®
Precision Edge
ULTRA PRECISION, 400mV
SY58030U
®
DIFFERENTIAL LVPECL 4:1 MUX with 1:2 Precision Edge
SY58030U
FANOUT and INTERNAL TERMINATION
Micrel, Inc.
United States Patent No. RE44,134
FEATURES
■ Selects 1 of 4 differential inputs
■ Provides two copies of the selected input
■ Guaranteed AC performance over temperature and
voltage:
• DC-to- > 10.7Gbps data rate throughput
• < 340ps IN-to-Out tpd
• < 80ps tr / tf times
■ Ultra low-jitter design:
• < 10psPP total jitter (clock)
• < 1psRMS random jitter
• < 10psPP deterministic jitter
• < 0.7psRMS crosstalk-induced jitter
■ Unique patended input design minimizes crosstalk
■ Accepts an input signal as low as 100mV
■ Unique patended input termination and VT pin
accepts DC-coupled and AC-coupled inputs (CML,
LVPECL, LVDS)
■ 400mV 100k LVPECL output swing
■ Power supply 2.5V ±5% or 3.3V ±10%
■ –40°C to +85°C temperature range
■ Available in 32-pin (5mm × 5mm) MLF® package
Precision Edge®
DESCRIPTION
The SY58030U is a 2.5V/3.3V precision, high-speed, 4:1
differential multiplexer with 400mV LVPECL outputs, capable
of handling clocks up to 7GHz and data streams up to
10.7Gbps. In addition, a 1:2 fanout buffer provides two copies
of the selected input.
The differential input includes Micrel’s unique, 3-pin input
termination architecture that allows customers to interface to
any differential signal (AC- or DC-coupled) as small as 100mV
without any level shifting or termination resistor networks in
the signal path. The result is a clean, stub-free, low-jitter
interface solution. The outputs are 400mV LVPECL (100K
temperature compensated) with extremely fast rise/fall times
guaranteed to be less than 80ps.
The SY58030U operates from a 2.5V ±5% supply or a
3.3V ±10% supply and is guaranteed over the full industrial
temperature range of –40°C to +85°C. For applications that
require CML outputs, consider the SY58028U. For 800mV
LVPECL outputs, consider the SY58029U. The SY58030U is
part of Micrel’s high-speed, Precision Edge® product line.
All support documentation can be found on Micrel’s web
site at www.micrel.com.
APPLICATIONS
■
■
■
■
■
Redundant clock and/or data distribution
All SONET/SDH clock/data distribution
Loopback
All Fibre Channel distribution
All Gigabit Ethernet clock and/or data distribution
FUNCTIONAL BLOCK DIAGRAM
IN0
50Ω
VT0
50Ω
4:1 MUX
/IN0
VREF-AC0
1:2 Fanout
0
IN1
TYPICAL PERFORMANCE
50Ω
VT1
50Ω
2.5Gbps Output (223–1 PRBS)
/IN1
Q0
/Q0
1
VREF-AC1
MUX
2
IN2
Q1
Output Swing
(100mV/div.)
50Ω
/Q1
VT2
50Ω
/IN2
3
VREF-AC2
IN3
50Ω
VT3
50Ω
/IN3
TIME (100ps/div.)
VREF-AC3
Precision Edge is a registered trademark of Micrel, Inc.
MicroLeadFrame and MLF are registered trademarks of Amkor Technology, Inc.
M9999-082707
hbwhelp@micrel.com or (408) 955-1690
SEL0 (CMOS/TTL)
SEL1 (CMOS/TTL)
Rev.: D
1
Amendment: /0
Issue Date: August 2007
Precision Edge®
SY58030U
Micrel, Inc.
PACKAGE/ORDERING INFORMATION
/IN3
VREF-AC3
VT3
IN3
/IN2
VREF-AC2
VT2
IN2
Ordering Information(1)
32 31 30 29 28 27 26 25
IN0
VT0
VREF-AC0
/IN0
IN1
VT1
VREF-AC1
/IN1
1
24
2
23
3
22
4
21
5
20
6
19
7
18
8
17
GND
VCC
Q1
/Q1
VCC
NC
SEL1
VCC
9 10 11 12 13 14 15 16
Part Number
Package
Type
Operating
Range
Package
Marking
Lead
Finish
SY58030UMI
MLF-32
Industrial
SY58030U
Sn-Pb
SY58030UMITR(2)
MLF-32
Industrial
SY58030U
Sn-Pb
SY58030UMG(3)
MLF-32
Industrial
SY58030U with
Pb-Free bar-line indicator
Pb-Free
NiPdAu
SY58030UMGTR(2, 3)
MLF-32
Industrial
SY58030U with
Pb-Free bar-line indicator
Pb-Free
NiPdAu
GND
VCC
/Q0
Q0
VCC
NC
SEL0
VCC
Notes:
1. Contact factory for die availability. Dice are guaranteed at TA = 25°C, DC electricals only.
2. Tape and Reel.
3. Pb-Free package recommended for new designs.
32-Pin MLF® (MLF-32)
PIN DESCRIPTION
Pin Number
Pin Name
1, 4
5, 8
25, 28
29, 32
IN0, /IN0
IN1, /IN1
IN2, /IN2
IN3, /IN3
Pin Function
Differential Input: Each pair accepts AC- or DC-coupled signals as small as 100mV.
Each pin of a pair internally terminates to a VT pin through 50Ω. Note that these
inputs will default to an indeterminate state if left open. If an input is not used, connect one
end of the differential pair to ground through a 1kΩ resistor, and leave the other end to
VCC through a 825Ω resistor. Unused VT and VREF-AC pins may also be left floating.
Please refer to the “Input Interface Applications” section for more details.
2, 6, 26, 30
VT0, VT1
VT2, VT3
Input Termination Center-Tap: Each side of the differential input pair terminates to a VT
pin. The VT pins provide a center-tap to the termination network for maximum
interface flexibility. See “Input Interface Applications” section for more details.
15, 18
SEL0, SEL1
14, 19
NC
10, 13, 16
17, 20, 23
VCC
11, 12
21, 22
/Q0, Q0
/Q1, Q1
9, 24
GND,
Exposed Pad
3, 7, 27, 31
VREF-AC0
VREF-AC1
VREF-AC2
VREF-AC3
This Single-Ended TTL/CMOS compatible input selects the inputs to the multiplexer. Note
that this input is internally connected to a 25kΩ pull-up resistor and will default to a logic
HIGH state if left open. Input logic threshold is VCC/2. See “Truth Table” for select control.
No Connect.
Positive Power Supply: Bypass with 0.1µF0.01µF low ESR capacitors.
Differential Outputs: These 100k compatible (internally temperature compensated)
LVPECL output pairs are copies of the selected input. Unused output pairs may be left
floating. See “Output Interface” for termination guidelines.
Ground. Ground pin and exposed pad must be connected to the same ground plane.
Reference Voltage: This reference output is equivalent to VCC–1.4V. It is used for
AC-coupled inputs. When interfacing to AC input signals, connect VREF-AC directly to the
VT pin and bypass with a 0.01µF low ESR capacitor to VCC. See “Input Interface
Applications” section. Maximum current sink/source is 0.5mA.
TRUTH TABLE
SEL0
SEL1
0
0
IN0 Input Selected
0
1
IN2 Input Selected
1
0
IN1 Input Selected
1
1
IN3 Input Selected
M9999-082707
hbwhelp@micrel.com or (408) 955-1690
2
Precision Edge®
SY58030U
Micrel, Inc.
Absolute Maximum Ratings(1)
Operating Ratings(2)
Power Supply Voltage (VCC ) ...................... –0.5V to +4.0V
Input Voltage (VIN) ......................................... –0.5V to VCC
LVPECL Output Current (IOUT)
Continuous ............................................................. 50mA
Surge .................................................................... 100mA
Termination Current(3)
Source or sink current on VT pin ........................ ±100mA
Input Current
Source or sink current on IN, /IN pin .................... ±50mA
Lead Temperature (soldering, 20 sec.) ..................... 260°C
Storage Temperature Range (TS ) ........... –65°C to +150°C
Power Supply Voltage (VCC) ............... +2.375V to +2.625V
............................................................ +3.0V to +3.6V
Ambient Temperature Range (TA) ............. –40°C to +85°C
Package Thermal Resistance(4)
MLF® (θJA)
Still-Air ............................................................. 35°C/W
MLF® (ψJB)
Junction-to-Board .............................................. 2°C/W
DC ELECTRICAL CHARACTERISTICS(5)
TA= -40°C to 85°C, unless otherwise stated.
