data written to the EEDATA register. The sequence in
Example 7-2 must be followed to initiate the write cycle.
The write will not begin if this sequence is not exactly
followed (write 55h to EECON2, write 0AAh to
EECON2, then set WR bit) for each byte. It is strongly
recommended that interrupts be disabled during this
code segment.
EXAMPLE 7-1:
MOVLW
MOVWF
BCF
BCF
BSF
MOVF
After a write sequence has been initiated, EECON1,
EEADR and EEDATA cannot be modified. The WR bit
will be inhibited from being set unless the WREN bit is
set. Both WR and WREN cannot be set with the same
instruction.
At the completion of the write cycle, the WR bit is
cleared by hardware and the EEPROM Interrupt Flag
bit, EEIF, is set. The user may either enable this
interrupt or poll this bit. EEIF must be cleared by
software.
7.5
Write Verify
Depending on the application, good programming
practice may dictate that the value written to the
memory may be verified against the original value. This
may be used in applications where excessive writes
can stress bits near the specification limit.
DATA EEPROM READ
DATA_EE_ADDR
EEADR
EECON1, EEPGD
EECON1, CFGS
EECON1, RD
EEDATA, W
EXAMPLE 7-2:
Required
Sequence
Additionally, the WREN bit in EECON1 must be set to
enable writes. This mechanism prevents accidental
writes to data EEPROM due to unexpected code
execution (i.e., runaway programs). The WREN bit may
be kept clear at all times, except when updating the
EEPROM. The WREN bit is not cleared by hardware.
;
;
;
;
;
;
Data Memory Address to read
Point to DATA memory
Access EEPROM
EEPROM Read
W = EEDATA
DATA EEPROM WRITE
MOVLW
MOVWF
MOVLW
MOVWF
MOVLW
MOVWF
BCF
BCF
BSF
BCF
MOVLW
MOVWF
MOVLW
MOVWF
BSF
BSF
DATA_EE_ADDR_LOW
EEADR
DATA_EE_ADDR_HI
EEADRH
DATA_EE_DATA
EEDATA
EECON1, EEPGD
EECON1, CFGS
EECON1, WREN
INTCON, GIE
55h
EECON2
0AAh
EECON2
EECON1, WR
INTCON, GIE
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
BCF
EECON1, WREN
; User code execution
; Disable writes on write complete (EEIF set)
2010-2021 Microchip Technology Inc.
Data Memory Address to write
Data Memory Value to write
Point to DATA memory
Access EEPROM
Enable writes
Disable Interrupts
Write 55h
Write 0AAh
Set WR bit to begin write
Enable Interrupts
DS40001412H-page 101
PIC18(L)F2X/4XK22
7.6
Operation During Code-Protect
7.8
Data EEPROM memory has its own code-protect bits in
Configuration Words. External read and write
operations are disabled if code protection is enabled.
The microcontroller itself can both read and write to the
internal data EEPROM, regardless of the state of the
code-protect Configuration bit. Refer to Section 24.0
“Special Features of the CPU” for additional
information.
7.7
Protection Against Spurious Write
There are conditions when the user may not want to
write to the data EEPROM memory. To protect against
spurious EEPROM writes, various mechanisms have
been implemented. On power-up, the WREN bit is
cleared. In addition, writes to the EEPROM are blocked
during the Power-up Timer period (TPWRT).The write
initiate sequence and the WREN bit together help
prevent an accidental write during brown-out, power
glitch or software malfunction.
EXAMPLE 7-3:
Using the Data EEPROM
The data EEPROM is a high-endurance, byte
addressable array that has been optimized for the
storage of frequently changing information (e.g.,
program variables or other data that are updated often).
When variables in one section change frequently, while
variables in another section do not change, it is possible
to exceed the total number of write cycles to the
EEPROM without exceeding the total number of write
cycles to a single byte. Refer to the Data EEPROM
Memory parameters in Section 27.0 “Electrical
Specifications” for write cycle limits. If this is the case,
then an array refresh must be performed. For this
reason, variables that change infrequently (such as
constants, IDs, calibration, etc.) may be stored in Flash
program memory.
A simple data EEPROM refresh routine is shown in
Example 7-3.
Note:
If data EEPROM is only used to store
constants and/or data that changes rarely,
an array refresh is likely not required. See
specification.
DATA EEPROM REFRESH ROUTINE
CLRF
CLRF
BCF
BCF
BCF
BSF
EEADR
EEADRH
EECON1,
EECON1,
INTCON,
EECON1,
BSF
MOVLW
MOVWF
MOVLW
MOVWF
BSF
BTFSC
BRA
INCFSZ
BRA
INCFSZ
BRA
EECON1, RD
55h
EECON2
0AAh
EECON2
EECON1, WR
EECON1, WR
$-2
EEADR, F
LOOP
EEADRH, F
LOOP
BCF
BSF
EECON1, WREN
INTCON, GIE
CFGS
EEPGD
GIE
WREN
Loop
DS40001412H-page 102
;
;
;
;
;
;
;
;
;
;
;
;
;
;
Start at address 0
if > 256 bytes EEPROM
Set for memory
Set for Data EEPROM
Disable interrupts
Enable writes
Loop to refresh array
Read current address
;
;
;
;
Increment address
Not zero, do it again
if > 256 bytes, Increment address
if > 256 bytes, Not zero, do it again
Write 55h
Write 0AAh
Set WR bit to begin write
Wait for write to complete
; Disable writes
; Enable interrupts
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
TABLE 7-1:
Name
REGISTERS ASSOCIATED WITH DATA EEPROM MEMORY
Bit 7
Bit 6
INTCON
GIE/GIEH
PEIE/GIEL
EEADR
EEADR7
EEADR6
—
—
(1)
EEADRH
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Register
on Page
TMR0IE
INT0IE
RBIE
TMR0IF
INT0IF
RBIF
109
EEADR5 EEADR4 EEADR3 EEADR2 EEADR1 EEADR0
—
EEDATA
—
—
—
EEADR9 EEADR8
EEPROM Data Register
EECON2
—
—
—
EEPROM Control Register 2 (not a physical register)
—
EECON1
EEPGD
CFGS
—
FREE
WRERR
WREN
WR
RD
100
IPR2
OSCFIP
C1IP
C2IP
EEIP
BCL1IP
HLVDIP
TMR3IP
CCP2IP
122
PIR2
OSCFIF
C1IF
C2IF
EEIF
BCL1IF
HLVDIF
TMR3IF
CCP2IF
113
PIE2
OSCFIE
C1IE
C2IE
EEIE
BCL1IE
HLVDIE
TMR3IE
CCP2IE
118
Legend: — = unimplemented, read as ‘0’. Shaded bits are not used during EEPROM access.
Note 1: PIC18(L)F26K22 and PIC18(L)F46K22 only.
2010-2021 Microchip Technology Inc.
DS40001412H-page 103
PIC18(L)F2X/4XK22
8.0
8 x 8 HARDWARE MULTIPLIER
8.1
Introduction
All PIC18 devices include an 8 x 8 hardware multiplier
as part of the ALU. The multiplier performs an unsigned
operation and yields a 16-bit result that is stored in the
product register pair, PRODH:PRODL. The multiplier’s
operation does not affect any flags in the STATUS
register.
Making multiplication a hardware operation allows it to
be completed in a single instruction cycle. This has the
advantages of higher computational throughput and
reduced code size for multiplication algorithms and
allows the PIC18 devices to be used in many applications previously reserved for digital signal processors.
A comparison of various hardware and software
multiply operations, along with the savings in memory
and execution time, is shown in Table 8-1.
8.2
EXAMPLE 8-1:
MOVF
MULWF
8 x 8 UNSIGNED
MULTIPLY ROUTINE
ARG1, W
ARG2
;
; ARG1 * ARG2 ->
; PRODH:PRODL
EXAMPLE 8-2:
8 x 8 SIGNED MULTIPLY
ROUTINE
MOVF
MULWF
ARG1, W
ARG2
BTFSC
SUBWF
ARG2, SB
PRODH, F
MOVF
BTFSC
SUBWF
ARG2, W
ARG1, SB
PRODH, F
;
;
;
;
;
ARG1 * ARG2 ->
PRODH:PRODL
Test Sign Bit
PRODH = PRODH
- ARG1
; Test Sign Bit
; PRODH = PRODH
;
- ARG2
Operation
Example 8-1 shows the instruction sequence for an 8 x 8
unsigned multiplication. Only one instruction is required
when one of the arguments is already loaded in the
WREG register.
Example 8-2 shows the sequence to do an 8 x 8 signed
multiplication. To account for the sign bits of the
arguments, each argument’s Most Significant bit (MSb)
is tested and the appropriate subtractions are done.
TABLE 8-1:
PERFORMANCE COMPARISON FOR VARIOUS MULTIPLY OPERATIONS
Multiply Method
Program
Memory
(Words)
Without hardware multiply
13
Routine
8 x 8 unsigned
8 x 8 signed
16 x 16 unsigned
16 x 16 signed
Time
Cycles
(Max) @ 64 MHz @ 40 MHz @ 10 MHz @ 4 MHz
69
4.3 s
6.9 s
27.6 s
69 s
Hardware multiply
1
1
62.5 ns
100 ns
400 ns
1 s
Without hardware multiply
33
91
5.7 s
9.1 s
36.4 s
91 s
Hardware multiply
6
6
375 ns
600 ns
2.4 s
6 s
Without hardware multiply
21
242
15.1 s
24.2 s
96.8 s
242 s
Hardware multiply
28
28
1.8 s
2.8 s
11.2 s
28 s
Without hardware multiply
52
254
15.9 s
25.4 s
102.6 s
254 s
Hardware multiply
35
40
2.5 s
4.0 s
16.0 s
40 s
DS40001412H-page 104
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
Example 8-3 shows the sequence to do a 16 x 16
unsigned multiplication. Equation 8-1 shows the
algorithm that is used. The 32-bit result is stored in four
registers (RES).
EQUATION 8-1:
RES3:RES0
=
=
EXAMPLE 8-3:
16 x 16 UNSIGNED
MULTIPLICATION
ALGORITHM
ARG1H:ARG1L ARG2H:ARG2L
(ARG1H ARG2H 216) +
(ARG1H ARG2L 28) +
(ARG1L ARG2H 28) +
(ARG1L ARG2L)
EQUATION 8-2:
RES3:RES0 = ARG1H:ARG1L ARG2H:ARG2L
= (ARG1H ARG2H 216) +
(ARG1H ARG2L 28) +
(ARG1L ARG2H 28) +
(ARG1L ARG2L) +
(-1 ARG2H ARG1H:ARG1L 216) +
(-1 ARG1H ARG2H:ARG2L 216)
EXAMPLE 8-4:
16 x 16 UNSIGNED
MULTIPLY ROUTINE
MOVF
MULWF
ARG1L, W
ARG2L
MOVFF
MOVFF
PRODH, RES1
PRODL, RES0
MOVF
MULWF
ARG1H, W
ARG2H
MOVFF
MOVFF
PRODH, RES3
PRODL, RES2
MOVF
MULWF
ARG1L, W
ARG2H
MOVF
ADDWF
MOVF
ADDWFC
CLRF
ADDWFC
PRODL, W
RES1, F
PRODH, W
RES2, F
WREG
RES3, F
MOVF
MULWF
ARG1H, W
ARG2L
MOVF
ADDWF
MOVF
ADDWFC
CLRF
ADDWFC
PRODL, W
RES1, F
PRODH, W
RES2, F
WREG
RES3, F
; ARG1L * ARG2L->
; PRODH:PRODL
;
;
ARG1L * ARG2H->
PRODH:PRODL
Add cross
products
ARG1H * ARG2L->
PRODH:PRODL
Add cross
products
Example 8-4 shows the sequence to do a 16 x 16
signed multiply. Equation 8-2 shows the algorithm
used. The 32-bit result is stored in four registers
(RES). To account for the sign bits of the arguments, the MSb for each argument pair is tested and
the appropriate subtractions are done.
2010-2021 Microchip Technology Inc.
ARG1L, W
ARG2L
MOVFF
MOVFF
PRODH, RES1
PRODL, RES0
MOVF
MULWF
ARG1H, W
ARG2H
MOVFF
MOVFF
PRODH, RES3
PRODL, RES2
MOVF
MULWF
ARG1L, W
ARG2H
MOVF
ADDWF
MOVF
ADDWFC
CLRF
ADDWFC
PRODL, W
RES1, F
PRODH, W
RES2, F
WREG
RES3, F
MOVF
MULWF
ARG1H, W
ARG2L
MOVF
ADDWF
MOVF
ADDWFC
CLRF
ADDWFC
PRODL, W
RES1, F
PRODH, W
RES2, F
WREG
RES3, F
BTFSS
BRA
MOVF
SUBWF
MOVF
SUBWFB
ARG2H, 7
SIGN_ARG1
ARG1L, W
RES2
ARG1H, W
RES3
; ARG2H:ARG2L neg?
; no, check ARG1
;
;
;
ARG1H, 7
CONT_CODE
ARG2L, W
RES2
ARG2H, W
RES3
; ARG1H:ARG1L neg?
; no, done
;
;
;
; ARG1L * ARG2L ->
; PRODH:PRODL
;
;
; ARG1H * ARG2H ->
; PRODH:PRODL
;
;
;
;
;
;
;
;
;
;
ARG1L * ARG2H ->
PRODH:PRODL
Add cross
products
;
;
;
;
;
;
;
;
;
;
;
MOVF
MULWF
;
;
;
;
;
;
;
;
;
;
16 x 16 SIGNED
MULTIPLY ROUTINE
;
;
; ARG1H * ARG2H->
; PRODH:PRODL
;
;
16 x 16 SIGNED
MULTIPLICATION
ALGORITHM
;
;
;
;
;
;
;
;
;
ARG1H * ARG2L ->
PRODH:PRODL
Add cross
products
;
;
SIGN_ARG1
BTFSS
BRA
MOVF
SUBWF
MOVF
SUBWFB
;
CONT_CODE
:
DS40001412H-page 105
PIC18(L)F2X/4XK22
9.0
INTERRUPTS
The PIC18(L)F2X/4XK22 devices have multiple
interrupt sources and an interrupt priority feature that
allows most interrupt sources to be assigned a high or
low priority level (INT0 does not have a priority bit, it is
always a high priority). The high priority interrupt vector
is at 0008h and the low priority interrupt vector is at
0018h. A high priority interrupt event will interrupt a low
priority interrupt that may be in progress.
There are 19 registers used to control interrupt
operation.
These registers are:
•
•
•
•
•
INTCON, INTCON2, INTCON3
PIR1, PIR2, PIR3, PIR4, PIR5
PIE1, PIE2, PIE3, PIE4, PIE5
IPR1, IPR2, IPR3, IPR4, IPR5
RCON
It is recommended that the Microchip header files
supplied with MPLAB® IDE be used for the symbolic bit
names in these registers. This allows the assembler/
compiler to automatically take care of the placement of
these bits within the specified register.
In general, interrupt sources have three bits to control
their operation. They are:
• Flag bit to indicate that an interrupt event
occurred
• Enable bit that allows program execution to
branch to the interrupt vector address when the
flag bit is set
• Priority bit to select high priority or low priority
9.1
Mid-Range Compatibility
When the IPEN bit is cleared (default state), the interrupt
priority feature is disabled and interrupts are compatible
with PIC® microcontroller mid-range devices. In
Compatibility mode, the interrupt priority bits of the IPRx
registers have no effect. The PEIE/GIEL bit of the
INTCON register is the global interrupt enable for the
peripherals. The PEIE/GIEL bit disables only the
peripheral interrupt sources and enables the peripheral
interrupt sources when the GIE/GIEH bit is also set. The
GIE/GIEH bit of the INTCON register is the global
interrupt enable which enables all nonperipheral
interrupt sources and disables all interrupt sources,
including the peripherals. All interrupts branch to
address 0008h in Compatibility mode.
DS40001412H-page 106
9.2
Interrupt Priority
The interrupt priority feature is enabled by setting the
IPEN bit of the RCON register. When interrupt priority
is enabled the GIE/GIEH and PEIE/GIEL global
interrupt enable bits of Compatibility mode are replaced
by the GIEH high priority, and GIEL low priority, global
interrupt enables. When set, the GIEH bit of the
INTCON register enables all interrupts that have their
associated IPRx register or INTCONx register priority
bit set (high priority). When clear, the GIEH bit disables
all interrupt sources including those selected as low
priority. When clear, the GIEL bit of the INTCON
register disables only the interrupts that have their
associated priority bit cleared (low priority). When set,
the GIEL bit enables the low priority sources when the
GIEH bit is also set.
When the interrupt flag, enable bit and appropriate
Global Interrupt Enable (GIE) bit are all set, the
interrupt will vector immediately to address 0008h for
high priority, or 0018h for low priority, depending on
level of the interrupting source’s priority bit. Individual
interrupts can be disabled through their corresponding
interrupt enable bits.
9.3
Interrupt Response
When an interrupt is responded to, the Global Interrupt
Enable bit is cleared to disable further interrupts. The
GIE/GIEH bit is the Global Interrupt Enable when the
IPEN bit is cleared. When the IPEN bit is set, enabling
interrupt priority levels, the GIEH bit is the high priority
global interrupt enable and the GIEL bit is the low
priority Global Interrupt Enable. High priority interrupt
sources can interrupt a low priority interrupt. Low
priority interrupts are not processed while high priority
interrupts are in progress.
The return address is pushed onto the stack and the
PC is loaded with the interrupt vector address (0008h
or 0018h). Once in the Interrupt Service Routine, the
source(s) of the interrupt can be determined by polling
the interrupt flag bits in the INTCONx and PIRx
registers. The interrupt flag bits must be cleared by
software before re-enabling interrupts to avoid
repeating the same interrupt.
The “return from interrupt” instruction, RETFIE, exits
the interrupt routine and sets the GIE/GIEH bit (GIEH
or GIEL if priority levels are used), which re-enables
interrupts.
For external interrupt events, such as the INT pins or
the PORTB interrupt-on-change, the interrupt latency
will be three to four instruction cycles. The exact
latency is the same for one-cycle or two-cycle
instructions. Individual interrupt flag bits are set,
regardless of the status of their corresponding enable
bits or the Global Interrupt Enable bit.
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
Note:
Do not use the MOVFF instruction to
modify any of the interrupt control
registers while any interrupt is enabled.
Doing
so
may
cause
erratic
microcontroller behavior.
FIGURE 9-1:
PIC18 INTERRUPT LOGIC
Wake-up if in
Idle or Sleep modes
INT0IF
INT0IE
PIR1
PIE1
IPR1
PIR2
PIE2
IPR2
PIR3
PIE3
IPR3
TMR0IF
TMR0IE
TMR0IP
RBIF
RBIE
RBIP
INT1IF
INT1IE
INT1IP
INT2IF
INT2IE
INT2IP
(1)
Interrupt to CPU
Vector to Location
0008h
GIEH/GIE
IPEN
PIR4
PIE4
IPR4
PIR5
PIE5
IPR5
IPEN
GIEL/PEIE
IPEN
High Priority Interrupt Generation
Low Priority Interrupt Generation
PIR1
PIE1
IPR1
PIR2
PIE2
IPR2
PIR3
PIE3
IPR3
PIR4
PIE4
IPR4
PIR5
PIE5
IPR5
Interrupt to CPU
Vector to Location
0018h
TMR0IF
TMR0IE
TMR0IP
RBIF
RBIE
RBIP
(1)
GIEH/GIE
GIEL/PEIE
INT1IF
INT1IE
INT1IP
INT2IF
INT2IE
INT2IP
Note
1:
The RBIF interrupt also requires the individual pin IOCB enables.
2010-2021 Microchip Technology Inc.
DS40001412H-page 107
PIC18(L)F2X/4XK22
9.4
INTCON Registers
The INTCON registers are readable and writable
registers, which contain various enable, priority and
flag bits.
9.5
PIR Registers
The PIR registers contain the individual flag bits for the
peripheral interrupts. Due to the number of peripheral
interrupt sources, there are five Peripheral Interrupt
Request Flag registers (PIR1, PIR2, PIR3, PIR4 and
PIR5).
9.6
PIE Registers
The PIE registers contain the individual enable bits for
the peripheral interrupts. Due to the number of
peripheral interrupt sources, there are five Peripheral
Interrupt Enable registers (PIE1, PIE2, PIE3, PIE4 and
PIE5). When IPEN = 0, the PEIE/GIEL bit must be set to
enable any of these peripheral interrupts.
9.7
IPR Registers
The IPR registers contain the individual priority bits for the
peripheral interrupts. Due to the number of peripheral
interrupt sources, there are five Peripheral Interrupt
Priority registers (IPR1, IPR2, IPR3, IPR4 and IPR5).
Using the priority bits requires that the Interrupt Priority
Enable (IPEN) bit be set.
DS40001412H-page 108
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
9.8
Register Definitions: Interrupt Control
REGISTER 9-1:
INTCON: INTERRUPT CONTROL REGISTER
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-x
GIE/GIEH
PEIE/GIEL
TMR0IE
INT0IE
RBIE
TMR0IF
INT0IF
RBIF
bit 7
bit 0
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 7
GIE/GIEH: Global Interrupt Enable bit
When IPEN = 0:
1 = Enables all unmasked interrupts
0 = Disables all interrupts including peripherals
When IPEN = 1:
1 = Enables all high priority interrupts
0 = Disables all interrupts including low priority
bit 6
PEIE/GIEL: Peripheral Interrupt Enable bit
When IPEN = 0:
1 = Enables all unmasked peripheral interrupts
0 = Disables all peripheral interrupts
When IPEN = 1:
1 = Enables all low priority interrupts
0 = Disables all low priority interrupts
bit 5
TMR0IE: TMR0 Overflow Interrupt Enable bit
1 = Enables the TMR0 overflow interrupt
0 = Disables the TMR0 overflow interrupt
bit 4
INT0IE: INT0 External Interrupt Enable bit
1 = Enables the INT0 external interrupt
0 = Disables the INT0 external interrupt
bit 3
RBIE: Port B Interrupt-On-Change (IOCx) Interrupt Enable bit(2)
1 = Enables the IOCx port change interrupt
0 = Disables the IOCx port change interrupt
bit 2
TMR0IF: TMR0 Overflow Interrupt Flag bit
1 = TMR0 register has overflowed (must be cleared by software)
0 = TMR0 register did not overflow
bit 1
INT0IF: INT0 External Interrupt Flag bit
1 = The INT0 external interrupt occurred (must be cleared by software)
0 = The INT0 external interrupt did not occur
bit 0
RBIF: Port B Interrupt-On-Change (IOCx) Interrupt Flag bit(1)
1 = At least one of the IOC (RB) pins changed state (must be cleared by software)
0 = None of the IOC (RB) pins have changed state
Note 1:
2:
Note:
A mismatch condition will continue to set the RBIF bit. Reading PORTB will end the
mismatch condition and allow the bit to be cleared.
RB port change interrupts also require the individual pin IOCB enables.
Interrupt flag bits are set when an interrupt
condition occurs, regardless of the state of
its corresponding enable bit or the global
enable bit. User software may ensure the
appropriate interrupt flag bits are clear
prior to enabling an interrupt. This feature
allows for software polling.
2010-2021 Microchip Technology Inc.
DS40001412H-page 109
PIC18(L)F2X/4XK22
REGISTER 9-2:
INTCON2: INTERRUPT CONTROL 2 REGISTER
R/W-1
R/W-1
R/W-1
R/W-1
U-0
R/W-1
U-0
R/W-1
RBPU
INTEDG0
INTEDG1
INTEDG2
—
TMR0IP
—
RBIP
bit 7
bit 0
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 7
RBPU: PORTB Pull-up Enable bit
1 = All PORTB pull-ups are disabled
0 = PORTB pull-ups are enabled provided that the pin is an input and the corresponding WPUB bit is
set.
bit 6
INTEDG0: External Interrupt 0 Edge Select bit
1 = Interrupt on rising edge
0 = Interrupt on falling edge
bit 5
INTEDG1: External Interrupt 1 Edge Select bit
1 = Interrupt on rising edge
0 = Interrupt on falling edge
bit 4
INTEDG2: External Interrupt 2 Edge Select bit
1 = Interrupt on rising edge
0 = Interrupt on falling edge
bit 3
Unimplemented: Read as ‘0’
bit 2
TMR0IP: TMR0 Overflow Interrupt Priority bit
1 = High priority
0 = Low priority
bit 1
Unimplemented: Read as ‘0’
bit 0
RBIP: RB Port Change Interrupt Priority bit
1 = High priority
0 = Low priority
Note:
Interrupt flag bits are set when an interrupt
condition occurs, regardless of the state of
its corresponding enable bit or the global
enable bit. User software may ensure the
appropriate interrupt flag bits are clear
prior to enabling an interrupt. This feature
allows for software polling.
DS40001412H-page 110
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
REGISTER 9-3:
INTCON3: INTERRUPT CONTROL 3 REGISTER
R/W-1
R/W-1
U-0
R/W-0
R/W-0
U-0
R/W-0
R/W-0
INT2IP
INT1IP
—
INT2IE
INT1IE
—
INT2IF
INT1IF
bit 7
bit 0
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
bit 7
INT2IP: INT2 External Interrupt Priority bit
1 = High priority
0 = Low priority
bit 6
INT1IP: INT1 External Interrupt Priority bit
1 = High priority
0 = Low priority
bit 5
Unimplemented: Read as ‘0’
bit 4
INT2IE: INT2 External Interrupt Enable bit
1 = Enables the INT2 external interrupt
0 = Disables the INT2 external interrupt
bit 3
INT1IE: INT1 External Interrupt Enable bit
1 = Enables the INT1 external interrupt
0 = Disables the INT1 external interrupt
bit 2
Unimplemented: Read as ‘0’
bit 1
INT2IF: INT2 External Interrupt Flag bit
1 = The INT2 external interrupt occurred (must be cleared by software)
0 = The INT2 external interrupt did not occur
bit 0
INT1IF: INT1 External Interrupt Flag bit
1 = The INT1 external interrupt occurred (must be cleared by software)
0 = The INT1 external interrupt did not occur
Note:
x = Bit is unknown
Interrupt flag bits are set when an interrupt
condition occurs, regardless of the state of
its corresponding enable bit or the global
enable bit. User software may ensure the
appropriate interrupt flag bits are clear
prior to enabling an interrupt. This feature
allows for software polling.
2010-2021 Microchip Technology Inc.
DS40001412H-page 111
PIC18(L)F2X/4XK22
REGISTER 9-4:
PIR1: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 1
U-0
R/W-0
R-0
R-0
R/W-0
R/W-0
R/W-0
R/W-0
—
ADIF
RC1IF
TX1IF
SSP1IF
CCP1IF
TMR2IF
TMR1IF
bit 7
bit 0
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 7
Unimplemented: Read as ‘0’.
bit 6
ADIF: A/D Converter Interrupt Flag bit
1 = An A/D conversion completed (must be cleared by software)
0 = The A/D conversion is not complete or has not been started
bit 5
RC1IF: EUSART1 Receive Interrupt Flag bit
1 = The EUSART1 receive buffer, RCREG1, is full (cleared when RCREG1 is read)
0 = The EUSART1 receive buffer is empty
bit 4
TX1IF: EUSART1 Transmit Interrupt Flag bit
1 = The EUSART1 transmit buffer, TXREG1, is empty (cleared when TXREG1 is written)
0 = The EUSART1 transmit buffer is full
bit 3
SSP1IF: Host Synchronous Serial Port 1 Interrupt Flag bit
1 = The transmission/reception is complete (must be cleared by software)
0 = Waiting to transmit/receive
bit 2
CCP1IF: CCP1 Interrupt Flag bit
Capture mode:
1 = A TMR register capture occurred (must be cleared by software)
0 = No TMR register capture occurred
Compare mode:
1 = A TMR register compare match occurred (must be cleared by software)
0 = No TMR register compare match occurred
PWM mode:
Unused in this mode
bit 1
TMR2IF: TMR2 to PR2 Match Interrupt Flag bit
1 = TMR2 to PR2 match occurred (must be cleared by software)
0 = No TMR2 to PR2 match occurred
bit 0
TMR1IF: TMR1 Overflow Interrupt Flag bit
1 = TMR1 register overflowed (must be cleared by software)
0 = TMR1 register did not overflow
Note 1: Interrupt flag bits are set when an
interrupt condition occurs, regardless of
the state of its corresponding enable bit
or the Global Interrupt Enable bit, GIE/
GIEH of the INTCON register.
Note:
User software may ensure the appropriate interrupt flag bits are cleared prior to
enabling an interrupt and after servicing
that interrupt.
DS40001412H-page 112
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
REGISTER 9-5:
PIR2: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 2
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
OSCFIF
C1IF
C2IF
EEIF
BCL1IF
HLVDIF
TMR3IF
CCP2IF
bit 7
bit 0
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 7
OSCFIF: Oscillator Fail Interrupt Flag bit
1 = Device oscillator failed, clock input has changed to HFINTOSC (must be cleared by software)
0 = Device clock operating
bit 6
C1IF: Comparator C1 Interrupt Flag bit
1 = Comparator C1 output has changed (must be cleared by software)
0 = Comparator C1 output has not changed
bit 5
C2IF: Comparator C2 Interrupt Flag bit
1 = Comparator C2 output has changed (must be cleared by software)
0 = Comparator C2 output has not changed
bit 4
EEIF: Data EEPROM/Flash Write Operation Interrupt Flag bit
1 = The write operation is complete (must be cleared by software)
0 = The write operation is not complete or has not been started
bit 3
BCL1IF: MSSP1 Bus Collision Interrupt Flag bit
1 = A bus collision occurred (must be cleared by software)
0 = No bus collision occurred
bit 2
HLVDIF: Low-Voltage Detect Interrupt Flag bit
1 = A low-voltage condition occurred (direction determined by the VDIRMAG bit of the
HLVDCON register)
0 = A low-voltage condition has not occurred
bit 1
TMR3IF: TMR3 Overflow Interrupt Flag bit
1 = TMR3 register overflowed (must be cleared by software)
0 = TMR3 register did not overflow
bit 0
CCP2IF: CCP2 Interrupt Flag bit
Capture mode:
1 = A TMR register capture occurred (must be cleared by software)
0 = No TMR register capture occurred
Compare mode:
1 = A TMR register compare match occurred (must be cleared by software)
0 = No TMR register compare match occurred
PWM mode:
Unused in this mode.
2010-2021 Microchip Technology Inc.
DS40001412H-page 113
PIC18(L)F2X/4XK22
REGISTER 9-6:
PIR3: PERIPHERAL INTERRUPT (FLAG) REGISTER 3
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
SSP2IF
BCL2IF
RC2IF
TX2IF
CTMUIF
TMR5GIF
TMR3GIF
TMR1GIF
bit 7
bit 0
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 7
SSP2IF: Synchronous Serial Port Interrupt Flag bit
1 = The transmission/reception is complete (must be cleared in software)
0 = Waiting to transmit/receive
bit 6
BCL2IF: MSSP2 Bus Collision Interrupt Flag bit
1 = A bus collision has occurred while the SSP2 module configured in I2C host was transmitting (must
be cleared in software)
0 = No bus collision occurred
bit 5
RC2IF: EUSART2 Receive Interrupt Flag bit
1 = The EUSART2 receive buffer, RCREG2, is full (cleared by reading RCREG2)
0 = The EUSART2 receive buffer is empty
bit 4
TX2IF: EUSART2 Transmit Interrupt Flag bit
1 = The EUSART2 transmit buffer, TXREG2, is empty (cleared by writing TXREG2)
0 = The EUSART2 transmit buffer is full
bit 3
CTMUIF: CTMU Interrupt Flag bit
1 = CTMU interrupt occurred (must be cleared in software)
0 = No CTMU interrupt occurred
bit 2
TMR5GIF: TMR5 Gate Interrupt Flag bits
1 = TMR gate interrupt occurred (must be cleared in software)
0 = No TMR gate occurred
bit 1
TMR3GIF: TMR3 Gate Interrupt Flag bits
1 = TMR gate interrupt occurred (must be cleared in software)
0 = No TMR gate occurred
bit 0
TMR1GIF: TMR1 Gate Interrupt Flag bits
1 = TMR gate interrupt occurred (must be cleared in software)
0 = No TMR gate occurred
DS40001412H-page 114
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
REGISTER 9-7:
PIR4: PERIPHERAL INTERRUPT (FLAG) REGISTER 4
U-0
U-0
U-0
U-0
U-0
R/W-0
R/W-0
R/W-0
—
—
—
—
—
CCP5IF
CCP4IF
CCP3IF
bit 7
bit 0
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 7-3
Unimplemented: Read as ‘0’
bit 2
CCP5IF: CCP5 Interrupt Flag bits
Capture mode:
1 = A TMR register capture occurred (must be cleared in software)
0 = No TMR register capture occurred
Compare mode:
1 = A TMR register compare match occurred (must be cleared in software)
0 = No TMR register compare match occurred
PWM mode:
Unused in PWM mode.
bit 1
CCP4IF: CCP4 Interrupt Flag bits
Capture mode:
1 = A TMR register capture occurred (must be cleared in software)
0 = No TMR register capture occurred
Compare mode:
1 = A TMR register compare match occurred (must be cleared in software)
0 = No TMR register compare match occurred
PWM mode:
Unused in PWM mode.
bit 0
CCP3IF: ECCP3 Interrupt Flag bits
Capture mode:
1 = A TMR register capture occurred (must be cleared in software)
0 = No TMR register capture occurred
Compare mode:
1 = A TMR register compare match occurred (must be cleared in software)
0 = No TMR register compare match occurred
PWM mode:
Unused in PWM mode.
2010-2021 Microchip Technology Inc.
DS40001412H-page 115
PIC18(L)F2X/4XK22
REGISTER 9-8:
PIR5: PERIPHERAL INTERRUPT (FLAG) REGISTER 5
U-0
U-0
U-0
U-0
U-0
R/W-0
R/W-0
R/W-0
—
—
—
—
—
TMR6IF
TMR5IF
TMR4IF
bit 7
bit 0
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
bit 7-3
Unimplemented: Read as ‘0’
bit 2
TMR6IF: TMR6 to PR6 Match Interrupt Flag bit
1 = TMR6 to PR6 match occurred (must be cleared in software)
0 = No TMR6 to PR6 match occurred
bit 1
TMR5IF: TMR5 Overflow Interrupt Flag bit
1 = TMR5 register overflowed (must be cleared in software)
0 = TMR5 register did not overflow
bit 0
TMR4IF: TMR4 to PR4 Match Interrupt Flag bit
1 = TMR4 to PR4 match occurred (must be cleared in software)
0 = No TMR4 to PR4 match occurred
DS40001412H-page 116
x = Bit is unknown
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
REGISTER 9-9:
PIE1: PERIPHERAL INTERRUPT ENABLE (FLAG) REGISTER 1
U-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
—
ADIE
RC1IE
TX1IE
SSP1IE
CCP1IE
TMR2IE
TMR1IE
bit 7
bit 0
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
bit 7
Unimplemented: Read as ‘0’.
bit 6
ADIE: A/D Converter Interrupt Enable bit
1 = Enables the A/D interrupt
0 = Disables the A/D interrupt
bit 5
RC1IE: EUSART1 Receive Interrupt Enable bit
1 = Enables the EUSART1 receive interrupt
0 = Disables the EUSART1 receive interrupt
bit 4
TX1IE: EUSART1 Transmit Interrupt Enable bit
1 = Enables the EUSART1 transmit interrupt
0 = Disables the EUSART1 transmit interrupt
bit 3
SSP1IE: Host Synchronous Serial Port 1 Interrupt Enable bit
1 = Enables the MSSP1 interrupt
0 = Disables the MSSP1 interrupt
bit 2
CCP1IE: CCP1 Interrupt Enable bit
1 = Enables the CCP1 interrupt
0 = Disables the CCP1 interrupt
bit 1
TMR2IE: TMR2 to PR2 Match Interrupt Enable bit
1 = Enables the TMR2 to PR2 match interrupt
0 = Disables the TMR2 to PR2 match interrupt
bit 0
TMR1IE: TMR1 Overflow Interrupt Enable bit
1 = Enables the TMR1 overflow interrupt
0 = Disables the TMR1 overflow interrupt
2010-2021 Microchip Technology Inc.
x = Bit is unknown
DS40001412H-page 117
PIC18(L)F2X/4XK22
REGISTER 9-10:
PIE2: PERIPHERAL INTERRUPT ENABLE (FLAG) REGISTER 2
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
OSCFIE
C1IE
C2IE
EEIE
BCL1IE
HLVDIE
TMR3IE
CCP2IE
bit 7
bit 0
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
bit 7
OSCFIE: Oscillator Fail Interrupt Enable bit
1 = Enabled
0 = Disabled
bit 6
C1IE: Comparator C1 Interrupt Enable bit
1 = Enabled
0 = Disabled
bit 5
C2IE: Comparator C2 Interrupt Enable bit
1 = Enabled
0 = Disabled
bit 4
EEIE: Data EEPROM/Flash Write Operation Interrupt Enable bit
1 = Enabled
0 = Disabled
bit 3
BCL1IE: MSSP1 Bus Collision Interrupt Enable bit
1 = Enabled
0 = Disabled
bit 2
HLVDIE: Low-Voltage Detect Interrupt Enable bit
1 = Enabled
0 = Disabled
bit 1
TMR3IE: TMR3 Overflow Interrupt Enable bit
1 = Enabled
0 = Disabled
bit 0
CCP2IE: CCP2 Interrupt Enable bit
1 = Enabled
0 = Disabled
DS40001412H-page 118
x = Bit is unknown
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
REGISTER 9-11:
PIE3: PERIPHERAL INTERRUPT ENABLE (FLAG) REGISTER 3
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
SSP2IE
BCL2IE
RC2IE
TX2IE
CTMUIE
TMR5GIE
TMR3GIE
TMR1GIE
bit 7
bit 0
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
bit 7
SSP2IE: Host Synchronous Serial Port 2 Interrupt Enable bit
1 = Enables the MSSP2 interrupt
0 = Disables the MSSP2 interrupt
bit 6
BCL2IE: Bus Collision Interrupt Enable bit
1 = Enabled
0 = Disabled
bit 5
RC2IE: EUSART2 Receive Interrupt Enable bit
1 = Enabled
0 = Disabled
bit 4
TX2IE: EUSART2 Transmit Interrupt Enable bit
1 = Enabled
0 = Disabled
bit 3
CTMUIE: CTMU Interrupt Enable bit
1 = Enabled
0 = Disabled
bit 2
TMR5GIE: TMR5 Gate Interrupt Enable bit
1 = Enabled
0 = Disabled
bit 1
TMR3GIE: TMR3 Gate Interrupt Enable bit
1 = Enabled
0 = Disabled
bit 0
TMR1GIE: TMR1 Gate Interrupt Enable bit
1 = Enabled
0 = Disabled
2010-2021 Microchip Technology Inc.
x = Bit is unknown
DS40001412H-page 119
PIC18(L)F2X/4XK22
REGISTER 9-12:
PIE4: PERIPHERAL INTERRUPT ENABLE (FLAG) REGISTER 4
U-0
U-0
U-0
U-0
U-0
R/W-0
R/W-0
R/W-0
—
—
—
—
—
CCP5IE
CCP4IE
CCP3IE
bit 7
bit 0
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
bit 7-3
Unimplemented: Read as ‘0’
bit 2
CCP5IE: CCP5 Interrupt Enable bit
1 = Enabled
0 = Disabled
bit 1
CCP4IE: CCP4 Interrupt Enable bit
1 = Enabled
0 = Disabled
bit 0
CCP3IE: CCP3 Interrupt Enable bit
1 = Enabled
0 = Disabled
REGISTER 9-13:
x = Bit is unknown
PIE5: PERIPHERAL INTERRUPT ENABLE (FLAG) REGISTER 5
U-0
U-0
U-0
U-0
U-0
R/W-0
R/W-0
R/W-0
—
—
—
—
—
TMR6IE
TMR5IE
TMR4IE
bit 7
bit 0
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
bit 7-3
Unimplemented: Read as ‘0’
bit 2
TMR6IE: TMR6 to PR6 Match Interrupt Enable bit
1 = Enables the TMR6 to PR6 match interrupt
0 = Disables the TMR6 to PR6 match interrupt
bit 1
TMR5IE: TMR5 Overflow Interrupt Enable bit
1 = Enables the TMR5 overflow interrupt
0 = Disables the TMR5 overflow interrupt
bit 0
TMR4IE: TMR4 to PR4 Match Interrupt Enable bit
1 = Enables the TMR4 to PR4 match interrupt
0 = Disables the TMR4 to PR4 match interrupt
DS40001412H-page 120
x = Bit is unknown
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
REGISTER 9-14:
IPR1: PERIPHERAL INTERRUPT PRIORITY REGISTER 1
U-0
R/W-1
R/W-1
R/W-1
R/W-1
R/W-1
R/W-1
R/W-1
—
ADIP
RC1IP
TX1IP
SSP1IP
CCP1IP
TMR2IP
TMR1IP
bit 7
bit 0
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
bit 7
Unimplemented: Read as ‘0’
bit 6
ADIP: A/D Converter Interrupt Priority bit
1 = High priority
0 = Low priority
bit 5
RC1IP: EUSART1 Receive Interrupt Priority bit
1 = High priority
0 = Low priority
bit 4
TX1IP: EUSART1 Transmit Interrupt Priority bit
x = Bit is unknown
1 = High priority
0 = Low priority
bit 3
SSP1IP: Host Synchronous Serial Port 1 Interrupt Priority bit
1 = High priority
0 = Low priority
bit 2
CCP1IP: CCP1 Interrupt Priority bit
1 = High priority
0 = Low priority
bit 1
TMR2IP: TMR2 to PR2 Match Interrupt Priority bit
1 = High priority
0 = Low priority
bit 0
TMR1IP: TMR1 Overflow Interrupt Priority bit
1 = High priority
0 = Low priority
2010-2021 Microchip Technology Inc.
DS40001412H-page 121
PIC18(L)F2X/4XK22
REGISTER 9-15:
IPR2: PERIPHERAL INTERRUPT PRIORITY REGISTER 2
R/W-1
R/W-1
R/W-1
R/W-1
R/W-1
R/W-1
R/W-1
R/W-1
OSCFIP
C1IP
C2IP
EEIP
BCL1IP
HLVDIP
TMR3IP
CCP2IP
bit 7
bit 0
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
bit 7
OSCFIP: Oscillator Fail Interrupt Priority bit
1 = High priority
0 = Low priority
bit 6
C1IP: Comparator C1 Interrupt Priority bit
1 = High priority
0 = Low priority
bit 5
C2IP: Comparator C2 Interrupt Priority bit
1 = High priority
0 = Low priority
bit 4
EEIP: Data EEPROM/Flash Write Operation Interrupt Priority bit
1 = High priority
0 = Low priority
bit 3
BCL1IP: MSSP1 Bus Collision Interrupt Priority bit
1 = High priority
0 = Low priority
bit 2
HLVDIP: Low-Voltage Detect Interrupt Priority bit
1 = High priority
0 = Low priority
bit 1
TMR3IP: TMR3 Overflow Interrupt Priority bit
1 = High priority
0 = Low priority
bit 0
CCP2IP: CCP2 Interrupt Priority bit
1 = High priority
0 = Low priority
DS40001412H-page 122
x = Bit is unknown
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
REGISTER 9-16:
IPR3: PERIPHERAL INTERRUPT PRIORITY REGISTER 3
R/W-1
R/W-1
R/W-1
R/W-1
R/W-1
R/W-1
R/W-1
R/W-1
SSP2IP
BCL2IP
RC2IP
TX2IP
CTMUIP
TMR5GIP
TMR3GIP
TMR1GIP
bit 7
bit 0
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
bit 7
SSP2IP: Synchronous Serial Port 2 Interrupt Priority bit
1 = High priority
0 = Low priority
bit 6
BCL2IP: Bus Collision 2 Interrupt Priority bit
1 = High priority
0 = Low priority
bit 5
RC2IP: EUSART2 Receive Interrupt Priority bit
1 = High priority
0 = Low priority
bit 4
TX2IP: EUSART2 Transmit Interrupt Priority bit
1 = High priority
0 = Low priority
bit 3
CTMUIP: CTMU Interrupt Priority bit
1 = High priority
0 = Low priority
bit 2
TMR5GIP: TMR5 Gate Interrupt Priority bit
1 = High priority
0 = Low priority
bit 1
TMR3GIP: TMR3 Gate Interrupt Priority bit
1 = High priority
0 = Low priority
bit 0
TMR1GIP: TMR1 Gate Interrupt Priority bit
1 = High priority
0 = Low priority
2010-2021 Microchip Technology Inc.
x = Bit is unknown
DS40001412H-page 123
PIC18(L)F2X/4XK22
REGISTER 9-17:
IPR4: PERIPHERAL INTERRUPT PRIORITY REGISTER 4
U-0
U-0
U-0
U-0
U-0
R/W-0
R/W-0
R/W-0
—
—
—
—
—
CCP5IP
CCP4IP
CCP3IP
bit 7
bit 0
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
bit 7-3
Unimplemented: Read as ‘0’
bit 2
CCP5IP: CCP5 Interrupt Priority bit
1 = High priority
0 = Low priority
bit 1
CCP4IP: CCP4 Interrupt Priority bit
1 = High priority
0 = Low priority
bit 0
CCP3IP: CCP3 Interrupt Priority bit
1 = High priority
0 = Low priority
REGISTER 9-18:
x = Bit is unknown
IPR5: PERIPHERAL INTERRUPT PRIORITY REGISTER 5
U-0
U-0
U-0
U-0
U-0
R/W-0
R/W-0
R/W-0
—
—
—
—
—
TMR6IP
TMR5IP
TMR4IP
bit 7
bit 0
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
bit 7-3
Unimplemented: Read as ‘0’
bit 2
TMR6IP: TMR6 to PR6 Match Interrupt Priority bit
1 = High priority
0 = Low priority
bit 1
TMR5IP: TMR5 Overflow Interrupt Priority bit
1 = High priority
0 = Low priority
bit 0
TMR4IP: TMR4 to PR4 Match Interrupt Priority bit
1 = High priority
0 = Low priority
DS40001412H-page 124
x = Bit is unknown
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
9.9
INTn Pin Interrupts
9.10
External interrupts on the RB0/INT0, RB1/INT1 and
RB2/INT2 pins are edge-triggered. If the corresponding
INTEDGx bit in the INTCON2 register is set (= 1), the
interrupt is triggered by a rising edge; if the bit is clear,
the trigger is on the falling edge. When a valid edge
appears on the RBx/INTx pin, the corresponding flag
bit, INTxF, is set. This interrupt can be disabled by
clearing the corresponding enable bit, INTxE. Flag bit,
INTxF, must be cleared by software in the Interrupt
Service Routine before re-enabling the interrupt.
All external interrupts (INT0, INT1 and INT2) can wakeup the processor from Idle or Sleep modes if bit INTxE
was set prior to going into those modes. If the Global
Interrupt Enable bit, GIE/GIEH, is set, the processor
will branch to the interrupt vector following wake-up.
Interrupt priority for INT1 and INT2 is determined by
the value contained in the interrupt priority bits, INT1IP
and INT2IP of the INTCON3 register. There is no priority bit associated with INT0. It is always a high priority
interrupt source.
TMR0 Interrupt
In 8-bit mode (which is the default), an overflow in the
TMR0 register (FFh 00h) will set flag bit, TMR0IF. In
16-bit mode, an overflow in the TMR0H:TMR0L register pair (FFFFh 0000h) will set TMR0IF. The interrupt
can be enabled/disabled by setting/clearing enable bit,
TMR0IE of the INTCON register. Interrupt priority for
Timer0 is determined by the value contained in the
interrupt priority bit, TMR0IP of the INTCON2 register.
See Section 11.0 “Timer0 Module” for further details
on the Timer0 module.
9.11
PORTB Interrupt-on-Change
An input change on PORTB sets flag bit, RBIF of
the INTCON register. The interrupt can be enabled/
disabled by setting/clearing enable bit, RBIE of the
INTCON register. Pins must also be individually
enabled with the IOCB register. Interrupt priority for
PORTB interrupt-on-change is determined by the value
contained in the interrupt priority bit, RBIP of the
INTCON2 register.
9.12
Context Saving During Interrupts
During interrupts, the return PC address is saved on
the stack. Additionally, the WREG, STATUS and BSR
registers are saved on the fast return stack. If a fast
return from interrupt is not used (see Section 5.2.1
“Fast Register Stack”), the user may need to save the
WREG, STATUS and BSR registers on entry to the
Interrupt Service Routine. Depending on the user’s
application, other registers may also need to be saved.
Example 9-1 saves and restores the WREG, STATUS
and BSR registers during an Interrupt Service Routine.
EXAMPLE 9-1:
SAVING STATUS, WREG AND BSR REGISTERS IN RAM
MOVWF
W_TEMP
MOVFF
STATUS, STATUS_TEMP
MOVFF
BSR, BSR_TEMP
;
; USER ISR CODE
;
MOVFF
BSR_TEMP, BSR
MOVF
W_TEMP, W
MOVFF
STATUS_TEMP, STATUS
2010-2021 Microchip Technology Inc.
; W_TEMP is in virtual bank
; STATUS_TEMP located anywhere
; BSR_TMEP located anywhere
; Restore BSR
; Restore WREG
; Restore STATUS
DS40001412H-page 125
PIC18(L)F2X/4XK22
TABLE 9-1:
Name
ANSELB
INTCON
REGISTERS ASSOCIATED WITH INTERRUPTS
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Register
on Page
—
—
ANSB5
ANSB4
ANSB3
ANSB2
ANSB1
ANSB0
150
TMR0IE
INT0IE
RBIE
TMR0IF
INT0IF
RBIF
109
—
TMR0IP
—
RBIP
110
GIE/GIEH PEIE/GIEL
INTCON2
RBPU
INTEDG0
INTCON3
INT2IP
INT1IP
—
INT2IE
INT1IE
—
INT2IF
INT1IF
111
IOCB
IOCB7
IOCB6
IOCB5
IOCB4
—
—
—
—
153
IPR1
—
ADIP
RC1IP
TX1IP
SSP1IP
CCP1IP
TMR2IP
TMR1IP
121
IPR2
OSCFIP
C1IP
C2IP
EEIP
BCL1IP
HLVDIP
TMR3IP
CCP2IP
122
IPR3
SSP2IP
BCL2IP
RC2IP
TX2IP
CTMUIP TMR5GIP TMR3GIP TMR1GIP
IPR4
—
—
—
—
IPR5
—
—
—
PIE1
—
ADIE
RC1IE
PIE2
OSCFIE
C1IE
C2IE
PIE3
SSP2IE
BCL2IE
RC2IE
PIE4
—
—
—
—
—
CCP5IE
CCP4IE
CCP3IE
120
PIE5
—
—
—
—
—
TMR6IE
TMR5IE
TMR4IE
120
PIR1
—
ADIF
RC1IF
TX1IF
SSP1IF
CCP1IF
TMR2IF
TMR1IF
112
PIR2
OSCFIF
C1IF
C2IF
EEIF
BCL1IF
HLVDIF
TMR3IF
CCP2IF
113
PIR3
SSP2IF
BCL2IF
RC2IF
TX2IF
CTMUIF TMR5GIF TMR3GIF
PIR4
—
—
—
—
PIR5
PORTB
RCON
Legend:
INTEDG1 INTEDG2
123
—
CCP5IP
CCP4IP
CCP3IP
124
—
—
TMR6IP
TMR5IP
TMR4IP
124
TX1IE
SSP1IE
CCP1IE
TMR2IE
TMR1IE
117
EEIE
BCL1IE
HLVDIE
TMR3IE
CCP2IE
118
TX2IE
CTMUIE TMR5GIE TMR3GIE TMR1GIE
119
TMR1GIF
114
—
CCP5IF
CCP4IF
CCP3IF
115
—
—
—
—
—
TMR6IF
TMR5IF
TMR4IF
116
RB7
RB6
RB5
RB4
RB3
RB2
RB1
RB0
148
IPEN
SBOREN
—
RI
TO
PD
POR
BOR
56
Register
on Page
— = unimplemented locations, read as ‘0’. Shaded bits are not used for Interrupts.
TABLE 9-2:
Name
CONFIGURATION REGISTERS ASSOCIATED WITH INTERRUPTS
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
CONFIG3H
MCLRE
—
P2BMX
T3CMX
HFOFST
CCP3MX
PBADEN
CCP2MX
348
CONFIG4L
DEBUG
XINST
—
—
—
LVP
—
STRVEN
349
Legend:
— = unimplemented locations, read as ‘0’. Shaded bits are not used for Interrupts.
DS40001412H-page 126
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
10.0
I/O PORTS
10.1
Depending on the device selected and features
enabled, there are up to five ports available. All pins of
the I/O ports are multiplexed with one or more alternate
functions from the peripheral features on the device. In
general, when a peripheral is enabled, that pin may not
be used as a general purpose I/O pin.
Each port has five registers for its operation. These
registers are:
• TRIS register (data direction register)
• PORT register (reads the levels on the pins of the
device)
• LAT register (output latch)
• ANSEL register (analog input control)
• SLRCON register (port slew rate control)
The Data Latch (LAT register) is useful for read-modifywrite operations on the value that the I/O pins are
driving.
A simplified model of a generic I/O port, without the
interfaces to other peripherals, is shown in Figure 10-1.
FIGURE 10-1:
GENERIC I/O PORT
OPERATION
WR LAT
or Port
D
Q
(1)
I/O pin
CK
WR TRIS
Q
The Data Latch (LATA) register is also memory mapped.
Read-modify-write operations on the LATA register read
and write the latched output value for PORTA.
The RA4 pin is multiplexed with the Timer0 module
clock input and one of the comparator outputs to
become the RA4/T0CKI/C1OUT pin. Pins RA6 and
RA7 are multiplexed with the main oscillator pins; they
are enabled as oscillator or I/O pins by the selection of
the main oscillator in the Configuration register (see
Section 24.1 “Configuration Bits” for details). When
they are not used as port pins, RA6 and RA7 and their
associated TRIS and LAT bits are read as ‘0’.
Pins RA0 through RA5 may also be used as comparator
inputs or outputs by setting the appropriate bits in the
CM1CON0 and CM2CON0 registers.
TRISx
ANSELx
CK
TRIS Latch
Input
Buffer
RD TRIS
Q
D
ENEN
RD Port
Note 1:
Reading the PORTA register reads the status of the
pins, whereas writing to it, will write to the PORT latch.
Note:
Data Latch
D
PORTA is an 8-bit wide, bidirectional port. The
corresponding data direction register is TRISA. Setting
a TRISA bit (= 1) will make the corresponding PORTA
pin an input (i.e., disable the output driver). Clearing a
TRISA bit (= 0) will make the corresponding PORTA pin
an output (i.e., enable the output driver and put the
contents of the output latch on the selected pin).
The other PORTA pins are multiplexed with analog
inputs, the analog VREF+ and VREF- inputs, and the
comparator voltage reference output. The operation of
pins RA and RA5 as analog is selected by setting
the ANSELA bits in the ANSELA register which
is the default setting after a Power-on Reset.
RD LAT
Data
Bus
On a Power-on Reset, RA5 and RA
are configured as analog inputs and read
as ‘0’. RA4 is configured as a digital input.
The RA4/T0CKI/C1OUT pin is a Schmitt Trigger input.
All other PORTA pins have TTL input levels and full
CMOS output drivers.
The TRISA register controls the drivers of the PORTA
pins, even when they are being used as analog inputs.
The user may ensure the bits in the TRISA register are
maintained set when using them as analog inputs.
EXAMPLE 10-1:
MOVLB
CLRF
I/O pins have diode protection to VDD and VSS.
CLRF
MOVLW
MOVWF
MOVLW
MOVWF
2010-2021 Microchip Technology Inc.
PORTA Registers
0xF
PORTA
;
;
;
;
LATA
;
;
;
E0h
;
ANSELA ;
0CFh
;
;
;
TRISA
;
;
INITIALIZING PORTA
Set BSR for banked SFRs
Initialize PORTA by
clearing output
data latches
Alternate method
to clear output
data latches
Configure I/O
for digital inputs
Value used to
initialize data
direction
Set RA as inputs
RA as outputs
DS40001412H-page 127
PIC18(L)F2X/4XK22
TABLE 10-1:
Pin Name
PORTA I/O SUMMARY
Function
TRIS
Setting
ANSEL
Setting
Pin
Type
RA0
0
0
O
DIG
1
0
I
TTL
PORTA data input; disabled when analog input enabled.
C12IN0-
1
1
I
AN
Comparators C1 and C2 inverting input.
AN0
1
1
I
AN
Analog input 0.
RA1
0
0
O
DIG
LATA data output; not affected by analog input.
1
0
I
TTL
PORTA data input; disabled when analog input enabled.
1
1
I
AN
Comparators C1 and C2 inverting input.
RA0/C12IN0-/AN0
RA1/C12IN1-/AN1
C12IN1-
Description
LATA data output; not affected by analog input.
AN1
1
1
I
AN
Analog input 1.
RA2
0
0
O
DIG
LATA data output; not affected by analog input; disabled when
DACOUT enabled.
1
0
I
TTL
PORTA data input; disabled when analog input enabled;
disabled when DACOUT enabled.
C2IN+
1
1
I
AN
Comparator C2 noninverting input.
AN2
1
1
I
AN
Analog output 2.
DACOUT
x
1
O
AN
DAC Reference output.
VREF-
1
1
I
AN
A/D reference voltage (low) input.
RA3
0
LATA data output; not affected by analog input.
RA2/C2IN+/AN2/
DACOUT/VREF-
RA3/C1IN+/AN3/
VREF+
C1IN+
O
DIG
1
0
I
TTL
PORTA data input; disabled when analog input enabled.
1
1
I
AN
Comparator C1 noninverting input.
AN3
1
1
I
AN
Analog input 3.
VREF+
1
1
I
AN
A/D reference voltage (high) input.
RA4
0
—
O
DIG
LATA data output.
1
—
I
ST
PORTA data input; default configuration on POR.
0
—
O
DIG
CCP5 Compare output/PWM output, takes priority over RA4 output.
RA4/CCP5/C1OUT/
SRQ/T0CKI
CCP5
1
—
I
ST
Capture 5 input/Compare 5 output/ PWM 5 output.
C1OUT
0
—
O
DIG
Comparator C1 output.
SR latch Q output; take priority over CCP 5 output.
SRQ
0
—
O
DIG
T0CKI
1
—
I
ST
Timer0 external clock input.
RA5
0
0
O
DIG
LATA data output; not affected by analog input.
PORTA data input; disabled when analog input enabled.
RA5/C2OUT/SRNQ/
SS1/
HLVDIN/AN4
1
0
I
TTL
C2OUT
0
0
O
DIG
Comparator C2 output.
SRNQ
0
0
O
DIG
SR latch Q output.
SS1
1
0
I
TTL
SPI client select input (MSSP1).
HLVDIN
1
1
I
AN
High/Low-Voltage Detect input.
AN4
1
1
I
AN
A/D input 4.
RA6
0
—
O
DIG
LATA data output; enabled in INTOSC modes when CLKO is not
enabled.
1
—
I
TTL
PORTA data input; enabled in INTOSC modes when CLKO is
not enabled.
CLKO
x
—
O
DIG
In RC mode, OSC2 pin outputs CLKOUT which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate.
OSC2
x
—
O
XTAL
RA7
0
—
O
DIG
LATA data output; disabled in external oscillator modes.
1
—
I
TTL
PORTA data input; disabled in external oscillator modes.
CLKI
x
—
I
AN
External clock source input; always associated with pin function
OSC1.
OSC1
x
—
I
XTAL
RA6/CLKO/OSC2
RA7/CLKI/OSC1
Legend:
Buffer
Type
Oscillator crystal output; connects to crystal or resonator in Crystal
Oscillator mode.
Oscillator crystal input or external clock source input ST buffer when
configured in RC mode; CMOS otherwise.
AN = Analog input or output; TTL = TTL compatible input; HV = High Voltage; OD = Open Drain; XTAL = Crystal; CMOS = CMOS
compatible input or output; ST = Schmitt Trigger input with CMOS levels; I2C = Schmitt Trigger input with I2C.
DS40001412H-page 128
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
TABLE 10-2:
REGISTERS ASSOCIATED WITH PORTA
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Register
on Page
—
—
ANSA5
—
ANSA3
ANSA2
ANSA1
ANSA0
149
C1ON
C1OUT
C1OE
C1POL
C1SP
C1R
CM2CON0
C2ON
C2OUT
C2OE
C2POL
C2SP
C2R
LATA
LATA7
LATA6
LATA5
LATA4
LATA3
LATA2
VREFCON1
DACEN
DACLPS
DACOE
—
VREFCON2
—
—
—
VDIRMAG
BGVST
IRVST
HLVDEN
RA7
RA6
RA5
RA4
SLRCON
—
—
—
SLRE
SRCON0
SRLEN
Name
ANSELA
CM1CON0
HLVDCON
PORTA
SSP1CON1
C1CH
308
C2CH
308
LATA1
LATA0
—
DACNSS
DACPSS
DACR
SRCLK
RA2
335
336
HLVDL
RA3
152
RA1
337
RA0
148
SLRD
SLRC
SLRB
SLRA
153
SRQEN
SRNQEN
SRPS
SRPR
329
WCOL
SSPOV
SSPEN
CKP
T0CON
TMR0ON
T08BIT
T0CS
T0SE
PSA
SSPM
TRISA
TRISA7
TRISA6
TRISA5
TRISA4
TRISA3
253
T0PS
TRISA2
TRISA1
154
TRISA0
151
Bit 0
Register
on Page
Legend: — = unimplemented locations, read as ‘0’. Shaded bits are not used for PORTA.
TABLE 10-3:
CONFIGURATION REGISTERS ASSOCIATED WITH PORTA
Name
Bit 7
Bit 6
CONFIG1H
IESO
FCMEN
Bit 5
Bit 4
PRICLKEN PLLCFG
Bit 3
Bit 2
Bit 1
FOSC
345
Legend: — = unimplemented locations, read as ‘0’. Shaded bits are not used for PORTA.
2010-2021 Microchip Technology Inc.
DS40001412H-page 129
PIC18(L)F2X/4XK22
10.1.1
PORTA OUTPUT PRIORITY
Each PORTA pin is multiplexed with other functions.
The pins, their combined functions and their output
priorities are briefly described here. For additional
information, refer to the appropriate section in this data
sheet.
When multiple outputs are enabled, the actual pin
control goes to the peripheral with the higher priority.
Table 10-4 lists the PORTA pin functions from the
highest to the lowest priority.
Analog input functions, such as ADC and comparator,
are not shown in the priority lists.
These inputs are active when the I/O pin is set for
Analog mode using the ANSELx registers. Digital
output functions may control the pin when it is in Analog
mode with the priority shown below.
TABLE 10-4:
PORT PIN FUNCTION PRIORITY
Port bit
0
1
Port Function Priority by Port Pin
PORTA
PORTB
PORTC
PORTD(2)
PORTE(2)
RA0
CCP4(1)
SOSCO
SCL2
CCP3(8)
RB0
P2B(6)
SCK2
P3A(8)
RC0
RD0
RE0
RA1
2
RA2
SCL2(1)
SOSCI
SDA2
P3B
SCK2(1)
CCP2(3)
CCP4
RE1
P1C(1)
P2A(3)
RD1
RB1
RC1
SDA2(1)
CCP1
P2B
CCP5
P1B(1)
P1A
RD2(4)
RE2
RB2
CTPLS
RC2
3
RA3
(1)
SCL1
P2C
MCLR
CCP2(6)
SCK1
RD3
VPP
SDO2
(6)
P2A
RC3
RE3
RB3
4
SRQ
P1D(1)
SDA1
SDO2
C1OUT
RB4
RC4
P2D
(1)
CCP5
RD4
RA4
Note 1:
2:
3:
4:
5:
6:
7:
8:
PIC18(L)F2XK22 devices.
PIC18(L)F4XK22 devices.
Function default pin.
Function default pin (28-pin devices).
Function default pin (40/44-pin devices).
Function alternate pin.
Function alternate pin (28-pin devices).
Function alternate pin (40/44-pin devices)
DS40001412H-page 130
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
TABLE 10-4:
Port bit
5
PORT PIN FUNCTION PRIORITY (CONTINUED)
Port Function Priority by Port Pin
PORTD(2)
PORTA
PORTB
PORTC
SRNQ
CCP3(3)
SDO1
P1B
C2OUT
P3A(3)
RC5
RD5
RA5
P2B(1)(4)
PORTE(2)
RB5
6
OSC2
PGC
TX1/CK1
TX2/CK2
CLKO
TX2/CK2(1)
CCP3(1)(7)
P1C
RB6
P3A(1)(7)
RD6
ICDCK
RC6
RA6
7
RA7
OSC1
RA7
PGD
RX2/DT2
RB7
RX1/DT1
(1)
RX2/DT2
P3B(1)
P1D
RC7
RD7
ICDDT
Note 1:
2:
3:
4:
5:
6:
7:
8:
PIC18(L)F2XK22 devices.
PIC18(L)F4XK22 devices.
Function default pin.
Function default pin (28-pin devices).
Function default pin (40/44-pin devices).
Function alternate pin.
Function alternate pin (28-pin devices).
Function alternate pin (40/44-pin devices)
2010-2021 Microchip Technology Inc.
DS40001412H-page 131
PIC18(L)F2X/4XK22
10.2
PORTB Registers
PORTB is an 8-bit wide, bidirectional port. The
corresponding data direction register is TRISB. Setting
a TRISB bit (= 1) will make the corresponding PORTB
pin an input (i.e., disable the output driver). Clearing a
TRISB bit (= 0) will make the corresponding PORTB
pin an output (i.e., enable the output driver and put the
contents of the output latch on the selected pin).
The Data Latch register (LATB) is also memory
mapped. Read-modify-write operations on the LATB
register read and write the latched output value for
PORTB.
EXAMPLE 10-2:
MOVLB
CLRF
CLRF
MOVLW
MOVWF
MOVLW
MOVWF
10.2.1
0xF
PORTB
;
;
;
;
LATB
;
;
;
0F0h
;
ANSELB ;
;
;
;
0CFh
;
;
;
TRISB
;
;
;
INITIALIZING PORTB
Set BSR for banked SFRs
Initialize PORTB by
clearing output
data latches
Alternate method
to clear output
data latches
Value for init
Enable RB for
digital input pins
(not required if config bit
PBADEN is clear)
Value used to
initialize data
direction
Set RB as inputs
RB as outputs
RB as inputs
PORTB OUTPUT PRIORITY
Each PORTB pin is multiplexed with other functions.
The pins, their combined functions and their output
priorities are briefly described here. For additional
information, refer to the appropriate section in this data
sheet.
When multiple outputs are enabled, the actual pin
control goes to the peripheral with the higher priority.
Table 10-4 lists the PORTB pin functions from the
highest to the lowest priority.
Analog input functions, such as ADC, comparator and
SR latch inputs, are not shown in the priority lists.
These inputs are active when the I/O pin is set for
Analog mode using the ANSELx registers. Digital
output functions may control the pin when it is in Analog
mode with the priority shown below.
10.3
PORTB pins RB have an interrupt-on-change
option. All PORTB pins have a weak pull-up option.
10.3.1
WEAK PULL-UPS
Each of the PORTB pins has an individually controlled
weak internal pull-up. When set, each bit of the WPUB
register enables the corresponding pin pull-up. When
cleared, the RBPU bit of the INTCON2 register enables
pull-ups on all pins which also have their corresponding
WPUB bit set. When set, the RBPU bit disables all
weak pull-ups. The weak pull-up is automatically turned
off when the port pin is configured as an output. The
pull-ups are disabled on a Power-on Reset.
Note:
On a Power-on Reset, RB are
configured as analog inputs by default and
read as ‘0’; RB are configured as
digital inputs.
When the PBADEN Configuration bit is
set to ‘1’, RB will alternatively be
configured as digital inputs on POR.
10.3.2
INTERRUPT-ON-CHANGE
Four of the PORTB pins (RB) are individually
configurable as interrupt-on-change pins. Control bits
in the IOCB register enable (when set) or disable (when
clear) the interrupt function for each pin.
When set, the RBIE bit of the INTCON register enables
interrupts on all pins which also have their
corresponding IOCB bit set. When clear, the RBIE bit
disables all interrupt-on-changes.
Only pins configured as inputs can cause this interrupt
to occur (i.e., any RB pin configured as an output
is excluded from the interrupt-on-change comparison).
For enabled interrupt-on-change pins, the values are
compared with the old value latched on the last read of
PORTB. The ‘mismatch’ outputs of the last read are
OR’d together to set the PORTB Change Interrupt flag
bit (RBIF) in the INTCON register.
This interrupt can wake the device from the Sleep
mode, or any of the Idle modes. The user, in the
Interrupt Service Routine, can clear the interrupt in the
following manner:
a)
b)
DS40001412H-page 132
Additional PORTB Pin Functions
Any read or write of PORTB to clear the mismatch condition (except when PORTB is the
source or destination of a MOVFF instruction).
Execute at least one instruction after reading or
writing PORTB, then clear the flag bit, RBIF.
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
10.3.3
A mismatch condition will continue to set the RBIF flag bit.
Reading or writing PORTB will end the mismatch
condition and allow the RBIF bit to be cleared. The latch
holding the last read value is not affected by a MCLR nor
Brown-out Reset. After either one of these Resets, the
RBIF flag will continue to be set if a mismatch is present.
Note:
ALTERNATE FUNCTIONS
PORTB is multiplexed with several peripheral functions
(Table 10-5). The pins have TTL input buffers. Some of
these pin functions can be relocated to alternate pins
using the Control fuse bits in CONFIG3H. RB5 is the
default pin for P2B (28-pin devices). Clearing the
P2BMX bit moves the pin function to RC0. RB5 is also
the default pin for the CCP3/P3A peripheral pin. Clearing the CCP3MX bit moves the pin function to the RC6
pin (28-pin devices) or RE0 (40/44-pin devices).
If a change on the I/O pin may occur when
the read operation is being executed (start
of the Q2 cycle), then the RBIF interrupt
flag may not get set. Furthermore, since a
read or write on a port affects all bits of that
port, care must be taken when using
multiple pins in Interrupt-on-change mode.
Changes on one pin may not be seen while
servicing changes on another pin.
Two other pin functions, T3CKI and CCP2/P2A, can be
relocated from their default pins to PORTB pins by
clearing the control fuses in CONFIG3H. Clearing
T3CMX and CCP2MX moves the pin functions to RB5
and RB3, respectively.
The interrupt-on-change feature is recommended for
wake-up on key depression operation and operations
where PORTB is only used for the interrupt-on-change
feature. Polling of PORTB is not recommended while
using the interrupt-on-change feature.
TABLE 10-5:
Pin
PORTB I/O SUMMARY
Function
RB0/INT0/CCP4/
FLT0/SRI/SS2/
AN12
RB1/INT1/P1C/
SCK2/SCL2/
C12IN3-/AN10
RB0
Note 1:
2:
3:
Pin
Type
Buffer
Type
Description
0
0
O
DIG
LATB data output; not affected by analog input.
1
0
I
TTL
PORTB data input; disabled when analog input
enabled.
INT0
1
0
I
ST
External interrupt 0.
CCP4(3)
0
0
O
DIG
Compare 4 output/PWM 4 output.
1
0
I
ST
Capture 4 input.
FLT0
1
0
I
ST
PWM Fault input for ECCP auto-shutdown.
SRI
1
0
I
ST
SR latch input.
SS2(3)
1
0
I
TTL
SPI client select input (MSSP2).
AN12
1
1
I
AN
Analog input 12.
RB1
0
0
O
DIG
LATB data output; not affected by analog input.
1
0
I
TTL
PORTB data input; disabled when analog input
enabled.
INT1
1
0
I
ST
External Interrupt 1.
P1C(3)
0
0
O
DIG
Enhanced CCP1 PWM output 3.
SCK2(3)
0
0
O
DIG
MSSP2 SPI Clock output.
1
0
I
ST
MSSP2 SPI Clock input.
0
0
O
DIG
MSSP2 I2C Clock output.
1
0
I
I2C
MSSP2 I2C Clock input.
C12IN3-
1
1
I
AN
Comparators C1 and C2 inverting input.
AN10
1
1
I
AN
Analog input 10.
SCL2(3)
Legend:
TRIS ANSEL
Setting Setting
AN = Analog input or output; TTL = TTL compatible input; HV = High Voltage; OD = Open Drain; XTAL = Crystal; CMOS =
CMOS compatible input or output; ST = Schmitt Trigger input with CMOS levels; I2C = Schmitt Trigger input with I2C.
Default pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and
CCP2MX are set.
Alternate pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and
CCP2MX are clear.
Function on PORTD and PORTE for PIC18(L)F4XK22 devices.
2010-2021 Microchip Technology Inc.
DS40001412H-page 133
PIC18(L)F2X/4XK22
TABLE 10-5:
PORTB I/O SUMMARY (CONTINUED)
Pin
Function
RB2/INT2/CTED1/
P1B/SDI2/SDA2/
AN8
RB2
TRIS ANSEL
Setting Setting
0
O
DIG
LATB data output; not affected by analog input.
1
0
I
TTL
PORTB data input; disabled when analog input
enabled.
INT2
1
0
I
ST
External interrupt 2.
1
0
I
ST
CTMU Edge 1 input.
P1B(3)
0
0
O
DIG
Enhanced CCP1 PWM output 2.
SDI2(3)
1
0
I
ST
MSSP2 SPI data input.
(3)
0
0
O
DIG
MSSP2 I2C data output.
I
I2C
MSSP2 I2C data input.
AN8
1
1
I
AN
Analog input 8.
0
0
O
DIG
LATB data output; not affected by analog input.
1
0
I
TTL
PORTB data input; disabled when analog input
enabled.
CTED2
1
0
I
ST
CTMU Edge 2 input.
P2A
0
0
O
DIG
Enhanced CCP1 PWM output 1.
CCP2(2)
0
0
O
DIG
Compare 2 output/PWM 2 output.
1
0
I
ST
Capture 2 input.
SDO2(2)
0
0
O
DIG
MSSP2 SPI data output.
C12IN2-
1
1
I
AN
Comparators C1 and C2 inverting input.
AN9
1
1
I
AN
Analog input 9.
RB4
0
0
O
DIG
LATB data output; not affected by analog input.
1
0
I
TTL
PORTB data input; disabled when analog input
enabled.
IOC0
1
0
I
TTL
Interrupt-on-change pin.
P1D
0
0
O
DIG
Enhanced CCP1 PWM output 4.
T5G
1
0
I
ST
Timer5 external clock gate input.
AN11
1
1
I
AN
Analog input 11.
RB5
0
0
O
DIG
LATB data output; not affected by analog input.
1
0
I
TTL
PORTB data input; disabled when analog input
enabled.
RB4/IOC0/P1D/
T5G/AN11
RB5/IOC1/P2B/
P3A/CCP3/T3CKI/
T1G/AN13
3:
0
RB3
RB3/CTED2/P2A/
CCP2/SDO2/
C12IN2-/AN9
2:
Description
0
1
Note 1:
Buffer
Type
CTED1
SDA2
Legend:
Pin
Type
IOC1
1
0
I
TTL
Interrupt-on-change pin 1.
P2B(1)(3)
0
0
O
DIG
Enhanced CCP2 PWM output 2.
P3A(1)
0
0
O
DIG
Enhanced CCP3 PWM output 1.
CCP3(1)
0
0
O
DIG
Compare 3 output/PWM 3 output.
1
0
I
ST
Capture 3 input.
T3CKI(2)
1
0
I
ST
Timer3 clock input.
T1G
1
0
I
ST
Timer1 external clock gate input.
AN13
1
1
I
AN
Analog input 13.
AN = Analog input or output; TTL = TTL compatible input; HV = High Voltage; OD = Open Drain; XTAL = Crystal; CMOS =
CMOS compatible input or output; ST = Schmitt Trigger input with CMOS levels; I2C = Schmitt Trigger input with I2C.
Default pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and
CCP2MX are set.
Alternate pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and
CCP2MX are clear.
Function on PORTD and PORTE for PIC18(L)F4XK22 devices.
DS40001412H-page 134
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
TABLE 10-5:
Pin
PORTB I/O SUMMARY (CONTINUED)
Function
RB6/KBI2/PGC
RB6
TRIS ANSEL
Setting Setting
0
1
IOC2
1
TX2(3)
1
CK2(3)
1
1
PGC
RB7/KBI3/PGD
RB7
x
0
1
IOC3
1
RX2(2), (3)
1
DT2(2), (3)
1
1
PGD
x
x
Legend:
Note 1:
2:
3:
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
Pin
Type
Buffer
Type
O
DIG
LATB data output; not affected by analog input.
I
TTL
PORTB data input; disabled when analog input
enabled.
Description
I
TTL
Interrupt-on-change pin.
O
DIG
EUSART asynchronous transmit data output.
O
DIG
EUSART synchronous serial clock output.
I
ST
EUSART synchronous serial clock input.
I
ST
In-Circuit Debugger and ICSPTM programming clock input.
O
DIG
LATB data output; not affected by analog input.
I
TTL
PORTB data input; disabled when analog input
enabled.
I
TTL
Interrupt-on-change pin.
I
ST
EUSART asynchronous receive data input.
O
DIG
EUSART synchronous serial data output.
I
ST
EUSART synchronous serial data input.
O
DIG
In-Circuit Debugger and ICSPTM programming data output.
I
ST
In-Circuit Debugger and ICSPTM programming data input.
AN = Analog input or output; TTL = TTL compatible input; HV = High Voltage; OD = Open Drain; XTAL = Crystal; CMOS =
CMOS compatible input or output; ST = Schmitt Trigger input with CMOS levels; I2C = Schmitt Trigger input with I2C.
Default pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and
CCP2MX are set.
Alternate pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and
CCP2MX are clear.
Function on PORTD and PORTE for PIC18(L)F4XK22 devices.
2010-2021 Microchip Technology Inc.
DS40001412H-page 135
PIC18(L)F2X/4XK22
TABLE 10-6:
Name
ANSELB
REGISTERS ASSOCIATED WITH PORTB
Bit 7
Bit 6
—
—
CCP2ASE
ECCP2AS
CCP2CON
CCP3ASE
CCP3CON
Bit 3
Bit 2
Bit 1
Bit 0
Register
on Page
ANSB5
ANSB4
ANSB3
ANSB2
ANSB1
ANSB0
150
PSS2AC
DC2B
CCP3AS
P3M
INTCON
Bit 4
CCP2AS
P2M
ECCP3AS
Bit 5
GIE/GIEH PEIE/GIEL
PSS2BD
CCP2M
PSS3AC
DC3B
202
198
PSS3BD
CCP3M
202
198
TMR0IE
INT0IE
RBIE
TMR0IF
INT0IF
RBIF
109
INTCON2
RBPU
INTEDG0
INTEDG1
INTEDG2
—
TMR0IP
—
RBIP
110
INTCON3
INT2IP
INT1IP
—
INT2IE
INT1IE
—
INT2IF
INT1IF
111
IOCB
IOCB7
IOCB6
IOCB5
IOCB4
—
—
—
—
153
LATB
LATB7
LATB6
LATB5
LATB4
LATB3
LATB2
LATB1
LATB0
152
RB7
RB6
RB5
RB4
RB3
RB2
RB1
RB0
148
SLRCON
—
—
—
SLRE(1)
SLRD(1)
SLRC
SLRB
SLRA
153
T1GCON
TMR1GE
T1GPOL
T1GTM
T1GSPM
T1GGO/DONE
T1GVAL
T3SOSCEN
T3SYNC
PORTB
T3CON
TMR3CS
T5GCON
T1GSS
T3RD16
TMR3ON
166
T5GPOL
T5GTM
T5GSPM
T5GGO/DONE
T5GVAL
TRISB7
TRISB6
TRISB5
TRISB4
TRISB3
TRISB2
TRISB1
TRISB0
151
WPUB7
WPUB6
WPUB5
WPUB4
WPUB3
WPUB2
WPUB1
WPUB0
152
WPUB
T5GSS
167
TMR5GE
TRISB
Legend:
Note 1:
T3CKPS
167
— = unimplemented locations, read as ‘0’. Shaded bits are not used for PORTB.
Available on PIC18(L)F4XK22 devices.
TABLE 10-7:
Name
CONFIGURATION REGISTERS ASSOCIATED WITH PORTB
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Register
on Page
CONFIG3H
MCLRE
—
P2BMX
T3CMX
HFOFST
CCP3MX
PBADEN
CCP2MX
348
CONFIG4L
DEBUG
XINST
—
—
—
LVP(1)
—
STRVEN
349
Legend:
Note 1:
— = unimplemented locations, read as ‘0’. Shaded bits are not used for PORTB.
Can only be changed when in high voltage programming mode.
DS40001412H-page 136
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
10.4
PORTC Registers
PORTC is an 8-bit wide, bidirectional port. The
corresponding data direction register is TRISC. Setting
a TRISC bit (= 1) will make the corresponding PORTC
pin an input (i.e., disable the output driver). Clearing a
TRISC bit (= 0) will make the corresponding PORTC
pin an output (i.e., enable the output driver and put the
contents of the output latch on the selected pin).
The Data Latch register (LATC) is also memory
mapped. Read-modify-write operations on the LATC
register read and write the latched output value for
PORTC.
PORTC is multiplexed with several peripheral functions
(Table 10-8). The pins have Schmitt Trigger input
buffers.
Some of these pin functions can be relocated to
alternate pins using the Control fuse bits in
CONFIG3H. RC0 is the default pin for T3CKI. Clearing
the T3CMX bit moves the pin function to RB5. RC1 is
the default pin for the CCP2 peripheral pin. Clearing the
CCP2MX bit moves the pin function to the RB3 pin.
Two other pin functions, P2B and CCP3, can be
relocated from their default pins to PORTC pins by
clearing the control fuses in CONFIG3H. Clearing
P2BMX and CCP3MX moves the pin functions to RC0
and RC6(1)/RE0(2), respectively.
When enabling peripheral functions, care may be taken
in defining TRIS bits for each PORTC pin. The
EUSART and MSSP peripherals override the TRIS bit
to make a pin an output or an input, depending on the
peripheral configuration. Refer to the corresponding
peripheral section for additional information.
Note:
On a Power-on Reset, these pins are
configured as analog inputs.
EXAMPLE 10-3:
MOVLB
CLRF
CLRF
MOVLW
MOVWF
MOVLW
MOVWF
10.4.1
0xF
PORTC
;
;
;
;
LATC
;
;
;
0CFh
;
;
;
TRISC
;
;
;
30h
;
;
ANSELC ;
;
;
INITIALIZING PORTC
Set BSR for banked SFRs
Initialize PORTC by
clearing output
data latches
Alternate method
to clear output
data latches
Value used to
initialize data
direction
Set RC as inputs
RC as outputs
RC as inputs
Value used to
enable digital inputs
RC dig input enable
No ANSEL bits for RC
RC dig input enable
PORTC OUTPUT PRIORITY
Each PORTC pin is multiplexed with other functions.
The pins, their combined functions and their output
priorities are briefly described here. For additional
information, refer to the appropriate section in this data
sheet.
When multiple outputs are enabled, the actual pin
control goes to the peripheral with the higher priority.
Table 10-4 lists the PORTC pin functions from the
highest to the lowest priority.
Analog input functions, such as ADC, comparator and
SR latch inputs, are not shown in the priority lists.
These inputs are active when the I/O pin is set for
Analog mode using the ANSELx registers. Digital
output functions may control the pin when it is in Analog
mode with the priority shown below.
The contents of the TRISC register are affected by
peripheral overrides. Reading TRISC always returns
the current contents, even though a peripheral device
may be overriding one or more of the pins.
2010-2021 Microchip Technology Inc.
DS40001412H-page 137
PIC18(L)F2X/4XK22
TABLE 10-8:
PORTC I/O SUMMARY
Pin Name
RC0/P2B/T3CKI/T3G/
T1CKI/SOSCO
RC1/P2A/CCP2/SOSCI
Function
TRIS
Setting
ANSEL
setting
Pin
Type
Buffer
Type
RC0
0
—
—
O
DIG
LATC data output; not affected by analog input.
I
ST
PORTC data input; disabled when analog input
enabled.
—
—
—
—
—
—
—
O
DIG
Enhanced CCP2 PWM output 2.
I
ST
Timer3 clock input.
I
ST
Timer3 external clock gate input.
I
ST
Timer1 clock input.
O
XTAL
O
DIG
LATC data output; not affected by analog input.
I
ST
PORTC data input; disabled when analog input
enabled.
O
DIG
Enhanced CCP2 PWM output 1.
O
DIG
Compare 2 output/PWM 2 output.
I
ST
Capture 2 input.
1
P2B(2)
0
T3CKI(1)
1
T3G
1
T1CKI
1
SOSCO
x
RC1
0
1
RC3/SCK1/SCL1/AN15
SOSCI
x
I
XTAL
RC2
0
0
O
DIG
LATC data output; not affected by analog input.
1
0
I
ST
PORTC data input; disabled when analog input
enabled.
0
0
0
0
O
DIG
CTMU pulse generator output.
P1A
0
0
O
DIG
Enhanced CCP1 PWM output 1.
CCP1
0
0
O
DIG
Compare 1 output/PWM 1 output.
1
0
I
ST
Capture 1 input.
T5CKI
1
0
I
ST
Timer5 clock input.
AN14
1
1
I
AN
Analog input 14.
RC3
0
0
O
DIG
LATC data output; not affected by analog input.
1
0
I
ST
PORTC data input; disabled when analog input
enabled.
0
0
O
DIG
MSSP1 SPI Clock output.
1
0
I
ST
MSSP1 SPI Clock input.
0
0
O
DIG
MSSP1 I2C Clock output.
2
SCL1
1
0
I
I C
MSSP1 I2C Clock input.
AN15
1
1
I
AN
Analog input 15.
RC4
0
0
O
DIG
LATC data output; not affected by analog input.
1
0
I
ST
PORTC data input; disabled when analog input
enabled.
SDI1
1
0
I
ST
MSSP1 SPI data input.
SDA1
0
0
O
DIG
MSSP1 I2C data output.
1
0
I
I2C
MSSP1 I2C data input.
1
1
I
AN
Analog input 16.
AN16
Legend:
Note 1:
2:
3:
Secondary oscillator input.
CTPLS
SCK1
RC4/SDI1/SDA1/AN16
Secondary oscillator output.
—
—
—
—
P2A
CCP2(1)
1
RC2/CTPLS/P1A/
CCP1/T5CKI/AN14
Description
AN = Analog input or output; TTL = TTL compatible input; HV = High Voltage; OD = Open Drain; XTAL = Crystal; CMOS =
CMOS compatible input or output; ST = Schmitt Trigger input with CMOS levels; I2C = Schmitt Trigger input with I2C.
Default pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and
CCP2MX are set.
Alternate pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and
CCP2MX are clear.
Function on PORTD and PORTE for PIC18(L)F4XK22 devices.
DS40001412H-page 138
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
TABLE 10-8:
PORTC I/O SUMMARY (CONTINUED)
Pin Name
RC5/SDO1/AN17
RC6/P3A/CCP3/TX1/
CK1/AN18
RC7/P3B/RX1/DT1/
AN19
Function
TRIS
Setting
ANSEL
setting
Pin
Type
Buffer
Type
Description
RC5
0
0
O
DIG
LATC data output; not affected by analog input.
1
0
I
ST
PORTC data input; disabled when analog input
enabled.
SDO1
0
0
O
DIG
MSSP1 SPI data output.
AN17
1
1
I
AN
Analog input 17.
RC6
0
0
O
DIG
LATC data output; not affected by analog input.
1
0
I
ST
PORTC data input; disabled when analog input
enabled.
P3A(2), (3)
0
0
O
CCP3(2), (3)
0
0
O
DIG
Compare 3 output/PWM 3 output.
1
0
I
ST
Capture 3 input.
