0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
VSC8486YSN-04

VSC8486YSN-04

  • 厂商:

    ACTEL(微芯科技)

  • 封装:

    FCBGA256

  • 描述:

    IC TELECOM INTERFACE 256FCBGA

  • 数据手册
  • 价格&库存
VSC8486YSN-04 数据手册
VSC8486-04 Datasheet 10 Gbps XAUI or XGMII to XFI LAN/WAN Transceiver Microsemi Headquarters One Enterprise, Aliso Viejo, CA 92656 USA Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 Email: sales.support@microsemi.com www.microsemi.com ©2018 Microsemi, a wholly owned subsidiary of Microchip Technology Inc. All rights reserved. Microsemi and the Microsemi logo are registered trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners. Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer’s responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided “as is, where is” and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice. About Microsemi Microsemi, a wholly owned subsidiary of Microchip Technology Inc. (Nasdaq: MCHP), offers a comprehensive portfolio of semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Learn more at www.microsemi.com. VMDS-10298. 4.4 11/18 Contents 1 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 1.2 1.3 1.4 1.5 1.6 Revision 4.4 Revision 4.3 Revision 4.2 Revision 4.1 Revision 4.0 Revision 2.0 ....................................................................... ....................................................................... ....................................................................... ....................................................................... ....................................................................... ....................................................................... 1 1 1 1 1 1 2 Product Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1.1 Low Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1.2 Wide Range of Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1.3 Tools for Rapid Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1.4 Flexibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 2 2 3 3 Functional Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3.1 3.2 3.3 3.4 Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3.1.1 XAUI to XFI Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3.1.2 XGMII to XFI Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Loopback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.2.1 Input/Output Mode Select and XGMII Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.2.2 Loopback Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Loopback Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.3.1 Loopback A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.3.2 Loopback B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.3.3 Loopback C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.3.4 Loopback D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.3.5 Loopback E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.3.6 Loopback F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.3.7 Loopback G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.3.8 Loopback H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.3.9 Loopback J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.3.10 Loopback K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.3.11 XAUI Split Loopbacks B and D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.3.12 PMA Split Loopbacks J and K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Physical Media Attachment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.4.1 Multiplexer Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.4.2 Timing Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.4.3 Reference Clock Rate Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.4.4 WAN Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.4.5 Clock Multiplier Unit Reference Clocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.4.6 Reference Clock Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.4.7 External Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.4.8 XFI Transmit Data CML Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.4.9 XFI Transmitter Pre-emphasis and Slew Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.4.10 Line Rate Divided Clock Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.4.11 External Phase Lock Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.4.12 High-Speed Serial Data Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.4.13 XFI Data Input Receiver Equalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.4.14 Loss of Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.4.15 Loss of Optical Carrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 iii 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 WAN Interface Sublayer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.5.1 Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.5.2 Section Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.5.3 Line Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.5.4 Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.5.5 Path Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.5.6 Reading Statistical Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.5.7 Defects and Anomalies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.5.8 Interrupt and Interrupt Masking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.5.9 Overhead Serial Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.5.10 Pattern Generator and Checker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.5.11 Protocol Implementation Conformance Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Physical Coding Sublayer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.6.1 Control Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.6.2 Transmit Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.6.3 Receive Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.6.4 PCS Test Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Extended Physical Coding Sublayer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.7.1 Autonegotiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.7.2 Frame Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.7.3 Link State Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.7.4 FEC Controls and Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.7.5 Supervisory Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 XGMII Extender Sublayer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.8.1 XAUI Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.8.2 XAUI Loss of Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.8.3 XAUI Receiver Equalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.8.4 XAUI Clock and Data Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.8.5 XAUI Code Group Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.8.6 XAUI Lane Deskew . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.8.7 10b/8b Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.8.8 8b/10b Encoder and Serializer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.8.9 XAUI Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.8.10 XAUI Transmitter Pre-Emphasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.8.11 XAUI Transmitter Programmable-Output Swing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.8.12 XGMII Tx Input Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.8.13 XGMII Rx Output Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 MDIO Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3.9.1 MDIO Interface Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Two-Wire Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 3.10.1 Two-Wire Serial Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 3.10.2 Automatic Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 XFP or SFP+ Module Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 3.11.1 General Purpose and LED Driver Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 JTAG Access Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 3.12.1 Instruction Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 3.12.2 Device ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 3.12.3 Bypass Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 3.12.4 Boundary Scan Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Synchronous Ethernet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 3.13.1 About Conventional Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 3.13.2 Using Conventional Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 3.13.3 About Enhanced Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 3.13.4 Using Enhanced Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 4 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 4.1 Device 1: PMA Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 iv 4.2 4.3 4.4 4.5 Device 2: WIS Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Device 3: PCS Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Device 4: PHY-XS Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Device 30: NVR and DOM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 153 166 179 5 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 5.1 5.2 5.3 5.4 DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1.1 LVTTL Inputs and Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1.2 Reference Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1.3 MDIO Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2.1 10-Gigabit Inputs and Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2.2 XAUI Inputs and Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2.3 XGMII Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2.4 Timing and Reference Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Stress Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 188 188 189 189 189 196 198 199 200 201 6 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 6.1 6.2 Pin Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 Pins by Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 6.2.1 XFI 10-Gigabit Data Bus Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 6.2.2 XAUI 10-Gigabit Data Bus Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 6.2.3 XGMII 10-Gigabit Data Bus Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 6.2.4 Serial Bus Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 6.2.5 Input and Output Reference Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 6.2.6 Status and Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 6.2.7 Phase Detector Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 6.2.8 Phase-Locked Loop Filter Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 6.2.9 JTAG Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 6.2.10 Power and Ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 6.2.11 Miscellaneous Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 7 Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 7.1 Package Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 7.1.1 Thermal Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 7.1.2 Moisture Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 8 Design Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 8.1 Power Supply Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 9 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 v Figures Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16 Figure 17 Figure 18 Figure 19 Figure 20 Figure 21 Figure 22 Figure 23 Figure 24 Figure 25 Figure 26 Figure 27 Figure 28 Figure 29 Figure 30 Figure 31 Figure 32 Figure 33 Figure 34 Figure 35 Figure 36 Figure 37 Figure 38 Figure 39 Figure 40 Figure 41 Figure 42 Figure 43 Figure 44 Figure 45 Figure 46 Figure 47 Figure 48 Figure 49 Figure 50 Figure 51 Figure 52 Figure 53 Figure 54 Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 XAUI to XFI Mode Functional Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 XGMII to XFI Mode Functional Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Loopback Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Data Path XGMII Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 PHY XS Deep Network Loopback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 PHY XS Shallow System Loopback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 PHY XS Deep System Loopback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 PHY XS Shallow Network Loopback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 PCS FIFO System Loopback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Gearbox Network Loopback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 PCS System Loopback G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 PCS System Loopback H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 PMA/WIS System Loopback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 PMA Network Loopback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 XAUI Split Loopback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 PMA Split Loopback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 PMA Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Reference Clock Input Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 CML XFI Output Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 XFI Data Transmitter Differential Voltage with Pre-emphasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 SONET Jitter-Compliant Reference Clock Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Example External PLL Schematic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 CML XFI Data Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 PMA LOS Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 WIS Transmit and Receive Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 WIS Frame Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 STS-192c/STM-64 Section and Line Overhead Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Path Overhead Octets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Primary Synchronization State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Secondary Synchronization State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 16-bit Designations within Payload Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Pointer Interpreter State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Path Status (G1) Byte for ERDI_RDIN = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Path Status (G1) Byte for ERDI_RDIN = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 TOSI Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 ROSI Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 PCS Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 64b/66b Block Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 E-PCS Frame Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 E-PCS Framing State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 XAUI Input Simplified Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 LOS State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 LOA State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 XAUI Output Differential Voltage with Pre-emphasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 XGMII Input Simplified Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 XGMII Output Structure and Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 MDIO Frame Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Timing with MDIO Sourced by STA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Timing with MDIO Sourced by MMD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Serial Management Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Two-Wire Serial Access State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 VSC8486-04 to XFP Host Recommended Interface Connections . . . . . . . . . . . . . . . . . . . . . . . . . 79 VSC8486-04 to SFP+ Host Recommended Interface Connections . . . . . . . . . . . . . . . . . . . . . . . . 80 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 vi Figure 55 Figure 56 Figure 57 Figure 58 Figure 59 Figure 60 Figure 61 Figure 62 Figure 63 Figure 64 Figure 65 Figure 66 Figure 67 Figure 68 Figure 69 Figure 70 Figure 71 Figure 72 Figure 73 Figure 74 Figure 75 Figure 76 Interrupt/Status/Activity LED Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 JTAG TAP Boundary Scan Test Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 TAP Controller State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Clock Path Distribution, Conventional Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Synchronous Ethernet Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Clock Path Distribution, Enhanced Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 10-Gigabit Data Input Compliance Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 Datacom Sinusoidal Jitter Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 10-Gigabit Data Output Compliance Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 XAUI Receiver Input Sinusoidal Jitter Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 XAUI Output Compliance Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 XGMII Input/Output Level Reference Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 XGMII Interface Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 Parametric Measurement Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 Timing with MDIO Sourced by STA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 Timing with MDIO Sourced by MMD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 Pin Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 Package Drawing for VSC8486SN-04 and VSC8486XSN-04 . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 Package Drawing for VSC8486YSN-04 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 Recommended Power Supply Isolation Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 Split Plane Layout Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 Decoupling Capacitor Placement Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 vii Tables Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 Table 8 Table 9 Table 10 Table 11 Table 12 Table 13 Table 14 Table 15 Table 16 Table 17 Table 18 Table 19 Table 20 Table 21 Table 22 Table 23 Table 24 Table 25 Table 26 Table 27 Table 28 Table 29 Table 30 Table 31 Table 32 Table 33 Table 34 Table 35 Table 36 Table 37 Table 38 Table 39 Table 40 Table 41 Table 42 Table 43 Table 44 Table 45 Table 46 Table 47 Table 48 Table 49 Table 50 Table 51 Table 52 Table 53 Table 54 Pin Control for XGMII After Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 MDIO Control for XGMII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 System Loopback Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 System Loopback and XFI Traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Network Loopbacks Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Split Loopbacks Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Retiming Clock Sources for Network and Split Loopbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 REFSEL0_STATUS Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 WAN Mode Control Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 CMU and CRU Reference Clock Control and Frequency Summary . . . . . . . . . . . . . . . . . . . . . . . 21 LAN/SAN Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 SONET/SDH Jitter Generation-Compliant Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Non-SONET/SDH Jitter Generation-Compliant Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 SONET/SDH Jitter-Compliant Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 XFI Transmitter Pre-emphasis Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 CLK64AP/N Clock Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 CLK64BP/N Clock Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Register 1×8002.14:11 RXINP/N Equalization Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 PMA LOS Register Status and Control Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Section Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Framing Parameter Description and Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Line Overhead Octets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 K2 Encodings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 H1/H2 Pointer Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Concatenation Indication Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Pointer Interpreter State Diagram Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 STS Path Overhead Octets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 RDI-P and ERDI-P Bit Settings and Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 PMTICK Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Defects and Anomalies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 TOSI/ROSI Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Control Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 E-PCS Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 XAUI Lane LOS Threshold Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 XAUI Receiver Lane Equalization Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 XAUI Transmitter Lane Pre-emphasis Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 MDIO-Manageable Device Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Management Frame Format for Indirect Register Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 XFP or SFP+ Host Application Pin Connections Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 GPO Configuration Control Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 JTAG TTL Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 TAP Controller States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Supported Boundary Scan Test Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Boundary Scan Test Instruction Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Device Identification Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Boundary Scan Register Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Synchronous Ethernet Reference Clock Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Synchronous Ethernet Register Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 PMA_CTRL1: PMA Control 1 (1×0000) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 PMA_STAT1: PMA Status 1 (1×0001) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 PMA_DEVID1: PMA Device Identifier 1 (1×0002) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 PMA_DEVID2: PMA Device Identifier 2 (1×0003) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 PMA_SPEED: PMA Speed Capability (1×0004) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 PMA_DEVPKG1: PMA Devices in Package 1 (1×0005) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 viii Table 55 Table 56 Table 57 Table 58 Table 59 Table 60 Table 61 Table 62 Table 63 Table 64 Table 65 Table 66 Table 67 Table 68 Table 69 Table 70 Table 71 Table 72 Table 73 Table 74 Table 75 Table 76 Table 77 Table 78 Table 79 Table 80 Table 81 Table 82 Table 83 Table 84 Table 85 Table 86 Table 87 Table 88 Table 89 Table 90 Table 91 Table 92 Table 93 Table 94 Table 95 Table 96 Table 97 Table 98 Table 99 Table 100 Table 101 Table 102 Table 103 Table 104 Table 105 Table 106 Table 107 Table 108 Table 109 Table 110 Table 111 Table 112 Table 113 PMA_DEVPKG2: PMA Devices in Package 2 (1×0006) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 PMA_CTRL2: PMA Control 2 (1×0007) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 PMA_STAT2: PMA Status 2 (1×0008) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 PMA_CTRL3: PMA Control 3 (1×0009) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 PMA_STAT3: PMA Status 3 (1×000A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Factory Test Register (1×000B-000D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 PMA_PKGID1: PMA Package Identifier 1 (1×000E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 PMA_PKGID2: PMA Package Identifier 2 (1×000F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 PMA_CFG1: PMA Configuration 1 (1×8000) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 Factory Test Register (1×8001) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 PMA_RXEQ_CTRL: PMA Rx Equalization Control (1×8002) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 PMA_STAT4: PMA Status 4 (1×E600) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 PMA_CTRL4: PMA Control 4 (1×E601) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 PMA_CTRL5: PMA Control 5 (1×E602) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 High-Speed Data Output (Signal Quality Control) (1×E603) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Synchronous Ethernet Clock Control (1×E604) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 DEV_CTRL3: DEVICE Control 3 (1×E605) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 DEV_STAT1: DEVICE Status 1 (1×E606) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 DEV_STAT2: DEVICE Status 2 (1×E607) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 PMA_LOS_ASSERT: PMA Loss of Signal Assert Control (1×E700) . . . . . . . . . . . . . . . . . . . . . . 110 PMA_LOS_DEASSERT: PMA Loss of Signal Deassert Control (1×E701) . . . . . . . . . . . . . . . . . 110 PMA_LOS_STAT: PMA Loss of Signal Status (1×E702) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 DEV_ID: DEVICE Identifier (1×E800) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 DEV_REV: DEVICE Revision (1×E801) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Factory Test Register (1×E900) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 DEV_GPIO_CTRL: DEVICE General Purpose I/O Control (1×E901) . . . . . . . . . . . . . . . . . . . . . 111 DEV_XFP_CTRL: DEVICE XFP Control (1×E902) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Factory Test Register (1×EC00) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Factory Test (1×EC01–EC34) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Factory Test (1×ED00–ED0F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Factory Test Register (1×EF00) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 DEV_RST_CTRL: DEVICE Block Reset Control (1×EF01) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 DEV_XFI_CTRL2: DEVICE XFI Loopback Control 2 (1×EF10) . . . . . . . . . . . . . . . . . . . . . . . . . . 114 WIS_CTRL1: WIS Control 1 (2×0000) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 WIS_STAT1: WIS Status 1 (2×0001) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 WIS_DEVID1: WIS Device Identifier 1 (2×0002) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 WIS_DEVID2: WIS Device Identifier 2 (2×0003) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 WIS_SPEED: WIS Speed Capability (2×0004) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 WIS_DEVPKG1: WIS Devices in Package 1 (2×0005) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 WIS_DEVPKG2: WIS Devices in Package 2 (2×0006) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 WIS_CTRL2: WIS Control 2 (2×0007) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 WIS_STAT2: WIS Status 2 (2×0008) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 WIS_TSTPAT_CNT: WIS Test Pattern Error Counter (2×0009) . . . . . . . . . . . . . . . . . . . . . . . . . 119 WIS_PKGID1: WIS Package Identifier 1 (2×000E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 WIS_PKGID2: WIS Package Identifier 2 (2×000F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 WIS_STAT3: WIS Status 3 (2×0021) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 WIS_REI_CNT: WIS Far-End Path Block Error Count (2×0025) . . . . . . . . . . . . . . . . . . . . . . . . . 120 WIS_TXJ1: WIS Tx J1s (2×0027-002E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 WIS_RXJ1: WIS Rx J1s (2×002F-0036) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 WIS_REIL_CNT1: WIS Far-End Line BIP Errors 1 (2×0037) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 WIS_REIL_CNT0: WIS Far-End Line BIP Errors 0 (2×0038) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 WIS_B2_CNT1: WIS L-BIP Error Count 1 (2×0039) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 WIS_B2_CNT0: WIS L-BIP Error Count 0 (2×003A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 WIS_B3_CNT: WIS P-BIP Block Error Count (2×003B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 WIS_B1_CNT: WIS S-BIP Error Count (2×003C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 WIS_TXJ0: WIS Transmit J0s (2×0040-0047) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 WIS_RXJ0: WIS Rx J0s (2×0048-004F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 EWIS_TXCTRL1: WIS Vendor-Specific Tx Control 1 (2×E600) . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Factory Test Register (2×E601) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 ix Table 114 Table 115 Table 116 Table 117 Table 118 Table 119 Table 120 Table 121 Table 122 Table 123 Table 124 Table 125 Table 126 Table 127 Table 128 Table 129 Table 130 Table 131 Table 132 Table 133 Table 134 Table 135 Table 136 Table 137 Table 138 Table 139 Table 140 Table 141 Table 142 Table 143 Table 144 Table 145 Table 146 Table 147 Table 148 Table 149 Table 150 Table 151 Table 152 Table 153 Table 154 Table 155 Table 156 Table 157 Table 158 Table 159 Table 160 Table 161 Table 162 Table 163 Table 164 Table 165 Table 166 Table 167 Table 168 Table 169 Table 170 Table 171 Table 172 Factory Test Register (2×E602) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 Factory Test Register (2×E603) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 Factory Test Register (2×E604) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 Factory Test Register (2×E605) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 EWIS_TX_A1_A2: E-WIS Tx A1/A2 Octets (2×E611) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 EWIS_TX_Z0_E1: E-WIS Tx Z0/E1 Octets (2×E612) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 EWIS_TX_F1_D1: E-WIS Tx F1/D1 Octets (2×E613) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 EWIS_TX_D2_D3: E-WIS Tx D2/D3 Octets (2×E614) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 EWIS_TX_C2_H1: E-WIS Tx C2/H1 Octets (2×E615) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 EWIS_TX_H2_H3: E-WIS Tx H2/H3 Octets (2×E616) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 EWIS_TX_G1_K1: E-WIS Tx G1/K1 Octets (2×E617) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 EWIS_TX_K2_F2: E-WIS Tx K2/F2 Octets (2×E618) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 EWIS_TX_D4_D5: E-WIS Tx D4/D5 Octets (2×E619) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 EWIS_TX_D6_H4: E-WIS Tx D6/H4 Octets (2×E61A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 EWIS_TX_D7_D8: E-WIS Tx D7/D8 Octets (2×E61B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 EWIS_TX_D9_Z3: E-WIS Tx D9/Z3 Octets (2×E61C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 EWIS_TX_D10_D11: E-WIS Tx D10/D11 Octets (2×E61D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 EWIS_TX_D12_Z4: E-WIS Tx D12/Z4 Octets (2×E61E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 EWIS_TX_S1_Z1: E-WIS Tx S1/Z1 Octets (2×E61F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 EWIS_TX_Z2_E2: E-WIS Tx Z2/E2 Octets (2×E620) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 EWIS_TX_N1: E-WIS Tx N1 Octet (2×E621) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 Factory Test Register (2×E622) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 EWIS_TX_MSGLEN: E-WIS Tx Trace Message Length Control (2×E700) . . . . . . . . . . . . . . . . . 128 EWIS_TXJ0: E-WIS Tx J0s 16-63 (2×E800-E817) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 EWIS_RXJ0: E-WIS Rx J0s 16-63 (2×E900-E917) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 EWIS_TXJ1: E-WIS Tx WIS J1s 16-63 (2×EA00-EA17) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 EWIS_RXJ1: E-WIS Rx J1s 16-63 (2×EB00-EB17) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 EWIS_RX_FRM_CTRL1: E-WIS Rx Framer Control 1 (2×EC00) . . . . . . . . . . . . . . . . . . . . . . . . 129 EWIS_RX_FRM_CTRL2: E-WIS Rx Framer Control 2 (2×EC01) . . . . . . . . . . . . . . . . . . . . . . . . 130 EWIS_LOF_CTRL1: E-WIS Loss of Frame Control 1 (2×EC02) . . . . . . . . . . . . . . . . . . . . . . . . . 130 EWIS_LOF_CTRL2: E-WIS Loss of Frame Control 2 (2×EC03) . . . . . . . . . . . . . . . . . . . . . . . . . 131 EWIS_RX_CTRL1: E-WIS Rx Control 1 (2×EC10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 EWIS_RX_MSGLEN: E-WIS Rx Trace Message Length Control (2×EC20) . . . . . . . . . . . . . . . . 132 EWIS_RX_ERR_FRC1: E-WIS Rx Error Force Control 1 (2×EC30) . . . . . . . . . . . . . . . . . . . . . . 132 EWIS_RX_ERR_FRC2: E-WIS Rx Error Force Control 2 (2×EC31) . . . . . . . . . . . . . . . . . . . . . . 133 EWIS_MODE_CTRL: E-WIS Mode Control (2×EC40) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 Factory Test Register (2×EC41) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 EWIS_PRBS31_ANA_CTRL: E-WIS PRBS31 Analyzer Control (2×EC50) . . . . . . . . . . . . . . . . . 136 EWIS_PRBS31_ANA_STAT: E-WIS PRBS31 Analyzer Status (2×EC51) . . . . . . . . . . . . . . . . . 136 EWIS_PMTICK_CTRL: E-WIS Performance Monitor Control (2×EC60) . . . . . . . . . . . . . . . . . . . 137 EWIS_CNT_CFG: E-WIS Counter Configuration (2×EC61) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 EWIS_CNT_STAT: E-WIS Counter Status (2×EC62) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 EWIS_REIP_CNT1: E-WIS P-REI Counter 1 (MSW) (2×EC80) . . . . . . . . . . . . . . . . . . . . . . . . . 138 EWIS_REIP_CNT0: E-WIS P-REI Counter 0 (LSW) (2×EC81) . . . . . . . . . . . . . . . . . . . . . . . . . . 139 EWIS_REIL_CNT1: E-WIS L-REI Counter 1 (MSW) (2×EC90) . . . . . . . . . . . . . . . . . . . . . . . . . . 139 EWIS_REIL_CNT0: E-WIS L-REI Counter 0 (LSW) (2×EC91) . . . . . . . . . . . . . . . . . . . . . . . . . . 139 Factory Test Register (2×ECA0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 EWIS_B1_ERR_CNT1: E-WIS S-BIP Error Counter 1 (MSW) (2×ECB0) . . . . . . . . . . . . . . . . . . 139 EWIS_B1_ERR_CNT0: E-WIS S-BIP Error Counter 0 (LSW) (2×ECB1) . . . . . . . . . . . . . . . . . . . 140 EWIS_B2_ERR_CNT1: E-WIS L-BIP Error Counter 1 (MSW) (2×ECB2) . . . . . . . . . . . . . . . . . . 140 EWIS_B2_ERR_CNT0: E-WIS L-BIP Error Counter 0 (LSW) (2×ECB3) . . . . . . . . . . . . . . . . . . . 140 EWIS_B3_ERR_CNT1: E-WIS P-BIP Error Counter 1 (MSW) (2×ECB4) . . . . . . . . . . . . . . . . . . 140 EWIS_B3_ERR_CNT0: E-WIS P-BIP Error Counter 0 (LSW) (2×ECB5) . . . . . . . . . . . . . . . . . . . 