Symbol
Parameter
Condition
Min
Typ
Max
Units
VCC
Power Supply Voltage
VCC = 2.5V
VCC = 3.3V
2.375
3.0
2.5
3.3
2.625
3.6
V
V
ICC
Power Supply Current
No load, max. VCC
120
150
mA
RDIFF_IN
Differential Input Resistance (IN-to-/IN)
80
100
120
Ω
RIN
Input Resistance (IN-to-VT, /IN-to-VT)
40
50
60
Ω
VIH
Input HIGH Voltage (IN-to-/IN)
VCC–1.6
VCC
V
VIL
Input LOW Voltage (IN-to-/IN)
0
VIH–0.1
V
VIN
Input Voltage Swing (IN-to-/IN)
See Figure 1a.
0.1
1.7
V
VDIFF_IN
Differential Input Voltage Swing (IN-to-/IN)
See Figure 1b.
0.2
VT IN
Max Input Voltage (IN-to-VT)
VREF-AC
Reference Voltage
Note 6
V
1.28
VCC–1.3 VCC–1.2 VCC–1.1
V
V
Notes:
1. Permanent device damage may occur if ratings in the “Absolute Maximum Ratings” section are exceeded. This is a stress rating only and functional
operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to absolute maximum ratings
conditions for extended periods may affect device reliability.
2. The data sheet limits are not guaranteed if the device is operated beyond the operating ratings.
3. Due to the limited drive capability, use for input of the same package only.
4. Thermal performance assumes exposed pad is soldered (or equivalent) to the device’s most negative potential (GND) on the PCB. ψJB uses 4-layer
θJA in still air number unless otherwise stated.
5. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.
6. VIH (min) not lower than 1.2V.
M9999-082707
hbwhelp@micrel.com or (408) 955-1690
3
Precision Edge®
SY58030U
Micrel, Inc.
LVPECL OUTPUT DC ELECTRICAL CHARACTERISTICS(7)
VCC = 2.5V ±5% or 3.3V ±10%; TA= –40°C to +85°C; RL = 50Ω to VCC—2V, unless otherwise stated.
Symbol
Parameter
Condition
Min
Typ
Max
Units
VOH
Output HIGH Voltage
VCC–1.145
VCC–0.895
V
VOL
Output LOW Voltage
VCC–1.545
VCC–1.295
V
VOUT
Output Voltage Swing
See Figure 1a.
150
400
mV
VDIFF_OUT
Differential Output Voltage Swing
See Figure 1b.
300
800
mV
Typ
LVTTL/CMOS DC ELECTRICAL CHARACTERISTICS(7)
VCC = 2.5V ±5% or 3.3V ±10%; TA= –40°C to +85°C, unless otherwise stated.
Symbol
Parameter
Condition
Min
VIH
Input HIGH Voltage
SEL0, SEL1
2.0
VIL
Input LOW Voltage
SEL0, SEL1
IIH
IIL
Max
Units
V
0.8
V
Input High Current
40
µA
Input Low Current
–300
µA
Note:
7. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.
M9999-082707
hbwhelp@micrel.com or (408) 955-1690
4
Precision Edge®
SY58030U
Micrel, Inc.
AC ELECTRICAL CHARACTERISTICS(8)
VCC = 2.5V ±5% or 3.3V ±10%; RL = 50Ω to VCC–2V; TA= –40°C to +85°C, VIN ≥ 100mV, unless otherwise stated.
Symbol
Parameter
Condition
fMAX
Maximum Operating Frequency
Min
NRZ Data
VOUT ≥ 200mV
tpd
Propagation Delay (Diff)
tpd Tempco
Differential Propagation Delay
Temperature Coefficient
tSKEW
tJITTER
Output-to-Output Skew
10.7
Clock
VIN ≥ 100mV
Max
Gbps
7
170
100
260
GHz
340
500
115
Note 9
Units
7
ps
ps
fs/°C
20
ps
50
ps
Part-to-Part Skew
Note 10
Random Jitter
Note 11
2.5Gbps to 3.2Gbps
1
psPP
Deterministic Jitter
Note 12
2.5Gbps to 3.2Gbps
10
psPP
Cycle-to-Cycle Jitter
Note 13
1
psRMS
Total Jitter
Note 14
10
psPP
Crosstalk Induced Jitter
(Adjacent Channel)
Note 15
0.7
psRMS
Output Rise/Fall Time
20% to 80%, Full output swing
80
ps
Data
Clock
tr, tf
(IN to Q)
(SEL to Q)
Typ
20
55
Notes:
8. High frequency AC electricals are guaranteed by design and characterization.
9. Output-to-output skew is measured between outputs under identical input conditions.
10. Part-to-part skew is defined for two parts with identical power supply voltages at the same temperature and with no skew of the edges at the
respective inputs.