TX1
1
0
O
DIG
EUSART asynchronous transmit data output.
CK1
1
0
O
DIG
EUSART synchronous serial clock output.
1
0
I
ST
EUSART synchronous serial clock input.
AN18
1
1
I
AN
Analog input 18.
RC7
0
0
O
DIG
LATC data output; not affected by analog input.
1
0
I
ST
PORTC data input; disabled when analog input
enabled.
P3B
0
0
O
RX1
1
0
I
ST
EUSART asynchronous receive data in.
DT1
1
0
O
DIG
EUSART synchronous serial data output.
1
0
I
ST
EUSART synchronous serial data input.
1
1
I
AN
Analog input 19.
AN19
Legend:
Note 1:
2:
3:
CMOS Enhanced CCP3 PWM output 1.
CMOS Enhanced CCP3 PWM output 2.
AN = Analog input or output; TTL = TTL compatible input; HV = High Voltage; OD = Open Drain; XTAL = Crystal; CMOS =
CMOS compatible input or output; ST = Schmitt Trigger input with CMOS levels; I2C = Schmitt Trigger input with I2C.
Default pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and
CCP2MX are set.
Alternate pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and
CCP2MX are clear.
Function on PORTD and PORTE for PIC18FXXK22 devices.
2010-2021 Microchip Technology Inc.
DS40001412H-page 139
PIC18(L)F2X/4XK22
TABLE 10-9:
Name
ANSELC
REGISTERS ASSOCIATED WITH PORTC
Bit 7
Bit 6
ANSC7
ANSC6
CCP1ASE
ECCP1AS
CCP1CON
Bit 3
Bit 2
ANSC5
ANSC4
ANSC3
ANSC2
PSS1AC
DC1B
CCP2ASE
CCP2CON
Bit 4
CCP1AS
P1M
ECCP2AS
Bit 5
CCP2AS
P2M
Bit 1
Bit 0
Register
on Page
—
—
150
PSS1BD
CCP1M
PSS2AC
DC2B
202
198
PSS2BD
CCP2M
202
198
CTMUEN
—
CTMUSIDL
TGEN
EDGEN
EDGSEQEN
IDISSEN
CTTRIG
323
LATC7
LATC6
LATC5
LATC4
LATC3
LATC2
LATC1
LATC0
152
PORTC
RC7
RC6
RC5
RC4
RC3
RC2
RC1
RC0
148
RCSTA1
SPEN
RX9
SREN
CREN
ADDEN
FERR
OERR
RX9D
270
SLRCON
—
—
—
SLRE(1)
SLRD(1)
SLRC
SLRB
SLRA
WCOL
SSPOV
SSPEN
CKP
CTMUCONH
LATC
SSP1CON1
T1CON
T3CON
T3GCON
T5CON
TRISC
TXSTA1
Legend:
Note 1:
TMR1CS
TMR3CS
TMR3GE
T3GPOL
SSPM
T1CKPS
T1SOSCEN
T1SYNC
T1RD16
TMR1ON
T3CKPS
T3SOSCEN
T3SYNC
T3RD16
TMR3ON
T3GTM
T3GSPM T3GGO/DONE
T3GVAL
T3GSS
166
166
167
T5SOSCEN
T5SYNC
T5RD16
TMR5ON
166
TRISC7
TRISC6
TRISC5
TRISC4
TRISC3
TRISC2
TRISC1
TRISC0
151
CSRC
TX9
TXEN
SYNC
SENDB
BRGH
TRMT
TX9D
269
TMR5CS
T5CKPS
153
253
— = unimplemented locations, read as ‘0’. Shaded bits are not used for PORTC.
Available on PIC18(L)F4XK22 devices.
TABLE 10-10: CONFIGURATION REGISTERS ASSOCIATED WITH PORTC
Name
CONFIG3H
Legend:
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Register
on Page
MCLRE
—
P2BMX
T3CMX
HFOFST
CCP3MX
PBADEN
CCP2MX
348
— = unimplemented locations, read as ‘0’. Shaded bits are not used for PORTC.
DS40001412H-page 140
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
10.5
Note:
PORTD Registers
PORTD is only available on 40-pin and
44-pin devices.
PORTD is an 8-bit wide, bidirectional port. The
corresponding data direction register is TRISD. Setting
a TRISD bit (= 1) will make the corresponding PORTD
pin an input (i.e., disable the output driver). Clearing a
TRISD bit (= 0) will make the corresponding PORTD
pin an output (i.e., enable the output driver and put the
contents of the output latch on the selected pin).
The Data Latch register (LATD) is also memory
mapped. Read-modify-write operations on the LATD
register read and write the latched output value for
PORTD.
10.5.1
PORTD OUTPUT PRIORITY
Each PORTD pin is multiplexed with other functions.
The pins, their combined functions and their output
priorities are briefly described here. For additional
information, refer to the appropriate section in this data
sheet.
When multiple outputs are enabled, the actual pin
control goes to the peripheral with the higher priority.
Table 10-4 lists the PORTD pin functions from the
highest to the lowest priority.
Analog input functions, such as ADC, comparator and
SR latch inputs, are not shown in the priority lists.
These inputs are active when the I/O pin is set for
Analog mode using the ANSELx registers. Digital
output functions may control the pin when it is in Analog
mode with the priority shown below.
All pins on PORTD are implemented with Schmitt
Trigger input buffers. Each pin is individually
configurable as an input or output.
All of the PORTD pins are multiplexed with analog and
digital peripheral modules. See Table 10-11.
Note:
On a Power-on Reset, these pins are
configured as analog inputs.
EXAMPLE 10-4:
MOVLB
CLRF
CLRF
MOVLW
MOVWF
MOVLW
MOVWF
0xF
PORTD
;
;
;
;
LATD
;
;
;
0CFh
;
;
;
TRISD
;
;
;
30h
;
;
ANSELD ;
;
INITIALIZING PORTD
Set BSR for banked SFRs
Initialize PORTD by
clearing output
data latches
Alternate method
to clear output
data latches
Value used to
initialize data
direction
Set RD as inputs
RD as outputs
RD as inputs
Value used to
enable digital inputs
RD dig input enable
RC dig input enable
2010-2021 Microchip Technology Inc.
DS40001412H-page 141
PIC18(L)F2X/4XK22
TABLE 10-11: PORTD I/O SUMMARY
Pin Name
Function
RD0/SCK2/SCL2/AN20
RD0
SCK2
SCL2
RD1/CCP4/SDI2/SDA2/
AN21
RD3/P2C/SS2/AN23
RD5/P1B/AN25
Legend:
Note 1:
0
0
O
DIG
LATD data output; not affected by analog input.
1
0
I
ST
PORTD data input; disabled when analog input
enabled.
0
0
O
DIG
MSSP2 SPI Clock output.
1
0
I
ST
MSSP2 SPI Clock input.
0
0
O
DIG
MSSP2 I2C Clock output.
I
I2C
MSSP2 I2C Clock input.
0
AN20
1
1
I
AN
Analog input 20.
RD1
0
0
O
DIG
LATD data output; not affected by analog input.
1
0
I
ST
PORTD data input; disabled when analog input
enabled.
0
0
O
DIG
Compare 4 output/PWM 4 output.
1
0
I
ST
Capture 4 input.
SDI2
1
0
I
ST
MSSP2 SPI data input.
SDA2
0
0
O
DIG
MSSP2 I2C data output.
1
0
I
I2C
MSSP2 I2C data input.
AN21
1
1
I
AN
Analog input 21.
RD2
0
0
O
DIG
LATD data output; not affected by analog input.
1
0
I
ST
PORTD data input; disabled when analog input
enabled.
P2B(1)
0
0
O
DIG
Enhanced CCP2 PWM output 2.
AN22
1
1
I
AN
Analog input 22.
RD3
0
0
O
DIG
LATD data output; not affected by analog input.
1
0
I
ST
PORTD data input; disabled when analog input
enabled.
0
0
O
DIG
Enhanced CCP2 PWM output 4.
P2C
RD4/P2D/SDO2/AN24
Description
1
CCP4
RD2/P2B/AN22
TRIS ANSEL Pin Buffer
Setting setting Type Type
SS2
1
0
I
TTL
MSSP2 SPI client select input.
AN23
1
1
I
AN
Analog input 23.
RD4
0
0
O
DIG
LATD data output; not affected by analog input.
1
0
I
ST
PORTD data input; disabled when analog input
enabled.
P2D
0
0
O
DIG
Enhanced CCP2 PWM output 3.
SDO2
0
0
O
DIG
MSSP2 SPI data output.
AN24
1
1
I
AN
Analog input 24.
RD5
0
0
O
DIG
LATD data output; not affected by analog input.
1
0
I
ST
PORTD data input; disabled when analog input
enabled.
P1B
0
0
O
DIG
Enhanced CCP1 PWM output 2.
AN25
1
1
I
AN
Analog input 25.
AN = Analog input or output; TTL = TTL compatible input; HV = High Voltage; OD = Open Drain; XTAL = Crystal; CMOS =
CMOS compatible input or output; ST = Schmitt Trigger input with CMOS levels; I2C = Schmitt Trigger input with I2C.
Default pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and
CCP2MX are set.
DS40001412H-page 142
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
TABLE 10-11: PORTD I/O SUMMARY (CONTINUED)
Pin Name
RD6/P1C/TX2/CK2/
AN26
RD7/P1D/RX2/DT2/
AN27
Function
RD6
Note 1:
Description
0
0
O
DIG
LATD data output; not affected by analog input.
1
0
I
ST
PORTD data input; disabled when analog input
enabled.
P1C
0
0
O
DIG
Enhanced CCP1 PWM output 3.
TX2
1
0
O
DIG
EUSART asynchronous transmit data output.
CK2
1
0
O
DIG
EUSART synchronous serial clock output.
1
0
I
ST
EUSART synchronous serial clock input.
AN26
1
1
I
AN
Analog input 26.
RD7
0
0
O
DIG
LATD data output; not affected by analog input.
1
0
I
ST
PORTD data input; disabled when analog input
enabled.
P1D
0
0
O
DIG
Enhanced CCP1 PWM output 4.
RX2
1
0
I
ST
EUSART asynchronous receive data in.
DT2
1
0
O
DIG
EUSART synchronous serial data output.
1
0
I
ST
EUSART synchronous serial data input.
1
1
I
AN
Analog input 27.
AN27
Legend:
TRIS ANSEL Pin Buffer
Setting setting Type Type
AN = Analog input or output; TTL = TTL compatible input; HV = High Voltage; OD = Open Drain; XTAL = Crystal; CMOS =
CMOS compatible input or output; ST = Schmitt Trigger input with CMOS levels; I2C = Schmitt Trigger input with I2C.
Default pin assignment for P2B, T3CKI, CCP3 and CCP2 when Configuration bits PB2MX, T3CMX, CCP3MX and
CCP2MX are set.
2010-2021 Microchip Technology Inc.
DS40001412H-page 143
PIC18(L)F2X/4XK22
TABLE 10-12: REGISTERS ASSOCIATED WITH PORTD
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Register on
Page
ANSELD(1)
ANSD7
ANSD6
ANSD5
ANSD4
ANSD3
ANSD2
ANSD1
ANSD0
150
BAUDCON2
ABDOVF
RCIDL
DTRXP
CKTXP
BRG16
—
WUE
ABDEN
271
Name
CCP1CON
CCP2CON
CCP4CON
(1)
P1M
DC1B
CCP1M
198
P2M
DC2B
CCP2M
198
DC4B
CCP4M
198
—
—
LATD7
LATD6
LATD5
LATD4
LATD3
LATD2
LATD1
LATD0
152
PORTD(1)
RD7
RD6
RD5
RD4
RD3
RD2
RD1
RD0
148
RCSTA2
SPEN
RX9
SREN
CREN
ADDEN
FERR
OERR
RX9D
270
—
—
—
SLRE
SLRD
SLRC
SLRB
SLRA
153
SSPEN
TRISD3
TRISD2
TRISD0
151
LATD
SLRCON(1)
SSP2CON1
WCOL
SSPOV
TRISD(1)
TRISD7
TRISD6 TRISD5
CKP
TRISD4
SSPM
TRISD1
253
Legend: — = unimplemented locations, read as ‘0’. Shaded bits are not used for PORTD.
Note 1: Available on PIC18(L)F4XK22 devices.
TABLE 10-13: CONFIGURATION REGISTERS ASSOCIATED WITH PORTD
Name
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
CONFIG3H
MCLRE
—
P2BMX
T3CMX
HFOFST
Bit 2
Bit 1
Bit 0
CCP3MX PBADEN CCP2MX
Register
on Page
348
Legend: — = unimplemented locations, read as ‘0’. Shaded bits are not used for PORTD.
DS40001412H-page 144
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
10.6
PORTE Registers
Depending on the particular PIC18(L)F2X/4XK22
device selected, PORTE is implemented in two
different ways.
10.6.1
The corresponding data direction register is TRISE.
Setting a TRISE bit (= 1) will make the corresponding
PORTE pin an input (i.e., disable the output driver).
Clearing a TRISE bit (= 0) will make the corresponding
PORTE pin an output (i.e., enable the output driver and
put the contents of the output latch on the selected pin).
TRISE controls the direction of the REx pins, even
when they are being used as analog inputs. The user
must make sure to keep the pins configured as inputs
when using them as analog inputs.
The Data Latch register (LATE) is also memory
mapped. Read-modify-write operations on the LATE
register read and write the latched output value for
PORTE.
On a Power-on Reset, RE are
configured as analog inputs.
The fourth pin of PORTE (MCLR/VPP/RE3) is an input
only pin. Its operation is controlled by the MCLRE
Configuration bit. When selected as a port pin
(MCLRE = 0), it functions as a digital input only pin; as
such, it does not have TRIS or LAT bits associated with its
operation. Otherwise, it functions as the device’s Master
Clear input. In either configuration, RE3 also functions as
the programming voltage input during programming.
Note:
CLRF
CLRF
PORTE ON 40/44-PIN DEVICES
For PIC18(L)F2X/4XK22 devices, PORTE is a 4-bit
wide port. Three pins (RE0/P3A/CCP3/AN5, RE1/P3B/
AN6 and RE2/CCP5/AN7) are individually configurable
as inputs or outputs. These pins have Schmitt Trigger
input buffers. When selected as an analog input, these
pins will read as ‘0’s.
Note:
EXAMPLE 10-5:
On a Power-on Reset, RE3 is enabled as
a digital input only if Master Clear
functionality is disabled.
CLRF
MOVLW
MOVWF
10.6.2
PORTE
;
;
;
LATE
;
;
;
ANSELE ;
;
05h
;
;
;
TRISE
;
;
;
INITIALIZING PORTE
Initialize PORTE by
clearing output
data latches
Alternate method
to clear output
data latches
Configure analog pins
for digital only
Value used to
initialize data
direction
Set RE as input
RE as output
RE as input
PORTE ON 28-PIN DEVICES
For PIC18F2XK22 devices, PORTE is only available
when Master Clear functionality is disabled
(MCLR = 0). In these cases, PORTE is a single bit,
input only port comprised of RE3 only. The pin operates
as previously described.
10.6.3
RE3 WEAK PULL-UP
The port RE3 pin has an individually controlled weak
internal pull-up. When set, the WPUE3 (TRISE) bit
enables the RE3 pin pull-up. The RBPU bit of the INTCON2 register controls pull-ups on both PORTB and
PORTE. When RBPU = 0, the weak pull-ups become
active on all pins which have the WPUE3 or WPUBx
bits set. When set, the RBPU bit disables all weak pullups. The pull-ups are disabled on a Power-on Reset.
When the RE3 port pin is configured as MCLR, (CONFIG3H, MCLRE=1 and CONFIG4L, LVP=0), or
configured for Low Voltage Programming, (MCLRE=x
and LVP=1), the pull-up is always enabled and the
WPUE3 bit has no effect.
10.6.4
PORTE OUTPUT PRIORITY
Each PORTE pin is multiplexed with other functions.
The pins, their combined functions and their output
priorities are briefly described here. For additional
information, refer to the appropriate section in this data
sheet.
When multiple outputs are enabled, the actual pin
control goes to the peripheral with the higher priority.
Table 10-4 lists the PORTE pin functions from the
highest to the lowest priority.
Analog input functions, such as ADC, comparator and
SR latch inputs, are not shown in the priority lists.
These inputs are active when the I/O pin is set for
Analog mode using the ANSELx registers. Digital
output functions may control the pin when it is in Analog
mode with the priority shown below.
2010-2021 Microchip Technology Inc.
DS40001412H-page 145
PIC18(L)F2X/4XK22
TABLE 10-14: PORTE I/O SUMMARY
Pin
Function
RE0/P3A/CCP3/AN5
RE0
P3A(1)
CCP3(1)
RE1/P3B/AN6
RE2/CCP5/AN7
Legend:
Note 1:
Buffer
Type
Description
0
0
O
DIG
LATE data output; not affected by analog input.
1
0
I
ST
PORTE data input; disabled when analog input
enabled.
0
0
O
DIG
Enhanced CCP3 PWM output.
0
0
O
DIG
Compare 3 output/PWM 3 output.
1
0
I
ST
Capture 3 input.
AN5
1
1
I
AN
Analog input 5.
RE1
0
0
O
DIG
LATE data output; not affected by analog input.
1
0
I
ST
PORTE data input; disabled when analog input
enabled.
P3B
0
0
O
DIG
Enhanced CCP3 PWM output.
AN6
1
1
I
AN
Analog input 6.
RE2
0
0
O
DIG
LATE data output; not affected by analog input.
1
0
I
ST
PORTE data input; disabled when analog input
enabled.
0
0
O
DIG
Compare 5 output/PWM 5 output.
CCP5
RE3/VPP/MCLR
TRIS ANSEL Pin
Setting Setting Type
1
0
I
ST
Capture 5 input.
AN7
1
1
I
AN
Analog input 7.
RE3
—
—
I
ST
PORTE data input; enabled when Configuration bit
MCLRE = 0.
VPP
—
—
P
AN
Programming voltage input; always available
MCLR
—
—
I
ST
Active-low Master Clear (device Reset) input; enabled
when configuration bit MCLRE = 1.
AN = Analog input or output; TTL = TTL compatible input; HV = High Voltage; OD = Open Drain; XTAL = Crystal; CMOS =
CMOS compatible input or output; ST = Schmitt Trigger input with CMOS levels; I2C = Schmitt Trigger input with I2C.
Alternate pin assignment for P3A/CCP3 when Configuration bit CCP3MX is clear.
DS40001412H-page 146
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
TABLE 10-15: REGISTERS ASSOCIATED WITH PORTE
Name
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Reset
Values
on page
ANSELE(1)
—
—
—
—
—
ANSE2
ANSE1
ANSE0
151
INTCON2
RBPU
INTEDG2
—
TMR0IP
—
RBIP
110
LATE(1)
—
—
—
—
—
LATE2
LATE1
LATE0
152
PORTE
—
—
—
—
RE3
RE2(1)
RE1(1)
RE0(1)
149
SLRC
SLRB
SLRA
SLRCON
TRISE
INTEDG0 INTEDG1
—
—
—
WPUE3
—
—
(1)
SLRE
—
SLRD
(1)
—
TRISE2(1) TRISE1(1) TRISE0(1)
153
151
Legend: — = unimplemented locations, read as ‘0’. Shaded bits are not used for PORTE.
Note 1: Available on PIC18(L)F4XK22 devices.
TABLE 10-16: CONFIGURATION REGISTERS ASSOCIATED WITH PORTE
Name
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
CONFIG3H
MCLRE
—
P2BMX
T3CMX
HFOFST
CONFIG4L
DEBUG
XINST
—
—
—
Bit 2
Bit 1
Bit 0
CCP3MX PBADEN CCP2MX
LVP(1)
—
STRVEN
Reset
Values
on page
348
349
Legend: — = unimplemented locations, read as ‘0’. Shaded bits are not used for Interrupts.
Note 1: Can only be changed when in high voltage programming mode.
2010-2021 Microchip Technology Inc.
DS40001412H-page 147
PIC18(L)F2X/4XK22
10.7
Port Analog Control
10.8
Most port pins are multiplexed with analog functions
such as the Analog-to-Digital Converter and
comparators. When these I/O pins are to be used as
analog inputs it is necessary to disable the digital input
buffer to avoid excessive current caused by improper
biasing of the digital input. Individual control of the
digital input buffers on pins which share analog
functions is provided by the ANSELA, ANSELB,
ANSELC, ANSELD and ANSELE registers. Setting an
ANSx bit high will disable the associated digital input
buffer and cause all reads of that pin to return ‘0’ while
allowing analog functions of that pin to operate
correctly.
Port Slew Rate Control
The output slew rate of each port is programmable to
select either the standard transition rate or a reduced
transition rate of approximately 0.1 times the standard
to minimize EMI. The reduced transition time is the
default slew rate for all ports.
The state of the ANSx bits has no affect on digital
output functions. A pin with the associated TRISx bit
clear and ANSx bit set will still operate as a digital
output but the input mode will be analog. This can
cause unexpected behavior when performing readmodify-write operations on the affected port.
All ANSEL register bits default to ‘1’ upon POR and
BOR, disabling digital inputs for their associated port
pins. All TRIS register bits default to ‘1’ upon POR or
BOR, disabling digital outputs for their associated port
pins. As a result, all port pins that have an ANSEL
register will default to analog inputs upon POR or BOR.
10.9
Register Definitions – Port Control
PORTX(1): PORTx REGISTER
REGISTER 10-1:
R/W-u/x
R/W-u/x
R/W-u/x
R/W-u/x
R/W-u/x
R/W-u/x
R/W-u/x
R/W-u/x
Rx7
Rx6
Rx5
Rx4
Rx3
Rx2
Rx1
Rx0
bit 7
bit 0
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
-n/n = Value at POR and BOR/Value at all other Resets
bit 7-0
Note 1:
2:
Rx: PORTx I/O bit values(2)
Register Description for PORTA, PORTB, PORTC and PORTD.
Writes to PORTx are written to corresponding LATx register. Reads from PORTx register is return of I/O
pin values.
DS40001412H-page 148
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
REGISTER 10-2:
U-0
PORTE: PORTE REGISTER
U-0
—
U-0
—
—
U-0
—
R/W-u/x
RE3
(1)
R/W-u/x
RE2
(2), (3)
R/W-u/x
(2), (3)
RE1
R/W-u/x
RE0(2), (3)
bit 7
bit 0
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
-n/n = Value at POR and BOR/Value at all other Resets
bit 7-4
Unimplemented: Read as ‘0’
bit 3
RE3: PORTE Input bit value(1)
bit 2-0
RE: PORTE I/O bit values(2), (3)
Note 1:
2:
3:
Port is available as input only when MCLRE = 0.
Writes to PORTx are written to corresponding LATx register. Reads from PORTx register is return of I/O
pin values.
Available on PIC18(L)F4XK22 devices.
REGISTER 10-3:
ANSELA – PORTA ANALOG SELECT REGISTER
U-0
U-0
R/W-1
U-0
R/W-1
R/W-1
R/W-1
R/W-1
—
—
ANSA5
—
ANSA3
ANSA2
ANSA1
ANSA0
bit 7
bit 0
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
bit 7-6
Unimplemented: Read as ‘0’
bit 5
ANSA5: RA5 Analog Select bit
1 = Digital input buffer disabled
0 = Digital input buffer enabled
bit 4
Unimplemented: Read as ‘0’
bit 3-0
ANSA: RA Analog Select bit
1 = Digital input buffer disabled
0 = Digital input buffer enabled
2010-2021 Microchip Technology Inc.
x = Bit is unknown
DS40001412H-page 149
PIC18(L)F2X/4XK22
REGISTER 10-4:
ANSELB – PORTB ANALOG SELECT REGISTER
U-0
U-0
R/W-1
R/W-1
R/W-1
R/W-1
R/W-1
R/W-1
—
—
ANSB5
ANSB4
ANSB3
ANSB2
ANSB1
ANSB0
bit 7
bit 0
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
bit 7-6
Unimplemented: Read as ‘0’
bit 5-0
ANSB: RB Analog Select bit
1 = Digital input buffer disabled
0 = Digital input buffer enabled
REGISTER 10-5:
x = Bit is unknown
ANSELC – PORTC ANALOG SELECT REGISTER
R/W-1
R/W-1
R/W-1
R/W-1
R/W-1
R/W-1
U-0
U-0
ANSC7
ANSC6
ANSC5
ANSC4
ANSC3
ANSC2
—
—
bit 7
bit 0
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
bit 7-2
ANSC: RC Analog Select bit
1 = Digital input buffer disabled
0 = Digital input buffer enabled
bit 1-0
Unimplemented: Read as ‘0’
REGISTER 10-6:
x = Bit is unknown
ANSELD – PORTD ANALOG SELECT REGISTER
R/W-1
R/W-1
R/W-1
R/W-1
R/W-1
R/W-1
R/W-1
R/W-1
ANSD7
ANSD6
ANSD5
ANSD4
ANSD3
ANSD2
ANSD1
ANSD0
bit 7
bit 0
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
bit 7-0
x = Bit is unknown
ANSD: RD Analog Select bit
1 = Digital input buffer disabled
0 = Digital input buffer enabled
DS40001412H-page 150
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
REGISTER 10-7:
U-0
ANSELE – PORTE ANALOG SELECT REGISTER
U-0
—
U-0
—
—
U-0
U-0
—
—
R/W-1
ANSE2
(1)
R/W-1
ANSE1
(1)
R/W-1
ANSE0(1)
bit 7
bit 0
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
bit 7-3
Unimplemented: Read as ‘0’
bit 2-0
ANSE: RE Analog Select bit(1)
1 = Digital input buffer disabled
0 = Digital input buffer enabled
Note 1:
x = Bit is unknown
Available on PIC18(L)F4XK22 devices only.
REGISTER 10-8:
TRISx: PORTx TRI-STATE REGISTER(1)
R/W-1
R/W-1
R/W-1
R/W-1
R/W-1
R/W-1
R/W-1
R/W-1
TRISx7
TRISx6
TRISx5
TRISx4
TRISx3
TRISx2
TRISx1
TRISx0
bit 7
bit 0
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
bit 7-0
Note 1:
x = Bit is unknown
TRISx: PORTx Tri-State Control bit
1 = PORTx pin configured as an input (tri-stated)
0 = PORTx pin configured as an output
Register description for TRISA, TRISB, TRISC and TRISD.
REGISTER 10-9:
R/W-1
TRISE: PORTE TRI-STATE REGISTER
U-0
WPUE3
U-0
—
—
U-0
—
U-0
—
R/W-1
TRISE2
(1)
R/W-1
(1)
TRISE1
R/W-1
TRISE0(1)
bit 7
bit 0
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
bit 7
WPUE3: Weak Pull-up Register bits
1 = Pull-up enabled on PORT pin
0 = Pull-up disabled on PORT pin
bit 6-3
Unimplemented: Read as ‘0’
bit 2-0
TRISE: PORTE Tri-State Control bit(1)
1 = PORTE pin configured as an input (tri-stated)
0 = PORTE pin configured as an output
Note 1:
x = Bit is unknown
Available on PIC18(L)F4XK22 devices only.
2010-2021 Microchip Technology Inc.
DS40001412H-page 151
PIC18(L)F2X/4XK22
REGISTER 10-10: LATx: PORTx OUTPUT LATCH REGISTER(1)
R/W-x/u
R/W-x/u
R/W-x/u
R/W-x/u
R/W-x/u
R/W-x/u
R/W-x/u
R/W-x/u
LATx7
LATx6
LATx5
LATx4
LATx3
LATx2
LATx1
LATx0
bit 7
bit 0
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
LATx: PORTx Output Latch bit value(2)
bit 7-0
Note 1:
2:
x = Bit is unknown
Register Description for LATA, LATB, LATC and LATD.
Writes to PORTx are written to corresponding LATx register. Reads from PORTx register is return of I/O
pin values.
REGISTER 10-11: LATE: PORTE OUTPUT LATCH REGISTER(1)
U-0
U-0
U-0
U-0
U-0
R/W-x/u
R/W-x/u
R/W-x/u
—
—
—
—
—
LATE2
LATE1
LATE0
bit 7
bit 0
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
bit 7-3
Unimplemented: Read as ‘0’
bit 2-0
LATE: PORTE Output Latch bit value(2)
Note 1:
2:
x = Bit is unknown
Available on PIC18(L)F4XK22 devices only.
Writes to PORTE are written to corresponding LATE register. Reads from PORTE register is return of I/O
pin values.
REGISTER 10-12: WPUB: WEAK PULL-UP PORTB REGISTER
R/W-1
R/W-1
R/W-1
R/W-1
R/W-1
R/W-1
R/W-1
R/W-1
WPUB7
WPUB6
WPUB5
WPUB4
WPUB3
WPUB2
WPUB1
WPUB0
bit 7
bit 0
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
bit 7-0
x = Bit is unknown
WPUB: Weak Pull-up Register bits
1 = Pull-up enabled on PORT pin
0 = Pull-up disabled on PORT pin
DS40001412H-page 152
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
REGISTER 10-13: IOCB: INTERRUPT-ON-CHANGE PORTB CONTROL REGISTER
R/W-1
R/W-1
R/W-1
R/W-1
U-0
U-0
U-0
U-0
IOCB7
IOCB6
IOCB5
IOCB4
—
—
—
—
bit 7
bit 0
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
bit 7-4
Note 1:
x = Bit is unknown
IOCB: Interrupt-on-Change PORTB control bits
1 = Interrupt-on-change enabled(1)
0 = Interrupt-on-change disabled
Interrupt-on-change requires that the RBIE bit (INTCON) is set.
REGISTER 10-14: SLRCON: SLEW RATE CONTROL REGISTER
U-0
U-0
U-0
R/W-1
R/W-1
R/W-1
R/W-1
R/W-1
—
—
—
SLRE(1)
SLRD(1)
SLRC
SLRB
SLRA
bit 7
bit 0
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
bit 7-5
Unimplemented: Read as ‘0’
bit 4
SLRE: PORTE Slew Rate Control bit(1)
1 = All outputs on PORTE slew at a limited rate
0 = All outputs on PORTE slew at the standard rate
bit 3
SLRD: PORTD Slew Rate Control bit(1)
1 = All outputs on PORTD slew at a limited rate
0 = All outputs on PORTD slew at the standard rate
bit 2
SLRC: PORTC Slew Rate Control bit
1 = All outputs on PORTC slew at a limited rate
0 = All outputs on PORTC slew at the standard rate
bit 1
SLRB: PORTB Slew Rate Control bit
1 = All outputs on PORTB slew at a limited rate
0 = All outputs on PORTB slew at the standard rate
bit 0
SLRA: PORTA Slew Rate Control bit
1 = All outputs on PORTA slew at a limited rate(2)
0 = All outputs on PORTA slew at the standard rate
Note 1:
2:
x = Bit is unknown
These bits are available on PIC18(L)F4XK22 devices.
The slew rate of RA6 defaults to standard rate when the pin is used as CLKOUT.
2010-2021 Microchip Technology Inc.
DS40001412H-page 153
PIC18(L)F2X/4XK22
11.0
TIMER0 MODULE
The T0CON register (Register 11-1) controls all
aspects of the module’s operation, including the
prescale selection. It is both readable and writable.
The Timer0 module incorporates the following features:
• Software selectable operation as a timer or
counter in both 8-bit or 16-bit modes
• Readable and writable registers
• Dedicated 8-bit, software programmable
prescaler
• Selectable clock source (internal or external)
• Edge select for external clock
• Interrupt-on-overflow
11.1
A simplified block diagram of the Timer0 module in 8-bit
mode is shown in Figure 11-1. Figure 11-2 shows a
simplified block diagram of the Timer0 module in 16-bit
mode.
Register Definitions: Timer0 Control
REGISTER 11-1:
T0CON: TIMER0 CONTROL REGISTER
R/W-1
R/W-1
R/W-1
R/W-1
R/W-1
TMR0ON
T08BIT
T0CS
T0SE
PSA
R/W-1
R/W-1
R/W-1
TOPS
bit 7
bit 0
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 7
TMR0ON: Timer0 On/Off Control bit
1 = Enables Timer0
0 = Stops Timer0
bit 6
T08BIT: Timer0 8-bit/16-bit Control bit
1 = Timer0 is configured as an 8-bit timer/counter
0 = Timer0 is configured as a 16-bit timer/counter
bit 5
T0CS: Timer0 Clock Source Select bit
1 = Transition on T0CKI pin
0 = Internal instruction cycle clock (CLKOUT)
bit 4
T0SE: Timer0 Source Edge Select bit
1 = Increment on high-to-low transition on T0CKI pin
0 = Increment on low-to-high transition on T0CKI pin
bit 3
PSA: Timer0 Prescaler Assignment bit
1 = TImer0 prescaler is NOT assigned. Timer0 clock input bypasses prescaler.
0 = Timer0 prescaler is assigned. Timer0 clock input comes from prescaler output.
bit 2-0
T0PS: Timer0 Prescaler Select bits
111 = 1:256 prescale value
110 = 1:128 prescale value
101 = 1:64 prescale value
100 = 1:32 prescale value
011 = 1:16 prescale value
010 = 1:8 prescale value
001 = 1:4 prescale value
000 = 1:2 prescale value
DS40001412H-page 154
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
11.2
Timer0 Operation
11.3
Timer0 can operate as either a timer or a counter; the
mode is selected with the T0CS bit of the T0CON
register. In Timer mode (T0CS = 0), the module
increments on every clock by default unless a different
prescaler value is selected (see Section 11.4
“Prescaler”). Timer0 incrementing is inhibited for two
instruction cycles following a TMR0 register write. The
user can work around this by adjusting the value written
to the TMR0 register to compensate for the anticipated
missing increments.
The Counter mode is selected by setting the T0CS bit
(= 1). In this mode, Timer0 increments either on every
rising or falling edge of pin RA4/T0CKI. The incrementing edge is determined by the Timer0 Source Edge
Select bit, T0SE of the T0CON register; clearing this bit
selects the rising edge. Restrictions on the external
clock input are discussed below.
Timer0 Reads and Writes in
16-Bit Mode
TMR0H is not the actual high byte of Timer0 in 16-bit
mode; it is actually a buffered version of the real high
byte of Timer0 which is neither directly readable nor
writable (refer to Figure 11-2). TMR0H is updated with
the contents of the high byte of Timer0 during a read of
TMR0L. This provides the ability to read all 16 bits of
Timer0 without the need to verify that the read of the
high and low byte were valid. Invalid reads could
otherwise occur due to a rollover between successive
reads of the high and low byte.
Similarly, a write to the high byte of Timer0 must also
take place through the TMR0H Buffer register. Writing
to TMR0H does not directly affect Timer0. Instead, the
high byte of Timer0 is updated with the contents of
TMR0H when a write occurs to TMR0L. This allows all
16 bits of Timer0 to be updated at once.
An external clock source can be used to drive Timer0;
however, it must meet certain requirements (see
Table 27-12) to ensure that the external clock can be
synchronized with the internal phase clock (TOSC).
There is a delay between synchronization and the
onset of incrementing the timer/counter.
FIGURE 11-1:
TIMER0 BLOCK DIAGRAM (8-BIT MODE)
FOSC/4
0
1
1
T0CKI pin
T0SE
T0CS
T0PS
PSA
Note:
Programmable
Prescaler
0
Sync with
Internal
Clocks
TMR0L
Set
TMR0IF
on Overflow
(2 TCY Delay)
8
3
8
Internal Data Bus
Upon Reset, Timer0 is enabled in 8-bit mode with clock input from T0CKI max. prescale.
2010-2021 Microchip Technology Inc.
DS40001412H-page 155
PIC18(L)F2X/4XK22
FIGURE 11-2:
TIMER0 BLOCK DIAGRAM (16-BIT MODE)
FOSC/4
0
1
Sync with
Internal
Clocks
1
Programmable
Prescaler
T0CKI pin
T0SE
T0CS
0
TMR0
High Byte
TMR0L
8
Set
TMR0IF
on Overflow
(2 TCY Delay)
3
Read TMR0L
T0PS
Write TMR0L
PSA
8
8
TMR0H
8
8
Internal Data Bus
Note:
11.4
Upon Reset, Timer0 is enabled in 8-bit mode with clock input from T0CKI max. prescale.
Prescaler
11.4.1
An 8-bit counter is available as a prescaler for the Timer0
module. The prescaler is not directly readable or writable;
its value is set by the PSA and T0PS bits of the
T0CON register which determine the prescaler
assignment and prescale ratio.
Clearing the PSA bit assigns the prescaler to the
Timer0 module. When the prescaler is assigned,
prescale values from 1:2 through 1:256 in integer
power-of-2 increments are selectable.
When assigned to the Timer0 module, all instructions
writing to the TMR0 register (e.g., CLRF TMR0, MOVWF
TMR0, BSF TMR0, etc.) clear the prescaler count.
Note:
Writing to TMR0 when the prescaler is
assigned to Timer0 will clear the prescaler
count but will not change the prescaler
assignment.
TABLE 11-1:
Name
INTCON
INTCON2
T0CON
SWITCHING PRESCALER
ASSIGNMENT
The prescaler assignment is fully under software
control and can be changed “on-the-fly” during program
execution.
11.5
Timer0 Interrupt
The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h in 8-bit mode, or from
FFFFh to 0000h in 16-bit mode. This overflow sets the
TMR0IF flag bit. The interrupt can be masked by clearing the TMR0IE bit of the INTCON register. Before
re-enabling the interrupt, the TMR0IF bit must be
cleared by software in the Interrupt Service Routine.
Since Timer0 is shut down in Sleep mode, the TMR0
interrupt cannot awaken the processor from Sleep.
REGISTERS ASSOCIATED WITH TIMER0
Bit 7
Bit 6
GIE/GIEH PEIE/GIEL
RBPU
TMR0ON
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Reset
Values
on page
TMR0IE
INT0IE
RBIE
TMR0IF
INT0IF
RBIF
109
—
TMR0IP
—
RBIP
INTEDG0 INTEDG1 INTEDG2
T08BIT
T0CS
T0SE
PSA
T0PS
110
154
TMR0H
Timer0 Register, High Byte
—
TMR0L
Timer0 Register, Low Byte
—
TRISA
TRISA7
TRISA6
TRISA5
TRISA4
TRISA3
TRISA2
TRISA1
TRISA0
151
Legend: — = unimplemented locations, read as ‘0’. Shaded bits are not used by Timer0.
DS40001412H-page 156
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
12.0
TIMER1/3/5 MODULE WITH
GATE CONTROL
•
•
•
•
•
•
The Timer1/3/5 module is a 16-bit timer/counter with
the following features:
•
•
•
•
•
•
•
•
16-bit timer/counter register pair (TMRxH:TMRxL)
Programmable internal or external clock source
2-bit prescaler
Dedicated Secondary 32 kHz oscillator circuit
Optionally synchronized comparator out
Multiple Timer1/3/5 gate (count enable) sources
Interrupt on overflow
Wake-up on overflow (external clock,
Asynchronous mode only)
• 16-Bit Read/Write Operation
• Time base for the Capture/Compare function
FIGURE 12-1:
Special Event Trigger (with CCP/ECCP)
Selectable Gate Source Polarity
Gate Toggle mode
Gate Single-pulse mode
Gate Value Status
Gate Event Interrupt
Figure 12-1 is a block diagram of the Timer1/3/5
module.
TIMER1/3/5 BLOCK DIAGRAM
TxGSS
TxGSPM
00
TxG
Timer2/4/6 Match
PR2/4/6
01
sync_C1OUT(7)
0
TxG_IN
Single Pulse
10
sync_C2OUT(7)
D
Q
CK
R
Q
11
TMRxON
TxGVAL
0
1
Acq. Control
1
Q1
Data Bus
D
Q
RD
TXGCON
EN
Interrupt
TxGGO/DONE
Set
TMRxGIF
det
TxGTM
TxGPOL
TMRxGE
Set flag bit
TMRxIF on
Overflow
TMRxON
To Comparator Module
TMRx(2),(4)
TMRxH
EN
TMRxL
Q
D
TxCLK
Synchronized
clock input
0
1
Secondary
Oscillator
Module
See Figure 2-4
TMRxCS
Reserved
1
(5) ,(6)
TxSOSCEN
TxCLK_EXT_SRC
(1)
0
TxCKI
Note
TxSYNC
SOSCOUT
11
10
FOSC
Internal
Clock
01
FOSC/4
Internal
Clock
00
Synchronize(3),(7)
Prescaler
1, 2, 4, 8
det
2
TxCKPS
FOSC/2
Internal
Clock
Sleep input
1:
2:
3:
4:
5:
6:
ST Buffer is high speed type when using TxCKI.
Timer1/3/5 register increments on rising edge.
Synchronize does not operate while in Sleep.
See Figure 12-2 for 16-Bit Read/Write Mode Block Diagram.
T1CKI is not available when the secondary oscillator is enabled. (SOSCGO = 1 or TXSOSCEN = 1)
T3CKI is not available when the secondary oscillator is enabled, unless T3CMX = 1.
7:
Synchronized comparator output may not be used in conjunction with synchronized TxCKI.
2010-2021 Microchip Technology Inc.
DS40001412H-page 157
PIC18(L)F2X/4XK22
12.1
Timer1/3/5 Operation
12.2.1
When the internal clock source is selected the
TMRxH:TMRxL register pair will increment on multiples
of FOSC as determined by the Timer1/3/5 prescaler.
The Timer1/3/5 module is a 16-bit incrementing
counter which is accessed through the TMRxH:TMRxL
register pair. Writes to TMRxH or TMRxL directly
update the counter.
When the FOSC internal clock source is selected, the
Timer1/3/5 register value will increment by four counts
every instruction clock cycle. Due to this condition, a
2 LSB error in resolution will occur when reading the
Timer1/3/5 value. To utilize the full resolution of
Timer1/3/5, an asynchronous input signal must be used
to gate the Timer1/3/5 clock input.
When used with an internal clock source, the module is
a timer and increments on every instruction cycle.
When used with an external clock source, the module
can be used as either a timer or counter and
increments on every selected edge of the external
source.
The following asynchronous sources may be used:
Timer1/3/5 is enabled by configuring the TMRxON and
TMRxGE bits in the TxCON and TxGCON registers,
respectively. Table 12-1 displays the Timer1/3/5 enable
selections.
TABLE 12-1:
12.2.2
0
0
Off
0
1
Off
1
0
Always On
1
1
Count Enabled
When enabled to count, Timer1/3/5 is incremented on
the rising edge of the external clock input of the TxCKI
pin. This external clock source can be synchronized to
the microcontroller system clock or it can run
asynchronously.
When used as a timer with a clock oscillator, an
external 32.768 kHz crystal can be used in conjunction
with the dedicated secondary internal oscillator circuit.
Clock Source Selection
The TMRxCS and TxSOSCEN bits of the TxCON
register are used to select the clock source for
Timer1/3/5. The dedicated Secondary Oscillator circuit
can be used as the clock source for Timer1, Timer3 and
Timer5, simultaneously. Any of the TxSOSCEN bits will
enable the Secondary Oscillator circuit and select it as
the clock source for that particular timer. Table 12-2
displays the clock source selections.
TABLE 12-2:
TMRxCS1
EXTERNAL CLOCK SOURCE
When the external clock source is selected, the Timer1/3/5 module may work as a timer or a counter.
Timer1/3/5
Operation
TMRxGE
12.2
• Asynchronous event on the TxG pin to Timer1/3/5
Gate
• C1 or C2 comparator input to Timer1/3/5 Gate
TIMER1/3/5 ENABLE
SELECTIONS
TMRxON
INTERNAL CLOCK SOURCE
Note:
In Counter mode, a falling edge must be
registered by the counter prior to the first
incrementing rising edge after any one or
more of the following conditions:
•
•
•
•
Timer1/3/5 enabled after POR
Write to TMRxH or TMRxL
Timer1/3/5 is disabled
Timer1/3/5 is disabled (TMRxON = 0)
when TxCKI is high then Timer1/3/5
is enabled (TMRxON=1) when TxCKI
is low.
CLOCK SOURCE SELECTIONS
TMRxCS0
TxSOSCEN
Clock Source
0
1
x
System Clock (FOSC)
0
0
x
Instruction Clock (FOSC/4)
1
0
0
External Clocking on TxCKI Pin
1
0
1
Osc.Circuit On SOSCI/SOSCO Pins
DS40001412H-page 158
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
12.3
Timer1/3/5 Prescaler
Timer1/3/5 has four prescaler options allowing 1, 2, 4 or
8 divisions of the clock input. The TxCKPS bits of the
TxCON register control the prescale counter. The
prescale counter is not directly readable or writable;
however, the prescaler counter is cleared upon a write to
TMRxH or TMRxL.
12.4
Secondary Oscillator
A dedicated secondary low-power 32.768 kHz
oscillator circuit is built-in between pins SOSCI (input)
and SOSCO (amplifier output). This internal circuit is to
be used in conjunction with an external 32.768 kHz
crystal.
The oscillator circuit is enabled by setting the
TxSOSCEN bit of the TxCON register, the SOSCGO bit
of the OSCCON2 register or by selecting the
secondary oscillator as the system clock by setting
SCS = 01 in the OSCCON register. The oscillator
will continue to run during Sleep.
Note:
12.5
The oscillator requires a start-up and
stabilization time before use. Thus,
TxSOSCEN may be set and a suitable
delay observed prior to enabling
Timer1/3/5.
Timer1/3/5 Operation in
Asynchronous Counter Mode
If control bit TxSYNC of the TxCON register is set, the
external clock input is not synchronized. The timer
increments asynchronously to the internal phase
clocks. If external clock source is selected then the
timer will continue to run during Sleep and can
generate an interrupt on overflow, which will wake up
the processor. However, special precautions in
software are needed to read/write the timer (see
Section 12.5.1 “Reading and Writing Timer1/3/5 in
Asynchronous Counter Mode”).
Note:
When switching from synchronous to
asynchronous operation, it is possible to
skip an increment. When switching from
asynchronous to synchronous operation,
it is possible to produce an additional
increment.
2010-2021 Microchip Technology Inc.
12.5.1
READING AND WRITING
TIMER1/3/5 IN ASYNCHRONOUS
COUNTER MODE
Reading TMRxH or TMRxL while the timer is running
from an external asynchronous clock will ensure a valid
read (taken care of in hardware). However, the user
may keep in mind that reading the 16-bit timer in two
8-bit values itself, poses certain problems, since the
timer may overflow between the reads. For writes, it is
recommended that the user simply stop the timer and
write the desired values. A write contention may occur
by writing to the timer registers, while the register is
incrementing. This may produce an unpredictable
value in the TMRxH:TMRxL register pair.
12.6
Timer1/3/5 16-Bit Read/Write Mode
Timer1/3/5 can be configured to read and write all 16
bits of data, to and from, the 8-bit TMRxL and TMRxH
registers, simultaneously. The 16-bit read and write
operations are enabled by setting the RD16 bit of the
TxCON register.
To accomplish this function, the TMRxH register value
is mapped to a buffer register called the TMRxH buffer
register. While in 16-Bit mode, the TMRxH register is
not directly readable or writable and all read and write
operations take place through the use of this TMRxH
buffer register.
When a read from the TMRxL register is requested, the
value of the TMRxH register is simultaneously loaded
into the TMRxH buffer register. When a read from the
TMRxH register is requested, the value is provided
from the TMRxH buffer register instead. This provides
the user with the ability to accurately read all 16 bits of
the Timer1/3/5 value from a single instance in time.
In contrast, when not in 16-Bit mode, the user must
read each register separately and determine if the
values have become invalid due to a rollover that may
have occurred between the read operations.
When a write request of the TMRxL register is
requested, the TMRxH buffer register is simultaneously
updated with the contents of the TMRxH register. The
value of TMRxH must be preloaded into the TMRxH
buffer register prior to the write request for the TMRxL
register. This provides the user with the ability to write
all 16 bits to the TMRxL:TMRxH register pair at the
same time.
Any requests to write to the TMRxH directly does not
clear the Timer1/3/5 prescaler value. The prescaler
value is only cleared through write requests to the
TMRxL register.
DS40001412H-page 159
PIC18(L)F2X/4XK22
FIGURE 12-2:
TIMER1/3/5 16-BIT
READ/WRITE MODE
BLOCK DIAGRAM
From
Timer1
Circuitry
TMR1
High Byte
TMR1L
8
Set
TMR1IF
on Overflow
Read TMR1L
Write TMR1L
8
8
TMR1H
8
8
12.7.2
The Timer1/3/5 Gate source can be selected from one
of four different sources. Source selection is controlled
by the TxGSS bits of the TxGCON register. The polarity
for each available source is also selectable. Polarity
selection is controlled by the TxGPOL bit of the
TxGCON register.
TABLE 12-4:
TxGSS
12.7
Timer1/3/5 Gate can also be driven by multiple
selectable sources.
12.7.1
TIMER1/3/5 GATE ENABLE
The Timer1/3/5 Gate Enable mode is enabled by
setting the TMRxGE bit of the TxGCON register. The
polarity of the Timer1/3/5 Gate Enable mode is
configured using the TxGPOL bit of the TxGCON
register.
When Timer1/3/5 Gate Enable mode is enabled,
Timer1/3/5 will increment on the rising edge of the
Timer1/3/5 clock source. When Timer1/3/5 Gate
Enable mode is disabled, no incrementing will occur
and Timer1/3/5 will hold the current count. See
Figure 12-4 for timing details.
TABLE 12-3:
TIMER1/3/5 GATE ENABLE
SELECTIONS
Timer1/3/5
Operation
TxCLK
TxGPOL
TxG
0
0
Counts
0
1
Holds Count
1
0
Holds Count
1
1
Counts
DS40001412H-page 160
Timer1/3/5 Gate Source
Timer1/3/5 Gate Pin
01
Timer2/4/6 Match to PR2/4/6
(TMR2/4/6 increments to match PR2/4/6)
10
Comparator 1 Output sync_C1OUT
(optionally Timer1/3/5 synchronized output)
11
Comparator 2 Output sync_C2OUT
(optionally Timer1/3/5 synchronized output)
Timer1/3/5 Gate
Timer1/3/5 can be configured to count freely or the
count can be enabled and disabled using Timer1/3/5
Gate circuitry. This is also referred to as Timer1/3/5
Gate Enable.
TIMER1/3/5 GATE SOURCES
00
Internal Data Bus
Block Diagram of Timer1 Example of TIMER1/3/5
TIMER1/3/5 GATE SOURCE
SELECTION
The Gate resource, Timer2 Match to PR2, changes
between Timer2, Timer4 and Timer6 depending on
which of the three 16-bit Timers, Timer1, Timer3 or
Timer5, is selected. See Table 12-5 to determine which
Timer2/4/6 Match to PR2/4/6 combination is available
for the 16-bit timer being used.
TABLE 12-5:
GATE RESOURCES FOR
TIMER2/4/6 MATCH TO
PR2/4/6
Timer1/3/5 Resource
Timer1/3/5 Gate Match
Selection
Timer1
TMR2 Match to PR2
Timer3
TMR4 Match to PR4
Timer5
TMR6 Match to PR6
12.7.2.1
TxG Pin Gate Operation
The TxG pin is one source for Timer1/3/5 Gate Control.
It can be used to supply an external source to the Timer1/3/5 Gate circuitry.
12.7.2.2
Timer2/4/6 Match Gate Operation
The TMR2/4/6 register will increment until it matches
the value in the PR2/4/6 register. On the very next
increment cycle, TMR2/4/6 will be reset to 00h. When
this Reset occurs, a low-to-high pulse will automatically
be generated and internally supplied to the Timer1/3/5
Gate circuitry. When both TMR2/4/6 and Timer 1/3/5
use FOSC/4 as the clock source then Timer 1/3/5 will
increment once during the TMR2/4/6 overflow pulse.
This concatenation creates a 24-bit timer. When used
in conjunction with the CCP special event trigger very
long periodic interrupts can be generated.
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
12.7.2.3
Comparator C1 Gate Operation
The output resulting from a Comparator 1 operation can
be selected as a source for Timer1/3/5 Gate Control.
The Comparator 1 output (sync_C1OUT) can be
synchronized to the Timer1/3/5 clock or left
asynchronous. For more information see Section 18.8.4
“Synchronizing Comparator Output to Timer1”.
12.7.2.4
Comparator C2 Gate Operation
The output resulting from a Comparator 2 operation
can be selected as a source for Timer1/3/5 Gate
Control. The Comparator 2 output (sync_C2OUT) can
be synchronized to the Timer1/3/5 clock or left
asynchronous.
For
more
information
see
Section 18.8.4 “Synchronizing Comparator Output
to Timer1”.
12.7.3
TIMER1/3/5 GATE TOGGLE MODE
When Timer1/3/5 Gate Toggle mode is enabled, it is
possible to measure the full-cycle length of a Timer1/3/5 gate signal, as opposed to the duration of a single level pulse.
The Timer1/3/5 Gate source is routed through a flip-flop
that changes state on every incrementing edge of the
signal. See Figure 12-5 for timing details.
Timer1/3/5 Gate Toggle mode is enabled by setting the
TxGTM bit of the TxGCON register. When the TxGTM
bit is cleared, the flip-flop is cleared and held clear. This
is necessary in order to control which edge is
measured.
Note:
Enabling Toggle mode at the same time
as changing the gate polarity may result in
indeterminate operation.
12.7.4
TIMER1/3/5 GATE SINGLE-PULSE
MODE
When Timer1/3/5 Gate Single-Pulse mode is enabled,
it is possible to capture a single-pulse gate event.
Timer1/3/5 Gate Single-Pulse mode is first enabled by
setting the TxGSPM bit in the TxGCON register. Next,
the TxGGO/DONE bit in the TxGCON register must be
set. The Timer1/3/5 will be fully enabled on the next
incrementing edge. On the next trailing edge of the
pulse, the TxGGO/DONE bit will automatically be
cleared. No other gate events will be allowed to
increment Timer1/3/5 until the TxGGO/DONE bit is
once again set in software.
Clearing the TxGSPM bit of the TxGCON register will
also clear the TxGGO/DONE bit. See Figure 12-6 for
timing details.
Enabling the Toggle mode and the Single-Pulse mode
simultaneously will permit both sections to work
together. This allows the cycle times on the Timer1/3/5
Gate source to be measured. See Figure 12-7 for
timing details.
12.7.5
TIMER1/3/5 GATE VALUE STATUS
When Timer1/3/5 Gate Value Status is utilized, it is
possible to read the most current level of the gate
control value. The value is stored in the TxGVAL bit in
the TxGCON register. The TxGVAL bit is valid even
when the Timer1/3/5 Gate is not enabled (TMRxGE bit
is cleared).
12.7.6
TIMER1/3/5 GATE EVENT
INTERRUPT
When Timer1/3/5 Gate Event Interrupt is enabled, it is
possible to generate an interrupt upon the completion
of a gate event. When the falling edge of TxGVAL
occurs, the TMRxGIF flag bit in the PIR3 register will be
set. If the TMRxGIE bit in the PIE3 register is set, then
an interrupt will be recognized.
The TMRxGIF flag bit operates even when the
Timer1/3/5 Gate is not enabled (TMRxGE bit is
cleared).
For more information on selecting high or low priority
status for the Timer1/3/5 Gate Event Interrupt see
Section 9.0 “Interrupts”.
2010-2021 Microchip Technology Inc.
DS40001412H-page 161
PIC18(L)F2X/4XK22
12.8
Timer1/3/5 Interrupt
The Timer1/3/5 register pair (TMRxH:TMRxL)
increments to FFFFh and rolls over to 0000h. When
Timer1/3/5 rolls over, the Timer1/3/5 interrupt flag bit of
the PIR1/2/5 register is set. To enable the interrupt on
rollover, the user must set these bits:
•
•
•
•
TMRxON bit of the TxCON register
TMRxIE bits of the PIE1, PIE2 or PIE5 registers
PEIE/GIEL bit of the INTCON register
GIE/GIEH bit of the INTCON register
The interrupt is cleared by clearing the TMRxIF bit in
the Interrupt Service Routine.
For more information on selecting high or low priority
status for the Timer1/3/5 Overflow Interrupt, see
Section 9.0 “Interrupts”.
Note:
12.9
The TMRxH:TMRxL register pair and the
TMRxIF bit may be cleared before
enabling interrupts.
Timer1/3/5 Operation During Sleep
Timer1/3/5 can only operate during Sleep when set up
in Asynchronous Counter mode. In this mode, an
external crystal or clock source can be used to
increment the counter. To set up the timer to wake the
device:
•
•
•
•
•
TMRxON bit of the TxCON register must be set
TMRxIE bit of the PIE1/2/5 register must be set
PEIE/GIEL bit of the INTCON register must be set
TxSYNC bit of the TxCON register must be set
TMRxCS bits of the TxCON register must be
configured
• TxSOSCEN bit of the TxCON register must be
configured
12.10 ECCP/CCP Capture/Compare Time
Base
The CCP modules use the TMRxH:TMRxL register pair
as the time base when operating in Capture or
Compare mode.
In Capture mode, the value in the TMRxH:TMRxL
register pair is copied into the CCPRxH:CCPRxL
register pair on a configured event.
In Compare mode, an event is triggered when the value
CCPRxH:CCPRxL register pair matches the value in
the TMRxH:TMRxL register pair. This event can be a
Special Event Trigger.
For
more
information,
see
“Capture/Compare/PWM Modules”.
Section 14.0
12.11 ECCP/CCP Special Event Trigger
When any of the CCP’s are configured to trigger a
special event, the trigger will clear the TMRxH:TMRxL
register pair. This special event does not cause a
Timer1/3/5 interrupt. The CCP module may still be
configured to generate a CCP interrupt.
In this mode of operation, the CCPRxH:CCPRxL
register pair becomes the period register for
Timer1/3/5.
Timer1/3/5 may be synchronized and FOSC/4 may be
selected as the clock source in order to utilize the
Special Event Trigger. Asynchronous operation of
Timer1/3/5 can cause a Special Event Trigger to be
missed.
In the event that a write to TMRxH or TMRxL coincides
with a Special Event Trigger from the CCP, the write will
take precedence.
For more information, see Section 17.2.8 “Special
Event Trigger”.
The device will wake up on an overflow and execute
the next instruction. If the GIE/GIEH bit of the INTCON
register is set, the device will call the Interrupt Service
Routine.
The secondary oscillator will continue to operate in
Sleep regardless of the TxSYNC bit setting.
DS40001412H-page 162
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
FIGURE 12-3:
TIMER1/3/5 INCREMENTING EDGE
TXCKI = 1
when TMRx
Enabled
TXCKI = 0
when TMRX
Enabled
Note 1:
2:
Arrows indicate counter increments.
In Counter mode, a falling edge must be registered by the counter prior to the first incrementing rising edge of the clock.
FIGURE 12-4:
TIMER1/3/5 GATE ENABLE MODE
TMRxGE
TxGPOL
TxG_IN
TxCKI
TxGVAL
Timer1/3/5
N
2010-2021 Microchip Technology Inc.
N+1
N+2
N+3
N+4
DS40001412H-page 163
PIC18(L)F2X/4XK22
FIGURE 12-5:
TIMER1/3/5 GATE TOGGLE MODE
TMRxGE
TxGPOL
TxGTM
TxTxG_IN
TxCKI
TxGVAL
TIMER1/3/5
N
FIGURE 12-6:
N+1 N+2 N+3
N+4
N+5 N+6 N+7
N+8
TIMER1/3/5 GATE SINGLE-PULSE MODE
TMRxGE
TxGPOL
TxGSPM
TxGGO/
Cleared by hardware on
falling edge of TxGVAL
Set by software
DONE
Counting enabled on
rising edge of TxG
TxG_IN
TxCKI
TxGVAL
TIMER1/3/5
TMRxGIF
DS40001412H-page 164
N
Cleared by software
N+1
N+2
Set by hardware on
falling edge of TxGVAL
Cleared by
software
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
FIGURE 12-7:
TIMER1/3/5 GATE SINGLE-PULSE AND TOGGLE COMBINED MODE
TMRxGE
TxGPOL
TxGSPM
TxGTM
TxGGO/
Cleared by hardware on
falling edge of TxGVAL
Set by software
DONE
Counting enabled on
rising edge of TxG
TxG_IN
TxCKI
TxGVAL
TIMER1/3/5
TMRxGIF
N
N+1
Cleared by software
N+2
N+3
Set by hardware on
falling edge of TxGVAL
N+4
Cleared by
software
12.12 Peripheral Module Disable
When a peripheral module is not used or inactive, the
module can be disabled by setting the Module Disable
bit in the PMD registers. This will reduce power consumption to an absolute minimum. Setting the PMD
bits holds the module in Reset and disconnects the
module’s clock source. The Module Disable bits for
Timer1 (TMR1MD), Timer3 (TMR3MD) and Timer5
(TMR5MD) are in the PMD0 Register. See Section 3.0
“Power-Managed Modes” for more information.
2010-2021 Microchip Technology Inc.
DS40001412H-page 165
PIC18(L)F2X/4XK22
12.13 Register Definitions: Timer1/3/5 Control
REGISTER 12-1:
R/W-0/u
TXCON: TIMER1/3/5 CONTROL REGISTER
R/W-0/u
TMRxCS
R/W-0/u
R/W-0/u
TxCKPS
R/W-0/u
R/W-0/u
R/W-0/0
R/W-0/u
TxSOSCEN
TxSYNC
TxRD16
TMRxON
bit 7
bit 0
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
u = Bit is unchanged
x = Bit is unknown
-n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set
‘0’ = Bit is cleared
bit 7-6
TMRxCS: Timer1/3/5 Clock Source Select bits
11 = Reserved. Do not use.
10 = Timer1/3/5 clock source is pin or oscillator:
If TxSOSCEN = 0:
External clock from TxCKI pin (on the rising edge)
If TxSOSCEN = 1:
Crystal oscillator on SOSCI/SOSCO pins
01 = Timer1/3/5 clock source is system clock (FOSC)
00 = Timer1/3/5 clock source is instruction clock (FOSC/4)
bit 5-4
TxCKPS: Timer1/3/5 Input Clock Prescale Select bits
11 = 1:8 Prescale value
10 = 1:4 Prescale value
01 = 1:2 Prescale value
00 = 1:1 Prescale value
bit 3
TxSOSCEN: Secondary Oscillator Enable Control bit
1 = Dedicated Secondary oscillator circuit enabled
0 = Dedicated Secondary oscillator circuit disabled
bit 2
TxSYNC: Timer1/3/5 External Clock Input Synchronization Control bit
TMRxCS = 1x
1 = Do not synchronize external clock input
0 = Synchronize external clock input with system clock (FOSC)
TMRxCS = 0X
This bit is ignored. Timer1/3/5 uses the internal clock when TMRxCS = 1X.
bit 1
TxRD16: 16-Bit Read/Write Mode Enable bit
1 = Enables register read/write of Timer1/3/5 in one 16-bit operation
0 = Enables register read/write of Timer1/3/5 in two 8-bit operation
bit 0
TMRxON: Timer1/3/5 On bit
1 = Enables Timer1/3/5
0 = Stops Timer1/3/5
Clears Timer1/3/5 Gate flip-flop
DS40001412H-page 166
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
REGISTER 12-2:
TXGCON: TIMER1/3/5 GATE CONTROL REGISTER
R/W-0/u
R/W-0/u
R/W-0/u
R/W-0/u
R/W/HC-0/u
R-x/x
TMRxGE
TxGPOL
TxGTM
TxGSPM
TxGGO/DONE
TxGVAL
R/W-0/u
R/W-0/u
TxGSS
bit 7
bit 0
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
u = Bit is unchanged
x = Bit is unknown
-n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set
‘0’ = Bit is cleared
HC = Bit is cleared by hardware
bit 7
TMRxGE: Timer1/3/5 Gate Enable bit
If TMRxON = 0:
This bit is ignored
If TMRxON = 1:
1 = Timer1/3/5 counting is controlled by the Timer1/3/5 gate function
0 = Timer1/3/5 counts regardless of Timer1/3/5 gate function
bit 6
TxGPOL: Timer1/3/5 Gate Polarity bit
1 = Timer1/3/5 gate is active-high (Timer1/3/5 counts when gate is high)
0 = Timer1/3/5 gate is active-low (Timer1/3/5 counts when gate is low)
bit 5
TxGTM: Timer1/3/5 Gate Toggle Mode bit
1 = Timer1/3/5 Gate Toggle mode is enabled
0 = Timer1/3/5 Gate Toggle mode is disabled and toggle flip-flop is cleared
Timer1/3/5 gate flip-flop toggles on every rising edge.
bit 4
TxGSPM: Timer1/3/5 Gate Single-Pulse Mode bit
1 = Timer1/3/5 gate Single-Pulse mode is enabled and is controlling Timer1/3/5 gate
0 = Timer1/3/5 gate Single-Pulse mode is disabled
bit 3
TxGGO/DONE: Timer1/3/5 Gate Single-Pulse Acquisition Status bit
1 = Timer1/3/5 gate single-pulse acquisition is ready, waiting for an edge
0 = Timer1/3/5 gate single-pulse acquisition has completed or has not been started
This bit is automatically cleared when TxGSPM is cleared.
bit 2
TxGVAL: Timer1/3/5 Gate Current State bit
Indicates the current state of the Timer1/3/5 gate that could be provided to TMRxH:TMRxL.
Unaffected by Timer1/3/5 Gate Enable (TMRxGE).
bit 1-0
TxGSS: Timer1/3/5 Gate Source Select bits
00 = Timer1/3/5 Gate pin
01 = Timer2/4/6 Match PR2/4/6 output (See Table 12-5 for proper timer match selection)
10 = Comparator 1 optionally synchronized output (sync_C1OUT)
11 = Comparator 2 optionally synchronized output (sync_C2OUT)
2010-2021 Microchip Technology Inc.
DS40001412H-page 167
PIC18(L)F2X/4XK22
TABLE 12-6:
Name
ANSELB
REGISTERS ASSOCIATED WITH TIMER1/3/5 AS A TIMER/COUNTER
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Reset
Values on
Page
—
—
ANSB5
ANSB4
ANSB3
ANSB2
ANSB1
ANSB0
150
150
ANSELC
ANSC7
ANSC6
ANSC5
ANSC4
ANSC3
ANSC2
—
—
INTCON
GIE/GIEH
PEIE/GIEL
TMR0IE
INT0IE
RBIE
TMR0IF
INT0IF
RBIF
109
IPR1
—
ADIP
RC1IP
TX1IP
SSP1IP
CCP1IP
TMR2IP
TMR1IP
121
IPR2
OSCFIP
C1IP
C2IP
EEIP
BCL1IP
HLVDIP
TMR3IP
CCP2IP
122
IPR3
SSP2IP
BCL2IP
RC2IP
TX2IP
CTMUIP
TMR5GIP
TMR3GIP
TMR1GIP
123
IPR5
—
—
—
—
—
TMR6IP
TMR5IP
TMR4IP
124
PIE1
—
ADIE
RC1IE
TX1IE
SSP1IE
CCP1IE
TMR2IE
TMR1IE
117
PIE2
OSCFIE
C1IE
C2IE
EEIE
BCL1IE
HLVDIE
TMR3IE
CCP2IE
118
PIE3
SSP2IE
BCL2IE
RC2IE
TX2IE
CTMUIE
TMR5GIE
TMR3GIE
TMR1GIE
119
PIE5
—
—
—
—
—
TMR6IE
TMR5IE
TMR4IE
120
PIR1
—
ADIF
RC1IF
TX1IF
SSP1IF
CCP1IF
TMR2IF
TMR1IF
112
PIR2
OSCFIF
C1IF
C2IF
EEIF
BCL1IF
HLVDIF
TMR3IF
CCP2IF
113
PIR3
SSP2IF
BCL2IF
RC2IF
TX2IF
CTMUIF
TMR5GIF
TMR3GIF
TMR1GIF
114
PIR5
—
—
—
—
—
TMR6IF
TMR5IF
TMR4IF
116
PMD0
UART2MD
TMR4MD
TMR3MD
TMR2MD
TMR1MD
52
T1SOSCEN
T1SYNC
T1RD16
TMR1ON
166
T1CON
T1GCON
TMR1GE
T3CON
T3GCON
T1GPOL
TMR3CS
TMR3GE
T5CON
T5GCON
UART1MD TMR6MD
TMR1CS
T3GPOL
TMR5CS
TMR5GE
T5GPOL
TMR5MD
T1CKPS
T1GTM
T1GSPM
T3CKPS
T3GTM
T3GSPM
T5CKPS
T5GTM
T5GSPM
T1GGO/DONE
T1GVAL
T3SOSCEN
T3SYNC
T3GGO/DONE
T3GVAL
T5SOSCEN
T5SYNC
T5GGO/DONE
T5GVAL
T1GSS
T3RD16
TMR3ON
T3GSS
T5RD16
TMR5ON
T5GSS
167
166
167
166
167
TMR1H
Holding Register for the Most Significant Byte of the 16-bit TMR1 Register
—
TMR1L
Least Significant Byte of the 16-bit TMR1 Register
—
TMR3H
Holding Register for the Most Significant Byte of the 16-bit TMR3 Register
—
TMR3L
Least Significant Byte of the 16-bit TMR3 Register
—
TMR5H
Holding Register for the Most Significant Byte of the 16-bit TMR5 Register
—
TMR5L
Least Significant Byte of the 16-bit TMR5 Register
—
TRISB
TRISB7
TRISB6
TRISB5
TRISB4
TRISB3
TRISB2
TRISB1
TRISB0
151
TRISC
TRISC7
TRISC6
TRISC5
TRISC4
TRISC3
TRISC2
TRISC1
TRISC0
151
TABLE 12-7:
CONFIGURATION REGISTERS ASSOCIATED WITH TIMER1/3/5
Name
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Reset
Values
on Page
CONFIG3H
MCLRE
—
P2BMX
T3CMX
HFOFST
CCP3MX
PBADEN
CCP2MX
348
DS40001412H-page 168
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
13.0
TIMER2/4/6 MODULE
There are three identical 8-bit Timer2-type modules
available. To maintain pre-existing naming conventions,
the Timers are called Timer2, Timer4 and Timer6 (also
Timer2/4/6).
Note:
The ‘x’ variable used in this section is
used to designate Timer2, Timer4, or
Timer6. For example, TxCON references
T2CON, T4CON, or T6CON. PRx
references PR2, PR4, or PR6.
The Timer2/4/6 module incorporates the following
features:
• 8-bit Timer and Period registers (TMRx and PRx,
respectively)
• Readable and writable (both registers)
• Software programmable prescaler (1:1, 1:4, 1:16)
• Software programmable postscaler (1:1 to 1:16)
• Interrupt on TMRx match with PRx, respectively
• Optional use as the shift clock for the MSSPx
modules (Timer2 only)
See Figure 13-1 for a block diagram of Timer2/4/6.
FIGURE 13-1:
TIMER2/4/6 BLOCK DIAGRAM
TMRx
Output
FOSC/4
Prescaler
1:1, 1:4, 1:16
2
TMRx
Comparator
Sets Flag
bit TMRxIF
Reset
EQ
Postscaler
1:1 to 1:16
TxCKPS
PRx
4
TxOUTPS
2010-2021 Microchip Technology Inc.
DS40001412H-page 169
PIC18(L)F2X/4XK22
13.1
Timer2/4/6 Operation
The clock input to the Timer2/4/6 module is the system
instruction clock (FOSC/4).
TMRx increments from 00h on each clock edge.
A 4-bit counter/prescaler on the clock input allows direct
input, divide-by-4 and divide-by-16 prescale options.
These options are selected by the prescaler control bits,
TxCKPS of the TxCON register. The value of
TMRx is compared to that of the Period register, PRx, on
each clock cycle. When the two values match, the
comparator generates a match signal as the timer
output. This signal also resets the value of TMRx to 00h
on the next cycle and drives the output
counter/postscaler (see Section 13.2 “Timer2/4/6
Interrupt”).
The TMRx and PRx registers are both directly readable
and writable. The TMRx register is cleared on any
device Reset, whereas the PRx register initializes to
FFh. Both the prescaler and postscaler counters are
cleared on the following events:
•
•
•
•
•
•
•
•
•
a write to the TMRx register
a write to the TxCON register
Power-on Reset (POR)
Brown-out Reset (BOR)
MCLR Reset
Watchdog Timer (WDT) Reset
Stack Overflow Reset
Stack Underflow Reset
RESET Instruction
Note:
TMRx is not cleared when TxCON is
written.
13.2
Timer2/4/6 Interrupt
Timer2/4/6 can also generate an optional device
interrupt. The Timer2/4/6 output signal (TMRx-to-PRx
match)
provides
the
input
for
the
4-bit
counter/postscaler. This counter generates the TMRx
match interrupt flag which is latched in TMRxIF of the
PIR1/PIR5 registers. The interrupt is enabled by setting
the TMRx Match Interrupt Enable bit, TMRxIE of the
PIE1/PIE5 registers. Interrupt Priority is selected with
the TMRxIP bit in the IPR1/IPR5 registers.
A range of 16 postscale options (from 1:1 through 1:16
inclusive) can be selected with the postscaler control
bits, TxOUTPS, of the TxCON register.
13.3
Timer2/4/6 Output
The unscaled output of TMRx is available primarily to
the CCP modules, where it is used as a time base for
operations in PWM mode. The timer to be used with a
specific CCP module is selected using the
CxTSEL bits in the CCPTMRS0 and CCPTMRS1
registers.
Timer2 can be optionally used as the shift clock source
for the MSSPx modules operating in SPI mode by
setting SSPM = 0011 in the SSPxCON1 register.
Additional information is provided in Section 15.0
“Host Synchronous Serial Port (MSSP1 and
MSSP2) Module”.
13.4
Timer2/4/6 Operation During Sleep
The Timer2/4/6 timers cannot be operated while the
processor is in Sleep mode. The contents of the TMRx
and PRx registers will remain unchanged while the
processor is in Sleep mode.
13.5
Peripheral Module Disable
When a peripheral module is not used or inactive, the
module can be disabled by setting the Module Disable
bit in the PMD registers. This will reduce power consumption to an absolute minimum. Setting the PMD
bits holds the module in Reset and disconnects the
module’s clock source. The Module Disable bits for
Timer2 (TMR2MD), Timer4 (TMR4MD) and Timer6
(TMR6MD) are in the PMD0 Register. See Section 3.0
“Power-Managed Modes” for more information.
DS40001412H-page 170
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
13.6
Register Definitions: Timer2/4/6 Control
REGISTER 13-1:
U-0
TxCON: TIMER2/TIMER4/TIMER6 CONTROL REGISTER
R/W-0
R/W-0
—
R/W-0
R/W-0
TxOUTPS
R/W-0
R/W-0
TMRxON
bit 7
R/W-0
TxCKPS
bit 0
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
u = Bit is unchanged
x = Bit is unknown
-n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set
‘0’ = Bit is cleared
bit 7
Unimplemented: Read as ‘0’
bit 6-3
TxOUTPS: TimerX Output Postscaler Select bits
0000 = 1:1 Postscaler
0001 = 1:2 Postscaler
0010 = 1:3 Postscaler
0011 = 1:4 Postscaler
0100 = 1:5 Postscaler
0101 = 1:6 Postscaler
0110 = 1:7 Postscaler
0111 = 1:8 Postscaler
1000 = 1:9 Postscaler
1001 = 1:10 Postscaler
1010 = 1:11 Postscaler
1011 = 1:12 Postscaler
1100 = 1:13 Postscaler
1101 = 1:14 Postscaler
1110 = 1:15 Postscaler
1111 = 1:16 Postscaler
bit 2
TMRxON: TimerX On bit
1 = TimerX is on
0 = TimerX is off
bit 1-0
TxCKPS: Timer2-type Clock Prescale Select bits
00 = Prescaler is 1
01 = Prescaler is 4
1x = Prescaler is 16
2010-2021 Microchip Technology Inc.
DS40001412H-page 171
PIC18(L)F2X/4XK22
TABLE 13-1:
Name
SUMMARY OF REGISTERS ASSOCIATED WITH TIMER2/4/6
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
CCPTMRS0
C3TSEL
—
C2TSEL
CCPTMRS1
—
—
—
—
Bit 2
Bit 1
Bit 0
Register
on Page
—
C1TSEL
201
C5TSEL
C4TSEL
201
GIE/GIEH
PEIE/GIEL
TMR0IE
INT0IE
RBIE
TMR0IF
INT0IF
RBIF
IPR1
—
ADIP
RC1IP
TX1IP
SSP1IP
CCP1IP
TMR2IP
TMR1IP
121
IPR5
—
—
—
—
—
TMR6IP
TMR5IP
TMR4IP
124
INTCON
109
PIE1
—
ADIE
RC1IE
TX1IE
SSP1IE
CCP1IE
TMR2IE
TMR1IE
117
PIE5
—
—
—
—
—
TMR6IE
TMR5IE
TMR4IE
120
PIR1
—
ADIF
RC1IF
TX1IF
SSP1IF
CCP1IF
TMR2IF
TMR1IF
112
PIR5
—
—
—
—
—
TMR6IF
TMR5IF
TMR4IF
116
TMR1MD
52
PMD0
UART2MD UART1MD
TMR6MD TMR5MD TMR4MD TMR3MD TMR2MD
PR2
Timer2 Period Register
—
PR4
Timer4 Period Register
—
PR6
Timer6 Period Register
—
T2CON
—
T2OUTPS
TMR2ON
T2CKPS
166
T4CON
—
T4OUTPS
TMR4ON
T4CKPS
166
T6CON
—
T6OUTPS
TMR6ON
T6CKPS
166
TMR2
Timer2 Register
—
TMR4
Timer4 Register
—
Timer6 Register
—
TMR6
Legend:
— = unimplemented locations, read as ‘0’. Shaded bits are not used by Timer2/4/6.
DS40001412H-page 172
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
14.0
CAPTURE/COMPARE/PWM
MODULES
The Capture/Compare/PWM module is a peripheral
which allows the user to time and control different
events, and to generate Pulse-Width Modulation
(PWM) signals. In Capture mode, the peripheral allows
the timing of the duration of an event. The Compare
mode allows the user to trigger an external event when
a predetermined amount of time has expired. The
PWM mode can generate Pulse-Width Modulated
signals of varying frequency and duty cycle.
Note 1: In devices with more than one CCP
module, it is very important to pay close
attention to the register names used. A
number placed after the module acronym
is used to distinguish between separate
modules. For example, the CCP1CON
and CCP2CON control the same
operational aspects of two completely
different CCP modules.
2: Throughout
this
section,
generic
references to a CCP module in any of its
operating modes may be interpreted as
being equally applicable to ECCP1,
ECCP2, ECCP3, CCP4 and CCP5.
Register names, module signals, I/O pins,
and bit names may use the generic
designator ‘x’ to indicate the use of a
numeral to distinguish a particular module,
when required.
This family of devices contains three Enhanced
Capture/Compare/PWM modules (ECCP1, ECCP2,
and ECCP3) and two standard Capture/Compare/PWM
modules (CCP4 and CCP5).
The Capture and Compare functions are identical for all
CCP/ECCP modules. The difference between CCP
and ECCP modules are in the Pulse-Width Modulation
(PWM) function. In CCP modules, the standard PWM
function is identical. In ECCP modules, the Enhanced
PWM function has either full-bridge or half-bridge PWM
output. Full-bridge ECCP modules have four available
I/O pins while half-bridge ECCP modules only have two
available I/O pins. ECCP PWM modules are backward
compatible with CCP PWM modules and can be
configured as standard PWM modules. See Table 14-1
to determine the CCP/ECCP functionality available on
each device in this family.
TABLE 14-1:
Device Name
PWM RESOURCES
ECCP1
ECCP2
PIC18(L)F23K22
PIC18(L)F24K22
PIC18(L)F25K22
PIC18(L)F26K22
Enhanced PWM
Full-Bridge
Enhanced PWM
Half-Bridge
Enhanced PWM
Standard PWM
Standard PWM
Half-Bridge
(Special Event Trigger)
PIC18(L)F43K22
PIC18(L)F44K22
PIC18(L)F45K22
PIC18(L)F46K22
Enhanced PWM
Full-Bridge
Enhanced PWM
Full-Bridge
Enhanced PWM
Standard PWM
Standard PWM
Half-Bridge
(Special Event Trigger)
2010-2021 Microchip Technology Inc.
ECCP3
CCP4
CCP5
DS40001412H-page 173
PIC18(L)F2X/4XK22
14.1
Capture Mode
The Capture mode function described in this section is
identical for all CCP and ECCP modules available on
this device family.
Capture mode makes use of the 16-bit Timer
resources, Timer1, Timer3 and Timer5. The timer
resources for each CCP capture function are
independent and are selected using the CCPTMRS0
and CCPTMRS1 registers. When an event occurs on
the CCPx pin, the 16-bit CCPRxH:CCPRxL register
pair captures and stores the 16-bit value of the
TMRxH:TMRxL register pair, respectively. An event is
defined as one of the following and is configured by the
CCPxM bits of the CCPxCON register:
•
•
•
•
Every falling edge
Every rising edge
Every 4th rising edge
Every 16th rising edge
Figure 14-1 shows a simplified diagram of the Capture
operation.
FIGURE 14-1:
Prescaler
1, 4, 16
CCPRxH
and
Edge Detect
CCPRxL
Capture
Enable
TMR1/3/5H TMR1/3/5L
CCPxM
System Clock (FOSC)
CCP PIN CONFIGURATION
In Capture mode, the CCPx pin may be configured as
an input by setting the associated TRIS control bit.
Some CCPx outputs are multiplexed on a couple of
pins. Table 14-2 shows the CCP output pin
multiplexing. Selection of the output pin is determined
by the CCPxMX bits in Configuration register 3H
(CONFIG3H). Refer to Register 24-4 for more details.
Note:
TABLE 14-2:
Set Flag bit CCPxIF
(PIR1/2/4 register)
CCPx
pin
14.1.1
When a capture is made, the corresponding Interrupt
Request Flag bit CCPxIF of the PIR1, PIR2 or PIR4
register is set. The interrupt flag must be cleared in
software. If another capture occurs before the value in
the CCPRxH:CCPRxL register pair is read, the old
captured value is overwritten by the new captured
value.
CAPTURE MODE
OPERATION BLOCK
DIAGRAM
If the CCPx pin is configured as an output,
a write to the port can cause a capture
condition.
CCP PIN MULTIPLEXING
CCP OUTPUT
CONFIG 3H Control Bit
CCP2
CCP2MX
CCP3
CCP3MX
Bit Value
PIC18(L)F2XK22 I/O pin
PIC18(L)F4XK22 I/O pin
0
RB3
RB3
1(*)
RC1
RC1
0(*)
RC6
RE0
1
RB5
RB5
Legend: * = Default
14.1.2
TIMER1 MODE RESOURCE
The 16-bit Timer resource must be running in Timer
mode or Synchronized Counter mode for the CCP
module to use the capture feature. In Asynchronous
Counter mode, the capture operation may not work.
See Section 12.0 “Timer1/3/5 Module with Gate
Control” for more information on configuring the 16-bit
Timers.
14.1.3
Note:
DS40001412H-page 174
SOFTWARE INTERRUPT MODE
When the Capture mode is changed, a false capture
interrupt may be generated. The user may keep the
CCPxIE interrupt enable bit of the PIE1, PIE2 or PIE4
register clear to avoid false interrupts. Additionally, the
user may clear the CCPxIF interrupt flag bit of the
PIR1, PIR2 or PIR4 register following any change in
Operating mode.
Clocking the 16-bit Timer resource from
the system clock (FOSC) may not be used
in Capture mode. In order for Capture
mode to recognize the trigger event on the
CCPx pin, the Timer resource must be
clocked from the instruction clock (FOSC/
4) or from an external clock source.
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
14.1.4
CCP PRESCALER
14.1.5
There are four prescaler settings specified by the
CCPxM bits of the CCPxCON register. Whenever
the CCP module is turned off, or the CCP module is not
in Capture mode, the prescaler counter is cleared. Any
Reset will clear the prescaler counter.
Capture mode requires a 16-bit TimerX module for use
as a time base. There are four options for driving the
16-bit TimerX module in Capture mode. It can be driven
by the system clock (FOSC), the instruction clock (FOSC/
4), or by the external clock sources, the Secondary
Oscillator (SOSC), or the TxCKI clock input. When the
16-bit TimerX resource is clocked by FOSC or FOSC/4,
TimerX will not increment during Sleep. When the
device wakes from Sleep, TimerX will continue from its
previous state. Capture mode will operate during Sleep
when the 16-bit TimerX resource is clocked by one of
the external clock sources (SOSC or the TxCKI pin).
Switching from one capture prescaler to another does
not clear the prescaler and may generate a false
interrupt. To avoid this unexpected operation, turn the
module off by clearing the CCPxCON register before
changing the prescaler. Example 14-1 demonstrates
the code to perform this function.
EXAMPLE 14-1:
CHANGING BETWEEN
CAPTURE PRESCALERS
#define NEW_CAPT_PS 0x06
//Capture
// Prescale 4th
// rising edge
// Turn the CCP
// Module Off
// Turn CCP module
// on with new
// prescale value
...
CCPxCON = 0;
CCPxCON = NEW_CAPT_PS;
TABLE 14-3:
Name
CAPTURE DURING SLEEP
REGISTERS ASSOCIATED WITH CAPTURE
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Register
on Page
CCP1CON
P1M
DC1B
CCP1M
198
CCP2CON
P2M
DC2B
CCP2M
198
CCP3CON
DC3B
CCP3M
198
CCP4CON
—
P3M
—
DC4B
CCP4M
198
CCP5CON
—
—
DC5B
CCP5M
198
CCPR1H
Capture/Compare/PWM Register 1 High Byte (MSB)
—
CCPR1L
Capture/Compare/PWM Register 1 Low Byte (LSB)
—
CCPR2H
Capture/Compare/PWM Register 2 High Byte (MSB)
—
CCPR2L
Capture/Compare/PWM Register 2 Low Byte (LSB)
—
CCPR3H
Capture/Compare/PWM Register 3 High Byte (MSB)
—
CCPR3L
Capture/Compare/PWM Register 3 Low Byte (LSB)
—
CCPR4H
Capture/Compare/PWM Register 4 High Byte (MSB)
—
CCPR4L
Capture/Compare/PWM Register 4 Low Byte (LSB)
—
CCPR5H
Capture/Compare/PWM Register 5 High Byte (MSB)
—
CCPR5L
Capture/Compare/PWM Register 5 Low Byte (LSB)
CCPTMRS0
CCPTMRS1
C3TSEL
—
C2TSEL
—
201
C4TSEL
201
—
—
—
—
GIE/GIEH
PEIE/GIEL
TMR0IE
INT0IE
RBIE
TMR0IF
INT0IF
RBIF
109
IPR1
—
ADIP
RC1IP
TX1IP
SSP1IP
CCP1IP
TMR2IP
TMR1IP
121
IPR2
OSCFIP
C1IP
C2IP
EEIP
BCL1IP
HLVDIP
TMR3IP
CCP2IP
122
IPR4
—
—
—
—
—
CCP5IP
CCP4IP
CCP3IP
124
PIE1
—
ADIE
RC1IE
TX1IE
SSP1IE
CCP1IE
TMR2IE
TMR1IE
117
INTCON
C5TSEL
—
C1TSEL
Legend: — = Unimplemented location, read as ‘0’. Shaded bits are not used by Capture mode.
Note 1:
These registers/bits are available on PIC18(L)F4XK22 devices.
2010-2021 Microchip Technology Inc.