140 Factory Test Register (2×ED00–ED08) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 EWIS_RXTX_CTRL: E-WIS Rx to Tx Control (2×EE00) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 EWIS_PEND1: E-WIS Interrupt Pending 1 (2×EF00) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 EWIS_MASKA_1: E-WIS Interrupt Mask A 1 (2×EF01) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 EWIS_MASKB_1: E-WIS Interrupt Mask B 1 (2×EF02) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 EWIS_INTR_STAT2: E-WIS Interrupt Status 2 (2×EF03) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 x Table 173 Table 174 Table 175 Table 176 Table 177 Table 178 Table 179 Table 180 Table 181 Table 182 Table 183 Table 184 Table 185 Table 186 Table 187 Table 188 Table 189 Table 190 Table 191 Table 192 Table 193 Table 194 Table 195 Table 196 Table 197 Table 198 Table 199 Table 200 Table 201 Table 202 Table 203 Table 204 Table 205 Table 206 Table 207 Table 208 Table 209 Table 210 Table 211 Table 212 Table 213 Table 214 Table 215 Table 216 Table 217 Table 218 Table 219 Table 220 Table 221 Table 222 Table 223 Table 224 Table 225 Table 226 Table 227 Table 228 Table 229 Table 230 Table 231 EWIS_INTR_PEND2: E-WIS Interrupt Pending 2 (2×EF04) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 EWIS_INTR_MASKA2: E-WIS Interrupt Mask A 2 (2×EF05) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 EWIS_INTR_MASKB2: E-WIS Interrupt Mask B 2 (2×EF06) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 WIS Fault Control (2×EF07) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 PCS_CTRL1: PCS Control 1 (3×0000) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 PCS_STAT1: PCS Status 1 (3×0001) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 PCS_DEVID1: PCS Device Identifier 1 (3×0002) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 PCS_DEVID2: PCS Device Identifier 2 (3×0003) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 PCS_SPEED: PCS Speed Capability (3×0004) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 PCS_DEVPKG1: PCS Devices in Package 1 (3×0005) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 PCS_DEVPKG2: PCS Devices in Package 2 (3×0006) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 PCS_CTRL2: PCS Control 2 (3×0007) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 PCS_STAT2: PCS Status 2 (3×0008) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 PCS_PKGID1: PCS Package Identifier 1 (3×000E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 PCS_PKGID2: PCS Package Identifier 2 (3×000F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 PCS_10GBASEX_STAT: PCS 10G BASE-X Status (3×0018) . . . . . . . . . . . . . . . . . . . . . . . . . . 157 PCS_10GBASEX_CTRL: PCS 10G BASE-X Control (3×0019) . . . . . . . . . . . . . . . . . . . . . . . . . . 157 PCS_10GBASER_STAT1: PCS 10G BASE-R Status 1 (3×0020) . . . . . . . . . . . . . . . . . . . . . . . . 157 PCS_10GBASER_STAT2: PCS 10G BASE-R Status 2 (3×0021) . . . . . . . . . . . . . . . . . . . . . . . . 158 PCS_SEEDA3: PCS Test Pattern Seed A 3 (3×0022) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 PCS_SEEDA2: PCS Test Pattern Seed A 2 (3×0023) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 PCS_SEEDA1: PCS Test Pattern Seed A 1 (3×0024) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 PCS_SEEDA0: PCS Test Pattern Seed A 0 (3×0025) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 PCS_SEEDB3: PCS Test Pattern Seed B 3 (3×0026) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 PCS_SEEDB2: PCS Test Pattern Seed B 2 (3×0027) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 PCS_SEEDB1: PCS Test Pattern Seed B 1 (3×0028) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 PCS_SEEDB0: PCS Test Pattern Seed B 0 (3×0029) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 PCS_TSTPAT_CTRL: PCS Test Pattern Control (3×002A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 PCS_TSTPAT_CNT: PCS Test Pattern Error Counter (3×002B) . . . . . . . . . . . . . . . . . . . . . . . . . 160 PCS_USRPAT0: PCS User Test Pattern 0 (3×8000) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 PCS_USRPAT1: PCS User Test Pattern 1 (3×8001) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 PCS_USRPAT2: PCS User Test Pattern 2 (3×8002) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 PCS_USRPAT3: PCS User Test Pattern 3 (3×8003) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 PCS_SQPW_CTRL: PCS Square Wave Pulse Width Control (3×8004) . . . . . . . . . . . . . . . . . . . 161 PCS_CFG1: PCS Configuration 1 (3×8005) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 PCS_ERR_CNT0: PCS Test Error Counter 0 (3×8007) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 PCS_ERR_CNT1: PCS Test Error Counter 1 (3×8008) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 Factory Test Register (3×8009) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 Factory Test Register (3×800C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 Factory Test Register (3×800D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 Factory Test Register (3×800E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 Factory Test Register (3×800F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 Factory Test Register (3×8010) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 Factory Test Register (3×8011) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 Factory Test Register (3×8012) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 Factory Test Register (3×8013) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 Factory Test Register (3×8014) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 Factory Test Register (3×8015) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 PCS_CFG2: PCS Configuration 2 (3×E600) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 Factory Test Register (3×E601) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 Factory Test Register (3×E602) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 Factory Test Register (3×E603) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 EPCS_STAT1: E-PCS Status 1 (3×E604) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 EPCS_CORR_CNT: E-PCS Corrected FEC Error Counter (3×E605) . . . . . . . . . . . . . . . . . . . . . 165 EPCS_UCORR_CNT: E-PCS Uncorrected FEC Error Counter (3×E606) . . . . . . . . . . . . . . . . . . 165 EPCS_TXMSG: E-PCS Tx Message (3×E60A-E611) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 EPCS_RXMSG: E-PCS Rx Message (3×E612-E619) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 Factory Test Register (3×E61A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 Factory Test Register (3×E61B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 xi Table 232 Table 233 Table 234 Table 235 Table 236 Table 237 Table 238 Table 239 Table 240 Table 241 Table 242 Table 243 Table 244 Table 245 Table 246 Table 247 Table 248 Table 249 Table 250 Table 251 Table 252 Table 253 Table 254 Table 255 Table 256 Table 257 Table 258 Table 259 Table 260 Table 261 Table 262 Table 263 Table 264 Table 265 Table 266 Table 267 Table 268 Table 269 Table 270 Table 271 Table 272 Table 273 Table 274 Table 275 Table 276 Table 277 Table 278 Table 279 Table 280 Table 281 Table 282 Table 283 Table 284 Table 285 Table 286 Table 287 Table 288 Table 289 Table 290 Factory Test Register (3×E61C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 Factory Test Register (3×E61D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 PHYXS_CTRL1: PHY XS Control 1 (4×0000) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 PHYXS_STAT1: PHY XS Status1 (4×0001) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 PHYXS_DEVID1: PHY XS Device Identifier 1 (4×0002) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 PHYXS_DEVID2: PHY XS Device Identifier 2 (4×0003) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 PHYXS_SPEED: PHY XS Speed Capability (4×0004) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 PHYXS_DEVPKG1: PHY XS Devices in Package 1 (4×0005) . . . . . . . . . . . . . . . . . . . . . . . . . . 168 PHYXS_DEVPKG2: PHY XS Devices in Package 2 (4×0006) . . . . . . . . . . . . . . . . . . . . . . . . . . 169 PHYXS_STAT2: PHY XS Status 2 (4×0008) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 PHYXS_STAT3: PHY XS Status 3 (4×0018) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 PHYXS_TSTCTRL1: PHY XGXS Test Control 1 (4×0019) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 PHYXS_TSTCTRL2: PHY XS Test Control 2 (4×8000) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 PHYXS_TSTSTAT: PHY XS Test Pattern Check Status (4×8001) . . . . . . . . . . . . . . . . . . . . . . . 171 Factory Test Register (4×8002) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 Factory Test Register (LSW) (4×8003) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 Factory Test Register (4×8004) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 Factory Test Register (4×8005) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 Factory Test Register (4×8006) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 Factory Test Register (4×8007) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 Factory Test Register (4×8008) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 Factory Test Register (4×8009) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 Factory Test Register (4×800A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 PHYXS_TPERR_CTRL: PHY XS Test Pattern Error Counter Control (4×800B) . . . . . . . . . . . . . 172 PHYXS_TPERR_CNT0: PHY XS Test Pattern Error Counter 0 (LSW) (4×800C) . . . . . . . . . . . . 173 PHYXS_TPERR_CNT0: PHY XS Test Pattern Error Counter 1 (MSW) (4×800D) . . . . . . . . . . . 173 PHYXS_XAUI_CTRL1: PHY XS XAUI Control 1 (4×800E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 PHYXS_XAUI_CTRL2: PHY XS XAUI Control 2 (4×800F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 PHYXS_RXEQ_CTRL: PHY XS XAUI Rx Equalization Control (4×8010) . . . . . . . . . . . . . . . . . . 175 PHYXS_TXPE_CTRL: PHY XS XAUI Tx Pre-emphasis Control (4×8011) . . . . . . . . . . . . . . . . . 175 PHYXS_RXLOS_STAT: PHY XS Rx Loss of Signal Status (4×8012) . . . . . . . . . . . . . . . . . . . . . 176 PHYXS_RXSD_STAT: PHY XS Rx Signal Detect Status (4×E600) . . . . . . . . . . . . . . . . . . . . . . 176 Factory Test Register (4×E601) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 PHYXS_TXPD_CTRL: PHY XS XAUI Tx Power Down Control (4×E602) . . . . . . . . . . . . . . . . . . 177 PHYXS_RXPD_CTRL: PHY XS XAUI Rx Power Down Control (4×E603) . . . . . . . . . . . . . . . . . 178 FC_CJPAT_SEL (4×E604) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 Factory Test Register (4×E610) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 STW_CTRL1: STW Control 1 (1E×8000) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 STW_DEVADDR: STW Device Address (1E×8002) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 STW_REGADDR: STW Register Address (1E×8003) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 STW_CFG1: STW Configuration 1 (1E×8004) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 NVR Memory Map (1E×8007-8106) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 DOM_RXALRM_CTRL: DOM Rx Alarm Control (1E×9000) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 DOM_TXALRM_CTRL: DOM Tx Alarm Control (1E×9001) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 DOM_LASI_CTRL: DOM Link Alarm Status Interrupt Control (1E×9002) . . . . . . . . . . . . . . . . . . 182 DOM_RXALRM_STAT: DOM Rx Alarm Status (1E×9003) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 DOM_TXALRM_STAT: DOM Tx Alarm Status (1E×9004) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 DOM_LASI_STAT: DOM Link Alarm Status Interrupt Status (1E×9005) . . . . . . . . . . . . . . . . . . . 183 DOM_TXFLAG_CTRL: DOM Tx Flag Control (1E×9006) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 DOM_RXFLAG_CTRL: DOM Rx Flag Control (1E×9007) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 Factory Test Register (1E×A000-A027) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 Factory Test Register (1E×A048-A05F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 Factory Test Register (1E×A060-A06D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 Factory Test Register (1E×A06E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 Factory Test Register (1E×A06F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 DOM_TXALARM: DOM Tx Alarm Flags (1E×A070) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 DOM_RXALARM: DOM Rx Alarm Flags (1E×A071) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 Factory Test Register (1E×A072-A073) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 DOM_TXWARN: DOM Tx Warning Flags (1E×A074) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 xii Table 291 Table 292 Table 293 Table 294 Table 295 Table 296 Table 297 Table 298 Table 299 Table 300 Table 301 Table 302 Table 303 Table 304 Table 305 Table 306 Table 307 Table 308 Table 309 Table 310 Table 311 Table 312 Table 313 Table 314 Table 315 Table 316 Table 317 Table 318 Table 319 Table 320 Table 321 Table 322 Table 323 Table 324 Table 325 Table 326 DOM_RXWARN: DOM Rx Warning Flags (1E×A075) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 Factory Test Register (1E×A076-A077) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 Factory Test Register (1E×A0C0-A0FF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 Factory Test Register (1E×A100) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 Factory Test Register (1E×A101-A106) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 LVTTL I/O Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 Reference Clock Input Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 MDIO Interface Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 10-Gigabit Serial Data Input Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 10-Gigabit Data Input Specifications for CRU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 10-Gigabit Data Output Specifications for MUX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 10-Gigabit Data Output Specifications for CMU, WAN Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 10-Gigabit Data Output Specifications for CMU, LAN/SAN Mode . . . . . . . . . . . . . . . . . . . . . . . . 194 XAUI Input Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 XAUI Output Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 XGMII Input Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 XGMII Output Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 Reference Clock Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 TXCLK and RXCLK Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 Stress Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 XFI 10-Gigabit Data Bus Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 XAUI 10-Gigabit Data Bus Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 XGMII 10-Gigabit Data Bus Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 Serial Bus Interface Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 Input and Output Reference Clock Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 Status and Control Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 Phase Detector Output Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 Phase-Locked Loop Filter Capacitor Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 JTAG Interface Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 Power and Ground Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 Thermal Resistances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 Power Supply and Pin Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 xiii Revision History 1 Revision History This section describes the changes that were implemented in this document. The changes are listed by revision, starting with the most current publication. 1.1 Revision 4.4 In revision 4.4 of this document, the XAUI LOS signal information was clarified. For more information, see Table 261, page 175 (bits 3:2) and Table 262, page 176 (bits 3:0). 1.2 Revision 4.3 In revision 4.3 of this document, the lead-free (Pb-free) package, VSC8486YSN-04, was added. 1.3 Revision 4.2 The following is a summary of the changes in revision 4.2 of this document. • • 1.4 Two-wire serial to SFP+/XFP manual mode of operation is not supported. The STW_MODE register bit must be set to 0 for automatic mode of operation. Two-wire serial reset command register was clarified. It can only be used to reset the local two-wire serial circuit, not to reset downstream SFP+/XFP devices. Revision 4.1 The following is a summary of the changes in revision 4.1 of this document. • • 1.5 The recommended operating temperature was changed from 0 °C ambient to 85 °C case to –40 °C ambient to 95 °C case. The minimum reference clock frequency was changed from 156.25 MHz to 153 MHz. Revision 4.0 The following is a summary of the changes in revision 4.0 of this document. • • • • • • 1.6 Electrical specifications were updated based on final characterization results. XGMII to XAUI mode is not supported. The default value for the device revision number register 1×E801.15:0 was updated to 0×0004. The PCS configuration register bit settings for 3×E600.1:0 were modified. For applications that do not require high input gain, the synchronous Ethernet clock control register bit 1×E604.15 should be set to 1 for optimal jitter tolerance. The remote error indication (REI-P) status bit will be triggered in the event of an invalid REI-P value; however, the REI-P counter will not be incremented. Revision 2.0 Revision 2.0 was the first publication of this document. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 1 Product Overview 2 Product Overview The VSC8486-04 is a LAN/WAN XAUI or XGMII transceiver that converts 3 Gbps XAUI data to a 10 Gbps serial stream. At just 840 mW, the VSC8486-04 is ideal for applications requiring low power. The device is also equipped with an additional full-rate data port that can be utilized for bypass monitoring or channel monitoring applications. The device meets all specifications for 10 Gigabit Ethernet (GbE) Layer-1 processing, as defined in IEEE 802.3ae. The VSC8486-04 offers exceptional 10 Gbps mixed-signal performance with a data output that features programmable pre-emphasis to enable longer traces of copper. The VSC8486-04 high-speed serial I/O supports 9.9 Gbps, 10.3 Gbps, and 10.5 Gbps, as defined by IEEE 802.3ae and T11 10 GFC, and is fully compliant with the SONET jitter specification defined by Bellcore GR253. There are four main data processing blocks in the device: XGXS, PCS, WIS, and PMA. The 10 GbE extender sublayer (XGXS) accepts 8b/10b data running at 3.125 Gbps and decodes it for transmission to the physical coding sublayer (PCS). The XGXS is capable of deskewing more than 60 bit times between lanes. The PCS receives data from the XGXS at 10 Gbps and encodes data according to the 64b/66b algorithm described in IEEE 802.3ae clause 49. The PCS features an optional extended mode (E-PCS) that also runs at the 64b/66b rate. This extended mode uses an alternative framing algorithm that adds forward error correction (FEC) to provide ~2.5 dB of net electrical coding gain. The E-PCS is available for LAN mode but not WAN mode. The PCS outputs data to the WAN interface sublayer (WIS) when this mode is active (it is bypassed in LAN mode). The WIS optionally takes data from the PCS at 9.953 Gbps and frames data in a SONET STS-192c frame, as described in IEEE 802.3ae clause 50. Additionally, the WIS block contains extended SONET and SDH processing capabilities that allow system operators to leverage valuable performance monitoring data. Finally, data is delivered to the physical media attachment (PMA) block. The PMA multiplexes the internal parallel data bus into a 10 Gbps data stream. The 10 Gbps to XAUI data channel performs the operations described above in reverse. Notable features in this path are a SONET-compliant LOS detector and a 10 Gbps receiver that is fully compliant with XFI specifications, including stressed eye criteria. The device operates using a 1.2 V supply dissipating only 750 mW in LAN mode and 840 mW in WAN mode. The VSC8486-04 device is available in lead-free (Pb-free) packages, measuring 17 mm × 17 mm with 256 pins and 1 mm pin pitch. 2.1 Features The following list provides the features and benefits of the VSC8486-04 device. 2.1.1 Low Power • 2.1.2 Wide Range of Support • • • • • 2.1.3 Exceptionally low power (750 mW LAN mode or 840 mW WAN mode) allows for higher port densities Fully compatible with IEEE 802.3ae and T11 10 GFC Extended-WIS (E-WIS) provides full Clause 50 support and enables transport over existing SONET networks 10 Gbps serial interface exceeds all SONET and 10 GbE requirements 4 × 3.125 Gbps and 3.182 Gbps XAUI I/O enable interconnection with a wide range of Layer-2 devices Seamless connectivity to XFP and SFP+ modules Tools for Rapid Design • • Multiple loopback modes and built-in self test (BIST) capabilities reduce system development costs, enable manufacturing tests, and improve time to market JTAG access port facilitates boundary scan for in-circuit test to improve board yield VMDS-10298 VSC8486-04 Datasheet Revision 4.4 2 Product Overview • 2.1.4 Single 1.2 voltage for the whole device with optional power supply range (1.2 V, 1.5 V, 1.8 V, or 3.3 V) for the TTL interface Flexibility • • • • • XAUI I/O programmability for lane swap, invert, amplitude, pre-emphasis, and equalization KX4-compatible 3 Gbps I/O for long-reach copper interconnect provides additional margin to traverse connectors and the backplane up to 40 inches Extended-PCS (E-PCS) mode with forward error correction (FEC) auto-negotiation allows extended reach over single-mode and multimode fiber with 10–15 error floor On the 10-gigabit serial link, enhanced de-emphasis and equalization compensates for connector and channel losses and makes the device SFP+ compatible Accessibility of the recovered clock from high speed input and separate clock paths for CMU and CRU enable Layer 1 support for Synchronous Ethernet VMDS-10298 VSC8486-04 Datasheet Revision 4.4 3 Functional Descriptions 3 Functional Descriptions This section presents the functional description for the VSC8486-04 device. The main areas described are: • • • • • 3.1 Data paths Loopback options Implementation of the IEEE MDIO manageable devices (MMDs) Extended functionality for WIS and PCS Low-speed serial interfaces (MDIO, two-wire serial, and JTAG) Operating Modes The following illustration shows the VSC8486-04 operations. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 4 XRX1P VMDS-10298 VSC8486-04 Datasheet Revision 4.4 XAUI XTX3N XTX3P XTX2N XTX2P XTX1N XTX1P XTX0N XTX0P REFCLKN REFCLKP XRX3N XRX3P XRX2N XRX2P XRX1N CMU MUX XAUI PLL DIV ENCODE 8B/10B CRU DEMUX DIV DECODE 10B/8B XGMII RXCLK RXD/C W FIFO R W E-LAN OR DECODE 66B/64B R FIFO E-PCS GEAR BOX E-LAN OR ENCODE 64B/66B GEAR BOX E-WIS EXTRACT E-WIS FRAMER FIFO E-WIS DEMUX CMU MUX CRU PMA RXINN RXINP XFI TXDOUTN TXDOUTP XAUI to XFI Mode TXCLK 3.1.1 XRX0N PHY-XS Functional Block Diagram XRX0P XAUI XGMII Figure 1 • TXD/C Functional Descriptions To put the VSC8486-04 in the XAUI to XFI mode, set the I/O mode select pin high (IOMODESEL = 1). IOMODESEL sets the default value of XGMII_OE (3×8005.6) and PCS_XGMII_SRC (3×8005.8). 5 Functional Descriptions Figure 2 • XAUI XAUI to XFI Mode Functional Diagram PHY-XS E-PCS E-WIS PMA XRX0P XRX0N XRX1P XRX1N XRX2P CRU DEMUX ENCODE 64B/66B DECODE 10B/8B FIFO OR XRX2N E-LAN XRX3P W FIFO GEAR BOX TXDOUTP MUX E-WIS FRAMER TXDOUTN R XRX3N DIV REFCLKP REFCLKN CMU XAUI PLL XFI DIV XTX0P R XTX0N W DECODE 66B/64B XTX1P XTX1N XTX2P XTX2N CMU MUX ENCODE 8B/10B FIFO OR GEAR BOX E-WIS EXTRACT RXINP DEMUX CRU RXINN E-LAN XTX3P XTX3N XAUI 3.1.1.1 Transmit Operation for XAUI to XFI Mode As shown in the preceding illustration, the PHY XS block receives four 8b/10b encoded 3.125 Gbps (3.1875 Gbps in SAN mode) data lanes on pins XRX[3:0]P/N. The clock is recovered and the data is deserialized on each of the four lanes. Synchronization is performed before the data is passed into the 10b/8b decoders. The decoded data and accompanying control bits are then presented to the FIFO. The FIFO deskews the four lanes and presents the aligned data to the PCS. The FIFO within the PCS transfers path timing from the PHY XS recovered clock to the PMA transmit clock by adding or deleting idle characters during inter-packet gaps (IPG) as needed. The eight data octets (8-bit characters) and eight control bits pass through the 64b/66b encoder, which maps XGMII data to a single 66-bit transmission block, as defined in Figure 49-7 of IEEE Standard 802.3ae. In standard PCS mode (EPCS = 0), the first two bits of the 66-bit block contain the sync header, which is used to establish block boundaries for the synchronization process during the receive operation. The remaining 64 bits contain the payload. The payload passes through the scrambler, which implements the polynomial G(x) = 1 + x39 + x58. The sync header bypasses the scrambler, and joins the scrambled payload at the 64:66 gearbox. The gearbox adapts between the 66-bit width of the blocks and the 64-bit width of the PMA or WIS interface. In extended PCS mode (EPCS = 1), the 64 payload bits are mapped such that 24 instances of the 64-bit payloads are placed into a larger 1584-bit frame defined by the Optical Internetworking Forum (OIF) Common Electrical I/O Protocol (CEI-P). Each 64-bit payload is preceded by one transcoding bit, and the remaining 24 bits of the 1584-bit frame are used for synchronization, fire code parity check, supervisory channel, and to indicate the link state. This frame is then scrambled with a free-running linear feedback shift register (LFSR) scrambler with a characteristic polynomial G(x) = x17 + x14 + 1. The scrambled frame then passes through the 64:66 gearbox to the PMA or WIS. In LAN or SAN mode (WAN_STAT = 0), the PCS data is passed directly to the PMA, while in WAN mode (WAN_STAT = 1), the PCS data is passed to the WIS. The WIS inserts the PCS data into SONET STS192c/SDH STM-64 frames, and adds the required overhead. Within the PMA, the data is serialized into the high-speed data stream (10.3125 Gbps in LAN mode, 10.51875 Gbps in SAN mode, and 9.95328 Gbps in WAN mode). The data stream and the divide-by-64 clock (161.13 MHz in LAN mode, 164.35 MHz in SAN mode, and 155.52 MHz in WAN mode) are provided for line transmission on pins TXDOUTP/N and CLK64AP/N, respectively. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 6 Functional Descriptions 3.1.1.2 Receive Operation for XAUI to XFI Mode High-speed, 10 Gbps NRZ serial data is received on pins RXINP/N where it can be equalized for copper trace dispersion and presented to the clock recovery unit (CRU). In LAN and SAN mode (WAN_STAT = 0), the output of the CRU is deserialized and presented to the PCS, while in WAN mode (WAN_STAT = 1), the output of the CRU is deserialized and presented to the WIS. The WIS extracts the data from the SONET STS-192c/SDH STM-64 frames and processes the overhead. The resultant data is then presented to the PCS. In standard PCS mode (EPCS_STAT = 0), the data enters the 66:64 gearbox. The 66-bit block is then aligned using the embedded 2-bit sync header, which generates the 64-bit payload. The payload is descrambled using the polynomial G(x) = 1 + x39 + x58. The descrambled payload and 2-bit sync header pass through the 64b/66b decoder, where the block is mapped to valid XGMII data, eight data octets, and eight control bits. In extended PCS mode (EPCS_STAT = 1), the data enters the PCS and is presented to the 66:64 gearbox. The data is then descrambled, framed, and formatted into 1584-bit frames. The Fire Code parity check code in the received data stream is used to delineate frame boundaries. Because the scrambler bits are XOR’ed with the FEC overhead during transmission, the state of the scrambler can be recovered by subtracting the calculated parity from the received scrambled parity. The block is then mapped to valid XGMII data, eight data octets, and eight control bits. In both standard or extended PCS modes, the eight data octets and eight control bits are passed to the FIFO, where path timing is transferred from the divided (one sixty-forth) recovered clock to the divided (one sixty-sixth) CMU clock. During IPG, idle characters are added or deleted as necessary to adapt between the two clock rates. The eight data octets and eight control bits are then presented to the PHY XS block where it is 8b/10b encoded and serialized. The serialized code words are then transmitted four at a time on the four XAUI outputs: XTX[3:0]P/N. 3.1.2 XGMII to XFI Mode To set the VSC8486-04 into the XGMII to XFI mode, the I/O mode select pin must be set low (IOMODESEL = 0). IOMODESEL sets the default value of XGMII_OE (3×8005.6) and PCS_XGMII_SRC (3×8005.8) appropriately to a value of 0×0140 after a reset is executed. The following illustration shows the data path for this mode. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 7 Functional Descriptions Figure 3 • XGMII to XFI Mode Functional Diagram TXD31 E-PCS TXD24 E-WIS PMA TXC3 TXD23 TXD16 ENCODE 64B/66B TXC2 OR TXD15 FIFO TXD8 FIFO GEAR BOX E-LAN TXDOUTP MUX TXDOUTN E-WIS FRAMER TXC1 TXD7 TXD0 R W TXCLK REFCLKP XGMII RXCLK XFI CMU TXC0 DIV PLL REFCLKN R RXD31 RXD24 W RXC3 RXD23 RXD16 RXC2 FIFO DECODE 66B/64B RXD15 OR RXD8 E-LAN GEAR BOX E-WIS EXTRACT RXINP DEMUX CRU RXINN RXC1 RXD7 RXD0 RXC0 3.1.2.1 Transmit Operation for XGMII to XFI Mode In XGMII to XFI mode, the XGXS (and XAUI input interface) is bypassed and the data is presented directly to the PCS from the XGMII interface. All other transmit functions are the same. 3.1.2.2 Receive Operation for XGMII to XFI Mode In XGMII to XFI mode, the XGXS (and XAUI output interface) is bypassed and the data from the PCS is directly output from the device on the XGMII interface on RXD[31:0] and RXC[3:0]. 3.2 Loopback The VSC8486-04 LAN PHY has three 10-gigabit data ports: XAUI, XFI, and XGMII. There are several options available to the user for routing traffic between the various ports. The purpose of this section is to outline the operation of several modes loosely termed loopbacks. These modes can be extremely useful for both test and debug purposes. In addition to loopbacks, the device contains several pins that configure the device for XGMII or XAUI operation without requiring MDIO access. Loopback paths are shown in the following illustration. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 8 XAUI LPP_10B 4x800E.13 4x800F.0 4x0000.14 4x800E.13 XTX[3] (P) XTX[3] (N) XTX[2] (P) XTX[2] (N) XTX[1] (P) XTX[1] (N) XTX[0] (P) XTX[0] (N) XRX[3] (P) XRX[3] (N) XRX[2] (P) XRX[2] (N) XRX[1] (P) XRX[1] (N) XRX[0] (P) XRX[0] (N) A VMDS-10298 VSC8486-04 Datasheet Revision 4.4 4x8000.2 4x8000.1 4x8000.0 “MIRROR” XFI 0 1 B PHY-XS 4x800F.11 4x800F.2 A 0 1 3x8005.8 LP_XGMII 1 D 1 0 “MIRROR” XFI 3x8005.7 LP_XGMII PATTERN GENERATOR 0 1 C 0 PATTERN CHECKER 4x800F.1 LP_XAUI PHY-XS NETWORK LOOPBACK IEEE 802.3ae Para 48.3.3 1 0 4x 1:10 DMUX 4x 10:1 MUX 4x800E.13 4x0000.14 10B/8B FIFO C XGMII 0 1 HSTL Output Drivers Mux B D 0 1 Mux A HSTL Input Receivers TXD[23:16] TXC[2] B RXCLK “SYSTEM” 8B/10B FIFO TXCLK TXD[7:0] TXC[0] RXD[7:0] RXC[0] “MIRROR” XFI XGMII 0 1 E F F 1 0 E-PCS 64B/66 Encoder & Scrambler H 0 1 G 0 1 1x8000.8 “MIRROR” XFI 3x002A.5 31-1 (PRBS2 ) J K 1 0 PMA CRU CMU RXIN (N) RXIN (P) XFI TXDOUT (N) TXDOUT (P) K “XFI ONLY” “NETWORK” LP_XAUI: B and D LPP_10B : B LP_16B : G LP_XGMII: PHY-XS from XGMII ingress, XGMII outputs enabled SPLITLOOPN: J and K Primary Pin Loopback Control 0 1 FIFO & Framer Insertion E-WIS 2xE600.0 Frame Extraction H 1 0 J “00FF” (repeating) WIS SYSTEM LOOPBACK IEEE 802.3ae Para. 50.3.9 SPLITLOOPN 2x0000.14 1x0000.0 PATT CHECK PATT GEN 3x002A.4 31-1 (PRBS2 ) “MIRROR” XFI 3x0000.14 LP_16B LP_XGMII 3x8005.6 E-LAN Firecode Decoder 64B/66 Decoder & Descrambler E-Lan Firecode Encoder G “00FF” (repeating) PCS SYSTEM LOOPBACK IEEE 802.3ae Para. 49.2.14.4 3x8005.3 3x8005.2 E 66/64 Gearbox TXD[15:8] TXC[1] RXD[15:8] RXC[1] “00FF” (repeating) 66/64 Gearbox “MIRROR” XAUI FIFO RXD[23:16] RXC[2] 1:64 DMUX TXD[31:24] TXC[3] FIFO RXD[31:24] RXC[3] 64:1 MUX Figure 4 • “MIRROR” XAUI Functional Descriptions Loopback Configuration Two split loopback paths (that is, two loopback paths simultaneously switched on) are enabled by the SPLITLOOPN and LP_XAUI pins. Most other data path routing and loopback controls are enabled through the MDIO interface. 9 Functional Descriptions 3.2.1 Input/Output Mode Select and XGMII Mode On power up or reset, the state of the IOMODESEL pin sets the VSC8486-04 data path routing on chip as follows: 1. On reset, if IOMODESEL = 0, then 3×8005.8:6 is set to 101. This setting programs multiplexers a and b for XGMII mode and enables the XGMII output drivers. On reset, if IOMODESEL = 1, 3×8005.8:6 is set to 000. This setting programs multiplexers a and b for XAUI mode and disables the XGMII output. 2. Mux a, mux b, and OE controls can also be configured after a reset, using the MDIO 3×8005.8:6 bits. If LP_XGMII is pulled high, the XGMII output is enabled and the XGXS receives its data from the XGMII input, TXD[31:0], regardless of the settings for IOMODESEL or the 3×8005.8:6 bits. The VSC8486-04 can be programmed to mirror XGMII Tx input data simultaneously to the PCS and the XGXS. Alternatively, the PCS data can be routed simultaneously to the XGMII Rx output and the XGXS. Figure 5 • Data Path XGMII Source XGMII TXD[31:0] 3×8005.8 LP_XGMII 1 Mux a 0 Loopback E XGXS 1 PCS Mux b 1 0 0 3×8005.2 3×8005.7 LP_XGMII 3×8005.6 LP_XGMII OE XGMII RXD[31:0] The following table summarizes the control settings using the IOMODESEL pin. Table 1 • Pin Control for XGMII After Reset IOMODESEL Pin Control XGMII Data Source XGXS 0 1 PCS PCS XGMII Output Driver Enabled? 3×8005 Register Value Set on Reset Bit 8 Bit 7 Bit 6 XGMII TXD[31:0] Yes 1 0 1 XGXS No 0 0 0 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 10 Functional Descriptions The following table summarizes control settings using the MDIO registers, where XGMII output is always from PCS. Table 2 • 3.2.2 MDIO Control for XGMII 3×8005 MDIO Register Settings Data Source Bit 8 Bit 7 Bit 6 PCS XGXS XGMII Output 0 0 0 XGXS PCS Off XGXS data comes from PCS, PCS data comes from XGXS. XGMII output drivers disabled. 0 0 1 XGXS PCS On XGXS data comes from PCS, PCS data comes from XGXS. XGMII RXD comes from PCS. (Mirror PCS data to XGMII.) 0 1 0 XGXS XGMII TXD Off XGXS data comes from XGMII TXD, PCS data comes from XGXS. XGMII output drivers disabled. 0 1 1 XGXS XGMII TXD On XGXS data comes from XGMII TXD, PCS data comes from XGXS. XGMII RXD comes from PCS. 1 0 0 XGMII TXD PCS Off XGXS data comes from PCS, PCS data comes from XGMII TXD. XGMII output drivers disabled. 1 0 1 XGMII TXD PCS On XGXS data comes from PCS, PCS data comes from XGMII TXD. XGMII RXD comes from PCS. (Mirror PCS data to XGMII.) 