11. Random jitter is measured with a K28.7 comma detect character pattern, measured at 2.5Gbps to 3.2Gbps.
12. Deterministic jitter is measured at 2.5Gpbs to 3.2Gbps with both K28.5 and 223–1 PRBS pattern.
13. Cycle-to-cycle jitter definition: the variation of periods between adjacent cycles, Tn-Tn–1, where T is the time between rising edges of the output
signal.
14. Total jitter definition: with an ideal clock input of frequency ≤ fMAX, no more than one output edge in 1012 output edges will deviate by more than the
specified peak-to-peak jitter value.
15. Crosstalk is measured at the output while applying two similar clock frequencies that are asynchronous with respect to each other at the inputs.
SINGLE-ENDED AND DIFFERENTIAL SWINGS
VDIFF_IN,
VDIFF_OUT 800mV (Typ.)
VIN,
VOUT 400mV (Typ.)
Figure 1a. Single-Ended Voltage Swing
M9999-082707
hbwhelp@micrel.com or (408) 955-1690
Figure 1b. Differential Voltage Swing
5
Precision Edge®
SY58030U
Micrel, Inc.
TIMING DIAGRAMS
IN
VIN
/IN
tpd
tpd
Q
VOUT
/Q
Figure 2a. IN-to-Q Timing Diagram
VCC/2
VCC/2
tpd
tpd
SEL
Q
VOUT
/Q
Figure 2b. SEL-to-Q Timing Diagram
SEL0 Q:
or:
SEL1 = LOW;
SEL1 = HIGH;
IN0, /IN1 = LOW;
IN2, /IN3 = LOW;
/IN0, IN1 = HIGH
/IN2, IN3 = HIGH
or:
SEL0 = LOW;
SEL0 = HIGH;
IN0, /IN2 = LOW;
IN1, /IN3 = LOW;
/IN0, IN2 = HIGH
/IN1, IN3 = HIGH
SEL1 Q:
M9999-082707
hbwhelp@micrel.com or (408) 955-1690
6
Precision Edge®
SY58030U
Micrel, Inc.
TYPICAL OPERATING CHARACTERISTICS
VCC = 2.5V, GND = 0, VIN = 100mV, TA = 25°C, unless otherwise stated.
2GHz Output
Output Swing
(100mV/div.)
Output Swing
(100mV/div.)
200MHz Output
TIME (70ps/div.)
3.2Gbps Output (223–1 PRBS)
7Gbps Output (223–1 PRBS)
Output Swing
(100mV/div.)
Output Swing
(100mV/div.)
TIME (600ps/div.)
TIME (100ps/div.)
TIME (50ps/div.)
Output Swing
(100mV/div.)
10.7Gbps Output (223–1 PRBS)
TIME (25ps/div.)
M9999-082707
hbwhelp@micrel.com or (408) 955-1690
7
Precision Edge®
SY58030U
Micrel, Inc.
TYPICAL OPERATING CHARACTERISTICS
VCC = 2.5V, GND = 0, VIN = 100mV, TA = 25°C, unless otherwise stated.
∆ OUTPUT-to-OUTPUT SKEW (ps)
PROPAGATION DELAY (ps)
240
Output-to-Output Skew
vs. Temperature
Propagation Delay
vs. Input Voltage Swing
239
238
237
236
235
234
233
232
0
200
400
600
800
1000
3.5
3
2.5
2
1.5
1
0.5
0
-40 -20
242
240
238
236
234
232
230
60
80 100
400
350
300
250
200
150
100
50
0
0 1 2 3 4 5 6 7 8 9 10
20 40 60 80 100
TEMPERATURE (°C)
M9999-082707
hbwhelp@micrel.com or (408) 955-1690
40
450
244
228
-60 -40 -20 0
20
Output Amplitude
vs. Frequency
Propagation Delay
vs. Temperature
OUTPUT AMPLITUDE (mV)
PROPAGATION DELAY (ps)
246
0
TEMPERATURE (°C)
INPUT VOLTAGE SWING (mV)
FREQUENCY (GHz)
8
Precision Edge®
SY58030U
Micrel, Inc.