DS40001412H-page 175
PIC18(L)F2X/4XK22
TABLE 14-3:
Name
REGISTERS ASSOCIATED WITH CAPTURE (CONTINUED)
Register
on Page
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
PIE2
OSCFIE
C1IE
C2IE
EEIE
BCL1IE
HLVDIE
TMR3IE
CCP2IE
118
PIE4
—
—
—
—
—
CCP5IE
CCP4IE
CCP3IE
120
PIR1
—
ADIF
RC1IF
TX1IF
SSP1IF
CCP1IF
TMR2IF
TMR1IF
112
PIR2
OSCFIF
C1IF
C2IF
EEIF
BCL1IF
HLVDIF
TMR3IF
CCP2IF
113
PIR4
—
—
—
—
—
CCP5IF
CCP4IF
CCP3IF
115
PMD0
UART2MD
UART1MD
TMR6MD
TMR5MD
TMR4MD
TMR3MD
TMR2MD
TMR1MD
52
PMD1
MSSP2MD
MSSP1MD
—
CCP5MD
T1CON
TMR1CS
T1GCON
TMR1GE
T3CON
T1GPOL
T1CKPS
T1GTM
TMR3CS
T3GCON
TMR3GE
T5CON
T3GPOL
T3CKPS
T3GTM
TMR5CS
T5GCON
TMR5GE
T5GPOL
TMR1H
T1GSPM
T3GSPM
T5CKPS
T5GTM
T5GSPM
CCP4MD
CCP3MD
CCP2MD
CCP1MD
53
T1SOSCEN
T1SYNC
T1RD16
TMR1ON
166
T1GGO/DONE
T1GVAL
T3SOSCEN
T3SYNC
T3GGO/DONE
T3GVAL
T5SOSCEN
T5SYNC
T5GGO/DONE
T5GVAL
T1GSS
T3RD16
TMR3ON
T3GSS
T5RD16
TMR5ON
T5GSS
167
166
167
166
167
Holding Register for the Most Significant Byte of the 16-bit TMR1 Register
—
TMR1L
Least Significant Byte of the 16-bit TMR1 Register
—
TMR3H
Holding Register for the Most Significant Byte of the 16-bit TMR3 Register
—
TMR3L
Least Significant Byte of the 16-bit TMR3 Register
—
TMR5H
Holding Register for the Most Significant Byte of the 16-bit TMR5 Register
—
TMR5L
Least Significant Byte of the 16-bit TMR5 Register
—
TRISA
TRISA7
TRISA6
TRISA5
TRISA4
TRISA3
TRISA2
TRISA1
TRISA0
151
TRISB
TRISB7
TRISB6
TRISB5
TRISB4
TRISB3
TRISB2
TRISB1
TRISB0
151
TRISC
TRISC7
TRISC6
TRISC5
TRISC4
TRISC3
TRISC2
TRISC1
TRISC0
151
TRISD(1)
TRISD7
TRISD6
TRISD5
TRISD4
TRISD3
TRISD2
TRISD1
TRISD0
151
TRISE
WPUE3
—
—
—
—
TRISE2(1)
TRISE1(1)
TRISE0(1)
151
Legend: — = Unimplemented location, read as ‘0’. Shaded bits are not used by Capture mode.
Note 1:
These registers/bits are available on PIC18(L)F4XK22 devices.
TABLE 14-4:
CONFIGURATION REGISTERS ASSOCIATED WITH CAPTURE
Name
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Register
on Page
CONFIG3H
MCLRE
—
P2BMX
T3CMX
HFOFST
CCP3MX
PBADEN
CCP2MX
348
Legend: — = Unimplemented location, read as ‘0’. Shaded bits are not used by Capture mode.
DS40001412H-page 176
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
14.2
Compare Mode
14.2.1
The Compare mode function described in this section
is identical for all CCP and ECCP modules available on
this device family.
Compare mode makes use of the 16-bit TimerX
resources, Timer1, Timer3 and Timer5. The 16-bit
value of the CCPRxH:CCPRxL register pair is
constantly compared against the 16-bit value of the
TMRxH:TMRxL register pair. When a match occurs,
one of the following events can occur:
•
•
•
•
•
Some CCPx outputs are multiplexed on a couple of
pins. Table 14-2 shows the CCP output pin
Multiplexing. Selection of the output pin is determined
by the CCPxMX bits in Configuration register 3H
(CONFIG3H). Refer to Register 24-4 for more details.
14.2.2
The action on the pin is based on the value of the
CCPxM control bits of the CCPxCON register. At
the same time, the interrupt flag CCPxIF bit is set.
All Compare modes can generate an interrupt.
Figure 14-2 shows a simplified diagram of the
Compare operation.
FIGURE 14-2:
The user must configure the CCPx pin as an output by
clearing the associated TRIS bit.
Note:
Toggle the CCPx output
Set the CCPx output
Clear the CCPx output
Generate a Special Event Trigger
Generate a Software Interrupt
COMPARE MODE
OPERATION BLOCK
DIAGRAM
S
R
Output
Logic
Match
TRIS
Output Enable
Comparator
TMRxH
Special Event Trigger
TMRxL
TimerX MODE RESOURCE
See Section 12.0 “Timer1/3/5 Module with Gate
Control” for more information on configuring the 16-bit
TimerX resources.
Note:
Set CCPxIF Interrupt Flag
(PIR1/2/4)
4
CCPRxH CCPRxL
Q
Clearing the CCPxCON register will force
the CCPx compare output latch to the
default low level. This is not the PORT I/O
data latch.
In Compare mode, 16-bit TimerX resource must be
running in either Timer mode or Synchronized Counter
mode. The compare operation may not work in
Asynchronous Counter mode.
CCPxM
Mode Select
CCPx
Pin
CCP PIN CONFIGURATION
14.2.3
Clocking TimerX from the system clock
(FOSC) may not be used in Compare
mode. In order for Compare mode to
recognize the trigger event on the CCPx
pin, TimerX must be clocked from the
instruction clock (FOSC/4) or from an
external clock source.
SOFTWARE INTERRUPT MODE
When Generate Software Interrupt mode is chosen
(CCPxM = 1010), the CCPx module does not
assert control of the CCPx pin (see the CCPxCON
register).
Special Event Trigger function on
• ECCP1, ECCP2, ECCP3, CCP4 and CCP5 will:
- Reset TimerX – TMRxH:TMRxL = 0x0000
- TimerX Interrupt Flag, (TMRxIF) is not set
Additional Function on
• CCP5 will
- Set ADCON0, GO/DONE bit to start an ADC
Conversion if ADCON, ADON = 1.
2010-2021 Microchip Technology Inc.
DS40001412H-page 177
PIC18(L)F2X/4XK22
14.2.4
SPECIAL EVENT TRIGGER
14.2.5
When Special Event Trigger mode is selected
(CCPxM = 1011), and a match of the
TMRxH:TMRxL and the CCPRxH:CCPRxL registers
occurs, all CCPx and ECCPx modules will immediately:
COMPARE DURING SLEEP
The Compare mode is dependent upon the system
clock (FOSC) for proper operation. Since FOSC is shut
down during Sleep mode, the Compare mode will not
function properly during Sleep.
• Set the CCP interrupt flag bit – CCPxIF
• CCP5 will start an ADC conversion, if the ADC is
enabled
On the next TimerX rising clock edge:
• A Reset of TimerX register pair occurs –
TMRxH:TMRxL = 0x0000,
This Special Event Trigger mode does not:
• Assert control over the CCPx or ECCPx pins.
• Set the TMRxIF interrupt bit when the
TMRxH:TMRxL register pair is reset. (TMRxIF
gets set on a TimerX overflow.)
If the value of the CCPRxH:CCPRxL registers are
modified when a match occurs, the user may be aware
that the automatic reset of TimerX occurs on the next
rising edge of the clock. Therefore, modifying the
CCPRxH:CCPRxL registers before this reset occurs
will allow the TimerX to continue without being reset,
inadvertently resulting in the next event being
advanced or delayed.
The Special Event Trigger mode allows the
CCPRxH:CCPRxL register pair to effectively provide a
16-bit programmable period register for TimerX.
TABLE 14-5:
Name
REGISTERS ASSOCIATED WITH COMPARE
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Register
on Page
CCP1CON
P1M
DC1B
CCP1M
198
CCP2CON
P2M
DC2B
CCP2M
198
CCP3CON
P3M
DC3B
CCP3M
198
CCP4CON
—
—
DC4B
CCP4M
198
CCP5CON
—
—
DC5B
CCP5M
198
CCPR1H
Capture/Compare/PWM Register 1 High Byte (MSB)
—
CCPR1L
Capture/Compare/PWM Register 1 Low Byte (LSB)
—
CCPR2H
Capture/Compare/PWM Register 2 High Byte (MSB)
—
CCPR2L
Capture/Compare/PWM Register 2 Low Byte (LSB)
—
CCPR3H
Capture/Compare/PWM Register 3 High Byte (MSB)
—
CCPR3L
Capture/Compare/PWM Register 3 Low Byte (LSB)
—
CCPR4H
Capture/Compare/PWM Register 4 High Byte (MSB)
—
CCPR4L
Capture/Compare/PWM Register 4 Low Byte (LSB)
—
CCPR5H
Capture/Compare/PWM Register 5 High Byte (MSB)
—
CCPR5L
Capture/Compare/PWM Register 5 Low Byte (LSB)
CCPTMRS0
CCPTMRS1
INTCON
IPR1
C3TSEL
—
C2TSEL
—
—
C1TSEL
C5TSEL
C4TSEL
201
—
—
—
—
GIE/GIEH
PEIE/GIEL
TMR0IE
INT0IE
RBIE
TMR0IF
INT0IF
RBIF
109
—
ADIP
RC1IP
TX1IP
SSP1IP
CCP1IP
TMR2IP
TMR1IP
121
201
Legend: — = Unimplemented location, read as ‘0’. Shaded bits are not used by Compare mode.
Note 1:
These registers/bits are available on PIC18(L)F4XK22 devices.
DS40001412H-page 178
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
TABLE 14-5:
REGISTERS ASSOCIATED WITH COMPARE (CONTINUED)
Bit 2
Bit 1
Bit 0
Register
on Page
BCL1IP
HLVDIP
TMR3IP
CCP2IP
122
—
CCP5IP
CCP4IP
CCP3IP
124
TX1IE
SSP1IE
CCP1IE
TMR2IE
TMR1IE
117
C2IE
EEIE
BCL1IE
HLVDIE
TMR3IE
CCP2IE
118
—
—
—
—
CCP5IE
CCP4IE
CCP3IE
120
—
ADIF
RC1IF
TX1IF
SSP1IF
CCP1IF
TMR2IF
TMR1IF
112
PIR2
OSCFIF
C1IF
C2IF
EEIF
BCL1IF
HLVDIF
TMR3IF
CCP2IF
113
PIR4
—
—
—
—
—
CCP5IF
CCP4IF
CCP3IF
115
PMD0
UART2MD
UART1MD
TMR6MD
TMR5MD
TMR4MD
TMR3MD
TMR2MD
TMR1MD
52
PMD1
MSSP2MD
MSSP1MD
—
CCP5MD
CCP4MD
CCP3MD
CCP2MD
CCP1MD
53
T1RD16
TMR1ON
166
Name
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
IPR2
OSCFIP
C1IP
C2IP
EEIP
IPR4
—
—
—
—
PIE1
—
ADIE
RC1IE
PIE2
OSCFIE
C1IE
PIE4
—
PIR1
T1CON
TMR1CS
T1GCON
TMR1GE
T3CON
T1GPOL
T1CKPS
T1GTM
TMR3CS
T3GCON
TMR3GE
T5CON
T3GPOL
T3CKPS
T3GTM
TMR5CS
T5GCON
TMR5GE
T5GPOL
T1GSPM
T3GSPM
T5CKPS
T5GTM
T5GSPM
T1SOSCEN
T1SYNC
T1GGO/DONE
T1GVAL
T3SOSCEN
T3SYNC
T3GGO/DONE
T3GVAL
T5SOSCEN
T5SYNC
T5GGO/DONE
T5GVAL
T1GSS
T3RD16
TMR3ON
T3GSS
T5RD16
TMR5ON
T5GSS
167
166
167
166
167
TMR1H
Holding Register for the Most Significant Byte of the 16-bit TMR1 Register
—
TMR1L
Least Significant Byte of the 16-bit TMR1 Register
—
TMR3H
Holding Register for the Most Significant Byte of the 16-bit TMR3 Register
—
TMR3L
Least Significant Byte of the 16-bit TMR3 Register
—
TMR5H
Holding Register for the Most Significant Byte of the 16-bit TMR5 Register
—
TMR5L
Least Significant Byte of the 16-bit TMR5 Register
—
TRISA
TRISA7
TRISA6
TRISA5
TRISA4
TRISA3
TRISA2
TRISA1
TRISA0
151
TRISB
TRISB7
TRISB6
TRISB5
TRISB4
TRISB3
TRISB2
TRISB1
TRISB0
151
TRISC
TRISC7
TRISC6
TRISC5
TRISC4
TRISC3
TRISC2
TRISC1
TRISC0
151
TRISD(1)
TRISD7
TRISD6
TRISD5
TRISD4
TRISD3
TRISD2
TRISD1
TRISD0
151
TRISE
WPUE3
—
—
—
—
TRISE2(1)
TRISE1(1)
TRISE0(1)
151
Legend: — = Unimplemented location, read as ‘0’. Shaded bits are not used by Compare mode.
Note 1:
These registers/bits are available on PIC18(L)F4XK22 devices.
TABLE 14-6:
CONFIGURATION REGISTERS ASSOCIATED WITH COMPARE
Name
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Register
on Page
CONFIG3H
MCLRE
—
P2BMX
T3CMX
HFOFST
CCP3MX
PBADEN
CCP2MX
348
Legend: — = Unimplemented location, read as ‘0’. Shaded bits are not used by Compare mode.
2010-2021 Microchip Technology Inc.
DS40001412H-page 179
PIC18(L)F2X/4XK22
14.3
PWM Overview
Pulse-Width Modulation (PWM) is a scheme that
provides power to a load by switching quickly between
fully on and fully off states. The PWM signal resembles
a square wave where the high portion of the signal is
considered the on state and the low portion of the signal
is considered the off state. The high portion, also known
as the pulse width, can vary in time and is defined in
steps. A larger number of steps applied, which
lengthens the pulse width, also supplies more power to
the load. Lowering the number of steps applied, which
shortens the pulse width, supplies less power. The
PWM period is defined as the duration of one complete
cycle or the total amount of on and off time combined.
FIGURE 14-3:
Period
Pulse Width
TMRx = 0
FIGURE 14-4:
CCPRxH(2) (Client)
CCPx
TMRx
Note 1: The corresponding TRIS bit must be
cleared to enable the PWM output on the
CCPx pin.
2: Clearing the CCPxCON register will
relinquish control of the CCPx pin.
Comparator
PRx
Note 1:
2:
14.3.2
S
Clear Timer,
toggle CCPx pin and
latch duty cycle
The 8-bit timer TMRx register is concatenated
with the 2-bit internal system clock (FOSC), or
2 bits of the prescaler, to create the 10-bit time
base.
In PWM mode, CCPRxH is a read-only register.
SETUP FOR PWM OPERATION
The following steps may be taken when configuring the
CCP module for standard PWM operation:
1.
2.
3.
4.
5.
DS40001412H-page 180
(1)
Q
TRIS
The standard PWM mode generates a Pulse-Width
modulation (PWM) signal on the CCPx pin with up to 10
bits of resolution. The period, duty cycle, and resolution
are controlled by the following registers:
Figure 14-4 shows a simplified block diagram of PWM
operation.
R
Comparator
STANDARD PWM OPERATION
PRx registers
TxCON registers
CCPRxL registers
CCPxCON registers
CCPxCON
CCPRxL
Figure 14-3 shows a typical waveform of the PWM
signal.
•
•
•
•
SIMPLIFIED PWM BLOCK
DIAGRAM
Duty Cycle Registers
The term duty cycle describes the proportion of the on
time to the off time and is expressed in percentages,
where 0% is fully off and 100% is fully on. A lower duty
cycle corresponds to less power applied and a higher
duty cycle corresponds to more power applied.
The standard PWM function described in this section is
available and identical for CCP and ECCP modules.
TMRx = PRx
TMRx = CCPRxH:CCPxCON
PWM resolution defines the maximum number of steps
that can be present in a single PWM period. A higher
resolution allows for more precise control of the pulse
width time and in turn the power that is applied to the
load.
14.3.1
CCP PWM OUTPUT SIGNAL
Disable the CCPx pin output driver by setting the
associated TRIS bit.
Select the 8-bit TimerX resource, (Timer2,
Timer4 or Timer6) to be used for PWM
generation by setting the CxTSEL bits in
the CCPTMRSx register.(1)
Load the PRx register for the selected TimerX
with the PWM period value.
Configure the CCP module for the PWM mode
by loading the CCPxCON register with the
appropriate values.
Load the CCPRxL register and the DCxB
bits of the CCPxCON register, with the PWM
duty cycle value.
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
6.
7.
Configure and start the 8-bit TimerX resource:
• Clear the TMRxIF interrupt flag bit of the
PIR2 or PIR4 register. See Note 1 below.
• Configure the TxCKPS bits of the TxCON
register with the Timer prescale value.
• Enable the Timer by setting the TMRxON
bit of the TxCON register.
Enable PWM output pin:
• Wait until the Timer overflows and the
TMRxIF bit of the PIR2 or PIR4 register is
set. See Note 1 below.
• Enable the CCPx pin output driver by
clearing the associated TRIS bit.
Note 1: In order to send a complete duty cycle
and period on the first PWM output, the
above steps must be included in the
setup sequence. If it is not critical to start
with a complete PWM signal on the first
output, then step 6 may be ignored.
14.3.3
PWM DUTY CYCLE
The PWM duty cycle is specified by writing a 10-bit
value to multiple registers: CCPRxL register and
DCxB bits of the CCPxCON register. The
CCPRxL contains the eight MSbs and the DCxB
bits of the CCPxCON register contain the two LSbs.
CCPRxL and DCxB bits of the CCPxCON
register can be written to at any time. The duty cycle
value is not latched into CCPRxH until after the period
completes (i.e., a match between PRx and TMRx
registers occurs). While using the PWM, the CCPRxH
register is read-only.
Equation 14-2 is used to calculate the PWM pulse
width.
Equation 14-3 is used to calculate the PWM duty cycle
ratio.
EQUATION 14-2:
PULSE WIDTH
Pulse W idth = CCPRxL:CCPxCO N
TO SC (TM Rx Prescale Value)
PWM TIMER RESOURCE
The PWM standard mode makes use of one of the 8-bit
Timer2/4/6 timer resources to specify the PWM period.
Configuring the CxTSEL bits in the CCPTMRS0
or CCPTMRS1 register selects which Timer2/4/6 timer
is used.
14.3.4
14.3.5
PWM PERIOD
The PWM period is specified by the PRx register of 8-bit
TimerX. The PWM period can be calculated using the
formula of Equation 14-1.
EQUATION 14-1:
PWM PERIOD
PW M Period = PRx + 1 4 TO SC
(TM Rx Prescale Value)
Note 1:
TOSC = 1/FOSC
EQUATION 14-3:
DUTY CYCLE RATIO
CCPRxL:CCPxCO N
D uty Cycle Ratio = ---------------------------------------------------------------------4 PRx + 1
The CCPRxH register and a 2-bit internal latch are
used to double buffer the PWM duty cycle. This double
buffering is essential for glitchless PWM operation.
The 8-bit timer TMRx register is concatenated with either
the 2-bit internal system clock (FOSC), or two bits of the
prescaler, to create the 10-bit time base. The system
clock is used if the TimerX prescaler is set to 1:1.
When the 10-bit time base matches the CCPRxH and
2-bit latch, then the CCPx pin is cleared (see
Figure 14-4).
When TMRx is equal to PRx, the following three events
occur on the next increment cycle:
• TMRx is cleared
• The CCPx pin is set. (Exception: If the PWM duty
cycle = 0%, the pin will not be set.)
• The PWM duty cycle is latched from CCPRxL into
CCPRxH.
Note:
The Timer postscaler (see Section 13.0
“Timer2/4/6 Module”) is not used in the
determination of the PWM frequency.
2010-2021 Microchip Technology Inc.
DS40001412H-page 181
PIC18(L)F2X/4XK22
14.3.6
PWM RESOLUTION
EQUATION 14-4:
The resolution determines the number of available duty
cycles for a given period. For example, a 10-bit resolution
will result in 1024 discrete duty cycles, whereas an 8-bit
resolution will result in 256 discrete duty cycles.
The maximum PWM resolution is ten bits when PRx is
255. The resolution is a function of the PRx register
value as shown by Equation 14-4.
TABLE 14-7:
Timer Prescale (1, 4, 16)
PRx Value
Maximum Resolution (bits)
Timer Prescale (1, 4, 16)
PRx Value
Maximum Resolution (bits)
Timer Prescale (1, 4, 16)
PRx Value
Maximum Resolution (bits)
1.95 kHz
7.81 kHz
31.25 kHz
125 kHz
250 kHz
333.3 kHz
16
4
1
1
1
1
0xFF
0xFF
0xFF
0x3F
0x1F
0x17
10
10
10
8
7
6.6
1.22 kHz
4.88 kHz
19.53 kHz
78.12 kHz
156.3 kHz
208.3 kHz
16
4
1
1
1
1
0xFF
0xFF
0xFF
0x3F
0x1F
0x17
10
10
10
8
7
6.6
1.22 kHz
4.90 kHz
19.61 kHz
76.92 kHz
153.85 kHz
200.0 kHz
16
4
1
1
1
1
0x65
0x65
0x65
0x19
0x0C
0x09
8
8
8
6
5
5
OPERATION IN SLEEP MODE
In Sleep mode, the TMRx register will not increment
and the state of the module will not change. If the CCPx
pin is driving a value, it will continue to drive that value.
When the device wakes up, TMRx will continue from its
previous state.
14.3.8
If the pulse width value is greater than the
period the assigned PWM pin(s) will
remain unchanged.
EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (FOSC = 8 MHz)
PWM Frequency
14.3.7
Note:
EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (FOSC = 20 MHz)
PWM Frequency
TABLE 14-9:
log 4 PRx + 1
Resolution = ----------------------------------------- bits
log 2
EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (FOSC = 32 MHz)
PWM Frequency
TABLE 14-8:
PWM RESOLUTION
14.3.9
EFFECTS OF RESET
Any Reset will force all ports to Input mode and the
CCP registers to their Reset states.
CHANGES IN SYSTEM CLOCK
FREQUENCY
The PWM frequency is derived from the system clock
frequency. Any changes in the system clock frequency
will result in changes to the PWM frequency. See
Section 2.0 “Oscillator Module (With Fail-Safe
Clock Monitor)” for additional details.
DS40001412H-page 182
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
TABLE 14-10: REGISTERS ASSOCIATED WITH STANDARD PWM
Name
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Register
on Page
CCP1CON
P1M
DC1B
CCP1M
198
CCP2CON
P2M
DC2B
CCP2M
198
DC3B
CCP3M
198
CCP4CON
—
P3M
—
DC4B
CCP4M
198
CCP5CON
—
—
DC5B
CCP5M
CCP3CON
CCPTMRS0
C3TSEL
—
C2TSEL
—
201
C4TSEL
201
—
—
—
—
GIE/GIEH
PEIE/GIEL
TMR0IE
INT0IE
RBIE
TMR0IF
INT0IF
RBIF
IPR1
—
ADIP
RC1IP
TX1IP
SSP1IP
CCP1IP
TMR2IP
TMR1IP
121
IPR2
OSCFIP
C1IP
C2IP
EEIP
BCL1IP
HLVDIP
TMR3IP
CCP2IP
122
IPR4
—
—
—
—
—
CCP5IP
CCP4IP
CCP3IP
124
PIE1
—
ADIE
RC1IE
TX1IE
SSP1IE
CCP1IE
TMR2IE
TMR1IE
117
PIE2
OSCFIE
C1IE
C2IE
EEIE
BCL1IE
HLVDIE
TMR3IE
CCP2IE
118
PIE4
—
—
—
—
—
CCP5IE
CCP4IE
CCP3IE
120
PIR1
—
ADIF
RC1IF
TX1IF
SSP1IF
CCP1IF
TMR2IF
TMR1IF
112
PIR2
OSCFIF
C1IF
C2IF
EEIF
BCL1IF
HLVDIF
TMR3IF
CCP2IF
113
115
CCPTMRS1
INTCON
C5TSEL
198
C1TSEL
109
PIR4
—
—
—
—
—
CCP5IF
CCP4IF
CCP3IF
PMD0
UART2MD
UART1MD
TMR6MD
TMR5MD
TMR4MD
TMR3MD
TMR2MD
TMR1MD
52
PMD1
MSSP2MD
MSSP1MD
—
CCP5MD
CCP4MD
CCP3MD
CCP2MD
CCP1MD
53
PR2
Timer2 Period Register
—
PR4
Timer4 Period Register
—
PR6
Timer6 Period Register
—
T2CON
—
T2OUTPS
TMR2ON
T2CKPS
166
T4CON
—
T4OUTPS
TMR4ON
T4CKPS
166
T6CON
—
T6OUTPS
TMR6ON
T6CKPS
166
TMR2
Timer2 Register
—
TMR4
Timer4 Register
—
TMR6
Timer6 Register
—
TRISB
TRISB7
TRISB6
TRISB5
TRISB4
TRISB3
TRISB2
TRISB1
TRISB0
151
TRISC
TRISC7
TRISC6
TRISC5
TRISC4
TRISC3
TRISC2
TRISC1
TRISC0
151
TRISD(1)
TRISD7
TRISD6
TRISD5
TRISD4
TRISD3
TRISD0
151
TRISE
WPUE3
—
—
—
—
TRISE0(1)
151
TRISD2
TRISD1
TRISE2(1)
TRISE1(1)
Legend: — = Unimplemented location, read as ‘0’. Shaded bits are not used by Standard PWM mode.
Note 1:
These registers/bits are available on PIC18(L)F4XK22 devices.
TABLE 14-11: CONFIGURATION REGISTERS ASSOCIATED WITH STANDARD PWM
Name
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Register
on Page
CONFIG3H
MCLRE
—
P2BMX
T3CMX
HFOFST
CCP3MX
PBADEN
CCP2MX
348
Legend: — = Unimplemented location, read as ‘0’. Shaded bits are not used by Standard PWM mode.
2010-2021 Microchip Technology Inc.
DS40001412H-page 183
PIC18(L)F2X/4XK22
14.4
PWM (Enhanced Mode)
To select an Enhanced PWM Output mode, the
PxM bits of the CCPxCON register must be
configured appropriately.
The enhanced PWM function described in this section is
available for CCP modules ECCP1, ECCP2 and
ECCP3, with any differences between modules noted.
The PWM outputs are multiplexed with I/O pins and are
designated PxA, PxB, PxC and PxD. The polarity of the
PWM pins is configurable and is selected by setting the
CCPxM bits in the CCPxCON register appropriately.
The enhanced PWM mode generates a Pulse-Width
Modulation (PWM) signal on up to four different output
pins with up to ten bits of resolution. The period, duty
cycle, and resolution are controlled by the following
registers:
•
•
•
•
Figure 14-5 shows an example of a simplified block
diagram of the Enhanced PWM module.
Table 14-12 shows the pin assignments for various
Enhanced PWM modes.
PRx registers
TxCON registers
CCPRxL registers
CCPxCON registers
Note 1: The corresponding TRIS bit must be
cleared to enable the PWM output on the
CCPx pin.
The ECCP modules have the following additional PWM
registers which control Auto-shutdown, Auto-restart,
Dead-band Delay and PWM Steering modes:
2: Clearing the CCPxCON register will
relinquish control of the CCPx pin.
• ECCPxAS registers
• PSTRxCON registers
• PWMxCON registers
3: Any pin not used in the enhanced PWM
mode is available for alternate pin
functions, if applicable.
The enhanced PWM module can generate the following
five PWM Output modes:
•
•
•
•
•
4: To prevent the generation of an
incomplete waveform when the PWM is
first enabled, the ECCP module waits
until the start of a new PWM period
before generating a PWM signal.
Single PWM
Half-Bridge PWM
Full-Bridge PWM, Forward mode
Full-Bridge PWM, Reverse mode
Single PWM with PWM Steering mode
FIGURE 14-5:
EXAMPLE SIMPLIFIED BLOCK DIAGRAM OF THE ENHANCED PWM MODE
Duty Cycle Registers
DCxB
CCPxM
4
PxM
2
CCPRxL
CCPx/PxA
CCPx/PxA
TRISx
CCPRxH (Client)
PxB
Comparator
R
Q
Output
Controller
PxB
TRISx
PxC(2)
PxC
TMRx
(1)
Comparator
PRx
Note
TRISx
S
PxD
Clear Timer,
toggle PWM pin and
latch duty cycle
PxD(2)
TRISx
PWMxCON
1:
The 8-bit timer TMRx register is concatenated with the 2-bit internal Q clock, or 2 bits of the prescaler to create the 10-bit time base.
2:
PxC and PxD are not available on half-bridge ECCP modules.
DS40001412H-page 184
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
TABLE 14-12: EXAMPLE PIN ASSIGNMENTS FOR VARIOUS PWM ENHANCED MODES
ECCP Mode
PxM
CCPx/PxA
Yes
PxC
(1)
Yes
PxD
(1)
Yes(1)
Single
00
Half-Bridge
10
Yes
Yes
No
No
Full-Bridge, Forward
01
Yes
Yes
Yes
Yes
Full-Bridge, Reverse
11
Yes
Yes
Yes
Yes
Note 1:
Yes
PxB
(1)
PWM Steering enables outputs in Single mode.
FIGURE 14-6:
EXAMPLE PWM (ENHANCED MODE) OUTPUT RELATIONSHIPS (ACTIVE-HIGH
STATE)
PxM
Signal
PRX+1
Pulse
Width
0
Period
00
(Single Output)
PxA Modulated
Delay(1)
Delay(1)
PxA Modulated
10
(Half-Bridge)
PxB Modulated
PxA Active
01
(Full-Bridge,
Forward)
PxB Inactive
PxC Inactive
PxD Modulated
PxA Inactive
11
(Full-Bridge,
Reverse)
PxB Modulated
PxC Active
PxD Inactive
Relationships:
• Period = 4 * TOSC * (PRx + 1) * (TMRx Prescale Value)
• Pulse Width = TOSC * (CCPRxL:CCPxCON) * (TMRx Prescale Value)
• Delay = 4 * TOSC * (PWMxCON)
Note 1: Dead-band delay is programmed using the PWMxCON register (Section 14.4.5 “Programmable Dead-Band Delay Mode”).
2010-2021 Microchip Technology Inc.
DS40001412H-page 185
PIC18(L)F2X/4XK22
FIGURE 14-7:
EXAMPLE ENHANCED PWM OUTPUT RELATIONSHIPS (ACTIVE-LOW STATE)
Signal
PxM
PRx+1
Pulse
Width
0
Period
00
(Single Output)
PxA Modulated
PxA Modulated
10
(Half-Bridge)
Delay(1)
Delay(1)
PxB Modulated
PxA Active
01
(Full-Bridge,
Forward)
PxB Inactive
PxC Inactive
PxD Modulated
PxA Inactive
11
(Full-Bridge,
Reverse)
PxB Modulated
PxC Active
PxD Inactive
Relationships:
• Period = 4 * TOSC * (PRx + 1) * (TMRx Prescale Value)
• Pulse Width = TOSC * (CCPRxL:CCPxCON) * (TMRx Prescale Value)
• Delay = 4 * TOSC * (PWMxCON)
Note
1:
Dead-band delay is programmed using the PWMxCON register (Section 14.4.5 “Programmable Dead-Band Delay
Mode”).
DS40001412H-page 186
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
14.4.1
HALF-BRIDGE MODE
In Half-Bridge mode, two pins are used as outputs to
drive push-pull loads. The PWM output signal is output
on the CCPx/PxA pin, while the complementary PWM
output signal is output on the PxB pin (see Figure 14-9).
This mode can be used for half-bridge applications, as
shown in Figure 14-9, or for full-bridge applications,
where four power switches are being modulated with
two PWM signals.
In Half-Bridge mode, the programmable dead-band delay
can be used to prevent shoot-through current in halfbridge power devices. The value of the PDC bits of
the PWMxCON register sets the number of instruction
cycles before the output is driven active. If the value is
greater than the duty cycle, the corresponding output
remains inactive during the entire cycle. See
Section 14.4.5 “Programmable Dead-Band Delay
Mode” for more details of the dead-band delay
operations.
Since the PxA and PxB outputs are multiplexed with the
PORT data latches, the associated TRIS bits must be
cleared to configure PxA and PxB as outputs.
FIGURE 14-8:
Period
Period
Pulse Width
PxA(2)
td
td
PxB(2)
(1)
(1)
(1)
td = Dead-Band Delay
Note 1:
2:
FIGURE 14-9:
EXAMPLE OF HALFBRIDGE PWM OUTPUT
At this time, the TMRx register is equal to the
PRx register.
Output signals are shown as active-high.
EXAMPLE OF HALF-BRIDGE APPLICATIONS
Standard Half-Bridge Circuit (“Push-Pull”)
FET
Driver
+
PxA
Load
FET
Driver
+
PxB
-
Half-Bridge Output Driving a Full-Bridge Circuit
V+
FET
Driver
FET
Driver
PxA
FET
Driver
Load
FET
Driver
PxB
2010-2021 Microchip Technology Inc.
DS40001412H-page 187
PIC18(L)F2X/4XK22
14.4.2
FULL-BRIDGE MODE
In Full-Bridge mode, all four pins are used as outputs.
An example of full-bridge application is shown in
Figure 14-10.
In the Forward mode, pin CCPx/PxA is driven to its active
state, pin PxD is modulated, while PxB and PxC will be
driven to their inactive state as shown in Figure 14-11.
In the Reverse mode, PxC is driven to its active state, pin
PxB is modulated, while PxA and PxD will be driven to
their inactive state as shown Figure 14-11.
PxA, PxB, PxC and PxD outputs are multiplexed with
the PORT data latches. The associated TRIS bits must
be cleared to configure the PxA, PxB, PxC and PxD
pins as outputs.
FIGURE 14-10:
EXAMPLE OF FULL-BRIDGE APPLICATION
V+
FET
Driver
QC
QA
FET
Driver
PxA
Load
PxB
FET
Driver
PxC
FET
Driver
QD
QB
VPxD
DS40001412H-page 188
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
FIGURE 14-11:
EXAMPLE OF FULL-BRIDGE PWM OUTPUT
Forward Mode
Period
PxA
(2)
Pulse Width
PxB(2)
PxC(2)
PxD(2)
(1)
(1)
Reverse Mode
Period
Pulse Width
PxA(2)
PxB(2)
PxC(2)
PxD(2)
(1)
Note 1:
2:
(1)
At this time, the TMRx register is equal to the PRx register.
Output signal is shown as active-high.
2010-2021 Microchip Technology Inc.
DS40001412H-page 189
PIC18(L)F2X/4XK22
14.4.2.1
Direction Change in Full-Bridge
Mode
This situation occurs when both of the following
conditions are true:
In the Full-Bridge mode, the PxM1 bit in the CCPxCON
register allows users to control the forward/reverse
direction. When the application firmware changes this
direction control bit, the module will change to the new
direction on the next PWM cycle.
1.
A direction change is initiated in software by changing
the PxM1 bit of the CCPxCON register. The following
sequence occurs four Timer cycles prior to the end of
the current PWM period:
Figure 14-13 shows an example of the PWM direction
changing from forward to reverse, at a near 100% duty
cycle. In this example, at time t1, the output PxA and
PxD become inactive, while output PxC becomes
active. Since the turn off time of the power devices is
longer than the turn on time, a shoot-through current
will flow through power devices QC and QD (see
Figure 14-10) for the duration of ‘t’. The same
phenomenon will occur to power devices QA and QB
for PWM direction change from reverse to forward.
• The modulated outputs (PxB and PxD) are placed
in their inactive state.
• The associated unmodulated outputs (PxA and
PxC) are switched to drive in the opposite
direction.
• PWM modulation resumes at the beginning of the
next period.
See Figure 14-12 for an illustration of this sequence.
The Full-Bridge mode does not provide dead-band
delay. As one output is modulated at a time, dead-band
delay is generally not required. There is a situation
where dead-band delay is required.
2.
The direction of the PWM output changes when
the duty cycle of the output is at or near 100%.
The turn off time of the power switch, including
the power device and driver circuit, is greater
than the turn on time.
If changing PWM direction at high duty cycle is required
for an application, two possible solutions for eliminating
the shoot-through current are:
1.
2.
Reduce PWM duty cycle for one PWM period
before changing directions.
Use switch drivers that can drive the switches off
faster than they can drive them on.
Other options to prevent shoot-through current may
exist.
FIGURE 14-12:
EXAMPLE OF PWM DIRECTION CHANGE
Period(1)
Signal
Period
PxA (Active-High)
PxB (Active-High)
Pulse Width
PxC (Active-High)
(2)
PxD (Active-High)
Pulse Width
Note 1:
2:
The direction bit PxM1 of the CCPxCON register is written any time during the PWM cycle.
When changing directions, the PxA and PxC signals switch before the end of the current PWM cycle. The
modulated PxB and PxD signals are inactive at this time. The length of this time is (TimerX Prescale)/FOSC,
where TimerX is Timer2, Timer4 or Timer6.
DS40001412H-page 190
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
FIGURE 14-13:
EXAMPLE OF PWM DIRECTION CHANGE AT NEAR 100% DUTY CYCLE
Forward Period
t1
Reverse Period
PxA
PxB
PW
PxC
PxD
PW
TON
External Switch C
TOFF
External Switch D
Potential
Shoot-Through Current
Note 1:
14.4.3
T = TOFF – TON
All signals are shown as active-high.
2:
TON is the turn-on delay of power switch QC and its driver.
3:
TOFF is the turn-off delay of power switch QD and its driver.
ENHANCED PWM AUTOSHUTDOWN MODE
The PWM mode supports an Auto-Shutdown mode that
will disable the PWM outputs when an external
shutdown event occurs. Auto-Shutdown mode places
the PWM output pins into a predetermined state. This
mode is used to help prevent the PWM from damaging
the application.
The auto-shutdown sources are selected using the
CCPxAS bits of the ECCPxAS register. A
shutdown event may be generated by:
• A logic ‘0’ on the INT pin
• Comparator Cx (async_CxOUT)
• Setting the CCPxASE bit in firmware
A shutdown condition is indicated by the CCPxASE
(Auto-Shutdown Event Status) bit of the ECCPxAS
register. If the bit is a ‘0’, the PWM pins are operating
normally. If the bit is a ‘1’, the PWM outputs are in the
shutdown state.
When a shutdown event occurs, two things happen:
The state of each pin pair is determined by the
PSSxAC and PSSxBD bits of the ECCPxAS
register. Each pin pair may be placed into one of three
states:
• Drive logic ‘1’
• Drive logic ‘0’
• Tri-state (high-impedance)
Note 1: The auto-shutdown condition is a levelbased signal, not an edge-based signal.
As long as the level is present, the autoshutdown will persist.
2: Writing to the CCPxASE bit is disabled
while an auto-shutdown condition
persists.
3: Once the auto-shutdown condition has
been removed and the PWM restarted
(either through firmware or auto-restart),
the PWM signal will always restart at the
beginning of the next PWM period.
The CCPxASE bit is set to ‘1’. The CCPxASE will
remain set until cleared in firmware or an auto-restart
occurs (see Section 14.4.4 “Auto-Restart Mode”).
The enabled PWM pins are asynchronously placed in
their shutdown states. The PWM output pins are
grouped into pairs [PxA/PxC] and [PxB/PxD].
2010-2021 Microchip Technology Inc.
DS40001412H-page 191
PIC18(L)F2X/4XK22
FIGURE 14-14:
PWM AUTO-SHUTDOWN WITH FIRMWARE RESTART (PXRSEN = 0)
Missing Pulse
(Auto-Shutdown)
Timer
Overflow
Timer
Overflow
Missing Pulse
(CCPxASE not clear)
Timer
Overflow
Timer
Overflow
Timer
Overflow
PWM Period
PWM Activity
Start of
PWM Period
Shutdown Event
CCPxASE bit
Shutdown
Event Occurs
14.4.4
AUTO-RESTART MODE
The Enhanced PWM can be configured to
automatically restart the PWM signal once the autoshutdown condition has been removed. Auto-restart is
enabled by setting the PxRSEN bit in the PWMxCON
register.
FIGURE 14-15:
Shutdown
Event Clears
PWM
Resumes
CCPxASE
Cleared by
Firmware
If auto-restart is enabled, the CCPxASE bit will remain
set as long as the auto-shutdown condition is active.
When the auto-shutdown condition is removed, the
CCPxASE bit will be cleared via hardware and normal
operation will resume.
PWM AUTO-SHUTDOWN WITH AUTO-RESTART (PXRSEN = 1)
Missing Pulse
(Auto-Shutdown)
Timer
Overflow
Timer
Overflow
Missing Pulse
(CCPxASE not clear)
Timer
Overflow
Timer
Overflow
Timer
Overflow
PWM Period
PWM Activity
Start of
PWM Period
Shutdown Event
CCPxASE bit
PWM
Resumes
Shutdown
Event Occurs
Shutdown
Event Clears
DS40001412H-page 192
CCPxASE
Cleared by
Hardware
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
14.4.5
PROGRAMMABLE DEAD-BAND
DELAY MODE
FIGURE 14-16:
In half-bridge applications where all power switches are
modulated at the PWM frequency, the power switches
normally require more time to turn off than to turn on. If
both the upper and lower power switches are switched
at the same time (one turned on, and the other turned
off), both switches may be on for a short period of time
until one switch completely turns off. During this brief
interval, a very high current (shoot-through current) will
flow through both power switches, shorting the bridge
supply. To avoid this potentially destructive shootthrough current from flowing during switching, turning
on either of the power switches is normally delayed to
allow the other switch to completely turn off.
Period
Period
Pulse Width
PxA(2)
td
td
PxB(2)
(1)
(1)
(1)
td = Dead-Band Delay
Note 1:
In Half-Bridge mode, a digitally programmable deadband delay is available to avoid shoot-through current
from destroying the bridge power switches. The delay
occurs at the signal transition from the nonactive state
to the active state. See Figure 14-16 for illustration.
The lower seven bits of the associated PWMxCON
register (Register 14-6) sets the delay period in terms
of microcontroller instruction cycles (TCY or 4 TOSC).
FIGURE 14-17:
EXAMPLE OF HALFBRIDGE PWM OUTPUT
2:
At this time, the TMRx register is equal to the
PRx register.
Output signals are shown as active-high.
EXAMPLE OF HALF-BRIDGE APPLICATIONS
V+
Standard Half-Bridge Circuit (“Push-Pull”)
FET
Driver
+
V
-
PxA
Load
FET
Driver
+
V
-
PxB
V-
2010-2021 Microchip Technology Inc.
DS40001412H-page 193
PIC18(L)F2X/4XK22
14.4.6
PWM STEERING MODE
In Single Output mode, PWM steering allows any of the
PWM pins to be the modulated signal. Additionally, the
same PWM signal can be simultaneously available on
multiple pins.
Once the Single Output mode is selected
(CCPxM = 11 and PxM = 00 of the
CCPxCON register), the user firmware can bring out
the same PWM signal to one, two, three or four output
pins by setting the appropriate Steering Enable bits
(STRxA, STRxB, STRxC and/or STRxD) of the
PSTRxCON register, as shown in Table 14-13.
FIGURE 14-18:
STRxA
PxA Signal
CCPxM1
PORT Data
CCPxM0
The associated TRIS bits must be set to
output (‘0’) to enable the pin output driver
in order to see the PWM signal on the pin.
PORT Data
While the PWM Steering mode is active, CCPxM
bits of the CCPxCON register select the PWM output
polarity for the PxD, PxC, PxB and PxA pins.
The PWM auto-shutdown operation also applies to
PWM Steering mode as described in Section 14.4.3
“Enhanced PWM Auto-shutdown Mode”. An autoshutdown event will only affect pins that have PWM
outputs enabled.
0
0
PORT Data
PxB pin
TRIS
PxC pin
1
0
TRIS
STRxD
CCPxM0
TRIS
1
STRxC
CCPxM1
PxA pin
1
STRxB
PORT Data
Note:
SIMPLIFIED STEERING
BLOCK DIAGRAM
PxD pin
1
0
TRIS
Note 1:
Port outputs are configured as shown when
the CCPxCON register bits PxM = 00
and CCPxM = 11.
2:
Single PWM output requires setting at least
one of the STRx bits.
14.4.6.1
Steering Synchronization
The STRxSYNC bit of the PSTRxCON register gives
the user two selections of when the steering event will
happen. When the STRxSYNC bit is ‘0’, the steering
event will happen at the end of the instruction that
writes to the PSTRxCON register. In this case, the
output signal at the PxA, PxB, PxC and PxD pins may
be an incomplete PWM waveform. This operation is
useful when the user firmware needs to immediately
remove a PWM signal from the pin.
When the STRxSYNC bit is ‘1’, the effective steering
update will happen at the beginning of the next PWM
period. In this case, steering on/off the PWM output will
always produce a complete PWM waveform.
Figures 14-19 and 14-20 illustrate the timing diagrams
of the PWM steering depending on the STRxSYNC
setting.
DS40001412H-page 194
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
14.4.7
START-UP CONSIDERATIONS
When any PWM mode is used, the application
hardware must use the proper external pull-up and/or
pull-down resistors on the PWM output pins.
The CCPxM bits of the CCPxCON register allow
the user to choose whether the PWM output signals are
active-high or active-low for each pair of PWM output
pins (PxA/PxC and PxB/PxD). The PWM output
polarities must be selected before the PWM pin output
drivers are enabled. Changing the polarity
configuration while the PWM pin output drivers are
enable is not recommended since it may result in
damage to the application circuits.
The Enhanced PWM modes must be enabled in the
proper Output mode and complete a full PWM cycle
before enabling the PWM pin output drivers. The
completion of a full PWM cycle is indicated by the
TMRxIF bit of the PIR1, PIR2 or PIR5 register being set
as the second PWM period begins.
Note:
The PxA, PxB, PxC and PxD output latches may not be
in the proper states when the PWM module is
initialized. Enabling the PWM pin output drivers at the
same time as the Enhanced PWM modes may cause
damage to the application circuit.
FIGURE 14-19:
When the microcontroller is released from
Reset, all of the I/O pins are in the highimpedance state. The external circuits
must keep the power switch devices in the
Off state until the microcontroller drives
the I/O pins with the proper signal levels or
activates the PWM output(s).
EXAMPLE OF STEERING EVENT AT END OF INSTRUCTION (STRxSYNC = 0)
PWM Period
PWM
STRx
P1
PORT Data
PORT Data
P1n = PWM
FIGURE 14-20:
EXAMPLE OF STEERING EVENT AT BEGINNING OF INSTRUCTION
(STRxSYNC = 1)
PWM
STRx
P1
PORT Data
PORT Data
P1n = PWM
2010-2021 Microchip Technology Inc.
DS40001412H-page 195
PIC18(L)F2X/4XK22
14.4.8
SETUP FOR ECCP PWM
OPERATION USING ECCP1 AND
TIMER2
The following steps may be taken when configuring the
ECCP1 module for PWM operation using Timer2:
1.
2.
3.
4.
5.
6.
7.
8.
9.
Configure the PWM pins to be used (P1A, P1B,
P1C, and P1D):
• Configure PWM outputs to be used as inputs
by setting the corresponding TRIS bits. This
prevents spurious outputs during setup.
• Set the PSTR1CON bits for each PWM
output to be used.
Select Timer2 as the period timer by configuring
CCPTMR0 register bits C1TSEL = ‘00’.
Set the PWM period by loading the PR2 register.
Configure auto-shutdown as OFF or select the
source with the CCP1AS bits of the
ECCP1AS register.
Configure the auto-shutdown sources as
needed:
• Configure each comparator used.
• Configure the comparator inputs as analog.
• Configure the FLT0 input pin and clear
ANSB0.
Force a shutdown condition (OFF included):
• Configure safe starting output levels by
setting the default shutdown drive states with
the PSS1AC and PSS1BD bits of
the ECCP1AS register.
• Clear the P1RSEN bit of the PWM1CON
register.
• Set the CCP1AS bit of the ECCP1AS
register.
Configure the ECCP1 module for the desired
PWM mode and configuration by loading the
CCP1CON register with the appropriate values:
• Select one of the available output configurations and direction with the P1M bits.
• Select the polarities of the PWM output
signals with the CCP1M bits.
Set the 10-bit PWM duty cycle:
• Load the eight MSbs into the CCPR1L
register.
• Load the two LSbs into the DC bits of
the CCP1CON register.
For Half-Bridge Output mode, set the deadband delay by loading P1DC bits of the
PWM1CON register with the appropriate value.
DS40001412H-page 196
10. Configure and start TMR2:
• Set the TMR2 prescale value by loading the
T2CKPS bits of the T2CON register.
• Start Timer2 by setting the TMR2ON bit.
11. Enable the ECCP1/P1A, P1B, P1C and/or P1D
pin outputs by clearing the respective TRIS bits.
12. Start the PWM:
• If shutdown auto-restart is used, then set the
P1RSEN bit of the PWM1CON register.
• If shutdown auto-restart is not used, then
clear the CCP1ASE bit of the ECCP1AS
register.
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
TABLE 14-13: REGISTERS ASSOCIATED WITH ENHANCED PWM
Name
Bit 7
ECCP1AS
Bit 6
CCP1ASE
CCP1CON
Bit 5
CCP3CON
CCPTMRS0
CCP2M
C2TSEL
—
202
202
198
PSS3BD
202
C1TSEL
201
CCP3M
—
Register on
Page
198
PSS2BD
PSS3AC
DC3B
C3TSEL
PSS1BD
PSS2AC
CCP3AS
P3M
Bit 0
CCP1M
DC2B
CCP3ASE
Bit 1
PSS1AC
CCP2AS
P2M
ECCP3AS
Bit 2
DC1B
CCP2ASE
CCP2CON
Bit 3
CCP1AS
P1M
ECCP2AS
Bit 4
198
GIE/GIEH
PEIE/GIEL
TMR0IE
INT0IE
RBIE
TMR0IF
INT0IF
RBIF
IPR1
—
ADIP
RC1IP
TX1IP
SSP1IP
CCP1IP
TMR2IP
TMR1IP
121
IPR2
OSCFIP
C1IP
C2IP
EEIP
BCL1IP
HLVDIP
TMR3IP
CCP2IP
122
124
INTCON
109
IPR4
—
—
—
—
—
CCP5IP
CCP4IP
CCP3IP
PIE1
—
ADIE
RC1IE
TX1IE
SSP1IE
CCP1IE
TMR2IE
TMR1IE
117
PIE2
OSCFIE
C1IE
C2IE
EEIE
BCL1IE
HLVDIE
TMR3IE
CCP2IE
118
PIE4
—
—
—
—
—
CCP5IE
CCP4IE
CCP3IE
120
PIR1
—
ADIF
RC1IF
TX1IF
SSP1IF
CCP1IF
TMR2IF
TMR1IF
112
PIR2
OSCFIF
C1IF
C2IF
EEIF
BCL1IF
HLVDIF
TMR3IF
CCP2IF
113
PIR4
—
—
—
—
—
CCP5IF
CCP4IF
CCP3IF
115
PMD0
UART2MD
UART1MD
TMR6MD
TMR5MD
TMR4MD
TMR3MD
TMR2MD
TMR1MD
52
PMD1
MSSP2MD
MSSP1MD
—
CCP5MD
CCP4MD
CCP3MD
CCP2MD
CCP1MD
53
PR2
Timer2 Period Register
—
PR4
Timer4 Period Register
—
PR6
Timer6 Period Register
—
PSTR1CON
—
—
—
STR1SYNC
STR1D
STR1C
STR1B
STR1A
203
PSTR2CON
—
—
—
STR2SYNC
STR2D
STR2C
STR2B
STR2A
203
PSTR3CON
—
—
—
STR3SYNC
STR3D
STR3C
STR3B
STR3A
203
PWM1CON
P1RSEN
P1DC
203
PWM2CON
P2RSEN
P2DC
203
PWM3CON
P3RSEN
P3DC
203
T2CON
—
T2OUTPS
TMR2ON
T2CKPS
166
T4CON
—
T4OUTPS
TMR4ON
T4CKPS
166
T6CON
—
T6OUTPS
TMR6ON
T6CKPS
166
TMR2
Timer2 Register
—
TMR4
Timer4 Register
—
TMR6
Timer6 Register
TRISA
TRISA7
TRISA6
TRISA5
TRISA4
TRISA3
—
TRISA2
TRISA1
TRISA0
151
TRISB
TRISB7
TRISB6
TRISB5
TRISB4
TRISB3
TRISB2
TRISB1
TRISB0
151
TRISC
TRISC7
TRISC6
TRISC5
TRISC4
TRISC3
TRISC2
TRISC1
TRISC0
151
TRISD(1)
TRISD7
TRISD6
TRISD5
TRISD4
TRISD3
TRISD2
TRISD1
TRISD0
151
TRISE
WPUE3
—
—
—
—
TRISE2(1)
TRISE1(1)
TRISE0(1)
151
Legend: — = Unimplemented location, read as ‘0’. Shaded bits are not used by Enhanced PWM mode.
Note 1:
These registers/bits are available on PIC18(L)F4XK22 devices.
TABLE 14-14: CONFIGURATION REGISTERS ASSOCIATED WITH ENHANCED PWM
Name
CONFIG3H
Legend:
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Register
on Page
MCLRE
—
P2BMX
T3CMX
HFOFST
CCP3MX
PBADEN
CCP2MX
348
— = Unimplemented location, read as ‘0’. Shaded bits are not used by Enhanced PWM mode.
2010-2021 Microchip Technology Inc.
DS40001412H-page 197
PIC18(L)F2X/4XK22
14.5
Register Definitions: ECCP Control
REGISTER 14-1:
CCPxCON: STANDARD CCPx CONTROL REGISTER
U-0
U-0
—
—
R/W-0
R/W-0
R/W-0
DCxB
R/W-0
R/W-0
R/W-0
CCPxM
bit 7
bit 0
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
u = Bit is unchanged
x = Bit is unknown
-n/n = Value at POR and BOR/Value at all other Reset
‘1’ = Bit is set
‘0’ = Bit is cleared
bit 7-6
Unused
bit 5-4
DCxB: PWM Duty Cycle Least Significant bits
Capture mode:
Unused
Compare mode:
Unused
PWM mode:
These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPRxL.
bit 3-0
CCPxM: ECCPx Mode Select bits
0000 = Capture/Compare/PWM off (resets the module)
0001 = Reserved
0010 = Compare mode: toggle output on match
0011 = Reserved
0100 =
0101 =
0110 =
0111 =
Capture mode: every falling edge
Capture mode: every rising edge
Capture mode: every 4th rising edge
Capture mode: every 16th rising edge
1000 = Compare mode: set output on compare match (CCPx pin is set, CCPxIF is set)
1001 = Compare mode: clear output on compare match (CCPx pin is cleared, CCPxIF is set)
1010 = Compare mode: generate software interrupt on compare match (CCPx pin is unaffected,
CCPxIF is set)
1011 = Compare mode: Special Event Trigger (CCPx pin is unaffected, CCPxIF is set)
TimerX (selected by CxTSEL bits) is reset
ADON is set, starting A/D conversion if A/D module is enabled(1)
11xx =: PWM mode
Note 1:
This feature is available on CCP5 only.
DS40001412H-page 198
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
REGISTER 14-2:
R/x-0
CCPxCON: ENHANCED CCPx CONTROL REGISTER
R/W-0
R/W-0
PxM
R/W-0
DCxB
R/W-0
R/W-0
R/W-0
R/W-0
CCPxM
bit 7
bit 0
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
u = Bit is unchanged
x = Bit is unknown
-n/n = Value at POR and BOR/Value at all other Reset
‘1’ = Bit is set
‘0’ = Bit is cleared
bit 7-6
PxM: Enhanced PWM Output Configuration bits
If CCPxM = 00, 01, 10: (Capture/Compare modes)
xx = PxA assigned as Capture/Compare input; PxB, PxC, PxD assigned as port pins
Half-Bridge ECCP Modules(1):
If CCPxM = 11: (PWM modes)
0x = Single output; PxA modulated; PxB assigned as port pin
1x = Half-Bridge output; PxA, PxB modulated with dead-band control
Full-Bridge ECCP Modules(1):
If CCPxM = 11: (PWM modes)
00 = Single output; PxA modulated; PxB, PxC, PxD assigned as port pins
01 = Full-Bridge output forward; PxD modulated; PxA active; PxB, PxC inactive
10 = Half-Bridge output; PxA, PxB modulated with dead-band control; PxC, PxD assigned as port
pins
11 = Full-Bridge output reverse; PxB modulated; PxC active; PxA, PxD inactive
bit 5-4
Note 1:
DCxB: PWM Duty Cycle Least Significant bits
Capture mode:
Unused
Compare mode:
Unused
PWM mode:
These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPRxL.
See Table 14-1 to determine full-bridge and half-bridge ECCPs for the device being used.
2010-2021 Microchip Technology Inc.
DS40001412H-page 199
PIC18(L)F2X/4XK22
REGISTER 14-2:
bit 3-0
CCPxCON: ENHANCED CCPx CONTROL REGISTER (CONTINUED)
CCPxM: ECCPx Mode Select bits
0000 = Capture/Compare/PWM off (resets the module)
0001 = Reserved
0010 = Compare mode: toggle output on match
0011 = Reserved
0100 =
0101 =
0110 =
0111 =
Capture mode: every falling edge
Capture mode: every rising edge
Capture mode: every 4th rising edge
Capture mode: every 16th rising edge
1000 = Compare mode: set output on compare match (CCPx pin is set, CCPxIF is set)
1001 = Compare mode: clear output on compare match (CCPx pin is cleared, CCPxIF is set)
1010 = Compare mode: generate software interrupt on compare match (CCPx pin is unaffected,
CCPxIF is set)
1011 = Compare mode: Special Event Trigger (CCPx pin is unaffected, CCPxIF is set)
TimerX is reset
Half-Bridge ECCP Modules(1):
1100 = PWM mode: PxA active-high; PxB active-high
1101 = PWM mode: PxA active-high; PxB active-low
1110 = PWM mode: PxA active-low; PxB active-high
1111 = PWM mode: PxA active-low; PxB active-low
Full-Bridge ECCP Modules(1):
1100 = PWM mode: PxA, PxC active-high; PxB, PxD active-high
1101 = PWM mode: PxA, PxC active-high; PxB, PxD active-low
1110 = PWM mode: PxA, PxC active-low; PxB, PxD active-high
1111 = PWM mode: PxA, PxC active-low; PxB, PxD active-low
Note 1:
See Table 14-1 to determine full-bridge and half-bridge ECCPs for the device being used.
DS40001412H-page 200
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
REGISTER 14-3:
R/W-0
CCPTMRS0: PWM TIMER SELECTION CONTROL REGISTER 0
R/W-0
U-0
C3TSEL
R/W-0
—
R/W-0
C2TSEL
U-0
R/W-0
—
R/W-0
C1TSEL
bit 7
bit 0
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
u = Bit is unchanged
x = Bit is unknown
-n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set
‘0’ = Bit is cleared
bit 7-6
C3TSEL: CCP3 Timer Selection bits
00 = CCP3 – Capture/Compare modes use Timer1, PWM modes use Timer2
01 = CCP3 – Capture/Compare modes use Timer3, PWM modes use Timer4
10 = CCP3 – Capture/Compare modes use Timer5, PWM modes use Timer6
11 = Reserved
bit 5
Unused
bit 4-3
C2TSEL: CCP2 Timer Selection bits
00 = CCP2 – Capture/Compare modes use Timer1, PWM modes use Timer2
01 = CCP2 – Capture/Compare modes use Timer3, PWM modes use Timer4
10 = CCP2 – Capture/Compare modes use Timer5, PWM modes use Timer6
11 = Reserved
bit 2
Unused
bit 1-0
C1TSEL: CCP1 Timer Selection bits
00 = CCP1 – Capture/Compare modes use Timer1, PWM modes use Timer2
01 = CCP1 – Capture/Compare modes use Timer3, PWM modes use Timer4
10 = CCP1 – Capture/Compare modes use Timer5, PWM modes use Timer6
11 = Reserved
REGISTER 14-4:
CCPTMRS1: PWM TIMER SELECTION CONTROL REGISTER 1
U-0
U-0
U-0
U-0
—
—
—
—
R/W-0
R/W-0
R/W-0
C5TSEL
bit 7
R/W-0
C4TSEL
bit 0
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
u = Bit is unchanged
x = Bit is unknown
-n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set
‘0’ = Bit is cleared
bit 7-4
Unimplemented: Read as ‘0’
bit 3-2
C5TSEL: CCP5 Timer Selection bits
00 = CCP5 – Capture/Compare modes use Timer1, PWM modes use Timer2
01 = CCP5 – Capture/Compare modes use Timer3, PWM modes use Timer4
10 = CCP5 – Capture/Compare modes use Timer5, PWM modes use Timer6
11 = Reserved
bit 1-0
C4TSEL: CCP4 Timer Selection bits
00 = CCP4 – Capture/Compare modes use Timer1, PWM modes use Timer2
01 = CCP4 – Capture/Compare modes use Timer3, PWM modes use Timer4
10 = CCP4 – Capture/Compare modes use Timer5, PWM modes use Timer6
11 = Reserved
2010-2021 Microchip Technology Inc.
DS40001412H-page 201
PIC18(L)F2X/4XK22
REGISTER 14-5:
R/W-0
ECCPxAS: CCPX AUTO-SHUTDOWN CONTROL REGISTER
R/W-0
CCPxASE
R/W-0
R/W-0
CCPxAS
R/W-0
R/W-0
R/W-0
PSSxAC
R/W-0
PSSxBD
bit 7
bit 0
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
u = Bit is unchanged
x = Bit is unknown
-n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set
‘0’ = Bit is cleared
bit 7
CCPxASE: CCPx Auto-shutdown Event Status bit
if PxRSEN = 1;
1 = An Auto-shutdown event occurred; CCPxASE bit will automatically clear when event goes away;
CCPx outputs in shutdown state
0 = CCPx outputs are operating
if PxRSEN = 0;
1 = An Auto-shutdown event occurred; bit must be cleared in software to restart PWM;
CCPx outputs in shutdown state
0 = CCPx outputs are operating
bit 6-4
CCPxAS: CCPx Auto-Shutdown Source Select bits (1)
000 = Auto-shutdown is disabled
001 = Comparator C1 (async_C1OUT) – output high will cause shutdown event
010 = Comparator C2 (async_C2OUT) – output high will cause shutdown event
011 = Either Comparator C1 or C2 – output high will cause shutdown event
100 = FLT0 pin – low level will cause shutdown event
101 = FLT0 pin – low level or Comparator C1 (async_C1OUT) – high level will cause shutdown event
110 = FLT0 pin – low level or Comparator C2 (async_C2OUT) – high level will cause shutdown event
111 = FLT0 pin – low level or Comparators C1 or C2 – high level will cause shutdown event
bit 3-2
PSSxAC: Pins PxA and PxC Shutdown State Control bits
00 = Drive pins PxA and PxC to ‘0’
01 = Drive pins PxA and PxC to ‘1’
1x = Pins PxA and PxC tri-state
bit 1-0
PSSxBD: Pins PxB and PxD Shutdown State Control bits
00 = Drive pins PxB and PxD to ‘0’
01 = Drive pins PxB and PxD to ‘1’
1x = Pins PxB and PxD tri-state
Note 1:
If C1SYNC or C2SYNC bits in the CM2CON1 register are enabled, the shutdown will be delayed by Timer1.
DS40001412H-page 202
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
REGISTER 14-6:
R/W-0
PWMxCON: ENHANCED PWM CONTROL REGISTER
R/W-0
R/W-0
R/W-0
PxRSEN
R/W-0
R/W-0
R/W-0
R/W-0
PxDC
bit 7
bit 0
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
u = Bit is unchanged
x = Bit is unknown
-n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set
‘0’ = Bit is cleared
bit 7
PxRSEN: PWM Restart Enable bit
1 = Upon auto-shutdown, the CCPxASE bit clears automatically once the shutdown event goes away;
the PWM restarts automatically
0 = Upon auto-shutdown, CCPxASE must be cleared in software to restart the PWM
bit 6-0
PxDC: PWM Delay Count bits
PxDCx = Number of FOSC/4 (4 * TOSC) cycles between the scheduled time when a PWM signal may
transition active and the actual time it transitions active
PSTRxCON: PWM STEERING CONTROL REGISTER(1)
REGISTER 14-7:
U-0
U-0
U-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-1
—
—
—
STRxSYNC
STRxD
STRxC
STRxB
STRxA
bit 7
bit 0
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
u = Bit is unchanged
x = Bit is unknown
-n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set
‘0’ = Bit is cleared
bit 7-5
Unimplemented: Read as ‘0’
bit 4
STRxSYNC: Steering Sync bit
1 = Output steering update occurs on next PWM period
0 = Output steering update occurs at the beginning of the instruction cycle boundary
bit 3
STRxD: Steering Enable bit D
1 = PxD pin has the PWM waveform with polarity control from CCPxM
0 = PxD pin is assigned to port pin
bit 2
STRxC: Steering Enable bit C
1 = PxC pin has the PWM waveform with polarity control from CCPxM
0 = PxC pin is assigned to port pin
bit 1
STRxB: Steering Enable bit B
1 = PxB pin has the PWM waveform with polarity control from CCPxM
0 = PxB pin is assigned to port pin
bit 0
STRxA: Steering Enable bit A
1 = PxA pin has the PWM waveform with polarity control from CCPxM
0 = PxA pin is assigned to port pin
Note 1:
The PWM Steering mode is available only when the CCPxCON register bits CCPxM = 11 and
PxM = 00.
2010-2021 Microchip Technology Inc.
DS40001412H-page 203
PIC18(L)F2X/4XK22
15.0
15.1
HOST SYNCHRONOUS SERIAL
PORT (MSSP1 AND MSSP2)
MODULE
The SPI interface supports the following modes and
features:
•
•
•
•
•
Host SSPx (MSSPx) Module
Overview
The Host Synchronous Serial Port (MSSPx) module is
a serial interface useful for communicating with other
peripheral or microcontroller devices. These peripheral
devices may be Serial EEPROMs, shift registers,
display drivers, A/D converters, etc. The MSSPx
module can operate in one of two modes:
Host mode
Client mode
Clock Parity
Client Select Synchronization (Client mode only)
Daisy chain connection of client devices
Figure 15-1 is a block diagram of the SPI interface
module.
• Serial Peripheral Interface (SPI)
• Inter-Integrated Circuit (I2C)
FIGURE 15-1:
MSSPx BLOCK DIAGRAM (SPI MODE)
Data Bus
Read
Write
SSPxBUF Reg
SDIx
SSPxSR Reg
SDOx
bit 0
SSx
SSx Control
Enable
Shift
Clock
2 (CKP, CKE)
Clock Select
Edge
Select
SSPxM
4
SCKx
Edge
Select
TRIS bit
DS40001412H-page 204
( TMR22Output )
Prescaler TOSC
4, 16, 64
Baud Rate
Generator
(SSPxADD)
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
The I2C interface supports the following modes and
features:
Host mode
Client mode
Byte NACKing (Client mode)
Limited Multi-host support
7-bit and 10-bit addressing
Start and Stop interrupts
Interrupt masking
Clock stretching
Bus collision detection
General call address matching
Address masking
Address Hold and Data Hold modes
Selectable SDAx hold times
Note 1: In devices with more than one MSSP
module, it is very important to pay close
attention to SSPxCONx register names.
SSP1CON1 and SSP1CON2 registers
control different operational aspects of
the same module, while SSP1CON1 and
SSP2CON1 control the same features for
two different modules.
2: Throughout
this
section,
generic
references to an MSSP module in any of
its operating modes may be interpreted
as being equally applicable to MSSP1 or
MSSP2. Register names, module I/O
signals, and bit names may use the
generic designator ‘x’ to indicate the use
of a numeral to distinguish a particular
module when required.
Figure 15-2 is a block diagram of the I2C interface
module in Host mode. Figure 15-3 is a diagram of the
I2C interface module in Client mode.
MSSPx BLOCK DIAGRAM (I2C HOST MODE)
Internal
Data Bus
Read
[SSPxM 3:0]
Write
SSPxBUF
Baud Rate
Generator
(SSPxADD)
Shift
Clock
SDAx
SDAx in
Receive Enable (RCEN)
SCLx
SCLx in
Bus Collision
2010-2021 Microchip Technology Inc.
LSb
Start bit, Stop bit,
Acknowledge
Generate (SSPxCON2)
Start bit Detect,
Stop bit Detect
Write Collision Detect
Clock Arbitration
State Counter for
end of XMIT/RCV
Address Match Detect
Clock Cntl
SSPxSR
MSb
(Hold off clock source)
FIGURE 15-2:
Clock Arbitrate/BCOL Detect
•
•
•
•
•
•
•
•
•
•
•
•
•
The PIC18(L)F2X/4XK22 has two MSSP modules,
MSSP1 and MSSP2, each module operating
independently from the other.
Set/Reset: S, P, SSPxSTAT, WCOL, SSPxOV
Reset SEN, PEN (SSPxCON2)
Set SSPxIF, BCLxIF
DS40001412H-page 205
PIC18(L)F2X/4XK22
FIGURE 15-3:
MSSPx BLOCK DIAGRAM (I2C CLIENT MODE)
Internal
Data Bus
Read
Write
SSPxBUF Reg
SCLx
Shift
Clock
SSPxSR Reg
SDAx
MSb
LSb
SSPxMSK Reg
Match Detect
Addr Match
SSPxADD Reg
Start and
Stop bit Detect
DS40001412H-page 206
Set, Reset
S, P bits
(SSPxSTAT Reg)
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
15.2
SPI Mode Overview
The Serial Peripheral Interface (SPI) bus is a
synchronous serial data communication bus that
operates in Full-Duplex mode. Devices communicate
in a host/client environment where the host device
initiates the communication. A client device is
controlled through a chip select known as Client Select.
The SPI bus specifies four signal connections:
•
•
•
•
Serial Clock (SCKx)
Serial Data Out (SDOx)
Serial Data In (SDIx)
Client Select (SSx)
Figure 15-1 shows the block diagram of the MSSPx
module when operating in SPI Mode.
The SPI bus operates with a single host device and one
or more client devices. When multiple client devices
are used, an independent Client Select connection is
required from the host device to each client device.
Figure 15-4 shows a typical connection between a host
device and multiple client devices.
The host selects only one client at a time. Most client
devices have tri-state outputs so their output signal
appears disconnected from the bus when they are not
selected.
Transmissions involve two shift registers, eight bits in
size, one in the host and one in the client. With either
the host or the client device, data is always shifted out
one bit at a time, with the Most Significant bit (MSb)
shifted out first. At the same time, a new Least
Significant bit (LSb) is shifted into the same register.
During each SPI clock cycle, a full-duplex data
transmission occurs. This means that at the same time,
the client device is sending out the MSb from its shift
register and the host device is reading this bit from that
same line and saving it as the LSb of its shift register.
After 8 bits have been shifted out, the host and client
have exchanged register values.
If there is more data to exchange, the shift registers are
loaded with new data and the process repeats itself.
Whether the data is meaningful or not (dummy data),
depends on the application software. This leads to
three scenarios for data transmission:
• Host sends useful data and client sends dummy
data.
• Host sends useful data and client sends useful
data.
• Host sends dummy data and client sends useful
data.
Transmissions may involve any number of clock
cycles. When there is no more data to be transmitted,
the host stops sending the clock signal and it deselects
the client.
Every client device connected to the bus that has not
been selected through its client select line must disregard the clock and transmission signals and must not
transmit out any data of its own.
Figure 15-5 shows a typical connection between two
processors configured as host and client devices.
Data is shifted out of both shift registers on the
programmed clock edge and latched on the opposite
edge of the clock.
The host device transmits information out on its SDOx
output pin which is connected to, and received by, the
client’s SDIx input pin. The client device transmits
information out on its SDOx output pin, which is
connected to, and received by, the host’s SDIx input
pin.
To begin communication, the host device first sends out
the clock signal. Both the host and the client devices
may be configured for the same clock polarity.
The host device starts a transmission by sending out
the MSb from its shift register. The client device reads
this bit from that same line and saves it into the LSb
position of its shift register.
2010-2021 Microchip Technology Inc.
DS40001412H-page 207
PIC18(L)F2X/4XK22
FIGURE 15-4:
SPI HOST AND MULTIPLE CLIENT CONNECTION
SPI Host
SCLK
SCLK
SDOx
SDIx
SDIx
SDOx
General I/O
General I/O
SSx
General I/O
SCLK
SDIx
SDOx
SPI Client
#1
SPI Client
#2
SSx
SCLK
SDIx
SDOx
SPI Client
#3
SSx
15.2.1 SPI MODE REGISTERS
15.2.2 SPI MODE OPERATION
The MSSPx module has five registers for SPI mode
operation. These are:
When initializing the SPI, several options need to be
specified. This is done by programming the appropriate
control bits (SSPxCON1 and SSPxSTAT).
These control bits allow the following to be specified:
•
•
•
•
•
•
MSSPx STATUS register (SSPxSTAT)
MSSPx Control register 1 (SSPxCON1)
MSSPx Control register 3 (SSPxCON3)
MSSPx Data Buffer register (SSPxBUF)
MSSPx Address register (SSPxADD)
MSSPx Shift register (SSPxSR)
(Not directly accessible)
SSPxCON1 and SSPxSTAT are the control and
STATUS registers in SPI mode operation. The
SSPxCON1 register is readable and writable. The
lower 6 bits of the SSPxSTAT are read-only. The upper
two bits of the SSPxSTAT are read/write.
In one SPI Host mode, SSPxADD can be loaded with
a value used in the Baud Rate Generator. More information on the Baud Rate Generator is available in
Section 15.7 “Baud Rate Generator”.
SSPxSR is the shift register used for shifting data in
and out. SSPxBUF provides indirect access to the
SSPxSR register. SSPxBUF is the buffer register to
which data bytes are written, and from which data
bytes are read.
In receive operations, SSPxSR and SSPxBUF
together create a buffered receiver. When SSPxSR
receives a complete byte, it is transferred to SSPxBUF
and the SSPxIF interrupt is set.
During transmission, the SSPxBUF is not buffered. A
write to SSPxBUF will write to both SSPxBUF and
SSPxSR.
DS40001412H-page 208
•
•
•
•
Host mode (SCKx is the clock output)
Client mode (SCKx is the clock input)
Clock Polarity (Idle state of SCKx)
Data Input Sample Phase (middle or end of data
output time)
• Clock Edge (output data on rising/falling edge of
SCKx)
• Clock Rate (Host mode only)
• Client Select mode (Client mode only)
To enable the serial port, SSPx Enable bit, SSPxEN of
the SSPxCON1 register, must be set. To reset or
reconfigure SPI mode, clear the SSPxEN bit,
re-initialize the SSPxCONx registers and then set the
SSPxEN bit. This configures the SDIx, SDOx, SCKx
and SSx pins as serial port pins. For the pins to behave
as the serial port function, some must have their data
direction bits (in the TRIS register) appropriately
programmed as follows:
• SDIx must have corresponding TRIS bit set
• SDOx must have corresponding TRIS bit cleared
• SCKx (Host mode) must have corresponding
TRIS bit cleared
• SCKx (Client mode) must have corresponding
TRIS bit set
• SSx must have corresponding TRIS bit set
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
Any serial port function that is not desired may be
overridden by programming the corresponding data
direction (TRIS) register to the opposite value.
set. User software must clear the WCOL bit to allow the
following write(s) to the SSPxBUF register to complete
successfully.
The MSSPx consists of a transmit/receive shift register
(SSPxSR) and a buffer register (SSPxBUF). The
SSPxSR shifts the data in and out of the device, MSb
first. The SSPxBUF holds the data that was written to
the SSPxSR until the received data is ready. Once the
8 bits of data have been received, that byte is moved to
the SSPxBUF register. Then, the Buffer Full Detect bit,
BF of the SSPxSTAT register, and the interrupt flag bit,
SSPxIF, are set. This double-buffering of the received
data (SSPxBUF) allows the next byte to start reception
before reading the data that was just received. Any
write to the SSPxBUF register during transmission/
reception of data will be ignored and the write collision
detect bit, WCOL of the SSPxCON1 register, will be
When the application software is expecting to receive
valid data, the SSPxBUF may be read before the next
byte of data to transfer is written to the SSPxBUF. The
Buffer Full bit, BF of the SSPxSTAT register, indicates
when SSPxBUF has been loaded with the received
data (transmission is complete). When the SSPxBUF is
read, the BF bit is cleared. This data may be irrelevant
if the SPI is only a transmitter. Generally, the MSSPx
interrupt is used to determine when the transmission/
reception has completed. If the interrupt method is not
going to be used, then software polling can be done to
ensure that a write collision does not occur.
FIGURE 15-5:
The SSPxSR is not directly readable or writable and
SPI HOST/CLIENT CONNECTION
SPI Host SSPxM = 00xx
= 1010
SPI Client SSPxM = 010x
SDOx
SDIx
Serial Input Buffer
(BUF)
SDIx
Shift Register
(SSPxSR)
MSb
Serial Input Buffer
(SSPxBUF)
LSb
SCKx
General I/O
Processor 1
2010-2021 Microchip Technology Inc.
SDOx
Serial Clock
Client Select
(optional)
Shift Register
(SSPxSR)
MSb
LSb
SCKx
SSx
Processor 2
DS40001412H-page 209
PIC18(L)F2X/4XK22
15.2.3
SPI HOST MODE
The host can initiate the data transfer at any time
because it controls the SCKx line. The host determines
when the client (Processor 2, Figure 15-5) is to
broadcast data by the software protocol.
In Host mode, the data is transmitted/received as soon
as the SSPxBUF register is written to. If the SPI is only
going to receive, the SDOx output could be disabled
(programmed as an input). The SSPxSR register will
continue to shift in the signal present on the SDIx pin at
the programmed clock rate. As each byte is received, it
will be loaded into the SSPxBUF register as if a normal
received byte (interrupts and Status bits appropriately
set).
The clock polarity is selected by appropriately
programming the CKP bit of the SSPxCON1 register
and the CKE bit of the SSPxSTAT register.
FIGURE 15-6:
This then, would give waveforms for SPI
communication as shown in Figure 15-6, Figure 15-8,
Figure 15-9 and Figure 15-10, where the MSB is
transmitted first. In Host mode, the SPI clock rate (bit
rate) is user programmable to be one of the following:
•
•
•
•
•
FOSC/4 (or TCY)
FOSC/16 (or 4 * TCY)
FOSC/64 (or 16 * TCY)
Timer2 output/2
FOSC/(4 * (SSPxADD + 1))
Figure 15-6 shows the waveforms for Host mode.
When the CKE bit is set, the SDOx data is valid before
there is a clock edge on SCKx. The change of the input
sample is shown based on the state of the SMP bit. The
time when the SSPxBUF is loaded with the received
data is shown.
SPI MODE WAVEFORM (HOST MODE)
Write to
SSPxBUF
SCKx
(CKP = 0
CKE = 0)
SCKx
(CKP = 1
CKE = 0)
4 Clock
Modes
SCKx
(CKP = 0
CKE = 1)
SCKx
(CKP = 1
CKE = 1)
SDOx
(CKE = 0)
bit 7
bit 6
bit 5
bit 4
bit 3
bit 2
bit 1
bit 0
SDOx
(CKE = 1)
bit 7
bit 6
bit 5
bit 4
bit 3
bit 2
bit 1
bit 0
SDIx
(SMP = 0)
bit 0
bit 7
Input
Sample
(SMP = 0)
SDIx
(SMP = 1)
bit 7
bit 0
Input
Sample
(SMP = 1)
SSPxIF
SSPxSR to
SSPxBUF
DS40001412H-page 210
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
15.2.4
SPI CLIENT MODE
In Client mode, the data is transmitted and received as
external clock pulses appear on SCKx. When the last
bit is latched, the SSPxIF interrupt flag bit is set.
Before enabling the module in SPI Client mode, the clock
line must match the proper Idle state. The clock line can
be observed by reading the SCKx pin. The Idle state is
determined by the CKP bit of the SSPxCON1 register.
While in Client mode, the external clock is supplied by
the external clock source on the SCKx pin. This
external clock must meet the minimum high and low
times as specified in the electrical specifications.
While in Sleep mode, the client can transmit/receive
data. The shift register is clocked from the SCKx pin
input and when a byte is received, the device will
generate an interrupt. If enabled, the device will wake
up from Sleep.
15.2.4.1 Daisy-Chain Configuration
The SPI bus can sometimes be connected in a daisychain configuration. The first client output is connected
to the second client input, the second client output is
connected to the third client input, and so on. The final
client output is connected to the host input. Each client
sends out, during a second group of clock pulses, an
exact copy of what was received during the first group
of clock pulses. The whole chain acts as one large
communication shift register. The daisy-chain feature
only requires a single Client Select line from the host
device.
Figure 15-7 shows the block diagram of a typical
daisy-chain connection when operating in SPI Mode.
In a daisy-chain configuration, only the most recent
byte on the bus is required by the client. Setting the
BOEN bit of the SSPxCON3 register will enable writes
to the SSPxBUF register, even if the previous byte has
not been read. This allows the software to ignore data
that may not apply to it.
15.2.5
CLIENT SELECT
SYNCHRONIZATION
The Client Select can also be used to synchronize
communication. The Client Select line is held high until
the host device is ready to communicate. When the
Client Select line is pulled low, the client knows that a
new transmission is starting.
If the client fails to receive the communication properly,
it will be reset at the end of the transmission, when the
Client Select line returns to a high state. The client is
then ready to receive a new transmission when the Client Select line is pulled low again. If the Client Select
line is not used, there is a risk that the client will eventually become out of sync with the host. If the client
misses a bit, it will always be one bit off in future transmissions. Use of the Client Select line allows the client
and host to align themselves at the beginning of each
transmission (Figure 15-8).
The SSx pin allows a Synchronous Client mode. The
SPI must be in Client mode with SSx pin control
enabled (SSPxCON1 = 0100).
When the SSx pin is low, transmission and reception
are enabled and the SDOx pin is driven.
When the SSx pin goes high, the SDOx pin is no longer
driven, even if in the middle of a transmitted byte and
becomes a floating output. External pull-up/pull-down
resistors may be desirable depending on the
application.
Note 1: When the SPI is in Client mode with SSx
pin control enabled (SSPxCON1 =
0100), the SPI module will reset if the SSx
pin is set to VDD.
2: When the SPI is used in Client mode with
CKE set; the user must enable SSx pin
control.
3: While operated in SPI Client mode the
SMP bit of the SSPxSTAT register must
remain clear.
When the SPI module resets, the bit counter is forced
to ‘0’. This can be done by either forcing the SSx pin to
a high level or clearing the SSPxEN bit.
2010-2021 Microchip Technology Inc.
DS40001412H-page 211
PIC18(L)F2X/4XK22
FIGURE 15-7:
SPI DAISY-CHAIN CONNECTION
SPI Host
SCLK
SCLK
SDOx
SDIx
SDIx
SDOx
General I/O
SPI Client
#1
SSx
SCLK
SDIx
SDOx
SPI Client
#2
SSx
SCLK
SDIx
SDOx
SPI Client
#3
SSx
FIGURE 15-8:
CLIENT SELECT SYNCHRONOUS WAVEFORM
SSx
SCKx
(CKP = 0
CKE = 0)
SCKx
(CKP = 1
CKE = 0)
Write to
SSPxBUF
Shift register SSPxSR
and bit count are reset
SSPxBUF to
SSPxSR
SDOx
bit 7
bit 6
bit 7
SDIx
bit 6
bit 0
bit 0
bit 7
bit 7
Input
Sample
SSPxIF
Interrupt
Flag
SSPxSR to
SSPxBUF
DS40001412H-page 212
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
FIGURE 15-9:
SPI MODE WAVEFORM (CLIENT MODE WITH CKE = 0)
SSx
Optional
SCKx
(CKP = 0
CKE = 0)
SCKx
(CKP = 1
CKE = 0)
Write to
SSPxBUF
Valid
SDOx
bit 7
bit 6
bit 5
bit 4
bit 3
bit 2
bit 1
bit 0
SDIx
bit 0
bit 7
Input
Sample
SSPxIF
Interrupt
Flag
SSPxSR to
SSPxBUF
Write Collision
detection active
FIGURE 15-10:
SPI MODE WAVEFORM (CLIENT MODE WITH CKE = 1)
SSx
Not Optional
SCKx
(CKP = 0
CKE = 1)
SCKx
(CKP = 1
CKE = 1)
Write to
SSPxBUF
Valid
SDOx
bit 7
bit 6
bit 5
bit 4
bit 3
bit 2
bit 1
bit 0
SDIx
bit 7
bit 0
Input
Sample
SSPxIF
Interrupt
Flag
SSPxSR to
SSPxBUF
Write Collision
detection active
2010-2021 Microchip Technology Inc.
DS40001412H-page 213
PIC18(L)F2X/4XK22
15.2.6 SPI OPERATION IN SLEEP MODE
In SPI Host mode, when the Sleep mode is selected, all
module clocks are halted and the transmission/
reception will remain in that state until the device
wakes. After the device returns to Run mode, the
module will resume transmitting and receiving data.
In SPI Host mode, module clocks may be operating at
a different speed than when in Full-Power mode; in the
case of the Sleep mode, all clocks are halted.
Special care must be taken by the user when the
MSSPx clock is much faster than the system clock.
In SPI Client mode, the SPI Transmit/Receive Shift
register operates asynchronously to the device. This
allows the device to be placed in Sleep mode and data
to be shifted into the SPI Transmit/Receive Shift
register. When all eight bits have been received, the
MSSPx interrupt flag bit will be set and if enabled, will
wake the device.
In Client mode, when MSSPx interrupts are enabled,
after the host completes sending data, an MSSPx interrupt will wake the controller from Sleep.
If an exit from Sleep mode is not desired, MSSPx
interrupts may be disabled.
TABLE 15-1:
Name
ANSELA
REGISTERS ASSOCIATED WITH SPI OPERATION
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Register
on Page
—
—
ANSA5
—
ANSA3
ANSA2
ANSA1
ANSA0
149
ANSB4
ANSB3(1)
ANSB2(1)
ANSB1(1)
ANSB0(1)
150
ANSELB
—
—
ANSB5
ANSELC
ANSC7
ANSC6
ANSC5
ANSC4
ANSC3
ANSC2
—
—
150
ANSELD
ANSD7
ANSD6
ANSD5
ANSD4(2)
ANSD3(2)
ANSD2
ANSD1(2)
ANSD0(2)
150
INTCON
GIE/GIEH
PEIE/GIEL
TMR0IE
INT0IE
RBIE
TMR0IF
INT0IF
RBIF
109
IPR1
—
ADIP
RC1IP
TX1IP
SSP1IP
CCP1IP
TMR2IP
TMR1IP
121
IPR3
SSP2IP
BCL2IP
RC2IP
TX2IP
CTMUIP
TMR5GIP
TMR3GIP
TMR1GIP
123
PIE1
—
ADIE
RC1IE
TX1IE
SSP1IE
CCP1IE
TMR2IE
TMR1IE
117
PIE3
SSP2IE
BCL2IE
RC2IE
TX2IE
CTMUIE
TMR5GIE
TMR3GIE
TMR1GIE
119
PIR1
—
ADIF
RC1IF
TX1IF
SSP1IF
CCP1IF
TMR2IF
TMR1IF
112
SSP2IF
BCL2IF
RC2IF
TX2IF
CTMUIF
TMR5GIF
TMR3GIF
TMR1GIF
114
—
CCP5MD
CCP4MD
CCP3MD
CCP2MD
CCP1MD
53
PIR3
PMD1
MSSP2MD MSSP1MD
SSP1BUF
SSP1 Receive Buffer/Transmit Register
—
SSP1CON1
WCOL
SSPOV
SSPEN
CKP
SSP1CON3
ACKTIM
PCIE
SCIE
BOEN
SDAHT
SBCDE
AHEN
DHEN
256
SSP1STAT
SMP
CKE
D/A
P
S
R/W
UA
BF
252
SSP2BUF
SSPM
253
SSP2 Receive Buffer/Transmit Register
—
SSP2CON1
WCOL
SSPOV
SSPEN
CKP
SSP2CON3
ACKTIM
PCIE
SCIE
BOEN
SDAHT
SBCDE
AHEN
DHEN
256
SSP2STAT
SMP
CKE
D/A
P
S
R/W
UA
BF
252
TRISA
TRISA7
TRISA6
TRISA5
TRISA4
TRISA3
TRISA2
TRISA1
TRISA0
151
TRISB
TRISB7
TRISB6
TRISB5
TRISB4
TRISB3(1)
TRISB2(1)
TRISB1(1)
TRISB0(1)
151
TRISC
TRISC7
TRISC6
TRISC5
TRISC4
TRISC3
TRISC2
TRISC1
TRISC0
151
TRISD5
TRISD4(2)
TRISD3(2)
TRISD2
TRISD1(2)
TRISD0(2)
151
TRISD
Legend:
Note 1:
2:
TRISD7
TRISD6
SSPM
253
Shaded bits are not used by the MSSPx in SPI mode.