1 1 0 XGMII TXD XGMII TXD Off XGXS data comes from XGMII TXD, PCS data comes from XGMII TXD. XGMII output drivers disabled. (Mirror XGMII TXD to XGXS.) 1 1 1 XGMII TXD XGMII TXD On XGXS data comes from XGMII TXD, PCS data comes from XGMII TXD. XGMII RXD comes from PCS. (Mirror XGMII TXD to XGXS.) Description Loopback Modes There are three types of loopback modes: system, network, and split loopbacks. In general, system loopbacks affect XAUI traffic, network loopbacks affect XFI traffic, and split loopbacks affect both. The following table provides a summary of the system loopbacks. Table 3 • System Loopback Summary Loopback Name Loopback Enable Retiming B PHY XS shallow system loopback Any of the following: LPP_10B = 1 LP_XAUI = 1 4×800E.13 = 1 4×800F.0 = 0 Phase delay only, XAUI XTX[3:0] signals retimed from XAUI XRX[3:0] recovered clock C PHY XS deep system 4×800F.2 = 1 loopback XAUI XTX[3:0] signals retimed to LAN clock (REFCLKP/N) VMDS-10298 VSC8486-04 Datasheet Revision 4.4 11 Functional Descriptions System Loopback Summary (continued) Table 3 • Loopback Name Loopback Enable Retiming E PCS FIFO system loopback 3×8005.2 = 1 XAUI XTX[3:0] signals retimed to LAN clock (REFCLKP/N) G PCS system loopback LP_16B = 1 or 3×0000.14 = 1 XAUI XTX[3:0] signals retimed to LAN clock (REFCLKP/N) J PMA/WIS system loopback XAUI XTX[3:0] signals retimed to LAN clock (REFCLKP/N) Any of the following: SPLITLOOPN = 0 (active low) 2×0000.14 = 1 1×0000.0 = 1 For system loopbacks, the XAUI data can be mirrored to the XFI Tx port, depending on the register setting of XFI_LPBK_OVR (1×EF10.2). Table 4 • System Loopback and XFI Traffic If XFI_LPBK_OVR Loopback (1×EF10.2) = 01 If XFI_LPBK_OVR (1×EF10.2) = 1 B XFI Tx traffic from WIS/PCS XFI Tx traffic set by 1×EF10.1:0 00: 0×00FF pattern 01: All zeros 10: All ones 11: WIS/PCS C XFI Tx traffic from WIS/PCS XFI Tx traffic set by 1×EF10.1:0 00: 0×00FF pattern 01: All zeros 10: All ones 11: WIS/PCS E, G, or J 0×00FF pattern XFI Tx traffic set by 1×EF10.1:0 00: 0×00FF pattern 01: All zeros 10: All ones 11: WIS/PCS 1. The XFI_LPBK_OVR (1×EF10.2) register defaults to 0. The following table provides a summary of the network loopbacks, which primarily affect XFI traffic. Table 5 • Network Loopbacks Summary Loopback Name Loopback Enable Retiming A PHY XS deep network loopback 4×0000.14 = 1 and 4×800E.13 = 0 See Table 7, page 13 D PHY XS shallow network loopback Any of the following: 4×800E.13 = 0 and 4×0000.14 = 0 4×800F.1 = 1 LP_XAUI = 1 See Table 7, page 13 F PCS gearbox network loopback 3×8005.3 = 1 See Table 7, page 13 H WIS network loopback 2×E600.0 = 1 See Table 7, page 13 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 12 Functional Descriptions Table 5 • Network Loopbacks Summary (continued) Loopback Name Loopback Enable K Any of the following: See Table 7, page 13 SPLITLOOPN = 0 (active low) 1×8000.8 = 0 PMA network loopback Retiming Split loopback affects both XAUI and XFI traffic. Split loopback is enabled using the LP_XAUI and SPLITLOOPN pins, as shown in the following table. Split Loopbacks Summary Table 6 • 3.2.2.1 Loopback Name Loopback Enable Retiming B and D XAUI split loopback LP_XAUI = 1 Internally pulled low See Table 7, page 13 J and K PMA split loopback SPLITLOOPN = 0 Internally pulled high See Table 7, page 13 Retiming Clock Sources for Network and Split Loopbacks For network and split loopbacks, there are various options for controlling the XFI retiming, as shown in the following table. For retiming XAUI traffic (pins XTX[3:0]), REFCLKP/N is used; however, when the split loopback B and D is active, the recovered clock from XRX[3:0] is used. Table 7 • 3.3 Retiming Clock Sources for Network and Split Loopbacks WAN_STAT (1×E606.15) LINETIME_STAT (1×E606.13) XFI Retimed With 0 0 REFCLKP/N 0 1 10G LINE_IN 1 0 WREFCLKP/N 1 1 10G LINE_IN Loopback Paths This section describes each loopback, listed in alphabetical order. 3.3.1 Loopback A Loopback A is located in the XAUI PHY. It reroutes the data from the 10:1 MUX in the XAUI PHY into the 1:10 DEMUX, as shown in the following illustration. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 13 Functional Descriptions Figure 6 • PHY XS Deep Network Loopback XGMII XAUI XRX[0] (N) PHY-XS XRX[0] (P) WIS PMA XTX[2] (N) XTX[2] (P) XTX[3] (N) FIFO F FIFO & Framer Insertion G 1 0 8B/10B FIFO 4X 10:1 MUX XTX[1] (P) Mux B D E-LAN Firecode Encoder 64B/66 Decoder & DeScrambler K Frame Extraction E-LAN Firecode Decoder XTX[3] (P) TXDOUT (N) TXDOUT (P) J H CMU 1:64 DEMUX C B A XTX[0] (P) XTX[1] (N) E 66/64 Gearbox XRX[3] (P) 0 66/64 Gearbox XRX[3] (N) 64B/66 Encoder & Scrambler 1 FIFO XRX[2] (P) 10B/8B FIFO 4X 1:10 DEMUX XRX[2] (N) 64:1 MUX Mux A XRX[1] (P) XTX[0] (N) PCS HSTL Input Receivers XRX[1] (N) XFI RXIN (N) RXIN (P) CRU HSTL Output Drivers XGMII XFI data is retimed with PMA CRU. To enable loopback A, set both of the following: LPBK_A (4×0000.14) set to 1 and LPBK_B (4×800E.13) set to 0. The default value for bit 14 is 0 (loopback disabled). XFI ingress (RXINP/N) data is mirrored to the XAUI egress port (XTX[3:0]P/N) simultaneously without further MDIO instructions. This loopback cannot be used if LP_XAUI is asserted high. Note: For loopback A to function without a XAUI input present, the XS Rx signal detect register 4×E600.1 must be set to 1 in order for the XAUI inputs to sync up. 3.3.2 Loopback B Loopback B routes the incoming XAUI data through the 1:10 DEMUX and then loops back before the 10b/8b decoder into the 10:1 MUX. Data is retimed by the recovered XAUI clock. No 10b/8b decoding or lane synchronization is performed. System XAUI data is also mirrored to the XFI Tx port. To enable loopback B, set the LPBK_B register (4×800E.13) to 1, the LPP_10B pin to high, or the LP_XAUI pin to high. The LP_XAUI pin setting simultaneously enables loopback D. Figure 7 • PHY XS Shallow System Loopback XGMII XAUI XRX[0] (N) PHY-XS XRX[0] (P) XTX[3] (N) F XTX[3] (P) FIFO & Framer Insertion G 66/64 Gearbox FIFO 0 64B/66 Decoder & DeScrambler 64:1 MUX E-LAN Firecode Encoder 1 8B/10B FIFO XTX[2] (P) Mux B D 4X 10:1 MUX XTX[2] (N) 64B/66 Encoder & Scrambler E C B A XTX[0] (P) XTX[1] (P) PMA TXDOUT (N) TXDOUT (P) J K H Frame Extraction E-LAN Firecode Decoder CMU 1:64 DEMUX XRX[3] (P) 0 66/64 Gearbox XRX[3] (N) 1 FIFO XRX[2] (P) 10B/8B FIFO 4X 1:10 DEMUX XRX[2] (N) XTX[1] (N) WIS Mux A XRX[1] (P) XTX[0] (N) PCS HSTL Input Receivers XRX[1] (N) CRU XFI RXIN (N) RXIN (P) HSTL Output Drivers XGMII 3.3.3 Loopback C Loopback C routes the incoming XAUI data after the 10b/8b FIFO back into the 8b/10b FIFO. System XAUI data is also mirrored to the XFI Tx port. To enable loopback C, set LPBK_C (4×800F.2) to 1. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 14 Functional Descriptions Figure 8 • PHY XS Deep System Loopback XGMII XAUI XRX[0] (N) PHY-XS XRX[0] (P) WIS PMA E C B A 64B/66 Encoder & Scrambler Mux B F D XTX[0] (P) E-LAN Firecode Encoder FIFO & Framer Insertion G XTX[2] (P) XTX[3] (N) 64B/66 Decoder & DeScrambler FIFO XTX[2] (N) 8B/10B FIFO 4X 10:1 MUX XTX[1] (P) 0 K Frame Extraction E-LAN Firecode Decoder XTX[3] (P) TXDOUT (N) TXDOUT (P) J H 66/64 Gearbox 1 XTX[1] (N) CMU 1:64 DEMUX XRX[3] (P) 0 66/64 Gearbox XRX[3] (N) 1 FIFO XRX[2] (P) 10B/8B FIFO 4X 1:10 DEMUX XRX[2] (N) 64:1 MUX Mux A XRX[1] (P) XTX[0] (N) PCS HSTL Input Receivers XRX[1] (N) XFI RXIN (N) RXIN (P) CRU HSTL Output Drivers XGMII 3.3.4 Loopback D Loopback D routes the incoming XFI data after the PCS FIFO back into the transmit PCS FIFO. Network XFI Rx data is also mirrored to the XAUI egress port. To enable loopback D, set either the LPBK_D register (4×800F.1) to 1, both the LPBK_B (4×800E.13) and LPBK_A (4×0000.14) registers to 1, or the LP_XAUI pin to high. The LP_XAUI pin setting simultaneously enables loopback B. Figure 9 • PHY XS Shallow Network Loopback XGMII XAUI XRX[0] (N) PHY-XS XRX[0] (P) XTX[3] (N) F XTX[3] (P) FIFO & Framer Insertion G 66/64 Gearbox FIFO 0 64B/66 Decoder & DeScrambler 64:1 MUX E-LAN Firecode Encoder 1 8B/10B FIFO XTX[2] (P) Mux B D 4X 10:1 MUX XTX[2] (N) 64B/66 Encoder & Scrambler E C B A XTX[0] (P) XTX[1] (P) PMA TXDOUT (N) TXDOUT (P) J K H Frame Extraction E-LAN Firecode Decoder CMU 1:64 DEMUX XRX[3] (P) 0 66/64 Gearbox XRX[3] (N) 1 FIFO XRX[2] (P) 10B/8B FIFO 4X 1:10 DEMUX XRX[2] (N) XTX[1] (N) WIS Mux A XRX[1] (P) XTX[0] (N) PCS HSTL Input Receivers XRX[1] (N) CRU XFI RXIN (N) RXIN (P) HSTL Output Drivers XGMII 3.3.5 Loopback E Loopback E routes the incoming XAUI data from the PCS transmit FIFO back into the PCS receive FIFO. The data transmitted to the XFI Tx port is a continuous stream of 0×00FF data words. To enable loopback E, set LPBK_E (3×8005.2) to 1. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 15 Functional Descriptions Figure 10 • PCS FIFO System Loopback XGMII XAUI XRX[0] (N) PHY-XS XRX[0] (P) WIS PMA Mux A XRX[3] (P) E C B A 64B/66 Encoder & Scrambler Mux B F D XTX[0] (P) E-LAN Firecode Encoder FIFO & Framer Insertion G XTX[2] (P) XTX[3] (N) FIFO XTX[2] (N) 0 8B/10B FIFO 4X 10:1 MUX XTX[1] (P) 64B/66 Decoder & DeScrambler K Frame Extraction E-LAN Firecode Decoder XTX[3] (P) TXDOUT (N) TXDOUT (P) J H 66/64 Gearbox 1 XTX[1] (N) “00FF” 64:1 MUX 0 CMU 1:64 DEMUX XRX[3] (N) 1 66/64 Gearbox XRX[2] (P) FIFO XRX[2] (N) 10B/8B FIFO 4X 1:10 DEMUX XRX[1] (P) XTX[0] (N) PCS HSTL Input Receivers XRX[1] (N) XFI RXIN (N) RXIN (P) CRU HSTL Output Drivers XGMII 3.3.6 Loopback F Loopback F routes the incoming XFI data after the receive PCS gearbox back into the transmit PCS gearbox. Network XFI Rx data is also mirrored to the XAUI egress port. To enable loopback F, set LPBK_F (3×8005.3) to 1. Figure 11 • Gearbox Network Loopback XGMII XAUI XRX[0] (N) PHY-XS XRX[0] (P) WIS PMA Mux A XRX[3] (P) E C B A 64B/66 Encoder & Scrambler Mux B F D XTX[0] (P) E-LAN Firecode Encoder FIFO & Framer Insertion G XTX[2] (P) XTX[3] (N) FIFO XTX[2] (N) 8B/10B FIFO 4X 10:1 MUX XTX[1] (P) 0 64B/66 Decoder & DeScrambler 66/64 Gearbox 1 XTX[1] (N) TXDOUT (N) TXDOUT (P) J K H Frame Extraction E-LAN Firecode Decoder XTX[3] (P) “00FF” 64:1 MUX 0 CMU 1:64 DEMUX XRX[3] (N) 1 66/64 Gearbox XRX[2] (P) FIFO XRX[2] (N) 10B/8B FIFO 4X 1:10 DEMUX XRX[1] (P) XTX[0] (N) PCS HSTL Input Receivers XRX[1] (N) XFI RXIN (N) RXIN (P) CRU HSTL Output Drivers XGMII 3.3.7 Loopback G Loopback G routes the incoming XAUI data through the PCS transmit gearbox back into the PCS receive gearbox. The data transmitted to the XFI Tx port is a continuous stream of 0×00FF data words. To enable loopback G, either set LPBK_G (3×0000.14) to 1 or set the LP_16B pin high. Figure 12 • PCS System Loopback G XGMII XAUI XRX[0] (N) PHY-XS XRX[0] (P) XTX[3] (N) XTX[3] (P) PMA 0 64B/66 Decoder & DeScrambler G FIFO “00FF” 64:1 MUX E-LAN Firecode Encoder FIFO & Framer Insertion TXDOUT (N) TXDOUT (P) J K H Frame Extraction E-LAN Firecode Decoder CMU 1:64 DEMUX XTX[2] (P) F 1 8B/10B FIFO XTX[2] (N) Mux B D 4X 10:1 MUX XTX[1] (P) E C B A XTX[0] (P) 64B/66 Encoder & Scrambler 66/64 Gearbox XRX[3] (P) 0 66/64 Gearbox XRX[3] (N) 1 FIFO XRX[2] (P) 10B/8B FIFO 4X 1:10 DEMUX XRX[2] (N) XTX[1] (N) WIS Mux A XRX[1] (P) XTX[0] (N) PCS HSTL Input Receivers XRX[1] (N) CRU XFI RXIN (N) RXIN (P) HSTL Output Drivers XGMII VMDS-10298 VSC8486-04 Datasheet Revision 4.4 16 Functional Descriptions 3.3.8 Loopback H Loopback H routes the incoming XFI data from the PMA or WIS received data back into the PMA or WIS transmit path. Network XFI Rx data is also mirrored to the XAUI egress port. To enable loopback H, set LPBK_H (2×E600.0) to 1. Note: Loopback H is intended for WAN mode only, and is not designed to work in LAN mode. For proper function of Loopback H in path generation/termination, the VSC8486-04 device must not receive frames in which the payload pointer is incremented or decremented. The Tx SONET frame for the VSC8486-04 should always have the payload pointer in a fixed location (522), otherwise the Tx and Rx paths will not be frequency-locked. When the Tx and Rx paths are not frequency-locked, the Rx WIS can receive a different number of bytes than the Tx WIS sends out, resulting in an overflow/underflow condition. Figure 13 • PCS System Loopback H XGMII XAUI XRX[0] (N) PHY-XS XRX[0] (P) WIS PMA E C B 64B/66 Encoder & Scrambler E-LAN Firecode Encoder Mux B A F D XTX[0] (P) FIFO & Framer Insertion XTX[2] (P) XTX[3] (N) K H 66/64 Gearbox FIFO XTX[2] (N) 8B/10B FIFO 4X 10:1 MUX XTX[1] (P) 0 64B/66 Decoder & DeScrambler Frame Extraction E-LAN Firecode Decoder XTX[3] (P) TXDOUT (N) TXDOUT (P) J G 1 XTX[1] (N) CMU 1:64 DEMUX XRX[3] (P) 0 66/64 Gearbox XRX[3] (N) 1 FIFO XRX[2] (P) 10B/8B FIFO 4X 1:10 DEMUX XRX[2] (N) 64:1 MUX Mux A XRX[1] (P) XTX[0] (N) PCS HSTL Input Receivers XRX[1] (N) XFI RXIN (N) RXIN (P) CRU HSTL Output Drivers XGMII 3.3.9 Loopback J Loopback J routes the incoming XAUI data from the PCS (or WIS if enabled) back into the PCS (or WIS if enabled). This loopback is enabled for both PMA and WIS system loopbacks. The data transmitted to the XFI Tx port is a continuous stream of 0×00FF data words. To enable loopback J, set any of the following: LPBK_J_PMA (1×0000.0) set to 1 or LPBK_J_WIS (2×0000.14) set to 1 or the SPLITLOOPN pin set low. Setting the SPLITLOOPN pin low also enables loopback K. Figure 14 • PMA/WIS System Loopback XGMII XAUI XRX[0] (N) PHY-XS XRX[0] (P) XTX[3] (N) F XTX[3] (P) 64B/66 Decoder & DeScrambler FIFO & Framer Insertion G 66/64 Gearbox FIFO 0 “00FF” 64:1 MUX E-LAN Firecode Encoder 1 8B/10B FIFO XTX[2] (P) Mux B D 4X 10:1 MUX XTX[2] (N) 64B/66 Encoder & Scrambler E C B A XTX[0] (P) XTX[1] (P) PMA TXDOUT (N) TXDOUT (P) J K H Frame Extraction E-LAN Firecode Decoder CMU 1:64 DEMUX XRX[3] (P) 0 66/64 Gearbox XRX[3] (N) 1 FIFO XRX[2] (P) 10B/8B FIFO 4X 1:10 DEMUX XRX[2] (N) XTX[1] (N) WIS Mux A XRX[1] (P) XTX[0] (N) PCS HSTL Input Receivers XRX[1] (N) CRU XFI RXIN (N) RXIN (P) HSTL Output Drivers XGMII 3.3.10 Loopback K Loopback K routes the incoming 10-gigabit XFI data back to the 10-gigabit XFI output, as shown in the following illustration. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 17 Functional Descriptions Figure 15 • PMA Network Loopback XGMII XAUI XRX[0] (N) PHY-XS XRX[0] (P) WIS PMA E C B 64B/66 Encoder & Scrambler E-LAN Firecode Encoder Mux B A F D XTX[0] (P) FIFO & Framer Insertion XTX[2] (P) XTX[3] (N) K H 66/64 Gearbox 64B/66 Decoder & DeScrambler FIFO XTX[2] (N) 8B/10B FIFO 4X 10:1 MUX XTX[1] (P) 0 CMU Frame Extraction E-LAN Firecode Decoder XTX[3] (P) TXDOUT (N) TXDOUT (P) J G 1 XTX[1] (N) 1:64 DEMUX XRX[3] (P) 0 66/64 Gearbox XRX[3] (N) 1 FIFO XRX[2] (P) 10B/8B FIFO 4X 1:10 DEMUX XRX[2] (N) 64:1 MUX Mux A XRX[1] (P) XTX[0] (N) PCS HSTL Input Receivers XRX[1] (N) XFI RXIN (N) RXIN (P) CRU HSTL Output Drivers XGMII Loopback K is protocol agnostic. Data is retimed with the 10-gigabit recovered clock. Network XFI Rx data is also mirrored to the XAUI egress port. To enable loopback K, set any of the following: LPBKN_K (1×8000.8) set to 0 (the default is 1, disabled) or set the SPLITLOOPN pin low. Setting the SPLITLOOPN pin low also enables loopback J. 3.3.11 XAUI Split Loopbacks B and D Split loopback paths B and D are simultaneously enabled by setting LP_XAUI high. Loopback D XFI output data is retimed by the local LAN or WAN refclk. If left unconnected, the LP_XAUI input is pulled down on-chip, disabling these loopback paths. Figure 16 • XAUI Split Loopback XGMII XAUI XRX[0] (N) PHY-XS XRX[0] (P) XTX[3] (N) XTX[3] (P) F FIFO & Framer Insertion G 66/64 Gearbox FIFO 0 64B/66 Decoder & DeScrambler “00FF” 64:1 MUX E-LAN Firecode Encoder 1 8B/10B FIFO XTX[2] (P) Mux B D 4X 10:1 MUX XTX[2] (N) 64B/66 Encoder & Scrambler E C B A XTX[0] (P) XTX[1] (P) PMA TXDOUT (N) TXDOUT (P) J K H Frame Extraction E-LAN Firecode Decoder CMU 1:64 DEMUX XRX[3] (P) 0 66/64 Gearbox XRX[3] (N) 1 FIFO XRX[2] (P) 10B/8B FIFO 4X 1:10 DEMUX XRX[2] (N) XTX[1] (N) WIS Mux A XRX[1] (P) XTX[0] (N) PCS HSTL Input Receivers XRX[1] (N) CRU XFI RXIN (N) RXIN (P) HSTL Output Drivers XGMII 3.3.12 PMA Split Loopbacks J and K Split loopback paths J and K are simultaneously enabled by setting SPLITLOOPN low. Loopback J recovers the clock from the XAUI ingress data, passes through a rate compensation FIFO, and is timed out by the LAN REFCK. Loopback K is retimed by the 10-gigabit recovered clock. If left unconnected, the SPLITLOOPN input is pulled up on chip, disabling these loopback paths. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 18 Functional Descriptions Figure 17 • PMA Split Loopback XGMII XAUI XRX[0] (N) PHY-XS XRX[0] (P) XTX[3] (N) F G 66/64 Gearbox FIFO 0 64B/66 Decoder & DeScrambler TXDOUT (N) TXDOUT (P) J K H Frame Extraction E-LAN Firecode Decoder XTX[3] (P) “00FF” 64:1 MUX E-LAN Firecode Encoder FIFO & Framer Insertion 1 8B/10B FIFO XTX[2] (P) Mux B D 4X 10:1 MUX XTX[2] (N) 64B/66 Encoder & Scrambler E C B A XTX[0] (P) XTX[1] (P) PMA CMU 1:64 DEMUX XRX[3] (P) 0 66/64 Gearbox XRX[3] (N) 1 FIFO XRX[2] (P) 10B/8B FIFO 4X 1:10 DEMUX XRX[2] (N) XTX[1] (N) WIS Mux A XRX[1] (P) XTX[0] (N) PCS HSTL Input Receivers XRX[1] (N) CRU XFI RXIN (N) RXIN (P) HSTL Output Drivers XGMII 3.4 Physical Media Attachment The following block diagram shows the physical media attachment (PMA). Figure 18 • PMA Block Diagram MUX 64:1 WREFCKP TXDOUTP WREFCKN TXDOUTN VREFCKP MUX VREFCKN FF 10G CMU EXVCOUPP EXVCOUPN EXVCODNP CLK64AP PFD CLK64AN CLK64BP EXVCODNN CLK64BN CRU_DIV_16 CRU_DIV_64 10G CRU MUX REFCKP RXINP RXINN REFCKN DMX 64:1 3.4.1 Multiplexer Operation The PMA transmitter includes a CMU and a 64-bit multiplexer that receives 64-bit data from the PCS (or WIS) block, which generates the high-speed serial output on pins TXDOUTP/N. The output speeds are 10.3125 Gbps in LAN mode, 10.51875 Gbps in SAN mode, or 9.95328 Gbps in WAN mode. The CMU provides a divide-by-64 clock output on pins CLK64AP/N or CLK64BP/N for optional use as a reference clock to an XFP module or external phase lock loop circuit. The clock output speeds are 161.133 MHz in LAN mode, 164.355 MHz in SAN mode, or 155.52 MHz in WAN mode. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 19 Functional Descriptions By default, TX_MSBSEL (1×8000.6) is set to 1, resulting in the PMA transmitting the least significant bit (LSB) first. Using MDIO, the most significant bit (MSB) can be selected as the first bit transmitted. The high-speed output data (TXDOUTP/N) can be muted (that is, set to continuous zeros) by setting the TXONOFFI pin low. If left unconnected, the default for TXONOFFI is 1, which is set by an on-chip pull-up. 3.4.2 Timing Operation The VSC8486-04 supports two types of timing operation, normal and linetime. During normal timing, with LINETIME_STAT (1×E606.13) = 0, the device transmits data synchronous to the REFCLKP/N or WREFCLKP/N input if in WAN mode (1×E606.14). In Linetime mode (LINETIME_STAT = 1), the device transmits data synchronous to the receiver’s recovered clock. The VSC8486-04 provides the necessary divided-down clock outputs and internal phase detector to enable users to synthesize an external phase lock loop jitter attenuation circuit. A voltage controlled SAW oscillator (VCSO) is recommended for optimum phase noise and jitter performance. The VCSO frequency must be 622.08 MHz and connected to the VREFCLKP/N pins. The default state for the LINETIME_FRC bit (1×E605.4) is 0 (linetime disabled). To enable linetiming, set this bit to 1. The linetime status bit (1×E606.13) shows the linetime status. 3.4.3 Reference Clock Rate Selection The VSC8486-04 supports two WAN mode reference clock rate options. By default, REFSEL0 controls the REFSEL0_STAT state. The pin control has various overrides, as listed in the following table (X indicates “doesn’t matter”). Table 8 • REFSEL0_STATUS Logic Inputs 3.4.4 Result REFSEL0_OVR REFSEL0_FORCE WREFCLK REFSEL0 (1×E605.7) (1×E605.6) Frequency REFSEL0_PIN_STATUS (1×E606.12) Low (default) 0 (default) X 622.08 MHz 0 High 0 X 155.52 MHz 1 X 1 0 622.08 MHz X X 1 1 155.52 MHz X WAN Mode By default, the WAN_MODE controls the WAN_STAT state. The pin control has various overrides, as listed in the following table (where X indicates “doesn’t matter”). Note: When written, registers 2×0007 and 3×0007 provide a microcontroller interrupt. Table 9 • WAN Mode Control Logic Inputs Result WAN_MODE PCS Type Selection (2×0007.0) PCS Mode (3×0007.1:0) WAN_OVR (1×E605.3) WAN_FORCE (1×E605.2) WAN_STAT (1×E606.15) WAN_MODE_ PSTAT (1×E606.14) Low 0 00 0 X 0 0 High X X 0 X 1 1 X X X 1 0 0 X X X X 1 1 1 X X 1 X 0 X 1 X X X 10 0 X 1 X VMDS-10298 VSC8486-04 Datasheet Revision 4.4 20 Functional Descriptions 3.4.5 Clock Multiplier Unit Reference Clocking For LAN and SAN applications (WAN_STAT = 0), an on-chip PLL generates the high-speed transmit clock from the externally provided REFCLKP/N input during normal timing operation or from the recovered high-speed receive clock during linetiming operation. The REFCLKP/N input must be one sixty-sixth of the serial data rate (156.25 MHz for LAN mode or 159.375 MHz for SAN mode). The XAUI transmitter and receiver also use the REFCLKP/N input. For WAN applications (WAN_STAT = 1), an additional reference clock is required for the high-speed data (9.95328 Gbps). The on-chip PLL generates the high-speed transmit clock from one of three sources: the externally provided WREFCLKP/N input, the recovered high speed receive clock, or from an external VCSO as part of a jitter attenuation PLL circuit that enters the device at VREFCLKP/N. In both normal timing operation and in linetiming operation, the WREFCLKP/N reference clock must be present and can be either 155.52 MHz (REFSEL0 = 1) or 622.08 MHz (REFSEL0 = 0, which is the default). In linetiming operation (LINETIME_STAT = 1), the transmit clock is generated from the 10-gigabit CRU. As with LAN and SAN modes, the XAUI clock is generated from the REFCLKP/N input. The on-chip PLL uses a low phase noise reactance-based VCO. The reference clock should be of high quality because noise on the reference clock below the PLL loop bandwidth passes through the PLL and appears as jitter on the outputs (TXDOUTP/N and CLK64AP/N). During such conditions, the VSC8486-04 transfers reference clock noise in addition to its own intrinsic jitter. Preconditioning the reference clock signal might be necessary to avoid passing reference clock noise. The following table summarizes these reference clock controls and the associated frequencies. The transmit and receive references are also provided. Table 10 • CMU and CRU Reference Clock Control and Frequency Summary LINE REFCLKP, WREFCLKP, Transmit TIME_S WAN_S REFSEL0 REFCLKN, WREFCLKN Reference TAT TAT _STATUS (MHz) (MHz) (10G CMU) Receive Reference (10G CRU) 1: LAN/SAN mode, normal timing 0 0 X 156.25 or 159.375 NC REFCLKP, REFCLKN REFCLKP, REFCLKN 2: WAN mode, normal timing 0 1 0 156.25 622.08 WREFCLKP, WREFCLKN WREFCLKP, WREFCLKN divided by 4 3: WAN mode, 155.52 MHz reference clock normal timing 0 1 1 156.25 155.52 WREFCLKP, WREFCLKN WREFCLKP, WREFCLKN 4: LAN/SAN mode, linetiming 1 0 0 156.25 or 159.375 NC CRU recovered clock divided by 64 REFCLKP, REFCLKN 5: LAN/SAN mode, linetiming 1 0 1 156.25 or 159.375 NC CRU recovered clock divided by 16 REFCLKP, REFCLKN 6: WAN mode, linetiming with external jitter attenuation circuit 1 1 0 156.25 622.08 VREFCLKP, VREFCLKN (only at 622.08 MHz) WREFCLKP, WREFCLKN divided by 4 7: WAN mode, linetiming with 155.52 reference clock 1 1 1 156.25 155.52 CRU recovered clock divided by 16 WREFCLKP, WREFCLKN Mode Description VMDS-10298 VSC8486-04 Datasheet Revision 4.4 21 Functional Descriptions 3.4.6 Reference Clock Inputs The VSC8486-04 determines the PMA timing mode by decoding the inputs for LINETIME_STAT, WAN_STAT, and REFSEL0_STATUS. The following tables define the logic for these three inputs and the available modes. VSC8486-04 always requires a 156.25 MHz (159.375 MHz) reference clock applied to REFCLKP/N for all operating modes. 3.4.6.1 LAN/SAN Only For applications supporting LAN/SAN only, we recommend the configuration depicted in the following table. WAN mode is not supported by this configuration. The input signals for this configuration are: • • • REFCLKP/N = 156.25 MHz or 159.375 MHz WREFCLKP/N = none VREFCLKP/N = none In the following tables, X indicates “doesn’t matter.” Table 11 • 3.4.6.2 LAN/SAN Configuration LINETIME_ WAN_S STAT TAT Transmit REFSEL0_ Reference (10G CMU) STATUS Receive Reference (10G CRU) 0 0 X REFCLKP/N REFCLKP/N Normal timing, LAN/SAN mode 1 0 0 CRU divided by 64 REFCLKP/N Linetime, LAN, or SAN mode 1 0 1 CRU divided by 16 REFCLKP/N Linetime, LAN, or SAN mode Mode Description LAN/SAN/WAN With SONET/SDH Jitter Generation Compliance For applications that require SONET/SDH jitter performance but do not require clock cleanup, we recommend the configuration depicted in the following table. In this configuration, the 622.08 MHz clock provides the best jitter generation performance. This configuration does not support clock cleanup in linetime mode. The input signals for this configuration are: • • • REFCLKP/N = 156.25 MHz or 159.375 MHz WREFCLKP/N = 622.08 MHz VREFCLKP/N = none Table 12 • 3.4.6.3 SONET/SDH Jitter Generation-Compliant Configuration Transmit LINETIME_ WAN_S REFSEL0 Reference (10G STAT TAT _STATUS CMU) Receive Reference (10G CRU) 0 0 X REFCLKP/N REFCLKP/N 0 1 0 WREFCLKP/N WREFCLKP/N Normal timing, WAN mode 1 0 0 CRU divided by 64 REFCLKP/N Line timing, LAN/SAN mode 1 0 1 CRU divided by 16 REFCLKP/N Line timing, LAN/SAN mode Mode Description Normal timing, LAN/SAN mode LAN/SAN/WAN Without SONET/SDH Jitter Generation Compliance For applications that do not need to meet SONET/SDH jitter requirements and do not need to use the recovered clock, we recommend the configuration depicted in the following table. In this configuration, VMDS-10298 VSC8486-04 Datasheet Revision 4.4 22 Functional Descriptions the 155.52 MHz clock does not provide the best jitter generation performance. This configuration does not support clock cleanup in linetime mode. The input signals for this configuration are: • • • REFCLKP/N = 156.25 MHz or 159.375 MHz WREFCLKP/N = 155.52 MHz VREFCLKP/N = none In the following table, X indicates “doesn’t matter.” Table 13 • 3.4.6.4 Non-SONET/SDH Jitter Generation-Compliant Configuration Transmit LINETIME_ WAN_S REFSEL0 Reference (10G STAT TAT _STATUS CMU) Receive Reference (10G CRU) 0 0 X REFCLKP/N REFCLKP/N 0 1 1 WREFCLKP/N WREFCLKP/N Normal timing, WAN mode 1 0 0 CRU divided by 64 REFCLKP/N Line timing, LAN/SAN mode 1 0 1 CRU divided by 16 REFCLKP/N Line timing, LAN/SAN mode 1 1 1 CRU divided by 16 WREFCLKP/N Line timing, WAN mode Mode Description Normal timing, LAN/SAN mode LAN/SAN/WAN With Full SONET/SDH Jitter Compliance For applications that require full SONET/SDH quality jitter in normal and linetime modes, we recommend the configuration depicted in the following table. The input signals for this configuration are: • • • REFCLKP/N = 156.25 MHz or 159.375 MHz WREFCLKP/N = 622.08 MHz VREFCLKP/N = 622.08 MHz Table 14 • SONET/SDH Jitter-Compliant Configuration Transmit LINETIME_ WAN_S REFSEL0_ Reference STAT TAT STATUS (10G CMU) Receive Reference (10G CRU) 0 0 X REFCLKP/N REFCLKP/N 0 1 0 WREFCLKP/N WREFCLKP/N Normal timing, WAN mode 1 0 0 CRU/64 REFCLKP/N Normal timing, LAN mode 1 0 1 CRU/16 REFCLKP/N Normal timing, LAN mode 1 1 0 VREFCLKP/N WREFCLKP/N Line timing WAN mode Mode Description Normal timing, LAN mode The incoming low-speed reference clock (REFCLKP/N) is received by a differential LVPECL buffer as shown in Figure 19, page 24. The on-chip termination is 100 Ω equivalent between true and complement. An internal bias generator, nominally set at 0.67 × VDD12TX, is provided for AC-coupling. An internal termination tap, REFTERM, is provided to allow adjustment of the input common-mode voltage. It is recommended to add an external capacitor between REFTERM, and VDD or ground. Single-ended reference clock operation is possible, VMDS-10298 VSC8486-04 Datasheet Revision 4.4 23 Functional Descriptions and when implemented, both inputs must have equivalent termination. However, the best jitter performance is obtained using a low phase noise, differential reference clock. When interfacing with 3.3 V LVPECL clock sources, always use AC coupling capacitors in series with true and complement reference clock inputs on the VSC8486-04. The recommended ceramic capacitor value is 0.1 µF, size 0402. Figure 19 • Reference Clock Input Receiver VSC8486 REFCKP VDD12TX 50 Ω 12 kΩ 0.1 µF (optional) 0.67 × VDD12TX REFTERM 24 kΩ 50 Ω REFCKN 3.4.7 External Capacitors For loop filter control and for minimizing the impact of power supply noise and other common-mode noise, the on-chip PLLs require 1.0 µF external capacitors. The external capacitors must be connected between pins CMUFILT and ground for the CMU, and between CRUFILT and ground for the CRU. These capacitors should be a multilayer ceramic dielectric with at least a 5 V working voltage rating. X7R dielectric capacitors provide better temperature stability and are recommended for this application. 3.4.8 XFI Transmit Data CML Output The CML high-speed data output driver consists of a differential pair designed to drive a 50 Ω transmission line. As shown in the following illustration, the output driver uses an on-chip source termination of 50 Ω to VDD12TX, which minimizes any reflections. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 24 Functional Descriptions Figure 20 • CML XFI Output Driver VDD12TX 50 Ω 50 Ω TXDOUTP TXDOUTN VSC8486 For single-ended operation at the transmitter, the unused TXDOUTP or TXDOUTN signal must be terminated either to VDD in DC couple mode or with a resistor to ground in AC couple mode. The resistor to ground must have a value equal to the characteristic impedance of the copper transmission channel. The TXDOUTP/N outputs can be forced to a static level by asserting TXONOFFI input low. 3.4.9 XFI Transmitter Pre-emphasis and Slew Rate The XFI output stage includes programmable pre-emphasis, which affects the peaking and decay time (slew rate) of the transmitted bit. The following illustration shows the de-emphasized waveform. The illustration is for reference only and is not intended to represent an actual waveform. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 25 Functional Descriptions Figure 21 • XFI Data Transmitter Differential Voltage with Pre-emphasis Pre-emphasis level = 20 × Log10(Vdiffnom/Vdiffde-emp) dB Decay Time TXDOUTP Vdiffnom Vdiffde-emp TXDOUTN 1 UI When used, transmit pre-emphasis shapes the XFI transmitter signal to mitigate dielectric and skin-effect distortion and loss. When signal pre-emphasis is employed, the effects of peaking pre-distortion offsets dielectric and skin-effect distortion, and a higher quality waveform results at the receiving device. XFI transmitter pre-emphasis settings are programmed by writing to eight bits in register 1×E601[7:0]. The four least significant bits select the inductive peaking level and the four most significant bits adjust the pre-emphasis ratio. Recommended pre-emphasis settings are shown in the following table, along with approximate ratios. Table 15 • XFI Transmitter Pre-emphasis Ratio Setting for Preemphasis Ratio Bits 1×E601.7:4 Setting for Inductor Bits (Slew Rate) 1×E601.3:0 Approximate Ratios 0000 (default) 0000 1.8 dB 0100 0000 2.7 dB 1000 0000 3.3 dB 1111 0000 3.9 dB 0000 (default) 1111 3.8 dB 0100 1111 4.8 dB VMDS-10298 VSC8486-04 Datasheet Revision 4.4 26 Functional Descriptions Table 15 • XFI Transmitter Pre-emphasis Ratio (continued) Setting for Preemphasis Ratio Bits 1×E601.7:4 Setting for Inductor Bits (Slew Rate) 1×E601.3:0 Approximate Ratios 1000 1111 6.2 dB 1111 1111 6.4 dB As a guideline, the default setting is normally sufficient to drive 1 to 2 inches of strip-line or micro-strip transmission line in FR-4. XFI channels with transmission lines that exceed about 2 inches can benefit from increased pre-emphasis adjustment. 3.4.10 Line Rate Divided Clock Outputs Several divided-down clocks can be selected to exit the VSC8486-04 at each of two CML clock outputs called CLK64AP/N and CLK64BP/N. Both clock outputs can be disabled using MDIO. CLK64AP/N also has a pin disable: CLK64A_EN. CLK64AP/N, which is normally used to provide an XFP reference clock, defaults to enabled and routes one sixty-forth of the CMU clock rate. Each clock output driver consists of a differential pair designed to drive a 50 Ω transmission line. Like the high-speed clock output, the output drivers are source-terminated on chip (50 Ω to VDD12TX) to absorb any reflections. For single-ended operation at the transmitter, the unused output signal must be terminated as close as possible to the characteristic impedance of the transmission line used, which is normally 50 Ω. The CLK64AP/N and CLK64BP/N outputs provide a similar set of clock signals. CLK64AP/N outputs are normally used for the XFP reference clock. The following table shows the enable and select control logic and available clock outputs for CLK64AP/N. Table 16 • CLK64AP/N Clock Output TCLKA_EN_ SRC (1×E602.6) TCLKA_EN_ REG CLK64A_EN (1×E602.9) Pin TCLKA_SEL (1×E602.8:7) CLK64AP/N Output 0 X 0 xx Disabled 0 (default) X 1 (default) 00 (default) CMU clock divided by 64 0 X 1 01 CMU clock divided by 66 0 X 1 10 CRU clock divided by 64 0 X 1 11 REFCK reference clock 1 0 (default) X xx Disabled 1 1 X 00 CMU clock divided by 64 1 1 X 01 CMU clock divided by 66 1 1 X 10 CMU clock divided by 64 1 1 X 11 REFCK reference clock The following table provides the enable and select control logic and available clock outputs for CLK64BP/N. Table 17 • CLK64BP/N Clock Output TCLKB_EN (1×E602.5) TCLKB_SEL (1×E602.4:3) CLK64BP/N Output 0 (default) xx Disabled VMDS-10298 VSC8486-04 Datasheet Revision 4.4 27 Functional Descriptions Table 17 • 3.4.11 CLK64BP/N Clock Output (continued) TCLKB_EN (1×E602.5) TCLKB_SEL (1×E602.4:3) CLK64BP/N Output 1 00 (default) CRU clock divided by 64 1 01 CMU clock divided by 66 1 10 CMU clock divided by 64 1 11 Test_Clock (factory use only) External Phase Lock Loop An external phase lock loop (PLL) circuit and low phase noise oscillator can be used to transform the VSC8486-04 IEEE 802.3ae compliant PMA block into a fully GR-253 jitter compliant PMA block in WAN operating mode. The following block diagram shows the required elements. Figure 22 • SONET Jitter-Compliant Reference Clock Configuration MUX 64:1 WREFCKP 622.08 MHz OSC WREFCKN 622.08 MHz VCSO VREFCKN TXDOUTP TXDOUTN VREFCKP FF 10G CMU MUX EXVCOUPP EXVCOUPN LOOP FILTER EXVCODNP CLK64AP PFD CLK64AN EXVCODNN CLK64BP CLK64BN CRU_DIV_16 CRU_DIV_64 156.25 MHz OSC REFCKP 10G CRU MUX RXINP RXINN REFCKN DMX 64:1 The preceding illustration shows the required elements to achieve SONET Terminal Equipment jitter compliance. Reference clocks must operate at the frequencies shown and each of the 622.08 MHz elements must have SONET quality performance specifications, which is normally based on surface acoustic wave (SAW). The following illustration shows a simple schematic diagram showing the significant elements of a conventional second-order loop filter PLL topology. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 28 Functional Descriptions Figure 23 • Example External PLL Schematic Diagram VREFCLKP .01 µF CLKOUTP Vc .01 µF CLKOUTN VREFCLKN 168 Ω VSC8486 VCSO 622.08 MHz 168 Ω 1.2 V C2 R2 50 Ω 50 Ω C1 R1a R1b _ EXVCODNP R3 + EXVCOUPP R1a C1 EXVCODNN OP-AMP R1b EXVCOUPN C3 R2 C2 50 Ω 50 Ω 1.2 V Approximate Filter Values for 100 kHz Loop Bandwidth R1 = R1a + R1b (kΩ) 9.4 C1 (pF) 22 R2 (kΩ) 174 C2 (uF) .001 R3 (kΩ) 1.0 C3 (pF) 100 The preceding illustration suggests component values to set the loop bandwidth to approximately 100 kHz since the SONET Jitter Transfer 3 dB point is 120 kHz. These values are intended to provide a point of departure for designers and do not guarantee optimal PLL bandwidth or performance. There are other parameters of the PLL design including, but not limited to, peaking, stability, phase noise and damping ratio, which must be considered and are beyond the scope of this document. 3.4.12 High-Speed Serial Data Inputs The incoming 10.3125 Gbps (LAN) or 10.51875 Gbps (SAN) or 9.953 Gbps (WAN) data is received by high-speed inputs (RXINP/N). The inputs are terminated internally with 50 Ω to RXINCM, as shown in the following illustration. This configuration also forms an impedance equivalent to 100 Ω across the differential pair to terminate the differential mode signal and a center-tapped virtual ground brought out as the RXINCM pin to absorb common-mode noise. The receiver’s input common-mode voltage level is programmable by writing to VCM_ADJ (1×E701.11:6). The inputs should be AC-coupled to allow for appropriate common-mode voltage adjustments. The device can optionally be DC-coupled, which requires proper common mode. The VSC8486-04 is designed to operate with XFI signaling based on nominal 100 Ω differential impedance and AC coupling. The AC coupling capacitors on the high-speed serial data inputs (RXINP/N) VMDS-10298 VSC8486-04 Datasheet Revision 4.4 29 Functional Descriptions are expected to be in the XFP module. The RXINCM pin should be AC-coupled to ground through a 0.1 µF capacitor to provide a low impedance AC return path for the 50 Ω termination. The VSC8486-04 can also operate in a single-ended mode. The RXINCM pin should be AC-coupled to ground through a 0.1 µF capacitor. The unused input should also be tied to a clean AC ground to prevent the RXINP signal from internally coupling through to RXINN and degrading input sensitivity. The total current through the 50 Ω resistor is limited to 25 mA; therefore, there should never be more than a 1 V difference between RXINP and RXINCM, or between RXINN and RXINCM. Figure 24 • CML XFI Data Receiver 1×E701[11:8] VDD12RX VCM_Adjust DAC 0.1 µF RXINP VDD12RX 50 Ω 0.1 µF RXINCM 0.68 × VDD12RX (nominal) 50 Ω 0.1 µF 3.4.13 RXINN XFI Data Input Receiver Equalization Incoming data on the RXINP/N inputs might contain a substantial amount of inter-symbol interference (ISI) or deterministic jitter that reduces the ability of the receiver to recover data without errors. A programmable equalizer is provided in the input buffer to compensate for this deterministic jitter. This circuit is designed to effectively reduce the ISI commonly found in the copper PCB traces of an XFIcompliant channel, which can be as long as 12 inches. Typically for FR-4 materials, low frequencies are attenuated less than high frequencies as a result of the skin effect and dielectric losses. See the channel loss model as defined in the XFP multisource agreement. The RXIP/N input equalizer includes a 2-bit control for peaking and decay to mitigate the effects of FR-4 losses. Overall receiver equalization response is adjusted by setting the four internal register bits, as shown in the following table. Typical XFP host applications using less than 2 inches of FR-4 do not require modification of the default settings because the VSC8486-04 default setting includes some intrinsic peaking. For higher loss VMDS-10298 VSC8486-04 Datasheet Revision 4.4 30 Functional Descriptions tangent material and/or XFI channel physical trace lengths exceeding about 2 inches, changing the equalization settings to match those shown in the following table can offer the best performance. Table 18 • Register 1×8002.14:11 RXINP/N Equalization Control Peaking 3.4.14 Decay Bit 14 Bit 13 Bit 12 Bit 11 Comment 1 1 1 1 Default (less than 2 inches of FR-4). 1 1 0 0 Recommended for applications greater than 2 inches of FR-4. Recommendations are based on characterization data. Some applications can have optimal settings that diverge from the recommendations. Loss of Signal The Loss of Signal (LOS) circuitry utilizes peak-to-peak differential signal detection and selectable independent assert and deassert thresholds to produce an output LOS monitor proportional to the minimum useable signal present at the RXINP/N inputs. The following illustration shows the PMA LOS block diagram. The LOS peak-to-peak voltage swing detection is determined by directly sensing the input signal at the input pins. The nominal LOS assert voltage is 50 mV. Calibration and adjustment of the LOS assert and deassert levels should be expected, because RXINP/N signals vary by application. Figure 25 • PMA LOS Functional Block Diagram RXINP + RXINN _ Data Out Peak to Peak Detector LOS Status + 1xE701[5:0] LOS De-assert DAC 1xE702.0 _ Assert Compare LOS Logic + 1xE702.2 De-assert Compare 1xE702.1 1xE700[5:0] LOS Assert DAC _ LOS Report Time Window 1xE701[14:12] VMDS-10298 VSC8486-04 Datasheet Revision 4.4 31 Functional Descriptions The following table summarizes register access for the VSC8486-04 PMA LOS functions. Table 19 • PMA LOS Register Status and Control Summary Register Name Function 1×E702.0 LOS_STAT If RXINP/N peak-to-peak signal falls below assert threshold, bit 0 = 1. 1×E700.5:0 LOS_ASSERT_ DAC (VA_OUT) LOS assert threshold value. Default is minimum (000000). 1×E701.5:0 LOS_DEASSERT_DA LOS deassert threshold value. Set the LOS deassert voltage threshold. C Default is minimum (000000). 001100: Less than 75 mV. (VDA_OUT) 010010: Greater than 110 mV. All else: Reserved. 1×E701.14:12 LOS_WIN LOS reported or cleared when signal falls below assert threshold or remains above the deassert threshold within these approximate time interval limits. LOS report range is 50 µs to 100 µs. LOS clear range is 125 µs to 250 µs. The same 3 bits simultaneously change LOS report and clear times from minimum (000) to maximum (111). 1×E702.1 LOS_DEASSERT_ST AT Bit 1 indicates deassert threshold crossed. In normal operation, the deassert threshold is crossed when the peak-to-peak signal is increased following an LOS report. 1×E702.2 LOS_ASSERT_STAT Bit 2 indicates assert threshold In normal operation, the assert threshold is crossed. crossed when the peak-to-peak signal falls below a useable range. This range might require adjustment. 1×E701.15 LOS_PWR_DWN Bit 15 set to 1 disables PMA LOS. 3.4.15 Remarks Set the LOS assert voltage threshold. 001100: Less than 75 mV. 010010: Greater than 110 mV. All else: Reserved. Default is LOS enabled, bit 15 = 0. Loss of Optical Carrier LOPC is an input pin for the VSC8486-04 that is normally connected to the XFP LOS output. Any change in level on the LOPC input asserts LOPC_PEND (2×EF04.11) until read. The current status of the LOPC input pin can be read using LOPC_STAT (2×EF03.11). The LOPC input can be active high or active low by setting the LOPC_POL_SEL (2×EC30.9) bit appropriately. The LOPCS_PEND bit can propagate an interrupt to either WIS_INTA or WIS_INTB based upon mask-enabled bits LOPC_MASKA (2×EF05.11) and LOPC_MASKB (2×EF06.11). For WIS applications, the LOPC input can be configured to initiate a line remote defect indication (RDI-L). 3.5 WAN Interface Sublayer The WAN interface sublayer (WIS) is defined in IEEE Standard 802.3ae Clause 50. The VSC8486-04 WIS block is fully compliant with this specification. The VSC8486-04 offers additional controls, ports, and registers to allow integration into a wider array of SONET/SDH equipment. Clocking requirements are a critical component for SONET/SDH equipment as discussed in earlier sections. In addition to the SONET/SDH features addressed by WIS as defined by IEEE, most SONET/SDH framers/mappers contain additional circuitry for implementing Operation, Administration, Maintenance and Provisioning (OAM&P). These framers/mappers also support special features to enable compatibility with legacy SONET/SDH solutions. Because the VSC8486-04 WIS leverages Microsemi’s industryleading framer/mapper technology it contains suitable features for standard SONET/SDH equipment. This includes the Transmit/Receive Overhead Serial Interfaces (TOSI/ROSI) commonly used for network customization and OAM&P, support for SONET/SDH errors not contained in the WIS standard, support for common legacy SONET/SDH implementations, and SONET/SDH jitter and timing quality. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 32 Functional Descriptions 3.5.1 Operation The transmit portion of the WIS maps data from the PCS through the WIS service interface and to the SONET/SDH synchronous payload envelope (SPE). It then generates path, line, and section overhead octets, scrambles the frame, and transmits the frame to the PMA Service Interface. The receive portion of the WIS does the following: receives data from the PMA service interface; delineates octet and frame boundaries; descrambles the frame; processes section, line, and path overhead information that contain alarms and parity errors; interprets the pointer field; and extracts the payload for transmittal to the PCS through the WIS service interface. The WIS block diagram is shown in the following illustration. Figure 26 • WIS Transmit and Receive Functions The WIS frame structure is shown in the following illustration. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 33 Functional Descriptions Figure 27 • WIS Frame Structure The positions of the section and line overhead octets within the WIS Frame are shown in the following illustration. Figure 28 • STS-192c/STM-64 Section and Line Overhead Structure Z2 M0 Z2 The path overhead octet positions are depicted in the following illustration. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 34 Functional Descriptions Figure 29 • Path Overhead Octets J1 B3 C2 G1 Nine Octets F2 H4 Z3/F3 Z4/K3 N1 3.5.2 Section Overhead The section overhead portion of the SONET/SDH frame supports frame synchronization, a tandem connection monitor (TCM) known as the Section trace, a high-level parity check, and some OAM&P octets. The following table lists each of the octets including their function, specification, and related information. The VSC8486-04 provides a mechanism to transmit a static value as programmed by the MDIO interface. However, by definition, MDIO is not fast enough to alter the octet on a frame-by-frame basis. Table 20 • Section Overhead Overhead Octet Function IEEE 802.3ae WIS Usage Recommended Value WIS Extension A1 Frame alignment Supported 0×F6 Register (2×E611) TOSI and ROSI access. A2 Frame alignment Supported 0×28 Register (2×E611) TOSI and ROSI access. J0 Section trace Specified value See the discussion of J0 (Section Trace) A 1-byte, 16-byte, or 64-byte trace message can be sent using registers 2×0040 to 2×0047, 2×E700, or 2×E800 to 2×E817 and received using registers 2×0048 to 2×004F, 2×EC20, and 2×E900 to 2×E917. TOSI and ROSI access. Z0 Reserved for section growth Unsupported 0×CC Register 2×E612 TOSI and ROSI access. B1 Section error monitoring (Section BIP-8) Supported Bit interleaved parity - 8 bits, as specified in T1.416 Using the TOSI, the B1 byte can be masked for test purposes. For each B1 mask bit that is cleared to 0 on the TOSI interface, the transmitted bit is left unchanged. For each B1 mask bit that is set to 1 on the TOSI interface, the transmitted bit is inverted. Using the ROSI, the B1 error locations can be extracted. Periodically latched counter (2×ECB0-2×ECB1) is available. E1 Orderwire Unsupported 0×00 Register 2×E612 TOSI and ROSI access. F1 Section user channel Unsupported 0×00 Register 2×E613 TOSI and ROSI access. D1-D3 Section data communications channel (DCC) Unsupported 0×00 Register 2×E613 to 2×E614 TOSI and ROSI access. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 35 Functional Descriptions 3.5.2.1 A1, A2 (Frame Alignment) The SONET/SDH protocol is based upon a frame structure which is delineated by the framing octets, A1 and A2. The framing octets are defined to be 0×F6 and 0×28 respectively. In the transmit direction all 192 A1 octets are sourced from the TX_A1 (2×E611.15:8) register while the A2 octets are sourced from the TX_A2 (2×E611.7:0) register. In the receive direction, the frame aligner monitors the input bus from the PMA and performs word alignment. The frame alignment architecture is composed of a primary and secondary state machine. The primary state diagram is shown in the following illustration and the variables for the primary state diagram are shown in the following table. The variables are reflected in registers EWIS_RX_FRM_CTRL1 (2×EC00) and EWIS_RX_FRM_CTRL2 (2×EC01) that can be alternately reconfigured. The selected frame alignment and synchronization pattern have implications on the tolerated input BER. The higher the input BER, the less likely the frame boundary can be found. The chances of finding the frame boundary are improved by reducing the number of A1/A2 bytes required to be detected (using a smaller pattern width). According to the WIS specification, the minimum for all parameters allows a signal with an error tolerance of 10-12 to be framed. Figure 30 • Primary Synchronization State Diagram VMDS-10298 VSC8486-04 Datasheet Revision 4.4 36 Functional Descriptions Figure 31 • Secondary Synchronization State Diagram The following table describes the variables for the primary state diagram. Table 21 • Framing Parameter Description and Values IEEE 802.3ae Parameter IEEE 802.3ae Range VSC8486-04 Range Sequence of f consecutive A1s followed immediately by a sequence of f consecutive A2s. If f = 2, Sync_Pattern is A1A1A2A2. f 2 to 192 0 to 16. 2 Exceptions: If f = 0, Sync_Pattern is A1 + 4 MSBs of A2. If f = 1, Sync_Pattern is A1A1A2. Sequence of i consecutive A1s. i 1 to 192 1 to 16. 16 to 190 1 to 16. 16 If set to 0, behaves as if set to 1. If set to 17 to 31, behaves as if set to 16. Name Description Sync_Pattern width Hunt_Pattern width Presync_Pattern Presync_Pattern j A1 width consists of a sequence of j consecutive A1s followed immediately by a sequence of k consecutive A2s. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 VSC8486-04 Default 4 37 Functional Descriptions Table 21 • Framing Parameter Description and Values (continued) IEEE 802.3ae Range VSC8486-04 Range Presync_Pattern Presync_Pattern k A2 width consists of a sequence of j consecutive A1s followed immediately by a sequence of k consecutive A2s. 16 to 192 0 to 16. 16 0 means only 4 MSB of A2 are used. If set to 17 to 31, behaves as if set to 16. SYNC state entry Number of consecutive m frame boundaries needed to be found after entering the PRESYNC state in order to enter the SYNC state. 4 to 8 4 1 to 15. If set to 0, behaves as if set to 1. Number of consecutive n frame boundary location errors detected before exiting the SYNC state. 1 to 8 1 to 15. 4 If set to 0, behaves as if set to 1. Name SYNC state exit 3.5.2.2 IEEE 802.3ae Parameter Description VSC8486-04 Default Loss of Signal (LOS) The SONET/SDH Loss of Signal (LOS) alarm is tied to the PMA input receiver logic discussed in Loss of Signal, page 31. The LOS (2×0021.6) alarm is a latch-high register; back-to-back reads provide both the event as well as status information. The LOS event also asserts the LOS_PEND (2×EF00.6) until read. This event can propagate an interrupt to either WIS_INTA or WIS_INTB based upon mask enable bits LOS_MASKA (2×EF01.6) and LOS_MASKB (2×EF02.6). When the near end device experiences a LOS condition, it is possible to automatically transmit a remote defect indication (RDI-L) to the far end for notification purposes. The TXRDIL_ON_LOS (2×EE00.2), if asserted, overwrites the outgoing K2 bits with the RDI-L code. In the receive path, it is possible to force a AIS-L state (alarm assertion plus forcing the payload to an all ones state) upon a detection of an LOS condition. This is accomplished by asserting RXAISL_ON_LOS (2×EE00.5). 3.5.2.3 Loss of Optical Carrier (LOPC) The input pin LOPC can be used by external optic components to directly assert the loss of optical power to the physical media device. Any change in level on the LOPC input asserts LOPC_PEND (2×EF04.11) until read. The current status of the LOPC input pin can be read using LOPC_STAT (2×EF03.11). The LOPC input can be active high or active low by setting the LOPC_POL_SEL (2×EC30.9) bit appropriately. The LOPCS_PEND bit can propagate an interrupt to either WIS_INTA or WIS_INTB based upon mask enable bits LOPC_MASKA (2×EF05.11) and LOPC_MASKB (2×EF06.11). When the near end device experiences an LOPC condition, it is possible to automatically transmit a remote defect indication (RDI-L) to the far end to notify it of a problem. The TXRDIL_ON_LOPC (2×EE00.3), if asserted, overwrites the outgoing K2 bits with the RDI-L code. In the receive path, it is possible to force the receive framer into an LOF state, thereby squelching subsequent alarms and invalid payload data processing. This is accomplished by asserting RXLOF_ON_LOPC (2×EC30.8). Similar to the LOF condition forced upon an LOPC, the RXAISL_ON_LOPC (2×EE00.6) can force the AIS-L alarm assertion, plus force the payload to an all ones state to indicate to the PCS the lack of valid data, upon an LOPC condition. 