INPUT STAGE
VCC
IN
50Ω
VT
GND
50Ω
/IN
Figure 3. Simplified Differential Input Stage
INPUT INTERFACE APPLICATIONS
VCC
IN
VCC
VCC
LVPECL
/IN
IN
IN
GND
/IN
/IN
SY58030U
SY58030U
GND
SY58030U
CML
CML
GND
NC
VREF-AC
NC
VT
VREF-AC
VCC
Figure 4a. CML
Interface (DC-Coupled)
Figure 4b. CML
Interface (AC-Coupled)
Option: May connect VT to VCC
VCC
IN
VCC
LVPECL
/IN
Rpd
Rpd
SY58030U
GND
GND
IN
LVDS
/IN
VREF-AC
VCC
0.01µF
SY58030U
VT
For a 3.3V system, Rpd = 100Ω
For a 2.5V system, Rpd = 50Ω
Figure 4d. LVPECL
Interface (AC-Coupled)
M9999-082707
hbwhelp@micrel.com or (408) 955-1690
GND
NC
VREF-AC
NC
VT
Figure 4e. LVDS Interface
9
VREF-AC
VT
0.01µF
Rpd
For a 3.3V system, Rpd = 50Ω
For a 2.5V system, Rpd = 19Ω
VT
0.01µF
NC
VCC
Figure 4c. PECL
Interface (DC-Coupled)
Precision Edge®
SY58030U
Micrel, Inc.
OUTPUT INTERFACE APPLICATIONS
+3.3V
+3.3V
+3.3V
ZO = 50Ω
R1
130Ω
+3.3V
Z = 50Ω
R1
130Ω +3.3V
Z = 50Ω
ZO = 50Ω
50Ω
R2
82Ω
R2
82Ω
50Ω
Figure 5a. Parallel Thevenin-Equivalent
Termination
50Ω
Rb
“destination”
VCC
C1
0.01µF
(optional)
Figure 5b. Parallel Termination
(3-Resistor)
Note:
Note:
1. For a 2.5V system, R1 = 250Ω, R2 = 62.5Ω.
1. For a 2.5V system, Rb = 19Ω.
For a 3.3V system, Rb = 150Ω.
For a 3.3V system, R1 = 130Ω, R2 = 82Ω.
RELATED MICREL PRODUCTS AND SUPPORT DOCUMENTATION
Part Number
Function
Data Sheet Link
SY58028U
Ultra Precision Differential CML 4:1 MUX
with 1:2 Fanout and Internal I/O Termination
http://www.micrel.com/product-info/products/sy58028u.shtml
SY58029U
Ultra Precision Differential LVPECL 4:1 MUX
with 1:2 Fanout and Internal Termination
http://www.micrel.com/product-info/products/sy58029u.shtml
SY58030U
Ultra Precision, 400mV Differential LVPECL 4:1
MUX with 1:2 Fanout and Internal Termination
http://www.micrel.com/product-info/products/sy58030u.shtml
MLF® Application Note
www.amkor.com/products/notes_papers/MLF_AppNote_0902.pdf
New Products and Applications
www.micrel.com/product-info/products/solutions.shtml
HBW Solutions
M9999-082707
hbwhelp@micrel.com or (408) 955-1690
10
Precision Edge®
SY58030U
Micrel, Inc.
32-PIN MicroLeadFrame® (MLF-32)
Package
EP- Exposed Pad
Die
CompSide Island
Heat Dissipation
Heat Dissipation
VEE
Heavy Copper Plane
VEE
Heavy Copper Plane
PCB Thermal Consideration for 32-Pin MLF® Package
(Always solder, or equivalent, the exposed pad to the PCB)
Package Notes:
1. Package meets Level 2 qualification.
2. All parts are dry-packaged before shipment.
3. Exposed pads must be soldered to a ground for proper thermal management.
MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA
TEL
+ 1 (408) 944-0800
FAX
+ 1 (408) 474-1000
WEB
http://www.micrel.com
The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use.
Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.
Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can
reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into
the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser’s
use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser’s own risk and Purchaser agrees to fully indemnify
Micrel for any damages resulting from such use or sale.
© 2005 Micrel, Incorporated.
M9999-082707
hbwhelp@micrel.com or (408) 955-1690
11