PIC18(L)F2XK22 devices.
PIC18(L)F4XK22 devices.
DS40001412H-page 214
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
15.3
I2C Mode Overview
FIGURE 15-11:
The Inter-Integrated Circuit Bus (I2C) is a multi-host
serial data communication bus. Devices communicate
in a host/client environment where the host devices initiate the communication. A client device is controlled
through addressing.
VDD
SCLK
The I2C bus specifies two signal connections:
• Serial Clock (SCLx)
• Serial Data (SDAx)
Figure 15-2 shows the block diagram of the MSSPx
module when operating in I2C mode.
Both the SCLx and SDAx connections are bidirectional
open-drain lines, each requiring pull-up resistors for the
supply voltage. Pulling the line to ground is considered
a logical zero and letting the line float is considered a
logical one.
Figure 15-11 shows a typical connection between two
processors configured as host and client devices.
The I2C bus can operate with one or more host devices
and one or more client devices.
There are four potential modes of operation for a given
device:
• Host Transmit mode
(host is transmitting data to a client)
• Host Receive mode
(host is receiving data from a client)
• Client Transmit mode
(client is transmitting data to a host)
• Client Receive mode
(client is receiving data from the host)
To begin communication, a host device starts out in
Host Transmit mode. The host device sends out a Start
bit followed by the address byte of the client it intends
to communicate with. This is followed by a single Read/
Write bit, which determines whether the host intends to
transmit to or receive data from the client device.
If the requested client exists on the bus, it will respond
with an Acknowledge bit, otherwise known as an ACK.
The host then continues in either Transmit mode or
Receive mode and the client continues in the complement, either in Receive mode or Transmit mode,
respectively.
A Start bit is indicated by a high-to-low transition of the
SDAx line while the SCLx line is held high. Address and
data bytes are sent out, Most Significant bit (MSb) first.
The Read/Write bit is sent out as a logical one when the
host intends to read data from the client, and is sent out
as a logical zero when it intends to write data to the client.
2010-2021 Microchip Technology Inc.
I2C HOST/
CLIENT CONNECTION
SCLK
VDD
Host
Client
SDIx
SDOx
The Acknowledge bit (ACK) is an active-low signal,
which holds the SDAx line low to indicate to the
transmitter that the client device has received the
transmitted data and is ready to receive more.
The transition of data bits is always performed while the
SCLx line is held low. Transitions that occur while the
SCLx line is held high are used to indicate Start and
Stop bits.
If the host intends to write to the client, then it
repeatedly sends out a byte of data, with the client
responding after each byte with an ACK bit. In this
example, the host device is in Host Transmit mode and
the client is in Client Receive mode.
If the host intends to read from the client, then it
repeatedly receives a byte of data from the client, and
responds after each byte with an ACK bit. In this
example, the host device is in Host Receive mode and
the client is Client Transmit mode.
On the last byte of data communicated, the host device
may end the transmission by sending a Stop bit. If the
host device is in Receive mode, it sends the Stop bit in
place of the last ACK bit. A Stop bit is indicated by a
low-to-high transition of the SDAx line while the SCLx
line is held high.
In some cases, the host may want to maintain control
of the bus and re-initiate another transmission. If so,
the host device may send another Start bit in place of
the Stop bit or last ACK bit when it is in receive mode.
The I2C bus specifies three message protocols;
• Single message where a host writes data to a client.
• Single message where a host reads data from a
client.
• Combined message where a host initiates a
minimum of two writes, or two reads, or a
combination of writes and reads, to one or more
clients.
DS40001412H-page 215
PIC18(L)F2X/4XK22
When one device is transmitting a logical one, or letting
the line float, and a second device is transmitting a
logical zero, or holding the line low, the first device can
detect that the line is not a logical one. This detection,
when used on the SCLx line, is called clock stretching.
Clock stretching give client devices a mechanism to
control the flow of data. When this detection is used on
the SDAx line, it is called arbitration. Arbitration
ensures that there is only one host device
communicating at any single time.
15.3.1
CLOCK STRETCHING
When a client device has not completed processing
data, it can delay the transfer of more data through the
process of clock stretching. An addressed client device
may hold the SCLx clock line low after receiving or
sending a bit, indicating that it is not yet ready to
continue. The host that is communicating with the client
will attempt to raise the SCLx line in order to transfer
the next bit, but will detect that the clock line has not yet
been released. Because the SCLx connection is opendrain, the client has the ability to hold that line low until
it is ready to continue communicating.
Clock stretching allows receivers that cannot keep up
with a transmitter to control the flow of incoming data.
15.3.2
ARBITRATION
Each host device must monitor the bus for Start and
Stop bits. If the device detects that the bus is busy, it
cannot begin a new message until the bus returns to an
Idle state.
However, two host devices may try to initiate a
transmission on or about the same time. When this
occurs, the process of arbitration begins. Each
transmitter checks the level of the SDAx data line and
compares it to the level that it expects to find. The first
transmitter to observe that the two levels don’t match,
loses arbitration, and must stop transmitting on the
SDAx line.
For example, if one transmitter holds the SDAx line to
a logical one (lets it float) and a second transmitter
holds it to a logical zero (pulls it low), the result is that
the SDAx line will be low. The first transmitter then
observes that the level of the line is different than
expected and concludes that another transmitter is
communicating.
The first transmitter to notice this difference is the one
that loses arbitration and must stop driving the SDAx
line. If this transmitter is also a host device, it also must
stop driving the SCLx line. It then can monitor the lines
for a Stop condition before trying to reissue its transmission. In the meantime, the other device that has not
noticed any difference between the expected and
actual levels on the SDAx line continues with its original
transmission. It can do so without any complications,
because so far, the transmission appears exactly as
expected with no other transmitter disturbing the message.
Client Transmit mode can also be arbitrated, when a
host addresses multiple clients, but this is less
common.
If two host devices are sending a message to two
different client devices at the address stage, the host
sending the lower client address always wins
arbitration. When two host devices send messages to
the same client address, and addresses can
sometimes refer to multiple clients, the arbitration
process must continue into the data stage.
Arbitration usually occurs very rarely, but it is a
necessary process for proper multi-host support.
DS40001412H-page 216
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
15.4
I2C Mode Operation
All MSSPx I2C communication is byte oriented and
shifted out MSb first. Six SFR registers and 2 interrupt
flags interface the module with the PIC microcontroller
and user software. Two pins, SDAx and SCLx, are
exercised by the module to communicate with other
external I2C devices.
15.4.1 BYTE FORMAT
TABLE 15-1:
TERM
Description
Transmitter
The device which shifts data out
onto the bus.
Receiver
The device which shifts data in
from the bus.
Host
The device that initiates a transfer,
generates clock signals and terminates a transfer.
Client
The device addressed by the host.
Multi-host
A bus with more than one device
that can initiate data transfers.
Arbitration
Procedure to ensure that only one
host at a time controls the bus.
Winning arbitration ensures that
the message is not corrupted.
2
All communication in I C is done in 9-bit segments. A
byte is sent from a host to a client or vice-versa,
followed by an Acknowledge bit sent back. After the
8th falling edge of the SCLx line, the device outputting
data on the SDAx changes that pin to an input and
reads in an acknowledge value on the next clock
pulse.
I2C BUS TERMS
The clock signal, SCLx, is provided by the host. Data
is valid to change while the SCLx signal is low, and
sampled on the rising edge of the clock. Changes on
the SDAx line while the SCLx line is high define special conditions on the bus, explained below.
Synchronization Procedure to synchronize the
clocks of two or more devices on
the bus.
15.4.2 DEFINITION OF I2C TERMINOLOGY
Idle
No host is controlling the bus, and
both SDAx and SCLx lines are
high.
Active
Any time one or more host devices
are controlling the bus.
Addressed Client
Client device that has received a
matching address and is actively
being clocked by a host.
Matching
Address
Address byte that is clocked into a
client that matches the value
stored in SSPxADD.
Write Request
Client receives a matching
address with R/W bit clear, and is
ready to clock in data.
Read Request
Host sends an address byte with
the R/W bit set, indicating that it
wishes to clock data out of the Client. This data is the next and all
following bytes until a Restart or
Stop.
There is language and terminology in the description
of I2C communication that have definitions specific to
I2C. That word usage is defined below and may be
used in the rest of this document without explanation.
This table was adapted from the Phillips I2C
specification.
15.4.3 SDAx AND SCLx PINS
I2C
Selection of any
mode with the SSPxEN bit set,
forces the SCLx and SDAx pins to be open-drain.
These pins may be set by the user to inputs by setting
the appropriate TRIS bits.
Note: Data is tied to output zero when an I2C
mode is enabled.
15.4.4 SDAx HOLD TIME
The hold time of the SDAx pin is selected by the
SDAHT bit of the SSPxCON3 register. Hold time is the
time SDAx is held valid after the falling edge of SCLx.
Setting the SDAHT bit selects a longer 300 ns minimum hold time and may help on buses with large
capacitance.
2010-2021 Microchip Technology Inc.
Clock Stretching When a device on the bus holds
SCLx low to stall communication.
Bus Collision
Any time the SDAx line is sampled
low by the module while it is outputting and expected high state.
DS40001412H-page 217
PIC18(L)F2X/4XK22
15.4.5 START CONDITION
15.4.7 RESTART CONDITION
The I2C specification defines a Start condition as a
transition of SDAx from a high-to -low state while SCLx
line is high. A Start condition is always generated by
the host and signifies the transition of the bus from an
Idle to an Active state. Figure 15-12 shows wave
forms for Start and Stop conditions.
A Restart is valid any time that a Stop would be valid.
A host can issue a Restart if it wishes to hold the bus
after terminating the current transfer. A Restart has the
same effect on the client that a Start would, resetting
all client logic and preparing it to clock in an address.
The host may want to address the same or another client. Figure 15-13 shows the wave form for a Restart
condition.
A bus collision can occur on a Start condition if the
module samples the SDAx line low before asserting it
low. This does not conform to the I2C specification that
states no bus collision can occur on a Start.
In 10-bit Addressing Client mode a Restart is required
for the host to clock data out of the addressed client.
Once a client has been fully addressed, matching both
high and low address bytes, the host can issue a
Restart and the high address byte with the R/W bit set.
The client logic will then hold the clock and prepare to
clock out data.
15.4.6 STOP CONDITION
A Stop condition is a transition of the SDAx line from a
low-to-high state while the SCLx line is high.
After a full match with R/W clear in 10-bit mode, a prior
match flag is set and maintained. Until a Stop
condition, a high address with R/W clear, or high
address match fails.
Note: At least one SCLx low time must appear
before a Stop is valid, therefore, if the SDAx
line goes low then high again while the SCLx
line stays high, only the Start condition is
detected.
15.4.8 START/STOP CONDITION INTERRUPT
MASKING
The SCIE and PCIE bits of the SSPxCON3 register
can enable the generation of an interrupt in Client
modes that do not typically support this function. Client
modes where interrupt on Start and Stop detect are
already enabled, these bits will have no effect.
I2C START AND STOP CONDITIONS
FIGURE 15-12:
SDAx
SCLx
S
Start
P
Change of
Change of
Data Allowed
Data Allowed
Condition
FIGURE 15-13:
Stop
Condition
I2C RESTART CONDITION
Sr
Change of
Change of
Data Allowed
Restart
Data Allowed
Condition
DS40001412H-page 218
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
I2C Client Mode Operation
15.4.9 ACKNOWLEDGE SEQUENCE
15.5
The 9th SCLx pulse for any transferred byte in I2C is
dedicated as an Acknowledge. It allows receiving
devices to respond back to the transmitter by pulling
the SDAx line low. The transmitter must release control of the line during this time to shift in the response.
The Acknowledge (ACK) is an active-low signal, pulling the SDAx line low indicated to the transmitter that
the device has received the transmitted data and is
ready to receive more.
The MSSPx Client mode operates in one of four
modes selected in the SSPxM bits of SSPxCON1
register. The modes can be divided into 7-bit and 10-bit
Addressing mode. 10-bit Addressing modes operate
the same as 7-bit with some additional overhead for
handling the larger addresses.
The result of an ACK is placed in the ACKSTAT bit of
the SSPxCON2 register.
Client software, when the AHEN and DHEN bits are
set, allow the user to set the ACK value sent back to
the transmitter. The ACKDT bit of the SSPxCON2
register is set/cleared to determine the response.
Client hardware will generate an ACK response if the
AHEN and DHEN bits of the SSPxCON3 register are
clear.
There are certain conditions where an ACK will not be
sent by the client. If the BF bit of the SSPxSTAT
register or the SSPxOV bit of the SSPxCON1 register
are set when a byte is received.
When the module is addressed, after the 8th falling
edge of SCLx on the bus, the ACKTIM bit of the SSPxCON3 register is set. The ACKTIM bit indicates the
acknowledge time of the active bus.
The ACKTIM Status bit is only active when the AHEN
bit or DHEN bit is enabled.
Modes with Start and Stop bit interrupts operated the
same as the other modes with SSPxIF additionally
getting set upon detection of a Start, Restart, or Stop
condition.
15.5.1 CLIENT MODE ADDRESSES
The SSPxADD register (Register 15-7) contains the
Client mode address. The first byte received after a
Start or Restart condition is compared against the
value stored in this register. If the byte matches, the
value is loaded into the SSPxBUF register and an
interrupt is generated. If the value does not match, the
module goes Idle and no indication is given to the
software that anything happened.
The SSPx Mask register (Register 15-6) affects the
address matching process. See Section 15.5.9
“SSPx Mask Register” for more information.
15.5.1.1
I2C Client 7-bit Addressing Mode
In 7-bit Addressing mode, the LSb of the received data
byte is ignored when determining if there is an address
match.
15.5.1.2 I2C Client 10-bit Addressing Mode
In 10-bit Addressing mode, the first received byte is
compared to the binary value of ‘1 1 1 1 0 A9 A8 0’. A9
and A8 are the two MSb of the 10-bit address and
stored in bits 2 and 1 of the SSPxADD register.
After the acknowledge of the high byte the UA bit is set
and SCLx is held low until the user updates SSPxADD
with the low address. The low address byte is clocked
in and all eight bits are compared to the low address
value in SSPxADD. Even if there is not an address
match; SSPxIF and UA are set, and SCLx is held low
until SSPxADD is updated to receive a high byte
again. When SSPxADD is updated the UA bit is
cleared. This ensures the module is ready to receive
the high address byte on the next communication.
A high and low address match as a write request is
required at the start of all 10-bit addressing
communication. A transmission can be initiated by
issuing a Restart once the client is addressed, and
clocking in the high address with the R/W bit set. The
client hardware will then acknowledge the read
request and prepare to clock out data. This is only
valid for a client after it has received a complete high
and low address byte match.
2010-2021 Microchip Technology Inc.
DS40001412H-page 219
PIC18(L)F2X/4XK22
15.5.2 CLIENT RECEPTION
15.5.2.2 7-bit Reception with AHEN and DHEN
When the R/W bit of a matching received address byte
is clear, the R/W bit of the SSPxSTAT register is
cleared. The received address is loaded into the
SSPxBUF register and acknowledged.
Client device reception with AHEN and DHEN set
operate the same as without these options with extra
interrupts and clock stretching added after the 8th falling edge of SCLx. These additional interrupts allow the
client software to decide whether it wants to ACK the
receive address or data byte, rather than the hardware. This functionality adds support for PMBus™ that
was not present on previous versions of this module.
When the overflow condition exists for a received
address, then not Acknowledge is given. An overflow
condition is defined as either bit BF of the SSPxSTAT
register is set, or bit SSPxOV of the SSPxCON1 register is set. The BOEN bit of the SSPxCON3 register
modifies this operation. For more information see
Register 15-5.
An MSSPx interrupt is generated for each transferred
data byte. Flag bit, SSPxIF, must be cleared by
software.
When the SEN bit of the SSPxCON2 register is set,
SCLx will be held low (clock stretch) following each
received byte. The clock must be released by setting
the CKP bit of the SSPxCON1 register, except
sometimes in 10-bit mode. See Section 15.2.3 “SPI
Host Mode” for more detail.
15.5.2.1 7-bit Addressing Reception
This section describes a standard sequence of events
for the MSSPx module configured as an I2C client in
7-bit Addressing mode. All decisions made by hardware or software and their effect on reception.
Figure 15-14 and Figure 15-5 are used as a visual
reference for this description.
This is a step by step process of what typically must
be done to accomplish I2C communication.
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
Start bit detected.
S bit of SSPxSTAT is set; SSPxIF is set if
interrupt on Start detect is enabled.
Matching address with R/W bit clear is received.
The client pulls SDAx low sending an ACK to the
host, and sets SSPxIF bit.
Software clears the SSPxIF bit.
Software reads received address from
SSPxBUF clearing the BF flag.
If SEN = 1; Client software sets CKP bit to
release the SCLx line.
The host clocks out a data byte.
Client drives SDAx low sending an ACK to the
host, and sets SSPxIF bit.
Software clears SSPxIF.
Software reads the received byte from
SSPxBUF clearing BF.
Steps 8-12 are repeated for all received bytes
from the host.
Host sends Stop condition, setting P bit of SSPxSTAT, and the bus goes Idle.
DS40001412H-page 220
This list describes the steps that need to be taken by
client software to use these options for I2C
communication. Figure 15-16 displays a module using
both address and data holding. Figure 15-17 includes
the operation with the SEN bit of the SSPxCON2
register set.
1.
S bit of SSPxSTAT is set; SSPxIF is set if
interrupt on Start detect is enabled.
2. Matching address with R/W bit clear is clocked
in. SSPxIF is set and CKP cleared after the 8th
falling edge of SCLx.
3. Client clears the SSPxIF.
4. Client can look at the ACKTIM bit of the SSPxCON3 register to determine if the SSPxIF was
after or before the ACK.
5. Client reads the address value from SSPxBUF,
clearing the BF flag.
6. Client sets ACK value clocked out to the host by
setting ACKDT.
7. Client releases the clock by setting CKP.
8. SSPxIF is set after an ACK, not after a NACK.
9. If SEN = 1 the client hardware will stretch the
clock after the ACK.
10. Client clears SSPxIF.
Note: SSPxIF is still set after the 9th falling edge of
SCLx even if there is no clock stretching and
BF has been cleared. Only if NACK is sent
to host is SSPxIF not set.
11. SSPxIF set and CKP cleared after 8th falling
edge of SCLx for a received data byte.
12. Client looks at ACKTIM bit of SSPxCON3 to
determine the source of the interrupt.
13. Client reads the received data from SSPxBUF
clearing BF.
14. Steps 7-14 are the same for each received data
byte.
15. Communication is ended by either the client
sending an ACK = 1, or the host sending a Stop
condition. If a Stop is sent and Interrupt on Stop
detect is disabled, the client will only know by
polling the P bit of the SSTSTAT register.
2010-2021 Microchip Technology Inc.
I2C CLIENT, 7-BIT ADDRESS, RECEPTION (SEN = 0, AHEN = 0, DHEN = 0)
Bus Host sends
Stop condition
From Client to Host
Receiving Address
SDAx
SCLx
S
Receiving Data
A7
A6
A5
A4
A3
A2
A1
1
2
3
4
5
6
7
ACK
8
9
Receiving Data
D7
D6
D5
D4
D3
D2
D1
1
2
3
4
5
6
7
D0 ACK D7
8
9
1
ACK = 1
D6
D5
D4
D3
D2
D1
D0
2
3
4
5
6
7
8
9
P
SSPxIF
Cleared by software
Cleared by software
BF
SSPxBUF is read
First byte
of data is
available
in SSPxBUF
SSPxOV
SSPxOV set because
SSPxBUF is still full.
ACK is not sent.
SSPxIF set on 9th
falling edge of
SCLx
PIC18(L)F2X/4XK22
DS40001412H-page 221
FIGURE 15-14:
2010-2021 Microchip Technology Inc.
2010-2021 Microchip Technology Inc.
I2C CLIENT, 7-BIT ADDRESS, RECEPTION (SEN = 1, AHEN = 0, DHEN = 0)
FIGURE 15-15:
Bus Host sends
Stop condition
Receive Address
SDAx
SCLx
S
Receive Data
A7
A6
A5
A4
A3
A2
A1
1
2
3
4
5
6
7
R/W=0 ACK
8
9
SEN
Receive Data
D7
D6
D5
D4
D3
D2
D1
D0
ACK
1
2
3
4
5
6
7
8
9
SEN
ACK
D7
D6
D5
D4
D3
D2
D1
D0
1
2
3
4
5
6
7
8
9
P
Clock is held low until CKP is set to ‘1’
SSPxIF
Cleared by software
BF
SSPxBUF is read
Cleared by software
SSPxIF set on 9th
falling edge of SCLx
SSPxOV
SSPxOV set because
SSPxBUF is still full.
ACK is not sent.
CKP
CKP is written to ‘1’ in software,
releasing SCLx
CKP is written to 1 in software,
releasing SCLx
SCLx is not held
low because
ACK= 1
DS40001412H-page 222
PIC18(L)F2X/4XK22
First byte
of data is
available
in SSPxBUF
I2C CLIENT, 7-BIT ADDRESS, RECEPTION (SEN = 0, AHEN = 1, DHEN = 1)
Host sends
Stop condition
Host Releases SDAx
to client for ACK sequence
Receiving Address
SDAx
Receiving Data
ACK D7 D6 D5 D4 D3 D2 D1 D0
A7 A6 A5 A4 A3 A2 A1
Received Data
ACK
ACK=1
D7 D6 D5 D4 D3 D2 D1 D0
SCLx
S
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
P
SSPxIF
If AHEN = 1:
SSPxIF is set
BF
ACKDT
SSPxIF is set on
9th falling edge of
SCLx, after ACK
Address is
read from
SSBUF
Data is read from SSPxBUF
Client software
clears ACKDT to
CKP
Client software
sets ACKDT to
not ACK
ACK the received
byte
When AHEN=1:
CKP is cleared by hardware
and SCLx is stretched
No interrupt
after not ACK
from Client
Cleared by software
When DHEN=1:
CKP is cleared by
hardware on 8th falling
edge of SCLx
CKP set by software,
SCLx is released
ACKTIM
2010-2021 Microchip Technology Inc.
ACKTIM set by hardware
on 8th falling edge of SCLx
S
P
ACKTIM cleared by
hardware in 9th
rising edge of SCLx
ACKTIM set by hardware
on 8th falling edge of SCLx
PIC18(L)F2X/4XK22
DS40001412H-page 223
FIGURE 15-16:
2010-2021 Microchip Technology Inc.
I2C CLIENT, 7-BIT ADDRESS, RECEPTION (SEN = 1, AHEN = 1, DHEN = 1)
FIGURE 15-17:
R/W = 0
Receiving Address
SDAx
ACK
A7 A6 A5 A4 A3 A2 A1
SCLx
S
1
2 3
4
5
6 7
Host sends
Stop condition
Host releases
SDAx to client for ACK sequence
8
9
Receive Data
1
2 3
4
5
6 7
ACK
Receive Data
D7 D6 D5 D4 D3 D2 D1 D0
8
ACK
9
D7 D6 D5 D4 D3 D2 D1 D0
1
2
3 4
5
6 7
8
9
P
SSPxIF
No interrupt after
if not ACK
from Client
Cleared by software
BF
Received
address is loaded into
SSPxBUF
Received data is
available on SSPxBUF
ACKDT
Client software clears
ACKDT to ACK
the received byte
SSPxBUF can be
read any time before
next byte is loaded
Client sends
not ACK
CKP
When DHEN = 1;
on the 8th falling edge
of SCLx of a received
data byte, CKP is cleared
ACKTIM
ACKTIM is set by hardware
on 8th falling edge of SCLx
S
DS40001412H-page 224
P
ACKTIM is cleared by hardware
on 9th rising edge of SCLx
Set by software,
release SCLx
CKP is not cleared
if not ACK
PIC18(L)F2X/4XK22
When AHEN = 1;
on the 8th falling edge
of SCLx of an address
byte, CKP is cleared
PIC18(L)F2X/4XK22
15.5.3
CLIENT TRANSMISSION
When the R/W bit of the incoming address byte is set
and an address match occurs, the R/W bit of the
SSPxSTAT register is set. The received address is
loaded into the SSPxBUF register, and an ACK pulse is
sent by the client on the ninth bit.
Following the ACK, client hardware clears the CKP bit
and the SCLx pin is held low (see Section 15.5.6
“Clock Stretching” for more details). By stretching the
clock, the host will be unable to assert another clock
pulse until the client is done preparing the transmit
data.
The transmit data must be loaded into the SSPxBUF
register which also loads the SSPxSR register. Then
the SCLx pin may be released by setting the CKP bit of
the SSPxCON1 register. The eight data bits are shifted
out on the falling edge of the SCLx input. This ensures
that the SDAx signal is valid during the SCLx high time.
The ACK pulse from the host-receiver is latched on the
rising edge of the ninth SCLx input pulse. This ACK
value is copied to the ACKSTAT bit of the SSPxCON2
register. If ACKSTAT is set (not ACK), then the data
transfer is complete. In this case, when the not ACK is
latched by the client, the client goes Idle and waits for
another occurrence of the Start bit. If the SDAx line was
low (ACK), the next transmit data must be loaded into
the SSPxBUF register. Again, the SCLx pin must be
released by setting bit CKP.
An MSSPx interrupt is generated for each data transfer
byte. The SSPxIF bit must be cleared by software and
the SSPxSTAT register is used to determine the status
of the byte. The SSPxIF bit is set on the falling edge of
the ninth clock pulse.
15.5.3.1
Client Mode Bus Collision
A client receives a Read request and begins shifting
data out on the SDAx line. If a bus collision is detected
and the SBCDE bit of the SSPxCON3 register is set,
the BCLxIF bit of the PIRx register is set. Once a bus
collision is detected, the client goes Idle and waits to be
addressed again. User software can use the BCLxIF bit
to handle a client bus collision.
15.5.3.2
1.
Host sends a Start condition on SDAx and
SCLx.
2. S bit of SSPxSTAT is set; SSPxIF is set if interrupt on Start detect is enabled.
3. Matching address with R/W bit set is received by
the client setting SSPxIF bit.
4. Client hardware generates an ACK and sets
SSPxIF.
5. SSPxIF bit is cleared by user.
6. Software reads the received address from
SSPxBUF, clearing BF.
7. R/W is set so CKP was automatically cleared
after the ACK.
8. The client software loads the transmit data into
SSPxBUF.
9. CKP bit is set releasing SCLx, allowing the host
to clock the data out of the client.
10. SSPxIF is set after the ACK response from the
host is loaded into the ACKSTAT register.
11. SSPxIF bit is cleared.
12. The client software checks the ACKSTAT bit to
see if the host wants to clock out more data.
Note 1: If the host ACKs the clock will be
stretched.
2: ACKSTAT is the only bit updated on the
rising edge of SCLx (9th) rather than the
falling.
13. Steps 9-13 are repeated for each transmitted
byte.
14. If the host sends a not ACK; the clock is not held,
but SSPxIF is still set.
15. The host sends a Restart condition or a Stop.
16. The client is no longer addressed.
7-bit Transmission
A host device can transmit a read request to a client,
and then clock data out of the client. The list below outlines what software for a client will need to do to
accomplish a standard transmission. Figure 15-18 can
be used as a reference to this list.
2010-2021 Microchip Technology Inc.
DS40001412H-page 225
2010-2021 Microchip Technology Inc.
FIGURE 15-18:
I2C CLIENT, 7-BIT ADDRESS, TRANSMISSION (AHEN = 0)
Host sends
Stop condition
Receiving Address
SDAx
SCLx
S
D7 D6 D5 D4 D3 D2 D1 D0 ACK
D7 D6 D5 D4 D3 D2 D1 D0
1
1
1
2
3
4
5
6
7
8
9
Transmitting Data
2
3
4
5
6
Automatic
ACK
R/W = 1 Automatic
A7 A6 A5 A4 A3 A2 A1
ACK
7
8
9
Transmitting Data
2
3
4
5
6
7
8
9
P
SSPxIF
Cleared by software
BF
Received address
is read from SSPxBUF
Data to transmit is
loaded into SSPxBUF
BF is automatically
cleared after 8th falling
edge of SCLx
CKP
When R/W is set
SCLx is always
held low after 9th SCLx
falling edge
Set by software
CKP is not
held for not
ACK
ACKSTAT
R/W
R/W is copied from the
matching address byte
D/A
Indicates an address
has been received
DS40001412H-page 226
S
P
PIC18(L)F2X/4XK22
Host not ACK
is copied to
ACKSTAT
PIC18(L)F2X/4XK22
15.5.3.3
7-bit Transmission with Address
Hold Enabled
Setting the AHEN bit of the SSPxCON3 register
enables additional clock stretching and interrupt
generation after the 8th falling edge of a received
matching address. Once a matching address has
been clocked in, CKP is cleared and the SSPxIF
interrupt is set.
Figure 15-19 displays a standard waveform of a 7-bit
Address Client Transmission with AHEN enabled.
1.
2.
Bus starts Idle.
Host sends Start condition; the S bit of SSPxSTAT is set; SSPxIF is set if interrupt on Start
detect is enabled.
3. Host sends matching address with R/W bit set.
After the 8th falling edge of the SCLx line the
CKP bit is cleared and SSPxIF interrupt is
generated.
4. Client software clears SSPxIF.
5. Client software reads ACKTIM bit of SSPxCON3
register, and R/W and D/A of the SSPxSTAT
register to determine the source of the interrupt.
6. Client reads the address value from the SSPxBUF register clearing the BF bit.
7. Client software decides from this information if it
wishes to ACK or not ACK and sets ACKDT bit
of the SSPxCON2 register accordingly.
8. Client sets the CKP bit releasing SCLx.
9. Host clocks in the ACK value from the client.
10. Client hardware automatically clears the CKP bit
and sets SSPxIF after the ACK if the R/W bit is
set.
11. Client software clears SSPxIF.
12. Client loads value to transmit to the host into
SSPxBUF setting the BF bit.
Note: SSPxBUF cannot be loaded until after the
ACK.
13. Client sets CKP bit releasing the clock.
14. Host clocks out the data from the client and
sends an ACK value on the 9th SCLx pulse.
15. Client hardware copies the ACK value into the
ACKSTAT bit of the SSPxCON2 register.
16. Steps 10-15 are repeated for each byte
transmitted to the host from the client.
17. If the host sends a not ACK the client releases
the bus allowing the host to send a Stop and end
the communication.
Note: Host must send a not ACK on the last byte
to ensure that the client releases the SCLx
line to receive a Stop.
2010-2021 Microchip Technology Inc.
DS40001412H-page 227
2010-2021 Microchip Technology Inc.
I2C CLIENT, 7-BIT ADDRESS, TRANSMISSION (AHEN = 1)
FIGURE 15-19:
Host sends
Stop condition
Host releases SDAx
to client for ACK sequence
Receiving Address
SDAx
SCLx
S
1
2
3
4
5
6
Automatic
R/W = 1
ACK
A7 A6 A5 A4 A3 A2 A1
7
8
9
Transmitting Data
Automatic
D7 D6 D5 D4 D3 D2 D1 D0 ACK
D7 D6 D5 D4 D3 D2 D1 D0
1
1
2
3
4
5
6
7
8
9
Transmitting Data
2
3
4
5
6
7
ACK
8
9
P
SSPxIF
Cleared by software
BF
Received address
is read from SSPxBUF
Data to transmit is
loaded into SSPxBUF
BF is automatically
cleared after 8th falling
edge of SCLx
ACKDT
Client clears
ACKDT to ACK
address
ACKSTAT
CKP
When AHEN = 1;
CKP is cleared by hardware
after receiving matching
address.
ACKTIM
DS40001412H-page 228
R/W
D/A
ACKTIM is set on 8th falling
edge of SCLx
When R/W = 1;
CKP is always
cleared after ACK
Set by software,
releases SCLx
ACKTIM is cleared
on 9th rising edge of SCLx
CKP not cleared
after not ACK
PIC18(L)F2X/4XK22
Host’s ACK
response is copied
to SSPxSTAT
PIC18(L)F2X/4XK22
15.5.4 CLIENT MODE 10-BIT ADDRESS
RECEPTION
15.5.5 10-BIT ADDRESSING WITH ADDRESS
OR DATA HOLD
This section describes a standard sequence of events
for the MSSPx module configured as an I2C client in
10-bit Addressing mode (Figure 15-20) and is used as
a visual reference for this description.
Reception using 10-bit addressing with AHEN or
DHEN set is the same as with 7-bit modes. The only
difference is the need to update the SSPxADD register
using the UA bit. All functionality, specifically when the
CKP bit is cleared and SCLx line is held low are the
same. Figure 15-21 can be used as a reference of a
client in 10-bit addressing with AHEN set.
This is a step by step process of what must be done by
client software to accomplish I2C communication.
1.
2.
3.
4.
5.
6.
7.
8.
Bus starts Idle.
Host sends Start condition; S bit of SSPxSTAT is
set; SSPxIF is set if interrupt on Start detect is
enabled.
Host sends matching high address with R/W bit
clear; UA bit of the SSPxSTAT register is set.
Client sends ACK and SSPxIF is set.
Software clears the SSPxIF bit.
Software reads received address from SSPxBUF
clearing the BF flag.
Client loads low address into SSPxADD,
releasing SCLx.
Host sends matching low address byte to the client; UA bit is set.
Figure 15-22 shows a standard waveform for a client
transmitter in 10-bit Addressing mode.
Note: Updates to the SSPxADD register are not
allowed until after the ACK sequence.
9.
Client sends ACK and SSPxIF is set.
Note: If the low address does not match, SSPxIF
and UA are still set so that the client
software can set SSPxADD back to the high
address. BF is not set because there is no
match. CKP is unaffected.
10. Client clears SSPxIF.
11. Client reads the received matching address
from SSPxBUF clearing BF.
12. Client loads high address into SSPxADD.
13. Host clocks a data byte to the client and clocks
out the clients ACK on the 9th SCLx pulse;
SSPxIF is set.
14. If SEN bit of SSPxCON2 is set, CKP is cleared
by hardware and the clock is stretched.
15. Client clears SSPxIF.
16. Client reads the received byte from SSPxBUF
clearing BF.
17. If SEN is set the client sets CKP to release the
SCLx.
18. Steps 13-17 repeat for each received byte.
19. Host sends Stop to end the transmission.
2010-2021 Microchip Technology Inc.
DS40001412H-page 229
2010-2021 Microchip Technology Inc.
I2C CLIENT, 10-BIT ADDRESS, RECEPTION (SEN = 1, AHEN = 0, DHEN = 0)
FIGURE 15-20:
Host sends
Stop condition
Receive Second Address Byte
Receive First Address Byte
SDAx
SCLx
S
1
1
1
1
0 A9 A8
1
2
3
4
5
6
7
ACK
8
9
A7 A6 A5 A4 A3 A2 A1 A0 ACK
1
2
3
4
5
6
7
8
Receive Data
Receive Data
9
D7 D6 D5 D4 D3 D2 D1 D0 ACK
1
2
3
4
5
6
7
8
9
D7 D6 D5 D4 D3 D2 D1 D0 ACK
1
2
3
4
5
6
7
8
9
P
SCLx is held low
while CKP = 0
SSPxIF
Set by hardware
on 9th falling edge
Cleared by software
BF
Receive address is
read from SSPxBUF
If address matches
SSPxADD it is loaded into
SSPxBUF
Data is read
from SSPxBUF
When UA = 1;
SCLx is held low
Software updates SSPxADD
and releases SCLx
CKP
Set by software,
When SEN = 1;
releasing SCLx
CKP is cleared after
9th falling edge of received byte
DS40001412H-page 230
PIC18(L)F2X/4XK22
UA
Receive First Address Byte
SDAx
SCLx
S
Receive Second Address Byte
R/W = 0
1
1
1
1
0
A9
A8
1
2
3
4
5
6
7
ACK
8
9
UA
Receive Data
A7
A6
A5
A4
A3
A2
A1
A0
ACK
1
2
3
4
5
6
7
8
9
UA
Receive Data
D7
D6
D5
D4
D3
D2
D1
1
2
3
4
5
6
7
D0 ACK D7
8
9
1
D6 D5
2
SSPxIF
Set by hardware
on 9th falling edge
Cleared by software
Cleared by software
BF
SSPxBUF can be
read anytime before
the next received byte
Received data
is read from
SSPxBUF
ACKDT
Client software clears
ACKDT to ACK
the received byte
UA
2010-2021 Microchip Technology Inc.
Update to SSPxADD is
not allowed until 9th
falling edge of SCLx
CKP
If when AHEN = 1;
on the 8th falling edge
of SCLx of an address
byte, CKP is cleared
ACKTIM
ACKTIM is set by hardware
on 8th falling edge of SCLx
Update of SSPxADD,
clears UA and releases
SCLx
Set CKP with software
releases SCLx
PIC18(L)F2X/4XK22
DS40001412H-page 231
I2C CLIENT, 10-BIT ADDRESS, RECEPTION (SEN = 0, AHEN = 1, DHEN = 0)
FIGURE 15-21:
2010-2021 Microchip Technology Inc.
FIGURE 15-22:
I2C CLIENT, 10-BIT ADDRESS, TRANSMISSION (SEN = 0, AHEN = 0, DHEN = 0)
Host sends
Restart event
Receiving Address R/W = 0
1 1 1 1 0 A9 A8
ACK
SDAx
SCLx
S
1
2
3
4
5
6
7
8
9
Receiving Second Address Byte
Receive First Address Byte
A7 A6 A5 A4 A3 A2 A1 A0 ACK
1 1 1 1 0 A9 A8
1
2
3
4
5
6
7 8
1
9
Host sends
Stop condition
Host sends
not ACK
2 3
4
5
6
7 8
Transmitting Data Byte
ACK
9
ACK = 1
D7 D6 D5 D4 D3 D2 D1 D0
1
2
3
4
5
6
7
8
9
P
Sr
SSPxIF
Set by hardware
Cleared by software
Set by hardware
BF
SSPxBUF loaded
with received address
Received address is
read from SSPxBUF
Data to transmit is
loaded into SSPxBUF
UA
UA indicates SSPxADD
must be updated
High address is loaded
back into SSPxADD
When R/W = 1;
CKP is cleared on
9th falling edge of SCLx
ACKSTAT
Set by software
releases SCLx
Host not ACK
is copied
R/W
R/W is copied from the
matching address byte
D/A
DS40001412H-page 232
Indicates an address
has been received
PIC18(L)F2X/4XK22
CKP
After SSPxADD is
updated, UA is cleared
and SCLx is released
PIC18(L)F2X/4XK22
15.5.6 CLOCK STRETCHING
15.5.6.2 10-bit Addressing Mode
Clock stretching occurs when a device on the bus
holds the SCLx line low effectively pausing communication. The client may stretch the clock to allow more
time to handle data or prepare a response for the host
device. A host device is not concerned with stretching
as anytime it is active on the bus and not transferring
data it is stretching. Any stretching done by a client is
invisible to the host software and handled by the hardware that generates SCLx.
In 10-bit Addressing mode, when the UA bit is set, the
clock is always stretched. This is the only time the
SCLx is stretched without CKP being cleared. SCLx is
released immediately after a write to SSPxADD.
The CKP bit of the SSPxCON1 register is used to
control stretching in software. Any time the CKP bit is
cleared, the module will wait for the SCLx line to go
low and then hold it. Setting CKP will release SCLx
and allow more communication.
15.5.6.3 Byte NACKing
15.5.6.1 Normal Clock Stretching
Following an ACK if the R/W bit of SSPxSTAT is set, a
read request, the client hardware will clear CKP. This
allows the client time to update SSPxBUF with data to
transfer to the host. If the SEN bit of SSPxCON2 is
set, the client hardware will always stretch the clock
after the ACK sequence. Once the client is ready; CKP
is set by software and communication resumes.
Note 1: The BF bit has no effect on whether the
clock will be stretched or not. This is
different than previous versions of the
module that would not stretch the clock,
clear CKP, if SSPxBUF was read before
the 9th falling edge of SCLx.
2: Previous versions of the module did not
stretch the clock for a transmission if
SSPxBUF was loaded before the 9th falling edge of SCLx. It is now always cleared
for read requests.
FIGURE 15-23:
Note: Previous versions of the module did not
stretch the clock if the second address byte
did not match.
When the AHEN bit of SSPxCON3 is set; CKP is
cleared by hardware after the 8th falling edge of SCLx
for a received matching address byte. When the
DHEN bit of SSPxCON3 is set; CKP is cleared after
the 8th falling edge of SCLx for received data.
Stretching after the 8th falling edge of SCLx allows the
client to look at the received address or data and
decide if it wants to ACK the received data.
15.5.7 CLOCK SYNCHRONIZATION AND
THE CKP BIT
Any time the CKP bit is cleared, the module will wait
for the SCLx line to go low and then hold it. However,
clearing the CKP bit will not assert the SCLx output
low until the SCLx output is already sampled low.
Therefore, the CKP bit will not assert the SCLx line
until an external I2C host device has already asserted
the SCLx line. The SCLx output will remain low until
the CKP bit is set and all other devices on the I2C bus
have released SCLx. This ensures that a write to the
CKP bit will not violate the minimum high time requirement for SCLx (see Figure 15-23).
CLOCK SYNCHRONIZATION TIMING
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
SDAx
DX ‚ – 1
DX
SCLx
CKP
Host device
asserts clock
Host device
releases clock
WR
SSPxCON1
2010-2021 Microchip Technology Inc.
DS40001412H-page 233
PIC18(L)F2X/4XK22
15.5.8 GENERAL CALL ADDRESS SUPPORT
In 10-bit Address mode, the UA bit will not be set on
the reception of the general call address. The client
will prepare to receive the second byte as data, just as
it would in 7-bit mode.
The addressing procedure for the I2C bus is such that
the first byte after the Start condition usually
determines which device will be the client addressed
by the host device. The exception is the general call
address which can address all devices. When this
address is used, all devices may, in theory, respond
with an acknowledge.
If the AHEN bit of the SSPxCON3 register is set, just
as with any other address reception, the client
hardware will stretch the clock after the 8th falling
edge of SCLx. The client must then set its ACKDT
value and release the clock with communication
progressing as it would normally.
The general call address is a reserved address in the
I2C protocol, defined as address 0x00. When the
GCEN bit of the SSPxCON2 register is set, the client
module will automatically ACK the reception of this
address regardless of the value stored in SSPxADD.
After the client clocks in an address of all zeros with the
R/W bit clear, an interrupt is generated and client software can read SSPxBUF and respond. Figure 15-24
shows a general call reception sequence.
FIGURE 15-24:
CLIENT MODE GENERAL CALL ADDRESS SEQUENCE
Address is compared to General Call Address
after ACK, set interrupt
R/W = 0
ACK D7
General Call Address
SDAx
SCLx
S
1
2
3
4
5
6
7
8
9
1
Receiving Data
ACK
D6
D5
D4
D3
D2
D1
D0
2
3
4
5
6
7
8
9
SSPxIF
BF (SSPxSTAT)
Cleared by software
GCEN (SSPxCON2)
SSPxBUF is read
’1’
15.5.9 SSPx MASK REGISTER
An SSPx Mask (SSPxMSK) register (Register 15-6) is
available in I2C Client mode as a mask for the value
held in the SSPxSR register during an address
comparison operation. A zero (‘0’) bit in the SSPxMSK
register has the effect of making the corresponding bit
of the received address a “don’t care”.
This register is reset to all ‘1’s upon any Reset
condition and, therefore, has no effect on standard
SSPx operation until written with a mask value.
The SSPx Mask register is active during:
• 7-bit Address mode: address compare of A.
• 10-bit Address mode: address compare of A
only. The SSPx mask has no effect during the
reception of the first (high) byte of the address.
DS40001412H-page 234
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
15.6
I2C Host Mode
Host mode is enabled by setting and clearing the
appropriate SSPxM bits in the SSPxCON1 register and
by setting the SSPxEN bit. In Host mode, the SCLx and
SDAx lines are set as inputs and are manipulated by
the MSSPx hardware.
Host mode of operation is supported by interrupt generation on the detection of the Start and Stop conditions. The Stop (P) and Start (S) bits are cleared from a
Reset or when the MSSPx module is disabled. Control
of the I 2C bus may be taken when the P bit is set, or the
bus is Idle.
In Firmware Controlled Host mode, user code conducts
all I 2C bus operations based on Start and Stop bit
condition detection. Start and Stop condition detection
is the only active circuitry in this mode. All other
communication is done by the user software directly
manipulating the SDAx and SCLx lines.
The following events will cause the SSPx Interrupt Flag
bit, SSPxIF, to be set (SSPx interrupt, if enabled):
•
•
•
•
•
Start condition detected
Stop condition detected
Data transfer byte transmitted/received
Acknowledge transmitted/received
Repeated Start generated
Note 1: The MSSPx module, when configured in
I2C Host mode, does not allow queuing of
events. For instance, the user is not
allowed to initiate a Start condition and
immediately write the SSPxBUF register
to initiate transmission before the Start
condition is complete. In this case, the
SSPxBUF will not be written to and the
WCOL bit will be set, indicating that a
write to the SSPxBUF did not occur
15.6.1 I2C HOST MODE OPERATION
The host device generates all of the serial clock pulses
and the Start and Stop conditions. A transfer is ended
with a Stop condition or with a Repeated Start condition. Since the Repeated Start condition is also the
beginning of the next serial transfer, the I2C bus will not
be released.
In Host Transmitter mode, serial data is output through
SDAx, while SCLx outputs the serial clock. The first
byte transmitted contains the client address of the
receiving device (7 bits) and the Read/Write (R/W) bit.
In this case, the R/W bit will be logic ‘0’. Serial data is
transmitted eight bits at a time. After each byte is
transmitted, an Acknowledge bit is received. Start and
Stop conditions are output to indicate the beginning
and the end of a serial transfer.
In Host Receive mode, the first byte transmitted
contains the client address of the transmitting device
(7 bits) and the R/W bit. In this case, the R/W bit will be
logic ‘1’. Thus, the first byte transmitted is a 7-bit client
address followed by a ‘1’ to indicate the receive bit.
Serial data is received via SDAx, while SCLx outputs
the serial clock. Serial data is received eight bits at a
time. After each byte is received, an Acknowledge bit is
transmitted. Start and Stop conditions indicate the
beginning and end of transmission.
A Baud Rate Generator is used to set the clock
frequency output on SCLx. See Section 15.7 “Baud
Rate Generator” for more detail.
2: When in Host mode, Start/Stop detection
is masked and an interrupt is generated
when the SEN/PEN bit is cleared and the
generation is complete.
2010-2021 Microchip Technology Inc.
DS40001412H-page 235
PIC18(L)F2X/4XK22
15.6.2 CLOCK ARBITRATION
Clock arbitration occurs when the host, during any
receive, transmit or Repeated Start/Stop condition,
releases the SCLx pin (SCLx allowed to float high).
When the SCLx pin is allowed to float high, the Baud
Rate Generator (BRG) is suspended from counting
until the SCLx pin is actually sampled high. When the
SCLx pin is sampled high, the Baud Rate Generator is
reloaded with the contents of SSPxADD and
begins counting. This ensures that the SCLx high time
will always be at least one BRG rollover count in the
event that the clock is held low by an external device
(Figure 15-25).
FIGURE 15-25:
BAUD RATE GENERATOR TIMING WITH CLOCK ARBITRATION
SDAx
DX ‚ – 1
DX
SCLx deasserted but client holds
SCLx low (clock arbitration)
SCLx allowed to transition high
SCLx
BRG decrements on
Q2 and Q4 cycles
BRG
Value
03h
02h
01h
00h (hold off)
03h
02h
SCLx is sampled high, reload takes
place and BRG starts its count
BRG
Reload
15.6.3 WCOL STATUS FLAG
If the user writes the SSPxBUF when a Start, Restart,
Stop, Receive or Transmit sequence is in progress, the
WCOL is set and the contents of the buffer are
unchanged (the write does not occur). Any time the
WCOL bit is set it indicates that an action on SSPxBUF
was attempted while the module was not Idle.
Note:
Because queueing of events is not
allowed, writing to the lower 5 bits of
SSPxCON2 is disabled until the Start condition is complete.
DS40001412H-page 236
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
15.6.4 I2C HOST MODE START CONDITION
TIMING
To initiate a Start condition (Figure 15-26), the user
sets the Start Enable bit, SEN, of the SSPxCON2 register. If the SDAx and SCLx pins are sampled high, the
Baud Rate Generator is reloaded with the contents of
SSPxADD and starts its count. If SCLx and
SDAx are both sampled high when the Baud Rate
Generator times out (TBRG), the SDAx pin is driven
low. The action of the SDAx being driven low while
SCLx is high is the Start condition and causes the S bit
of the SSPxSTAT1 register to be set. Following this,
the Baud Rate Generator is reloaded with the contents
of SSPxADD and resumes its count.
When the Baud Rate Generator times out (TBRG), the
SEN bit of the SSPxCON2 register will be
automatically cleared by hardware; the Baud Rate
Generator is suspended, leaving the SDAx line held
low and the Start condition is complete.
Note 1: If at the beginning of the Start condition,
the SDAx and SCLx pins are already sampled low, or if during the Start condition,
the SCLx line is sampled low before the
SDAx line is driven low, a bus collision
occurs, the Bus Collision Interrupt Flag,
BCLxIF, is set, the Start condition is
aborted and the I2C module is reset into
its Idle state.
2: The Philips I2C Specification states that a
bus collision cannot occur on a Start.
FIGURE 15-26:
FIRST START BIT TIMING
Write to SEN bit occurs here
Set S bit (SSPxSTAT)
At completion of Start bit,
hardware clears SEN bit
and sets SSPxIF bit
SDAx = 1,
SCLx = 1
TBRG
TBRG
Write to SSPxBUF occurs here
SDAx
1st bit
2nd bit
TBRG
SCLx
S
2010-2021 Microchip Technology Inc.
TBRG
DS40001412H-page 237
PIC18(L)F2X/4XK22
15.6.5 I2C HOST MODE REPEATED START
CONDITION TIMING
Following this, the RSEN bit of the SSPxCON2 register
will be automatically cleared and the Baud Rate
Generator will not be reloaded, leaving the SDAx pin
held low. As soon as a Start condition is detected on the
SDAx and SCLx pins, the S bit of the SSPxSTAT
register will be set. The SSPxIF bit will not be set until
the Baud Rate Generator has timed out.
A Repeated Start condition (Figure 15-27) occurs when
the RSEN bit of the SSPxCON2 register is
programmed high and the host state machine is no
longer active. When the RSEN bit is set, the SCLx pin
is asserted low. When the SCLx pin is sampled low, the
Baud Rate Generator is loaded and begins counting.
The SDAx pin is released (brought high) for one Baud
Rate Generator count (TBRG). When the Baud Rate
Generator times out, if SDAx is sampled high, the SCLx
pin will be deasserted (brought high). When SCLx is
sampled high, the Baud Rate Generator is reloaded
and begins counting. SDAx and SCLx must be
sampled high for one TBRG. This action is then followed
by assertion of the SDAx pin (SDAx = 0) for one TBRG
while SCLx is high. SCLx is asserted low.
FIGURE 15-27:
Note 1: If RSEN is programmed while any other
event is in progress, it will not take effect.
2: A bus collision during the Repeated Start
condition occurs if:
• SDAx is sampled low when SCLx
goes from low-to-high.
• SCLx goes low before SDAx is
asserted low. This may indicate
that another host is attempting to
transmit a data ‘1’.
REPEAT START CONDITION WAVEFORM
S bit set by hardware
Write to SSPxCON2
occurs here
SDAx = 1,
SCLx (no change)
At completion of Start bit,
hardware clears RSEN bit
and sets SSPxIF
SDAx = 1,
SCLx = 1
TBRG
TBRG
TBRG
1st bit
SDAx
Write to SSPxBUF occurs here
TBRG
SCLx
Sr
TBRG
Repeated Start
DS40001412H-page 238
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
15.6.6 I2C HOST MODE TRANSMISSION
15.6.6.3
Transmission of a data byte, a 7-bit address or the
other half of a 10-bit address is accomplished by simply
writing a value to the SSPxBUF register. This action will
set the Buffer Full flag bit, BF, and allow the Baud Rate
Generator to begin counting and start the next transmission. Each bit of address/data will be shifted out
onto the SDAx pin after the falling edge of SCLx is
asserted. SCLx is held low for one Baud Rate Generator rollover count (TBRG). Data may be valid before
SCLx is released high. When the SCLx pin is released
high, it is held that way for TBRG. The data on the SDAx
pin must remain stable for that duration and some hold
time after the next falling edge of SCLx. After the eighth
bit is shifted out (the falling edge of the eighth clock),
the BF flag is cleared and the host releases SDAx. This
allows the client device being addressed to respond
with an ACK bit during the ninth bit time if an address
match occurred, or if data was received properly. The
status of ACK is written into the ACKSTAT bit on the rising edge of the ninth clock. If the host receives an
Acknowledge, the Acknowledge Status bit, ACKSTAT,
is cleared. If not, the bit is set. After the ninth clock, the
SSPxIF bit is set and the host clock (Baud Rate Generator) is suspended until the next data byte is loaded into
the SSPxBUF, leaving SCLx low and SDAx unchanged
(Figure 15-28).
In Transmit mode, the ACKSTAT bit of the SSPxCON2
register is cleared when the client has sent an
Acknowledge (ACK = 0) and is set when the client
does not Acknowledge (ACK = 1). A client sends an
Acknowledge when it has recognized its address
(including a general call), or when the client has
properly received its data.
After the write to the SSPxBUF, each bit of the address
will be shifted out on the falling edge of SCLx until all
seven address bits and the R/W bit are completed. On
the falling edge of the eighth clock, the host will release
the SDAx pin, allowing the client to respond with an
Acknowledge. On the falling edge of the ninth clock, the
host will sample the SDAx pin to see if the address was
recognized by a client. The status of the ACK bit is
loaded into the ACKSTAT Status bit of the SSPxCON2
register. Following the falling edge of the ninth clock
transmission of the address, the SSPxIF is set, the BF
flag is cleared and the Baud Rate Generator is turned
off until another write to the SSPxBUF takes place,
holding SCLx low and allowing SDAx to float.
15.6.6.1
BF Status Flag
ACKSTAT Status Flag
15.6.6.4 Typical Transmit Sequence:
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
The user generates a Start condition by setting
the SEN bit of the SSPxCON2 register.
SSPxIF is set by hardware on completion of the
Start.
SSPxIF is cleared by software.
The MSSPx module will wait the required start
time before any other operation takes place.
The user loads the SSPxBUF with the client
address to transmit.
Address is shifted out the SDAx pin until all eight
bits are transmitted. Transmission begins as
soon as SSPxBUF is written to.
The MSSPx module shifts in the ACK bit from
the client device and writes its value into the
ACKSTAT bit of the SSPxCON2 register.
The MSSPx module generates an interrupt at
the end of the ninth clock cycle by setting the
SSPxIF bit.
The user loads the SSPxBUF with eight bits of
data.
Data is shifted out the SDAx pin until all eight
bits are transmitted.
The MSSPx module shifts in the ACK bit from
the client device and writes its value into the
ACKSTAT bit of the SSPxCON2 register.
Steps 8-11 are repeated for all transmitted data
bytes.
The user generates a Stop or Restart condition
by setting the PEN or RSEN bits of the SSPxCON2 register. Interrupt is generated once the
Stop/Restart condition is complete.
In Transmit mode, the BF bit of the SSPxSTAT register
is set when the CPU writes to SSPxBUF and is cleared
when all 8 bits are shifted out.
15.6.6.2
WCOL Status Flag
If the user writes the SSPxBUF when a transmit is
already in progress (i.e., SSPxSR is still shifting out a
data byte), the WCOL is set and the contents of the
buffer are unchanged (the write does not occur).
WCOL must be cleared by software before the next
transmission.
2010-2021 Microchip Technology Inc.
DS40001412H-page 239
2010-2021 Microchip Technology Inc.
FIGURE 15-28:
I2C HOST MODE WAVEFORM (TRANSMISSION, 7 OR 10-BIT ADDRESS)
Write SSPxCON2 SEN = 1
Start condition begins
From client, clear ACKSTAT bit SSPxCON2
SEN = 0
Transmit Address to Client
A7
SDAx
A6
A5
A4
ACKSTAT in
SSPxCON2 = 1
A3
A2
Transmitting Data or Second Half
of 10-bit Address
R/W = 0
A1
ACK = 0
ACK
D7
D6
D5
D4
D3
D2
D1
D0
1
SCLx held low
while CPU
responds to SSPxIF
2
3
4
5
6
7
8
SSPxBUF written with 7-bit address and R/W
start transmit
SCLx
S
1
2
3
4
5
6
7
8
9
9
P
SSPxIF
Cleared by software
Cleared by software service routine
from SSPx interrupt
Cleared by software
BF (SSPxSTAT)
SSPxBUF written
SSPxBUF is written by software
SEN
After Start condition, SEN cleared by hardware
R/W
DS40001412H-page 240
PIC18(L)F2X/4XK22
PEN
PIC18(L)F2X/4XK22
15.6.7
I2C HOST MODE RECEPTION
Host mode reception (Figure 15-29) is enabled by
programming the Receive Enable bit, RCEN, of the
SSPxCON2 register.
Note:
The MSSPx module must be in an Idle
state before the RCEN bit is set or the
RCEN bit will be disregarded.
The Baud Rate Generator begins counting and on each
rollover, the state of the SCLx pin changes (high-to-low/
low-to-high) and data is shifted into the SSPxSR. After
the falling edge of the eighth clock, the receive enable
flag is automatically cleared, the contents of the
SSPxSR are loaded into the SSPxBUF, the BF flag bit
is set, the SSPxIF flag bit is set and the Baud Rate
Generator is suspended from counting, holding SCLx
low. The MSSPx is now in Idle state awaiting the next
command. When the buffer is read by the CPU, the BF
flag bit is automatically cleared. The user can then
send an Acknowledge bit at the end of reception by setting the Acknowledge Sequence Enable bit, ACKEN, of
the SSPxCON2 register.
15.6.7.1
BF Status Flag
In receive operation, the BF bit is set when an address
or data byte is loaded into SSPxBUF from SSPxSR. It
is cleared when the SSPxBUF register is read.
15.6.7.2
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
SSPxOV Status Flag
In receive operation, the SSPxOV bit is set when eight
bits are received into the SSPxSR and the BF flag bit is
already set from a previous reception.
15.6.7.3
15.6.7.4 Typical Receive Sequence:
WCOL Status Flag
13.
14.
15.
The user generates a Start condition by setting
the SEN bit of the SSPxCON2 register.
SSPxIF is set by hardware on completion of the
Start.
SSPxIF is cleared by software.
User writes SSPxBUF with the client address to
transmit and the R/W bit set.
Address is shifted out the SDAx pin until all eight
bits are transmitted. Transmission begins as
soon as SSPxBUF is written to.
The MSSPx module shifts in the ACK bit from
the client device and writes its value into the
ACKSTAT bit of the SSPxCON2 register.
The MSSPx module generates an interrupt at
the end of the ninth clock cycle by setting the
SSPxIF bit.
User sets the RCEN bit of the SSPxCON2 register and the Host clocks in a byte from the client.
After the 8th falling edge of SCLx, SSPxIF and
BF are set.
Host clears SSPxIF and reads the received byte
from SSPxUF, clears BF.
Host sets ACK value sent to client in ACKDT bit
of the SSPxCON2 register and initiates the ACK
by setting the ACKEN bit.
Host ACK is clocked out to the client and
SSPxIF is set.
User clears SSPxIF.
Steps 8-13 are repeated for each received byte
from the client.
Host sends a not ACK or Stop to end
communication.
If the user writes the SSPxBUF when a receive is
already in progress (i.e., SSPxSR is still shifting in a
data byte), the WCOL bit is set and the contents of the
buffer are unchanged (the write does not occur).
2010-2021 Microchip Technology Inc.
DS40001412H-page 241
2010-2021 Microchip Technology Inc.
I2C HOST MODE WAVEFORM (RECEPTION, 7-BIT ADDRESS)
FIGURE 15-29:
Write to SSPxCON2
to start Acknowledge sequence
SDAx = ACKDT (SSPxCON2) = 0
Write to SSPxCON2(SEN = 1),
begin Start condition
SEN = 0
Write to SSPxBUF occurs here,
ACK from Client
start XMIT
A6 A5 A4 A3 A2
RCEN = 1, start
next receive
RCEN cleared
automatically
Transmit Address to Client
A7
SDAx
ACK
PEN bit = 1
written here
RCEN cleared
automatically
Receiving Data from Client
Receiving Data from Client
A1 R/W
Set ACKEN, start Acknowledge sequence
SDAx = ACKDT = 1
ACK from Host
SDAx = ACKDT = 0
Host configured as a receiver
by programming SSPxCON2 (RCEN = 1)
D7 D6 D5 D4 D3 D2 D1
ACK
D0
D7 D6 D5 D4 D3 D2 D1
D0
ACK
Bus host
terminates
transfer
ACK is not sent
SCLx
S
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
Data shifted in on falling edge of CLK
Set SSPxIF interrupt
at end of receive
Cleared by software
Cleared by software
Cleared by software
BF
(SSPxSTAT)
P
Set SSPxIF at end
of receive
Set SSPxIF interrupt
at end of Acknowledge
sequence
SSPxIF
SDAx = 0, SCLx = 1
while CPU
responds to SSPxIF
9
8
Cleared by software
Cleared in
software
SSPxOV
SSPxOV is set because
SSPxBUF is still full
ACKEN
DS40001412H-page 242
RCEN
Host configured as a receiver
by programming SSPxCON2 (RCEN = 1)
RCEN cleared
automatically
ACK from Host
SDAx = ACKDT = 0
RCEN cleared
automatically
Set P bit
(SSPxSTAT)
and SSPxIF
PIC18(L)F2X/4XK22
Last bit is shifted into SSPxSR and
contents are unloaded into SSPxBUF
Set SSPxIF interrupt
at end of Acknowledge sequence
PIC18(L)F2X/4XK22
15.6.8
ACKNOWLEDGE SEQUENCE
TIMING
15.6.9
A Stop bit is asserted on the SDAx pin at the end of a
receive/transmit by setting the Stop Sequence Enable
bit, PEN, of the SSPxCON2 register. At the end of a
receive/transmit, the SCLx line is held low after the
falling edge of the ninth clock. When the PEN bit is set,
the host will assert the SDAx line low. When the SDAx
line is sampled low, the Baud Rate Generator is
reloaded and counts down to ‘0’. When the Baud Rate
Generator times out, the SCLx pin will be brought high
and one TBRG (Baud Rate Generator rollover count)
later, the SDAx pin will be deasserted. When the SDAx
pin is sampled high while SCLx is high, the P bit of the
SSPxSTAT register is set. A TBRG later, the PEN bit is
cleared and the SSPxIF bit is set (Figure 15-31).
An Acknowledge sequence is enabled by setting the
Acknowledge Sequence Enable bit, ACKEN, of the
SSPxCON2 register. When this bit is set, the SCLx pin is
pulled low and the contents of the Acknowledge data bit
are presented on the SDAx pin. If the user wishes to
generate an Acknowledge, then the ACKDT bit may be
cleared. If not, the user may set the ACKDT bit before
starting an Acknowledge sequence. The Baud Rate
Generator then counts for one rollover period (TBRG)
and the SCLx pin is deasserted (pulled high). When the
SCLx pin is sampled high (clock arbitration), the Baud
Rate Generator counts for TBRG. The SCLx pin is then
pulled low. Following this, the ACKEN bit is automatically
cleared, the Baud Rate Generator is turned off and the
MSSPx module then goes into Idle mode (Figure 1530).
15.6.8.1
15.6.9.1
WCOL Status Flag
If the user writes the SSPxBUF when a Stop sequence
is in progress, then the WCOL bit is set and the
contents of the buffer are unchanged (the write does
not occur).
WCOL Status Flag
If the user writes the SSPxBUF when an Acknowledge
sequence is in progress, then WCOL is set and the
contents of the buffer are unchanged (the write does
not occur).
FIGURE 15-30:
STOP CONDITION TIMING
ACKNOWLEDGE SEQUENCE WAVEFORM
Acknowledge sequence starts here,
write to SSPxCON2
ACKEN = 1, ACKDT = 0
ACKEN automatically cleared
TBRG
TBRG
SDAx
D0
SCLx
ACK
8
9
SSPxIF
SSPxIF set at
the end of receive
Cleared in
software
Cleared in
software
SSPxIF set at the end
of Acknowledge sequence
Note: TBRG = one Baud Rate Generator period.
2010-2021 Microchip Technology Inc.
DS40001412H-page 243
PIC18(L)F2X/4XK22
FIGURE 15-31:
STOP CONDITION RECEIVE OR TRANSMIT MODE
SCLx = 1 for TBRG, followed by SDAx = 1 for TBRG
after SDAx sampled high. P bit (SSPxSTAT) is set.
Write to SSPxCON2,
set PEN
PEN bit (SSPxCON2) is cleared by
hardware and the SSPxIF bit is set
Falling edge of
9th clock
TBRG
SCLx
ACK
SDAx
P
TBRG
TBRG
TBRG
SCLx brought high after TBRG
SDAx asserted low before rising edge of clock
to set up Stop condition
Note: TBRG = one Baud Rate Generator period.
15.6.10
SLEEP OPERATION
the I2C client
While in Sleep mode,
module can receive
addresses or data and when an address match or
complete byte transfer occurs, wake the processor
from Sleep (if the MSSPx interrupt is enabled).
15.6.11
EFFECTS OF A RESET
A Reset disables the MSSPx module and terminates
the current transfer.
15.6.12
MULTI-HOST MODE
In Multi-Host mode, the interrupt generation on the
detection of the Start and Stop conditions allows the
determination of when the bus is free. The Stop (P) and
Start (S) bits are cleared from a Reset or when the
MSSPx module is disabled. Control of the I 2C bus may
be taken when the P bit of the SSPxSTAT register is
set, or the bus is Idle, with both the S and P bits clear.
When the bus is busy, enabling the SSPx interrupt will
generate the interrupt when the Stop condition occurs.
In multi-host operation, the SDAx line must be
monitored for arbitration to see if the signal level is the
expected output level. This check is performed by
hardware with the result placed in the BCLxIF bit.
The states where arbitration can be lost are:
•
•
•
•
•
DS40001412H-page 244
Address Transfer
Data Transfer
A Start Condition
A Repeated Start Condition
An Acknowledge Condition
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
15.6.13
MULTI -HOST COMMUNICATION,
BUS COLLISION AND BUS
ARBITRATION
Multi-Host mode support is achieved by bus arbitration.
When the host outputs address/data bits onto the SDAx
pin, arbitration takes place when the host outputs a ‘1’
on SDAx, by letting SDAx float high and another host
asserts a ‘0’. When the SCLx pin floats high, data may
be stable. If the expected data on SDAx is a ‘1’ and the
data sampled on the SDAx pin is ‘0’, then a bus
collision has taken place. The host will set the Bus
Collision Interrupt Flag, BCLxIF, and reset the I2C port
to its Idle state (Figure 15-32).
If a transmit was in progress when the bus collision
occurred, the transmission is halted, the BF flag is
cleared, the SDAx and SCLx lines are deasserted and
the SSPxBUF can be written to. When the user
services the bus collision Interrupt Service Routine and
if the I2C bus is free, the user can resume
communication by asserting a Start condition.
FIGURE 15-32:
If a Start, Repeated Start, Stop or Acknowledge
condition was in progress when the bus collision
occurred, the condition is aborted, the SDAx and SCLx
lines are deasserted and the respective control bits in
the SSPxCON2 register are cleared. When the user
services the bus collision Interrupt Service Routine and
if the I2C bus is free, the user can resume
communication by asserting a Start condition.
The host will continue to monitor the SDAx and SCLx
pins. If a Stop condition occurs, the SSPxIF bit will be set.
A write to the SSPxBUF will start the transmission of
data at the first data bit, regardless of where the
transmitter left off when the bus collision occurred.
In Multi-Host mode, the interrupt generation on the
detection of Start and Stop conditions allows the
determination of when the bus is free. Control of the I2C
bus can be taken when the P bit is set in the SSPxSTAT
register, or the bus is Idle and the S and P bits are
cleared.
BUS COLLISION TIMING FOR TRANSMIT AND ACKNOWLEDGE
Data changes
while SCLx = 0
SDAx line pulled low
by another source
SDAx released
by host
Sample SDAx. While SCLx is high,
data does not match what is driven
by the host.
Bus collision has occurred.
SDAx
SCLx
Set bus collision
interrupt (BCLxIF)
BCLxIF
2010-2021 Microchip Technology Inc.
DS40001412H-page 245
PIC18(L)F2X/4XK22
15.6.13.1
Bus Collision During a Start
Condition
During a Start condition, a bus collision occurs if:
a)
b)
SDAx or SCLx are sampled low at the beginning
of the Start condition (Figure 15-33).
SCLx is sampled low before SDAx is asserted
low (Figure 15-34).
During a Start condition, both the SDAx and the SCLx
pins are monitored.
If the SDAx pin is already low, or the SCLx pin is
already low, then all of the following occur:
• the Start condition is aborted,
• the BCLxIF flag is set and
• the MSSPx module is reset to its Idle state
(Figure 15-33).
If the SDAx pin is sampled low during this count, the
BRG is reset and the SDAx line is asserted early
(Figure 15-35). If, however, a ‘1’ is sampled on the
SDAx pin, the SDAx pin is asserted low at the end of
the BRG count. The Baud Rate Generator is then
reloaded and counts down to zero; if the SCLx pin is
sampled as ‘0’ during this time, a bus collision does not
occur. At the end of the BRG count, the SCLx pin is
asserted low.
Note:
The Start condition begins with the SDAx and SCLx
pins deasserted. When the SDAx pin is sampled high,
the Baud Rate Generator is loaded and counts down. If
the SCLx pin is sampled low while SDAx is high, a bus
collision occurs because it is assumed that another
host is attempting to drive a data ‘1’ during the Start
condition.
FIGURE 15-33:
The reason that bus collision is not a factor during a Start condition is that no two
bus hosts can assert a Start condition at
the exact same time. Therefore, one host
will always assert SDAx before the other.
This condition does not cause a bus collision because the two hosts must be
allowed to arbitrate the first address following the Start condition. If the address is
the same, arbitration must be allowed to
continue into the data portion, Repeated
Start or Stop conditions.
BUS COLLISION DURING START CONDITION (SDAx ONLY)
SDAx goes low before the SEN bit is set.
Set BCLxIF,
S bit and SSPxIF set because
SDAx = 0, SCLx = 1.
SDAx
SCLx
Set SEN, enable Start
condition if SDAx = 1, SCLx = 1
SEN cleared automatically because of bus collision.
SSPx module reset into Idle state.
SEN
BCLxIF
SDAx sampled low before
Start condition. Set BCLxIF.
S bit and SSPxIF set because
SDAx = 0, SCLx = 1.
SSPxIF and BCLxIF are
cleared by software
S
SSPxIF
SSPxIF and BCLxIF are
cleared by software
DS40001412H-page 246
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
FIGURE 15-34:
BUS COLLISION DURING START CONDITION (SCLx = 0)
SDAx = 0, SCLx = 1
TBRG
TBRG
SDAx
Set SEN, enable Start
sequence if SDAx = 1, SCLx = 1
SCLx
SCLx = 0 before SDAx = 0,
bus collision occurs. Set BCLxIF.
SEN
SCLx = 0 before BRG time-out,
bus collision occurs. Set BCLxIF.
BCLxIF
Interrupt cleared
by software
S
’0’
’0’
SSPxIF
’0’
’0’
FIGURE 15-35:
BRG RESET DUE TO SDA ARBITRATION DURING START CONDITION
SDAx = 0, SCLx = 1
Set S
Less than TBRG
SDAx
Set SSPxIF
TBRG
SDAx pulled low by other host.
Reset BRG and assert SDAx.
SCLx
S
SCLx pulled low after BRG
time-out
SEN
BCLxIF
Set SEN, enable Start
sequence if SDAx = 1, SCLx = 1
’0’
S
SSPxIF
SDAx = 0, SCLx = 1,
set SSPxIF
2010-2021 Microchip Technology Inc.
Interrupts cleared
by software
DS40001412H-page 247
PIC18(L)F2X/4XK22
15.6.13.2
Bus Collision During a Repeated
Start Condition
If SDAx is low, a bus collision has occurred (i.e., another
host is attempting to transmit a data ‘0’, Figure 15-36). If
SDAx is sampled high, the BRG is reloaded and begins
counting. If SDAx goes from high-to-low before the BRG
times out, no bus collision occurs because no two hosts
can assert SDAx at exactly the same time.
During a Repeated Start condition, a bus collision
occurs if:
a)
b)
A low level is sampled on SDAx when SCLx
goes from low level to high level (Case 1).
SCLx goes low before SDAx is asserted low,
indicating that another host is attempting to
transmit a data ‘1’ (Case 2).
If SCLx goes from high-to-low before the BRG times
out and SDAx has not already been asserted, a bus
collision occurs. In this case, another host is attempting
to transmit a data ‘1’ during the Repeated Start
condition, see Figure 15-37.
When the user releases SDAx and the pin is allowed to
float high, the BRG is loaded with SSPxADD and
counts down to zero. The SCLx pin is then deasserted
and when sampled high, the SDAx pin is sampled.
FIGURE 15-36:
If, at the end of the BRG time-out, both SCLx and SDAx
are still high, the SDAx pin is driven low and the BRG
is reloaded and begins counting. At the end of the
count, regardless of the status of the SCLx pin, the
SCLx pin is driven low and the Repeated Start
condition is complete.
BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)
SDAx
SCLx
Sample SDAx when SCLx goes high.
If SDAx = 0, set BCLxIF and release SDAx and SCLx.
RSEN
BCLxIF
Cleared by software
S
’0’
SSPxIF
’0’
FIGURE 15-37:
BUS COLLISION DURING REPEATED START CONDITION (CASE 2)
TBRG
TBRG
SDAx
SCLx
BCLxIF
SCLx goes low before SDAx,
set BCLxIF. Release SDAx and SCLx.
Interrupt cleared
by software
RSEN
S
’0’
SSPxIF
DS40001412H-page 248
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
15.6.13.3
Bus Collision During a Stop
Condition
The Stop condition begins with SDAx asserted low.
When SDAx is sampled low, the SCLx pin is allowed to
float. When the pin is sampled high (clock arbitration),
the Baud Rate Generator is loaded with SSPxADD and
counts down to zero. After the BRG times out, SDAx is
sampled. If SDAx is sampled low, a bus collision has
occurred. This is due to another host attempting to
drive a data ‘0’ (Figure 15-38). If the SCLx pin is
sampled low before SDAx is allowed to float high, a bus
collision occurs. This is another case of another host
attempting to drive a data ‘0’ (Figure 15-39).
Bus collision occurs during a Stop condition if:
a)
b)
After the SDAx pin has been deasserted and
allowed to float high, SDAx is sampled low after
the BRG has timed out (Case 1).
After the SCLx pin is deasserted, SCLx is
sampled low before SDAx goes high (Case 2).
FIGURE 15-38:
BUS COLLISION DURING A STOP CONDITION (CASE 1)
TBRG
TBRG
TBRG
SDAx
SDAx sampled
low after TBRG,
set BCLxIF
SDAx asserted low
SCLx
PEN
BCLxIF
P
’0’
SSPxIF
’0’
FIGURE 15-39:
BUS COLLISION DURING A STOP CONDITION (CASE 2)
TBRG
TBRG
TBRG
SDAx
Assert SDAx
SCLx
SCLx goes low before SDAx goes high,
set BCLxIF
PEN
BCLxIF
P
’0’
SSPxIF
’0’
2010-2021 Microchip Technology Inc.
DS40001412H-page 249
PIC18(L)F2X/4XK22
TABLE 15-2:
Name
ANSELA
REGISTERS ASSOCIATED WITH I2C OPERATION
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
—
—
ANSA5
—
ANSA3
ANSA2
ANSA1
ANSELB
—
—
ANSB5
ANSB4
ANSB3
ANSB2
ANSB1
Register
on Page
Bit 0
(1)
ANSA0
ANSB0
(1)
149
150
ANSELC
ANSC7
ANSC6
ANSC5
ANSC4
ANSC3
ANSC2
—
—
150
ANSELD
ANSD7
ANSD6
ANSD5
ANSD4
ANSD3
ANSD2
ANSD1(2)
ANSD0(2)
150
INTCON
GIE/GIEH
PEIE/GIEL
TMR0IE
INT0IE
RBIE
TMR0IF
INT0IF
RBIF
109
IPR1
—
ADIP
RC1IP
TX1IP
SSP1IP
CCP1IP
TMR2IP
TMR1IP
121
IPR2
OSCFIP
C1IP
C2IP
EEIP
BCL1IP
HLVDIP
TMR3IP
CCP2IP
122
IPR3
SSP2IP
BCL2IP
RC2IP
TX2IP
CTMUIP
TMR5GIP
TMR3GIP
TMR1GIP
123
PIE1
—
ADIE
RC1IE
TX1IE
SSP1IE
CCP1IE
TMR2IE
TMR1IE
117
PIE2
OSCFIE
C1IE
C2IE
EEIE
BCL1IE
HLVDIE
TMR3IE
CCP2IE
118
PIE3
SSP2IE
BCL2IE
RC2IE
TX2IE
CTMUIE
TMR5GIE
TMR3GIE
TMR1GIE
119
PIR1
—
ADIF
RC1IF
TX1IF
SSP1IF
CCP1IF
TMR2IF
TMR1IF
112
PIR2
OSCFIF
C1IF
C2IF
EEIF
BCL1IF
HLVDIF
TMR3IF
CCP2IF
113
TX2IF
CTMUIF
TMR5GIF
TMR3GIF
TMR1GIF
114
CCP5MD CCP4MD
CCP3MD
CCP2MD
CCP1MD
53
I2C
Host mode.
258
PIR3
SSP2IF
BCL2IF
RC2IF
PMD1
MSSP2MD
MSSP1MD
—
2C
SSP1ADD
SSP1 Address Register in I
SSP1BUF
Client mode. SSP1 Baud Rate Reload Register in
SSP1 Receive Buffer/Transmit Register
—
SSP1CON1
WCOL
SSPOV
SSPEN
CKP
SSP1CON2
GCEN
ACKSTAT
ACKDT
ACKEN
RCEN
PEN
RSEN
SEN
255
SSP1CON3
ACKTIM
PCIE
SCIE
BOEN
SDAHT
SBCDE
AHEN
DHEN
256
SMP
CKE
D/A
R/W
UA
BF
SSP1MSK
SSPM
253
SSP1 MASK Register bits
SSP1STAT
P
S
257
SSP2 Address Register in I2C Client mode. SSP2 Baud Rate Reload Register in I2C Host mode.
SSP2ADD
SSP2BUF
SSP2 Receive Buffer/Transmit Register
SSP2CON1
252
258
—
WCOL
SSPOV
SSPEN
CKP
SSP2CON2
GCEN
ACKSTAT
ACKDT
ACKEN
RCEN
PEN
RSEN
SEN
255
SSP2CON3
ACKTIM
PCIE
SCIE
BOEN
SDAHT
SBCDE
AHEN
DHEN
256
SSP2MSK
SSPM
253
SSP1 MASK Register bits
257
SMP
CKE
D/A
P
S
R/W
UA
BF
252
TRISB
TRISB7
TRISB6
TRISB5
TRISB4
TRISB3
TRISB2
TRISB1(1)
TRISB0(1)
151
TRISC
TRISC7
TRISC6
TRISC5
TRISC4
TRISC3
TRISC2
TRISC1
TRISC0
151
TRISD2
TRISD1(2)
TRISD0(2)
151
SSP2STAT
TRISD
Legend:
Note 1:
2:
TRISD7
TRISD6
TRISD5
TRISD4
TRISD3
Shaded bits are not used by the MSSPx in I2C mode.
PIC18(L)F2XK22 devices.
PIC18(L)F4XK22 devices.
DS40001412H-page 250
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
15.7
Baud Rate Generator
The MSSPx module has a Baud Rate Generator
available for clock generation in both I2C and SPI Host
modes. The Baud Rate Generator (BRG) reload value
is placed in the SSPxADD register (Register 15-7).
When a write occurs to SSPxBUF, the Baud Rate
Generator will automatically begin counting down.
Once the given operation is complete, the internal clock
will automatically stop counting and the clock pin will
remain in its last state.
This occurs twice for each oscillation of the module
clock line. The logic dictating when the reload signal is
asserted depends on the mode the MSSPx is being
operated in.
Table 15-3 demonstrates clock rates based on
instruction cycles and the BRG value loaded into
SSPxADD.
EQUATION 15-1:
FO SC
FCLO CK = ------------------------------------------------ SSPxAD D + 1 4
An internal signal “Reload” in Figure 15-40 triggers the
value from SSPxADD to be loaded into the BRG
counter.
FIGURE 15-40:
FCLOCK FORMULA
BAUD RATE GENERATOR BLOCK DIAGRAM
SSPxM
SSPxM
Reload
SSPxADD
Reload
Control
SCLx
SSPxCLK
BRG Down Counter
FOSC/2
Note: Values of 0x00, 0x01 and 0x02 are not valid
for SSPxADD when used as a Baud Rate
Generator for I2C. This is an implementation
limitation.
TABLE 15-3:
Note 1:
MSSPx CLOCK RATE W/BRG
FOSC
FCY
BRG Value
FCLOCK
(2 Rollovers of BRG)
32 MHz
8 MHz
13h
400 kHz(1)
32 MHz
8 MHz
19h
308 kHz
32 MHz
8 MHz
4Fh
100 kHz
16 MHz
4 MHz
09h
400 kHz(1)
16 MHz
4 MHz
0Ch
308 kHz
16 MHz
4 MHz
27h
100 kHz
4 MHz
1 MHz
09h
100 kHz
The I2C interface does not conform to the 400 kHz I2C specification (which applies to rates greater than
100 kHz) in all details, but may be used with care where higher rates are required by the application.
2010-2021 Microchip Technology Inc.
DS40001412H-page 251
PIC18(L)F2X/4XK22
15.8
Register Definitions: MSSP Control
REGISTER 15-2:
SSPxSTAT: SSPx STATUS REGISTER
R/W-0
R/W-0
R-0
R-0
R-0
R-0
R-0
R-0
SMP
CKE
D/A
P
S
R/W
UA
BF
bit 7
bit 0
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
u = Bit is unchanged
x = Bit is unknown
-n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set
‘0’ = Bit is cleared
bit 7
SMP: SPI Data Input Sample bit
SPI Host mode:
1 = Input data sampled at end of data output time
0 = Input data sampled at middle of data output time
SPI Client mode:
SMP must be cleared when SPI is used in Client mode
In I2 C Host or Client mode:
1 = Slew rate control disabled for standard speed mode (100 kHz and 1 MHz)
0 = Slew rate control enabled for high speed mode (400 kHz)
bit 6
CKE: SPI Clock Edge Select bit (SPI mode only)
In SPI Host or Client mode:
1 = Transmit occurs on transition from active to Idle clock state
0 = Transmit occurs on transition from Idle to active clock state
In I2 C mode only:
1 = Enable input logic so that thresholds are compliant with SMbus specification
0 = Disable SMbus specific inputs
bit 5
D/A: Data/Address bit (I2C mode only)
1 = Indicates that the last byte received or transmitted was data
0 = Indicates that the last byte received or transmitted was address
bit 4
P: Stop bit
(I2C mode only. This bit is cleared when the MSSPx module is disabled, SSPxEN is cleared.)
1 = Indicates that a Stop bit has been detected last (this bit is ‘0’ on Reset)
0 = Stop bit was not detected last
bit 3
S: Start bit
(I2C mode only. This bit is cleared when the MSSPx module is disabled, SSPxEN is cleared.)
1 = Indicates that a Start bit has been detected last (this bit is ‘0’ on Reset)
0 = Start bit was not detected last
bit 2
R/W: Read/Write bit information (I2C mode only)
This bit holds the R/W bit information following the last address match. This bit is only valid from the address match
to the next Start bit, Stop bit, or not ACK bit.
In I2 C Client mode:
1 = Read
0 = Write
In I2 C Host mode:
1 = Transmit is in progress
0 = Transmit is not in progress
OR-ing this bit with SEN, RSEN, PEN, RCEN or ACKEN will indicate if the MSSPx is in Idle mode.
bit 1
UA: Update Address bit (10-bit I2C mode only)
1 = Indicates that the user needs to update the address in the SSPxADD register
0 = Address does not need to be updated
bit 0
BF: Buffer Full Status bit
Receive (SPI and I2 C modes):
1 = Receive complete, SSPxBUF is full
0 = Receive not complete, SSPxBUF is empty
Transmit (I2 C mode only):
1 = Data transmit in progress (does not include the ACK and Stop bits), SSPxBUF is full
0 = Data transmit complete (does not include the ACK and Stop bits), SSPxBUF is empty
DS40001412H-page 252
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
REGISTER 15-3:
SSPxCON1: SSPx CONTROL REGISTER 1
R/C/HS-0
R/C/HS-0
R/W-0
R/W-0
WCOL
SSPxOV
SSPxEN
CKP
R/W-0
R/W-0
R/W-0
R/W-0
SSPxM
bit 7
bit 0
Legend:
R = Readable bit
W = Writable bit
u = Bit is unchanged
x = Bit is unknown
U = Unimplemented bit, read as ‘0’
-n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set
‘0’ = Bit is cleared
HS = Bit is set by hardware
C = User cleared
bit 7
WCOL: Write Collision Detect bit
Host mode:
1 = A write to the SSPxBUF register was attempted while the I2C conditions were not valid for a transmission to
be started
0 = No collision
Client mode:
1 = The SSPxBUF register is written while it is still transmitting the previous word (must be cleared in software)
0 = No collision
bit 6
SSPxOV: Receive Overflow Indicator bit(1)
In SPI mode:
1 = A new byte is received while the SSPxBUF register is still holding the previous data. In case of overflow, the data
in SSPxSR is lost. Overflow can only occur in Client mode. In Client mode, the user must read the SSPxBUF, even
if only transmitting data, to avoid setting overflow. In Host mode, the overflow bit is not set since each new reception
(and transmission) is initiated by writing to the SSPxBUF register (must be cleared in software).
0 = No overflow
In I2 C mode:
1 = A byte is received while the SSPxBUF register is still holding the previous byte. SSPxOV is a “don’t care” in
Transmit mode (must be cleared in software).
0 = No overflow
bit 5
SSPxEN: Synchronous Serial Port Enable bit
In both modes, when enabled, these pins must be properly configured as input or output
In SPI mode:
1 = Enables serial port and configures SCKx, SDOx, SDIx and SSx as the source of the serial port pins(2)
0 = Disables serial port and configures these pins as I/O port pins
In I2 C mode:
1 = Enables the serial port and configures the SDAx and SCLx pins as the source of the serial port pins(3)
0 = Disables serial port and configures these pins as I/O port pins
bit 4
CKP: Clock Polarity Select bit
In SPI mode:
1 = Idle state for clock is a high level
0 = Idle state for clock is a low level
In I2 C Client mode:
SCLx release control
1 = Enable clock
0 = Holds clock low (clock stretch). (Used to ensure data setup time.)
In I2 C Host mode:
Unused in this mode
2010-2021 Microchip Technology Inc.
DS40001412H-page 253
PIC18(L)F2X/4XK22
REGISTER 15-3:
bit 3-0
SSPxCON1: SSPx CONTROL REGISTER 1 (CONTINUED)
SSPxM: Synchronous Serial Port Mode Select bits
0000 = SPI Host mode, clock = FOSC/4
0001 = SPI Host mode, clock = FOSC/16
0010 = SPI Host mode, clock = FOSC/64
0011 = SPI Host mode, clock = TMR2 output/2
0100 = SPI Client mode, clock = SCKx pin, SSx pin control enabled
0101 = SPI Client mode, clock = SCKx pin, SSx pin control disabled, SSx can be used as I/O pin
0110 = I2C Client mode, 7-bit address
0111 = I2C Client mode, 10-bit address
1000 = I2C Host mode, clock = FOSC / (4 * (SSPxADD+1))(4)
1001 = Reserved
1010 = SPI Host mode, clock = FOSC/(4 * (SSPxADD+1))
1011 = I2C firmware controlled Host mode (client Idle)
1100 = Reserved
1101 = Reserved
1110 = I2C Client mode, 7-bit address with Start and Stop bit interrupts enabled
1111 = I2C Client mode, 10-bit address with Start and Stop bit interrupts enabled
Note 1:
2:
3:
4:
In Host mode, the overflow bit is not set since each new reception (and transmission) is initiated by writing to the SSPxBUF register.
When enabled, these pins must be properly configured as input or output.
When enabled, the SDAx and SCLx pins must be configured as inputs.
SSPxADD values of 0, 1 or 2 are not supported for I2C mode.
DS40001412H-page 254
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
REGISTER 15-4:
R/W-0
SSPxCON2: SSPx CONTROL REGISTER 2
R-0
GCEN
ACKSTAT
R/W-0
R/S/HC-0
R/S/HC-0
ACKDT
ACKEN(1)
(1)
RCEN
R/S/HC-0
(1)
PEN
R/S/HC-0
R/W/HC-0
(1)
RSEN
SEN(1)
bit 7
bit 0
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
u = Bit is unchanged
x = Bit is unknown
-n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set
‘0’ = Bit is cleared
HC = Cleared by hardware
S = User set
bit 7
GCEN: General Call Enable bit (in I2C Client mode only)
1 = Enable interrupt when a general call address (0x00 or 00h) is received in the SSPxSR
0 = General call address disabled
bit 6
ACKSTAT: Acknowledge Status bit (in I2C mode only)
1 = Acknowledge was not received
0 = Acknowledge was received
bit 5
ACKDT: Acknowledge Data bit (in I2C mode only)
In Receive mode:
Value transmitted when the user initiates an Acknowledge sequence at the end of a receive
1 = Not Acknowledge
0 = Acknowledge
bit 4
ACKEN(1): Acknowledge Sequence Enable bit (in I2C Host mode only)
In Host Receive mode:
1 = Initiate Acknowledge sequence on SDAx and SCLx pins, and transmit ACKDT data bit.
Automatically cleared by hardware.
0 = Acknowledge sequence idle
bit 3
RCEN(1): Receive Enable bit (in I2C Host mode only)
1 = Enables Receive mode for I2C
0 = Receive idle
bit 2
PEN(1): Stop Condition Enable bit (in I2C Host mode only)
SCKx Release Control:
1 = Initiate Stop condition on SDAx and SCLx pins. Automatically cleared by hardware.
0 = Stop condition Idle
bit 1
RSEN(1): Repeated Start Condition Enabled bit (in I2C Host mode only)
1 = Initiate Repeated Start condition on SDAx and SCLx pins. Automatically cleared by hardware.
0 = Repeated Start condition Idle
bit 0
SEN(1): Start Condition Enabled bit (in I2C Host mode only)
In Host mode:
1 = Initiate Start condition on SDAx and SCLx pins. Automatically cleared by hardware.
0 = Start condition Idle
In Client mode:
1 = Clock stretching is enabled for both client transmit and client receive (stretch enabled)
0 = Clock stretching is disabled
Note 1:
For bits ACKEN, RCEN, PEN, RSEN, SEN: If the I2C module is not in the Idle mode, this bit may not be
set (no spooling) and the SSPxBUF may not be written (or writes to the SSPxBUF are disabled).
2010-2021 Microchip Technology Inc.
DS40001412H-page 255
PIC18(L)F2X/4XK22
REGISTER 15-5:
SSPxCON3: SSPx CONTROL REGISTER 3
R-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
ACKTIM
PCIE
SCIE
BOEN
SDAHT
SBCDE
AHEN
DHEN
bit 7
bit 0
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
u = Bit is unchanged
x = Bit is unknown
-n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set
‘0’ = Bit is cleared
bit 7
ACKTIM: Acknowledge Time Status bit (I2C mode only)(3)
1 = Indicates the I2C bus is in an Acknowledge sequence, set on 8th falling edge of SCLx clock
0 = Not an Acknowledge sequence, cleared on 9th rising edge of SCLx clock
bit 6
PCIE: Stop Condition Interrupt Enable bit (I2C mode only)
1 = Enable interrupt on detection of Stop condition
0 = Stop detection interrupts are disabled(2)
bit 5
SCIE: Start Condition Interrupt Enable bit (I2C mode only)
1 = Enable interrupt on detection of Start or Restart conditions
0 = Start detection interrupts are disabled(2)
bit 4
BOEN: Buffer Overwrite Enable bit
In SPI Client mode:(1)
1 = SSPxBUF updates every time that a new data byte is shifted in ignoring the BF bit
0 = If new byte is received with BF bit of the SSPxSTAT register already set, SSPxOV bit of the
SSPxCON1 register is set, and the buffer is not updated
In I2C Host mode:
This bit is ignored.
In I2C Client mode:
1 = SSPxBUF is updated and ACK is generated for a received address/data byte, ignoring the
state of the SSPxOV bit only if the BF bit = 0.
0 = SSPxBUF is only updated when SSPxOV is clear
bit 3
SDAHT: SDAx Hold Time Selection bit (I2C mode only)
1 = Minimum of 300 ns hold time on SDAx after the falling edge of SCLx
0 = Minimum of 100 ns hold time on SDAx after the falling edge of SCLx
bit 2
SBCDE: Client Mode Bus Collision Detect Enable bit (I2C Client mode only)
If on the rising edge of SCLx, SDAx is sampled low when the module is outputting a high state, the
BCLxIF bit of the PIR2 register is set, and bus goes Idle
1 = Enable client bus collision interrupts
0 = Client bus collision interrupts are disabled
AHEN: Address Hold Enable bit (I2C Client mode only)
1 = Following the 8th falling edge of SCLx for a matching received address byte; CKP bit of the SSPxCON1 register will be cleared and the SCLx will be held low.
0 = Address holding is disabled
bit 1
Note 1:
2:
3:
For daisy-chained SPI operation; allows the user to ignore all but the last received byte. SSPxOV is still
set when a new byte is received and BF = 1, but hardware continues to write the most recent byte to
SSPxBUF.
This bit has no effect in Client modes for which Start and Stop condition detection is explicitly listed as
enabled.
The ACKTIM Status bit is active only when the AHEN bit or DHEN bit is set.
DS40001412H-page 256
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
REGISTER 15-5:
SSPxCON3: SSPx CONTROL REGISTER 3 (CONTINUED)
DHEN: Data Hold Enable bit (I2C Client mode only)
1 = Following the 8th falling edge of SCLx for a received data byte; client hardware clears the CKP bit
of the SSPxCON1 register and SCLx is held low.
0 = Data holding is disabled
bit 0
Note 1:
2:
3:
For daisy-chained SPI operation; allows the user to ignore all but the last received byte. SSPxOV is still
set when a new byte is received and BF = 1, but hardware continues to write the most recent byte to
SSPxBUF.
This bit has no effect in Client modes for which Start and Stop condition detection is explicitly listed as
enabled.
The ACKTIM Status bit is active only when the AHEN bit or DHEN bit is set.
REGISTER 15-6:
SSPxMSK: SSPx MASK REGISTER
R/W-1
R/W-1
R/W-1
R/W-1
R/W-1
R/W-1
R/W-1
R/W-1
MSK7
MSK6
MSK5
MSK4
MSK3
MSK2
MSK1
MSK0
bit 7
bit 0
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
u = Bit is unchanged
x = Bit is unknown
-n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set
‘0’ = Bit is cleared
bit 7-1
MSK: Mask bits
1 = The received address bit n is compared to SSPxADD to detect I2C address match
0 = The received address bit n is not used to detect I2C address match
bit 0
MSK: Mask bit for I2C Client mode, 10-bit Address
I2C Client mode, 10-bit address (SSPxM = 0111 or 1111):
1 = The received address bit 0 is compared to SSPxADD to detect I2C address match
0 = The received address bit 0 is not used to detect I2C address match
I2C Client mode, 7-bit address, the bit is ignored
2010-2021 Microchip Technology Inc.
DS40001412H-page 257
PIC18(L)F2X/4XK22
SSPxADD: MSSPx ADDRESS AND BAUD RATE REGISTER (I2C MODE)
REGISTER 15-7:
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
ADD
bit 7
bit 0
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
u = Bit is unchanged
x = Bit is unknown
-n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set
‘0’ = Bit is cleared
Host mode:
bit 7-0
ADD: Baud Rate Clock Divider bits
SCLx pin clock period = ((ADD + 1) *4)/FOSC
10-Bit Client mode — Most Significant Address byte:
bit 7-3
Not used: Unused for Most Significant Address byte. Bit state of this register is a “don’t care”. Bit
pattern sent by host is fixed by I2C specification and must be equal to ‘11110’. However, those bits
are compared by hardware and are not affected by the value in this register.
bit 2-1
ADD: Two Most Significant bits of 10-bit address
bit 0
Not used: Unused in this mode. Bit state is a “don’t care”.
10-Bit Client mode — Least Significant Address byte:
bit 7-0
ADD: Eight Least Significant bits of 10-bit address
7-Bit Client mode:
bit 7-1
ADD: 7-bit address
bit 0
Not used: Unused in this mode. Bit state is a “don’t care”.
DS40001412H-page 258
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
16.0
ENHANCED UNIVERSAL
SYNCHRONOUS
ASYNCHRONOUS RECEIVER
TRANSMITTER (EUSART)
The EUSART module includes the following capabilities:
•
•
•
•
•
•
•
•
•
•
The Enhanced Universal Synchronous Asynchronous
Receiver Transmitter (EUSART) module is a serial I/O
communications peripheral. It contains all the clock
generators, shift registers and data buffers necessary
to perform an input or output serial data transfer
independent of device program execution. The
EUSART, also known as a Serial Communications
Interface (SCI), can be configured as a full-duplex
asynchronous system or half-duplex synchronous
system.
Full-Duplex
mode
is
useful
for
communications with peripheral systems, such as CRT
terminals and personal computers. Half-Duplex
Synchronous mode is intended for communications
with peripheral devices, such as A/D or D/A integrated
circuits, serial EEPROMs or other microcontrollers.
These devices typically do not have internal clocks for
baud rate generation and require the external clock
signal provided by a host synchronous device.
FIGURE 16-1:
Full-duplex asynchronous transmit and receive
Two-character input buffer
One-character output buffer
Programmable 8-bit or 9-bit character length
Address detection in 9-bit mode
Input buffer overrun error detection
Received character framing error detection
Half-duplex synchronous host
Half-duplex synchronous client
Programmable clock and data polarity
The EUSART module implements the following
additional features, making it ideally suited for use in
Local Interconnect Network (LIN) bus systems:
• Automatic detection and calibration of the baud rate
• Wake-up on Break reception
• 13-bit Break character transmit
Block diagrams of the EUSART transmitter and
receiver are shown in Figure 16-1 and Figure 16-2.
EUSART TRANSMIT BLOCK DIAGRAM
Data Bus
TXxIE
Interrupt
TXxIF
TXREGx Register
8
MSb
LSb
(8)
0
• • •
TXx/CKx pin
Pin Buffer
and Control
Transmit Shift Register (TSR)
TXEN
TRMT
Baud Rate Generator
FOSC
÷n
+1
SPBRGHx
TX9
n
BRG16
SPBRGx
Multiplier
x4
x16 x64
SYNC
1 X 0 0
0
BRGH
X 1 1 0
0
BRG16
X 1 0 1
0
2010-2021 Microchip Technology Inc.
TX9D
DS40001412H-page 259
PIC18(L)F2X/4XK22
FIGURE 16-2:
EUSART RECEIVE BLOCK DIAGRAM
CREN
RXx/DTx pin
Baud Rate Generator
Data
Recovery
FOSC
BRG16
SPBRGHx
SPBRGx
Multiplier
x4
x16 x64
SYNC
1 X 0 0
0
BRGH
X 1 1 0
0
BRG16
X 1 0 1
0
Stop
RCIDL
RSR Register
MSb
Pin Buffer
and Control
+1
OERR
(8)
•••
7
1
LSb
0 START
RX9
÷n
n
FERR
RX9D
RCREGx Register
8
FIFO
Data Bus
RCxIF
RCxIE
Interrupt
The operation of the EUSART module is controlled
through three registers:
• Transmit Status and Control (TXSTAx)
• Receive Status and Control (RCSTAx)
• Baud Rate Control (BAUDCONx)
These registers are detailed in Register 16-1,
Register 16-2 and Register 16-3, respectively.
For all modes of EUSART operation, the TRIS control
bits corresponding to the RXx/DTx and TXx/CKx pins
may be set to ‘1’. The EUSART control will automatically
reconfigure the pin from input to output, as needed.
When the receiver or transmitter section is not enabled
then the corresponding RXx/DTx or TXx/CKx pin may be
used for general purpose input and output.
DS40001412H-page 260
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
16.1
EUSART Asynchronous Mode
The EUSART transmits and receives data using the
standard non-return-to-zero (NRZ) format. NRZ is
implemented with two levels: a VOH Mark state which
represents a ‘1’ data bit, and a VOL Space state which
represents a ‘0’ data bit. NRZ refers to the fact that
consecutively transmitted data bits of the same value
stay at the output level of that bit without returning to a
neutral level between each bit transmission. An NRZ
transmission port idles in the Mark state. Each character
transmission consists of one Start bit followed by eight
or nine data bits and is always terminated by one or
more Stop bits. The Start bit is always a space and the
Stop bits are always marks. The most common data
format is eight bits. Each transmitted bit persists for a
period of 1/(Baud Rate). An on-chip dedicated 8-bit/16bit Baud Rate Generator is used to derive standard
baud rate frequencies from the system oscillator. See
Table 16-5 for examples of baud rate configurations.
16.1.1.2
Transmitting Data
A transmission is initiated by writing a character to the
TXREGx register. If this is the first character, or the
previous character has been completely flushed from
the TSR, the data in the TXREGx is immediately
transferred to the TSR register. If the TSR still contains
all or part of a previous character, the new character
data is held in the TXREGx until the Stop bit of the
previous character has been transmitted. The pending
character in the TXREGx is then transferred to the TSR
in one TCY immediately following the Stop bit
transmission. The transmission of the Start bit, data bits
and Stop bit sequence commences immediately
following the transfer of the data to the TSR from the
TXREGx.
16.1.1.3
Transmit Data Polarity
The EUSART transmits and receives the LSb first. The
EUSART’s transmitter and receiver are functionally
independent, but share the same data format and baud
rate. Parity is not supported by the hardware, but can
be implemented in software and stored as the ninth
data bit.
The polarity of the transmit data can be controlled with
the CKTXP bit of the BAUDCONx register. The default
state of this bit is ‘0’ which selects high true transmit
idle and data bits. Setting the CKTXP bit to ‘1’ will invert
the transmit data resulting in low true idle and data bits.
The CKTXP bit controls transmit data polarity only in
Asynchronous mode. In Synchronous mode the
CKTXP bit has a different function.
16.1.1
16.1.1.4
EUSART ASYNCHRONOUS
TRANSMITTER
The EUSART transmitter block diagram is shown in
Figure 16-1. The heart of the transmitter is the serial
Transmit Shift Register (TSR), which is not directly
accessible by software. The TSR obtains its data from
the transmit buffer, which is the TXREGx register.
16.1.1.1
Enabling the Transmitter
The EUSART transmitter is enabled for asynchronous
operations by configuring the following three control
bits:
• TXEN = 1
• SYNC = 0
• SPEN = 1
All other EUSART control bits are assumed to be in
their default state.
Setting the TXEN bit of the TXSTAx register enables the
transmitter circuitry of the EUSART. Clearing the SYNC
bit of the TXSTAx register configures the EUSART for
asynchronous operation. Setting the SPEN bit of the
RCSTAx register enables the EUSART and
automatically configures the TXx/CKx I/O pin as an
output. If the TXx/CKx pin is shared with an analog
peripheral the analog I/O function must be disabled by
clearing the corresponding ANSEL bit.
Note:
Transmit Interrupt Flag
The TXxIF interrupt flag bit of the PIR1/PIR3 register is
set whenever the EUSART transmitter is enabled and
no character is being held for transmission in the
TXREGx. In other words, the TXxIF bit is only clear
when the TSR is busy with a character and a new
character has been queued for transmission in the
TXREGx. The TXxIF flag bit is not cleared immediately
upon writing TXREGx. TXxIF becomes valid in the
second instruction cycle following the write execution.
Polling TXxIF immediately following the TXREGx write
will return invalid results. The TXxIF bit is read-only, it
cannot be set or cleared by software.
The TXxIF interrupt can be enabled by setting the
TXxIE interrupt enable bit of the PIE1/PIE3 register.
However, the TXxIF flag bit will be set whenever the
TXREGx is empty, regardless of the state of TXxIE
enable bit.
To use interrupts when transmitting data, set the TXxIE
bit only when there is more data to send. Clear the
TXxIE interrupt enable bit upon writing the last
character of the transmission to the TXREGx.
The TXxIF transmitter interrupt flag is set
when the TXEN enable bit is set.
2010-2021 Microchip Technology Inc.
DS40001412H-page 261
PIC18(L)F2X/4XK22
16.1.1.5
TSR Status
16.1.1.7
The TRMT bit of the TXSTAx register indicates the
status of the TSR register. This is a read-only bit. The
TRMT bit is set when the TSR register is empty and is
cleared when a character is transferred to the TSR
register from the TXREGx. The TRMT bit remains clear
until all bits have been shifted out of the TSR register.
No interrupt logic is tied to this bit, so the user needs to
poll this bit to determine the TSR status.
1.
2.
3.
4.
Note:
16.1.1.6
The TSR register is not mapped in data
memory, so it is not available to the user.
5.
Transmitting 9-Bit Characters
The EUSART supports 9-bit character transmissions.
When the TX9 bit of the TXSTAx register is set the
EUSART will shift nine bits out for each character
transmitted. The TX9D bit of the TXSTAx register is the
ninth, and Most Significant, data bit. When transmitting
9-bit data, the TX9D data bit must be written before
writing the eight Least Significant bits into the TXREGx.
All nine bits of data will be transferred to the TSR shift
register immediately after the TXREGx is written.
A special 9-bit Address mode is available for use with
multiple receivers. See Section 16.1.2.8 “Address
Detection” for more information on the Address mode.
FIGURE 16-3:
Write to TXREGx
BRG Output
(Shift Clock)
TXx/CKx pin
TXxIF bit
(Transmit Buffer
Reg. Empty Flag)
TRMT bit
(Transmit Shift
Reg. Empty Flag)
DS40001412H-page 262
6.
7.
8.
9.
Asynchronous Transmission Setup:
Initialize the SPBRGHx:SPBRGx register pair
and the BRGH and BRG16 bits to achieve the
desired baud rate (see Section 16.4 “EUSART
Baud Rate Generator (BRG)”).
Set the RXx/DTx and TXx/CKx TRIS controls to
‘1’.
Enable the asynchronous serial port by clearing
the SYNC bit and setting the SPEN bit.
If 9-bit transmission is desired, set the TX9
control bit. A set ninth data bit will indicate that
the eight Least Significant data bits are an
address when the receiver is set for address
detection.
Set the CKTXP control bit if inverted transmit
data polarity is desired.
Enable the transmission by setting the TXEN
control bit. This will cause the TXxIF interrupt bit
to be set.
If interrupts are desired, set the TXxIE interrupt
enable bit. An interrupt will occur immediately
provided that the GIE/GIEH and PEIE/GIEL bits
of the INTCON register are also set.
If 9-bit transmission is selected, the ninth bit may
be loaded into the TX9D data bit.
Load 8-bit data into the TXREGx register. This
will start the transmission.
ASYNCHRONOUS TRANSMISSION
Word 1
Start bit
bit 0
bit 1
bit 7/8
Stop bit
Word 1
1 TCY
Word 1
Transmit Shift Reg
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
FIGURE 16-4:
ASYNCHRONOUS TRANSMISSION (BACK-TO-BACK)
Write to TXREGx
TXx/CKx pin
Start bit
bit 0
bit 1
Word 1
1 TCY
TXxIF bit
(Interrupt Reg. Flag)
bit 7/8
Start bit
Stop bit
bit 0
Word 2
1 TCY
TRMT bit
(Transmit Shift
Reg. Empty Flag)
Note:
Word 2
Word 1
BRG Output
(Shift Clock)
Word 1
Transmit Shift Reg
Word 2
Transmit Shift Reg
This timing diagram shows two consecutive transmissions.
TABLE 16-1:
REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION
Name
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Reset
Values
on
Page
BAUDCON1
ABDOVF
RCIDL
DTRXP
CKTXP
BRG16
—
WUE
ABDEN
271
BAUDCON2
ABDOVF
RCIDL
DTRXP
CKTXP
BRG16
—
WUE
ABDEN
271
INTCON
GIE/GIEH
PEIE/GIEL
TMR0IE
INT0IE
RBIE
TMR0IF
INT0IF
RBIF
109
TMR2IP
TMR1IP
IPR1
—
ADIP
RC1IP
TX1IP
SSP1IP
CCP1IP
IPR3
SSP2IP
BCL2IP
RC2IP
TX2IP
CTMUIP
TMR5GIP
PIE1
—
ADIE
RC1IE
TX1IE
SSP1IE
CCP1IE
PIE3
SSP2IE
BCL2IE
RC2IE
TX2IE
CTMUIE
TMR5GIE
PIR1
—
ADIF
RC1IF
TX1IF
SSP1IF
CCP1IF
SSP2IF
BCL2IF
RC2IF
PIR3
PMD0
SPEN
RX9
RCSTA2
SPEN
RX9
TMR2IE
TMR1IE
TMR3GIE TMR1GIE
TMR2IF
121
123
117
119
TMR1IF
112
114
TX2IF
CTMUIF
TMR5GIF
TMR3GIF
TMR1GIF
TMR5MD
TMR4MD
TMR3MD
TMR2MD
TMR1MD
52
SREN
CREN
ADDEN
FERR
OERR
RX9D
270
SREN
CREN
ADDEN
FERR
OERR
RX9D
270
UART2MD UART1MD TMR6MD
RCSTA1
TMR3GIP TMR1GIP
SPBRG1
EUSART1 Baud Rate Generator, Low Byte
—
SPBRGH1
EUSART1 Baud Rate Generator, High Byte
—
SPBRG2
EUSART2 Baud Rate Generator, Low Byte
—
SPBRGH2
EUSART2 Baud Rate Generator, High Byte
—
TXREG1
TXSTA1
EUSART1 Transmit Register
CSRC
TX9
TXEN
TXREG2
TXSTA2
Legend:
SYNC
SENDB
—
BRGH
TRMT
TX9D
EUSART2 Transmit Register
CSRC
TX9
TXEN
SYNC
SENDB
269
—
BRGH
TRMT
TX9D
269
— = unimplemented locations, read as ‘0’. Shaded bits are not used for asynchronous transmission.
2010-2021 Microchip Technology Inc.
DS40001412H-page 263
PIC18(L)F2X/4XK22
16.1.2
EUSART ASYNCHRONOUS
RECEIVER
The Asynchronous mode would typically be used in
RS-232 systems. The receiver block diagram is shown
in Figure 16-2. The data is received on the RXx/DTx
pin and drives the data recovery block. The data
recovery block is actually a high-speed shifter
operating at 16 times the baud rate, whereas the serial
Receive Shift Register (RSR) operates at the bit rate.
When all eight or nine bits of the character have been
shifted in, they are immediately transferred to a two
character First-In-First-Out (FIFO) memory. The FIFO
buffering allows reception of two complete characters
and the start of a third character before software must
start servicing the EUSART receiver. The FIFO and
RSR registers are not directly accessible by software.
Access to the received data is via the RCREGx
register.
16.1.2.1
Enabling the Receiver
The EUSART receiver is enabled for asynchronous
operation by configuring the following three control bits:
• CREN = 1
• SYNC = 0
• SPEN = 1
All other EUSART control bits are assumed to be in
their default state.
Setting the CREN bit of the RCSTAx register enables
the receiver circuitry of the EUSART. Clearing the
SYNC bit of the TXSTAx register configures the
EUSART for asynchronous operation. Setting the
SPEN bit of the RCSTAx register enables the
EUSART. The RXx/DTx I/O pin must be configured as
an input by setting the corresponding TRIS control bit.
If the RXx/DTx pin is shared with an analog peripheral
the analog I/O function must be disabled by clearing
the corresponding ANSEL bit.
DS40001412H-page 264
16.1.2.2
Receiving Data
The receiver data recovery circuit initiates character
reception on the falling edge of the first bit. The first bit,
also known as the Start bit, is always a zero. The data
recovery circuit counts one-half bit time to the center of
the Start bit and verifies that the bit is still a zero. If it is
not a zero then the data recovery circuit aborts
character reception, without generating an error, and
resumes looking for the falling edge of the Start bit. If
the Start bit zero verification succeeds then the data
recovery circuit counts a full bit time to the center of the
next bit. The bit is then sampled by a majority detect
circuit and the resulting ‘0’ or ‘1’ is shifted into the RSR.
This repeats until all data bits have been sampled and
shifted into the RSR. One final bit time is measured and
the level sampled. This is the Stop bit, which is always
a ‘1’. If the data recovery circuit samples a ‘0’ in the
Stop bit position then a framing error is set for this
character, otherwise the framing error is cleared for this
character. See Section 16.1.2.5 “Receive Framing
Error” for more information on framing errors.
Immediately after all data bits and the Stop bit have
been received, the character in the RSR is transferred
to the EUSART receive FIFO and the RCxIF interrupt
flag bit of the PIR1/PIR3 register is set. The top
character in the FIFO is transferred out of the FIFO by
reading the RCREGx register.
Note:
16.1.2.3
If the receive FIFO is overrun, no additional
characters will be received until the overrun
condition is cleared. See Section 16.1.2.6
“Receive Overrun Error” for more
information on overrun errors.
Receive Data Polarity
The polarity of the receive data can be controlled with
the DTRXP bit of the BAUDCONx register. The default
state of this bit is ‘0’ which selects high true receive idle
and data bits. Setting the DTRXP bit to ‘1’ will invert the
receive data resulting in low true idle and data bits. The
DTRXP bit controls receive data polarity only in
Asynchronous mode. In Synchronous mode the
DTRXP bit has a different function.
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
16.1.2.4
Receive Interrupts
The RCxIF interrupt flag bit of the PIR1/PIR3 register is
set whenever the EUSART receiver is enabled and
there is an unread character in the receive FIFO. The
RCxIF interrupt flag bit is read-only, it cannot be set or
cleared by software.
RCxIF interrupts are enabled by setting the following
bits:
• RCxIE interrupt enable bit of the PIE1/PIE3
register
• PEIE/GIEL peripheral interrupt enable bit of the
INTCON register
• GIE/GIEH global interrupt enable bit of the
INTCON register
The RCxIF interrupt flag bit will be set when there is an
unread character in the FIFO, regardless of the state of
interrupt enable bits.
16.1.2.5
Receive Framing Error
Each character in the receive FIFO buffer has a
corresponding framing error Status bit. A framing error
indicates that a Stop bit was not seen at the expected
time. The framing error status is accessed via the
FERR bit of the RCSTAx register. The FERR bit
represents the status of the top unread character in the
receive FIFO. Therefore, the FERR bit must be read
before reading the RCREG.x
The FERR bit is read-only and only applies to the top
unread character in the receive FIFO. A framing error
(FERR = 1) does not preclude reception of additional
characters. It is not necessary to clear the FERR bit.
Reading the next character from the FIFO buffer will
advance the FIFO to the next character and the next
corresponding framing error.
The FERR bit can be forced clear by clearing the SPEN
bit of the RCSTAx register which resets the EUSART.
Clearing the CREN bit of the RCSTAx register does not
affect the FERR bit. A framing error by itself does not
generate an interrupt.
Note:
16.1.2.6
Receive Overrun Error
The receive FIFO buffer can hold two characters. An
overrun error will be generated if a third character, in its
entirety, is received before the FIFO is accessed. When
this happens the OERR bit of the RCSTAx register is
set. The characters already in the FIFO buffer can be
read but no additional characters will be received until
the error is cleared. The error must be cleared by either
clearing the CREN bit of the RCSTAx register or by
resetting the EUSART by clearing the SPEN bit of the
RCSTAx register.
16.1.2.7
Receiving 9-bit Characters
The EUSART supports 9-bit character reception. When
the RX9 bit of the RCSTAx register is set, the EUSART
will shift nine bits into the RSR for each character
received. The RX9D bit of the RCSTAx register is the
ninth and Most Significant data bit of the top unread
character in the receive FIFO. When reading 9-bit data
from the receive FIFO buffer, the RX9D data bit must
be read before reading the eight Least Significant bits
from the RCREGx.
16.1.2.8
Address Detection
A special Address Detection mode is available for use
when multiple receivers share the same transmission
line, such as in RS-485 systems. Address detection is
enabled by setting the ADDEN bit of the RCSTAx
register.
Address detection requires 9-bit character reception.
When address detection is enabled, only characters
with the ninth data bit set will be transferred to the
receive FIFO buffer, thereby setting the RCxIF interrupt
bit. All other characters will be ignored.
Upon receiving an address character, user software
determines if the address matches its own. Upon
address match, user software must disable address
detection by clearing the ADDEN bit before the next
Stop bit occurs. When user software detects the end of
the message, determined by the message protocol
used, software places the receiver back into the
Address Detection mode by setting the ADDEN bit.
If all receive characters in the receive
FIFO have framing errors, repeated reads
of the RCREGx will not clear the FERR
bit.
2010-2021 Microchip Technology Inc.
DS40001412H-page 265
PIC18(L)F2X/4XK22
16.1.2.9
Asynchronous Reception Setup:
1.
Initialize the SPBRGHx:SPBRGx register pair
and the BRGH and BRG16 bits to achieve the
desired baud rate (see Section 16.4 “EUSART
Baud Rate Generator (BRG)”).
2. Set the RXx/DTx and TXx/CKx TRIS controls to
‘1’.
3. Enable the serial port by setting the SPEN bit
and the RXx/DTx pin TRIS bit. The SYNC bit
must be clear for asynchronous operation.
4. If interrupts are desired, set the RCxIE interrupt
enable bit and set the GIE/GIEH and PEIE/GIEL
bits of the INTCON register.
5. If 9-bit reception is desired, set the RX9 bit.
6. Set the DTRXP if inverted receive polarity is
desired.
7. Enable reception by setting the CREN bit.
8. The RCxIF interrupt flag bit will be set when a
character is transferred from the RSR to the
receive buffer. An interrupt will be generated if
the RCxIE interrupt enable bit was also set.
9. Read the RCSTAx register to get the error flags
and, if 9-bit data reception is enabled, the ninth
data bit.
10. Get the received eight Least Significant data bits
from the receive buffer by reading the RCREGx
register.
11. If an overrun occurred, clear the OERR flag by
clearing the CREN receiver enable bit.
16.1.2.10
This mode would typically be used in RS-485 systems.
To set up an Asynchronous Reception with Address
Detect Enable:
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
DS40001412H-page 266
9-bit Address Detection Mode Setup
Initialize the SPBRGHx, SPBRGx register pair
and the BRGH and BRG16 bits to achieve the
desired baud rate (see Section 16.4 “EUSART
Baud Rate Generator (BRG)”).
Set the RXx/DTx and TXx/CKx TRIS controls to
‘1’.
Enable the serial port by setting the SPEN bit.
The SYNC bit must be clear for asynchronous
operation.
If interrupts are desired, set the RCxIE interrupt
enable bit and set the GIE/GIEH and PEIE/GIEL
bits of the INTCON register.
Enable 9-bit reception by setting the RX9 bit.
Enable address detection by setting the ADDEN
bit.
Set the DTRXP if inverted receive polarity is
desired.
Enable reception by setting the CREN bit.
The RCxIF interrupt flag bit will be set when a
character with the ninth bit set is transferred
from the RSR to the receive buffer. An interrupt
will be generated if the RCxIE interrupt enable
bit was also set.
Read the RCSTAx register to get the error flags.
The ninth data bit will always be set.
Get the received eight Least Significant data bits
from the receive buffer by reading the RCREGx
register. Software determines if this is the
device’s address.
If an overrun occurred, clear the OERR flag by
clearing the CREN receiver enable bit.
If the device has been addressed, clear the
ADDEN bit to allow all received data into the
receive buffer and generate interrupts.
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
FIGURE 16-5:
ASYNCHRONOUS RECEPTION
Start
bit
bit 0
RXx/DTx pin
bit 1
bit 7/8 Stop
bit
Rcv Shift
Reg
Rcv Buffer Reg
Start
bit
bit 7/8 Stop
bit
bit 0
bit 7/8 Stop
bit
Word 2
RCREGx
Word 1
RCREGx
RCIDL
Start
bit
Read Rcv
Buffer Reg
RCREGx
RCxIF
(Interrupt Flag)
OERR bit
CREN
Note:
This timing diagram shows three words appearing on the RXx/DTx input. The RCREGx (receive buffer) is read after the third
word, causing the OERR (overrun) bit to be set.
TABLE 16-2:
REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION
Name
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Register
on Page
BAUDCON1
ABDOVF
RCIDL
DTRXP
CKTXP
BRG16
—
WUE
ABDEN
271
BAUDCON2
ABDOVF
RCIDL
DTRXP
CKTXP
BRG16
—
WUE
ABDEN
271
INTCON
109
GIE/GIEH
PEIE/GIEL
TMR0IE
INT0IE
RBIE
TMR0IF
INT0IF
RBIF
IPR1
—
ADIP
RC1IP
TX1IP
SSP1IP
CCP1IP
TMR2IP
TMR1IP
121
IPR3
SSP2IP
BCL2IP
RC2IP
TX2IP
CTMUIP
TMR5GIP
TMR3GIP
TMR1GIP
123
PIE1
—
ADIE
RC1IE
TX1IE
SSP1IE
CCP1IE
TMR2IE
TMR1IE
117
PIE3
SSP2IE
BCL2IE
RC2IE
TX2IE
CTMUIE
TMR5GIE
TMR3GIE
TMR1GIE
119
PIR1
—
ADIF
RC1IF
TX1IF
SSP1IF
CCP1IF
TMR2IF
TMR1IF
112
PIR3
SSP2IF
BCL2IF
RC2IF
TX2IF
CTMUIF
TMR5GIF
TMR3GIF
TMR1GIF
114
PMD0
UART2MD
UART1MD TMR6MD TMR5MD TMR4MD
TMR3MD
TMR2MD
TMR1MD
52
OERR
RX9D
270
RCREG1
RCSTA1
EUSART1 Receive Register
SPEN
RX9
RCREG2
RCSTA2
SREN
CREN
ADDEN
—
FERR
EUSART2 Receive Register
SPEN
RX9
SREN
CREN
ADDEN
—
FERR
OERR
RX9D
270
SPBRG1
EUSART1 Baud Rate Generator, Low Byte
—
SPBRGH1
EUSART1 Baud Rate Generator, High Byte
—
SPBRG2
EUSART2 Baud Rate Generator, Low Byte
—
SPBRGH2
EUSART2 Baud Rate Generator, High Byte
—
TRISB
(2)
TRISB7
TRISB6
TRISB5
TRISB4
TRISB3
TRISB2
TRISB1
TRISB0
151
TRISC
TRISC7
TRISC6
TRISC5
TRISC4
TRISC3
TRISC2
TRISC1
TRISC0
151
TRISD(1)
TRISD7
TRISD6
TRISD5
TRISD4
TRISD3
TRISD2
TRISD1
TRISD0
151
ANSELC
ANSC7
ANSC6
ANSC5
ANSC4
ANSC3
ANSC2
—
—
150
ANSELD(1)
ANSD7
ANSD6
ANSD5
ANSD4
ANSD3
ANSD2
ANSD1
ANSD0
150
TXSTA1
CSRC
TX9
TXEN
SYNC
SENDB
BRGH
TRMT
TX9D
269
TXSTA2
CSRC
TX9
TXEN
SYNC
SENDB
BRGH
TRMT
TX9D
269
Legend:
Note
— = unimplemented locations, read as ‘0’. Shaded bits are not used for asynchronous reception.
1: PIC18(L)F4XK22 devices.
2: PIC18(L)F2XK22 devices.
2010-2021 Microchip Technology Inc.
DS40001412H-page 267
PIC18(L)F2X/4XK22
16.2
Clock Accuracy with
Asynchronous Operation
The factory calibrates the internal oscillator block
output (HFINTOSC). However, the HFINTOSC
frequency may drift as VDD or temperature changes,
and this directly affects the asynchronous baud rate.
Two methods may be used to adjust the baud rate
clock, but both require a reference clock source of
some kind.
The first (preferred) method uses the OSCTUNE
register to adjust the HFINTOSC output. Adjusting the
value in the OSCTUNE register allows for fine
resolution changes to the system clock source. See
Section 2.6 “Internal Clock Modes” for more
information.
The other method adjusts the value in the Baud Rate
Generator. This can be done automatically with the
Auto-Baud Detect feature (see Section 16.4.1 “AutoBaud Detect”). There may not be fine enough
resolution when adjusting the Baud Rate Generator to
compensate for a gradual change in the peripheral
clock frequency.
DS40001412H-page 268
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
16.3
Register Definitions: EUSART Control
REGISTER 16-1:
TxSTAx: TRANSMIT STATUS AND CONTROL REGISTER
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R-1
R/W-0
CSRC
TX9
TXEN(1)
SYNC
SENDB
BRGH
TRMT
TX9D
bit 7
bit 0
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 7
CSRC: Clock Source Select bit
Asynchronous mode:
Don’t care
Synchronous mode:
1 = Host mode (clock generated internally from BRG)
0 = Client mode (clock from external source)
bit 6
TX9: 9-bit Transmit Enable bit
1 = Selects 9-bit transmission
0 = Selects 8-bit transmission
bit 5
TXEN: Transmit Enable bit(1)
1 = Transmit enabled
0 = Transmit disabled
bit 4
SYNC: EUSART Mode Select bit
1 = Synchronous mode
0 = Asynchronous mode
bit 3
SENDB: Send Break Character bit
Asynchronous mode:
1 = Send Sync Break on next transmission (cleared by hardware upon completion)
0 = Sync Break transmission completed
Synchronous mode:
Don’t care
bit 2
BRGH: High Baud Rate Select bit
Asynchronous mode:
1 = High speed
0 = Low speed
Synchronous mode:
Unused in this mode
bit 1
TRMT: Transmit Shift Register Status bit
1 = TSR empty
0 = TSR full
bit 0
TX9D: Ninth bit of Transmit Data
Can be address/data bit or a parity bit.
Note 1:
SREN/CREN overrides TXEN in Sync mode.
2010-2021 Microchip Technology Inc.
DS40001412H-page 269
PIC18(L)F2X/4XK22
REGISTER 16-2:
RCSTAx: RECEIVE STATUS AND CONTROL REGISTER
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R-0
R-0
R-0
SPEN
RX9
SREN
CREN
ADDEN
FERR
OERR
RX9D
bit 7
bit 0
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 7
SPEN: Serial Port Enable bit
1 = Serial port enabled (configures RXx/DTx and TXx/CKx pins as serial port pins)
0 = Serial port disabled (held in Reset)
bit 6
RX9: 9-bit Receive Enable bit
1 = Selects 9-bit reception
0 = Selects 8-bit reception
bit 5
SREN: Single Receive Enable bit
Asynchronous mode:
Don’t care
Synchronous mode – Host:
1 = Enables single receive
0 = Disables single receive
This bit is cleared after reception is complete.
Synchronous mode – Client
Don’t care
bit 4
CREN: Continuous Receive Enable bit
Asynchronous mode:
1 = Enables receiver
0 = Disables receiver
Synchronous mode:
1 = Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN)
0 = Disables continuous receive
bit 3
ADDEN: Address Detect Enable bit
Asynchronous mode 9-bit (RX9 = 1):
1 = Enables address detection, enable interrupt and load the receive buffer when RSR is set
0 = Disables address detection, all bytes are received and ninth bit can be used as parity bit
Asynchronous mode 8-bit (RX9 = 0):
Don’t care
bit 2
FERR: Framing Error bit
1 = Framing error (can be updated by reading RCREGx register and receive next valid byte)
0 = No framing error
bit 1
OERR: Overrun Error bit
1 = Overrun error (can be cleared by clearing bit CREN)
0 = No overrun error
bit 0
RX9D: Ninth bit of Received Data
This can be address/data bit or a parity bit and must be calculated by user firmware.
DS40001412H-page 270
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
REGISTER 16-3:
BAUDCONx: BAUD RATE CONTROL REGISTER
R/W-0
R-1
R/W-0
R/W-0
R/W-0
U-0
R/W-0
R/W-0
ABDOVF
RCIDL
DTRXP
CKTXP
BRG16
—
WUE
ABDEN
bit 7
bit 0
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 7
ABDOVF: Auto-Baud Detect Overflow bit
Asynchronous mode:
1 = Auto-baud timer overflowed
0 = Auto-baud timer did not overflow
Synchronous mode:
Don’t care
bit 6
RCIDL: Receive Idle Flag bit
Asynchronous mode:
1 = Receiver is Idle
0 = Start bit has been detected and the receiver is active
Synchronous mode:
Don’t care
bit 5
DTRXP: Data/Receive Polarity Select bit
Asynchronous mode:
1 = Receive data (RXx) is inverted (active-low)
0 = Receive data (RXx) is not inverted (active-high)
Synchronous mode:
1 = Data (DTx) is inverted (active-low)
0 = Data (DTx) is not inverted (active-high)
bit 4
CKTXP: Clock/Transmit Polarity Select bit
Asynchronous mode:
1 = Idle state for transmit (TXx) is low
0 = Idle state for transmit (TXx) is high
Synchronous mode:
1 = Data changes on the falling edge of the clock and is sampled on the rising edge of the clock
0 = Data changes on the rising edge of the clock and is sampled on the falling edge of the clock
bit 3
BRG16: 16-bit Baud Rate Generator bit
1 = 16-bit Baud Rate Generator is used (SPBRGHx:SPBRGx)
0 = 8-bit Baud Rate Generator is used (SPBRGx)
bit 2
Unimplemented: Read as ‘0’
bit 1
WUE: Wake-up Enable bit
Asynchronous mode:
1 = Receiver is waiting for a falling edge. No character will be received but RCxIF will be set on the falling
edge. WUE will automatically clear on the rising edge.
0 = Receiver is operating normally
Synchronous mode:
Don’t care
bit 0
ABDEN: Auto-Baud Detect Enable bit
Asynchronous mode:
1 = Auto-Baud Detect mode is enabled (clears when auto-baud is complete)
0 = Auto-Baud Detect mode is disabled
Synchronous mode:
Don’t care
2010-2021 Microchip Technology Inc.
DS40001412H-page 271
PIC18(L)F2X/4XK22
16.4
EUSART Baud Rate Generator
(BRG)
The Baud Rate Generator (BRG) is an 8-bit or 16-bit
timer that is dedicated to the support of both the
asynchronous and synchronous EUSART operation.
By default, the BRG operates in 8-bit mode. Setting the
BRG16 bit of the BAUDCONx register selects 16-bit
mode.
The SPBRGHx:SPBRGx register pair determines the
period of the free running baud rate timer. In
Asynchronous mode the multiplier of the baud rate
period is determined by both the BRGH bit of the
TXSTAx register and the BRG16 bit of the BAUDCONx
register. In Synchronous mode, the BRGH bit is ignored.
If the system clock is changed during an active receive
operation, a receive error or data loss may result. To
avoid this problem, check the status of the RCIDL bit to
make sure that the receive operation is Idle before
changing the system clock.
EXAMPLE 16-1:
For a device with FOSC of 16 MHz, desired baud rate
of 9600, Asynchronous mode, 8-bit BRG:
F O SC
D esired Baud Rate = ------------------------------------------------------------------------64 [SPBRG H x:SPBRG x] + 1
Solving for SPBRGHx:SPBRGx:
F O SC
--------------------------------------------D esired Baud Rate
X = ---------------------------------------------– 1
64
Table 16-3 contains the formulas for determining the
baud rate. Example 16-1 provides a sample calculation
for determining the baud rate and baud rate error.
Typical baud rates and error values for various
Asynchronous modes have been computed for the
user’s convenience and are shown in Table 16-5. It
may be advantageous to use the high baud rate
(BRGH = 1), or the 16-bit BRG (BRG16 = 1) to reduce
the baud rate error. The 16-bit BRG mode is used to
achieve slow baud rates for fast oscillator frequencies.
16000000
----------------------9600
= ----------------------- – 1
64
= 25.042 = 25
16000000
C alculated Baud Rate = -------------------------64 25 + 1
Writing a new value to the SPBRGHx, SPBRGx
register pair causes the BRG timer to be reset (or
cleared). This ensures that the BRG does not wait for a
timer overflow before outputting the new baud rate.
TABLE 16-3:
Calc.Baud Rate – D esired Baud Rate
Error = -------------------------------------------------------------------------------------------D esired Baud Rate
9615 – 9600
= ---------------------------------- = 0.16%
9600
BRG/EUSART Mode
Baud Rate Formula
0
8-bit/Asynchronous
FOSC/[64 (n+1)]
0
1
8-bit/Asynchronous
1
0
16-bit/Asynchronous
SYNC
BRG16
BRGH
0
0
0
0
0
1
1
16-bit/Asynchronous
1
0
x
8-bit/Synchronous
1
x
16-bit/Synchronous
1
= 9615
BAUD RATE FORMULAS
Configuration Bits
Legend:
CALCULATING BAUD
RATE ERROR
FOSC/[16 (n+1)]
FOSC/[4 (n+1)]
x = Don’t care, n = value of SPBRGHx, SPBRGx register pair.
DS40001412H-page 272
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
TABLE 16-4:
REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR
Name
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Reset
Values
on Page
BAUDCON1
ABDOVF
RCIDL
DTRXP
CKTXP
BRG16
—
WUE
ABDEN
271
BAUDCON2
ABDOVF
RCIDL
DTRXP
CKTXP
BRG16
—
WUE
ABDEN
271
UART2MD
UART1MD
TMR6MD
TMR5MD
TMR4MD
RCSTA1
SPEN
RX9
SREN
CREN
ADDEN
FERR
OERR
RX9D
270
RCSTA2
SPEN
RX9
SREN
CREN
ADDEN
FERR
OERR
RX9D
270
PMD0
TMR3MD TMR2MD TMR1MD
52
SPBRG1
EUSART1 Baud Rate Generator, Low Byte
—
SPBRGH1
EUSART1 Baud Rate Generator, High Byte
—
SPBRG2
EUSART2 Baud Rate Generator, Low Byte
—
SPBRGH2
EUSART2 Baud Rate Generator, High Byte
PIR1
—
ADIF
RC1IF
PIR3
SSP2IF
BCL2IF
CSRC
TX9
CSRC
TX9
TXSTA1
TXSTA2
Legend:
—
TX1IF
SSP1IF
CCP1IF
TMR2IF
TMR1IF
112
RC2IF
TX2IF
CTMUIF
TXEN
SYNC
SENDB
BRGH
TRMT
TX9D
269
TXEN
SYNC
SENDB
BRGH
TRMT
TX9D
269
TMR5GIF TMR3GIF TMR1GIF
114
— = unimplemented, read as ‘0’. Shaded bits are not used by the BRG.
TABLE 16-5:
BAUD RATES FOR ASYNCHRONOUS MODES
SYNC = 0, BRGH = 0, BRG16 = 0
BAUD
RATE
300
FOSC = 64.000 MHz
FOSC = 18.432 MHz
FOSC = 16.000 MHz
FOSC = 11.0592 MHz
Actual
Rate
%
Error
SPBRxG
value
(decimal)
—
—
—
—
—
—
—
—
—
—
—
—
—
1200
0.00
239
1202
0.16
207
1200
0.00
143
Actual
Rate
%
Error
SPBRGx
value
(decimal)
Actual
Rate
%
Error
SPBRGx
value
(decimal)
Actual
Rate
%
Error
SPBRGx
value
(decimal)
1200
—
—
2400
—
—
—
2400
0.00
119
2404
0.16
103
2400
0.00
71
9600
9615
0.16
103
9600
0.00
29
9615
0.16
25
9600
0.00
17
10417
10417
0.00
95
10286
-1.26
27
10417
0.00
23
10165
-2.42
16
19.2k
19.23k
0.16
51
19.20k
0.00
14
19.23k
0.16
12
19.20k
0.00
8
57.6k
58.82k
2.12
16
57.60k
0.00
7
—
—
—
57.60k
0.00
2
115.2k
111.11k
-3.55
8
—
—
—
—
—
—
—
—
—
SYNC = 0, BRGH = 0, BRG16 = 0
BAUD
RATE
FOSC = 8.000 MHz
Actual
Rate
%
Error
SPBRGx
value
(decimal)
FOSC = 4.000 MHz
Actual
Rate
FOSC = 3.6864 MHz
%
Error
SPBRGx
value
(decimal)
Actual
Rate
FOSC = 1.000 MHz
%
Error
SPBRGx
value
(decimal)
Actual
Rate
%
Error
SPBRGx
value
(decimal)
300
—
—
—
300
0.16
207
300
0.00
191
300
0.16
51
1200
1202
0.16
103
1202
0.16
51
1200
0.00
47
1202
0.16
12
2400
2404
0.16
51
2404
0.16
25
2400
0.00
23
—
—
—
9600
9615
0.16
12
—
—
—
9600
0.00
5
—
—
—
10417
10417
0.00
11
10417
0.00
5
—
—
—
—
—
—
19.2k
—
—
—
—
—
—
19.20k
0.00
2
—
—
—
57.6k
—
—
—
—
—
—
57.60k
0.00
0
—
—
—
115.2k
—
—
—
—
—
—
—
—
—
—
—
—
2010-2021 Microchip Technology Inc.
DS40001412H-page 273
PIC18(L)F2X/4XK22
TABLE 16-5:
BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)
SYNC = 0, BRGH = 1, BRG16 = 0
BAUD
RATE
FOSC = 64.000 MHz
Actual
Rate
%
Error
SPBRGx
value
(decimal)
FOSC = 18.432 MHz
Actual
Rate
%
Error
SPBRGx
value
(decimal)
FOSC = 16.000 MHz
Actual
Rate
%
Error
FOSC = 11.0592 MHz
SPBRGx
value
(decimal)
Actual
Rate
%
Error
SPBRGx
value
(decimal)
300
—
—
—
—
—
—
—
—
—
—
—
—
1200
—
—
—
—
—
—
—
—
—
—
—
—
2400
—
—
—
—
—
—
—
—
—
—
—
—
9600
—
—
—
9600
0.00
119
9615
0.16
103
9600
0.00
71
10417
—
—
—
10378
-0.37
110
10417
0.00
95
10473
0.53
65
19.2k
19.23k
0.16
207
19.20k
0.00
59
19.23k
0.16
51
19.20k
0.00
35
57.6k
57.97k
0.64
68
57.60k
0.00
19
58.82k
2.12
16
57.60k
0.00
11
115.2k
114.29k
-0.79
34
115.2k
0.00
9
111.1k
-3.55
8
115.2k
0.00
5
SYNC = 0, BRGH = 1, BRG16 = 0
BAUD
RATE
FOSC = 8.000 MHz
Actual
Rate
%
Error
FOSC = 4.000 MHz
SPBRGx
value
(decimal)
Actual
Rate
%
Error
FOSC = 3.6864 MHz
SPBRGx
value
(decimal)
Actual
Rate
%
Error
FOSC = 1.000 MHz
SxBRGx
value
(decimal)
Actual
Rate
%
Error
SPBRGx
value
(decimal)
207
300
—
—
—
—
—
—
—
—
—
300
0.16
1200
—
—
—
1202
0.16
207
1200
0.00
191
1202
0.16
51
2400
2404
0.16
207
2404
0.16
103
2400
0.00
95
2404
0.16
25
—
9600
9615
0.16
51
9615
0.16
25
9600
0.00
23
—
—
10417
10417
0.00
47
10417
0.00
23
10473
0.53
21
10417
0.00
5
19.2k
19231
0.16
25
19.23k
0.16
12
19.2k
0.00
11
—
—
—
57.6k
55556
-3.55
8
—
—
—
57.60k
0.00
3
—
—
—
115.2k
—
—
—
—
—
—
115.2k
0.00
1
—
—
—
SYNC = 0, BRGH = 0, BRG16 = 1
BAUD
RATE
FOSC = 64.000 MHz
Actual
Rate
FOSC = 18.432 MHz
%
Error
SPBRGHx:
SPBRGx
(decimal)
Actual
Rate
%
Error
SPBRGHx:
SPBRGx
(decimal)
FOSC = 16.000 MHz
FOSC = 11.0592 MHz
Actual
Rate
%
Error
SPBRGHx
:SPBRGx
(decimal)
Actual
Rate
%
Error
SPBRGHx:
SPBRGx
(decimal)
300
300.0
0.00
13332
300.0
0.00
3839
300.03
0.01
3332
300.0
0.00
2303
1200
1200.1
0.01
3332
1200
0.00
959
1200.5
0.04
832
1200
0.00
575
2400
2399
-0.02
1666
2400
0.00
479
2398
-0.08
416
2400
0.00
287
9600
9592
-0.08
416
9600
0.00
119
9615
0.16
103
9600
0.00
71
10417
10417
0.00
383
10378
-0.37
110
10417
0.00
95
10473
0.53
65
19.2k
19.23k
0.16
207
19.20k
0.00
59
19.23k
0.16
51
19.20k
0.00
35
57.6k
57.97k
0.64
68
57.60k
0.00
19
58.82k
2.12
16
57.60k
0.00
11
115.2k
114.29k
-0.79
34
115.2k
0.00
9
111.11k
-3.55
8
115.2k
0.00
5
DS40001412H-page 274
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
TABLE 16-5:
BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)
SYNC = 0, BRGH = 0, BRG16 = 1
BAUD
RATE
FOSC = 8.000 MHz
FOSC = 4.000 MHz
Actual
Rate
%
Error
SPBRGHx:
SPBRGx
(decimal)
Actual
Rate
%
Error
FOSC = 3.6864 MHz
SPBRGHx:
SPBRGx
(decimal)
Actual
Rate
%
Error
FOSC = 1.000 MHz
SPBRGHx
:SPBRGx
(decimal)
Actual
Rate
%
Error
SPBRGHx:
SPBRGx
(decimal)
207
300
299.9
-0.02
1666
300.1
0.04
832
300.0
0.00
767
300.5
0.16
1200
1199
-0.08
416
1202
0.16
207
1200
0.00
191
1202
0.16
51
2400
2404
0.16
207
2404
0.16
103
2400
0.00
95
2404
0.16
25
—
9600
9615
0.16
51
9615
0.16
25
9600
0.00
23
—
—
10417
10417
0.00
47
10417
0.00
23
10473
0.53
21
10417
0.00
5
19.2k
19.23k
0.16
25
19.23k
0.16
12
19.20k
0.00
11
—
—
—
57.6k
55556
-3.55
8
—
—
—
57.60k
0.00
3
—
—
—
115.2k
—
—
—
—
—
—
115.2k
0.00
1
—
—
—
SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1
BAUD
RATE
FOSC = 64.000 MHz
Actual
Rate
%
Error
FOSC = 18.432 MHz
SPBRGHx:
SPBRGx
(decimal)
Actual
Rate
%
Error
SPBRGHx:
SPBRGx
(decimal)
FOSC = 16.000 MHz
FOSC = 11.0592 MHz
Actual
Rate
%
Error
SPBRGHx
:SPBRGx
(decimal)
Actual
Rate
%
Error
SPBRGHx:
SPBRGx
(decimal)
300
300
0.00
53332
300.0
0.00
15359
300.0
0.00
13332
300.0
0.00
9215
1200
1200
0.00
13332
1200
0.00
3839
1200.1
0.01
3332
1200
0.00
2303
2400
2400
0.00
6666
2400
0.00
1919
2399.5
-0.02
1666
2400
0.00
1151
9600
9598.1
-0.02
1666
9600
0.00
479
9592
-0.08
416
9600
0.00
287
10417
10417
0.00
1535
10425
0.08
441
10417
0.00
383
10433
0.16
264
143
19.2k
19.21k
0.04
832
19.20k
0.00
239
19.23k
0.16
207
19.20k
0.00
57.6k
57.55k
-0.08
277
57.60k
0.00
79
57.97k
0.64
68
57.60k
0.00
47
115.2k
115.11k
-0.08
138
115.2k
0.00
39
114.29k
-0.79
34
115.2k
0.00
23
SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1
BAUD
RATE
FOSC = 8.000 MHz
Actual
Rate
FOSC = 4.000 MHz
%
Error
SPBRGHx:
SPBRGx
(decimal)
Actual
Rate
FOSC = 3.6864 MHz
%
Error
SPBRGHx:
SPBRGx
(decimal)
Actual
Rate
FOSC = 1.000 MHz
%
Error
SPBRGHx
:SPBRGx
(decimal)
Actual
Rate
%
Error
SPBRGHx:
SPBRGx
(decimal)
832
300
300.0
0.00
6666
300.0
0.01
3332
300.0
0.00
3071
300.1
0.04
1200
1200
-0.02
1666
1200
0.04
832
1200
0.00
767
1202
0.16
207
2400
2401
0.04
832
2398
0.08
416
2400
0.00
383
2404
0.16
103
9600
9615
0.16
207
9615
0.16
103
9600
0.00
95
9615
0.16
25
10417
10417
0.00
191
10417
0.00
95
10473
0.53
87
10417
0.00
23
19.2k
19.23k
0.16
103
19.23k
0.16
51
19.20k
0.00
47
19.23k
0.16
12
57.6k
57.14k
-0.79
34
58.82k
2.12
16
57.60k
0.00
15
—
—
—
115.2k
117.6k
2.12
16
111.1k
-3.55
8
115.2k
0.00
7
—
—
—
2010-2021 Microchip Technology Inc.
DS40001412H-page 275
PIC18(L)F2X/4XK22
16.4.1
AUTO-BAUD DETECT
The EUSART module supports automatic detection
and calibration of the baud rate.
In the Auto-Baud Detect (ABD) mode, the clock to the
BRG is reversed. Rather than the BRG clocking the
incoming RXx signal, the RXx signal is timing the BRG.
The Baud Rate Generator is used to time the period of
a received 55h (ASCII “U”) which is the Sync character
for the LIN bus. The unique feature of this character is
that it has five rising edges including the Stop bit edge.
Setting the ABDEN bit of the BAUDCONx register
starts
the
auto-baud
calibration
sequence
(Section 16.4.2 “Auto-baud Overflow”). While the
ABD sequence takes place, the EUSART state
machine is held in Idle. On the first rising edge of the
receive line, after the Start bit, the SPBRGx begins
counting up using the BRG counter clock as shown in
Table 16-6. The fifth rising edge will occur on the RXx/
DTx pin at the end of the eighth bit period. At that time,
an accumulated value totaling the proper BRG period
is left in the SPBRGHx:SPBRGx register pair, the
ABDEN bit is automatically cleared, and the RCxIF
interrupt flag is set. A read operation on the RCREGx
needs to be performed to clear the RCxIF interrupt.
RCREGx content may be discarded. When calibrating
for modes that do not use the SPBRGHx register the
user can verify that the SPBRGx register did not
overflow by checking for 00h in the SPBRGHx register.
The BRG auto-baud clock is determined by the BRG16
and BRGH bits as shown in Table 16-6. During ABD,
both the SPBRGHx and SPBRGx registers are used as
a 16-bit counter, independent of the BRG16 bit setting.
While calibrating the baud rate period, the SPBRGHx
FIGURE 16-6:
Note 1: If the WUE bit is set with the ABDEN bit,
auto-baud detection will occur on the byte
following the Break character (see
Section 16.4.3 “Auto-Wake-up on
Break”).
2: It is up to the user to determine that the
incoming character baud rate is within the
range of the selected BRG clock source.
Some combinations of oscillator frequency
and EUSART baud rates are not possible.
3: During the auto-baud process, the autobaud counter starts counting at one. Upon
completion of the auto-baud sequence, to
achieve maximum accuracy, subtract one
from the SPBRGHx:SPBRGx register pair.
TABLE 16-6:
BRG COUNTER CLOCK
RATES
BRG16
BRGH
BRG Base
Clock
BRG ABD
Clock
0
0
FOSC/64
FOSC/512
0
1
FOSC/16
FOSC/128
1
0
FOSC/16
FOSC/128
1
FOSC/4
FOSC/32
1
Note:
During the ABD sequence, SPBRGx and
SPBRGHx registers are both used as a
16-bit counter, independent of BRG16
setting.
AUTOMATIC BAUD RATE CALIBRATION
XXXXh
BRG Value
and SPBRGx registers are clocked at 1/8th the BRG
base clock rate. The resulting byte measurement is the
average bit time when clocked at full speed.
RXx/DTx pin
0000h
001Ch
Start
Edge #1
bit 1
bit 0
Edge #2
bit 3
bit 2
Edge #3
bit 5
bit 4
Edge #4
bit 7
bit 6
Edge #5
Stop bit
BRG Clock
Auto Cleared
Set by User
ABDEN bit
RCIDL
RCxIF bit
(Interrupt)
Read
RCREGx
SPBRGx
XXh
1Ch
SPBRGHx
XXh
00h
Note 1:
The ABD sequence requires the EUSART module to be configured in Asynchronous mode.
DS40001412H-page 276
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
16.4.2
AUTO-BAUD OVERFLOW
During the course of automatic baud detection, the
ABDOVF bit of the BAUDCONx register will be set if the
baud rate counter overflows before the fifth rising edge
is detected on the RX pin. The ABDOVF bit indicates
that the counter has exceeded the maximum count that
can fit in the 16 bits of the SPBRGHx:SPBRGx register
pair. After the ABDOVF has been set, the counter continues to count until the fifth rising edge is detected on
the RXx/DTx pin. Upon detecting the fifth RXx/DTx
edge, the hardware will set the RCxIF interrupt flag and
clear the ABDEN bit of the BAUDCONx register. The
RCxIF flag can be subsequently cleared by reading the
RCREGx. The ABDOVF flag can be cleared by software directly.
To terminate the auto-baud process before the RCxIF
flag is set, clear the ABDEN bit then clear the ABDOVF
bit. The ABDOVF bit will remain set if the ABDEN bit is
not cleared first.
16.4.3
AUTO-WAKE-UP ON BREAK
During Sleep mode, all clocks to the EUSART are
suspended. Because of this, the Baud Rate Generator
is inactive and a proper character reception cannot be
performed. The Auto-Wake-up feature allows the
controller to wake up due to activity on the RXx/DTx
line. This feature is available only in Asynchronous
mode.
The Auto-Wake-up feature is enabled by setting the
WUE bit of the BAUDCONx register. Once set, the
normal receive sequence on RXx/DTx is disabled, and
the EUSART remains in an Idle state, monitoring for a
wake-up event independent of the CPU mode. A wakeup event consists of a high-to-low transition on the
RXx/DTx line. (This coincides with the start of a Sync
Break or a wake-up signal character for the LIN
protocol.)
The EUSART module generates an RCxIF interrupt
coincident with the wake-up event. The interrupt is
generated synchronously to the Q clocks in normal CPU
operating modes (Figure 16-7), and asynchronously if
the device is in Sleep mode (Figure 16-8). The interrupt
condition is cleared by reading the RCREGx register.
16.4.3.1
Special Considerations
Break Character
To avoid character errors or character fragments during
a wake-up event, the wake-up character must be all
zeros.
When the wake-up is enabled the function works
independent of the low time on the data stream. If the
WUE bit is set and a valid nonzero character is
received, the low time from the Start bit to the first rising
edge will be interpreted as the wake-up event. The
remaining bits in the character will be received as a
fragmented character and subsequent characters can
result in framing or overrun errors.
Therefore, the initial character in the transmission must
be all ‘0’s. This must be 10 or more bit times, 13-bit
times recommended for LIN bus, or any number of bit
times for standard RS-232 devices.
Oscillator Start-up Time
Oscillator start-up time must be considered, especially
in applications using oscillators with longer start-up
intervals (i.e., LP, XT or HS/PLL mode). The Sync
Break (or wake-up signal) character must be of
sufficient length, and be followed by a sufficient
interval, to allow enough time for the selected oscillator
to start and provide proper initialization of the EUSART.
WUE Bit
The wake-up event causes a receive interrupt by
setting the RCxIF bit. The WUE bit is cleared by
hardware by a rising edge on RXx/DTx. The interrupt
condition is then cleared by software by reading the
RCREGx register and discarding its contents.
To ensure that no actual data is lost, check the RCIDL
bit to verify that a receive operation is not in process
before setting the WUE bit. If a receive operation is not
occurring, the WUE bit may then be set just prior to
entering the Sleep mode.
The WUE bit is automatically cleared by the low-to-high
transition on the RXx line at the end of the Break. This
signals to the user that the Break event is over. At this
point, the EUSART module is in Idle mode waiting to
receive the next character.
2010-2021 Microchip Technology Inc.
DS40001412H-page 277
PIC18(L)F2X/4XK22
FIGURE 16-7:
AUTO-WAKE-UP BIT (WUE) TIMING DURING NORMAL OPERATION
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
OSC1
Auto Cleared
Bit set by user
WUE bit
RXx/DTx Line
RCxIF
Note 1:
Cleared due to User Read of RCREGx
The EUSART remains in Idle while the WUE bit is set.
FIGURE 16-8:
AUTO-WAKE-UP BIT (WUE) TIMINGS DURING SLEEP
Q1Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1Q2 Q3 Q4
Q1
Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1Q2 Q3 Q4
OSC1
Auto Cleared
Bit Set by User
WUE bit
RXx/DTx Line
Note 1
RCxIF
Sleep Command Executed
Note 1:
2:
Sleep Ends
Cleared due to User Read of RCREGx
If the wake-up event requires long oscillator warm-up time, the automatic clearing of the WUE bit can occur while the stposc signal is
still active. This sequence may not depend on the presence of Q clocks.
The EUSART remains in Idle while the WUE bit is set.
DS40001412H-page 278
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
16.4.4
BREAK CHARACTER SEQUENCE
The EUSART module has the capability of sending the
special Break character sequences that are required by
the LIN bus standard. A Break character consists of a
Start bit, followed by 12 ‘0’ bits and a Stop bit.
To send a Break character, set the SENDB and TXEN
bits of the TXSTAx register. The Break character transmission is then initiated by a write to the TXREGx. The
value of data written to TXREGx will be ignored and all
‘0’s will be transmitted.
The SENDB bit is automatically reset by hardware after
the corresponding Stop bit is sent. This allows the user
to preload the transmit FIFO with the next transmit byte
following the Break character (typically, the Sync
character in the LIN specification).
The TRMT bit of the TXSTAx register indicates when the
transmit operation is active or Idle, just as it does during
normal transmission. See Figure 16-9 for the timing of
the Break character sequence.
16.4.4.1
Break and Sync Transmit Sequence
The following sequence will start a message frame
header made up of a Break, followed by an auto-baud
Sync byte. This sequence is typical of a LIN bus host.
1.
2.
3.
4.
5.
Configure the EUSART for the desired mode.
Set the TXEN and SENDB bits to enable the
Break sequence.
Load the TXREGx with a dummy character to
initiate transmission (the value is ignored).
Write ‘55h’ to TXREGx to load the Sync character into the transmit FIFO buffer.
After the Break has been sent, the SENDB bit is
reset by hardware and the Sync character is
then transmitted.
FIGURE 16-9:
Write to TXREGx
When the TXREGx becomes empty, as indicated by
the TXxIF, the next data byte can be written to
TXREGx.
16.4.5
RECEIVING A BREAK CHARACTER
The Enhanced EUSART module can receive a Break
character in two ways.
The first method to detect a Break character uses the
FERR bit of the RCSTAx register and the Received
data as indicated by RCREGx. The Baud Rate
Generator is assumed to have been initialized to the
expected baud rate.
A Break character has been received when;
• RCxIF bit is set
• FERR bit is set
• RCREGx = 00h
The second method uses the Auto-Wake-up feature
described in Section 16.4.3 “Auto-Wake-up on
Break”. By enabling this feature, the EUSART will
sample the next two transitions on RXx/DTx, cause an
RCxIF interrupt, and receive the next data byte
followed by another interrupt.
Note that following a Break character, the user will
typically want to enable the Auto-Baud Detect feature.
For both methods, the user can set the ABDEN bit of
the BAUDCONx register before placing the EUSART in
Sleep mode.
SEND BREAK CHARACTER SEQUENCE
Dummy Write
BRG Output
(Shift Clock)
TXx/CKx (pin)
Start bit
bit 0
bit 1
bit 11
Stop bit
Break
TXxIF bit
(Transmit
interrupt Flag)
TRMT bit
(Transmit Shift
Reg. Empty Flag)
SENDB
(send Break
control bit)
2010-2021 Microchip Technology Inc.
SENDB Sampled Here
Auto Cleared
DS40001412H-page 279
PIC18(L)F2X/4XK22
16.5
EUSART Synchronous Mode
Synchronous serial communications are typically used
in systems with a single host and one or more clients.
The host device contains the necessary circuitry for
baud rate generation and supplies the clock for all
devices in the system. Client devices can take
advantage of the host clock by eliminating the internal
clock generation circuitry.
There are two signal lines in Synchronous mode: a
bidirectional data line and a clock line. Clients use the
external clock supplied by the host to shift the serial
data into and out of their respective receive and
transmit shift registers. Since the data line is
bidirectional, synchronous operation is half-duplex
only. Half-duplex refers to the fact that host and client
devices can receive and transmit data but not both
simultaneously. The EUSART can operate as either a
host or client device.
Start and Stop bits are not used in synchronous
transmissions.
16.5.1
SYNCHRONOUS HOST MODE
The following bits are used to configure the EUSART
for Synchronous Host operation:
•
•
•
•
•
SYNC = 1
CSRC = 1
SREN = 0 (for transmit); SREN = 1 (for receive)
CREN = 0 (for transmit); CREN = 1 (for receive)
SPEN = 1
Setting the SYNC bit of the TXSTAx register configures
the device for synchronous operation. Setting the CSRC
bit of the TXSTAx register configures the device as a
host. Clearing the SREN and CREN bits of the RCSTAx
register ensures that the device is in the Transmit mode,
otherwise the device will be configured to receive. Setting
the SPEN bit of the RCSTAx register enables the
EUSART. If the RXx/DTx or TXx/CKx pins are shared
with an analog peripheral the analog I/O functions must
be disabled by clearing the corresponding ANSEL bits.
The TRIS bits corresponding to the RXx/DTx and
TXx/CKx pins may be set.
16.5.1.1
16.5.1.2
Clock Polarity
A clock polarity option is provided for Microwire
compatibility. Clock polarity is selected with the CKTXP
bit of the BAUDCONx register. Setting the CKTXP bit
sets the clock Idle state as high. When the CKTXP bit
is set, the data changes on the falling edge of each
clock and is sampled on the rising edge of each clock.
Clearing the CKTXP bit sets the Idle state as low. When
the CKTXP bit is cleared, the data changes on the
rising edge of each clock and is sampled on the falling
edge of each clock.
16.5.1.3
Synchronous Host Transmission
Data is transferred out of the device on the RXx/DTx
pin. The RXx/DTx and TXx/CKx pin output drivers are
automatically enabled when the EUSART is configured
for synchronous host transmit operation.
A transmission is initiated by writing a character to the
TXREGx register. If the TSR still contains all or part of
a previous character the new character data is held in
the TXREGx until the last bit of the previous character
has been transmitted. If this is the first character, or the
previous character has been completely flushed from
the TSR, the data in the TXREGx is immediately transferred to the TSR. The transmission of the character
commences immediately following the transfer of the
data to the TSR from the TXREGx.
Each data bit changes on the leading edge of the host
clock and remains valid until the subsequent leading
clock edge.
Note:
16.5.1.4
The TSR register is not mapped in data
memory, so it is not available to the user.
Data Polarity
The polarity of the transmit and receive data can be
controlled with the DTRXP bit of the BAUDCONx
register. The default state of this bit is ‘0’ which selects
high true transmit and receive data. Setting the DTRXP
bit to ‘1’ will invert the data resulting in low true transmit
and receive data.
Host Clock
Synchronous data transfers use a separate clock line,
which is synchronous with the data. A device configured
as a host transmits the clock on the TXx/CKx line. The
TXx/CKx pin output driver is automatically enabled when
the EUSART is configured for synchronous transmit or
receive operation. Serial data bits change on the leading
edge to ensure they are valid at the trailing edge of each
clock. One clock cycle is generated for each data bit.
Only as many clock cycles are generated as there are
data bits.
DS40001412H-page 280
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
16.5.1.5
1.
2.
3.
Synchronous Host Transmission
Setup:
4.
5.
6.
7.
Initialize the SPBRGHx, SPBRGx register pair
and the BRGH and BRG16 bits to achieve the
desired baud rate (see Section 16.4 “EUSART
Baud Rate Generator (BRG)”).
Set the RXx/DTx and TXx/CKx TRIS controls to
‘1’.
Enable the synchronous host serial port by setting bits SYNC, SPEN and CSRC. Set the TRIS
bits corresponding to the RXx/DTx and TXx/CKx
I/O pins.
FIGURE 16-10:
8.
9.
Disable Receive mode by clearing bits SREN
and CREN.
Enable Transmit mode by setting the TXEN bit.
If 9-bit transmission is desired, set the TX9 bit.
If interrupts are desired, set the TXxIE, GIE/
GIEH and PEIE/GIEL interrupt enable bits.
If 9-bit transmission is selected, the ninth bit may
be loaded in the TX9D bit.
Start transmission by loading data to the
TXREGx register.
SYNCHRONOUS TRANSMISSION
RXx/DTx
pin
bit 0
bit 1
Word 1
bit 2
bit 7
bit 0
bit 1
Word 2
bit 7
TXx/CKx pin
(SCKP = 0)
TXx/CKx pin
(SCKP = 1)
Write to
TXREGx Reg
Write Word 1
Write Word 2
TXxIF bit
(Interrupt Flag)
TRMT bit
TXEN bit
Note:
‘1’
‘1’
Sync Host mode, SPBRGx = 0, continuous transmission of two 8-bit words.
FIGURE 16-11:
SYNCHRONOUS TRANSMISSION (THROUGH TXEN)
RXx/DTx pin
bit 0
bit 1
bit 2
bit 6
bit 7
TXx/CKx pin
Write to
TXREGx reg
TXxIF bit
TRMT bit
TXEN bit
2010-2021 Microchip Technology Inc.
DS40001412H-page 281
PIC18(L)F2X/4XK22
TABLE 16-7:
REGISTERS ASSOCIATED WITH SYNCHRONOUS HOST TRANSMISSION
Name
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Register
on Page
BAUDCON1
ABDOVF
RCIDL
DTRXP
CKTXP
BRG16
—
WUE
ABDEN
271
BAUDCON2
ABDOVF
RCIDL
DTRXP
CKTXP
BRG16
—
WUE
ABDEN
271
INTCON
109
GIE/GIEH
PEIE/GIEL
TMR0IE
INT0IE
RBIE
TMR0IF
INT0IF
RBIF
IPR1
—
ADIP
RC1IP
TX1IP
SSP1IP
CCP1IP
TMR2IP
TMR1IP
IPR3
SSP2IP
BCL2IP
RC2IP
TX2IP
CTMUIP
PIE1
—
ADIE
RC1IE
TX1IE
SSP1IE
PIE3
SSP2IE
BCL2IE
RC2IE
TX2IE
CTMUIE
TMR5GIP TMR3GIP TMR1GIP
CCP1IE
TMR2IE
TMR1IE
TMR5GIE TMR3GIE TMR1GIE
121
123
117
119
PIR1
—
ADIF
RC1IF
TX1IF
SSP1IF
PIR3
SSP2IF
BCL2IF
RC2IF
TX2IF
CTMUIF
TMR5GIF TMR3GIF TMR1GIF
114
PMD0
UART2MD
UART1MD
TMR6MD
TMR5MD
TMR4MD
TMR3MD TMR2MD TMR1MD
52
RCSTA1
SPEN
RX9
SREN
CREN
ADDEN
FERR
OERR
RX9D
270
RCSTA2
SPEN
RX9
SREN
CREN
ADDEN
FERR
OERR
RX9D
270
SPBRG1
CCP1IF
TMR2IF
TMR1IF
112
EUSART1 Baud Rate Generator, Low Byte
—
SPBRGH1
EUSART1 Baud Rate Generator, High Byte
—
SPBRG2
EUSART2 Baud Rate Generator, Low Byte
—
SPBRGH2
EUSART2 Baud Rate Generator, High Byte
—
TRISB
(2)
TRISB7
TRISB6
TRISB5
TRISB4
TRISB3
TRISB2
TRISB1
TRISB0
151
TRISC
TRISC7
TRISC6
TRISC5
TRISC4
TRISC3
TRISC2
TRISC1
TRISC0
151
TRISD(1)
TRISD7
TRISD6
TRISD5
TRISD4
TRISD3
TRISD2
TRISD1
TRISD0
151
ANSELC
ANSC7
ANSC6
ANSC5
ANSC4
ANSC3
ANSC2
—
—
150
ANSELD(1)
ANSD7
ANSD6
ANSD5
ANSD4
ANSD3
ANSD2
ANSD1
ANSD0
150
BRGH
TRMT
TX9D
269
BRGH
TRMT
TX9D
269
TXREG1
TXSTA1
EUSART1 Transmit Register
CSRC
TX9
TXEN
CSRC
TX9
TXEN
TXREG2
TXSTA2
Legend:
Note
SYNC
SENDB
—
EUSART2 Transmit Register
SYNC
SENDB
—
— = unimplemented locations, read as ‘0’. Shaded bits are not used for synchronous host transmission.
1: PIC18(L)F4XK22 devices.
2: PIC18(L)F2XK22 devices.
DS40001412H-page 282
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
16.5.1.6
Synchronous Host Reception
Data is received at the RXx/DTx pin. The RXx/DTx pin
output driver must be disabled by setting the
corresponding TRIS bits when the EUSART is
configured for synchronous host receive operation.
In Synchronous mode, reception is enabled by setting
either the Single Receive Enable bit (SREN of the
RCSTAx register) or the Continuous Receive Enable
bit (CREN of the RCSTAx register).
When SREN is set and CREN is clear, only as many
clock cycles are generated as there are data bits in a
single character. The SREN bit is automatically cleared
at the completion of one character. When CREN is set,
clocks are continuously generated until CREN is
cleared. If CREN is cleared in the middle of a character
the CK clock stops immediately and the partial character is discarded. If SREN and CREN are both set, then
SREN is cleared at the completion of the first character
and CREN takes precedence.
To initiate reception, set either SREN or CREN. Data is
sampled at the RXx/DTx pin on the trailing edge of the
TXx/CKx clock pin and is shifted into the Receive Shift
Register (RSR). When a complete character is
received into the RSR, the RCxIF bit is set and the
character is automatically transferred to the two
character receive FIFO. The Least Significant eight bits
of the top character in the receive FIFO are available in
RCREGx. The RCxIF bit remains set as long as there
are un-read characters in the receive FIFO.
16.5.1.7
Client Clock
Synchronous data transfers use a separate clock line,
which is synchronous with the data. A device configured
as a client receives the clock on the TXx/CKx line. The
TXx/CKx pin output driver must be disabled by setting
the associated TRIS bit when the device is configured
for synchronous client transmit or receive operation.
Serial data bits change on the leading edge to ensure
they are valid at the trailing edge of each clock. One data
bit is transferred for each clock cycle. Only as many
clock cycles may be received as there are data bits.
16.5.1.8
Receive Overrun Error
The receive FIFO buffer can hold two characters. An
overrun error will be generated if a third character, in its
entirety, is received before RCREGx is read to access
the FIFO. When this happens the OERR bit of the
RCSTAx register is set. Previous data in the FIFO will
not be overwritten. The two characters in the FIFO
buffer can be read, however, no additional characters
will be received until the error is cleared. The OERR bit
can only be cleared by clearing the overrun condition.
If the overrun error occurred when the SREN bit is set
and CREN is clear then the error is cleared by reading
RCREGx.
2010-2021 Microchip Technology Inc.
If the overrun occurred when the CREN bit is set then
the error condition is cleared by either clearing the
CREN bit of the RCSTAx register or by clearing the
SPEN bit which resets the EUSART.
16.5.1.9
Receiving 9-bit Characters
The EUSART supports 9-bit character reception. When
the RX9 bit of the RCSTAx register is set the EUSART
will shift 9-bits into the RSR for each character
received. The RX9D bit of the RCSTAx register is the
ninth, and Most Significant, data bit of the top unread
character in the receive FIFO. When reading 9-bit data
from the receive FIFO buffer, the RX9D data bit must
be read before reading the eight Least Significant bits
from the RCREGx.
16.5.1.10
Synchronous Host Reception Setup:
1.
Initialize the SPBRGHx, SPBRGx register pair
for the appropriate baud rate. Set or clear the
BRGH and BRG16 bits, as required, to achieve
the desired baud rate.
2. Set the RXx/DTx and TXx/CKx TRIS controls to
‘1’.
3. Enable the synchronous host serial port by setting bits SYNC, SPEN and CSRC. Disable RXx/
DTx and TXx/CKx output drivers by setting the
corresponding TRIS bits.
4. Ensure bits CREN and SREN are clear.
5. If using interrupts, set the GIE/GIEH and PEIE/
GIEL bits of the INTCON register and set
RCxIE.
6. If 9-bit reception is desired, set bit RX9.
7. Start reception by setting the SREN bit or for
continuous reception, set the CREN bit.
8. Interrupt flag bit RCxIF will be set when reception of a character is complete. An interrupt will
be generated if the enable bit RCxIE was set.
9. Read the RCSTAx register to get the ninth bit (if
enabled) and determine if any error occurred
during reception.
10. Read the 8-bit received data by reading the
RCREGx register.
11. If an overrun error occurs, clear the error by
either clearing the CREN bit of the RCSTAx
register or by clearing the SPEN bit which resets
the EUSART.
DS40001412H-page 283
PIC18(L)F2X/4XK22
FIGURE 16-12:
SYNCHRONOUS RECEPTION (HOST MODE, SREN)
RXx/DTx
pin
bit 0
bit 1
bit 2
bit 3
bit 4
bit 5
bit 6
bit 7
TXx/CKx pin
(SCKP = 0)
TXx/CKx pin
(SCKP = 1)
Write to
bit SREN
SREN bit
CREN bit ‘0’
‘0’
RCxIF bit
(Interrupt)
Read
RCREGx
Note:
Timing diagram demonstrates Sync Host mode with bit SREN = 1 and bit BRGH = 0.
TABLE 16-8:
REGISTERS ASSOCIATED WITH SYNCHRONOUS HOST RECEPTION
Name
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Register
on Page
BAUDCON1
ABDOVF
RCIDL
DTRXP
CKTXP
BRG16
—
WUE
ABDEN
271
BAUDCON2
ABDOVF
RCIDL
DTRXP
CKTXP
BRG16
—
WUE
ABDEN
271
INTCON
GIE/GIEH PEIE/GIEL
TMR0IE
INT0IE
RBIE
TMR0IF
INT0IF
RBIF
109
IPR1
—
ADIP
RC1IP
TX1IP
SSP1IP
CCP1IP
TMR2IP
TMR1IP
121
IPR3
SSP2IP
BCL2IP
RC2IP
TX2IP
CTMUIP
TMR5GIP
TMR3GIP TMR1GIP
PIE1
—
ADIE
RC1IE
TX1IE
SSP1IE
CCP1IE
PIE3
SSP2IE
BCL2IE
RC2IE
TX2IE
CTMUIE
TMR5GIE
PIR1
—
ADIF
RC1IF
TX1IF
SSP1IF
CCP1IF
TMR2IF
TMR1IF
112
SSP2IF
BCL2IF
RC2IF
TX2IF
CTMUIF
TMR5GIF
TMR3GIF
TMR1GIF
114
TMR4MD
TMR3MD
TMR2MD
TMR1MD
52
PIR3
PMD0
UART2MD UART1MD TMR6MD TMR5MD
RCREG1
RCSTA1
TMR1IE
TMR3GIE TMR1GIE
EUSART1 Receive Register
SPEN
RX9
SREN
RCREG2
RCSTA2
TMR2IE
123
CREN
ADDEN
RX9
SREN
CREN
ADDEN
119
—
FERR
OERR
RX9D
EUSART2 Receive Register
SPEN
117
270
—
FERR
OERR
RX9D
270
SPBRG1
EUSART1 Baud Rate Generator, Low Byte
—
SPBRGH1
EUSART1 Baud Rate Generator, High Byte
—
SPBRG2
EUSART2 Baud Rate Generator, Low Byte
—
SPBRGH2
EUSART2 Baud Rate Generator, High Byte
—
TXSTA1
CSRC
TX9
TXEN
SYNC
SENDB
BRGH
TRMT
TX9D
269
TXSTA2
CSRC
TX9
TXEN
SYNC
SENDB
BRGH
TRMT
TX9D
269
Legend:
— = unimplemented locations, read as ‘0’. Shaded bits are not used for synchronous host reception.
DS40001412H-page 284
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
16.5.2
SYNCHRONOUS CLIENT MODE
The following bits are used to configure the EUSART
for Synchronous client operation:
•
•
•
•
•
SYNC = 1
CSRC = 0
SREN = 0 (for transmit); SREN = 1 (for receive)
CREN = 0 (for transmit); CREN = 1 (for receive)
SPEN = 1
Setting the SYNC bit of the TXSTAx register configures
the device for synchronous operation. Clearing the
CSRC bit of the TXSTAx register configures the device as
a client. Clearing the SREN and CREN bits of the
RCSTAx register ensures that the device is in the
Transmit mode, otherwise the device will be configured to
receive. Setting the SPEN bit of the RCSTAx register
enables the EUSART. If the RXx/DTx or TXx/CKx pins
are shared with an analog peripheral the analog I/O
functions must be disabled by clearing the corresponding
ANSEL bits.
16.5.2.1
The operation of the Synchronous Host and Client modes
are identical (see Section 16.5.1.3 “Synchronous Host
Transmission”), except in the case of the Sleep mode.
If two words are written to the TXREGx and then the
SLEEP instruction is executed, the following will occur:
1.
2.
3.
4.
5.
RXx/DTx and TXx/CKx pin output drivers must be
disabled by setting the corresponding TRIS bits.
The first character will immediately transfer to
the TSR register and transmit.
The second word will remain in TXREGx
register.
The TXxIF bit will not be set.
After the first character has been shifted out of
TSR, the TXREGx register will transfer the
second character to the TSR and the TXxIF bit
will now be set.
If the PEIE/GIEL and TXxIE bits are set, the
interrupt will wake the device from Sleep and
execute the next instruction. If the GIE/GIEH bit
is also set, the program will call the Interrupt
Service Routine.
16.5.2.2
1.
2.
3.
4.
5.
6.
7.
8.
2010-2021 Microchip Technology Inc.
EUSART Synchronous Client
Transmit
Synchronous Client Transmission
Setup:
Set the SYNC and SPEN bits and clear the
CSRC bit.
Set the RXx/DTx and TXx/CKx TRIS controls to
‘1’.
Clear the CREN and SREN bits.
If using interrupts, ensure that the GIE/GIEH
and PEIE/GIEL bits of the INTCON register are
set and set the TXxIE bit.
If 9-bit transmission is desired, set the TX9 bit.
Enable transmission by setting the TXEN bit.
If 9-bit transmission is selected, insert the Most
Significant bit into the TX9D bit.
Start transmission by writing the Least
Significant eight bits to the TXREGx register.
DS40001412H-page 285
PIC18(L)F2X/4XK22
TABLE 16-9:
REGISTERS ASSOCIATED WITH SYNCHRONOUS CLIENT TRANSMISSION
Name
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Register
on Page
BAUDCON1
ABDOVF
RCIDL
DTRXP
CKTXP
BRG16
—
WUE
ABDEN
271
BAUDCON2
ABDOVF
RCIDL
DTRXP
CKTXP
BRG16
—
WUE
ABDEN
271
INTCON
GIE/GIEH
PEIE/GIEL
TMR0IE
INT0IE
RBIE
TMR0IF
INT0IF
RBIF
109
IPR1
—
ADIP
RC1IP
TX1IP
SSP1IP
CCP1IP
TMR2IP
TMR1IP
121
IPR3
SSP2IP
BCL2IP
RC2IP
TX2IP
CTMUIP
TMR5GIP
TMR3GIP
TMR1GIP
123
PIE1
—
ADIE
RC1IE
TX1IE
SSP1IE
CCP1IE
TMR2IE
TMR1IE
117
PIE3
SSP2IE
BCL2IE
RC2IE
TX2IE
CTMUIE
TMR5GIE
TMR3GIE
TMR1GIE
119
PIR1
—
ADIF
RC1IF
TX1IF
SSP1IF
CCP1IF
TMR2IF
TMR1IF
112
PIR3
SSP2IF
BCL2IF
RC2IF
TX2IF
CTMUIF
TMR5GIF
TMR3GIF
TMR1GIF
114
PMD0
TMR6MD TMR5MD TMR4MD
UART2MD
UART1MD
RCSTA1
SPEN
RX9
RCSTA2
SPEN
RX9
TMR3MD
TMR2MD
TMR1MD
52
SREN
CREN
ADDEN
FERR
OERR
RX9D
270
SREN
CREN
ADDEN
FERR
OERR
RX9D
270
SPBRG1
EUSART1 Baud Rate Generator, Low Byte
—
SPBRGH1
EUSART1 Baud Rate Generator, High Byte
—
SPBRG2
EUSART2 Baud Rate Generator, Low Byte
—
SPBRGH2
EUSART2 Baud Rate Generator, High Byte
—
ANSELC
ANSC7
ANSC6
ANSC5
ANSC4
ANSC3
ANSC2
—
—
150
ANSELD(1)
ANSD7
ANSD6
ANSD5
ANSD4
ANSD3
ANSD2
ANSD1
ANSD0
150
TRISB(2)
TRISB7
TRISB6
TRISB5
TRISB4
TRISB3
TRISB2
TRISB1
TRISB0
151
TRISC
TRISC7
TRISC6
TRISC5
TRISC4
TRISC3
TRISC2
TRISC1
TRISC0
151
TRISD(1)
TRISD7
TRISD6
TRISD5
TRISD4
TRISD3
TRISD2
TRISD1
TRISD0
151
TXREG1
TXSTA1
EUSART1 Transmit Register
CSRC
TX9
TXREG2
TXSTA2
TXEN
SYNC
SENDB
—
BRGH
TRMT
TX9D
269
EUSART2 Transmit Register
CSRC
TX9
TXEN
SYNC
SENDB
—
BRGH
TRMT
TX9D
269
Legend: — = unimplemented locations, read as ‘0’. Shaded bits are not used for synchronous client transmission.
Note
1: PIC18(L)F4XK22 devices.
2: PIC18(L)F2XK22 devices.
DS40001412H-page 286
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
16.5.2.3
EUSART Synchronous Client
Reception
16.5.2.4
The operation of the Synchronous Host and Client
modes is identical (Section 16.5.1.6 “Synchronous
Host Reception”), with the following exceptions:
• Sleep
• CREN bit is always set, therefore the receiver is
never Idle
• SREN bit, which is a “don't care” in Client mode
1.
2.
3.
A character may be received while in Sleep mode by
setting the CREN bit prior to entering Sleep. Once the
word is received, the RSR register will transfer the data
to the RCREGx register. If the RCxIE enable bit is set,
the interrupt generated will wake the device from Sleep
and execute the next instruction. If the GIE/GIEH bit is
also set, the program will branch to the interrupt vector.
4.
5.
6.
7.
8.
9.
Synchronous Client Reception
Setup:
Set the SYNC and SPEN bits and clear the
CSRC bit.
Set the RXx/DTx and TXx/CKx TRIS controls to
‘1’.
If using interrupts, ensure that the GIE/GIEH
and PEIE/GIEL bits of the INTCON register are
set and set the RCxIE bit.
If 9-bit reception is desired, set the RX9 bit.
Set the CREN bit to enable reception.
The RCxIF bit will be set when reception is
complete. An interrupt will be generated if the
RCxIE bit was set.
If 9-bit mode is enabled, retrieve the Most
Significant bit from the RX9D bit of the RCSTAx
register.
Retrieve the eight Least Significant bits from the
receive FIFO by reading the RCREGx register.
If an overrun error occurs, clear the error by
either clearing the CREN bit of the RCSTAx
register or by clearing the SPEN bit which resets
the EUSART.
TABLE 16-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS CLIENT RECEPTION
Name
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Register
on Page
BAUDCON1
ABDOVF
RCIDL
DTRXP
CKTXP
BRG16
—
WUE
ABDEN
271
BAUDCON2
ABDOVF
RCIDL
DTRXP
CKTXP
BRG16
—
WUE
ABDEN
271
INTCON
GIE/GIEH
PEIE/GIEL
TMR0IE
INT0IE
RBIE
TMR0IF
INT0IF
RBIF
109
IPR1
—
ADIP
RC1IP
TX1IP
SSP1IP
CCP1IP
TMR2IP
TMR1IP
121
IPR3
SSP2IP
BCL2IP
RC2IP
TX2IP
CTMUIP
TMR5GIP
TMR3GIP
TMR1GIP
123
PIE1
—
ADIE
RC1IE
TX1IE
SSP1IE
CCP1IE
TMR2IE
TMR1IE
117
PIE3
SSP2IE
BCL2IE
RC2IE
TX2IE
CTMUIE
TMR5GIE
TMR3GIE
TMR1GIE
119
PIR1
—
ADIF
RC1IF
TX1IF
SSP1IF
CCP1IF
TMR2IF
TMR1IF
112
SSP2IF
BCL2IF
RC2IF
TX2IF
CTMUIF
TMR5GIF
TMR3GIF
TMR1GIF
114
TMR4MD
TMR3MD
TMR2MD
TMR1MD
52
PIR3
PMD0
UART2MD UART1MD TMR6MD TMR5MD
RCREG1
RCSTA1
EUSART1 Receive Register
SPEN
RX9
SREN
RCREG2
RCSTA2
CREN
ADDEN
—
FERR
OERR
RX9D
EUSART2 Receive Register
SPEN
RX9
SREN
CREN
ADDEN
270
—
FERR
OERR
RX9D
270
SPBRG1
EUSART1 Baud Rate Generator, Low Byte
—
SPBRGH1
EUSART1 Baud Rate Generator, High Byte
—
SPBRG2
EUSART2 Baud Rate Generator, Low Byte
—
SPBRGH2
TXSTA1
TXSTA2
Legend:
EUSART2 Baud Rate Generator, High Byte
—
CSRC
TX9
TXEN
SYNC
SENDB
BRGH
TRMT
TX9D
269
CSRC
TX9
TXEN
SYNC
SENDB
BRGH
TRMT
TX9D
269
— = unimplemented locations, read as ‘0’. Shaded bits are not used for synchronous client reception.
2010-2021 Microchip Technology Inc.
DS40001412H-page 287
PIC18(L)F2X/4XK22
17.0
ANALOG-TO-DIGITAL
CONVERTER (ADC) MODULE
The ADC voltage reference is software selectable to
either VDD or a voltage applied to the external reference
pins.
The Analog-to-Digital Converter (ADC) allows
conversion of an analog input signal to a 10-bit binary
representation of that signal. This device uses analog
inputs, which are multiplexed into a single sample and
hold circuit. The output of the sample and hold is
connected to the input of the converter. The converter
generates a 10-bit binary result via successive
approximation and stores the conversion result into the
ADC result registers (ADRESL and ADRESH).
FIGURE 17-1:
The ADC can generate an interrupt upon completion of
a conversion. This interrupt can be used to wake up the
device from Sleep.
Figure 17-1 shows the block diagram of the ADC.
ADC BLOCK DIAGRAM
5
FVR BUF2
11111
DAC
11110
CTMU
11101
AN28(1)
AN27(1)
CHS
11100
11011
ADCMD
AN5(1)
AN4
AN3
AN2
AN1
AN0
ADON
00101
10-Bit ADC
00100
GO/DONE
10
00011
00010
ADFM
00001
0 = Left Justify
1 = Right Justify
00000
10
2
PVCFG
ADRESH
AVDD
VREF+/AN3
01
FVR BUF2
10
Reserved
11
2
AVSS
VREF-/AN2
ADRESL
00
NVCFG
00
01
Reserved
10
Reserved
11
Note: Additional ADC channels AN5-AN7 and AN20-AN27 are only available on PIC18(L)F4XK22 devices.
DS40001412H-page 288
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
17.1
ADC Configuration
When configuring and using the ADC the following
functions must be considered:
•
•
•
•
•
•
Port configuration
Channel selection
ADC voltage reference selection
ADC conversion clock source
Interrupt control
Results formatting
17.1.1
PORT CONFIGURATION
The ANSELx and TRISx registers configure the A/D
port pins. Any port pin needed as an analog input may
have its corresponding ANSx bit set to disable the
digital input buffer and TRISx bit set to disable the
digital output driver. If the TRISx bit is cleared, the
digital output level (VOH or VOL) will be converted.
The A/D operation is independent of the state of the
ANSx bits and the TRIS bits.
Note 1: When reading the PORT register, all pins
with their corresponding ANSx bit set
read as cleared (a low level). However,
analog conversion of pins configured as
digital inputs (ANSx bit cleared and
TRISx bit set) will be accurately
converted.
2: Analog levels on any pin with the corresponding ANSx bit cleared may cause
the digital input buffer to consume current
out of the device’s specification limits.
3: The PBADEN bit in Configuration
Register 3H configures PORTB pins to
reset as analog or digital pins by
controlling how the bits in ANSELB are
reset.
17.1.2
CHANNEL SELECTION
17.1.3
ADC VOLTAGE REFERENCE
The PVCFG and NVCFG bits of the
ADCON1 register provide independent control of the
positive and negative voltage references.
The positive voltage reference can be:
• VDD
• the fixed voltage reference (FVR BUF2)
• an external voltage source (VREF+)
The negative voltage reference can be:
• VSS
• an external voltage source (VREF-)
17.1.4
SELECTING AND CONFIGURING
ACQUISITION TIME
The ADCON2 register allows the user to select an
acquisition time that occurs each time the GO/DONE
bit is set.
Acquisition time is set with the ACQT bits of the
ADCON2 register. Acquisition delays cover a range of
2 to 20 TAD. When the GO/DONE bit is set, the A/D
module continues to sample the input for the selected
acquisition time, then automatically begins a
conversion. Since the acquisition time is programmed,
there is no need to wait for an acquisition time between
selecting a channel and setting the GO/DONE bit.
Manual
acquisition
is
selected
when
ACQT = 000. When the GO/DONE bit is set,
sampling is stopped and a conversion begins. The user
is responsible for ensuring the required acquisition time
has passed between selecting the desired input
channel and setting the GO/DONE bit. This option is
also the default Reset state of the ACQT bits and
is compatible with devices that do not offer
programmable acquisition times.
In either case, when the conversion is completed, the
GO/DONE bit is cleared, the ADIF flag is set and the
A/D begins sampling the currently selected channel
again. When an acquisition time is programmed, there
is no indication of when the acquisition time ends and
the conversion begins.
The CHS bits of the ADCON0 register determine which
channel is connected to the sample and hold circuit.
When changing channels, a delay is required before
starting the next conversion. Refer to Section 17.2
“ADC Operation” for more information.
2010-2021 Microchip Technology Inc.
DS40001412H-page 289
PIC18(L)F2X/4XK22
17.1.5
CONVERSION CLOCK
17.1.6
The source of the conversion clock is software
selectable via the ADCS bits of the ADCON2 register.
There are seven possible clock options:
•
•
•
•
•
•
•
The ADC module allows for the ability to generate an
interrupt upon completion of an Analog-to-Digital
Conversion. The ADC interrupt enable is the ADIE bit
in the PIE1 register and the interrupt priority is the ADIP
bit in the IPR1 register. The ADC interrupt flag is the
ADIF bit in the PIR1 register. The ADIF bit must be
cleared by software.
FOSC/2
FOSC/4
FOSC/8
FOSC/16
FOSC/32
FOSC/64
FRC (dedicated internal oscillator)
Note:
The time to complete one bit conversion is defined as
TAD. One full 10-bit conversion requires 11 TAD periods
as shown in Figure 17-3.
Unless using the FRC, any changes in the
system clock frequency will change the
ADC clock frequency, which may
adversely affect the ADC result.
TABLE 17-1:
ADC CLOCK PERIOD (TAD) VS. DEVICE OPERATING FREQUENCIES
ADC Clock Period (TAD)
ADC Clock Source
FOSC/2
FOSC/4
ADCS
000
100
Device Frequency (FOSC)
64 MHz
31.25
ns(2)
62.5
ns(2)
ns(2)
FOSC/8
001
400
FOSC/16
101
250 ns(2)
FOSC/32
010
ns(2)
FOSC/64
110
FRC
Legend:
Note 1:
2:
3:
4:
The ADIF bit is set at the completion of
every conversion, regardless of whether
or not the ADC interrupt is enabled.
This interrupt can be generated while the device is
operating or while in Sleep. If the device is in Sleep, the
interrupt will wake up the device. Upon waking from
Sleep, the next instruction following the SLEEP
instruction is always executed. If the user is attempting
to wake up from Sleep and resume in-line code
execution, the global interrupt must be disabled. If the
global interrupt is enabled, execution will switch to the
Interrupt Service Routine.
For correct conversion, the appropriate TAD specification
must be met. See A/D conversion requirements in
Table 27-22 for more information. Table 17-1 gives
examples of appropriate ADC clock selections.
Note:
INTERRUPTS
x11
500
1.0 s
(1,4)
1-4 s
16 MHz
4 MHz
125
250
ns(2)
1.0 s
4.0 s(3)
500
ns(2)
2.0 s
8.0 s(3)
1.0 s
4.0 s(3)
16.0 s(3)
2.0 s
s(3)
32.0 s(3)
16.0 s(3)
64.0 s(3)
(1,4)
1-4 s(1,4)
4.0 s(3)
(1,4)
1-4 s
500
8.0
ns(2)
1 MHz
ns(2)
1-4 s
2.0 s
Shaded cells are outside of recommended range.
The FRC source has a typical TAD time of 1.7 s.
These values violate the minimum required TAD time.
For faster conversion times, the selection of another clock source is recommended.
The ADC clock period (TAD) and total ADC conversion time can be minimized when the ADC clock is
derived from the system clock FOSC. However, the FRC oscillator source must be used when conversions
are to be performed with the device in Sleep mode.
DS40001412H-page 290
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
17.1.7
RESULT FORMATTING
The 10-bit A/D conversion result can be supplied in two
formats, left justified or right justified. The ADFM bit of
the ADCON2 register controls the output format.
Figure 17-2 shows the two output formats.
FIGURE 17-2:
10-BIT A/D CONVERSION RESULT FORMAT
ADRESH
(ADFM = 0)
ADRESL
MSB
LSB
bit 7
bit 0
bit 7
10-bit A/D Result
bit 0
Unimplemented: Read as ‘0’
MSB
(ADFM = 1)
bit 7
Unimplemented: Read as ‘0’
2010-2021 Microchip Technology Inc.
LSB
bit 0
bit 7
bit 0
10-bit A/D Result
DS40001412H-page 291
PIC18(L)F2X/4XK22
17.2
ADC Operation
17.2.1
Figure 17-3 shows the operation of the A/D converter
after the GO bit has been set and the ACQT bits
are cleared. A conversion is started after the following
instruction to allow entry into SLEEP mode before the
conversion begins.
STARTING A CONVERSION
To enable the ADC module, the ADON bit of the
ADCON0 register must be set to a ‘1’. Setting the GO/
DONE bit of the ADCON0 register to a ‘1’ will, depending on the ACQT bits of the ADCON2 register, either
immediately start the Analog-to-Digital conversion or
start an acquisition delay followed by the Analog-toDigital conversion.
Figure 17-4 shows the operation of the A/D converter
after the GO bit has been set and the ACQT bits
are set to ‘010’ which selects a 4 TAD acquisition time
before the conversion starts.
Note:
FIGURE 17-3:
The GO/DONE bit may not be set in the
same instruction that turns on the ADC.
Refer
to
Section 17.2.10
“A/D
Conversion Procedure”.
A/D CONVERSION TAD CYCLES (ACQT = 000, TACQ = 0)
TCY - TAD TAD1 TAD2 TAD3 TAD4 TAD5 TAD6 TAD7 TAD8 TAD9 TAD10 TAD11 1 TCY
b4
b1
b0
b6
b7
b2
b9
b8
b3
b5
Conversion starts
Discharge
Holding capacitor is disconnected from analog input (0.5 TAD)
Set GO bit
On the following cycle:
ADRESH:ADRESL is loaded, GO bit is cleared,
ADIF bit is set, holding capacitor is connected to analog input.
FIGURE 17-4:
A/D CONVERSION TAD CYCLES (ACQT = 010, TACQ = 4 TAD)
TAD Cycles
TACQT Cycles
1
2
3
Automatic
Acquisition
Time
4
1
3
4
5
6
7
8
9
10
11
b9
b8
b7
b6
b5
b4
b3
b2
b1
b0
Conversion starts
(Holding capacitor is disconnected from analog input)
Set GO bit
(Holding capacitor continues
acquiring input)
DS40001412H-page 292
2
1 TCY
Discharge
On the following cycle:
ADRESH:ADRESL is loaded, GO bit is cleared,
ADIF bit is set, holding capacitor is connected to analog input.
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
17.2.2
COMPLETION OF A CONVERSION
When the conversion is complete, the ADC module will:
• Clear the GO/DONE bit
• Set the ADIF flag bit
• Update the ADRESH:ADRESL registers with new
conversion result
17.2.3
DISCHARGE
The discharge phase is used to initialize the value of
the capacitor array. The array is discharged after every
sample. This feature helps to optimize the unity-gain
amplifier, as the circuit always needs to charge the
capacitor array, rather than charge/discharge based on
previous measure values.
17.2.4
TERMINATING A CONVERSION
If a conversion must be terminated before completion,
the GO/DONE bit can be cleared by software. The
ADRESH:ADRESL registers will not be updated with
the partially complete Analog-to-Digital conversion
sample. Instead, the ADRESH:ADRESL register pair
will retain the value of the previous conversion.
Note:
17.2.5
A device Reset forces all registers to their
Reset state. Thus, the ADC module is
turned off and any pending conversion is
terminated.
DELAY BETWEEN CONVERSIONS
After the A/D conversion is completed or aborted, a
2 TAD wait is required before the next acquisition can
be started. After this wait, the currently selected
channel is reconnected to the charge holding capacitor
commencing the next acquisition.
17.2.6
ADC OPERATION IN POWERMANAGED MODES
The selection of the automatic acquisition time and A/D
conversion clock is determined in part by the clock
source and frequency while in a power-managed mode.
If the A/D is expected to operate while the device is in
a power-managed mode, the ACQT and
ADCS bits in ADCON2 may be updated in accordance with the clock source to be used in that mode.
After entering the mode, an A/D acquisition or conversion may be started. Once started, the device may continue to be clocked by the same clock source until the
conversion has been completed.
If desired, the device may be placed into the
corresponding Idle mode during the conversion. If the
device clock frequency is less than 1 MHz, the A/D FRC
clock source may be selected.
2010-2021 Microchip Technology Inc.
17.2.7
ADC OPERATION DURING SLEEP
The ADC module can operate during Sleep. This
requires the ADC clock source to be set to the FRC
option. When the FRC clock source is selected, the
ADC waits one additional instruction before starting the
conversion. This allows the SLEEP instruction to be
executed, which can reduce system noise during the
conversion. If the ADC interrupt is enabled, the device
will wake up from Sleep when the conversion
completes. If the ADC interrupt is disabled, the ADC
module is turned off after the conversion completes,
although the ADON bit remains set.
When the ADC clock source is something other than
FRC, a SLEEP instruction causes the present
conversion to be aborted and the ADC module is
turned off, although the ADON bit remains set.
17.2.8
SPECIAL EVENT TRIGGER
Two Special Event Triggers are available to start an A/D
conversion: CTMU and CCP5. The Special Event
Trigger source is selected using the TRIGSEL bit in
ADCON1.
When TRIGSEL = 0, the CCP5 module is selected as
the Special Event Trigger source. To enable the Special
Event Trigger in the CCP module, set CCP5M =
1011, in the CCP5CON register.
When TRIGSEL = 1, the CTMU module is selected.
The CTMU module requires that the CTTRIG bit in
CTMUCONH is set to enable the Special Event Trigger.
In addition to TRIGSEL bit, the following steps are
required to start an A/D conversion:
• The A/D module must be enabled (ADON = 1)
• The appropriate analog input channel selected
• The minimum acquisition period set one of these
ways:
- Timing provided by the user
- Selection made of an appropriate TACQ time
With these conditions met, the trigger sets the GO/DONE
bit and the A/D acquisition starts.
If the A/D module is not enabled (ADON = 0), the
module ignores the Special Event Trigger.
17.2.9
PERIPHERAL MODULE DISABLE
When a peripheral module is not used or inactive, the
module can be disabled by setting the Module Disable
bit in the PMD registers. This will reduce power
consumption to an absolute minimum. Setting the PMD
bits holds the module in Reset and disconnects the
module’s clock source. The Module Disable bit for the
ADC module is ADCMD in the PMD2 Register. See
Section 3.0 “Power-Managed Modes” for more
information.
DS40001412H-page 293
PIC18(L)F2X/4XK22
17.2.10
A/D CONVERSION PROCEDURE
This is an example procedure for using the ADC to
perform an Analog-to-Digital conversion:
1.
2.
3.
4.
5.
6.
7.
8.
Configure Port:
• Disable pin output driver (See TRIS register)
• Configure pin as analog
Configure the ADC module:
• Select ADC conversion clock
• Configure voltage reference
• Select ADC input channel
• Select result format
• Select acquisition delay
• Turn on ADC module
Configure ADC interrupt (optional):
• Clear ADC interrupt flag
• Enable ADC interrupt
• Enable peripheral interrupt
• Enable global interrupt(1)
Wait the required acquisition time(2).
Start conversion by setting the GO/DONE bit.
Wait for ADC conversion to complete by one of
the following:
• Polling the GO/DONE bit
• Waiting for the ADC interrupt (interrupts
enabled)
Read ADC Result
Clear the ADC interrupt flag (required if interrupt
is enabled).
EXAMPLE 17-1:
A/D CONVERSION
;This code block configures the ADC
;for polling, Vdd and Vss as reference, Frc
clock and AN0 input.
;
;Conversion start & polling for completion
; are included.
;
MOVLW
B’10101111’ ;right justify, Frc,
MOVWF
ADCON2
; & 12 TAD ACQ time
MOVLW
B’00000000’ ;ADC ref = Vdd,Vss
MOVWF
ADCON1
;
BSF
TRISA,0
;Set RA0 to input
BSF
ANSEL,0
;Set RA0 to analog
MOVLW
B’00000001’ ;AN0, ADC on
MOVWF
ADCON0
;
BSF
ADCON0,GO
;Start conversion
ADCPoll:
BTFSC
ADCON0,GO
;Is conversion done?
BRA
ADCPoll
;No, test again
; Result is complete - store 2 MSbits in
; RESULTHI and 8 LSbits in RESULTLO
MOVFF
ADRESH,RESULTHI
MOVFF
ADRESL,RESULTLO
Note 1: The global interrupt can be disabled if the
user is attempting to wake up from Sleep
and resume in-line code execution.
2: Software delay required if ACQT bits are
set to zero delay. See Section 17.4 “A/D
Acquisition Requirements”.
DS40001412H-page 294
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
17.3
Register Definitions: ADC Control
Note:
Analog pin control is determined by the
ANSELx registers (see Register 10-2)
REGISTER 17-1:
U-0
ADCON0: A/D CONTROL REGISTER 0
R/W-0
R/W-0
—
R/W-0
R/W-0
R/W-0
CHS
R/W-0
R/W-0
GO/DONE
ADON
bit 7
bit 0
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 7
Unimplemented: Read as ‘0’
bit 6-2
CHS: Analog Channel Select bits
00000 = AN0
00001 = AN1
00010 = AN2
00011 = AN3
00100 = AN4
00101 = AN5(1)
00110 = AN6(1)
00111 = AN7(1)
01000 = AN8
01001 = AN9
01010 = AN10
01011 = AN11
01100 = AN12
01101 = AN13
01110 = AN14
01111 = AN15
10000 = AN16
10001 = AN17
10010 = AN18
10011 = AN19
10100 = AN20(1)
10101 = AN21(1)
10110 = AN22(1)
10111 = AN23(1)
11000 = AN24(1)
11001 = AN25(1)
11010 = AN26(1)
11011 = AN27(1)
11100 = Reserved
11101 = CTMU
11110 = DAC
11111 = FVR BUF2 (1.024V/2.048V/2.096V Volt Fixed Voltage Reference)(2)
bit 1
GO/DONE: A/D Conversion Status bit
1 = A/D conversion cycle in progress. Setting this bit starts an A/D conversion cycle.
This bit is automatically cleared by hardware when the A/D conversion has completed.
0 = A/D conversion completed/not in progress
bit 0
ADON: ADC Enable bit
1 = ADC is enabled
0 = ADC is disabled and consumes no operating current
Note 1:
2:
Available on PIC18(L)F4XK22 devices only.
Allow greater than 15 s acquisition time when measuring the Fixed Voltage Reference.
2010-2021 Microchip Technology Inc.
DS40001412H-page 295
PIC18(L)F2X/4XK22
REGISTER 17-2:
ADCON1: A/D CONTROL REGISTER 1
R/W-0
U-0
U-0
U-0
TRIGSEL
—
—
—
R/W-0
R/W-0
R/W-0
PVCFG
R/W-0
NVCFG
bit 7
bit 0
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown
bit 7
TRIGSEL: Special Trigger Select bit
1 = Selects the special trigger from CTMU
0 = Selects the special trigger from CCP5
bit 6-4
Unimplemented: Read as ‘0’
bit 3-2
PVCFG: Positive Voltage Reference Configuration bits
00 = A/D VREF+ connected to internal signal, AVDD
01 = A/D VREF+ connected to external pin, VREF+
10 = A/D VREF+ connected to internal signal, FVR BUF2
11 = Reserved (by default, A/D VREF+ connected to internal signal, AVDD)
bit 1-0
NVCFG: Negative Voltage Reference Configuration bits
00 = A/D VREF- connected to internal signal, AVSS
01 = A/D VREF- connected to external pin, VREF10 = Reserved (by default, A/D VREF- connected to internal signal, AVSS)
11 = Reserved (by default, A/D VREF- connected to internal signal, AVSS)
DS40001412H-page 296
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
REGISTER 17-3:
ADCON2: A/D CONTROL REGISTER 2
R/W-0
U-0
ADFM
—
R/W-0
R/W-0
R/W-0
ACQT
R/W-0
R/W-0
R/W-0
ADCS
bit 7
bit 0
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
bit 7
x = Bit is unknown
ADFM: A/D Conversion Result Format Select bit
1 = Right justified
0 = Left justified
bit 6
Unimplemented: Read as ‘0’
bit 5-3
ACQT: A/D Acquisition time select bits. Acquisition time is the duration that the A/D charge
holding capacitor remains connected to A/D channel from the instant the GO/DONE bit is set until
conversions begins.
000 = 0(1)
001 = 2 TAD
010 = 4 TAD
011 = 6 TAD
100 = 8 TAD
101 = 12 TAD
110 = 16 TAD
111 = 20 TAD
bit 2-0
ADCS: A/D Conversion Clock Select bits
000 = FOSC/2
001 = FOSC/8
010 = FOSC/32
011 = FRC(1) (clock derived from a dedicated internal oscillator = 600 kHz nominal)
100 = FOSC/4
101 = FOSC/16
110 = FOSC/64
111 = FRC(1) (clock derived from a dedicated internal oscillator = 600 kHz nominal)
Note 1:
When the A/D clock source is selected as FRC then the start of conversion is delayed by one instruction
cycle after the GO/DONE bit is set to allow the SLEEP instruction to be executed.
2010-2021 Microchip Technology Inc.
DS40001412H-page 297
PIC18(L)F2X/4XK22
REGISTER 17-4:
R/W-x
ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 0
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
ADRES
bit 7
bit 0
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
bit 7-0
x = Bit is unknown
ADRES: ADC Result Register bits
Upper eight bits of 10-bit conversion result
REGISTER 17-5:
R/W-x
ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 0
R/W-x
ADRES
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
—
—
—
—
—
—
bit 7
bit 0
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
bit 7-6
ADRES: ADC Result Register bits
Lower two bits of 10-bit conversion result
bit 5-0
Reserved: Do not use.
REGISTER 17-6:
x = Bit is unknown
ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 1
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
—
—
—
—
—
—
R/W-x
R/W-x
ADRES
bit 7
bit 0
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
bit 7-2
Reserved: Do not use.
bit 1-0
ADRES: ADC Result Register bits
Upper two bits of 10-bit conversion result
REGISTER 17-7:
R/W-x
x = Bit is unknown
ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 1
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
R/W-x
ADRES
bit 7
bit 0
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
bit 7-0
x = Bit is unknown
ADRES: ADC Result Register bits
Lower eight bits of 10-bit conversion result
DS40001412H-page 298
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
17.4
A/D Acquisition Requirements
For the ADC to meet its specified accuracy, the charge
holding capacitor (CHOLD) must be allowed to fully
charge to the input channel voltage level. The Analog
Input model is shown in Figure 17-5. The source
impedance (RS) and the internal sampling switch (RSS)
impedance directly affect the time required to charge the
capacitor CHOLD. The sampling switch (RSS) impedance
varies over the device voltage (VDD), see Figure 17-5.
The maximum recommended impedance for analog
sources is 3 k. As the source impedance is decreased,
the acquisition time may be decreased. After the analog
input channel is selected (or changed), an A/D
EQUATION 17-1:
acquisition must be done before the conversion can be
started. To calculate the minimum acquisition time,
Equation 17-1 may be used. This equation assumes
that 1/2 LSb error is used (1024 steps for the ADC). The
1/2 LSb error is the maximum error allowed for the ADC
to meet its specified resolution.
ACQUISITION TIME EXAMPLE
Tem perature = 50°C and externalim pedance of10k 3.0V V D D
Assumptions:
TAC Q = Am plifier Settling Tim e + H old Capacitor Charging Tim e + Tem perature Coefficient
= TAM P + TC + TC O FF
= 5µs + TC + Tem perature -25°C 0.05µs/°C
The value for TC can be approximated with the following equations:
1
V AP P LIED 1 – ----------- = V C H O LD
2047
;[1] VCHOLD charged to within 1/2 lsb
–TC
---------
RC
V AP P LIED 1 – e = V C H O LD
;[2] VCHOLD charge response to VAPPLIED
–Tc
--------
1
RC
V A PP LIE D 1 – e = V A P PLIE D 1 – -----------
2047
;combining [1] and [2]
Solving for TC:
TC = –C H O LD R IC + R SS + R S ln(1/2047)
= –13.5pF 1k + 700 + 10k ln(0.0004885)
= 1.20µs
Therefore:
TAC Q = 5µs + 1.20µs + 50°C-25°C 0.05 s/°C
= 7.45µs
Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.
2: The charge holding capacitor (CHOLD) is discharged after each conversion.
3: The maximum recommended impedance for analog sources is 10 k. This is required to meet the pin
leakage specification.
2010-2021 Microchip Technology Inc.
DS40001412H-page 299
PIC18(L)F2X/4XK22
FIGURE 17-5:
ANALOG INPUT MODEL
VDD
Rs
VA
ANx
RIC 1k
CPIN
5 pF
I LEAKAGE(1)
Sampling
Switch
SS Rss
CHOLD = 13.5 pF
Legend: CPIN
= Input Capacitance
I LEAKAGE = Leakage current at the pin due to
various junctions
= Interconnect Resistance
RIC
SS
= Sampling Switch
CHOLD
= Sample/Hold Capacitance
Note 1:
VDD
Discharge
Switch
VSS/VREF-
3.5V
3.0V
2.5V
2.0V
1.5V
.1
1
10
Rss (k)
100
See Section 27.0 “Electrical Specifications”.
FIGURE 17-6:
ADC TRANSFER FUNCTION
Full-Scale Range
3FFh
3FEh
ADC Output Code
3FDh
3FCh
1/2 LSB ideal
3FBh
Full-Scale
Transition
004h
003h
002h
001h
000h
Analog Input Voltage
1/2 LSB ideal
VSS/VREF-
DS40001412H-page 300
Zero-Scale
Transition
VDD/VREF+
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
TABLE 17-2:
Name
REGISTERS ASSOCIATED WITH A/D OPERATION
Bit 7
Bit 6
Bit 5
—
ADCON0
—
ADCON1
TRIGSEL
—
ADCON2
ADFM
—
Bit 4
Bit 3
Bit 2
CHS
—
Bit 1
Bit 0
GO/DONE
ADON
PVCFG
NVCFG
ACQT
ADCS
Register
on Page
295
296
297
ADRESH
A/D Result, High Byte
298
ADRESL
A/D Result, Low Byte
298
ANSELA
—
—
ANSA5
—
ANSA3
ANSA2
ANSA1
ANSA0
149
ANSELB
—
—
ANSB5
ANSB4
ANSB3
ANSB2
ANSB1
ANSB0
150
ANSELC
ANSC7
ANSC6
ANSC5
ANSC4
ANSC3
ANSC2
—
—
150
ANSELD(1)
ANSD7
ANSD6
ANSD5
ANSD4
ANSD3
ANSD2
ANSD1
ANSD0
150
ANSELE(1)
—
—
—
—
—
ANSE2
ANSE1
ANSE0
151
CCP5CON
—
—
DC5B
CCP5M
198
CTMUCONH
CTMUEN
—
CTMUSIDL
TGEN
EDGEN
EDGSEQEN
IDISSEN
CTTRIG
323
INTCON
GIE/GIEH
PEIE/GIEL
TMR0IE
INT0IE
RBIE
TMR0IF
INT0IF
RBIF
109
IPR1
—
ADIP
RC1IP
TX1IP
SSP1IP
CCP1IP
TMR2IP
TMR1IP
121
IPR3
SSP2IP
BCL2IP
RC2IP
TX2IP
CTMUIP
TMR5GIP
TMR3GIP
TMR1GIP
123
IPR4
—
—
—
—
—
CCP5IP
CCP4IP
CCP3IP
124
PIE1
—
ADIE
RC1IE
TX1IE
SSP1IE
CCP1IE
TMR2IE
TMR1IE
117
PIE3
SSP2IE
BCL2IE
RC2IE
TX2IE
CTMUIE
TMR5GIE
TMR3GIE
TMR1GIE
119
PIE4
—
—
—
—
—
CCP5IE
CCP4IE
CCP3IE
120
PIR1
—
ADIF
RC1IF
TX1IF
SSP1IF
CCP1IF
TMR2IF
TMR1IF
112
PIR3
SSP2IF
BCL2IF
RC2IF
TX2IF
CTMUIF
TMR5GIF
TMR3GIF
TMR1GIF
114
PIR4
—
—
—
—
—
CCP5IF
CCP4IF
CCP3IF
115
PMD1
MSSP2MD
MSSP1MD
—
CCP5MD
CCP4MD
CCP3MD
CCP2MD
CCP1MD
53
PMD2
—
—
—
—
CTMUMD
CMP2MD
CMP1MD
ADCMD
54
TRISA
TRISA7
TRISA6
TRISA5
TRISA4
TRISA3
TRISA2
TRISA1
TRISA0
151
TRISB
TRISB7
TRISB6
TRISB5
TRISB4
TRISB3
TRISB2
TRISB1
TRISB0
151
TRISC
TRISC7
TRISC6
TRISC5
TRISC4
TRISC3
TRISC2
TRISC1
TRISC0
151
TRISD(1)
TRISD7
TRISD6
TRISD5
TRISD4
TRISD3
TRISD2
TRISD1
TRISD0
151
TRISE
WPUE3
—
—
—
—
TRISE2(1)
TRISE1(1)
TRISE0(1)
151
Legend:
Note 1:
— = unimplemented locations, read as ‘0’. Shaded bits are not used by this module.
Available on PIC18(L)F4XK22 devices.
TABLE 17-3:
Name
CONFIG3H
Legend:
CONFIGURATION REGISTERS ASSOCIATED WITH THE ADC MODULE
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
MCLRE
—
P2BMX
T3CMX
HFOFST
Bit 2
CCP3MX
Bit 1
Bit 0
Register
on Page
PBADEN
CCP2MX
348
— = unimplemented locations, read as ‘0’. Shaded bits are not used by the ADC module.
2010-2021 Microchip Technology Inc.
DS40001412H-page 301
PIC18(L)F2X/4XK22
18.0
COMPARATOR MODULE
Comparators are used to interface analog circuits to a
digital circuit by comparing two analog voltages and
providing a digital indication of their relative magnitudes.
The comparators are very useful mixed signal building
blocks because they provide analog functionality
independent of the program execution. The analog
comparator module includes the following features:
•
•
•
•
•
•
•
•
•
•
Independent comparator control
Programmable input selection
Comparator output is available internally/externally
Programmable output polarity
Interrupt-on-change
Wake-up from Sleep
Programmable Speed/Power optimization
PWM shutdown
Programmable and fixed voltage reference
Selectable Hysteresis
18.1
FIGURE 18-1:
SINGLE COMPARATOR
VIN+
+
VIN-
–
Output
VINVIN+
Output
Note:
The black areas of the output of the
comparator represents the uncertainty
due to input offsets and response time.
Comparator Overview
A single comparator is shown in Figure 18-1 along with
the relationship between the analog input levels and
the digital output. When the analog voltage at VIN+ is
less than the analog voltage at VIN-, the output of the
comparator is a digital low level. When the analog
voltage at VIN+ is greater than the analog voltage at
VIN-, the output of the comparator is a digital high level.
DS40001412H-page 302
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
FIGURE 18-2:
COMPARATOR C1/C2 SIMPLIFIED BLOCK DIAGRAM
CxCH
CxON(1)
2
C12IN0-
0
C12IN1-
1
C12IN2-
CxSP
D
CxVIN-
2
C12IN3-
CxVIN+
3
Q1
-
(2),(3)
EN
Cx
+
D
Q3(2)
DAC Output
Read or Write
of CMxCON0
0
0
FVR BUF1 1
1
Q
To Interrupts
(CxIF)
EN
CL
CxR
CxIN+
Q
To CMxCON0 (CxOUT)
CM2CON1 (MCxOUT)
Reset
async_CXOUT
CxPOL
CxSYNC
CXVREF
to PWM Logic
CxOE
TRIS bit
0
CXRSEL
D
Q
1
CxOUT
Timer1 Clock
sync_CxOUT
- to SR Latch
- to TxG MUX(4)
Note 1:
2:
3:
4:
When C1ON = 0, the C1 comparator will produce a ‘0’ output to the XOR Gate.
Q1 and Q3 are phases of the four-phase system clock (FOSC).
Q1 is held high during Sleep mode.
Synchronized comparator output may not be used to gate Timer1 in conjunction with synchronized T1CKI.
2010-2021 Microchip Technology Inc.
DS40001412H-page 303
PIC18(L)F2X/4XK22
18.2
Comparator Control
Each comparator has a separate control and
Configuration register: CM1CON0 for Comparator C1
and CM2CON0 for Comparator C2. In addition,
Comparator C2 has a second control register,
CM2CON1, for controlling the interaction with Timer1 and
simultaneous reading of both comparator outputs.
The CM1CON0 and CM2CON0 registers (see
Register 18-1) contain the control and status bits for the
following:
•
•
•
•
•
•
Enable
Input selection
Reference selection
Output selection
Output polarity
Speed selection
18.2.1
2: The internal output of the comparator is
latched with each instruction cycle.
Unless otherwise specified, external
outputs are not latched.
18.2.5
COMPARATOR INPUT SELECTION
The CxCH bits of the CMxCON0 register direct
one of four analog input pins to the comparator
inverting input.
Inverting the output of the comparator is functionally
equivalent to swapping the comparator inputs. The
polarity of the comparator output can be inverted by
setting the CxPOL bit of the CMxCON0 register.
Clearing the CxPOL bit results in a noninverted output.
Table 18-1 shows the output state versus input
conditions, including polarity control.
TABLE 18-1:
18.2.3
To use CxIN+ and C12INx- pins as analog
inputs, the appropriate bits must be set in
the
ANSEL
register
and
the
corresponding TRIS bits must also be set
to disable the output drivers.
COMPARATOR REFERENCE
SELECTION
Setting the CxR bit of the CMxCON0 register directs an
internal voltage reference or an analog input pin to the
noninverting input of the comparator. See Section 21.0
“Fixed Voltage Reference (FVR)” for more
information on the Internal Voltage Reference module.
18.2.4
COMPARATOR OUTPUT
SELECTION
The output of the comparator can be monitored by
reading either the CxOUT bit of the CMxCON0 register
or the MCxOUT bit of the CM2CON1 register. In order
to make the output available for an external connection,
the following conditions must be true:
COMPARATOR OUTPUT
STATE VS. INPUT
CONDITIONS
Input Condition
CxPOL
CxOUT
CxVIN- > CxVIN+
0
0
CxVIN- < CxVIN+
0
1
CxVIN- > CxVIN+
1
1
CxVIN-
1
0
18.2.6
Note:
COMPARATOR OUTPUT POLARITY
COMPARATOR ENABLE
Setting the CxON bit of the CMxCON0 register enables
the comparator for operation. Clearing the CxON bit
disables the comparator resulting in minimum current
consumption.
18.2.2
Note 1: The CxOE bit overrides the PORT data
latch. Setting the CxON has no impact on
the port override.
< CxVIN+
COMPARATOR SPEED SELECTION
The trade-off between speed or power can be
optimized during program execution with the CxSP
control bit. The default state for this bit is ‘1’ which
selects the normal speed mode. Device power
consumption can be optimized at the cost of slower
comparator propagation delay by clearing the CxSP bit
to ‘0’.
18.3
Comparator Response Time
The comparator output is indeterminate for a period of
time after the change of an input source or the selection
of a new reference voltage. This period is referred to as
the response time. The response time of the
comparator differs from the settling time of the voltage
reference. Therefore, both of these times must be
considered when determining the total response time
to a comparator input change. See the Comparator and
Voltage Reference Specifications in Section 27.0
“Electrical Specifications” for more details.
• CxOE bit of the CMxCON0 register must be set
• Corresponding TRIS bit must be cleared
• CxON bit of the CMxCON0 register must be set
DS40001412H-page 304
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
18.4
Comparator Interrupt Operation
The comparator interrupt flag will be set whenever
there is a change in the output value of the comparator.
Changes are recognized by means of a mismatch
circuit which consists of two latches and an exclusiveor gate (see Figure 18-2). The first latch is updated with
the comparator output value, when the CMxCON0
register is read or written. The value is latched on the
third cycle of the system clock, also known as Q3. This
first latch retains the comparator value until another
read or write of the CMxCON0 register occurs or a
Reset takes place. The second latch is updated with
the comparator output value on every first cycle of the
system clock, also known as Q1. When the output
value of the comparator changes, the second latch is
updated and the output values of both latches no
longer match one another, resulting in a mismatch
condition. The latch outputs are fed directly into the
inputs of an exclusive-or gate. This mismatch condition
is detected by the exclusive-or gate and sent to the
interrupt circuitry. The mismatch condition will persist
until the first latch value is updated by performing a
read of the CMxCON0 register or the comparator
output returns to the previous state.
Note 1: A write operation to the CMxCON0
register will also clear the mismatch
condition because all writes include a read
operation at the beginning of the write
cycle.
2: Comparator interrupts will operate
correctly regardless of the state of CxOE.
When the mismatch condition occurs, the comparator
interrupt flag is set. The interrupt flag is triggered by the
edge of the changing value coming from the exclusiveor gate. This means that the interrupt flag can be reset
once it is triggered without the additional step of
reading or writing the CMxCON0 register to clear the
mismatch latches. When the mismatch registers are
cleared, an interrupt will occur upon the comparator’s
return to the previous state, otherwise no interrupt will
be generated.
Software will need to maintain information about the
status of the comparator output, as read from the
CMxCON0 register, or CM2CON1 register, to determine
the actual change that has occurred. See Figures 18-3
and 18-4.
The CxIF bit of the PIR2 register is the comparator
interrupt flag. This bit must be reset by software by
clearing it to ‘0’. Since it is also possible to write a ‘1’ to
this register, an interrupt can be generated.
In mid-range Compatibility mode the CxIE bit of the
PIE2 register and the PEIE/GIEL and GIE/GIEH bits of
the INTCON register must all be set to enable comparator interrupts. If any of these bits are cleared, the interrupt is not enabled, although the CxIF bit of the PIR2
register will still be set if an interrupt condition occurs.
2010-2021 Microchip Technology Inc.
18.4.1
PRESETTING THE MISMATCH
LATCHES
The comparator mismatch latches can be preset to the
desired state before the comparators are enabled.
When the comparator is off the CxPOL bit controls the
CxOUT level. Set the CxPOL bit to the desired CxOUT
noninterrupt level while the CxON bit is cleared. Then,
configure the desired CxPOL level in the same
instruction that the CxON bit is set. Since all register
writes are performed as a read-modify-write, the
mismatch latches will be cleared during the instruction
read phase and the actual configuration of the CxON
and CxPOL bits will be occur in the final write phase.
FIGURE 18-3:
COMPARATOR
INTERRUPT TIMING W/O
CMxCON0 READ
Q1
Q3
CxIN+
TRT
CxIN
Set CxIF (edge)
CxIF
Reset by Software
FIGURE 18-4:
COMPARATOR
INTERRUPT TIMING WITH
CMxCON0 READ
Q1
Q3
CxIN+
TRT
CxOUT
Set CxIF (edge)
CxIF
Cleared by CMxCON0 Read
Reset by Software
Note 1: If a change in the CMxCON0 register
(CxOUT) may occur when a read
operation is being executed (start of the
Q2 cycle), then the CxIF interrupt flag of
the PIR2 register may not get set.
2: When either comparator is first enabled,
bias circuitry in the comparator module
may cause an invalid output from the
comparator until the bias circuitry is
stable. Allow about 1 s for bias settling
then clear the mismatch condition and
interrupt flags before enabling comparator
interrupts.
DS40001412H-page 305
PIC18(L)F2X/4XK22
18.5
Operation During Sleep
18.7
The comparator, if enabled before entering Sleep mode,
remains active during Sleep. The additional current
consumed by the comparator is shown separately in
Section 27.0 “Electrical Specifications”. If the
comparator is not used to wake the device, power
consumption can be minimized while in Sleep mode by
turning off the comparator. Each comparator is turned off
by clearing the CxON bit of the CMxCON0 register.
A change to the comparator output can wake up the
device from Sleep. To enable the comparator to wake
the device from Sleep, the CxIE bit of the PIE2 register
and the PEIE/GIEL bit of the INTCON register must be
set. The instruction following the SLEEP instruction
always executes following a wake from Sleep. If the
GIE/GIEH bit of the INTCON register is also set, the
device will then execute the Interrupt Service Routine.
18.6
Effects of a Reset
A device Reset forces the CMxCON0 and CM2CON1
registers to their Reset states. This forces both
comparators and the voltage references to their Off
states.Comparator Control Registers.
FIGURE 18-5:
Analog Input Connection
Considerations
A simplified circuit for an analog input is shown in
Figure 18-5. Since the analog input pins share their
connection with a digital input, they have reverse
biased ESD protection diodes to VDD and VSS. The
analog input, therefore, must be between VSS and VDD.
If the input voltage deviates from this range by more
than 0.6V in either direction, one of the diodes is
forward biased and a latch-up may occur.
A maximum source impedance of 10 k is recommended
for the analog sources. Also, any external component
connected to an analog input pin, such as a capacitor or
a Zener diode, may have very little leakage current to
minimize inaccuracies introduced.
Note 1: When reading a PORT register, all pins
configured as analog inputs will read as a
‘0’. Pins configured as digital inputs will
convert as an analog input, according to
the input specification.
2: Analog levels on any pin defined as a
digital input, may cause the input buffer to
consume more current than is specified.
ANALOG INPUT MODEL
VDD
VT 0.6V
Rs < 10K
RIC
To Comparator
AIN
VA
CPIN
5 pF
VT 0.6V
ILEAKAGE(1)
Vss
Legend: CPIN
= Input Capacitance
ILEAKAGE = Leakage Current at the pin due to various junctions
= Interconnect Resistance
RIC
RS
= Source Impedance
= Analog Voltage
VA
= Threshold Voltage
VT
Note 1: See Section 27.0 “Electrical Specifications”.
DS40001412H-page 306
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
18.8
Additional Comparator Features
There are four additional comparator features:
•
•
•
•
Simultaneous read of comparator outputs
Internal reference selection
Hysteresis selection
Output Synchronization
18.8.1
SIMULTANEOUS COMPARATOR
OUTPUT READ
The MC1OUT and MC2OUT bits of the CM2CON1
register are mirror copies of both comparator outputs.
The ability to read both outputs simultaneously from a
single register eliminates the timing skew of reading
separate registers.
Note 1: Obtaining the status of C1OUT or
C2OUT by reading CM2CON1 does not
affect the comparator interrupt mismatch
registers.
18.8.2
INTERNAL REFERENCE
SELECTION
There are two internal voltage references available to
the noninverting input of each comparator. One of
these is the Fixed Voltage Reference (FVR) and the
other is the variable Digital-to-Analog Converter (DAC).
The CxRSEL bit of the CM2CON1 register determines
which of these references is routed to the Comparator
Voltage reference output (CXVREF). Further routing to
the comparator is accomplished by the CxR bit of the
CMxCON0 register. See Section 21.0 “Fixed Voltage
Reference (FVR)” and Figure 18-2 for more details.
2010-2021 Microchip Technology Inc.
18.8.3
COMPARATOR HYSTERESIS
Each Comparator has a selectable hysteresis feature.
The hysteresis can be enabled by setting the CxHYS
bit of the CM2CON1 register. See Section 27.0
“Electrical Specifications” for more details.
18.8.4
SYNCHRONIZING COMPARATOR
OUTPUT TO TIMER1
The Comparator Cx output can be synchronized with
Timer1 by setting the CxSYNC bit of the CM2CON1
register. When enabled, the Cx output is latched on
the falling edge of the Timer1 source clock. To prevent
a race condition when gating Timer1 clock with the
comparator output, Timer1 increments on the rising
edge of its clock source, and the falling edge latches
the comparator output. See the Comparator Block
Diagram (Figure 18-2) and the Timer1 Block Diagram
(Figure 12-1) for more information.
Note 1: The comparator synchronized output
may not be used to gate the external
Timer1 clock when the Timer1
synchronizer is enabled.
2: The Timer1 prescale may be set to 1:1
when synchronizing the comparator
output as unexpected results may occur
with other prescale values.
DS40001412H-page 307
PIC18(L)F2X/4XK22
18.9
Register Definitions: Comparator Control
REGISTER 18-1:
CMxCON0: COMPARATOR x CONTROL REGISTER
R/W-0
R-0
R/W-0
R/W-0
R/W-1
R/W-0
CxON
CxOUT
CxOE
CxPOL
CxSP
CxR
R/W-0
R/W-0
CxCH
bit 7
bit 0
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
bit 7
CxON: Comparator Cx Enable bit
1 = Comparator Cx is enabled
0 = Comparator Cx is disabled
bit 6
CxOUT: Comparator Cx Output bit
If CxPOL = 1 (inverted polarity):
CxOUT = 0 when CxVIN+ > CxVINCxOUT = 1 when CxVIN+ < CxVINIf CxPOL = 0 (noninverted polarity):
CxOUT = 1 when CxVIN+ > CxVINCxOUT = 0 when CxVIN+ < CxVIN-
bit 5
CxOE: Comparator Cx Output Enable bit
1 = CxOUT is present on the CxOUT pin(1)
0 = CxOUT is internal only
bit 4
CxPOL: Comparator Cx Output Polarity Select bit
1 = CxOUT logic is inverted
0 = CxOUT logic is not inverted
bit 3
CxSP: Comparator Cx Speed/Power Select bit
1 = Cx operates in Normal-Power, Higher Speed mode
0 = Cx operates in Low-Power, Low-Speed mode
bit 2
CxR: Comparator Cx Reference Select bit (noninverting input)
1 = CxVIN+ connects to CXVREF output
0 = CxVIN+ connects to C12IN+ pin
bit 1-0
CxCH: Comparator Cx Channel Select bit
00 = C12IN0- pin of Cx connects to CxVIN01 = C12IN1- pin of Cx connects to CXVIN10 = C12IN2- pin of Cx connects to CxVIN11 = C12IN3- pin of Cx connects to CxVIN-
Note 1:
x = Bit is unknown
Comparator output requires the following three conditions: CxOE = 1, CxON = 1 and corresponding port
TRIS bit = 0.
DS40001412H-page 308
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
REGISTER 18-2:
CM2CON1: COMPARATOR 1 AND 2 CONTROL REGISTER
R-0
R-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
R/W-0
MC1OUT
MC2OUT
C1RSEL
C2RSEL
C1HYS
C2HYS
C1SYNC
C2SYNC
bit 7
bit 0
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
bit 7
MC1OUT: Mirror Copy of C1OUT bit
bit 6
MC2OUT: Mirror Copy of C2OUT bit
bit 5
C1RSEL: Comparator C1 Reference Select bit
1 = FVR BUF1 routed to C1VREF input
0 = DAC routed to C1VREF input
bit 4
C2RSEL: Comparator C2 Reference Select bit
1 = FVR BUF1 routed to C2VREF input
0 = DAC routed to C2VREF input
bit 3
C1HYS: Comparator C1 Hysteresis Enable bit
1 = Comparator C1 hysteresis enabled
0 = Comparator C1 hysteresis disabled
bit 2
C2HYS: Comparator C2 Hysteresis Enable bit
1 = Comparator C2 hysteresis enabled
0 = Comparator C2 hysteresis disabled
bit 1
C1SYNC: C1 Output Synchronous Mode bit
1 = C1 output is synchronized to rising edge of TMR1 clock (T1CLK)
0 = C1 output is asynchronous
bit 0
C2SYNC: C2 Output Synchronous Mode bit
1 = C2 output is synchronized to rising edge of TMR1 clock (T1CLK)
0 = C2 output is asynchronous
2010-2021 Microchip Technology Inc.
x = Bit is unknown
DS40001412H-page 309
PIC18(L)F2X/4XK22
TABLE 18-2:
REGISTERS ASSOCIATED WITH COMPARATOR MODULE
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Register
on Page
ANSELA
—
—
ANSA5
—
ANSA3
ANSA2
ANSA1
ANSA0
149
ANSELB
—
—
ANSB5
ANSB4
ANSB3
ANSB2
ANSB1
ANSB0
150
CM2CON1
MC1OUT
MC2OUT
C1SYNC
C2SYNC
309
CM1CON0
C1ON
C1OUT
Name
C1RSEL C2RSEL
C1HYS
C2HYS
C1OE
C1POL
C1SP
C1R
C2SP
C2R
CM2CON0
C2ON
C2OUT
C2OE
C2POL
VREFCON1
DACEN
DACLPS
DACOE
—
VREFCON2
—
—
—
VREFCON0
FVREN
FVRST
INTCON
GIE/GIEH
308
C2CH
308
—
DACNSS
DACR
FVRS
PEIE/GIEL TMR0IE
DACPSS
C1CH
—
—
335
336
—
—
332
INT0IE
RBIE
TMR0IF
INT0IF
RBIF
109
IPR2
OSCFIP
C1IP
C2IP
EEIP
BCL1IP
HLVDIP
TMR3IP
CCP2IP
122
PIE2
OSCFIE
C1IE
C2IE
EEIE
BCL1IE
HLVDIE
TMR3IE
CCP2IE
118
PIR2
OSCFIF
C1IF
C2IF
EEIF
BCL1IF
HLVDIF
TMR3IF
CCP2IF
113
PMD2
—
—
—
—
ADCMD
54
TRISA
TRISA7
TRISA6
TRISA5
TRISA4
TRISA3
TRISA2
TRISA1
TRISA0
151
TRISB
TRISB7
TRISB6
TRISB5
TRISB4
TRISB3
TRISB2
TRISB1
TRISB0
151
CTMUMD CMP2MD CMP1MD
Legend: — = unimplemented locations, read as ‘0’. Shaded bits are not used by the comparator module.
DS40001412H-page 310
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
19.0
CHARGE TIME
MEASUREMENT UNIT (CTMU)
The Charge Time Measurement Unit (CTMU) is a
flexible analog module that provides accurate
differential time measurement between pulse sources,
as well as asynchronous pulse generation. By working
with other on-chip analog modules, the CTMU can be
used to precisely measure time, measure capacitance,
measure relative changes in capacitance or generate
output pulses with a specific time delay. The CTMU is
ideal for interfacing with capacitive-based sensors.
The module includes the following key features:
• Up to 28(1) channels available for capacitive or
time measurement input
• On-chip precision current source
• Four-edge input trigger sources
• Polarity control for each edge source
• Control of edge sequence
• Control of response to edges
FIGURE 19-1:
• High precision time measurement
• Time delay of external or internal signal
asynchronous to system clock
• Accurate current source suitable for capacitive
measurement
The CTMU works in conjunction with the A/D Converter
to provide up to 28(1) channels for time or charge
measurement, depending on the specific device and
the number of A/D channels available. When configured for time delay, the CTMU is connected to the
C12IN1- input of Comparator 2. The level-sensitive
input edge sources can be selected from four sources:
two external input pins (CTED1/CTED2) or the ECCP1/
(E)CCP2 Special Event Triggers.
Figure 19-1 provides a block diagram of the CTMU.
Note 1: PIC18(L)F2XK22 devices have up to 17
channels available.
CTMU BLOCK DIAGRAM
CTMUCONH/CTMUCONL
EDGEN
EDGSEQEN
EDG1SELx
EDG1POL
EDG2SELx
EDG2POL
CTED1
CTED2
ECCP2
ECCP1
CTMUICON
ITRIM
IRNG
EDG1STAT
EDG2STAT
Edge
Control
Logic
Current Source
Current
Control
TGEN
IDISSEN
CTTRIG
CTMU
Control
Logic
Pulse
Generator
CTPLS
Comparator 2 Output
Comparator C1/C2 Input
A/D Converter
2010-2021 Microchip Technology Inc.
DS40001412H-page 311
PIC18(L)F2X/4XK22
19.1
CTMU Operation
The CTMU works by using a fixed current source to
charge a circuit. The type of circuit depends on the type
of measurement being made. In the case of charge
measurement, the current is fixed, and the amount of
time the current is applied to the circuit is fixed. The
amount of voltage read by the A/D is then a
measurement of the capacitance of the circuit. In the
case of time measurement, the current, as well as the
capacitance of the circuit, is fixed. In this case, the
voltage read by the A/D is then representative of the
amount of time elapsed from the time the current
source starts and stops charging the circuit.
If the CTMU is being used as a time delay, both
capacitance and current source are fixed, as well as the
voltage supplied to the comparator circuit. The delay of
a signal is determined by the amount of time it takes the
voltage to charge to the comparator threshold voltage.
19.1.1
THEORY OF OPERATION
The operation of the CTMU is based on the equation
for charge:
dV
I = C -----dT
More simply, the amount of charge measured in
coulombs in a circuit is defined as current in amperes
(I) multiplied by the amount of time in seconds that the
current flows (t). Charge is also defined as the
capacitance in farads (C) multiplied by the voltage of
the circuit (V). It follows that:
I t = C V.
The CTMU module provides a constant, known current
source. The A/D Converter is used to measure (V) in
the equation, leaving two unknowns: capacitance (C)
and time (t). The above equation can be used to
calculate capacitance or time, by either the relationship
using the known fixed capacitance of the circuit:
t = C V I
19.1.2
CURRENT SOURCE
At the heart of the CTMU is a precision current source,
designed to provide a constant reference for
measurements. The level of current is user-selectable
across three ranges, with the ability to trim the output.
The current range is selected by the IRNG bits
(CTMUICON), with a value of ‘00’ representing
the lowest range.
Current trim is provided by the ITRIM bits
(CTMUICON). Note that half of the range adjusts
the current source positively and the other half reduces
the current source. A value of ‘000000’ is the neutral
position (no change). A value of ‘100000’ is the maximum negative adjustment, and ‘011111’ is the maximum positive adjustment.
19.1.3
EDGE SELECTION AND CONTROL
CTMU measurements are controlled by edge events
occurring on the module’s two input channels. Each
channel, referred to as Edge 1 and Edge 2, can be
configured to receive input pulses from one of the edge
input pins (CTED1 and CTED2) or ECCPx Special
Event Triggers. The input channels are level-sensitive,
responding to the instantaneous level on the channel
rather than a transition between levels. The inputs are
selected using the EDG1SEL and EDG2SEL bit pairs
(CTMUCONL).
In addition to source, each channel can be configured for
event polarity using the EDGE2POL and EDGE1POL
bits (CTMUCONL). The input channels can also
be filtered for an edge event sequence (Edge 1 occurring before Edge 2) by setting the EDGSEQEN bit
(CTMUCONH).
19.1.4
EDGE STATUS
The CTMUCONL register also contains two Status bits:
EDG2STAT and EDG1STAT (CTMUCONL).
Their primary function is to show if an edge response
has occurred on the corresponding channel. The
CTMU automatically sets a particular bit when an edge
response is detected on its channel. The level-sensitive
nature of the input channels also means that the Status
bits become set immediately if the channel’s configuration is changed and is the same as the channel’s
current state.
or by:
C = I t V
using a fixed time that the current source is applied to
the circuit.
DS40001412H-page 312
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
The module uses the edge Status bits to control the
current source output to external analog modules (such
as the A/D Converter). Current is only supplied to
external modules when only one (but not both) of the
Status bits is set, and shuts current off when both bits
are either set or cleared. This allows the CTMU to
measure current only during the interval between
edges. After both Status bits are set, it is necessary to
clear them before another measurement is taken. Both
bits may be cleared simultaneously, if possible, to avoid
re-enabling the CTMU current source.
In addition to being set by the CTMU hardware, the
edge Status bits can also be set by software. This is
also the user’s application to manually enable or
disable the current source. Setting either one (but not
both) of the bits enables the current source. Setting or
clearing both bits at once disables the source.
19.1.5
INTERRUPTS
The CTMU sets its interrupt flag (PIR3) whenever
the current source is enabled, then disabled. An
interrupt is generated only if the corresponding
interrupt enable bit (PIE3) is also set. If edge
sequencing is not enabled (i.e., Edge 1 must occur
before Edge 2), it is necessary to monitor the edge
Status bits and determine which edge occurred last and
caused the interrupt.
19.2
CTMU Module Initialization
The following sequence is a general guideline used to
initialize the CTMU module:
1.
Select the current source range using the IRNG
bits (CTMUICON).
2. Adjust the current source trim using the ITRIM
bits (CTMUICON).
3. Configure the edge input sources for Edge 1 and
Edge 2 by setting the EDG1SEL and EDG2SEL
bits (CTMUCONL).
4. Configure the input polarities for the edge inputs
using the EDG1POL and EDG2POL bits
(CTMUCONL). The default configuration
is for negative edge polarity (high-to-low
transitions).
5. Enable edge sequencing using the EDGSEQEN
bit (CTMUCONH). By default, edge
sequencing is disabled.
6. Select the operating mode (Measurement or
Time Delay) with the TGEN bit. The default
mode is Time/Capacitance Measurement.
7. Discharge the connected circuit by setting the
IDISSEN bit (CTMUCONH); after waiting a
sufficient time for the circuit to discharge, clear
IDISSEN.
8. Disable the module by clearing the CTMUEN bit
(CTMUCONH).
9. Enable the module by setting the CTMUEN bit.
10. Clear the Edge Status bits: EDG2STAT and
EDG1STAT (CTMUCONL).
11. Enable both edge inputs by setting the EDGEN
bit (CTMUCONH).
Depending on the type of measurement or pulse
generation being performed, one or more additional
modules may also need to be initialized and configured
with the CTMU module:
• Edge Source Generation: In addition to the
external edge input pins, both Timer1 and the
Output Compare/PWM1 module can be used as
edge sources for the CTMU.
• Capacitance or Time Measurement: The CTMU
module uses the A/D Converter to measure the
voltage across a capacitor that is connected to one
of the analog input channels.
• Pulse Generation: When generating system clock
independent output pulses, the CTMU module
uses Comparator 2 and the associated
comparator voltage reference.
2010-2021 Microchip Technology Inc.
DS40001412H-page 313
PIC18(L)F2X/4XK22
19.3
Calibrating the CTMU Module
FIGURE 19-2:
The CTMU requires calibration for precise
measurements of capacitance and time, as well as for
accurate time delay. If the application only requires
measurement of a relative change in capacitance or
time, calibration is usually not necessary. An example of
this type of application would include a capacitive touch
switch, in which the touch circuit has a baseline
capacitance, and the added capacitance of the human
body changes the overall capacitance of a circuit.
If actual capacitance or time measurement is required,
two hardware calibrations must take place: the current
source needs calibration to set it to a precise current,
and the circuit being measured needs calibration to
measure and/or nullify all other capacitance other than
that to be measured.
19.3.1
4.
5.
6.
PIC18(L)FXXK22 Device
CTMU
Current Source
A/D Converter
ANx
RCAL
A/D
MUX
CURRENT SOURCE CALIBRATION
The current source on the CTMU module is trimable.
Therefore, for precise measurements, it is possible to
measure and adjust this current source by placing a
high precision resistor, RCAL, onto an unused analog
channel. An example circuit is shown in Figure 19-2.
The current source measurement is performed using
the following steps:
1.
2.
3.
CTMU CURRENT SOURCE
CALIBRATION CIRCUIT
Initialize the A/D Converter.
Initialize the CTMU.
Enable the current source by setting EDG1STAT
(CTMUCONL).
Issue settling time delay.
Perform A/D conversion.
Calculate the current source current using
I = V/ RCAL, where RCAL is a high precision
resistance and V is measured by performing an
A/D conversion.
A value of 70% of full-scale voltage is chosen to make
sure that the A/D Converter was in a range that is well
above the noise floor. Keep in mind that if an exact current is chosen, that is to incorporate the trimming bits
from CTMUICON, the resistor value of RCAL may need
to be adjusted accordingly. RCAL may also be adjusted
to allow for available resistor values. RCAL may be of
the highest precision available, keeping in mind the
amount of precision needed for the circuit that the
CTMU will be used to measure. A recommended
minimum would be 0.1% tolerance.
The following examples show one typical method for
performing a CTMU current calibration. Example 19-1
demonstrates how to initialize the A/D Converter and
the CTMU; this routine is typical for applications using
both modules. Example 19-2 demonstrates one
method for the actual calibration routine.
The CTMU current source may be trimmed with the
trim bits in CTMUICON using an iterative process to get
an exact desired current. Alternatively, the nominal
value without adjustment may be used; it may be
stored by the software for use in all subsequent
capacitive or time measurements.
To calculate the value for RCAL, the nominal current
must be chosen, and then the resistance can be
calculated. For example, if the A/D Converter reference
voltage is 3.3V, use 70% of full scale, or 2.31V as the
desired approximate voltage to be read by the A/D
Converter. If the range of the CTMU current source is
selected to be 0.55 A, the resistor value needed is calculated as RCAL = 2.31V/0.55 A, for a value of 4.2 MΩ.
Similarly, if the current source is chosen to be 5.5 A,
RCAL would be 420,000Ω, and 42,000Ω if the current
source is set to 55 A.
DS40001412H-page 314
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
EXAMPLE 19-1:
SETUP FOR CTMU CALIBRATION ROUTINES
#include "p18cxxx.h"
/**************************************************************************/
/*Set up CTMU *****************************************************************/
/**************************************************************************/
void setup(void)
{ //CTMUCONH/1 - CTMU Control registers
CTMUCONH = 0x00;
//make sure CTMU is disabled
CTMUCONL = 0x90;
//CTMU continues to run when emulator is stopped,CTMU continues
//to run in idle mode,Time Generation mode disabled, Edges are blocked
//No edge sequence order, Analog current source not grounded, trigger
//output disabled, Edge2 polarity = positive level, Edge2 source =
//source 0, Edge1 polarity = positive level, Edge1 source = source 0,
//CTMUICON - CTMU Current Control Register
CTMUICON = 0x01;
//0.55uA, Nominal - No Adjustment
/**************************************************************************/
//Set up AD converter;
/**************************************************************************/
TRISA=0x04;
//set channel 2 as an input
// Configure AN2 as an analog channel
ANSELAbits.ANSA2=1;
TRISAbits.TRISA2=1;
// ADCON2
ADCON2bits.ADFM=1;
ADCON2bits.ACQT=1;
ADCON2bits.ADCS=2;
// ADCON1
ADCON1bits.PVCFG0 =0;
ADCON1bits.NVCFG1 =0;
// ADCON0
ADCON0bits.CHS=2;
ADCON0bits.ADON=1;
// Results format 1= Right justified
// Acquition time 7 = 20TAD 2 = 4TAD 1=2TAD
// Clock conversion bits 6= FOSC/64 2=FOSC/32
// Vref+ = AVdd
// Vref- = AVss
// Select ADC channel
// Turn on ADC
}
2010-2021 Microchip Technology Inc.
DS40001412H-page 315
PIC18(L)F2X/4XK22
EXAMPLE 19-2:
CURRENT CALIBRATION ROUTINE
#include "p18cxxx.h"
#define COUNT 500
#define DELAY for(i=0;i 9] or [DC = 1] then
(W) + 6 W;
else
(W) W;
0 f 255
d [0,1]
a [0,1]
Operation:
(f) – 1 dest
Status Affected:
C, DC, N, OV, Z
If [W + DC > 9] or [C = 1] then
(W) + 6 + DC W;
else
(W) + DC W
Status Affected:
Decrement f
Encoding:
0000
0000
0000
0000
0111
Description:
DAW adjusts the 8-bit value in W, resulting from the earlier addition of two variables (each in packed BCD format) and
produces a correct packed BCD result.
Words:
1
Cycles:
1
Q Cycle Activity:
Q1
Q2
Q3
Q4
Words:
1
Decode
Read
register W
Process
Data
Write
W
Cycles:
1
Example1:
DAW
Before Instruction
W
=
C
=
DC
=
After Instruction
W
C
DC
Example 2:
=
=
=
A5h
0
0
05h
1
0
Before Instruction
W
=
C
=
DC
=
After Instruction
W
C
DC
=
=
=
ffff
ffff
Decrement register ‘f’. If ‘d’ is ‘0’, the
result is stored in W. If ‘d’ is ‘1’, the
result is stored back in register ‘f’
(default).
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank.
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f 95 (5Fh). See
Section 25.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.
C
Encoding:
01da
Description:
Q Cycle Activity:
Q1
Q2
Q3
Q4
Decode
Read
register ‘f’
Process
Data
Write to
destination
Example:
DECF
Before Instruction
CNT
=
Z
=
After Instruction
CNT
=
Z
=
CNT,
1, 0
01h
0
00h
1
CEh
0
0
34h
1
0
2010-2021 Microchip Technology Inc.
DS40001412H-page 379
PIC18(L)F2X/4XK22
DECFSZ
Decrement f, skip if 0
DCFSNZ
Syntax:
DECFSZ f {,d {,a}}
Syntax:
DCFSNZ
Operands:
0 f 255
d [0,1]
a [0,1]
Operands:
0 f 255
d [0,1]
a [0,1]
Operation:
(f) – 1 dest,
skip if result = 0
Operation:
(f) – 1 dest,
skip if result 0
Status Affected:
None
Status Affected:
None
Encoding:
0010
Description:
11da
ffff
ffff
The contents of register ‘f’ are
decremented. If ‘d’ is ‘0’, the result is
placed in W. If ‘d’ is ‘1’, the result is
placed back in register ‘f’ (default).
If the result is ‘0’, the next instruction,
which is already fetched, is discarded
and a NOP is executed instead, making
it a 2-cycle instruction.
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank.
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f 95 (5Fh). See
Section 25.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.
Words:
1
Cycles:
1(2)
Note: 3 cycles if skip and followed
by a 2-word instruction.
Decrement f, skip if not 0
Encoding:
0100
Q2
Q3
Q4
Decode
Read
register ‘f’
Process
Data
Write to
destination
Q1
Q2
Q3
Q4
No
operation
No
operation
No
operation
No
operation
Q1
Q2
Q3
Q4
No
operation
No
operation
No
operation
No
operation
No
operation
No
operation
No
operation
No
operation
HERE
DECFSZ
GOTO
Example:
CNT, 1, 1
LOOP
CONTINUE
Before Instruction
PC
=
After Instruction
CNT
=
If CNT
=
PC =
If CNT
PC =
DS40001412H-page 380
Address (HERE)
CNT - 1
0;
Address (CONTINUE)
0;
Address (HERE + 2)
ffff
ffff
The contents of register ‘f’ are
decremented. If ‘d’ is ‘0’, the result is
placed in W. If ‘d’ is ‘1’, the result is
placed back in register ‘f’ (default).
If the result is not ‘0’, the next
instruction, which is already fetched, is
discarded and a NOP is executed
instead, making it a 2-cycle
instruction.
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank.
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f 95 (5Fh). See
Section 25.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.
Words:
1
Cycles:
1(2)
Note:
3 cycles if skip and followed
by a 2-word instruction.
Q Cycle Activity:
Q1
Q2
Q3
Q4
Decode
Read
register ‘f’
Process
Data
Write to
destination
Q1
Q2
Q3
Q4
No
operation
No
operation
No
operation
No
operation
If skip:
If skip and followed by 2-word instruction:
11da
Description:
Q Cycle Activity:
Q1
f {,d {,a}}
If skip:
If skip and followed by 2-word instruction:
Q1
Q2
Q3
Q4
No
operation
No
operation
No
operation
No
operation
No
operation
No
operation
No
operation
No
operation
Example:
HERE
ZERO
NZERO
Before Instruction
TEMP
After Instruction
TEMP
If TEMP
PC
If TEMP
PC
DCFSNZ
:
:
TEMP, 1, 0
=
?
=
=
=
=
TEMP – 1,
0;
Address (ZERO)
0;
Address (NZERO)
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
GOTO
Unconditional Branch
INCF
Syntax:
GOTO k
Syntax:
INCF
Operands:
0 k 1048575
Operands:
Operation:
k PC
Status Affected:
None
0 f 255
d [0,1]
a [0,1]
Operation:
(f) + 1 dest
Status Affected:
C, DC, N, OV, Z
Encoding:
1st word (k)
2nd word(k)
Description:
1110
1111
1111
k19kkk
k7kkk
kkkk
kkkk0
kkkk8
GOTO allows an unconditional branch
Increment f
Encoding:
0010
2
Cycles:
2
Q1
Q2
Q3
Q4
Read literal
‘k’,
No
operation
Read literal
‘k’,
Write to PC
No
operation
No
operation
No
operation
No
operation
ffff
ffff
The contents of register ‘f’ are
incremented. If ‘d’ is ‘0’, the result is
placed in W. If ‘d’ is ‘1’, the result is
placed back in register ‘f’ (default).
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank.
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f 95 (5Fh). See
Section 25.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.
Words:
1
Cycles:
1
Q Cycle Activity:
Decode
10da
Description:
anywhere within entire
2-Mbyte memory range. The 20-bit
value ‘k’ is loaded into PC.
GOTO is always a 2-cycle
instruction.
Words:
f {,d {,a}}
Q Cycle Activity:
Example:
GOTO THERE
After Instruction
PC =
Address (THERE)
Q1
Q2
Q3
Q4
Decode
Read
register ‘f’
Process
Data
Write to
destination
Example:
INCF
Before Instruction
CNT
=
Z
=
C
=
DC
=
After Instruction
CNT
=
Z
=
C
=
DC
=
2010-2021 Microchip Technology Inc.
CNT, 1, 0
FFh
0
?
?
00h
1
1
1
DS40001412H-page 381
PIC18(L)F2X/4XK22
INCFSZ
Increment f, skip if 0
INFSNZ
Syntax:
INCFSZ
Syntax:
INFSNZ
0 f 255
d [0,1]
a [0,1]
f {,d {,a}}
Increment f, skip if not 0
f {,d {,a}}
Operands:
0 f 255
d [0,1]
a [0,1]
Operands:
Operation:
(f) + 1 dest,
skip if result = 0
Operation:
(f) + 1 dest,
skip if result 0
Status Affected:
None
Status Affected:
None
Encoding:
0011
Description:
11da
ffff
ffff
The contents of register ‘f’ are
incremented. If ‘d’ is ‘0’, the result is
placed in W. If ‘d’ is ‘1’, the result is
placed back in register ‘f’ (default).
If the result is ‘0’, the next instruction,
which is already fetched, is discarded
and a NOP is executed instead, making
it a 2-cycle instruction.
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank.
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f 95 (5Fh). See
Section 25.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.
Encoding:
0100
Description:
Words:
1
Words:
1
Cycles:
1(2)
Note: 3 cycles if skip and followed
by a 2-word instruction.
Cycles:
1(2)
Note:
Q Cycle Activity:
10da
ffff
ffff
The contents of register ‘f’ are
incremented. If ‘d’ is ‘0’, the result is
placed in W. If ‘d’ is ‘1’, the result is
placed back in register ‘f’ (default).
If the result is not ‘0’, the next
instruction, which is already fetched, is
discarded and a NOP is executed
instead, making it a 2-cycle
instruction.
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank.
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f 95 (5Fh). See
Section 25.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.
3 cycles if skip and followed
by a 2-word instruction.
Q Cycle Activity:
Q1
Q2
Q3
Q4
Q1
Q2
Q3
Q4
Decode
Read
register ‘f’
Process
Data
Write to
destination
Decode
Read
register ‘f’
Process
Data
Write to
destination
Q1
Q2
Q3
Q4
Q1
Q2
Q3
Q4
No
operation
No
operation
No
operation
No
operation
No
operation
No
operation
No
operation
No
operation
If skip:
If skip:
If skip and followed by 2-word instruction:
If skip and followed by 2-word instruction:
Q1
Q2
Q3
Q4
Q1
Q2
Q3
Q4
No
operation
No
operation
No
operation
No
operation
No
operation
No
operation
No
operation
No
operation
No
operation
No
operation
No
operation
No
operation
No
operation
No
operation
No
operation
No
operation
Example:
HERE
NZERO
ZERO
Before Instruction
PC
=
After Instruction
CNT
=
If CNT
=
PC
=
If CNT
PC
=
DS40001412H-page 382
INCFSZ
:
:
Address (HERE)
CNT + 1
0;
Address (ZERO)
0;
Address (NZERO)
CNT, 1, 0
Example:
HERE
ZERO
NZERO
Before Instruction
PC
=
After Instruction
REG
=
If REG
PC
=
If REG
=
PC
=
INFSNZ
REG, 1, 0
Address (HERE)
REG + 1
0;
Address (NZERO)
0;
Address (ZERO)
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
IORLW
Inclusive OR literal with W
IORWF
Syntax:
IORLW k
Syntax:
IORWF
Operands:
0 k 255
Operands:
Operation:
(W) .OR. k W
Status Affected:
N, Z
0 f 255
d [0,1]
a [0,1]
Operation:
(W) .OR. (f) dest
Status Affected:
N, Z
Encoding:
0000
Description:
1001
kkkk
kkkk
The contents of W are ORed with the
8-bit literal ‘k’. The result is placed in W.
Words:
1
Cycles:
1
Inclusive OR W with f
Encoding:
0001
Q1
Q2
Q3
Q4
Read
literal ‘k’
Process
Data
Write to W
Example:
IORLW
W
=
ffff
Words:
1
Cycles:
1
35h
9Ah
BFh
ffff
Inclusive OR W with register ‘f’. If ‘d’ is
‘0’, the result is placed in W. If ‘d’ is ‘1’,
the result is placed back in register ‘f’
(default).
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank.
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f 95 (5Fh). See
Section 25.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.
Before Instruction
W
=
After Instruction
00da
Description:
Q Cycle Activity:
Decode
f {,d {,a}}
Q Cycle Activity:
Q1
Q2
Q3
Q4
Decode
Read
register ‘f’
Process
Data
Write to
destination
Example:
IORWF
Before Instruction
RESULT =
W
=
After Instruction
RESULT =
W
=
2010-2021 Microchip Technology Inc.
RESULT, 0, 1
13h
91h
13h
93h
DS40001412H-page 383
PIC18(L)F2X/4XK22
LFSR
Load FSR
MOVF
Syntax:
LFSR f, k
Syntax:
MOVF
Operands:
0f2
0 k 4095
Operands:
Operation:
k FSRf
0 f 255
d [0,1]
a [0,1]
Status Affected:
None
Operation:
f dest
Status Affected:
N, Z
Encoding:
1110
1111
1110
0000
00ff
k7kkk
k11kkk
kkkk
Description:
The 12-bit literal ‘k’ is loaded into the
File Select Register pointed to by ‘f’.
Words:
2
Cycles:
2
Move f
Encoding:
0101
Q1
Q2
Q3
Q4
Read literal
‘k’ MSB
Process
Data
Write
literal ‘k’
MSB to
FSRfH
Decode
Read literal
‘k’ LSB
Process
Data
Write literal
‘k’ to FSRfL
Example:
=
=
03h
ABh
ffff
ffff
The contents of register ‘f’ are moved to
a destination dependent upon the
status of ‘d’. If ‘d’ is ‘0’, the result is
placed in W. If ‘d’ is ‘1’, the result is
placed back in register ‘f’ (default).
Location ‘f’ can be anywhere in the
256-byte bank.
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank.
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f 95 (5Fh). See
Section 25.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.
Words:
1
Cycles:
1
LFSR 2, 3ABh
After Instruction
FSR2H
FSR2L
00da
Description:
Q Cycle Activity:
Decode
f {,d {,a}}
Q Cycle Activity:
Q1
Q2
Q3
Q4
Decode
Read
register ‘f’
Process
Data
Write W
Example:
MOVF
Before Instruction
REG
W
After Instruction
REG
W
DS40001412H-page 384
REG, 0, 0
=
=
22h
FFh
=
=
22h
22h
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
MOVFF
Move f to f
MOVLB
Syntax:
MOVFF fs,fd
Syntax:
MOVLW k
Operands:
0 fs 4095
0 fd 4095
Operands:
0 k 255
Operation:
k BSR
Operation:
(fs) fd
Status Affected:
None
Status Affected:
None
Encoding:
Encoding:
1st word (source)
2nd word (destin.)
Description:
1100
1111
ffff
ffff
ffff
ffff
ffffs
ffffd
The contents of source register ‘fs’ are
moved to destination register ‘fd’.
Location of source ‘fs’ can be anywhere
in the 4096-byte data space (000h to
FFFh) and location of destination ‘fd’
can also be anywhere from 000h to
FFFh.
Either source or destination can be W
(a useful special situation).
MOVFF is particularly useful for
transferring a data memory location to a
peripheral register (such as the transmit
buffer or an I/O port).
The MOVFF instruction cannot use the
PCL, TOSU, TOSH or TOSL as the
destination register.
Words:
2
Cycles:
2 (3)
Move literal to low nibble in BSR
0000
0001
kkkk
kkkk
Description:
The 8-bit literal ‘k’ is loaded into the
Bank Select Register (BSR). The value
of BSR always remains ‘0’,
regardless of the value of k7:k4.
Words:
1
Cycles:
1
Q Cycle Activity:
Q1
Q2
Q3
Q4
Decode
Read
literal ‘k’
Process
Data
Write literal
‘k’ to BSR
MOVLB
5
Example:
Before Instruction
BSR Register =
After Instruction
BSR Register =
02h
05h
Q Cycle Activity:
Q1
Q2
Q3
Q4
Decode
Read
register ‘f’
(src)
Process
Data
No
operation
Decode
No
operation
No
operation
Write
register ‘f’
(dest)
No dummy
read
Example:
MOVFF
Before Instruction
REG1
REG2
After Instruction
REG1
REG2
REG1, REG2
=
=
33h
11h
=
=
33h
33h
2010-2021 Microchip Technology Inc.
DS40001412H-page 385
PIC18(L)F2X/4XK22
MOVLW
Move literal to W
MOVWF
Syntax:
MOVLW k
Syntax:
MOVWF
Operands:
0 k 255
Operands:
Operation:
kW
0 f 255
a [0,1]
Status Affected:
None
Operation:
(W) f
Status Affected:
None
Encoding:
0000
1110
kkkk
kkkk
Description:
The 8-bit literal ‘k’ is loaded into W.
Words:
1
Cycles:
1
Move W to f
Encoding:
0110
Q1
Q2
Q3
Q4
Read
literal ‘k’
Process
Data
Write to W
Example:
MOVLW
=
ffff
ffff
Move data from W to register ‘f’.
Location ‘f’ can be anywhere in the
256-byte bank.
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank.
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f 95 (5Fh). See
Section 25.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.
Words:
1
Cycles:
1
5Ah
After Instruction
W
111a
Description:
Q Cycle Activity:
Decode
f {,a}
5Ah
Q Cycle Activity:
Q1
Q2
Q3
Q4
Decode
Read
register ‘f’
Process
Data
Write
register ‘f’
Example:
MOVWF
REG, 0
Before Instruction
W
=
REG
=
After Instruction
W
REG
DS40001412H-page 386
=
=
4Fh
FFh
4Fh
4Fh
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
MULLW
Multiply literal with W
MULWF
Syntax:
MULLW
Syntax:
MULWF
Operands:
0 k 255
Operands:
Operation:
(W) x k PRODH:PRODL
0 f 255
a [0,1]
Status Affected:
None
Operation:
(W) x (f) PRODH:PRODL
Status Affected:
None
Encoding:
0000
Description:
k
1101
kkkk
kkkk
An unsigned multiplication is carried
out between the contents of W and the
8-bit literal ‘k’. The 16-bit result is
placed in the PRODH:PRODL register
pair. PRODH contains the high byte.
W is unchanged.
None of the Status flags are affected.
Note that neither overflow nor carry is
possible in this operation. A zero result
is possible but not detected.
Words:
1
Cycles:
1
Multiply W with f
Encoding:
0000
Q1
Q2
Q3
Q4
Read
literal ‘k’
Process
Data
Write
registers
PRODH:
PRODL
Example:
MULLW
W
PRODH
PRODL
After Instruction
W
PRODH
PRODL
=
=
=
E2h
?
?
=
=
=
E2h
ADh
08h
ffff
ffff
An unsigned multiplication is carried
out between the contents of W and the
register file location ‘f’. The 16-bit
result is stored in the PRODH:PRODL
register pair. PRODH contains the
high byte. Both W and ‘f’ are
unchanged.
None of the Status flags are affected.
Note that neither overflow nor carry is
possible in this operation. A zero
result is possible but not detected.
If ‘a’ is ‘0’, the Access Bank is
selected. If ‘a’ is ‘1’, the BSR is used
to select the GPR bank.
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction
operates in Indexed Literal Offset
Addressing mode whenever
f 95 (5Fh). See Section 25.2.3
“Byte-Oriented and Bit-Oriented
Instructions in Indexed Literal Offset
Mode” for details.
Words:
1
Cycles:
1
0C4h
Before Instruction
001a
Description:
Q Cycle Activity:
Decode
f {,a}
Q Cycle Activity:
Q1
Q2
Q3
Q4
Decode
Read
register ‘f’
Process
Data
Write
registers
PRODH:
PRODL
Example:
MULWF
REG, 1
Before Instruction
W
REG
PRODH
PRODL
After Instruction
W
REG
PRODH
PRODL
2010-2021 Microchip Technology Inc.
=
=
=
=
C4h
B5h
?
?
=
=
=
=
C4h
B5h
8Ah
94h
DS40001412H-page 387
PIC18(L)F2X/4XK22
NEGF
Negate f
NOP
No Operation
Syntax:
NEGF
Syntax:
NOP
Operands:
0 f 255
a [0,1]
Operands:
None
Operation:
No operation
Operation:
(f)+1f
Status Affected:
None
Status Affected:
N, OV, C, DC, Z
Encoding:
f {,a}
0110
Description:
Encoding:
110a
ffff
Location ‘f’ is negated using two’s
complement. The result is placed in the
data memory location ‘f’.
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank.
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f 95 (5Fh). See
Section 25.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.
Words:
1
Cycles:
1
0000
1111
ffff
0000
xxxx
Description:
No operation.
Words:
1
Cycles:
1
0000
xxxx
0000
xxxx
Q Cycle Activity:
Q1
Q2
Q3
Q4
Decode
No
operation
No
operation
No
operation
Example:
None.
Q Cycle Activity:
Q1
Q2
Q3
Q4
Decode
Read
register ‘f’
Process
Data
Write
register ‘f’
Example:
NEGF
Before Instruction
REG
=
After Instruction
REG
=
DS40001412H-page 388
REG, 1
0011 1010 [3Ah]
1100 0110 [C6h]
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
POP
Pop Top of Return Stack
PUSH
Push Top of Return Stack
Syntax:
POP
Syntax:
PUSH
Operands:
None
Operands:
None
Operation:
(TOS) bit bucket
Operation:
(PC + 2) TOS
Status Affected:
None
Status Affected:
None
Encoding:
0000
0000
0000
0110
Description:
The TOS value is pulled off the return
stack and is discarded. The TOS value
then becomes the previous value that
was pushed onto the return stack.
This instruction is provided to enable
the user to properly manage the return
stack to incorporate a software stack.
Words:
1
Cycles:
1
Encoding:
0000
0000
0101
The PC + 2 is pushed onto the top of
the return stack. The previous TOS
value is pushed down on the stack.
This instruction allows implementing a
software stack by modifying TOS and
then pushing it onto the return stack.
Words:
1
Cycles:
1
Q Cycle Activity:
Q Cycle Activity:
Q1
Q2
Q3
Q4
Decode
No
operation
POP TOS
value
No
operation
POP
GOTO
NEW
Example:
0000
Description:
Q1
Q2
Q3
Q4
Decode
PUSH
PC + 2 onto
return stack
No
operation
No
operation
Example:
Before Instruction
TOS
Stack (1 level down)
=
=
0031A2h
014332h
After Instruction
TOS
PC
=
=
014332h
NEW
2010-2021 Microchip Technology Inc.
PUSH
Before Instruction
TOS
PC
=
=
345Ah
0124h
After Instruction
PC
TOS
Stack (1 level down)
=
=
=
0126h
0126h
345Ah
DS40001412H-page 389
PIC18(L)F2X/4XK22
RCALL
Relative Call
RESET
Reset
Syntax:
RCALL
Syntax:
RESET
Operands:
-1024 n 1023
Operands:
None
Operation:
(PC) + 2 TOS,
(PC) + 2 + 2n PC
Operation:
Reset all registers and flags that are
affected by a MCLR Reset.
Status Affected:
None
Status Affected:
All
Encoding:
n
1101
Description:
1nnn
nnnn
nnnn
Subroutine call with a jump up to 1K
from the current location. First, return
address (PC + 2) is pushed onto the
stack. Then, add the 2’s complement
number ‘2n’ to the PC. Since the PC will
have incremented to fetch the next
instruction, the new address will be
PC + 2 + 2n. This instruction is a
2-cycle instruction.
Words:
1
Cycles:
2
Encoding:
0000
Q1
Q2
Q3
Q4
Decode
Read literal
‘n’
Process
Data
Write to PC
No
operation
No
operation
1111
1111
Description:
This instruction provides a way to
execute a MCLR Reset by software.
Words:
1
Cycles:
1
Q Cycle Activity:
Q1
Q2
Q3
Q4
Decode
Start
Reset
No
operation
No
operation
Example:
Q Cycle Activity:
0000
RESET
After Instruction
Registers =
Flags*
=
Reset Value
Reset Value
PUSH PC to
stack
No
operation
Example:
No
operation
HERE
RCALL Jump
Before Instruction
PC =
Address (HERE)
After Instruction
PC =
Address (Jump)
TOS =
Address (HERE + 2)
DS40001412H-page 390
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
RETFIE
Return from Interrupt
RETLW
Return literal to W
Syntax:
RETFIE {s}
Syntax:
RETLW k
Operands:
s [0,1]
Operands:
0 k 255
Operation:
(TOS) PC,
1 GIE/GIEH or PEIE/GIEL,
if s = 1
(WS) W,
(STATUSS) Status,
(BSRS) BSR,
PCLATU, PCLATH are unchanged.
Operation:
k W,
(TOS) PC,
PCLATU, PCLATH are unchanged
Status Affected:
None
Status Affected:
0000
0000
0001
1
Cycles:
2
Q Cycle Activity:
kkkk
kkkk
Words:
1
Cycles:
2
Q Cycle Activity:
Q1
Q2
Q3
Q4
Decode
Read
literal ‘k’
Process
Data
POP PC
from stack,
Write to W
No
operation
No
operation
No
operation
No
operation
Example:
Q1
Q2
Q3
Q4
Decode
No
operation
No
operation
POP PC
from stack
Set GIEH or
GIEL
Example:
1100
W is loaded with the 8-bit literal ‘k’. The
program counter is loaded from the top
of the stack (the return address). The
high address latch (PCLATH) remains
unchanged.
000s
Return from interrupt. Stack is popped
and Top-of-Stack (TOS) is loaded into
the PC. Interrupts are enabled by
setting either the high or low priority
global interrupt enable bit. If ‘s’ = 1, the
contents of the shadow registers, WS,
STATUSS and BSRS, are loaded into
their corresponding registers, W,
STATUS and BSR. If ‘s’ = 0, no update
of these registers occurs (default).
Words:
No
operation
0000
Description:
GIE/GIEH, PEIE/GIEL.
Encoding:
Description:
Encoding:
No
operation
RETFIE
After Interrupt
PC
W
BSR
Status
GIE/GIEH, PEIE/GIEL
No
operation
No
operation
1
=
=
=
=
=
2010-2021 Microchip Technology Inc.
TOS
WS
BSRS
STATUSS
1
CALL TABLE ;
;
;
;
:
TABLE
ADDWF PCL ;
RETLW k0
;
RETLW k1
;
:
:
RETLW kn
;
Before Instruction
W
=
After Instruction
W
=
W contains table
offset value
W now has
table value
W = offset
Begin table
End of table
07h
value of kn
DS40001412H-page 391
PIC18(L)F2X/4XK22
RETURN
Return from Subroutine
RLCF
Syntax:
RETURN {s}
Syntax:
RLCF
Operands:
s [0,1]
Operands:
Operation:
(TOS) PC,
if s = 1
(WS) W,
(STATUSS) Status,
(BSRS) BSR,
PCLATU, PCLATH are unchanged
0 f 255
d [0,1]
a [0,1]
Operation:
(f) dest,
(f) C,
(C) dest
Status Affected:
C, N, Z
Status Affected:
None
Encoding:
0000
Rotate Left f through Carry
Encoding:
0000
0001
001s
Description:
Return from subroutine. The stack is
popped and the top of the stack (TOS)
is loaded into the program counter. If
‘s’= 1, the contents of the shadow
registers, WS, STATUSS and BSRS,
are loaded into their corresponding
registers, W, STATUS and BSR. If
‘s’ = 0, no update of these registers
occurs (default).
Words:
1
Cycles:
2
0011
Description:
Q Cycle Activity:
Q1
Q2
Q3
Q4
Decode
No
operation
Process
Data
POP PC
from stack
No
operation
No
operation
No
operation
No
operation
f {,d {,a}}
01da
ffff
ffff
The contents of register ‘f’ are rotated
one bit to the left through the CARRY
flag. If ‘d’ is ‘0’, the result is placed in
W. If ‘d’ is ‘1’, the result is stored back
in register ‘f’ (default).
If ‘a’ is ‘0’, the Access Bank is
selected. If ‘a’ is ‘1’, the BSR is used to
select the GPR bank.
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction
operates in Indexed Literal Offset
Addressing mode whenever
f 95 (5Fh). See Section 25.2.3
“Byte-Oriented and Bit-Oriented
Instructions in Indexed Literal Offset
Mode” for details.
register f
C
Words:
1
Cycles:
1
Q Cycle Activity:
Example:
RETURN
After Instruction:
PC = TOS
Q1
Q2
Q3
Q4
Decode
Read
register ‘f’
Process
Data
Write to
destination
Example:
RLCF
Before Instruction
REG
=
C
=
After Instruction
REG
=
W
=
C
=
DS40001412H-page 392
REG, 0, 0
1110 0110
0
1110 0110
1100 1100
1
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
RLNCF
Rotate Left f (No Carry)
RRCF
Syntax:
RLNCF
Syntax:
RRCF
Operands:
0 f 255
d [0,1]
a [0,1]
Operands:
0 f 255
d [0,1]
a [0,1]
Operation:
(f) dest,
(f) dest
Operation:
Status Affected:
N, Z
(f) dest,
(f) C,
(C) dest
Status Affected:
C, N, Z
Encoding:
0100
Description:
f {,d {,a}}
01da
ffff
ffff
The contents of register ‘f’ are rotated
one bit to the left. If ‘d’ is ‘0’, the result
is placed in W. If ‘d’ is ‘1’, the result is
stored back in register ‘f’ (default).
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank.
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f 95 (5Fh). See
Section 25.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.
Rotate Right f through Carry
Encoding:
0011
Description:
register f
Words:
1
Cycles:
1
Q1
Q2
Q3
Q4
Decode
Read
register ‘f’
Process
Data
Write to
destination
Before Instruction
REG
=
After Instruction
REG
=
00da
RLNCF
Words:
1
Cycles:
1
0101 0111
2010-2021 Microchip Technology Inc.
ffff
register f
Q Cycle Activity:
Q1
Q2
Q3
Q4
Decode
Read
register ‘f’
Process
Data
Write to
destination
RRCF
REG, 0, 0
REG, 1, 0
1010 1011
ffff
The contents of register ‘f’ are rotated
one bit to the right through the CARRY
flag. If ‘d’ is ‘0’, the result is placed in W.
If ‘d’ is ‘1’, the result is placed back in
register ‘f’ (default).
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank.
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f 95 (5Fh). See
Section 25.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.
C
Q Cycle Activity:
Example:
f {,d {,a}}
Example:
Before Instruction
REG
=
C
=
After Instruction
REG
=
W
=
C
=
1110 0110
0
1110 0110
0111 0011
0
DS40001412H-page 393
PIC18(L)F2X/4XK22
RRNCF
Rotate Right f (No Carry)
SETF
Syntax:
RRNCF
Syntax:
SETF
Operands:
0 f 255
d [0,1]
a [0,1]
Operands:
0 f 255
a [0,1]
Operation:
FFh f
Operation:
(f) dest,
(f) dest
Status Affected:
None
Status Affected:
f {,d {,a}}
Encoding:
N, Z
Encoding:
0100
Description:
00da
ffff
ffff
The contents of register ‘f’ are rotated
one bit to the right. If ‘d’ is ‘0’, the result
is placed in W. If ‘d’ is ‘1’, the result is
placed back in register ‘f’ (default).
If ‘a’ is ‘0’, the Access Bank will be
selected (default), overriding the BSR
value. If ‘a’ is ‘1’, then the bank will be
selected as per the BSR value.
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f 95 (5Fh). See
Section 25.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.
register f
Words:
1
Cycles:
1
Q1
Q2
Q3
Q4
Decode
Read
register ‘f’
Process
Data
Write to
destination
RRNCF
Before Instruction
REG
=
After Instruction
REG
=
Example 2:
f {,a}
0110
100a
ffff
ffff
Description:
The contents of the specified register
are set to FFh.
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank.
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f 95 (5Fh). See
Section 25.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.
Words:
1
Cycles:
1
Q Cycle Activity:
Q1
Q2
Q3
Q4
Decode
Read
register ‘f’
Process
Data
Write
register ‘f’
Example:
Q Cycle Activity:
Example 1:
Set f
SETF
Before Instruction
REG
After Instruction
REG
REG, 1
=
5Ah
=
FFh
REG, 1, 0
1101 0111
1110 1011
RRNCF
REG, 0, 0
Before Instruction
W
=
REG
=
After Instruction
?
1101 0111
=
=
1110 1011
1101 0111
W
REG
DS40001412H-page 394
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
SLEEP
Enter Sleep mode
SUBFWB
Syntax:
SLEEP
Syntax:
SUBFWB
Operands:
None
Operands:
Operation:
00h WDT,
0 WDT postscaler,
1 TO,
0 PD
0 f 255
d [0,1]
a [0,1]
Operation:
(W) – (f) – (C) dest
Status Affected:
N, OV, C, DC, Z
Status Affected:
TO, PD
Encoding:
0000
Encoding:
0000
0000
0011
Description:
The Power-down Status bit (PD) is
cleared. The Time-out Status bit (TO)
is set. Watchdog Timer and its postscaler are cleared.
The processor is put into Sleep mode
with the oscillator stopped.
Words:
1
Cycles:
1
0101
Q1
Q2
Q3
Q4
Decode
No
operation
Process
Data
Go to
Sleep
SLEEP
Before Instruction
TO =
?
PD =
?
After Instruction
1†
TO =
0
PD =
† If WDT causes wake-up, this bit is cleared.
2010-2021 Microchip Technology Inc.
f {,d {,a}}
01da
ffff
ffff
Description:
Subtract register ‘f’ and CARRY flag
(borrow) from W (2’s complement
method). If ‘d’ is ‘0’, the result is stored
in W. If ‘d’ is ‘1’, the result is stored in
register ‘f’ (default).
If ‘a’ is ‘0’, the Access Bank is
selected. If ‘a’ is ‘1’, the BSR is used
to select the GPR bank.
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction
operates in Indexed Literal Offset
Addressing mode whenever
f 95 (5Fh). See Section 25.2.3
“Byte-Oriented and Bit-Oriented
Instructions in Indexed Literal Offset
Mode” for details.
Words:
1
Cycles:
1
Q Cycle Activity:
Example:
Subtract f from W with borrow
Q Cycle Activity:
Q1
Q2
Q3
Q4
Decode
Read
register ‘f’
Process
Data
Write to
destination
SUBFWB
REG, 1, 0
Example 1:
Before Instruction
REG
=
3
W
=
2
C
=
1
After Instruction
REG
=
FF
W
=
2
C
=
0
Z
=
0
N
=
1 ; result is negative
SUBFWB
REG, 0, 0
Example 2:
Before Instruction
REG
=
2
W
=
5
C
=
1
After Instruction
REG
=
2
W
=
3
C
=
1
Z
=
0
N
=
0 ; result is positive
SUBFWB
REG, 1, 0
Example 3:
Before Instruction
REG
=
1
W
=
2
C
=
0
After Instruction
REG
=
0
W
=
2
C
=
1
Z
=
1 ; result is zero
N
=
0
DS40001412H-page 395
PIC18(L)F2X/4XK22
SUBLW
Subtract W from literal
SUBWF
Syntax:
SUBLW k
Syntax:
SUBWF
Operands:
0 k 255
Operands:
Operation:
k – (W) W
Status Affected:
N, OV, C, DC, Z
0 f 255
d [0,1]
a [0,1]
Operation:
(f) – (W) dest
Status Affected:
N, OV, C, DC, Z
Encoding:
0000
Description
1000
kkkk
kkkk
W is subtracted from the 8-bit
literal ‘k’. The result is placed in W.
Words:
1
Cycles:
1
Subtract W from f
Encoding:
0101
Q2
Q3
Q4
Decode
Read
literal ‘k’
Process
Data
Write to W
Example 1:
SUBLW
Before Instruction
W
=
C
=
After Instruction
W
=
C
=
Z
=
N
=
Example 2:
Before Instruction
W
=
C
=
After Instruction
W
=
C
=
Z
=
N
=
Example 3:
02h
1
Cycles:
1
Q Cycle Activity:
02h
?
00h
1
; result is zero
1
0
SUBLW
Before Instruction
W
=
C
=
After Instruction
W
=
C
=
Z
=
N
=
02h
03h
?
FFh ; (2’s complement)
0
; result is negative
0
1
Q1
Q2
Q3
Q4
Decode
Read
register ‘f’
Process
Data
Write to
destination
SUBWF
REG, 1, 0
Example 1:
Before Instruction
REG
=
W
=
C
=
After Instruction
REG
=
W
=
C
=
Z
=
N
=
Example 2:
Before Instruction
REG
=
W
=
C
=
After Instruction
REG
=
W
=
C
=
Z
=
N
=
Example 3:
3
2
?
1
2
1
0
0
; result is positive
SUBWF
REG, 0, 0
2
2
?
2
0
1
1
0
SUBWF
Before Instruction
REG
=
W
=
C
=
After Instruction
REG
=
W
=
C
=
Z
=
N
=
DS40001412H-page 396
ffff
Words:
01h
?
SUBLW
ffff
Subtract W from register ‘f’ (2’s
complement method). If ‘d’ is ‘0’, the
result is stored in W. If ‘d’ is ‘1’, the
result is stored back in register ‘f’
(default).
If ‘a’ is ‘0’, the Access Bank is
selected. If ‘a’ is ‘1’, the BSR is used
to select the GPR bank.
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction
operates in Indexed Literal Offset
Addressing mode whenever
f 95 (5Fh). See Section 25.2.3
“Byte-Oriented and Bit-Oriented
Instructions in Indexed Literal Offset
Mode” for details.
02h
01h
1
; result is positive
0
0
11da
Description:
Q Cycle Activity:
Q1
f {,d {,a}}
; result is zero
REG, 1, 0
1
2
?
FFh ;(2’s complement)
2
0
; result is negative
0
1
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
SUBWFB
Subtract W from f with Borrow
SWAPF
Syntax:
SUBWFB
Syntax:
SWAPF f {,d {,a}}
Operands:
0 f 255
d [0,1]
a [0,1]
Operands:
0 f 255
d [0,1]
a [0,1]
Operation:
(f) – (W) – (C) dest
Operation:
Status Affected:
N, OV, C, DC, Z
(f) dest,
(f) dest
Status Affected:
None
Encoding:
0101
Description:
f {,d {,a}}
10da
ffff
ffff
Subtract W and the CARRY flag
(borrow) from register ‘f’ (2’s complement method). If ‘d’ is ‘0’, the result is
stored in W. If ‘d’ is ‘1’, the result is
stored back in register ‘f’ (default).
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank.
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f 95 (5Fh). See
Section 25.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.
Words:
1
Cycles:
1
Q Cycle Activity:
Q1
Decode
Q2
Read
register ‘f’
Q3
Process
Data
SUBWFB
REG, 1, 0
Example 1:
Before Instruction
REG
=
W
=
C
=
After Instruction
REG
=
W
=
C
=
Z
=
N
=
Example 2:
19h
0Dh
1
(0001 1001)
(0000 1101)
0Ch
0Dh
1
0
0
(0000 1100)
(0000 1101)
Encoding:
0011
10da
ffff
ffff
Description:
The upper and lower nibbles of register
‘f’ are exchanged. If ‘d’ is ‘0’, the result
is placed in W. If ‘d’ is ‘1’, the result is
placed in register ‘f’ (default).
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank.
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f 95 (5Fh). See
Section 25.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.
Words:
1
Cycles:
1
Q Cycle Activity:
Q1
Q2
Q3
Q4
Decode
Read
register ‘f’
Process
Data
Write to
destination
Example:
SWAPF
Before Instruction
REG
=
After Instruction
REG
=
REG, 1, 0
53h
35h
; result is positive
SUBWFB REG, 0, 0
Before Instruction
REG
=
W
=
C
=
After Instruction
REG
=
W
=
C
=
Z
=
N
=
Example 3:
1Bh
1Ah
0
(0001 1011)
(0001 1010)
1Bh
00h
1
1
0
(0001 1011)
SUBWFB
Before Instruction
REG
=
W
=
C
=
After Instruction
REG
=
W
C
Z
N
Q4
Write to
destination
Swap f
=
=
=
=
; result is zero
REG, 1, 0
03h
0Eh
1
(0000 0011)
(0000 1110)
F5h
(1111 0101)
; [2’s comp]
(0000 1110)
0Eh
0
0
1
; result is negative
2010-2021 Microchip Technology Inc.
DS40001412H-page 397
PIC18(L)F2X/4XK22
TBLRD
Table Read
TBLRD
Table Read (Continued)
Syntax:
TBLRD ( *; *+; *-; +*)
Example1:
TBLRD
Operands:
None
Operation:
if TBLRD *,
(Prog Mem (TBLPTR)) TABLAT;
TBLPTR – No Change;
if TBLRD *+,
(Prog Mem (TBLPTR)) TABLAT;
(TBLPTR) + 1 TBLPTR;
if TBLRD *-,
(Prog Mem (TBLPTR)) TABLAT;
(TBLPTR) – 1 TBLPTR;
if TBLRD +*,
(TBLPTR) + 1 TBLPTR;
(Prog Mem (TBLPTR)) TABLAT;
Example2:
Status Affected: None
Encoding:
0000
0000
0000
*+ ;
Before Instruction
TABLAT
TBLPTR
MEMORY (00A356h)
After Instruction
TABLAT
TBLPTR
10nn
nn=0 *
=1 *+
=2 *=3 +*
Description:
This instruction is used to read the contents
of Program Memory (P.M.). To address the
program memory, a pointer called Table
Pointer (TBLPTR) is used.
The TBLPTR (a 21-bit pointer) points to
each byte in the program memory. TBLPTR
has a 2-Mbyte address range.
TBLPTR[0] = 0: Least Significant Byte
of Program Memory
Word
TBLPTR[0] = 1: Most Significant Byte
of Program Memory
Word
The TBLRD instruction can modify the value
of TBLPTR as follows:
• no change
• post-increment
• post-decrement
• pre-increment
Words:
1
Cycles:
2
TBLRD
=
=
=
55h
00A356h
34h
=
=
34h
00A357h
+* ;
Before Instruction
TABLAT
TBLPTR
MEMORY (01A357h)
MEMORY (01A358h)
After Instruction
TABLAT
TBLPTR
=
=
=
=
AAh
01A357h
12h
34h
=
=
34h
01A358h
Q Cycle Activity:
Q1
Q2
Q3
Q4
Decode
No
operation
No
operation
No
operation
No
operation
No operation
(Read Program
Memory)
No
operation
No operation
(Write TABLAT)
DS40001412H-page 398
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
TBLWT
Table Write
TBLWT
Table Write (Continued)
Syntax:
TBLWT ( *; *+; *-; +*)
Example1:
TBLWT *+;
Operands:
None
Operation:
if TBLWT*,
(TABLAT) Holding Register;
TBLPTR – No Change;
if TBLWT*+,
(TABLAT) Holding Register;
(TBLPTR) + 1 TBLPTR;
if TBLWT*-,
(TABLAT) Holding Register;
(TBLPTR) – 1 TBLPTR;
if TBLWT+*,
(TBLPTR) + 1 TBLPTR;
(TABLAT) Holding Register;
Status Affected:
Before Instruction
TABLAT
=
55h
TBLPTR
=
00A356h
HOLDING REGISTER
(00A356h)
=
FFh
After Instructions (table write completion)
TABLAT
=
55h
TBLPTR
=
00A357h
HOLDING REGISTER
(00A356h)
=
55h
Example 2:
None
Encoding:
0000
0000
0000
11nn
nn=0 *
=1 *+
=2 *=3 +*
Description:
This instruction uses the three LSBs of
TBLPTR to determine which of the eight
holding registers the TABLAT is written to.
The holding registers are used to program
the contents of Program Memory (P.M.).
(Refer to Section 6.0 “Flash Program
Memory” for additional details on
programming Flash memory.)
The TBLPTR (a 21-bit pointer) points to
each byte in the program memory.
TBLPTR has a 2-MByte address range.
The LSb of the TBLPTR selects which
byte of the program memory location to
access.
TBLPTR[0] = 0: Least Significant
Byte of Program
Memory Word
TBLPTR[0] = 1: Most Significant
Byte of Program
Memory Word
The TBLWT instruction can modify the
value of TBLPTR as follows:
• no change
• post-increment
• post-decrement
• pre-increment
Words:
1
Cycles:
2
TBLWT +*;
Before Instruction
TABLAT
=
34h
TBLPTR
=
01389Ah
HOLDING REGISTER
(01389Ah)
=
FFh
HOLDING REGISTER
(01389Bh)
=
FFh
After Instruction (table write completion)
TABLAT
=
34h
TBLPTR
=
01389Bh
HOLDING REGISTER
(01389Ah)
=
FFh
HOLDING REGISTER
(01389Bh)
=
34h
Q Cycle Activity:
Q1
Decode
Q2
Q3
Q4
No
No
No
operation operation operation
No
No
No
No
operation operation operation operation
(Read
(Write to
TABLAT)
Holding
Register )
2010-2021 Microchip Technology Inc.
DS40001412H-page 399
PIC18(L)F2X/4XK22
TSTFSZ
Test f, skip if 0
XORLW
Syntax:
TSTFSZ f {,a}
Syntax:
XORLW k
Operands:
0 f 255
a [0,1]
Operands:
0 k 255
Operation:
(W) .XOR. k W
Operation:
skip if f = 0
Status Affected:
N, Z
Status Affected:
None
Encoding:
Encoding:
0110
Description:
Exclusive OR literal with W
011a
ffff
ffff
If ‘f’ = 0, the next instruction fetched
during the current instruction execution
is discarded and a NOP is executed,
making this a 2-cycle instruction.
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank.
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f 95 (5Fh). See
Section 25.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.
Words:
1
Cycles:
1(2)
Note: 3 cycles if skip and followed
by a 2-word instruction.
0000
1010
kkkk
kkkk
Description:
The contents of W are XORed with
the 8-bit literal ‘k’. The result is placed
in W.
Words:
1
Cycles:
1
Q Cycle Activity:
Q1
Q2
Q3
Q4
Decode
Read
literal ‘k’
Process
Data
Write to W
Example:
XORLW
0AFh
Before Instruction
W
=
After Instruction
W
=
B5h
1Ah
Q Cycle Activity:
Q1
Q2
Q3
Q4
Decode
Read
register ‘f’
Process
Data
No
operation
Q1
Q2
Q3
Q4
No
operation
No
operation
No
operation
No
operation
If skip:
If skip and followed by 2-word instruction:
Q1
Q2
Q3
Q4
No
operation
No
operation
No
operation
No
operation
No
operation
No
operation
No
operation
No
operation
Example:
HERE
NZERO
ZERO
Before Instruction
PC
After Instruction
If CNT
PC
If CNT
PC
DS40001412H-page 400
TSTFSZ
:
:
CNT, 1
=
Address (HERE)
=
=
=
00h,
Address (ZERO)
00h,
Address (NZERO)
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
XORWF
Exclusive OR W with f
Syntax:
XORWF
Operands:
0 f 255
d [0,1]
a [0,1]
Operation:
(W) .XOR. (f) dest
Status Affected:
N, Z
Encoding:
0001
f {,d {,a}}
10da
ffff
ffff
Description:
Exclusive OR the contents of W with
register ‘f’. If ‘d’ is ‘0’, the result is stored
in W. If ‘d’ is ‘1’, the result is stored back
in the register ‘f’ (default).
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank.
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f 95 (5Fh). See
Section 25.2.3 “Byte-Oriented and
Bit-Oriented Instructions in Indexed
Literal Offset Mode” for details.
Words:
1
Cycles:
1
Q Cycle Activity:
Q1
Q2
Q3
Q4
Decode
Read
register ‘f’
Process
Data
Write to
destination
Example:
XORWF
Before Instruction
REG
=
W
=
After Instruction
REG
=
W
=
REG, 1, 0
AFh
B5h
1Ah
B5h
2010-2021 Microchip Technology Inc.
DS40001412H-page 401
PIC18(L)F2X/4XK22
25.2
Extended Instruction Set
A summary of the instructions in the extended
instruction set is provided in Table 25-3. Detailed
descriptions are provided in Section 25.2.2
“Extended Instruction Set”. The opcode field
descriptions in Table 25-1 apply to both the standard
and extended PIC18 instruction sets.
In addition to the standard 75 instructions of the PIC18
instruction set, PIC18(L)F2X/4XK22 devices also
provide an optional extension to the core CPU
functionality. The added features include eight
additional instructions that augment indirect and
indexed addressing operations and the implementation
of Indexed Literal Offset Addressing mode for many of
the standard PIC18 instructions.
Note:
The instruction set extension and the
Indexed Literal Offset Addressing mode
were designed for optimizing applications
written in C; the user may likely never use
these instructions directly in assembler.
The syntax for these commands is provided as a reference for users who may be
reviewing code that has been generated
by a compiler.
The additional features of the extended instruction set
are disabled by default. To enable them, users must set
the XINST Configuration bit.
The instructions in the extended set can all be
classified as literal operations, which either manipulate
the File Select Registers, or use them for indexed
addressing. Two of the instructions, ADDFSR and
SUBFSR, each have an additional special instantiation
for using FSR2. These versions (ADDULNK and
SUBULNK) allow for automatic return after execution.
25.2.1
EXTENDED INSTRUCTION SYNTAX
Most of the extended instructions use indexed
arguments, using one of the File Select Registers and
some offset to specify a source or destination register.
When an argument for an instruction serves as part of
indexed addressing, it is enclosed in square brackets
(“[ ]”). This is done to indicate that the argument is used
as an index or offset. MPASM™ Assembler will flag an
error if it determines that an index or offset value is not
bracketed.
The extended instructions are specifically implemented
to optimize re-entrant program code (that is, code that
is recursive or that uses a software stack) written in
high-level languages, particularly C. Among other
things, they allow users working in high-level
languages to perform certain operations on data
structures more efficiently. These include:
• dynamic allocation and deallocation of software
stack space when entering and leaving
subroutines
• function pointer invocation
• software Stack Pointer manipulation
• manipulation of variables located in a software
stack
When the extended instruction set is enabled, brackets
are also used to indicate index arguments in byteoriented and bit-oriented instructions. This is in addition
to other changes in their syntax. For more details, see
Section 25.2.3.1 “Extended Instruction Syntax with
Standard PIC18 Commands”.
Note:
TABLE 25-3:
In the past, square brackets have been
used to denote optional arguments in the
PIC18 and earlier instruction sets. In this
text and going forward, optional
arguments are denoted by braces (“{ }”).
EXTENSIONS TO THE PIC18 INSTRUCTION SET
Mnemonic,
Operands
ADDFSR
ADDULNK
CALLW
MOVSF
f, k
k
MOVSS
zs, zd
PUSHL
k
SUBFSR
SUBULNK
f, k
k
zs, fd
Description
Add literal to FSR
Add literal to FSR2 and return
Call subroutine using WREG
1st word
Move zs (source) to
2nd word
fd (destination)
Move zs (source) to
1st word
2nd word
zd (destination)
Store literal at FSR2,
decrement FSR2
Subtract literal from FSR
Subtract literal from FSR2 and
return
DS40001412H-page 402
Cycles
1
2
2
2
16-Bit Instruction Word
MSb
LSb
Status
Affected
1000
1000
0000
1011
ffff
1011
xxxx
1010
ffkk
11kk
0001
0zzz
ffff
1zzz
xzzz
kkkk
kkkk
kkkk
0100
zzzz
ffff
zzzz
zzzz
kkkk
None
None
None
None
1
1110
1110
0000
1110
1111
1110
1111
1110
1
2
1110
1110
1001
1001
ffkk
11kk
kkkk
kkkk
None
None
2
None
None
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
25.2.2
EXTENDED INSTRUCTION SET
ADDFSR
Add Literal to FSR
ADDULNK
Syntax:
ADDFSR f, k
Syntax:
ADDULNK k
Operands:
0 k 63
f [ 0, 1, 2 ]
Operands:
0 k 63
Operation:
FSR(f) + k FSR(f)
Status Affected:
None
Encoding:
1110
Add Literal to FSR2 and Return
FSR2 + k FSR2,
Operation:
(TOS) PC
Status Affected:
1000
ffkk
kkkk
Description:
The 6-bit literal ‘k’ is added to the
contents of the FSR specified by ‘f’.
Words:
1
Cycles:
1
None
Encoding:
1110
Q1
Q2
Q3
Q4
Read
literal ‘k’
Process
Data
Write to
FSR
Example:
ADDFSR 2, 23h
Before Instruction
FSR2
=
03FFh
After Instruction
FSR2
=
0422h
kkkk
Words:
1
Cycles:
2
Q Cycle Activity:
Q1
Q2
Q3
Q4
Decode
Read
literal ‘k’
Process
Data
Write to
FSR
No
Operation
No
Operation
No
Operation
No
Operation
Example:
Note:
11kk
The 6-bit literal ‘k’ is added to the
contents of FSR2. A RETURN is then
executed by loading the PC with the
TOS.
The instruction takes two cycles to
execute; a NOP is performed during
the second cycle.
This may be thought of as a special
case of the ADDFSR instruction,
where f = 3 (binary ‘11’); it operates
only on FSR2.
Q Cycle Activity:
Decode
1000
Description:
ADDULNK 23h
Before Instruction
FSR2
=
PC
=
03FFh
0100h
After Instruction
FSR2
=
PC
=
0422h
(TOS)
All PIC18 instructions may take an optional label argument preceding the instruction mnemonic for use in
symbolic addressing. If a label is used, the instruction syntax then becomes: {label} instruction argument(s).
2010-2021 Microchip Technology Inc.
DS40001412H-page 403
PIC18(L)F2X/4XK22
CALLW
Subroutine Call Using WREG
MOVSF
Syntax:
CALLW
Syntax:
MOVSF [zs], fd
Operands:
None
Operands:
Operation:
(PC + 2) TOS,
(W) PCL,
(PCLATH) PCH,
(PCLATU) PCU
0 zs 127
0 fd 4095
Operation:
((FSR2) + zs) fd
Status Affected:
None
Status Affected:
None
Encoding:
0000
0000
0001
0100
Description
First, the return address (PC + 2) is
pushed onto the return stack. Next, the
contents of W are written to PCL; the
existing value is discarded. Then, the
contents of PCLATH and PCLATU are
latched into PCH and PCU,
respectively. The second cycle is
executed as a NOP instruction while the
new next instruction is fetched.
Unlike CALL, there is no option to
update W, Status or BSR.
Words:
1
Cycles:
2
Move Indexed to f
Encoding:
1st word (source)
2nd word (destin.)
Q1
Q2
Q3
Q4
Read
WREG
PUSH PC to
stack
No
operation
No
operation
No
operation
No
operation
No
operation
HERE
Before Instruction
PC
=
PCLATH =
PCLATU =
W
=
After Instruction
PC
=
TOS
=
PCLATH =
PCLATU =
W
=
DS40001412H-page 404
zzzzs
ffffd
Words:
2
Cycles:
2
Q Cycle Activity:
Q1
CALLW
Decode
address (HERE)
10h
00h
06h
001006h
address (HERE + 2)
10h
00h
06h
0zzz
ffff
The contents of the source register are
moved to destination register ‘fd’. The
actual address of the source register is
determined by adding the 7-bit literal
offset ‘zs’ in the first word to the value of
FSR2. The address of the destination
register is specified by the 12-bit literal
‘fd’ in the second word. Both addresses
can be anywhere in the 4096-byte data
space (000h to FFFh).
The MOVSF instruction cannot use the
PCL, TOSU, TOSH or TOSL as the
destination register.
If the resultant source address points to
an indirect addressing register, the
value returned will be 00h.
Decode
Example:
1011
ffff
Description:
Q Cycle Activity:
Decode
1110
1111
Q2
Q3
Determine
Determine
source addr source addr
No
operation
No
operation
No dummy
read
Example:
MOVSF
Before Instruction
FSR2
Contents
of 85h
REG2
After Instruction
FSR2
Contents
of 85h
REG2
Q4
Read
source reg
Write
register ‘f’
(dest)
[05h], REG2
=
80h
=
=
33h
11h
=
80h
=
=
33h
33h
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
MOVSS
Move Indexed to Indexed
PUSHL
Syntax:
Syntax:
PUSHL k
Operands:
MOVSS [zs], [zd]
0 zs 127
0 zd 127
Operands:
0k 255
Operation:
((FSR2) + zs) ((FSR2) + zd)
Operation:
k (FSR2),
FSR2 – 1 FSR2
Status Affected:
None
Status Affected:
None
Encoding:
1st word (source)
2nd word (dest.)
Description
1110
1111
1011
xxxx
1zzz
xzzz
zzzzs
zzzzd
The contents of the source register are
moved to the destination register. The
addresses of the source and destination
registers are determined by adding the
7-bit literal offsets ‘zs’ or ‘zd’,
respectively, to the value of FSR2. Both
registers can be located anywhere in
the 4096-byte data memory space
(000h to FFFh).
The MOVSS instruction cannot use the
PCL, TOSU, TOSH or TOSL as the
destination register.
If the resultant source address points to
an indirect addressing register, the
value returned will be 00h. If the
resultant destination address points to
an indirect addressing register, the
instruction will execute as a NOP.
Words:
2
Cycles:
2
Q Cycle Activity:
Q1
Decode
Decode
Example:
Q2
Q3
Determine
Determine
source addr source addr
Determine
dest addr
Determine
dest addr
Store Literal at FSR2, Decrement FSR2
Encoding:
1111
1010
kkkk
kkkk
Description:
The 8-bit literal ‘k’ is written to the data
memory address specified by FSR2. FSR2
is decremented by 1 after the operation.
This instruction allows users to push values
onto a software stack.
Words:
1
Cycles:
1
Q Cycle Activity:
Q1
Q2
Q3
Q4
Decode
Read ‘k’
Process
data
Write to
destination
Example:
PUSHL 08h
Before Instruction
FSR2H:FSR2L
Memory (01ECh)
=
=
01ECh
00h
After Instruction
FSR2H:FSR2L
Memory (01ECh)
=
=
01EBh
08h
Q4
Read
source reg
Write
to dest reg
MOVSS [05h], [06h]
Before Instruction
FSR2
Contents
of 85h
Contents
of 86h
After Instruction
FSR2
Contents
of 85h
Contents
of 86h
=
80h
=
33h
=
11h
=
80h
=
33h
=
33h
2010-2021 Microchip Technology Inc.
DS40001412H-page 405
PIC18(L)F2X/4XK22
SUBFSR
Subtract Literal from FSR
SUBULNK
Syntax:
SUBFSR f, k
Syntax:
SUBULNK k
Operands:
0 k 63
Operands:
0 k 63
f [ 0, 1, 2 ]
Operation:
Operation:
FSR(f) – k FSRf
Status Affected:
None
Encoding:
1110
FSR2 – k FSR2
(TOS) PC
Status Affected: None
1001
ffkk
kkkk
Description:
The 6-bit literal ‘k’ is subtracted from
the contents of the FSR specified by
‘f’.
Words:
1
Cycles:
1
Encoding:
1110
Q1
Q2
Q3
Q4
Decode
Read
register ‘f’
Process
Data
Write to
destination
SUBFSR 2, 23h
1001
11kk
kkkk
Description:
The 6-bit literal ‘k’ is subtracted from the
contents of the FSR2. A RETURN is then
executed by loading the PC with the TOS.
The instruction takes two cycles to
execute; a NOP is performed during the
second cycle.
This may be thought of as a special case of
the SUBFSR instruction, where f = 3 (binary
‘11’); it operates only on FSR2.
Words:
1
Cycles:
2
Q Cycle Activity:
Example:
Subtract Literal from FSR2 and Return
Q Cycle Activity:
Before Instruction
FSR2
=
Q1
Q2
Q3
Q4
03FFh
Decode
After Instruction
FSR2
=
Read
register ‘f’
Process
Data
Write to
destination
03DCh
No
Operation
No
Operation
No
Operation
No
Operation
Example:
DS40001412H-page 406
SUBULNK 23h
Before Instruction
FSR2
=
PC
=
03FFh
0100h
After Instruction
FSR2
=
PC
=
03DCh
(TOS)
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
25.2.3
Note:
BYTE-ORIENTED AND
BIT-ORIENTED INSTRUCTIONS IN
INDEXED LITERAL OFFSET MODE
Enabling the PIC18 instruction set
extension may cause legacy applications
to behave erratically or fail entirely.
In addition to eight new commands in the extended set,
enabling the extended instruction set also enables
Indexed Literal Offset Addressing mode (Section 5.7.1
“Indexed Addressing with Literal Offset”). This has
a significant impact on the way that many commands of
the standard PIC18 instruction set are interpreted.
When the extended set is disabled, addresses
embedded in opcodes are treated as literal memory
locations: either as a location in the Access Bank (‘a’ =
0), or in a GPR bank designated by the BSR (‘a’ = 1).
When the extended instruction set is enabled and ‘a’ =
0, however, a file register argument of 5Fh or less is
interpreted as an offset from the pointer value in FSR2
and not as a literal address. For practical purposes, this
means that all instructions that use the Access RAM bit
as an argument – that is, all byte-oriented and bitoriented instructions, or almost half of the core PIC18
instructions – may behave differently when the
extended instruction set is enabled.
When the content of FSR2 is 00h, the boundaries of the
Access RAM are essentially remapped to their original
values. This may be useful in creating backward
compatible code. If this technique is used, it may be
necessary to save the value of FSR2 and restore it
when moving back and forth between C and assembly
routines in order to preserve the Stack Pointer. Users
must also keep in mind the syntax requirements of the
extended instruction set (see Section 25.2.3.1
“Extended Instruction Syntax with Standard PIC18
Commands”).
Although the Indexed Literal Offset Addressing mode
can be very useful for dynamic stack and pointer
manipulation, it can also be very annoying if a simple
arithmetic operation is carried out on the wrong
register. Users who are accustomed to the PIC18
programming must keep in mind that, when the
extended instruction set is enabled, register addresses
of 5Fh or less are used for Indexed Literal Offset
Addressing.
Representative examples of typical byte-oriented and
bit-oriented instructions in the Indexed Literal Offset
Addressing mode are provided on the following page to
show how execution is affected. The operand conditions shown in the examples are applicable to all
instructions of these types.
2010-2021 Microchip Technology Inc.
25.2.3.1
Extended Instruction Syntax with
Standard PIC18 Commands
When the extended instruction set is enabled, the file
register argument, ‘f’, in the standard byte-oriented and
bit-oriented commands is replaced with the literal offset
value, ‘k’. As already noted, this occurs only when ‘f’ is
less than or equal to 5Fh. When an offset value is used,
it must be indicated by square brackets (“[ ]”). As with
the extended instructions, the use of brackets indicates
to the compiler that the value is to be interpreted as an
index or an offset. Omitting the brackets, or using a
value greater than 5Fh within brackets, will generate an
error in the MPASM assembler.
If the index argument is properly bracketed for Indexed
Literal Offset Addressing, the Access RAM argument is
never specified; it will automatically be assumed to be
‘0’. This is in contrast to standard operation (extended
instruction set disabled) when ‘a’ is set on the basis of
the target address. Declaring the Access RAM bit in
this mode will also generate an error in the MPASM
assembler.
The destination argument, ‘d’, functions as before.
In the latest versions of the MPASM™ assembler,
language support for the extended instruction set must
be explicitly invoked. This is done with either the
command line option, /y, or the PE directive in the
source listing.
25.2.4
CONSIDERATIONS WHEN
ENABLING THE EXTENDED
INSTRUCTION SET
It is important to note that the extensions to the instruction set may not be beneficial to all users. In particular,
users who are not writing code that uses a software
stack may not benefit from using the extensions to the
instruction set.
Additionally, the Indexed Literal Offset Addressing
mode may create issues with legacy applications
written to the PIC18 assembler. This is because
instructions in the legacy code may attempt to address
registers in the Access Bank below 5Fh. Since these
addresses are interpreted as literal offsets to FSR2
when the instruction set extension is enabled, the
application may read or write to the wrong data
addresses.
When porting an application to the PIC18(L)F2X/
4XK22, it is very important to consider the type of code.
A large, re-entrant application that is written in ‘C’ and
would benefit from efficient compilation will do well
when using the instruction set extensions. Legacy
applications that heavily use the Access Bank will most
likely not benefit from using the extended instruction
set.
DS40001412H-page 407
PIC18(L)F2X/4XK22
ADDWF
ADD W to Indexed
(Indexed Literal Offset mode)
BSF
Bit Set Indexed
(Indexed Literal Offset mode)
Syntax:
ADDWF
Syntax:
BSF [k], b
Operands:
0 k 95
d [0,1]
Operands:
0 f 95
0b7
Operation:
(W) + ((FSR2) + k) dest
Operation:
1 ((FSR2) + k)
Status Affected:
N, OV, C, DC, Z
Status Affected:
None
Encoding:
[k] {,d}
0010
Description:
01d0
kkkk
kkkk
The contents of W are added to the
contents of the register indicated by
FSR2, offset by the value ‘k’.
If ‘d’ is ‘0’, the result is stored in W. If ‘d’
is ‘1’, the result is stored back in
register ‘f’ (default).
Encoding:
1000
bbb0
kkkk
kkkk
Description:
Bit ‘b’ of the register indicated by FSR2,
offset by the value ‘k’, is set.
Words:
1
Cycles:
1
Q Cycle Activity:
Words:
1
Q1
Q2
Q3
Q4
Cycles:
1
Decode
Read
register ‘f’
Process
Data
Write to
destination
Q Cycle Activity:
Q1
Q2
Q3
Q4
Decode
Read ‘k’
Process
Data
Write to
destination
Example:
ADDWF
[OFST] , 0
Before Instruction
W
OFST
FSR2
Contents
of 0A2Ch
After Instruction
W
Contents
of 0A2Ch
=
=
=
17h
2Ch
0A00h
=
20h
=
37h
=
20h
Example:
BSF
Before Instruction
FLAG_OFST
FSR2
Contents
of 0A0Ah
After Instruction
Contents
of 0A0Ah
[FLAG_OFST], 7
=
=
0Ah
0A00h
=
55h
=
D5h
Set Indexed
(Indexed Literal Offset mode)
SETF
Syntax:
SETF [k]
Operands:
0 k 95
Operation:
FFh ((FSR2) + k)
Status Affected:
None
Encoding:
0110
1000
kkkk
kkkk
Description:
The contents of the register indicated by
FSR2, offset by ‘k’, are set to FFh.
Words:
1
Cycles:
1
Q Cycle Activity:
Q1
Q2
Q3
Q4
Decode
Read ‘k’
Process
Data
Write
register
Example:
SETF
Before Instruction
OFST
FSR2
Contents
of 0A2Ch
After Instruction
Contents
of 0A2Ch
DS40001412H-page 408
[OFST]
=
=
2Ch
0A00h
=
00h
=
FFh
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
25.2.5
SPECIAL CONSIDERATIONS WITH
MICROCHIP MPLAB® IDE TOOLS
The latest versions of Microchip’s software tools have
been designed to fully support the extended instruction
set of the PIC18(L)F2X/4XK22 family of devices. This
includes the MPLAB C18 C compiler, MPASM
assembly
language
and
MPLAB
Integrated
Development Environment (IDE).
When selecting a target device for software
development, MPLAB IDE will automatically set default
Configuration bits for that device. The default setting for
the XINST Configuration bit is ‘0’, disabling the
extended instruction set and Indexed Literal Offset
Addressing mode. For proper execution of applications
developed to take advantage of the extended
instruction set, XINST must be set during
programming.
To develop software for the extended instruction set,
the user must enable support for the instructions and
the Indexed Addressing mode in their language tool(s).
Depending on the environment being used, this may be
done in several ways:
• A menu option, or dialog box within the
environment, that allows the user to configure the
language tool and its settings for the project
• A command line option
• A directive in the source code
These options vary between different compilers,
assemblers and development environments. Users are
encouraged to review the documentation accompanying
their development systems for the appropriate
information.
2010-2021 Microchip Technology Inc.
DS40001412H-page 409
PIC18(L)F2X/4XK22
26.0
DEVELOPMENT SUPPORT
The PIC® microcontrollers (MCU) and dsPIC® digital
signal controllers (DSC) are supported with a full range
of software and hardware development tools:
• Integrated Development Environment
- MPLAB® X IDE Software
• Compilers/Assemblers/Linkers
- MPLAB XC Compiler
- MPASMTM Assembler
- MPLINKTM Object Linker/
MPLIBTM Object Librarian
- MPLAB Assembler/Linker/Librarian for
Various Device Families
• Simulators
- MPLAB X SIM Software Simulator
• Emulators
- MPLAB REAL ICE™ In-Circuit Emulator
• In-Circuit Debuggers/Programmers
- MPLAB ICD 3
- PICkit™ 3
• Device Programmers
- MPLAB PM3 Device Programmer
• Low-Cost Demonstration/Development Boards,
Evaluation Kits and Starter Kits
• Third-party development tools
26.1
MPLAB X Integrated Development
Environment Software
The MPLAB X IDE is a single, unified graphical user
interface for Microchip and third-party software, and
hardware development tool that runs on Windows®,
Linux and Mac OS® X. Based on the NetBeans IDE,
MPLAB X IDE is an entirely new IDE with a host of free
software components and plug-ins for highperformance application development and debugging.
Moving between tools and upgrading from software
simulators to hardware debugging and programming
tools is simple with the seamless user interface.
With complete project management, visual call graphs,
a configurable watch window and a feature-rich editor
that includes code completion and context menus,
MPLAB X IDE is flexible and friendly enough for new
users. With the ability to support multiple tools on
multiple projects with simultaneous debugging, MPLAB
X IDE is also suitable for the needs of experienced
users.
Feature-Rich Editor:
• Color syntax highlighting
• Smart code completion makes suggestions and
provides hints as you type
• Automatic code formatting based on user-defined
rules
• Live parsing
User-Friendly, Customizable Interface:
• Fully customizable interface: toolbars, toolbar
buttons, windows, window placement, etc.
• Call graph window
Project-Based Workspaces:
•
•
•
•
Multiple projects
Multiple tools
Multiple configurations
Simultaneous debugging sessions
File History and Bug Tracking:
• Local file history feature
• Built-in support for Bugzilla issue tracker
DS40001412H-page 410
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
26.2
MPLAB XC Compilers
The MPLAB XC Compilers are complete ANSI C
compilers for all of Microchip’s 8, 16, and 32-bit MCU
and DSC devices. These compilers provide powerful
integration capabilities, superior code optimization and
ease of use. MPLAB XC Compilers run on Windows,
Linux or MAC OS X.
For easy source level debugging, the compilers provide
debug information that is optimized to the MPLAB X
IDE.
The free MPLAB XC Compiler editions support all
devices and commands, with no time or memory
restrictions, and offer sufficient code optimization for
most applications.
MPLAB XC Compilers include an assembler, linker and
utilities. The assembler generates relocatable object
files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to
produce its object file. Notable features of the assembler include:
•
•
•
•
•
•
Support for the entire device instruction set
Support for fixed-point and floating-point data
Command-line interface
Rich directive set
Flexible macro language
MPLAB X IDE compatibility
26.3
MPASM Assembler
The MPASM Assembler is a full-featured, universal
macro assembler for PIC10/12/16/18 MCUs.
The MPASM Assembler generates relocatable object
files for the MPLINK Object Linker, Intel® standard HEX
files, MAP files to detail memory usage and symbol
reference, absolute LST files that contain source lines
and generated machine code, and COFF files for
debugging.
The MPASM Assembler features include:
26.4
MPLINK Object Linker/
MPLIB Object Librarian
The MPLINK Object Linker combines relocatable
objects created by the MPASM Assembler. It can link
relocatable objects from precompiled libraries, using
directives from a linker script.
The MPLIB Object Librarian manages the creation and
modification of library files of precompiled code. When
a routine from a library is called from a source file, only
the modules that contain that routine will be linked in
with the application. This allows large libraries to be
used efficiently in many different applications.
The object linker/library features include:
• Efficient linking of single libraries instead of many
smaller files
• Enhanced code maintainability by grouping
related modules together
• Flexible creation of libraries with easy module
listing, replacement, deletion and extraction
26.5
MPLAB Assembler, Linker and
Librarian for Various Device
Families
MPLAB Assembler produces relocatable machine
code from symbolic assembly language for PIC24,
PIC32 and dsPIC DSC devices. MPLAB XC Compiler
uses the assembler to produce its object file. The
assembler generates relocatable object files that can
then be archived or linked with other relocatable object
files and archives to create an executable file. Notable
features of the assembler include:
•
•
•
•
•
•
Support for the entire device instruction set
Support for fixed-point and floating-point data
Command-line interface
Rich directive set
Flexible macro language
MPLAB X IDE compatibility
• Integration into MPLAB X IDE projects
• User-defined macros to streamline
assembly code
• Conditional assembly for multipurpose
source files
• Directives that allow complete control over the
assembly process
2010-2021 Microchip Technology Inc.
DS40001412H-page 411
PIC18(L)F2X/4XK22
26.6
MPLAB X SIM Software Simulator
The MPLAB X SIM Software Simulator allows code
development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction
level. On any given instruction, the data areas can be
examined or modified and stimuli can be applied from
a comprehensive stimulus controller. Registers can be
logged to files for further run-time analysis. The trace
buffer and logic analyzer display extend the power of
the simulator to record and track program execution,
actions on I/O, most peripherals and internal registers.
The MPLAB X SIM Software Simulator fully supports
symbolic debugging using the MPLAB XC Compilers,
and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and
debug code outside of the hardware laboratory environment, making it an excellent, economical software
development tool.
26.7
MPLAB REAL ICE In-Circuit
Emulator System
The MPLAB REAL ICE In-Circuit Emulator System is
Microchip’s next generation high-speed emulator for
Microchip Flash DSC and MCU devices. It debugs and
programs all 8, 16 and 32-bit MCU, and DSC devices
with the easy-to-use, powerful graphical user interface of
the MPLAB X IDE.
The emulator is connected to the design engineer’s
PC using a high-speed USB 2.0 interface and is
connected to the target with either a connector
compatible with in-circuit debugger systems (RJ-11)
or with the new high-speed, noise tolerant, LowVoltage Differential Signal (LVDS) interconnection
(CAT5).
The emulator is field upgradable through future firmware
downloads in MPLAB X IDE. MPLAB REAL ICE offers
significant advantages over competitive emulators
including full-speed emulation, run-time variable
watches, trace analysis, complex breakpoints, logic
probes, a ruggedized probe interface and long (up to
three meters) interconnection cables.
DS40001412H-page 412
26.8
MPLAB ICD 3 In-Circuit Debugger
System
The MPLAB ICD 3 In-Circuit Debugger System is
Microchip’s most cost-effective, high-speed hardware
debugger/programmer for Microchip Flash DSC and
MCU devices. It debugs and programs PIC Flash
microcontrollers and dsPIC DSCs with the powerful,
yet easy-to-use graphical user interface of the MPLAB
IDE.
The MPLAB ICD 3 In-Circuit Debugger probe is
connected to the design engineer’s PC using a highspeed USB 2.0 interface and is connected to the target
with a connector compatible with the MPLAB ICD 2 or
MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3
supports all MPLAB ICD 2 headers.
26.9
PICkit 3 In-Circuit Debugger/
Programmer
The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most
affordable price point using the powerful graphical user
interface of the MPLAB IDE. The MPLAB PICkit 3 is
connected to the design engineer’s PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The
connector uses two device I/O pins and the Reset line
to implement in-circuit debugging and In-Circuit Serial
Programming™ (ICSP™).
26.10 MPLAB PM3 Device Programmer
The MPLAB PM3 Device Programmer is a universal,
CE compliant device programmer with programmable
voltage verification at VDDMIN and VDDMAX for
maximum reliability. It features a large LCD display
(128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various
package types. The ICSP cable assembly is included
as a standard item. In Stand-Alone mode, the MPLAB
PM3 Device Programmer can read, verify and program
PIC devices without a PC connection. It can also set
code protection in this mode. The MPLAB PM3
connects to the host PC via an RS-232 or USB cable.
The MPLAB PM3 has high-speed communications and
optimized algorithms for quick programming of large
memory devices, and incorporates an MMC card for file
storage and data applications.
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
26.11 Demonstration/Development
Boards, Evaluation Kits, and
Starter Kits
A wide variety of demonstration, development and
evaluation boards for various PIC MCUs and dsPIC
DSCs allows quick application development on fully
functional systems. Most boards include prototyping
areas for adding custom circuitry and provide application firmware and source code for examination and
modification.
The boards support a variety of features, including LEDs,
temperature sensors, switches, speakers, RS-232
interfaces, LCD displays, potentiometers and additional
EEPROM memory.
26.12 Third-Party Development Tools
Microchip also offers a great collection of tools from
third-party vendors. These tools are carefully selected
to offer good value and unique functionality.
• Device Programmers and Gang Programmers
from companies, such as SoftLog and CCS
• Software Tools from companies, such as Gimpel
and Trace Systems
• Protocol Analyzers from companies, such as
Saleae and Total Phase
• Demonstration Boards from companies, such as
MikroElektronika, Digilent® and Olimex
• Embedded Ethernet Solutions from companies,
such as EZ Web Lynx, WIZnet and IPLogika®
The demonstration and development boards can be
used in teaching environments, for prototyping custom
circuits and for learning about various microcontroller
applications.
In addition to the PICDEM™ and dsPICDEM™
demonstration/development board series of circuits,
Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ® security
ICs, CAN, IrDA®, PowerSmart battery management,
SEEVAL® evaluation system, Sigma-Delta ADC, flow
rate sensing, plus many more.
Also available are starter kits that contain everything
needed to experience the specified device. This usually
includes a single application and debug capability, all
on one board.
Check the Microchip web page (www.microchip.com)
for the complete list of demonstration, development
and evaluation kits.
2010-2021 Microchip Technology Inc.
DS40001412H-page 413
PIC18(L)F2X/4XK22
27.0
ELECTRICAL SPECIFICATIONS
Absolute Maximum Ratings (†)
Ambient temperature under bias .............................................................................................................-40°C to +125°C
Storage temperature .............................................................................................................................. -65°C to +150°C
Voltage on any pin with respect to VSS (except VDD, and MCLR)................................................... -0.3V to (VDD + 0.3V)
Voltage on VDD with respect to VSS
PIC18LF24K22 ......................................................................................................... -0.3V to +4.5V
PIC18(L)F26K22 ....................................................................................................... -0.3V to +6.5V
Voltage on MCLR with respect to VSS (Note 2) ........................................................................................... 0V to +11.0V
Total power dissipation (Note 1)................................................................................................................................1.0W
Maximum current out of VSS pin (-40°C to +85°C)............................................................................................... 300 mA
Maximum current out of VSS pin (+85°C to +125°C)............................................................................................ 125 mA
Maximum current into VDD pin (-40°C to +85°C)...................................................................................................200 mA
Maximum current into VDD pin (+85°C to +125°C) .................................................................................................85 mA
Input clamp current, IIK (VI < 0 or VI > VDD) 20 mA
Output clamp current, IOK (VO < 0 or VO > VDD) 20 mA
Maximum output current sunk by any I/O pin..........................................................................................................25 mA
Maximum output current sourced by any I/O pin.....................................................................................................25 mA
Maximum current sunk byall ports (-40°C to +85°C) ........................................................................................... 200 mA
Maximum current sunk byall ports (+85°C to +125°C) ......................................................................................... 110 mA
Maximum current sourced by all ports (-40°C to +85°C).......................................................................................185 mA
Maximum current sourced by all ports (+85°C to +125°C)......................................................................................70 mA
Note 1: Power dissipation is calculated as follows:
Pdis = VDD x {IDD – IOH} + {(VDD – VOH) x IOH} + (VOL x IOL)
2: Voltage spikes below VSS at the MCLR/VPP/RE3 pin, inducing currents greater than 80 mA, may cause
latch-up. Thus, a series resistor of 50-100 may be used when applying a “low” level to the MCLR/VPP/RE3
pin, rather than pulling this pin directly to VSS.
† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the
device. This is a stress rating only and functional operation of the device at those or any other conditions above those
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability.
DS40001412H-page 414
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
FIGURE 27-1:
PIC18LF2X/4XK22 FAMILY VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL
TEMPERATURE)
5.5V
Voltage
5.0V
4.0V
3.6V
3.0V
2.7V
2.3V
1.8V
10
16 20
30
40
48
60 64
Frequency (MHz)
Note 1: Maximum Frequency 20 MHz, 1.8V to 2.7V, -40°C to +85°C
2: Maximum Frequency 64 MHz, 2.7V to 3.6V, -40°C to +85°C
FIGURE 27-2:
PIC18LF2X/4XK22 FAMILY VOLTAGE-FREQUENCY GRAPH (EXTENDED
TEMPERATURE)
5.5V
Voltage
5.0V
4.0V
3.6V
3.0V
2.7V
2.3V
1.8V
10
16 20
30
40
48
60 64
Frequency (MHz)
Note 1: Maximum Frequency 16 MHz, 1.8V to 2.7V, +85°C to +125°C
2: Maximum Frequency 48 MHz, 2.7V to 3.6V, +85°C to +125°C
2010-2021 Microchip Technology Inc.
DS40001412H-page 415
PIC18(L)F2X/4XK22
FIGURE 27-3:
PIC18F2X/4XK22 FAMILY VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL
TEMPERATURE)
5.5V
Voltage
5.0V
4.0V
3.6V
3.0V
2.7V
2.3V
1.8V
10
16 20
30
40
48
60 64
Frequency (MHz)
Note 1: Maximum Frequency 20 MHz, 2.3V to 2.7V, -40°C to +85°C
2: Maximum Frequency 64 MHz, 2.7V to 5.5V, -40°C to +85°C
FIGURE 27-4:
PIC18F2X/4XK22 FAMILY VOLTAGE-FREQUENCY GRAPH (EXTENDED
TEMPERATURE)
5.5V
Voltage
5.0V
4.0V
3.6V
3.0V
2.7V
2.3V
1.8V
10
16 20
30
40
48
60 64
Frequency (MHz)
Note 1: Maximum Frequency 16 MHz, 2.3V to 2.7V, +85°C to +125°C
2: Maximum Frequency 48 MHz, 2.7V to 5.5V, +85°C to +125°C
DS40001412H-page 416
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
27.1
DC Characteristics: Supply Voltage, PIC18(L)F2X/4XK22
Standard Operating Conditions (unless otherwise
stated)
Operating temperature
-40°C TA +125°C
PIC18(L)F2X/4XK22
Param
Symbol
No.
Characteristic
D001
VDD
Supply Voltage
D002
VDR
RAM Data Retention Voltage(1)
D003
VPOR
VDD Start Voltage to ensure internal
Power-on Reset signal
D004
SVDD
VDD Rise Rate to ensure internal
Power-on Reset signal
D005
VBOR
Brown-out Reset Voltage
Note 1:
2:
3:
Min
PIC18LF2X/4XK22
1.8
PIC18F2X/4XK22
Typ Max Units
—
3.6
2.3
—
5.5
V
1.5
—
—
V
—
—
0.7
V
0.05
—
—
BORV = 11(2)
1.75
1.9 2.05
V
BORV = 10
2.05
2.2 2.35
V
BORV = 01
2.35
2.5 2.65
V
BORV = 00(3)
2.65 2.85 3.05
V
Conditions
V
See section on Power-on Reset
for details
V/ms See section on Power-on Reset
for details
This is the limit to which VDD can be lowered in Sleep mode, or during a device Reset, without losing RAM
data.
On PIC18(L)F2X/4XK22 devices with BOR enabled, operation is supported until a BOR occurs. This is
valid although VDD may be below the minimum rated supply voltage.
With BOR enabled, full-speed operation (FOSC = 64 MHz or 48 MHz) is supported until a BOR occurs. This
is valid although VDD may be below the minimum voltage for this frequency.
2010-2021 Microchip Technology Inc.
DS40001412H-page 417
PIC18(L)F2X/4XK22
27.2
DC Characteristics: Power-Down Current, PIC18(L)F2X/4XK22
PIC18LF2X/4XK22
Standard Operating Conditions (unless otherwise stated)
Operating temperature
-40°C TA +125°C
PIC18F2X/4XK22
Standard Operating Conditions (unless otherwise stated)
Operating temperature
-40°C TA +125°C
Param
No.
Typ
Typ
Max
Max
+25°C +60°C +85°C +125°C
Device Characteristics
Power-down Base Current (IPD)
D006
Units
Conditions
VDD
Notes
(1)
Sleep mode
2
10
A
1.8V
0.06
2
10
A
3.0V
13
25
35
A
2.3V
13
14
30
40
A
3.0V
13
14
35
50
A
5.0V
0.01
0.04
0.01
12
WDT, BOR, FVR and
SOSC disabled, all
Peripherals inactive
Power-down Module Differential Current (delta IPD)
D007
Watchdog Timer
D008
Brown-out
Reset(2)
High/Low Voltage Detect(2)
D010
D011
Secondary Oscillator
Note 1:
2:
3:
0.3
0.3
2.5
2.5
A
1.8V
0.5
0.5
2.5
2.5
A
3.0V
0.35
0.35
5.0
5.0
A
2.3V
0.5
0.5
5.0
5.0
A
3.0V
0.5
0.5
5.0
5.0
A
5.0V
8
8.5
15
16
A
2.0V
9
9.5
15
16
A
3.0V
3.4
3.4
15
16
A
2.3V
3.8
3.8
15
16
A
3.0V
5.2
5.2
15
16
A
5.0V
6.5
6.7
15
15
A
2.0V
7
7.5
15
15
A
3.0V
2.1
2.1
15
15
A
2.3V
2.4
2.4
15
15
A
3.0V
3.2
3.2
15
15
A
5.0V
0.5
1
3
10
A
1.8V
0.6
1.1
4
10
A
3.0V
0.5
1
3
10
A
2.3V
0.6
1.1
4
10
A
3.0V
0.6
1.1
5
10
A
5.0V
32 kHz on SOSC
The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is
measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS
and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).
On PIC18LF2X/4XK22 the BOR, HLVD and FVR enable internal band gap reference. With more than one
of these modules enabled, the current consumption will be less than the sum of the specifications. On
PIC18F2X/4XK22, the internal band gap reference is always enabled and its current consumption is
included in the Power-down Base Current (IPD).
A/D converter differential currents apply only in Run mode. In Sleep or Idle mode both the ADC and the
FRC turn off as soon as conversion (if any) is complete.
DS40001412H-page 418
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
27.2
DC Characteristics: Power-Down Current, PIC18(L)F2X/4XK22 (Continued)
PIC18LF2X/4XK22
Standard Operating Conditions (unless otherwise stated)
Operating temperature
-40°C TA +125°C
PIC18F2X/4XK22
Standard Operating Conditions (unless otherwise stated)
Operating temperature
-40°C TA +125°C
Param
No.
Typ
Typ
Max
Max
+25°C +60°C +85°C +125°C
D015
Device Characteristics
Comparators
D016
Comparators
D017
DAC
FVR(2)
D018
D013
A/D
Note 1:
2:
3:
Converter(3)
Units
Conditions
VDD
7
7
18
18
A
1.8V
7
7
18
18
A
3.0V
7
7
18
18
A
2.3V
7
7
18
18
A
3.0V
8
8
20
20
A
5.0V
38
38
95
95
A
1.8V
40
40
105
105
A
3.0V
39
39
95
95
A
2.3V
40
40
105
105
A
3.0V
40
40
105
105
A
5.0V
14
14
25
25
A
2.0V
20
20
35
35
A
3.0V
15
15
30
30
A
2.3V
20
20
35
35
A
3.0V
32
32
60
60
A
5.0V
15
16
25
25
A
1.8V
15
16
25
25
A
3.0V
28
28
45
45
A
2.3V
31
31
55
55
A
3.0V
66
66
100
100
A
5.0V
185
185
370
370
A
1.8V
210
210
400
400
A
3.0V
200
200
380
380
A
2.3V
210
210
400
400
A
3.0V
250
250
450
450
A
5.0V
Notes
LP mode
HP mode
A/D on, not converting
The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is
measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS
and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).
On PIC18LF2X/4XK22 the BOR, HLVD and FVR enable internal band gap reference. With more than one
of these modules enabled, the current consumption will be less than the sum of the specifications. On
PIC18F2X/4XK22, the internal band gap reference is always enabled and its current consumption is
included in the Power-down Base Current (IPD).
A/D converter differential currents apply only in Run mode. In Sleep or Idle mode both the ADC and the
FRC turn off as soon as conversion (if any) is complete.
2010-2021 Microchip Technology Inc.
DS40001412H-page 419
PIC18(L)F2X/4XK22
27.3
DC Characteristics: RC Run Supply Current, PIC18(L)F2X/4XK22
PIC18LF2X/4XK22
Standard Operating Conditions (unless otherwise stated)
Operating temperature
-40°C TA +125°C
PIC18F2X/4XK22
Standard Operating Conditions (unless otherwise stated)
Operating temperature
-40°C TA +125°C
Param
No.
D020
Device Characteristics
Typ
Max
Units
Supply Current (IDD)(1),(2)
3.6
23
A
-40°C
3.9
25
A
+25°C
3.9
—
A
+60°C
3.9
28
A
+85°C
D021
Conditions
4.0
30
A
125°C
8.1
26
A
-40°C
8.4
30
A
+25°C
8.6
—
A
+60°C
VDD = 1.8V
VDD = 3.0V
8.7
35
A
+85°C
10.7
40
A
+125°C
16
35
A
-40°C
17
35
A
+25°C
18
35
A
+85°C
19
50
A
+125°C
18
50
A
-40°C
20
50
A
+25°C
21
50
A
+85°C
22
60
A
+125°C
19
55
A
-40°C
21
55
A
+25°C
22
55
A
+85°C
23
70
A
+125°C
D025
0.14
0.25
mA
-40°C to +125°C
VDD = 1.8V
D026
0.17
0.30
mA
-40°C to +125°C
VDD = 3.0V
D027
0.18
0.25
mA
-40°C to +125°C
VDD = 2.3V
D028
0.20
0.30
mA
-40°C to +125°C
VDD = 3.0V
D029
0.25
0.35
mA
-40°C to +125°C
VDD = 5.0V
D022
D023
D024
Note 1:
2:
FOSC = 31 kHz
(RC_RUN mode,
LFINTOSC
source)
VDD = 2.3V
FOSC = 31 kHz
(RC_RUN mode,
LFINTOSC
source)
VDD = 3.0V
VDD = 5.0V
FOSC = 500 kHz
(RC_RUN mode,
MFINTOSC
source)
FOSC = 500 kHz
(RC_RUN mode,
MFINTOSC
source)
The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading
and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on
the current consumption.
Test condition: All Peripheral Module Control bits in PMD0, PMD1 and PMD2 set to ‘1’.
The test conditions for all IDD measurements in active operation mode are:
All I/O pins set as outputs driven to Vss;
MCLR = VDD;
OSC1 = external square wave, from rail-to-rail (PRI_RUN and PRI_IDLE only).
DS40001412H-page 420
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
27.3
DC Characteristics: RC Run Supply Current, PIC18(L)F2X/4XK22 (Continued)
PIC18LF2X/4XK22
Standard Operating Conditions (unless otherwise stated)
Operating temperature
-40°C TA +125°C
PIC18F2X/4XK22
Standard Operating Conditions (unless otherwise stated)
Operating temperature
-40°C TA +125°C
Param
No.
Typ
Max
Units
D030
0.35
0.50
mA
-40°C to +125°C
VDD = 1.8V
D031
0.45
0.65
mA
-40°C to +125°C
VDD = 3.0V
D032
0.40
0.60
mA
-40°C to +125°C
VDD = 2.3V
D033
0.50
0.65
mA
-40°C to +125°C
VDD = 3.0V
D034
0.55
0.75
mA
-40°C to +125°C
VDD = 5.0V
D035
1.3
2.0
mA
-40°C to +125°C
VDD = 1.8V
D036
2.2
3.0
mA
-40°C to +125°C
VDD = 3.0V
D037
1.7
2.0
mA
-40°C to +125°C
VDD = 2.3V
D038
2.2
3.0
mA
-40°C to +125°C
VDD = 3.0V
D039
2.5
3.5
mA
-40°C to +125°C
VDD = 5.0V
D041
6.2
8.5
mA
-40°C to +125°C
VDD = 3.0V
FOSC = 64 MHz
(RC_RUN mode,
HFINTOSC + PLL
source)
D043
6.2
8.5
mA
-40°C to +125°C
VDD = 3.0V
D044
6.8
9.5
mA
-40°C to +125°C
VDD = 5.0V
FOSC = 64 MHz
(RC_RUN mode,
HFINTOSC + PLL
source)
Note 1:
2:
Device Characteristics
Conditions
FOSC = 1 MHz
(RC_RUN mode,
HFINTOSC
source)
FOSC = 1 MHz
(RC_RUN mode,
HFINTOSC
source)
FOSC = 16 MHz
(RC_RUN mode,
HFINTOSC
source)
FOSC = 16 MHz
(RC_RUN mode,
HFINTOSC
source)
The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading
and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on
the current consumption.
Test condition: All Peripheral Module Control bits in PMD0, PMD1 and PMD2 set to ‘1’.
The test conditions for all IDD measurements in active operation mode are:
All I/O pins set as outputs driven to Vss;
MCLR = VDD;
OSC1 = external square wave, from rail-to-rail (PRI_RUN and PRI_IDLE only).
2010-2021 Microchip Technology Inc.
DS40001412H-page 421
PIC18(L)F2X/4XK22
27.4
DC Characteristics: RC Idle Supply Current, PIC18(L)F2X/4XK22
PIC18LF2X/4XK22
Standard Operating Conditions (unless otherwise stated)
Operating temperature
-40°C TA +125°C
PIC18F2X/4XK22
Standard Operating Conditions (unless otherwise stated)
Operating temperature
-40°C TA +125°C
Param
No.
D045
Device Characteristics
Typ
Supply Current (IDD)(1),(2)
0.5
18
A
-40°C
0.6
18
A
+25°C
D046
D047
D048
D049
Max Units
Conditions
0.7
—
A
+60°C
0.75
20
A
+85°C
2.3
22
A
+125°C
1.1
20
A
-40°C
1.2
20
A
+25°C
1.3
—
A
+60°C
1.4
22
A
+85°C
3.2
25
A
+125°C
17
30
A
-40°C
13
30
A
+25°C
14
30
A
+85°C
15
45
A
+125°C
19
35
A
-40°C
15
35
A
+25°C
16
35
A
+85°C
17
50
A
+125°C
21
40
A
-40°C
15
40
A
+25°C
16
40
A
+85°C
VDD = 1.8V
VDD = 3.0V
VDD = 2.3V
VDD = 5.0V
18
60
A
+125°C
0.11
0.20
mA
-40°C to +125°C
VDD = 1.8V
D051
0.12
0.25
mA
-40°C to +125°C
VDD = 3.0V
D052
0.14
0.21
mA
-40°C to +125°C
VDD = 2.3V
D053
0.15
0.25
mA
-40°C to +125°C
VDD = 3.0V
D054
0.20
0.31
mA
-40°C to +125°C
VDD = 5.0V
2:
FOSC = 31 kHz
(RC_IDLE mode,
LFINTOSC source)
VDD = 3.0V
D050
Note 1:
FOSC = 31 kHz
(RC_IDLE mode,
LFINTOSC source)
FOSC = 500 kHz
(RC_IDLE mode,
MFINTOSC source)
FOSC = 500 kHz
(RC_IDLE mode,
MFINTOSC source)
The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading
and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on
the current consumption.
Test condition: All Peripheral Module Control bits in PMD0, PMD1 and PMD2 set to ‘1’.
The test conditions for all IDD measurements in active operation mode are:
All I/O pins set as outputs driven to Vss;
MCLR = VDD;
OSC1 = external square wave, from rail-to-rail (PRI_RUN and PRI_IDLE only).
DS40001412H-page 422
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
27.4
DC Characteristics: RC Idle Supply Current, PIC18(L)F2X/4XK22 (Continued)
PIC18LF2X/4XK22
Standard Operating Conditions (unless otherwise stated)
Operating temperature
-40°C TA +125°C
PIC18F2X/4XK22
Standard Operating Conditions (unless otherwise stated)
Operating temperature
-40°C TA +125°C
Param
No.
Device Characteristics
Typ
Max Units
Conditions
D055
0.25
0.40
mA
-40°C to +125°C
VDD = 1.8V
D056
0.35
0.50
mA
-40°C to +125°C
VDD = 3.0V
D057
0.30
0.45
mA
-40°C to +125°C
VDD = 2.3V
D058
0.40
0.50
mA
-40°C to +125°C
VDD = 3.0V
FOSC = 1 MHz
(RC_IDLE mode,
HFINTOSC source)
FOSC = 1 MHz
(RC_IDLE mode,
HFINTOSC source)
D059
0.45
0.60
mA
-40°C to +125°C
VDD = 5.0V
D060
0.50
0.7
mA
-40°C to +125°C
VDD = 1.8V
D061
0.80
1.1
mA
-40°C to +125°C
VDD = 3.0V
D062
0.65
1.0
mA
-40°C to +125°C
VDD = 2.3V
D063
0.80
1.1
mA
-40°C to +125°C
VDD = 3.0V
D064
0.95
1.2
mA
-40°C to +125°C
VDD = 5.0V
D066
2.5
3.5
mA
-40°C to +125°C
VDD = 3.0V
FOSC = 64 MHz
(RC_IDLE mode,
HFINTOSC + PLL
source)
D068
2.5
3.5
mA
-40°C to +125°C
VDD = 3.0V
D069
3.0
4.5
mA
-40°C to +125°C
VDD = 5.0V
FOSC = 64 MHz
(RC_IDLE mode,
HFINTOSC + PLL
source)
Note 1:
2:
FOSC = 16 MHz
(RC_IDLE mode,
HFINTOSC source)
FOSC = 16 MHz
(RC_IDLE mode,
HFINTOSC source)
The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading
and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on
the current consumption.
Test condition: All Peripheral Module Control bits in PMD0, PMD1 and PMD2 set to ‘1’.
The test conditions for all IDD measurements in active operation mode are:
All I/O pins set as outputs driven to Vss;
MCLR = VDD;
OSC1 = external square wave, from rail-to-rail (PRI_RUN and PRI_IDLE only).
2010-2021 Microchip Technology Inc.
DS40001412H-page 423
PIC18(L)F2X/4XK22
27.5
DC Characteristics: Primary Run Supply Current, PIC18(L)F2X/4XK22
PIC18LF2X/4XK22
Standard Operating Conditions (unless otherwise stated)
Operating temperature
-40°C TA +125°C
PIC18F2X/4XK22
Standard Operating Conditions (unless otherwise stated)
Operating temperature
-40°C TA +125°C
Param
No.
Device Characteristics
Typ
Max Units
Supply Current (IDD)(1),(2)
0.11
0.20
mA
-40°C to +125°C
VDD = 1.8V
D071
0.17
0.25
mA
-40°C to +125°C
VDD = 3.0V
D072
0.15
0.25
mA
-40°C to +125°C
VDD = 2.3V
D073
0.20
0.30
mA
-40°C to +125°C
VDD = 3.0V
D074
0.25
0.35
mA
-40°C to +125°C
VDD = 5.0V
D075
1.45
2.0
mA
-40°C to +125°C
VDD = 1.8V
D076
2.60
3.5
mA
-40°C to +125°C
VDD = 3.0V
D077
1.95
2.5
mA
-40°C to +125°C
VDD = 2.3V
D078
2.65
3.5
mA
-40°C to +125°C
VDD = 3.0V
D079
2.95
4.5
mA
-40°C to +125°C
VDD = 5.0V
D080
7.5
10
mA
-40°C to +125°C
VDD = 3.0V
FOSC = 64 MHz
(PRI_RUN,
ECH oscillator)
D081
7.5
10
mA
-40°C to +125°C
VDD = 3.0V
D082
8.5
11.5
mA
-40°C to +125°C
VDD = 5.0V
FOSC = 64 MHz
(PRI_RUN mode,
ECH source)
D083
1.0
1.5
mA
-40°C to +125°C
VDD = 1.8V
D084
1.8
3.0
mA
-40°C to +125°C
VDD = 3.0V
D085
1.4
2.0
mA
-40°C to +125°C
VDD = 2.3V
D086
1.85
2.5
mA
-40°C to +125°C
VDD = 3.0V
D087
2.1
3.0
mA
-40°C to +125°C
VDD = 5.0V
D088
6.35
9.0
mA
-40°C to +125°C
VDD = 3.0V
FOSC = 16 MHz
64 MHz Internal
(PRI_RUN mode,
ECH + PLL source)
D089
6.35
9.0
mA
-40°C to +125°C
VDD = 3.0V
D090
7.0
10
mA
-40°C to +125°C
VDD = 5.0V
FOSC = 16 MHz
64 MHz Internal
(PRI_RUN mode,
ECH + PLL source)
D070
Note 1:
2:
Conditions
FOSC = 1 MHz
(PRI_RUN mode,
ECM source)
FOSC = 1 MHz
(PRI_RUN mode,
ECM source)
FOSC = 20 MHz
(PRI_RUN mode,
ECH source)
FOSC = 20 MHz
(PRI_RUN mode,
ECH source)
FOSC = 4 MHz
16 MHz Internal
(PRI_RUN mode,
ECM + PLL source)
FOSC = 4 MHz
16 MHz Internal
(PRI_RUN mode,
ECM + PLL source)
The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading
and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on
the current consumption.
Test condition: All Peripheral Module Control bits in PMD0, PMD1 and PMD2 set to ‘1’.
The test conditions for all IDD measurements in active operation mode are:
All I/O pins set as outputs driven to Vss;
MCLR = VDD;
OSC1 = external square wave, from rail-to-rail (PRI_RUN and PRI_IDLE only).
DS40001412H-page 424
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
27.6
DC Characteristics: Primary Idle Supply Current, PIC18(L)F2X/4XK22
PIC18LF2X/4XK22
Standard Operating Conditions (unless otherwise stated)
Operating temperature
-40°C TA +125°C
PIC18F2X/4XK22
Standard Operating Conditions (unless otherwise stated)
Operating temperature
-40°C TA +125°C
Param
No.
Device Characteristics
Supply Current (IDD)(1),(2)
D100
Typ
Max Units
Conditions
0.030 0.050
mA
-40°C to +125°C
VDD = 1.8V
D101
0.045 0.065
mA
-40°C to +125°C
VDD = 3.0V
D102
0.06
0.12
mA
-40°C to +125°C
VDD = 2.3V
D103
0.08
0.15
mA
-40°C to +125°C
VDD = 3.0V
D104
0.13
0.20
mA
-40°C to +125°C
VDD = 5.0V
Fosc = 1 MHz
(PRI_IDLE mode,
ECM source)
Fosc = 1 MHz
(PRI_IDLE mode,
ECM source)
D105
0.45
0.8
mA
-40°C to +125°C
VDD = 1.8V
D106
0.70
1.0
mA
-40°C to +125°C
VDD = 3.0V
D107
0.55
0.8
mA
-40°C to +125°C
VDD = 2.3V
D108
0.75
1.0
mA
-40°C to +125°C
VDD = 3.0V
D109
0.90
1.2
mA
-40°C to +125°C
VDD = 5.0V
D110
2.25
3.0
mA
-40°C to +125°C
VDD = 3.0V
Fosc = 64 MHz
(PRI_IDLE mode,
ECH source)
D111
2.25
3.0
mA
-40°C to +125°C
VDD = 3.0V
D112
2.60
3.5
mA
-40°C to +125°C
VDD = 5.0V
Fosc = 64 MHz
(PRI_IDLE mode,
ECH source)
Fosc = 20 MHz
(PRI_IDLE mode,
ECH source)
Fosc = 20 MHz
(PRI_IDLE mode,
ECH source)
D113
0.35
0.6
mA
-40°C to +125°C
VDD = 1.8V
D114
0.55
0.8
mA
-40°C to +125°C
VDD = 3.0V
D115
0.45
0.6
mA
-40°C to +125°C
VDD = 2.3V
D116
0.60
0.9
mA
-40°C to +125°C
VDD = 3.0V
D117
0.70
1.0
mA
-40°C to +125°C
VDD = 5.0V
D118
2.2
3.0
mA
-40°C to +125°C
VDD = 3.0V
Fosc = 16 MHz
64 MHz Internal
(PRI_IDLE mode,
ECH + PLL source)
D119
2.2
3.0
mA
-40°C to +125°C
VDD = 3.0V
D120
2.5
3.5
mA
-40°C to +125°C
VDD = 5.0V
Fosc = 16 MHz
64 MHz Internal
(PRI_IDLE mode,
ECH + PLL source)
Note 1:
2:
Fosc = 4 MHz
16 MHz Internal
(PRI_IDLE mode,
ECM + PLL source)
Fosc = 4 MHz
16 MHz Internal
(PRI_IDLE mode,
ECM + PLL source)
The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading
and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on
the current consumption.
Test condition: All Peripheral Module Control bits in PMD0, PMD1 and PMD2 set to ‘1’.
The test conditions for all IDD measurements in active operation mode are:
All I/O pins set as outputs driven to Vss;
MCLR = VDD;
OSC1 = external square wave, from rail-to-rail (PRI_RUN and PRI_IDLE only).
2010-2021 Microchip Technology Inc.
DS40001412H-page 425
PIC18(L)F2X/4XK22
.
27.7
DC Characteristics: Secondary Oscillator Supply Current, PIC18(L)F2X/4XK22
PIC18LF2X/4XK22
Standard Operating Conditions (unless otherwise stated)
Operating temperature
-40°C TA +125°C
PIC18F2X/4XK22
Standard Operating Conditions (unless otherwise stated)
Operating temperature
-40°C TA +125°C
Param
No.
D130
Device Characteristics
Typ
Supply Current (IDD)(1),(2)
3.5
23
A
-40°C
3.7
25
A
+25°C
3.8
—
A
+60°C
4.0
28
A
+85°C
5.1
30
A
+125°C
6.2
26
A
-40°C
6.4
30
A
+25°C
6.5
—
A
+60°C
6.8
35
A
+85°C
7.8
40
A
+125°C
15
35
A
-40°C
16
35
A
+25°C
17
35
A
+85°C
19
50
A
+125°C
18
50
A
-40°C
19
50
A
+25°C
21
50
A
+85°C
22
60
A
+125°C
19
55
A
-40°C
20
55
A
+25°C
22
55
A
+85°C
23
70
A
+125°C
D131
D132
D133
D134
Note 1:
2:
Max Units
Conditions
VDD = 1.8V
Fosc = 32 kHz
(SEC_RUN mode,
SOSC source)
VDD = 3.0V
VDD = 2.3V
Fosc = 32 kHz
(SEC_RUN mode,
SOSC source)
VDD = 3.0V
VDD = 5.0V
The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading
and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on
the current consumption.
Test condition: All Peripheral Module Control bits in PMD0, PMD1 and PMD2 set to ‘1’.
The test conditions for all IDD measurements in active operation mode are:
All I/O pins set as outputs driven to Vss;
MCLR = VDD;
SOSCI / SOSCO = complementary external square wave, from rail-to-rail.
DS40001412H-page 426
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
27.7
DC Characteristics: Secondary Oscillator Supply Current, PIC18(L)F2X/4XK22
PIC18LF2X/4XK22
Standard Operating Conditions (unless otherwise stated)
Operating temperature
-40°C TA +125°C
PIC18F2X/4XK22
Standard Operating Conditions (unless otherwise stated)
Operating temperature
-40°C TA +125°C
Param
No.
Device Characteristics
D135
D136
D137
D138
D139
Note 1:
2:
Typ
Max Units
Conditions
0.9
18
A
-40°C
1.0
18
A
+25°C
1.1
—
A
+60°C
1.3
20
A
+85°C
2.3
22
A
+125°C
1.3
20
A
-40°C
1.4
20
A
+25°C
1.5
—
A
+60°C
1.8
22
A
+85°C
2.9
25
A
+125°C
12
30
A
-40°C
13
30
A
+25°C
14
30
A
+85°C
16
45
A
+125°C
13
35
A
-40°C
14
35
A
+25°C
16
35
A
+85°C
18
50
A
+125°C
14
40
A
-40°C
15
40
A
+25°C
16
40
A
+85°C
18
60
A
+125°C
VDD = 1.8V
Fosc = 32 kHz
(SEC_IDLE mode,
SOSC source)
VDD = 3.0V
VDD = 2.3V
Fosc = 32 kHz
(SEC_IDLE mode,
SOSC source)
VDD = 3.0V
VDD = 5.0V
The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading
and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on
the current consumption.
Test condition: All Peripheral Module Control bits in PMD0, PMD1 and PMD2 set to ‘1’.
The test conditions for all IDD measurements in active operation mode are:
All I/O pins set as outputs driven to Vss;
MCLR = VDD;
SOSCI / SOSCO = complementary external square wave, from rail-to-rail.
2010-2021 Microchip Technology Inc.
DS40001412H-page 427
PIC18(L)F2X/4XK22
27.8
DC Characteristics: Input/Output Characteristics, PIC18(L)F2X/4XK22
DC CHARACTERISTICS
Param
Symbol
No.
VIL
Characteristic
Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C TA +125°C
Min
Typ†
Max
Units
Conditions
—
—
0.8
V
4.5V VDD 5.5V
—
—
0.15 VDD
V
1.8V VDD 4.5V
with Schmitt Trigger
buffer
—
—
0.2 VDD
V
2.0V VDD 5.5V
with I2C levels
—
—
0.3 VDD
V
with SMBus levels
—
—
0.8
V
Input Low Voltage
I/O PORT:
D140
with TTL buffer
D140A
D141
D142
MCLR, OSC1 (RC
mode)(1)
—
—
0.2 VDD
V
D142A
OSC1 (HS mode)
—
—
0.3 VDD
V
—
—
VIH
Input High Voltage
I/O ports:
D147
2.0
—
—
V
4.5V VDD 5.5V
0.25 VDD +
0.8
—
—
V
1.8V VDD 4.5V
with Schmitt Trigger
buffer
0.8 VDD
—
—
V
2.0V VDD 5.5V
with I2C levels
0.7 VDD
—
—
V
2.1
—
—
V
with TTL buffer
D147A
D148
with SMBus levels
D149
MCLR
0.8 VDD
—
—
V
D150A
OSC1 (HS mode)
0.7 VDD
—
—
V
D150B
OSC1 (RC mode)(1)
0.9 VDD
—
—
V
IIL
D155
Note 1:
2:
3:
4:
IPU
Weak Pull-up Current(4)
IPURB
PORTB weak pull-up
current
2.7V VDD 5.5V
VSS VPIN VDD,
Pin at high-impedance
Input Leakage I/O and
MCLR(2),(3)
I/O ports and MCLR
D158
2.7V VDD 5.5V
—
—
—
—
0.1
0.7
4
35
50
100
200
1000
nA
nA
nA
nA
+25°C(4)
+60°C
+85°C
+125°C
25
25
85
130
200
300
A
A
VDD = 3.3V, VPIN = VSS
VDD = 5.0V, VPIN = VSS
In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that
the PIC® device be driven with an external clock while in RC mode.
The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified
levels represent normal operating conditions. Higher leakage current may be measured at different input
voltages.
Negative current is defined as current sourced by the pin.
Parameter is characterized but not tested.
DS40001412H-page 428
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
27.8
DC Characteristics: Input/Output Characteristics, PIC18(L)F2X/4XK22 (Continued)
DC CHARACTERISTICS
Param
Symbol
No.
VOL
D159
Characteristic
Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C TA +125°C
Min
Typ†
Max
Units
Conditions
—
—
0.6
V
IOL = 8 mA, VDD = 5V
IOL = 6 mA, VDD = 3.3V
IOL = 1.8 mA, VDD = 1.8V
VDD - 0.7
—
—
V
IOH = 3.5 mA, VDD = 5V
IOH = 3 mA, VDD = 3.3V
IOH = 1 mA, VDD = 1.8V
Output Low Voltage
I/O ports
VOH
D161
Output High Voltage(3)
I/O ports
Note 1:
2:
3:
4:
In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that
the PIC® device be driven with an external clock while in RC mode.
The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified
levels represent normal operating conditions. Higher leakage current may be measured at different input
voltages.
Negative current is defined as current sourced by the pin.
Parameter is characterized but not tested.
2010-2021 Microchip Technology Inc.
DS40001412H-page 429
PIC18(L)F2X/4XK22
27.9
Memory Programming Requirements
Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C TA +125°C
DC CHARACTERISTICS
Param
No.
Sym
Characteristic
Min
Typ†
Max
Units
Conditions
Internal Program Memory
Programming Specifications(1)
D170
VPP
Voltage on MCLR/VPP pin
8
—
9
V
D171
IDDP
Supply Current during
Programming
—
—
10
mA
100K
—
—
E/W
VDDMIN
—
VDDMAX
V
(Note 3), (Note 4)
Data EEPROM Memory
D172
ED
Byte Endurance
D173
VDRW
VDD for Read/Write
D175
TDEW
Erase/Write Cycle Time
—
3
4
ms
D176
TRETD Characteristic Retention
—
40
—
Year
Provided no other
specifications are violated
D177
TREF
1M
10M
—
E/W
-40°C to +85°C
10K
—
—
E/W
-40C to +85C (Note 5)
VDDMIN
—
VDDMAX
V
Number of Total Erase/Write
Cycles before Refresh(2)
-40C to +85C
Using EECON to read/
write
Program Flash Memory
D178
EP
Cell Endurance
D179
VPR
VDD for Read
D181
VIW
VDD for Row Erase or Write
D182
VIW
D183
TIW
D184
TRETD Characteristic Retention
Self-timed Write Cycle Time
2.2
—
VDDMAX
V
PIC18LF24K22
VDDMIN
—
VDDMAX
V
PIC18(L)F26K22
—
2
—
ms
—
40
—
Year
Provided no other
specifications are violated
† Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance
only and are not tested.
Note 1: These specifications are for programming the on-chip program memory through the use of table write
instructions.
2: Refer to Section 7.8 “Using the Data EEPROM” for a more detailed discussion on data EEPROM
endurance.
3: Required only if single-supply programming is disabled.
4: The MPLAB ICD 2 does not support variable VPP output. Circuitry to limit the MPLAB ICD 2 VPP voltage must
be placed between the MPLAB ICD 2 and target system when programming or debugging with the MPLAB
ICD 2.
5: Self-write and Block Erase.
DS40001412H-page 430
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
27.10 Analog Characteristics
TABLE 27-1:
COMPARATOR SPECIFICATIONS
Operating Conditions: 1.8V < VDD < 5.5V, -40°C < TA < +125°C (unless otherwise stated)
Param
No.
CM01
CM02
CM04*
CM05*
*
Note 1:
Sym
VIOFF
Characteristics
Input Offset Voltage
Input Common-mode Voltage
VICM
TRESP
TMC2OV
Response Time
(1)
Comparator Mode Change to
Output Valid
Min
Typ
Max
Units
Comments
—
3
40
mV
High-Power mode
VREF = VDD/2
—
4
60
mV
Low-Power mode
VREF = VDD/2
VSS
—
VDD
V
—
200
400
ns
High-Power mode
—
600
3500
ns
Low-Power mode
—
—
10
s
These parameters are characterized but not tested.
Response time measured with one comparator input at VDD/2, while the other input transitions from VSS to VDD.
TABLE 27-2:
DIGITAL-TO-ANALOG CONVERTER (DAC) SPECIFICATIONS
Operating Conditions: 2.0V < VDD < 5.5V, -40°C < TA < +125°C (unless otherwise stated)
Param
No.
Sym
Characteristics
Min
Typ
Max
Units
CV01*
CLSB
Step Size(2)
—
VDD/32
—
V
CV02*
CACC
Absolute Accuracy
—
—
1/2
LSb
CV03*
CR
Unit Resistor Value (R)
—
5k
—
Time(1)
CV04*
CST
Settling
—
—
10
s
CV05*
VSRC+
DAC Positive Reference
VSRC- +2
—
VDD
V
CV06*
VSRC-
DAC Negative Reference
VSS
—
VSRC+ -2
V
CV07*
VSRC
DAC Reference Range
(VSRC+ - VSRC-)
2
—
VDD
V
*
Note 1:
2:
Comments
VSRC 2.0V
These parameters are characterized but not tested.
Settling time measured while CVRR = 1 and CVR3:CVR0 transitions from ‘0000’ to ‘1111’.
See Section 22.0 “Digital-to-Analog Converter (DAC) Module” for more information.
2010-2021 Microchip Technology Inc.
DS40001412H-page 431
PIC18(L)F2X/4XK22
TABLE 27-3:
FIXED VOLTAGE REFERENCE (FVR) SPECIFICATIONS
Operating Conditions: -40°C < TA < +125°C (unless otherwise stated)
Param
No.
VR01
Sym
Characteristics
VR voltage output to ADC
VROUT
VR02
VROUT
VR04*
VR voltage output all other
modules
TSTABLE
*
Settling Time
Min
Typ
Max
Units
Comments
0.973
1.024
1.085
V
1x output, VDD 2.5V
1.946
2.048
2.171
V
2x output, VDD 2.5V
3.891
4.096
4.342
V
4x output, VDD 4.75V
(PIC18F2X/4XK22)
0.942
1.024
1.096
V
1x output, VDD 2.5V
1.884
2.048
2.191
V
2x output, VDD 2.5V
3.768
4.096
4.383
V
4x output, VDD 4.75V
(PIC18F2X/4XK22)
—
25
100
s
0 to 125°C
These parameters are characterized but not tested.
TABLE 27-4:
CHARGE TIME MEASUREMENT UNIT (CTMU) SPECIFICATIONS
Operating Conditions: 1.8V < VDD < 5.5V, -40°C < TA < +125°C (unless otherwise stated)
Param
No.
Sym
Characteristics
Min
Typ(1)
Max
Units
Comments
CT01
IOUT1
CTMU Current Source,
Base Range
—
0.55
—
A
IRNG=01
CT02
IOUT2
CTMU Current Source,
10X Range
—
5.5
—
A
IRNG=10
CT03
IOUT3
CTMU Current Source,
100X Range
—
55
—
A
IRNG=11
VDD 3.0V
Note 1:
Nominal value at center point of current trim range (CTMUICON=000000).
DS40001412H-page 432
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
FIGURE 27-5:
HIGH/LOW-VOLTAGE DETECT CHARACTERISTICS
VDD
(HLVDIF can be
cleared by software)
VHLVD
(HLVDIF set by hardware)
HLVDIF
TABLE 27-5:
HIGH/LOW-VOLTAGE DETECT CHARACTERISTICS
Standard Operating Conditions (unless otherwise stated)
Operating temperature -40°C TA +125°C
Param
Symbol
No.
Characteristic
HLVDL
Min
Typ†
Max
Units
HLVD Voltage on VDD
Transition High-to-Low
0000
1.69
1.84
1.99
V
0001
1.92
2.07
2.22
V
0010
2.08
2.28
2.48
V
0011
2.24
2.44
2.64
V
0100
2.34
2.54
2.74
V
0101
2.54
2.74
2.94
V
0110
2.62
2.87
3.12
V
0111
2.76
3.01
3.26
V
1000
3.00
3.30
3.60
V
1001
3.18
3.48
3.78
V
1010
3.44
3.69
3.94
V
1011
3.66
3.91
4.16
V
1100
3.90
4.15
4.40
V
1101
4.11
4.41
4.71
V
1110
4.39
4.74
5.09
V
1111
V(HLVDIN pin)
Conditions
v
† Production tested at TAMB = 25°C. Specifications over temperature limits ensured by characterization.
2010-2021 Microchip Technology Inc.
DS40001412H-page 433
PIC18(L)F2X/4XK22
27.11 AC (Timing) Characteristics
27.11.1
TIMING PARAMETER SYMBOLOGY
The timing parameter symbols have been created
using one of the following formats:
1. TppS2ppS
3. TCC:ST
(I2C specifications only)
2. TppS
4. Ts
(I2C specifications only)
T
F
Frequency
T
Time
osc
rd
rw
sc
ss
t0
t1
wr
OSC1
RD
RD or WR
SCK
SS
T0CKI
T13CKI
WR
Fall
High
Invalid (High-impedance)
Low
P
R
V
Z
Period
Rise
Valid
High-impedance
output access
Bus free
High
Low
High
Low
Lowercase letters (pp) and their meanings:
pp
cc
CCP1
ck
CLKOUT
cs
CS
di
SDI
do
SDO
dt
Data in
io
I/O port
mc
MCLR
Uppercase letters and their meanings:
S
F
H
I
L
I2C only
AA
BUF
TCC:ST (I2C specifications only)
CC
HD
Hold
SU
Setup
DAT
STA
DATA input hold
Start condition
STO
Stop condition
ST
DS40001412H-page 434
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
27.11.2
TIMING CONDITIONS
The temperature and voltages specified in Table 27-6
apply to all timing specifications unless otherwise
noted. Figure 27-6 specifies the load conditions for the
timing specifications.
TABLE 27-6:
TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC
AC CHARACTERISTICS
FIGURE 27-6:
Standard Operating Conditions (unless otherwise stated)
Operating temperature
-40°C TA +125°C
Operating voltage VDD range as described in Section 27.1 “DC Characteristics:
Supply Voltage, PIC18(L)F2X/4XK22” and Section 27.9 “Memory Programming
Requirements”.
LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS
Load Condition 1
Load Condition 2
VDD/2
RL
CL
Pin
VSS
2010-2021 Microchip Technology Inc.
CL
Pin
Legend:
RL = 464
CL = 50 pF
VSS
for all pins except OSC2/CLKOUT
and including D and E outputs as ports
DS40001412H-page 435
PIC18(L)F2X/4XK22
27.11.3
TIMING DIAGRAMS AND SPECIFICATIONS
FIGURE 27-7:
EXTERNAL CLOCK TIMING (ALL MODES EXCEPT PLL)
Q4
Q1
Q2
Q3
Q4
Q1
OSC1
1
3
3
4
4
2
CLKOUT
TABLE 27-7:
Param.
No.
1A
EXTERNAL CLOCK TIMING REQUIREMENTS
Symbol
FOSC
Characteristic
External CLKIN
Frequency(1)
(1)
Oscillator Frequency
1
TOSC
External CLKIN Period(1)
Oscillator Period
(1)
Min
Max
Units
Conditions
DC
DC
0.5
16
MHz
MHz
DC
64
MHz
DC
4
MHz
RC Oscillator mode
5
200
kHz
LP Oscillator mode
0.1
4
MHz
XT Oscillator mode
4
4
MHz
HS Oscillator mode, VDD < 2.7V
4
16
MHz
HS Oscillator mode, VDD 2.7V,
Medium-Power mode (HSMP)
4
20
MHz
HS Oscillator mode, VDD 2.7V,
High-Power mode (HSHP)
2.0
62.5
—
—
s
ns
15.6
—
ns
EC, ECIO Oscillator mode (low power)
EC, ECIO Oscillator mode (medium power)
EC, ECIO Oscillator mode (high power)
EC, ECIO Oscillator mode (low power)
EC, ECIO Oscillator mode (medium power)
EC, ECIO Oscillator mode (high power)
250
—
ns
RC Oscillator mode
5
200
s
LP Oscillator mode
0.25
250
10
250
s
ns
XT Oscillator mode
HS Oscillator mode, VDD < 2.7V
62.5
250
ns
HS Oscillator mode, VDD 2.7V,
Medium-Power mode (HSMP)
50
250
ns
HS Oscillator mode, VDD 2.7V,
High-Power mode (HSHP)
2
TCY
Instruction Cycle Time(1)
62.5
—
ns
TCY = 4/FOSC
3
TOSL,
TOSH
External Clock in (OSC1)
High or Low Time
2.5
—
s
LP Oscillator mode
4
Note 1:
TOSR,
TOSF
External Clock in (OSC1)
Rise or Fall Time
30
—
ns
XT Oscillator mode
10
—
ns
HS Oscillator mode
—
50
ns
LP Oscillator mode
—
20
ns
XT Oscillator mode
—
7.5
ns
HS Oscillator mode
Instruction cycle period (TCY) equals four times the input oscillator time base period for all configurations except PLL. All
specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation
and/or higher than expected current consumption. All devices are tested to operate at “min.” values with an external
clock applied to the OSC1/CLKIN pin. When an external clock input is used, the “max.” cycle time limit is “DC” (no
clock) for all devices.
DS40001412H-page 436
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
TABLE 27-8:
PLL CLOCK TIMING SPECIFICATIONS
Param.
No.
Sym
F10
FOSC Oscillator Frequency Range
F11
F12
FSYS
Characteristic
On-Chip VCO System Frequency
PLL Start-up Time (Lock Time)
trc
TABLE 27-9:
Min
Max
Units
Conditions
4
5
MHz
VDD < 2.7V,
-40°C to +85°C
4
4
MHz
VDD < 2.7V,
+85°C to +125°C
4
16
MHz
2.7V VDD,
-40°C to +85°C
4
12
MHz
2.7V VDD,
+85°C to +125°C
16
20
MHz
VDD < 2.7V,
-40°C to +85°C
16
16
MHz
VDD < 2.7V,
+85°C to +125°C
16
64
MHz
2.7V VDD,
-40°C to +85°C
16
48
MHz
2.7V VDD,
+85°C to +125°C
—
2
ms
AC CHARACTERISTICS:INTERNAL OSCILLATORS ACCURACY PIC18(L)F46K22
Standard Operating Conditions (unless otherwise stated)
Operating temperature
-40°C TA +125°C
Param.
No.
OA1
OA2
OA3
Characteristics
Internal Calibrated
HFINTOSC Frequency(1)
Freq.
Tolerance
Min
Typ†
Max
2%
—
16.0
—
Units
Conditions
MHz 0°C TA +60°C, VDD 2.5V
3%
—
16.0
—
MHz +60°C TA +85°C, VDD 2.5V
5%
—
16.0
—
MHz -40°C TA +125°C
Internal Calibrated
MFINTOSC Frequency(1)
2%
—
500
—
kHz
0°C TA +60°C, VDD 2.5V
3%
—
500
—
kHz
+60°C TA +85°C, VDD 2.5V
5%
—
500
—
kHz
-40°C TA +125°C
Internal Calibrated
LFINTOSC Frequency(1)
20%
—
31
—
kHz
-40°C TA +125°C
† Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance
only and are not tested.
Note 1: To ensure these oscillator frequency tolerances, VDD and VSS must be capacitively decoupled as close to
the device as possible. 0.1 F and 0.01 F values in parallel are recommended.
2010-2021 Microchip Technology Inc.
DS40001412H-page 437
PIC18(L)F2X/4XK22
FIGURE 27-8:
CLKOUT AND I/O TIMING
Q1
Q4
Q2
Q3
OSC1
11
10
CLKOUT
13
14
19
12
18
16
I/O pin
(Input)
15
17
I/O pin
(Output)
Note:
New Value
Old Value
20, 21
Refer to Figure 27-6 for load conditions.
TABLE 27-10: CLKOUT AND I/O TIMING REQUIREMENTS
Param.
No.
Symbol
Characteristic
Min
Typ
Max
Units
Conditions
10
TosH2ckL
OSC1 to CLKOUT
—
75
200
ns
(Note 1)
11
TosH2ckH
OSC1 to CLKOUT
—
75
200
ns
(Note 1)
12
TckR
CLKOUT Rise Time
—
35
100
ns
(Note 1)
13
TckF
CLKOUT Fall Time
—
35
100
ns
(Note 1)
14
TckL2ioV
CLKOUT to Port Out Valid
—
—
0.5 TCY + 20
ns
(Note 1)
15
TioV2ckH
Port In Valid before CLKOUT
0.25 TCY + 25
—
—
ns
(Note 1)
16
TckH2ioI
Port In Hold after CLKOUT
0
—
—
ns
(Note 1)
17
TosH2ioV
OSC1 (Q1 cycle) to Port Out Valid
18
TosH2ioI
OSC1 (Q2 cycle) to Port Input Invalid
(I/O in hold time)
19
TioV2osH
20
TioR
21
—
50
150
ns
100
—
—
ns
Port Input Valid to OSC1 (I/O in setup time)
0
—
—
ns
Port Output Rise Time
—
—
40
15
72
32
ns
ns
VDD = 1.8V
VDD = 3.3V - 5.0V
TioF
Port Output Fall Time
—
—
28
15
55
30
ns
ns
VDD = 1.8V
VDD = 3.3V - 5.0V
22†
TINP
INTx pin High or Low Time
20
—
—
ns
23†
TRBP
RB Change KBIx High or Low Time
TCY
—
—
ns
†
Note 1:
These parameters are asynchronous events not related to any internal clock edges.
Measurements are taken in RC mode, where CLKOUT output is 4 x TOSC.
DS40001412H-page 438
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
FIGURE 27-9:
RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND
POWER-UP TIMER TIMING
VDD
MCLR
30
Internal
POR
33
PWRT
Time-out
32
OSC
Time-out
Internal
Reset
Watchdog
Timer
Reset
31
34
34
I/O pins
Note:
Refer to Figure 27-6 for load conditions.
FIGURE 27-10:
BROWN-OUT RESET TIMING
VDD
BVDD
35
VBGAP = 1.2V
VIVRST
Enable Internal
Reference Voltage
Internal Reference
Voltage Stable
2010-2021 Microchip Technology Inc.
36
DS40001412H-page 439
PIC18(L)F2X/4XK22
TABLE 27-11: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER
AND BROWN-OUT RESET REQUIREMENTS
Param.
No.
Symbol
Characteristic
Min
Typ
Max
Units
2
—
—
s
Conditions
30
TmcL
MCLR Pulse Width (low)
31
TWDT
Watchdog Timer Time-out Period
(no postscaler)
3.5
4.1
4.7
ms
1:1 prescaler
32
TOST
Oscillation Start-up Timer Period
1024 TOSC
—
1024 TOSC
—
TOSC = OSC1 period
33
TPWRT
Power-up Timer Period
54.8
64.4
74.1
ms
34
TIOZ
I/O High-Impedance from MCLR
Low or Watchdog Timer Reset
—
2
—
s
35
TBOR
Brown-out Reset Pulse Width
2001
—
—
s
36
TIVRST
Internal Reference Voltage Stable
37
THLVD
High/Low-Voltage Detect Pulse
Width
—
25
35
s
2001
—
—
s
—
10
s
38
TCSD
CPU Start-up Time
5
39
TIOBST
Time for HF-INTOSC to Stabilize
—
0.25
1
ms
40
TIOSC_ST Time for HF-INTOSC to Start
—
TBD
TBD
µs
VDD BVDD (see
D005)
VDD VHLVD
Note 1: Minimum pulse width that will consistently trigger a reset or interrupt. Shorter pulses may intermittently trigger a response.
FIGURE 27-11:
TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS
T0CKI
41
40
42
T1OSO/T13CKI
46
45
47
48
TMR0 or
TMR1
Note:
Refer to Figure 27-6 for load conditions.
DS40001412H-page 440
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
TABLE 27-12: TIMER0 AND TIMER1/3/5 EXTERNAL CLOCK REQUIREMENTS
Param.
No.
40
Symbol
Tt0H
Characteristic
T0CKI High Pulse Width
No prescaler
Min
Max
Units
0.5 TCY + 20
—
ns
10
—
ns
0.5 TCY + 20
—
ns
10
—
ns
With prescaler
41
Tt0L
T0CKI Low Pulse Width
No prescaler
With prescaler
42
Tt0P
T0CKI Period
With prescaler
45
46
47
48
Tt1H
TxCKI High
Time
Tt1L
TxCKI Low
Time
Tt1P
TxCKI Input
Period
—
ns
—
ns
0.5 TCY + 20
—
ns
Synchronous,
with prescaler
10
—
ns
Asynchronous
30
—
ns
Synchronous, no prescaler
Synchronous, no prescaler
0.5 TCY + 5
—
ns
Synchronous,
with prescaler
10
—
ns
Asynchronous
30
—
ns
Synchronous
Greater of:
20 ns or
(TCY + 40)/N
—
ns
Asynchronous
60
—
ns
DC
50
kHz
2 TOSC
7 TOSC
—
Ft1
TxCKI Clock Input Frequency Range
Tcke2tmrI
Delay from External TxCKI Clock Edge to Timer
Increment
FIGURE 27-12:
TCY + 10
Greater of:
20 ns or
(TCY + 40)/N
No prescaler
Conditions
N = prescale
value
(1, 2, 4,..., 256)
N = prescale
value (1, 2, 4, 8)
CAPTURE/COMPARE/PWM TIMINGS (ALL CCP MODULES)
CCPx
(Capture Mode)
50
51
52
CCPx
(Compare or PWM Mode)
53
Note:
54
Refer to Figure 27-6 for load conditions.
2010-2021 Microchip Technology Inc.
DS40001412H-page 441
PIC18(L)F2X/4XK22
TABLE 27-13: CAPTURE/COMPARE/PWM REQUIREMENTS (ALL CCP MODULES)
Param.
Symbol
No.
50
51
TccL
TccH
Characteristic
Min
Max
Units
CCPx Input Low No prescaler
Time
With
prescaler
0.5 TCY + 20
—
ns
10
—
ns
CCPx Input
High Time
0.5 TCY + 20
—
ns
10
—
ns
3 TCY + 40
N
—
ns
No prescaler
With
prescaler
52
TccP
CCPx Input Period
53
TccR
CCPx Output Fall Time
—
25
ns
54
TccF
CCPx Output Fall Time
—
25
ns
DS40001412H-page 442
Conditions
N = prescale
value (1, 4 or
16)
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
FIGURE 27-13:
EXAMPLE SPI HOST MODE TIMING (CKE = 0)
SS
70
SCK
(CKP = 0)
71
72
78
79
79
78
SCK
(CKP = 1)
80
bit 6 - - - - - -1
MSb
SDO
LSb
75, 76
SDI
MSb In
bit 6 - - - -1
LSb In
74
73
Note:
Refer to Figure 27-6 for load conditions.
FIGURE 27-14:
EXAMPLE SPI HOST MODE TIMING (CKE = 1)
SS
81
SCK
(CKP = 0)
71
72
79
73
SCK
(CKP = 1)
80
78
SDO
MSb
bit 6 - - - - - -1
LSb
bit 6 - - - -1
LSb In
75, 76
SDI
MSb In
74
Note:
Refer to Figure 27-6 for load conditions.
2010-2021 Microchip Technology Inc.
DS40001412H-page 443
PIC18(L)F2X/4XK22
FIGURE 27-15:
EXAMPLE SPI CLIENT MODE TIMING (CKE = 0)
SS
70
SCK
(CKP = 0)
83
71
72
78
79
79
78
SCK
(CKP = 1)
80
MSb
SDO
LSb
bit 6 - - - - - -1
77
75, 76
MSb In
SDI
73
Note:
bit 6 - - - -1
LSb In
74
Refer to Figure 27-6 for load conditions.
FIGURE 27-16:
EXAMPLE SPI CLIENT MODE TIMING (CKE = 1)
82
SS
SCK
(CKP = 0)
70
83
71
72
SCK
(CKP = 1)
80
MSb
SDO
bit 6 - - - - - -1
LSb
75, 76
SDI
Note:
MSb In
77
bit 6 - - - -1
LSb In
74
Refer to Figure 27-6 for load conditions.
DS40001412H-page 444
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
TABLE 27-14: SPI MODE REQUIREMENTS
Param.
No.
Symbol
Characteristic
Min
Max
Units
70
TssL2scH,
TssL2scL
SS to SCK or SCK Input
TCY
—
ns
71
TscH
SCK Input High Time
Continuous
25
—
ns
72
TscL
SCK Input Low Time
Continuous
30
—
ns
73
TdiV2scH,
TdiV2scL
Setup Time of SDI Data Input to SCK Edge
25
—
ns
74
TscH2diL,
TscL2diL
Hold Time of SDI Data Input to SCK Edge
25
—
ns
75
TdoR
SDO Data Output Rise Time
—
30
ns
76
TdoF
SDO Data Output Fall Time
—
20
ns
77
TssH2doZ
SS to SDO Output High-Impedance
10
50
ns
78
TscR
SCK Output Rise Time
(Host mode)
—
30
ns
79
TscF
SCK Output Fall Time (Host mode)
—
20
ns
80
TscH2doV,
TscL2doV
SDO Data Output Valid after SCK Edge
—
20
60
ns
ns
81
TdoV2scH,
TdoV2scL
SDO Data Output Setup to SCK Edge
TCY
—
ns
82
TssL2doV
SDO Data Output Valid after SS Edge
—
60
ns
83
TscH2ssH,
TscL2ssH
SS after SCK edge
1.5 TCY + 40
—
ns
Conditions
SPI Host Mode
SPI Client Mode
I2C BUS START/STOP BITS TIMING
FIGURE 27-17:
SCL
91
90
93
92
SDA
Start
Condition
Note:
Stop
Condition
Refer to Figure 27-6 for load conditions.
2010-2021 Microchip Technology Inc.
DS40001412H-page 445
PIC18(L)F2X/4XK22
TABLE 27-15: I2C BUS START/STOP BITS REQUIREMENTS (CLIENT MODE)
Param.
Symbol
No.
90
TSU:STA
91
THD:STA
92
TSU:STO
93
Characteristic
Min
Max
Units
Conditions
ns
Only relevant for Repeated
Start condition
ns
After this period, the first
clock pulse is generated
Start Condition
100 kHz mode
4700
—
Setup Time
400 kHz mode
600
—
Start Condition
100 kHz mode
4000
—
Hold Time
400 kHz mode
600
—
Stop Condition
100 kHz mode
4700
—
Setup Time
400 kHz mode
600
—
100 kHz mode
4000
—
400 kHz mode
600
—
THD:STO Stop Condition
Hold Time
FIGURE 27-18:
ns
ns
I2C BUS DATA TIMING
103
102
100
101
SCL
90
106
107
91
92
SDA
In
110
109
109
SDA
Out
Note:
Refer to Figure 27-6 for load conditions.
DS40001412H-page 446
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
TABLE 27-16: I2C BUS DATA REQUIREMENTS (CLIENT MODE)
Param.
Symbol
No.
Min
Max
Units
Conditions
100 kHz mode
4.0
—
s
Must operate at a minimum
of 1.5 MHz
400 kHz mode
0.6
—
s
Must operate at a minimum
of 10 MHz
1.5 TCY
—
100 kHz mode
4.7
—
s
Must operate at a minimum
of 1.5 MHz
400 kHz mode
1.3
—
s
Must operate at a minimum
of 10 MHz
1.5 TCY
—
—
1000
ns
20 + 0.1 CB
300
ns
100 kHz mode
—
300
ns
400 kHz mode
20 + 0.1 CB
300
ns
CB is specified to be from
10 to 400 pF
TSU:STA Start Condition
Setup Time
100 kHz mode
4.7
—
s
400 kHz mode
0.6
—
s
Only relevant for Repeated
Start condition
91
THD:STA Start Condition
Hold Time
100 kHz mode
4.0
—
s
400 kHz mode
0.6
—
s
106
THD:DA
100 kHz mode
0
—
ns
400 kHz mode
0
0.9
s
ns
100
THIGH
Characteristic
Clock High Time
SSP Module
101
TLOW
Clock Low Time
SSP Module
102
TR
103
TF
90
T
SDA and SCL Rise 100 kHz mode
Time
400 kHz mode
SDA and SCL Fall
Time
Data Input Hold
Time
107
TSU:DAT Data Input Setup
Time
100 kHz mode
250
—
400 kHz mode
100
—
ns
92
TSU:STO Stop Condition
Setup Time
100 kHz mode
4.7
—
s
400 kHz mode
0.6
—
s
109
TAA
Output Valid from
Clock
100 kHz mode
—
3500
ns
400 kHz mode
—
—
ns
110
TBUF
Bus Free Time
100 kHz mode
4.7
—
s
400 kHz mode
1.3
—
s
—
400
pF
D102
CB
Note 1:
2:
Bus Capacitive Loading
CB is specified to be from
10 to 400 pF
After this period, the first
clock pulse is generated
(Note 2)
(Note 1)
Time the bus must be free
before a new transmission
can start
As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region
(min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.
A fast mode I2C bus device can be used in a standard mode I2C bus system but the requirement,
TSU:DAT 250 ns, must then be met. This will automatically be the case if the device does not stretch the
LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must
output the next data bit to the SDA line, TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the
standard mode I2C bus specification), before the SCL line is released.
2010-2021 Microchip Technology Inc.
DS40001412H-page 447
PIC18(L)F2X/4XK22
HOST SSP I2C BUS START/STOP BITS TIMING WAVEFORMS
FIGURE 27-19:
SCL
93
91
90
92
SDA
Stop
Condition
Start
Condition
Note:
Refer to Figure 27-6 for load conditions.
TABLE 27-17: HOST SSP I2C BUS START/STOP BITS REQUIREMENTS
Param.
Symbol
No.
90
TSU:STA
Characteristic
ns
Only relevant for
Repeated Start
condition
ns
After this period, the
first clock pulse is
generated
2(TOSC)(BRG + 1)
—
Setup Time
400 kHz mode
2(TOSC)(BRG + 1)
—
(1)
2(TOSC)(BRG + 1)
—
THD:STA Start Condition
TSU:STO Stop Condition
Setup Time
93
Units
100 kHz mode
Hold Time
92
Max
Start Condition
1 MHz mode
91
Min
THD:STO Stop Condition
Hold Time
100 kHz mode
2(TOSC)(BRG + 1)
—
400 kHz mode
2(TOSC)(BRG + 1)
—
1 MHz mode(1)
2(TOSC)(BRG + 1)
—
100 kHz mode
2(TOSC)(BRG + 1)
—
400 kHz mode
2(TOSC)(BRG + 1)
—
1 MHz mode(1)
2(TOSC)(BRG + 1)
—
100 kHz mode
2(TOSC)(BRG + 1)
—
400 kHz mode
2(TOSC)(BRG + 1)
—
(1)
2(TOSC)(BRG + 1)
—
1 MHz mode
Conditions
ns
ns
Note 1: Maximum pin capacitance = 10 pF for all I2C pins.
HOST SSP I2C BUS DATA TIMING
FIGURE 27-20:
103
102
100
101
SCL
90
106
91
107
92
SDA
In
109
109
110
SDA
Out
Note:
Refer to Figure 27-6 for load conditions.
DS40001412H-page 448
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
TABLE 27-18: HOST SSP I2C BUS DATA REQUIREMENTS
Param.
Symbol
No.
100
THIGH
Characteristic
Min
Max
Units
Clock High Time 100 kHz mode
2(TOSC)(BRG + 1)
—
ms
400 kHz mode
2(TOSC)(BRG + 1)
—
ms
(1)
2(TOSC)(BRG + 1)
—
ms
Clock Low Time 100 kHz mode
2(TOSC)(BRG + 1)
—
ms
400 kHz mode
2(TOSC)(BRG + 1)
—
ms
(1)
2(TOSC)(BRG + 1)
—
ms
100 kHz mode
—
1000
ns
1 MHz mode
101
TLOW
1 MHz mode
102
103
TR
TF
SDA and SCL
Rise Time
SDA and SCL
Fall Time
400 kHz mode
20 + 0.1 CB
300
ns
1 MHz mode(1)
—
300
ns
100 kHz mode
—
300
ns
400 kHz mode
20 + 0.1 CB
300
ns
(1)
—
100
ns
100 kHz mode
2(TOSC)(BRG + 1)
—
ms
400 kHz mode
2(TOSC)(BRG + 1)
—
ms
(1)
2(TOSC)(BRG + 1)
—
ms
1 MHz mode
90
TSU:STA
Start Condition
Setup Time
1 MHz mode
91
THD:STA Start Condition
Hold Time
100 kHz mode
2(TOSC)(BRG + 1)
—
ms
400 kHz mode
2(TOSC)(BRG + 1)
—
ms
1 MHz mode(1)
2(TOSC)(BRG + 1)
—
ms
0
—
ns
106
THD:DAT Data Input
Hold Time
100 kHz mode
400 kHz mode
0
0.9
ms
107
TSU:DAT Data Input
Setup Time
100 kHz mode
250
—
ns
400 kHz mode
100
—
ns
TSU:STO Stop Condition
Setup Time
100 kHz mode
2(TOSC)(BRG + 1)
—
ms
400 kHz mode
2(TOSC)(BRG + 1)
—
ms
1 MHz mode(1)
2(TOSC)(BRG + 1)
—
ms
100 kHz mode
—
3500
ns
400 kHz mode
ns
92
109
110
D102
Note 1:
2:
TAA
TBUF
CB
Output Valid
from Clock
Bus Free Time
—
1000
(1)
1 MHz mode
—
—
ns
100 kHz mode
4.7
—
ms
400 kHz mode
1.3
—
ms
—
400
pF
Bus Capacitive Loading
Conditions
CB is specified to be
from
10 to 400 pF
CB is specified to be
from
10 to 400 pF
Only relevant for
Repeated Start
condition
After this period, the first
clock pulse is generated
(Note 2)
Time the bus must be
free before a new transmission can start
Maximum pin capacitance = 10 pF for all I2C pins.
A fast mode I2C bus device can be used in a standard mode I2C bus system, but parameter 107 250 ns
must then be met. This will automatically be the case if the device does not stretch the Low period of the
SCL signal. If such a device does stretch the Low period of the SCL signal, it must output the next data bit
to the SDA line, parameter 102 + parameter 107 = 1000 + 250 = 1250 ns (for 100 kHz mode), before the
SCL line is released.
2010-2021 Microchip Technology Inc.
DS40001412H-page 449
PIC18(L)F2X/4XK22
FIGURE 27-21:
EUSART SYNCHRONOUS TRANSMISSION (HOST/CLIENT) TIMING
TXx/CKx
pin
121
121
RXx/DTx
pin
120
Note:
122
Refer to Figure 27-6 for load conditions.
TABLE 27-19: EUSART SYNCHRONOUS TRANSMISSION REQUIREMENTS
Param.
No.
Min
Max
Units
TckH2dtV SYNC XMIT (HOST & CLIENT)
Clock High to Data Out Valid
—
40
ns
121
Tckrf
Clock Out Rise Time and Fall Time
(Host mode)
—
20
ns
122
Tdtrf
Data Out Rise Time and Fall Time
—
20
ns
120
Symbol
Characteristic
FIGURE 27-22:
EUSART SYNCHRONOUS RECEIVE (HOST/CLIENT) TIMING
TXx/CKx
pin
RXx/DTx
Conditions
125
pin
126
Note:
Refer to Figure 27-6 for load conditions.
TABLE 27-20: EUSART SYNCHRONOUS RECEIVE REQUIREMENTS
Param.
No.
Symbol
Characteristic
Min
Max
Units
125
TdtV2ckl
SYNC RCV (HOST & CLIENT)
Data Setup before CK (DT setup time)
10
—
ns
126
TckL2dtl
Data Hold after CK (DT hold time)
15
—
ns
DS40001412H-page 450
Conditions
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
TABLE 27-21: A/D CONVERTER CHARACTERISTICS:PIC18(L)F2X/4XK22
Standard Operating Conditions (unless otherwise stated)
Operating temperature
Tested at +25°C
PIC18(L)F2X/4XK22
Param.
Symbol
No.
Characteristic
Min
Typ
Max
Units
Conditions
—
—
10
bits
VREF 3.0V
A01
NR
Resolution
A03
EIL
Integral Linearity Error
—
±0.5
±1
LSb
VREF = 3.0V
A04
EDL
Differential Linearity Error
—
±0.5
±1
LSb
VREF 3.0V
A06
EOFF
Offset Error
—
±0.7
±2
LSb
VREF 3.0V
A07
EGN
Gain Error
—
±0.7
±2
LSb
VREF 3.0V
A08
ETOTL
Total Error
—
±0.8
±3
LSb
VREF 3.0V
A20
VREF
Reference Voltage Range
(VREFH – VREFL)
2
—
VDD
V
A21
VREFH
Reference Voltage High
VDD/2
—
VDD + 0.3
V
A22
VREFL
Reference Voltage Low
VSS – 0.3V
—
VDD/2
V
A25
VAIN
Analog Input Voltage
VREFL
—
VREFH
V
A30
ZAIN
Recommended Impedance of
Analog Voltage Source
—
—
3
k
Note:
The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.
FIGURE 27-23:
A/D CONVERSION TIMING
BSF ADCON0, GO
(Note 2)
131
Q4
A/D CLK
130
132
A/D DATA
ADRES
9
8
7
...
...
OLD_DATA
2
1
0
NEW_DATA
ADIF
DONE
GO
SAMPLE
SAMPLING STOPPED
Note 1:
2:
If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts.
This allows the SLEEP instruction to be executed.
This is a minimal RC delay (0.5TAD), which also disconnects the holding capacitor from the analog input.
2010-2021 Microchip Technology Inc.
DS40001412H-page 451
PIC18(L)F2X/4XK22
TABLE 27-22: A/D CONVERSION REQUIREMENTS PIC18(L)F2X/4XK22
Standard Operating Conditions (unless otherwise stated)
Operating temperature
Tested at +25°C
Param.
Symbol
No.
130
TAD
Characteristic
A/D Clock Period
Min
Typ
Max
Units
1
—
25
s
-40C to +85C
1
—
4
s
+85C to +125C
131
TCNV
Conversion Time
(not including acquisition time) (Note 1)
11
—
11
TAD
132
TACQ
Acquisition Time (Note 2)
1.4
—
—
s
135
TSWC
Switching Time from Convert Sample
—
—
(Note 3)
136
TDIS
Discharge Time
1
—
1
Note 1:
2:
3:
Conditions
VDD = 3V, Rs = 50
TCY
ADRES register may be read on the following TCY cycle.
The time for the holding capacitor to acquire the “New” input voltage when the voltage changes full scale after the
conversion (VDD to VSS or VSS to VDD). The source impedance (RS) on the input channels is 50 .
On the following cycle of the device clock.
DS40001412H-page 452
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
28.0
Note:
DC AND AC CHARACTERISTICS GRAPHS AND CHARTS
The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified
operating range (e.g. outside specified power supply range) and therefore, outside the warranted range.
2010-2021 Microchip Technology Inc.
DS40001412H-page 453
PIC18(L)F2X/4XK22
FIGURE 28-1:
PIC18LF2X/4XK22 BASE IPD
10
Max. 85°C
IPD (µA)
1
0.1
Typ. 60°C
Typ. 25°C
0.01
Limited Accuracy
0.001
1.8
2.1
FIGURE 28-2:
2.4
2.7
VDD (V)
3
3.3
3.6
PIC18F2X/4XK22 BASE IPD
40
35
Max. 85°C
ΔIPD (µA)
30
25
20
15
Typ. 60°C
Typ. 25°C
10
2.3
2.7
3.1
3.5
3.9
4.3
4.7
5.1
5.5
VDD (V)
DS40001412H-page 454
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
FIGURE 28-3:
PIC18LF2X/4XK22 DELTA IPD WATCHDOG TIMER (WDT)
3.0
Max.
2.5
ΔIPD (µA)
2.0
1.5
1.0
Typ.
0.5
0.0
1.8
2.1
2.4
2.7
3
3.3
3.6
VDD (V)
FIGURE 28-4:
PIC18F2X/4XK22 DELTA IPD WATCHDOG TIMER (WDT)
6
Max.
5
ΔIPD (µA)
4
3
2
1
Typical
0
2.3
2.7
3.1
2010-2021 Microchip Technology Inc.
3.5
3.9
VDD (V)
4.3
4.7
5.1
5.5
DS40001412H-page 455
PIC18(L)F2X/4XK22
FIGURE 28-5:
PIC18LF2X/4XK22 DELTA IPD BROWN-OUT RESET (BOR)
16
15
Max. 85°C
14
13
ΔIPD (µA)
12
11
10
9
Typical
8
7
6
1.8
2.1
2.4
2.7
3
3.3
3.6
VDD (V)
FIGURE 28-6:
PIC18F2X/4XK22 DELTA IPD BROWN-OUT RESET (BOR)
17
Max. 85°C
15
ΔIPD (µA)
13
11
9
7
5
Typical
3
2.3
2.7
DS40001412H-page 456
3.1
3.5
3.9
VDD (V)
4.3
4.7
5.1
5.5
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
FIGURE 28-7:
PIC18LF2X/4XK22 DELTA IPD HIGH/LOW-VOLTAGE DETECT (HLVD)
20
18
16
Max.
ΔIPD (µA)
14
12
10
8
Typical
6
4
1.8
2.1
2.4
2.7
3
3.3
3.6
VDD (V)
FIGURE 28-8:
PIC18F2X/4XK22 DELTA IPD HIGH/LOW-VOLTAGE DETECT (HLVD)
16
Max.
14
12
ΔIPD (µA)
10
8
6
4
Typical
2
0
2.3
2.7
3.1
2010-2021 Microchip Technology Inc.
3.5
3.9
VDD (V)
4.3
4.7
5.1
5.5
DS40001412H-page 457
PIC18(L)F2X/4XK22
FIGURE 28-9:
PIC18LF2X/4XK22 DELTA IPD SECONDARY OSCILLATOR
4.5
4.0
Max. 85°C
3.5
ΔIPD (µA)
3.0
2.5
2.0
1.5
Typ. 60°C
1.0
Typ. 25°C
0.5
0.0
1.8
2.1
2.4
2.7
3
3.6
3.3
VDD (V)
FIGURE 28-10:
PIC18F2X/4XK22 DELTA IPD SECONDARY OSCILLATOR
6
5
Max. 85°C
ΔIPD (µA)
4
3
2
1
Typical
0
2.3
2.7
DS40001412H-page 458
3.1
3.5
3.9
VDD (V)
4.3
4.7
5.1
5.5
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
FIGURE 28-11:
PIC18LF2X/4XK22 DELTA IPD COMPARATOR LOW-POWER MODE
20
18
Max.
16
ΔIPD (µA)
14
12
10
8
Typical
6
1.8
2.1
2.4
2.7
3
3.3
3.6
VDD (V)
FIGURE 28-12:
PIC18F2X/4XK22 DELTA IPD COMPARATOR LOW-POWER MODE
40
35
30
ΔIPD (µA)
25
20
Max.
15
10
Typical
5
0
2.3
2.7
3.1
3.5
3.9
4.3
4.7
5.1
5.5
VDD (V)
2010-2021 Microchip Technology Inc.
DS40001412H-page 459
PIC18(L)F2X/4XK22
FIGURE 28-13:
PIC18LF2X/4XK22 DELTA IPD COMPARATOR HIGH-POWER MODE
120
Max.
100
ΔIPD (µA)
80
60
Typ.
40
20
0
1.8
2.1
2.4
2.7
3
3.3
3.6
VDD (V)
FIGURE 28-14:
PIC18F2X/4XK22 DELTA IPD COMPARATOR HIGH-POWER MODE
120
Max.
100
ΔIPD (µA)
80
60
40
Typical
20
0
2.3
DS40001412H-page 460
2.7
3.1
3.5
3.9
VDD (V)
4.3
4.7
5.1
5.5
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
FIGURE 28-15:
PIC18LF2X/4XK22 DELTA IPD DAC
50
45
40
Max.
ΔIPD (µA)
35
30
25
20
Typical
15
10
1.8
2.1
2.4
2.7
3
3.3
3.6
VDD (V)
FIGURE 28-16:
PIC18F2X/4XK22 DELTA IPD DAC
70
60
Max.
50
ΔIPD (µA)
40
30
Typical
20
10
0
2.3
2.7
3.1
2010-2021 Microchip Technology Inc.
3.5
3.9
VDD (V)
4.3
4.7
5.1
5.5
DS40001412H-page 461
PIC18(L)F2X/4XK22
FIGURE 28-17:
PIC18LF2X/4XK22 DELTA IPD FVR
30
28
26
Max.
24
ΔIPD (µA)
22
20
18
Typ. 60°C
16
Typ. 25°C
14
12
10
1.8
2.1
2.4
2.7
3
3.3
3.6
VDD (V)
FIGURE 28-18:
PIC18F2X/4XK22 DELTA IPD FVR
120
Max.
100
ΔIPD (µA)
80
Typical
60
40
20
0
2.3
2.7
3.1
3.5
3.9
VDD (V)
4.3
4.7
5.1
5.5
Note 1: On the PIC18F2X/4XK22, enabling the FVR results in significantly more
Sleep current when the part enters Voltage Regulation mode at VDD ~ 3.2V.
DS40001412H-page 462
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
FIGURE 28-19:
PIC18(L)F2X/4XK22 DELTA IDD A/D CONVERTOR1
500
450
Max.
400
350
ΔIDD (µA)
300
250
Typical
200
150
100
50
0
2.3
2.7
3.1
3.5
3.9
4.3
4.7
5.1
5.5
VDD (V)
Note 1: A/D converter differential currents apply only in Run mode. In Sleep or Idle mode, both the
ADC and the FRC turn off as soon as conversion (if any) is complete.
2010-2021 Microchip Technology Inc.
DS40001412H-page 463
PIC18(L)F2X/4XK22
FIGURE 28-20:
PIC18LF2X/4XK22 TYPICAL IDD: RC_RUN LF-INTOSC 31 kHz
14
12
125°C
IDD (µA)
10
25°C
8
-40°C
85°C
6
4
2
0
1.8
FIGURE 28-21:
2.1
2.4
2.7
VDD (V)
3
3.3
3.6
PIC18LF2X/4XK22 MAXIMUM IDD: RC_RUN LF-INTOSC 31 kHz
55
45
125°C
IDD (µA)
35
85°C
25
25°C
-40°C
15
5
1.8
DS40001412H-page 464
2.1
2.4
2.7
VDD (V)
3
3.3
3.6
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
FIGURE 28-22:
PIC18F2X/4XK22 TYPICAL IDD: RC_RUN LF-INTOSC 31 kHz
28
26
24
125°C
22
IDD (µA)
85°C
25°C
20
-40°C
18
16
14
12
10
2.3
FIGURE 28-23:
2.7
3.1
3.5
3.9
VDD (V)
4.3
4.7
5.1
5.5
PIC18F2X/4XK22 MAXIMUM IDD: RC_RUN LF-INTOSC 31 kHz
85
75
125°C
65
-40°C to +85°C
IDD (µA)
55
45
35
25
15
5
2.3
2.7
3.1
3.5
3.9
4.3
4.7
5.1
5.5
VDD (V)
2010-2021 Microchip Technology Inc.
DS40001412H-page 465
PIC18(L)F2X/4XK22
FIGURE 28-24:
PIC18LF2X/4XK22 IDD: RC_RUN MF-INTOSC 500 kHz
0.40
0.35
Max
0.30
IDD (mA)
0.25
0.20
Typical
0.15
0.10
0.05
0.00
1.8
2.1
2.4
2.7
3
3.3
3.6
VDD (V)
FIGURE 28-25:
PIC18F2X/4XK22 IDD: RC_RUN MF-INTOSC 500 kHz
0.4
0.35
Max.
0.3
IDD (mA)
0.25
Typical
0.2
0.15
0.1
0.05
0
2.3
DS40001412H-page 466
2.7
3.1
3.5
3.9
VDD (V)
4.3
4.7
5.1
5.5
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
FIGURE 28-26:
PIC18LF2X/4XK22 TYPICAL IDD: RC_RUN HF-INTOSC
3.50
3.00
2.50
IDD (mA)
16 MHz
2.00
1.50
8 MHz
1.00
4 MHz
2 MHz
1 MHz
0.50
0.00
1.8
2.1
2.4
2.7
3
3.3
3.6
VDD (V)
FIGURE 28-27:
PIC18LF2X/4XK22 MAXIMUM IDD: RC_RUN HF-INTOSC
4.5
4.0
3.5
16 MHz
IDD (mA)
3.0
2.5
2.0
8 MHz
1.5
4 MHz
1.0
2 MHz
1 MHz
0.5
0.0
1.8
2.1
2.4
2.7
3
3.3
3.6
VDD (V)
2010-2021 Microchip Technology Inc.
DS40001412H-page 467
PIC18(L)F2X/4XK22
FIGURE 28-28:
PIC18F2X/4XK22 TYPICAL IDD: RC_RUN HF-INTOSC
3
2.5
16 MHz
IDD (mA)
2
1.5
8 MHz
1
4 MHz
0.5
2 MHz
1 MHz
0
2.3
2.7
FIGURE 28-29:
3.1
3.5
3.9
VDD (V)
4.3
4.7
5.1
5.5
PIC18F2X/4XK22 MAXIMUM IDD: RC_RUN HF-INTOSC
4
3.5
16 MHz
3
IDD (mA)
2.5
2
8 MHz
1.5
4 MHZ
1
2 MHz
1 MHz
0.5
0
2.3
DS40001412H-page 468
2.7
3.1
3.5
3.9
VDD (V)
4.3
4.7
5.1
5.5
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
FIGURE 28-30:
PIC18LF2X/4XK22 TYPICAL IDD: RC_RUN HF-INTOSC with PLL
9
8
7
64 MHz
IDD (mA)
6
5
4
32 MHz
3
16 MHz
2
1
0
1.8
2.1
2.4
2.7
3
3.6
3.3
VDD (V)
FIGURE 28-31:
PIC18LF2X/4XK22 MAXIMUM IDD: RC_RUN HF-INTOSC with PLL
12
10
64 MHz
IDD (mA)
8
6
32 MHz
4
16 MHz
2
0
1.8
2.1
2.4
2.7
3
3.3
3.6
VDD (V)
2010-2021 Microchip Technology Inc.
DS40001412H-page 469
PIC18(L)F2X/4XK22
FIGURE 28-32:
PIC18F2X/4XK22 TYPICAL IDD: RC_RUN HF-INTOSC with PLL
8
7
64 MHz
6
IDD (mA)
5
4
32 MHz
3
16 MHz
2
1
0
2.3
2.7
3.1
3.5
3.9
4.3
4.7
5.1
5.5
VDD (V)
FIGURE 28-33:
PIC18F2X/4XK22 MAXIMUM IDD: RC_RUN HF-INTOSC with PLL
12
10
64 MHz
IDD (mA)
8
6
32 MHz
4
16 MHz
2
0
2.3
2.7
3.1
3.5
3.9
4.3
4.7
5.1
5.5
VDD (V)
DS40001412H-page 470
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
FIGURE 28-34:
PIC18LF2X/4XK22 TYPICAL IDD: RC_IDLE LF-INTOSC 31 kHz
4
3.5
125°C
3
IDD (µA)
2.5
2
1.5
85°C
25°C
-40°C
1
0.5
0
1.8
2.1
2.4
2.7
3
3.3
3.6
VDD(V)
FIGURE 28-35:
PIC18LF2X/4XK22 MAXIMUM IDD: RC_IDLE LF-INTOSC 31 kHz
35
30
125°C
IDD (µA)
25
20
15
85°C
10
25°C
5
0
1.8
2.1
2.4
2.7
3
3.3
3.6
VDD (V)
2010-2021 Microchip Technology Inc.
DS40001412H-page 471
PIC18(L)F2X/4XK22
FIGURE 28-36:
PIC18F2X/4XK22 TYPICAL IDD: RC_IDLE LF-INTOSC 31 kHz
22
21
-40°C
20
19
IDD (µA)
18
17
125°C
16
15
85°C
25°C
14
13
12
2.3
2.7
3.1
3.5
3.9
4.3
4.7
5.1
5.5
VDD (V)
FIGURE 28-37:
PIC18F2X/4XK22 MAXIMUM IDD: RC_IDLE LF-INTOSC 31 kHz
70
125°C
60
IDD (µA)
50
-40°C to-40C
+85°C
40
30
20
10
2.3
2.7
3.1
3.5
3.9
4.3
4.7
5.1
5.5
VDD (V)
DS40001412H-page 472
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
FIGURE 28-38:
PIC18LF2X/4XK22 IDD: RC_IDLE MF-INTOSC 500 kHz
0.3
Max.
0.25
IDD (mA)
0.2
0.15
Typical
0.1
0.05
0
1.8
2.1
2.4
2.7
3
3.3
3.6
VDD (V)
FIGURE 28-39:
PIC18F2X/4XK22 IDD: RC_IDLE MF-INTOSC 500 kHz
0.35
Max.
0.3
0.25
IDD (mA)
0.2
Typical
0.15
0.1
0.05
0
2.3
2.7
3.1
3.5
3.9
4.3
4.7
5.1
5.5
VDD (V)
2010-2021 Microchip Technology Inc.
DS40001412H-page 473
PIC18(L)F2X/4XK22
FIGURE 28-40:
PIC18LF2X/4XK22 TYPICAL IDD: RC_IDLE HF-INTOSC
1.2
IDD (mA)
1
0.8
16 MHz
0.6
8 MHz
4 MHz
0.4
2 MHz
1 MHz
0.2
0
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VDD (V)
FIGURE 28-41:
PIC18LF2X/4XK22 MAXIMUM IDD: RC_IDLE HF-INTOSC
1.6
1.4
1.2
16 MHz
IDD (mA)
1
0.8
8 MHz
0.6
4 MHz
1 MHz
0.4
0.2
0
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VDD (V)
DS40001412H-page 474
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
FIGURE 28-42:
PIC18F2X/4XK22 TYPICAL IDD: RC_IDLE HF-INTOSC
1
16 MHz
0.9
IDD (mA)
0.8
0.7
8 MHz
0.6
4 MHz
0.5
2 MHz
1 MHz
0.4
0.3
2.3
2.7
3.1
3.5
3.9
4.3
4.7
5.1
5.5
VDD (V)
FIGURE 28-43:
PIC18F2X/4XK22 MAXIMUM IDD: RC_IDLE HF-INTOSC
1.4
1.2
16 MHz
1
IDD (mA)
8 MHz
0.8
4 MHz
0.6
1 MHz
0.4
0.2
0
2.3
2.7
3.1
3.5
3.9
4.3
4.7
5.1
5.5
VDD (V)
2010-2021 Microchip Technology Inc.
DS40001412H-page 475
PIC18(L)F2X/4XK22
FIGURE 28-44:
PIC18LF2X/4XK22 TYPICAL IDD: RC_IDLE HF-INTOSC with PLL
3.5
3
64 MHz
2.5
IDD (mA)
2
1.5
32 MHz
1
16 MHz
0.5
0
1.8
2.1
2.4
2.7
3
3.3
3.6
VDD (V)
FIGURE 28-45:
PIC18LF2X/4XK22 MAXIMUM IDD: RC_IDLE HF-INTOSC with PLL
5
4.5
4
64 MHz
IDD(mA)
3.5
3
2.5
2
32 MHz
1.5
16 MHz
1
0.5
0
1.8
2.1
2.4
2.7
3
3.3
3.6
VDD (V)
DS40001412H-page 476
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
FIGURE 28-46:
PIC18F2X/4XK22 TYPICAL IDD: RC_IDLE HF-INTOSC with PLL
3
64 MHz
2.5
IDD (mA)
2
32 MHz
1.5
1
16 MHz
0.5
0
2.3
2.7
3.1
3.5
3.9
4.3
4.7
5.1
5.5
VDD (V)
FIGURE 28-47:
PIC18F2X/4XK22 MAXIMUM IDD: RC_IDLE HF-INTOSC with PLL
5
64 MHz
4.5
4
IDD (mA)
3.5
3
2.5
2
32 MHz
1.5
16 MHz
1
0.5
0
2.3
2.7
3.1
3.5
3.9
4.3
4.7
5.1
5.5
VDD (V)
2010-2021 Microchip Technology Inc.
DS40001412H-page 477
PIC18(L)F2X/4XK22
FIGURE 28-48:
PIC18LF2X/4XK22 TYPICAL IDD: PRI_RUN EC MEDIUM POWER
3.0
2.5
16 MHz
IDD (mA)
2.0
1.5
10 MHz
1.0
4 MHz
0.5
1 MHz
0.0
1.8
2.1
2.4
2.7
3
3.3
3.6
VDD (V)
FIGURE 28-49:
PIC18LF2X/4XK22 MAXIMUM IDD: PRI_RUN EC MEDIUM POWER
4.0
3.5
3.0
16 MHz
IDD (mA)
2.5
2.0
10 MHz
1.5
1.0
4 MHz
0.5
1 MHz
0.0
1.8
2.1
2.4
2.7
3
3.3
3.6
VDD (V)
DS40001412H-page 478
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
FIGURE 28-50:
PIC18F2X/4XK22 TYPICAL IDD: PRI_RUN EC MEDIUM POWER
2.5
16 MHz
2
1.5
IDD (mA)
10 MHz
1
4 MHz
0.5
1 MHz
0
2.3
2.7
3.1
3.5
3.9
4.3
4.7
5.1
5.5
VDD (V)
FIGURE 28-51:
PIC18F2X/4XK22 MAXIMUM IDD: PRI_RUN EC MEDIUM POWER
3.5
3
16 MHz
IDD (mA)
2.5
2
10 MHz
1.5
1
4 MHz
0.5
1 MHz
0
2.3
2.7
3.1
3.5
3.9
4.3
4.7
5.1
5.5
VDD (V)
2010-2021 Microchip Technology Inc.
DS40001412H-page 479
PIC18(L)F2X/4XK22
FIGURE 28-52:
PIC18LF2X/4XK22 TYPICAL IDD: PRI_RUN EC HIGH POWER
12
10
IDD (mA)
8
64 MHz
6
40 MHz
4
20 MHz
16 MHz
10 MHz
2
4 MHz
0
1.8
2.1
2.4
2.7
3
3.3
3.6
VDD (V)
FIGURE 28-53:
PIC18LF2X/4XK22 MAXIMUM IDD: PRI_RUN EC HIGH POWER
16
14
12
64 MHz
IDD (mA)
10
8
40 MHz
6
4
20 MHz
2
16 MHz
10 MHz
4 MHz
0
1.8
2.1
2.4
2.7
3
3.3
3.6
VDD (V)
DS40001412H-page 480
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
FIGURE 28-54:
PIC18F2X/4XK22 TYPICAL IDD: PRI_RUN EC HIGH POWER
9
64 MHz
8
7
6
IDD (mA)
40 MHz
5
4
3
20 MHz
16 MHz
2
10 MHz
1
4 MHz
0
2.3
2.7
3.1
3.5
3.9
4.3
4.7
5.1
5.5
VDD (V)
FIGURE 28-55:
PIC18F2X/4XK22 MAXIMUM IDD: PRI_RUN EC HIGH POWER
14
12
64 MHz
IDD (mA)
10
8
40 MHz
6
20 MHz
4
16 MHz
10 MHz
2
4 MHz
0
2.3
2.7
3.1
3.5
3.9
4.3
4.7
5.1
5.5
VDD (V)
2010-2021 Microchip Technology Inc.
DS40001412H-page 481
PIC18(L)F2X/4XK22
FIGURE 28-56:
PIC18LF2X/4XK22 TYPICAL IDD: PRI_RUN EC with PLL
10
9
8
7
64 MHz
IDD (mA)
6
5
4
32 MHz
3
2
16 MHz
1
0
1.8
2.1
2.4
2.7
3
3.3
3.6
VDD (V)
FIGURE 28-57:
PIC18LF2X/4XK22 MAXIMIUM IDD: PRI_RUN EC with PLL
14
12
10
IDD (mA)
64 MHz
8
6
32 MHz
4
16 MHz
2
0
1.8
2.1
2.4
2.7
3
3.3
3.6
VDD (V)
DS40001412H-page 482
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
FIGURE 28-58:
PIC18F2X/4XK22 TYPICAL IDD: PRI_RUN EC with PLL
8
7
64 MHz
6
IDD (mA)
5
4
32 MHz
3
16 MHz
2
1
0
2.3
2.7
3.1
3.5
3.9
4.3
4.7
5.1
5.5
VDD (V)
FIGURE 28-59:
PIC18F2X/4XK22 MAXIMUM IDD: PRI_RUN EC with PLL
12
10
64 MHz
IDD (mA)
8
6
32 MHz
4
16 MHz
2
0
2.3
2.7
3.1
3.5
3.9
4.3
4.7
5.1
5.5
VDD (V)
2010-2021 Microchip Technology Inc.
DS40001412H-page 483
PIC18(L)F2X/4XK22
FIGURE 28-60:
PIC18LF2X/4XK22 TYPICAL IDD: PRI_IDLE EC MEDIUM POWER
0.9
0.8
0.7
IDD (mA)
0.6
16 MHz
0.5
0.4
10 MHz
0.3
0.2
4 MHz
0.1
1 MHz
0
1.8
2.1
2.4
2.7
3
3.3
3.6
VDD (V)
FIGURE 28-61:
PIC18LF2X/4XK22 MAXIMUM IDD: PRI_IDLE EC MEDIUM POWER
1.2
1
0.8
IDD (mA)
16 MHz
0.6
10 MHz
0.4
0.2
4 MHz
1 MHz
0
1.8
2.1
2.4
2.7
3
3.3
3.6
VDD (V)
DS40001412H-page 484
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
FIGURE 28-62:
PIC18F2X/4XK22 TYPICAL IDD: PRI_IDLE EC MEDIUM POWER
0.8
16 MHz
0.7
0.6
IDD (mA)
0.5
10 MHz
0.4
0.3
4 MHz
0.2
1 MHz
0.1
0
2.3
2.7
3.1
3.5
3.9
4.3
4.7
5.1
5.5
VDD (V)
FIGURE 28-63:
PIC18F2X/4XK22 MAXIMUM IDD: PRI_IDLE EC MEDIUM POWER
1.2
1
16 MHz
IDD (mA)
0.8
10 MHz
0.6
0.4
4 MHz
0.2
1 MHz
0
2.3
2.7
3.1
3.5
3.9
4.3
4.7
5.1
5.5
VDD (V)
2010-2021 Microchip Technology Inc.
DS40001412H-page 485
PIC18(L)F2X/4XK22
FIGURE 28-64:
PIC18LF2X/4XK22 TYPICAL IDD: PRI_IDLE EC HIGH POWER
3.5
3
2.5
IDD (mA)
64 MHz
2
1.5
40 MHz
1
20 MHz
16 MHz
0.5
10 MHz
4 MHz
0
1.8
2.1
2.4
2.7
3
3.3
3.6
VDD (V)
FIGURE 28-65:
PIC18LF2X/4XK22 MAXIMUM IDD: PRI_IDLE EC HIGH POWER
5
4.5
4
IDD (mA)
3.5
64 MHz
3
2.5
2
40 MHz
1.5
1
20 MHz
0.5
16 MHz
10 MHz
4 MHz
0
1.8
2.1
2.4
2.7
3
3.3
3.6
VDD (V)
DS40001412H-page 486
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
FIGURE 28-66:
PIC18F2X/4XK22 TYPICAL IDD: PRI_IDLE EC HIGH POWER
3
64 MHz
2.5
IDD (mA)
2
40 MHz
1.5
1
20 MHz
16 MHz
0.5
10 MHz
4 MHz
0
2.3
FIGURE 28-67:
2.7
3.1
3.5
3.9
VDD (V)
4.3
4.7
5.1
5.5
PIC18F2X/4XK22 MAXIMUM IDD: PRI_IDLE EC HIGH POWER
4
3.5
64 MHz
3
IDD (mA)
2.5
40 MHz
2
1.5
20 MHz
1
16 MHz
10 MHz
0.5
4 MHz
0
2.3
2.7
3.1
3.5
3.9
4.3
4.7
5.1
5.5
VDD (V)
2010-2021 Microchip Technology Inc.
DS40001412H-page 487
PIC18(L)F2X/4XK22
FIGURE 28-68:
PIC18LF2X/4XK22 TYPICAL IDD: PRI_IDLE EC with PLL
3.5
3
2.5
IDD (mA)
64 MHz
2
1.5
32 MHz
1
16 MHz
0.5
0
1.8
2.1
2.4
2.7
3
3.3
3.6
VDD (V)
FIGURE 28-69:
PIC18LF2X/4XK22 MAXIMUM IDD: PRI_IDLE EC with PLL
4.5
4
3.5
64 MHz
IDD (mA)
3
2.5
2
1.5
32 MHz
1
16 MHz
0.5
0
1.8
2.1
2.4
2.7
3
3.3
3.6
VDD (V)
DS40001412H-page 488
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
FIGURE 28-70:
PIC18F2X/4XK22 TYPICAL IDD: PRI_IDLE EC with PLL
3
2.5
64 MHz
IDD (mA)
2
1.5
32 MHz
1
16 MHz
0.5
0
2.3
2.7
3.1
3.5
3.9
4.3
4.7
5.1
5.5
5.1
5.5
VDD (V)
FIGURE 28-71:
PIC18F2X/4XK22 MAXIMUM IDD: PRI_IDLE EC with PLL
4
3.5
64 MHz
3
IDD (mA)
2.5
2
1.5
32 MHz
1
16 MHz
0.5
0
2.3
2.7
3.1
3.5
3.9
4.3
4.7
VDD (V)
2010-2021 Microchip Technology Inc.
DS40001412H-page 489
PIC18(L)F2X/4XK22
FIGURE 28-72:
PIC18LF2X/4XK22 TYPICAL IDD: SEC_RUN 32.768 kHz
IDD (µA)
9
8
125°C
7
85°C
60°C
25°C
-40°C
6
5
4
3
1.8
2.1
2.4
2.7
3
3.3
3.6
VDD (V)
FIGURE 28-73:
PIC18LF2X/4XK22 MAXIMUM IDD: SEC_RUN 32.768 kHz
50
45
40
85°C
IDD (µA)
35
25°C
30
-40°C
25
20
15
10
5
1.8
2.1
2.4
2.7
3
3.3
3.6
VDD (V)
DS40001412H-page 490
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
FIGURE 28-74:
PIC18F2X/4XK22 TYPICAL IDD: SEC_RUN 32.768 kHz
22
21
85°C
20
25°C
IDD (µA)
19
-40°C
18
17
16
15
14
2.3
2.7
3.1
3.5
3.9
4.3
4.7
5.1
5.5
VDD (V)
FIGURE 28-75:
PIC18F2X/4XK22 MAXIMUM IDD: SEC_RUN 32.768 kHz
85
75
125°C
65
-40°C to +85°C
IDD (µA)
55
45
35
25
15
5
2.3
2.7
3.1
3.5
3.9
4.3
4.7
5.1
5.5
VDD (V)
2010-2021 Microchip Technology Inc.
DS40001412H-page 491
PIC18(L)F2X/4XK22
FIGURE 28-76:
PIC18LF2X/4XK22 TYPICAL IDD: SEC_IDLE 32.768 kHz
2.3
2.1
1.9
85°C
1.7
IDD (µA)
60°C
1.5
25°C
-40°C
1.3
1.1
0.9
0.7
0.5
1.8
2.1
2.4
2.7
3
3.3
3.6
VDD (V)
FIGURE 28-77:
PIC18LF2X/4XK22 MAXIMUM IDD: SEC_IDLE 32.768 kHz
25
20
85°C
25°C
IDD (µA)
15
-40°C
10
5
0
1.8
DS40001412H-page 492
2
2.2
2.4
2.6
2.8
VDD (V)
3
3.2
3.4
3.6
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
FIGURE 28-78:
PIC18F2X/4XK22 TYPICAL IDD: SEC_IDLE 32.768 kHz
18
17
16
85°C
IDD (µA)
15
25°C
14
-40°C
13
12
11
10
2.3
2.7
3.1
3.5
3.9
4.3
4.7
5.1
5.5
VDD (V)
FIGURE 28-79:
PIC18F2X/4XK22 MAXIMUM IDD: SEC_IDLE 32.768 kHz
63
125°C
58
53
IDD (µA)
48
43
-40°C to +85°C
38
33
28
23
2.3
2.7
3.1
3.5
3.9
4.3
4.7
5.1
5.5
VDD (V)
2010-2021 Microchip Technology Inc.
DS40001412H-page 493
PIC18(L)F2X/4XK22
FIGURE 28-80:
PIC18(L)F2X/4XK22 TTL BUFFER INPUT LOW VOLTAGE
1.5
1.3
25°C
1.1
VIL (V)
-40°C
0.9
85°C
125°C
0.7
Max.
0.5
0.3
0.1
1.8
2.2
FIGURE 28-81:
2.6
3
3.4
3.8
VDD (V)
4.2
4.6
5
5.4
PIC18(L)F2X/4XK22 SCHMITT TRIGGER BUFFER INPUT LOW VOLTAGE
2.0
1.8
1.6
-40°C
25°C
1.4
VIL (V)
1.2
85°C
1.0
125°C
Max.
0.8
0.6
0.4
0.2
1.8
DS40001412H-page 494
2.3
2.8
3.3
3.8
VDD (V)
4.3
4.8
5.3
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
FIGURE 28-82:
PIC18(L)F2X/4XK22 TTL BUFFER INPUT HIGH VOLTAGE
2.1
1.9
Min.
1.7
VIH (V)
1.5
-40°C
1.3
25°C
85°C
1.1
125°C
0.9
0.7
0.5
1.8
2.2
2.6
3
3.4
3.8
4.2
4.6
5
5.4
VDD (V)
FIGURE 28-83:
PIC18(L)F2X/4XK22 SCHMITT TRIGGER BUFFER INPUT HIGH VOLTAGE
4.5
4.0
3.5
VIH (V)
Min.
3.0
2.5
2.0
25°C
-40°C
1.5
125°C
85°C
1.0
1.8
2.2
2.6
3
3.4
3.8
4.2
4.6
5
5.4
VDD (V)
2010-2021 Microchip Technology Inc.
DS40001412H-page 495
PIC18(L)F2X/4XK22
FIGURE 28-84:
PIC18(L)F2X/4XK22 PIN INPUT LEAKAGE
1.00E-05
1.00E-06
Max.
Input Leakage (A)
1.00E-07
1.00E-08
Typical
1.00E-09
1.00E-10
1.00E-11
25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125
Temperature (°C)
DS40001412H-page 496
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
FIGURE 28-85:
PIC18(L)F2X/4XK22 OUTPUT LOW VOLTAGE
1.6
1.4
1.2
Max. 2V
1
Typ. 2V
Typ. 3V
VOL (V)
Max. 3V
0.8
Max. 5V
Typ. 5V
0.6
0.4
0.2
0
0
5
10
15
20
25
30
IOL (mA)
FIGURE 28-86:
PIC18(L)F2X/4XK22 OUTPUT HIGH VOLTAGE
5
4
Typ. 5V
VOH(V)
3
Min. 5V
2
Min. 3V
1
Typ. 3V
Min. 2V Typ. 2V
0
0
5
10
15
20
25
IOH (mA)
2010-2021 Microchip Technology Inc.
DS40001412H-page 497
PIC18(L)F2X/4XK22
FIGURE 28-87:
PIC18(L)F2X/4XK22 COMPARATOR OFFSET VOLTAGE,
NORMAL-POWER MODE; VDD=5.5V
60
50
Abs. Offset (mV)
40
6 sigma
30
20
Typical
10
0
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
5.5
VREF (V)
FIGURE 28-88:
PIC18(L)F2X/4XK22 COMPARATOR OFFSET VOLTAGE,
NORMAL-POWER MODE; VDD=3.0V
45
40
35
Abs. Offset (mV)
30
6 sigma
25
20
15
10
Typical
5
0
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
VREF (V)
DS40001412H-page 498
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
FIGURE 28-89:
PIC18LF2X/4XK22 COMPARATOR OFFSET VOLTAGE,
NORMAL-POWER MODE; VDD=1.8V
35
30
25
Abs. Offset (mV)
6 sigma
20
15
10
5
Typical
0
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
VREF (V)
2010-2021 Microchip Technology Inc.
DS40001412H-page 499
PIC18(L)F2X/4XK22
FIGURE 28-90:
PIC18(L)F2X/4XK22 COMPARATOR OFFSET VOLTAGE,
LOW-POWER MODE; VDD=5.5V
90
80
70
Abs. Offset (mV)
60
50
6 sigma
40
30
20
Typical
10
0
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
5.5
VREF (V)
FIGURE 28-91:
PIC18(L)F2X/4XK22 COMPARATOR OFFSET VOLTAGE,
LOW-POWER MODE; VDD=3.0V
80
70
60
Abs. Offset (mV)
50
40
6 sigma
30
20
10
Typical
0
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
VREF (V)
DS40001412H-page 500
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
FIGURE 28-92:
PIC18LF2X/4XK22 COMPARATOR OFFSET VOLTAGE,
LOW-POWER MODE; VDD=1.8V
60
50
Abs. Offset (mV)
40
6 sigma
30
20
10
Typical
0
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
VREF (V)
2010-2021 Microchip Technology Inc.
DS40001412H-page 501
PIC18(L)F2X/4XK22
FIGURE 28-93:
PIC18(L)F2X/4XK22 TYPICAL DAC ABS. ERROR VDD = 2.5V, 3.0V, & 5.5V
1.7
1.6
1.5
1.4
Minimum VREF
Limit
1.3
Absolute Error (LSb)
1.2
1.1
1.0
0.9
0.8
0.7
0.6
Max LSb Limit
0.5
0.4
2.5V
0.3
3.0V
0.2
5.5V
0.1
0.0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
5.5
VREF (V)
DS40001412H-page 502
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
FIGURE 28-94:
PIC18(L)F2X/4XK22 TYPICAL FIXED VOLTAGE REFERENCE 1X OUTPUT
1.035
1.030
5.5V
FVR x1 (V)
1.025
2.5V
1.020
1.015
1.010
1.005
-40
-20
0
20
40
60
80
100
120
Temperature (°C)
FIGURE 28-95:
PIC18(L)F2X/4XK22 TYPICAL FIXED VOLTAGE REFERENCE 1X OUTPUT
1.10
Max.
1.08
FVR x1 (V)
1.06
1.04
-
40°C
25°C
1.02
85°C
125°C
1.00
0.98
Min.
0.96
2.5
3
3.5
4
4.5
5
5.5
VDD (V)
2010-2021 Microchip Technology Inc.
DS40001412H-page 503
PIC18(L)F2X/4XK22
FIGURE 28-96:
PIC18(L)F2X/4XK22 TYPICAL FIXED VOLTAGE REFERENCE 2X OUTPUT
2.065
2.055
5.5V
FVR x2 (V)
2.045
2.5V
2.035
2.025
2.015
-40
-20
0
20
40
60
80
100
120
Temperature (°C)
FIGURE 28-97:
PIC18(L)F2X/4XK22 TYPICAL FIXED VOLTAGE REFERENCE 2X OUTPUT
2.20
Max.
2.15
FVR x2 (V)
2.10
-40°C
2.05
25°C
85°C
125°C
2.00
1.95
Min.
1.90
2.5
3
3.5
4
4.5
5
5.5
VDD (V)
DS40001412H-page 504
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
FIGURE 28-98:
PIC18F2X/4XK22 TYPICAL FIXED VOLTAGE REFERENCE 4X OUTPUT
4.13
4.11
FVR x4 (V)
5.5V
4.09
4.5V
4.07
4.05
4.03
-40
-20
0
20
40
60
80
100
120
Temperature (°C)
FIGURE 28-99:
PIC18F2X/4XK22 TYPICAL FIXED VOLTAGE REFERENCE 4X OUTPUT
4.40
4.35
Max.
4.30
4.25
FVR x4 (V)
4.20
4.15
-
40°C
4.10
25°C
85°C
4.05
125°C
4.00
3.95
3.90
Min.
3.85
4.5
4.7
4.9
5.1
5.3
5.5
VDD (V)
2010-2021 Microchip Technology Inc.
DS40001412H-page 505
PIC18(L)F2X/4XK22
FIGURE 28-100:
PIC18(L)F2X/4XK22 HF-INTOSC FREQUENCY vs. TEMPERATURE at 16 MHZ
MIN / MAX: ± 2%, T = 0°C to +70°C
+2% / -3%, T = +70°C to +85°C
± 5%, T = -40°C to 0°C and +85°C to +125°C
16.80
16.64
16.48
Max.
16.32
Freq (MHz)
16.16
16.00
15.84
Typical
Min.
15.68
15.52
15.36
15.20
-40
-30
-20
-10
0
10
20
30
40
50
60
70
80
90
100
110
120
Temp (°C)
DS40001412H-page 506
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
FIGURE 28-101:
PIC18LF2X/4XK22 TYPICAL LF-INTOSC FREQUENCY vs. VDD
Min/Max = 31.25 kHz ± 15%, T = -40°C to +85°C
32.5
32.0
25°C
31.5
-40°C
Frequency (kHz)
85°C
31.0
30.5
125°C
30.0
29.5
29.0
1.8
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
VDD (V)
FIGURE 28-102:
PIC18F2X/4XK22 TYPICAL LF-INTOSC FREQUENCY vs. VDD
Min/Max = 31.25 kHz ± 15%, T = -40°C to +85°C
32.5
32.0
Frequency (kHz)
31.5
25°C
-40°C
31.0
30.5
85°C
30.0
29.5
125°C
29.0
2.3
2.7
3.1
3.5
3.9
4.3
4.7
5.1
5.5
VDD (V)
2010-2021 Microchip Technology Inc.
DS40001412H-page 507
PIC18(L)F2X/4XK22
FIGURE 28-103:
PIC18LF2X/4XK22 TYPICAL LF-INTOSC FREQUENCY vs. TEMPERATURE
Min/Max = 31.25 kHz ± 15%, T = -40°C to +85°C
32.5
1.8V
32.0
31.5
Frequency (kHz)
3V
31.0
3.6V
30.5
30.0
29.5
29.0
-40
-20
0
20
40
60
80
100
120
Temperature (°C)
FIGURE 28-104:
PIC18F2X/4XK22 TYPICAL LF-INTOSC FREQUENCY vs. TEMPERATURE
Min/Max = 31.25 kHz ± 15%, T = -40°C to +85°C
32.5
32.0
2.5V
Frequency (kHz)
31.5
3.0V
5.5V
31.0
30.5
30.0
29.5
29.0
-40
-20
0
20
40
60
80
100
120
Temperature (°C)
DS40001412H-page 508
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
29.0
PACKAGING INFORMATION
29.1
Package Marking Information
28-Lead SPDIP (.300”)
Example
PIC18F25K22
-E/SP e3
0810017
28-Lead SOIC (7.50 mm)
XXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXX
Example
PIC18F25K22
-E/SO e3
0810017
YYWWNNN
28-Lead SSOP (5.30 mm)
Example
PIC18F25K22
-E/SS e3
0810017
Legend: XX...X
Y
YY
WW
NNN
e3
*
Note:
Customer-specific information or Microchip part number
Year code (last digit of calendar year)
Year code (last 2 digits of calendar year)
Week code (week of January 1 is week ‘01’)
Alphanumeric traceability code
Pb-free JEDEC® designator for Matte Tin (Sn)
This package is Pb-free. The Pb-free JEDEC designator ( e3 )
can be found on the outer packaging for this package.
In the event the full Microchip part number cannot be marked on one line, it will
be carried over to the next line, thus limiting the number of available
characters for customer-specific information.
2010-2021 Microchip Technology Inc.
DS40001412H-page 509
PIC18(L)F2X/4XK22
Package Marking Information (Continued)
28-Lead QFN (6x6 mm)
PIN 1
Example
PIN 1
18F25K22
-E/ML e3
0610017
XXXXXXXX
XXXXXXXX
YYWWNNN
28-Lead UQFN (4x4x0.5 mm)
PIN 1
Example
PIN 1
40-Lead PDIP (600 mil)
XXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXX
YYWWNNN
Legend: XX...X
Y
YY
WW
NNN
e3
*
Note:
DS40001412H-page 510
PIC18
F23K22
E/MV e
810017
3
Example
PIC18F45K22
-E/P e3
0810017
Customer-specific information or Microchip part number
Year code (last digit of calendar year)
Year code (last 2 digits of calendar year)
Week code (week of January 1 is week ‘01’)
Alphanumeric traceability code
Pb-free JEDEC® designator for Matte Tin (Sn)
This package is Pb-free. The Pb-free JEDEC designator ( e3 )
can be found on the outer packaging for this package.
In the event the full Microchip part number cannot be marked on one line, it will
be carried over to the next line, thus limiting the number of available
characters for customer-specific information.
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
Package Marking Information (Continued)
40-Lead UQFN (5x5x0.5 mm)
PIN 1
Example
PIN 1
PIC18F
45K22
-I/MV e
0810017
3
44-Lead QFN (8x8x0.9 mm)
PIN 1
Example
PIN 1
XXXXXXXXXXX
XXXXXXXXXXX
XXXXXXXXXXX
YYWWNNN
44-Lead TQFP (10x10x1 mm)
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
YYWWNNN
Legend: XX...X
Y
YY
WW
NNN
e3
*
Note:
1845K22
-E/ML e3
0810017
Example
18F45K22
-E/PT e3
0810017
Customer-specific information or Microchip part number
Year code (last digit of calendar year)
Year code (last 2 digits of calendar year)
Week code (week of January 1 is week ‘01’)
Alphanumeric traceability code
Pb-free JEDEC® designator for Matte Tin (Sn)
This package is Pb-free. The Pb-free JEDEC designator ( e3 )
can be found on the outer packaging for this package.
In the event the full Microchip part number cannot be marked on one line, it will
be carried over to the next line, thus limiting the number of available
characters for customer-specific information.
2010-2021 Microchip Technology Inc.
DS40001412H-page 511
PIC18(L)F2X/4XK22
29.2
Package Details
The following sections give the technical details of the packages.
!
"#
3
&'
!&" &4# *!(!!&
4%&
&#&
&&255***'
'54
N
NOTE 1
E1
1
2 3
D
E
A2
A
L
c
b1
A1
b
e
eB
6&!
'!
9'&!
7"')
%!
7,8.
7
7
7:
;
<
&
&
&
=
=
##4
4!!
-
1!&
&
=
=
"# &
"# >#&
.
-
--
##4>#&
.
#&
9
* 9#>#&
:
*+
1,
-
"#
!"#$%&" ' ()"&'"!&)
&#*&&&#
+%&, & !&
- '!
!#.#
&"#'
#%!
& "!
!
#%!
& "!
!!
&$#/ !#
'!
#&
.0
1,2 1!'!
&$& "!
**&
"&&
!
* ,1
DS40001412H-page 512
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
Note:
For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
2010-2021 Microchip Technology Inc.
DS40001412H-page 513
PIC18(L)F2X/4XK22
Note:
For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
DS40001412H-page 514
2010-2021 Microchip Technology Inc.
PIC18(L)F2X/4XK22
Note:
For the most current package drawings, please see the Microchip Packaging Specification located at
http://www.microchip.com/packaging
2010-2021 Microchip Technology Inc.
DS40001412H-page 515
PIC18(L)F2X/4XK22
$%
&
'(
&!
"#
3
&'
!&" &4# *!(!!&
4%&
&#&
&&255***'
'54
D
N
E
E1
1 2
NOTE 1
b
e
c
A2
A
φ
A1
L
L1
6&!
'!
9'&!
7"')
%!
99.
.
7
7
7:
;
<
&
: 8&
=
?1,
=
##4
4!!
?
#&
.
#&
.
=
?
##4>#&
.