3.5.2.4 Severely Errored Frame (SEF) Upon reset, the VSC8486-04 enters the out of frame (OOF) state with both the severely errored frame (SEF) and loss of frame (LOF) alarms active. The SEF defect is terminated when the framer enters the SYNC state. The framer enters the SYNC state after SYNC_ENTRY_CNT (2×EC01.7:4) plus 1 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 38 Functional Descriptions consecutive frame boundaries are identified. A SEF defect state is declared when the framer enters the out-of-frame (OOF) state. The frame changes from the SYNC state to the OOF state when SYNC_EXIT_CNT (2×EC01.3:0) consecutive frames with errored frame alignment words are detected. SEF is indicated by asserting SEF (2×0021.11). This register latches high providing a combination of interrupt pending and status information within consecutive reads. An additional bi-stable interrupt pending bit SEF_PEND (2×EF00.11) is provided which can propagate an interrupt to either WIS_INTA or WIS_INTB based upon mask enable bits SEF_MASKA (2×EF01.11) and SEF_MASKB (2×EF02.11). 3.5.2.5 Loss of Frame (LOF) An LOF occurs when an out of frame state persists for an integrating period of LOF_T1 (2×EC02.11:6) frames. To provide for the case of intermittent OOFs, when not in the LOF state, the integrating timer is not reset to zero until an in-frame condition persists continuously for LOF_T2 (2×EC02.5:0) frames. Once in the LOF state, this state is left when the in-frame state persists continuously for LOF_T3 (2×EC03.6:1) frames. The LOF state is indicated by LOF (2×0021.7) being asserted. This register latches high, providing a combination of pending and status information over consecutive reads. An additional bi-stable interrupt pending bit LOF_PEND (2×EF00.7) is provided which can propagate an interrupt to either WIS_INTA or WIS_INTB based upon mask enable bits LOF_MASKA (2×EF01.7) and LOF_MASKB (2×EF02.7). When the near end device experiences an LOF condition, it might be required that the far end device be notified of the catastrophic condition. Transmitting an alarm indication signal (AIS-L) can accomplish this. If AISL_on_LOF (2×EE00.4) is asserted, the transmit path is preempted by the AIS-L pattern whenever an LOF alarm condition is asserted. When the near end device experiences an LOF condition, it is possible to automatically transmit a remote defect indication (RDI-L) to the far end to notify it of a problem. The TXRDIL_ON_LOF (2×EE00.1), if asserted, overwrites the outgoing K2 bits with the RDI-L code. In the receive path, it is possible to force a AIS-L state (alarm assertion plus forcing the payload to an all ones state) upon a detection of an LOF condition. This is accomplished by asserting RXAISL_ON_LOF (2×EE00.4). 3.5.2.6 J0 (Section Trace) The J0 octet often carries a repeating message called the Section Trace Message. The default transmitted message length is 16-octets whose contents are defined in J0_TXMSG (2×0040-2×0047). If no active message is being broadcast, a default Section Trace Message consisting of 15 octets of zeros and a header octet formatted according to Section 5 of ANSI T1.269-2000 shall be transmitted. The header octet for the 15-octets of zero would be 0×89. The J0 octet in the receive direction by default is assumed to be carrying a 16-octet continuously repeating Section Trace Message. The message is extracted from the incoming WIS frames and stored in J0_RXMSG (2×0048-2×004F). The WIS receive process does not delineate the message boundaries, thus the message might appear rotated between new frame alignment events. The VSC8486-04 supports two alternate message types, a single repeating octet and a 64-octet message. The message type can be independently selected for the transmit and receive direction. The transmit direction is configured using J0_TXLEN (2×E700.3:2) while J0_RXLEN (2×EC20.3:2) configures the receive path. When the transmit direction is configured for a 64-octet message the first 16 octets are programmed in J0_TXMSG (2×0040-2×0047) while the 48 remaining octets are programmed in J0_TXMSG64 (2×E8002×E817). Likewise, the first 16 octets of the receive message are stored in J0_RXMSG (2×0048-2×004F) while the other 48 octets are stored in J0_RXMSG64 (2×E900-2×E917). The receive message is updated every 125 µs with the recently received octet. Any persistency or message matching is expected to take place within the station manager. 3.5.2.7 Z0 (Reserved for Section Growth) The WIS standard does not support the Z0 octet and requires transmission of 0×CC in the octet locations. A different Z0 value can be transmitted by configuring TX_Z0 (2×E612.15:8). The TX_Z0 default is 0×CC. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 39 Functional Descriptions 3.5.2.8 Scrambling/Descrambling The transmit signal (except for row 1 of the section overhead) is scrambled according to the standards when SCR_EN (2×E600.12) is asserted, which is the default state. When deasserted, the scrambler is disabled. The receive signal descrambler DESCR_EN (2×EC10.1) is enabled by default; however, by deasserting this bit the descrambler can be bypassed. 3.5.2.9 B1 (Section Error Monitoring) The B1 octet is a bit interleaved parity-8 (BIP-8) code using even parity calculated over the previous STS-192c frame, post scrambling. The computed BIP-8 is placed in the following outgoing SONET frame before scrambling. In the receive direction, the incoming frame is processed and a BIP-8 is calculated. The calculated value is then compared with the B1 value received in the following frame. The difference between the calculated and received octets are accumulated into B1_CNT (2×003C). This counter rolls over after the maximum count. This counter is cleared upon device reset. The B1_ERR_CNT[1:0] (2×ECB0 to 2×ECB1) registers provide a count of the number of received B1 parity errors. This register is updated with the internal count value upon a PMTICK condition, after which the internal counter is reset to zero. When the counter is nonzero, the B1_NZ_PEND (2×EF04.7) event is asserted until read. A non-latch high version of this event, B1_NZ_STAT (2×EF03.7) is also available. This event can propagate an interrupt to either WIS_INTA or WIS_INTB based upon mask enable bits B1_ERR_MASKA (2×EF05.7) and B1_ERR_MASKB (2×EF06.7). The B1_ERR_CNT can optionally be configured to increment on a block count basis, a maximum increment of 1 per errored frame regardless of the number of errors received. This mode is enabled by asserting B1_BLK (2×EC61.11) 3.5.2.10 E1 (Section Orderwire) The WIS standard does not support the E1 octet and requires transmission of 0×00 in the octet location. A different E1 value can be transmitted by configuring TX_E1 (2×E612.7:0) whose default is 0×00. 3.5.2.11 F1 (Section User Channel) The WIS standard does not support the F1 octet and requires transmission of 0×00 in the octet location. A different F1 value can be transmitted by configuring TX_F1 (2×E613.15:8) whose default is 0×00. 3.5.2.12 DCC-S (Section Data Communication Channel) The WIS standard does not support the DCC-S octets and requires transmission of 0×00 in the octet locations. Different DCC-S values can be transmitted by configuring TX_D1 (2×E613.7:0), TX_D2 (2×E614.15:8), and TX_D3 (2×E614.7:0), all of which default to 0×00. 3.5.2.13 Reserved, National and Unused Octets The VSC8486-04 transmits 0×00 for all Reserved, National, and unused overhead octets. 3.5.3 Line Overhead The line overhead portion of the SONET/SDH frame supports pointer interpretation, a per channel parity check, protection switching information, synchronization status messaging, far end error reporting, and some OAM&P octets. The following table lists each of the octets including their function, specification, and related information. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 40 Functional Descriptions The VSC8486-04 provides a mechanism to transmit a static value as programmed by the MDIO interface. However, by definition, MDIO is not fast enough to alter the octet on a frame-by-frame basis. Table 22 • Line Overhead Octets Overhead Octet Function IEEE 802.3ae WIS Usage H1-H2 Pointer Specified value Recommended Value WIS Extension SONET mode: STS-1: 0×62, 0×0A STS-n: 0×93, 0×FF Register 2×E615 to 2×E616 TOSI and ROSI access. SDH mode: STS-1: 0×6A, 0×0A STS-n: 0×9B, 0×FF H3 Pointer action Specified value 0×00 Register 2×E616 TOSI and ROSI access. B2 Line error monitoring (line BIP-1536) Supported Bit interleave parity-8, Using the TOSI, the B2 bytes can be as specified in T1.416 masked for test purposes. For each B2 mask bit that is cleared to 0 on the TOSI interface, the transmitted bit is left unchanged. For each B2 mask bit that is set to 1 on the TOSI interface, the transmitted bit is inverted. Using the ROSI, the B2 error locations can be extracted. Periodically latched counter (2×ECB0-2×ECB1) is available. K1, K2 Automatic Specified value protection switch (APS) channel and line remote defect identifier (RDI-L) For information about Register 2×E617 to 2×E618 TOSI and ROSI access. K2 coding, see Table 23, page 43 D4-D12 Line data communications channel (DCC) Unsupported 0×00 Register 2×E619 to 2×E61E TOSI and ROSI access. S1 Synchronization messenging Unsupported 0×0F Register 2×E61F TOSI and ROSI access. Z1 Reserved for Line growth Unsupported 0×00 Register 2×E61F TOSI and ROSI access. M0/M1 STS-1/N line remote error indication (REI) M0 unsupported, 0×00/number of M1 supported detected B2 errors in the receive path, as specified in T1.416 TOSI and ROSI access. The VSC8486-04 supports a mode that uses only M1 to back report REI-L (REI_MODE = 0) and another mode which uses both M0 and M1 to back report REI-L (REI_MODE = 1). For more information, see the following B2 text. E2 Orderwire Unsupported 0×00 Register 2×E620 TOSI and ROSI access. Z2 Reserved for Line growth Unsupported 0×00 Register 2×E620 TOSI and ROSI access. 3.5.3.1 B2 (Line Error Monitoring) The B2 octet is a BIP-8 value calculated over each of the previous STS-1 channels excluding the section overhead and pre-scrambling. As the B2 octet is calculated on an STS-1 basis there are 192 B2 octets VMDS-10298 VSC8486-04 Datasheet Revision 4.4 41 Functional Descriptions within an STS-192/STM-64 frame. Each of the 192 calculated BIP-8 octets are then placed in the outgoing SONET/SDH frame. Note: For SONET mode, the number of detected B2 errors going into an accumulator will be limited to 255 if more than 255 errors are detected in a frame. The Tx framer pulls the REI-L count out of the accumulator when REI-L is transmitted to be compliant with T1-105. In the receive direction, the incoming frame is processed, and a per STS-1 BIP-8 is calculated (excluding section overhead and after descrambling) and then compared to the B2 value in the following frame. Errors are accumulated into a 32-bit counter B2_CNT (2×0039-2×003A). This counter is non-saturating and so rolls over after its maximum count. The counter is cleared only on device reset. An additional 32-bit B2 error counter is provided at B2_ERR_CNT (2×ECB2-2×ECB3), which is a saturating counter and is latched and cleared based upon a PMTICK event. Errors are accumulated since the previous PMTICK event. When the counter is nonzero, the B2_NZ_PEND (2×EF04.6) event is asserted until read. A non-latch high version of this event B2_NZ_STAT (2×EF03.6) is also available. This event can propagate an interrupt to either WIS_INTA or WIS_INTB, based on mask enable bits B2_ERR_MASKA (2×EF05.6) and B2_ERR_MASKB (2×EF06.6). The B2_ERR_CNT can optionally be configured to increment on a block count basis, a maximum increment of 1 per errored frame regardless of the number of errors received. This mode is enabled by asserting B2_BLK (2×EC61.10). It is possible that two sets of B2 bytes (from two SONET/SDH frames) are received by the Rx WIS logic in a period of time when only one M0/M1 octet is transmitted. In this situation, one of the two B2 error counts delivered to the Tx WIS logic is discarded. This situation occurs when the receive data rate is faster than the transmit data rate. Similarly, when the transmit data rate is faster than the receive data rate, a B2 error count is not available for REI-L insertion into the M0/M1 octets of the transmitted SONET/SDH frame. A value of zero is transmitted in this case. This behavior is achieved by using a FIFO to transfer the detected B2 error count from the receive to transmit domains. A FIFO overflow or underflow condition is not considered an error. Instead it is recovered from gracefully as described above. A FIFO overflow or underflow eventually occurs unless the transmit and receive interfaces are running at the same average data rate. Because the received and transmitted frames can differ by, at most, 40 ppm (±20 ppm) and still meet the industry standards, this “slip” can happen no more often than once every 3.1 seconds. 3.5.3.2 K1, K2 (APS Channel and Line Remote Defect Identifier) The K1 and K2 octets carry information regarding Automatic Protection Switching (APS) and Line Remote Defect Identifier (RDI-L). The K1 octet and the most significant five bits of the K2 octet contain the APS channel information. The transmitted values can be configured at TX_K1 (2×E617.7:0) and TX_K2 (2×E618.15:8). The default values of all zeros are compliant with the WIS standard. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 42 Functional Descriptions The three least significant bits within the K2 octet carry the RDI-L encoding, as defined by section 7.4.1 of ANSI T1.416-1999 and as shown in the following table. Table 23 • K2 Encodings Indicator K2 Value for Bits 6, 7, 8 Interpretation RDI-L 110 Remote error indication. For the receive process, an RDI-L defect occurs after a programmable number of RDI-L signals are received in contiguous frames and is terminated when no RDI-L is received for the same number of contiguous frames. An RDI-L can be forced by asserting FRC_RX_RDIL (2×2×EC30.2). For the transmit process, the WIS standard does not indicate when or how to transmit RDI-L. VSC8486-04 provides the option of transmitting K2 by programming it through the TOSI, by programming it using the K2_TX MDIO register, or by programming it based on the contents of the K2_TX register with bits 6, 7, and 8 modified depending on the status of the following: LOPC, LOS, LOF, AIS-L and their associated transmit enable bits TXRDIL_ON_LOPC (2×EE00.3), TXRDIL_ON_LOS (2×EE00.2), TXRDIL_ON_LOF (2×EE00.1), and TXRDIL_ON_AISL (2×EE00.0). AIS-L 111 Alarm indication signal (line). For the receive process, this is detected based on the settings of the K2 byte. When AIS-L is detected, the WIS link status is down and MDIO register 2×0021.4 is set high. This also contributes to errored second (ES) and severally errored second (SES) reports. For standard WIS operation, this is never transmitted. Idle (normal) 000 Unless RDI-L exists, the standard WIS transmits idle. Although the transmission of RDI-L is not explicitly defined within the WIS standard, the VSC8486-04 allows the automatic transmission of RDI-L upon the detection of LOPC, LOS, LOF, or AIS-L conditions. These features are enabled by asserting RDIL_ON_LOPC (2×EE00.3), RDIL_ON_LOS (2×EE00.2), RDIL_ON_LOF (2×EE00.1), and RDIL_ON_AISL (2×EE00.0). Note: The RDI-L code of 110 is transmitted by the DUT only when Rx AIS-L is asserted. For example, if AIS-L is detected by the DUT for five continuous frames in the Rx direction, then the RDI-L code is transmitted for at least 20 frames in the Tx direction, as stated in the ANSI T1.105 specification. The VSC8486-04 can force an RDI-L condition independent of the K2 transmit value by asserting FRC_RDIL (2×E600.2). Likewise, an AIS-L condition can be forced by asserting FRC_AISL (2×E600.1). If both conditions are forced, the AIS-L value is transmitted. In the receive direction, the RDI-L alarm (K2[6:8] = 110, using SONET nomenclature) and the AIS-L alarm (K2[6:8] = 111, using SONET nomenclature) are not asserted until the condition persists for a programmable number of contiguous frames. This value is programmable at APS_THRES (2×EC30.7:4) and is typically set to values of 5 or 10.The AIS-L is detected by the receiver after the programmable number of frames is received, and results in the reporting of AIS-P. The WIS standard defines RDIL (2×0021.5) and AISL (2×0021.4) as a read only latch-high register, so a read of a one in this register indicates that an error condition occurred since the last read. A second read of the register provides the current status of the event as to whether the alarm is currently asserted. RDIL_PEND (2×EF00.5) and AISL_PEND (2×EF00.4) assert whenever the RDI-L or AIS-L state changes (assert or deassert). These interrupts have associated mask enable bits, VMDS-10298 VSC8486-04 Datasheet Revision 4.4 43 Functional Descriptions RDIL_MASK/AISL_MASK (2×EF01.5:4/2×EF02.5:4), which, if enabled, propagate an interrupt to the WIS_INTA/B pins. For test purposes, the VSC8486-04 can induce an RDI-L condition in the receive direction independent of the received K2 value by asserting FRC_RX_RDIL (2×EC30.2). Likewise, an AIS-L condition can be forced in the receive direction by asserting FRC_RX_AISL (2×EC30.3). 3.5.3.3 AISFORCE Pin When set high, the AISFORCE pin generates a near end AIS-L defect. 3.5.3.4 D4 to D12 (Line Data Communications Channel) The WIS standard does not support Line Data Communications Channel (L-DCC) octets (D4-D12) and recommends transmitting 0×00 within these octets. The D4-D12 transmitted values can be programmed at (2×E619-2×E61E). The register defaults are all 0×00. The receive L-DCC octets are only accessible through the ROSI port. 3.5.3.5 M0 and M1 (STS-1/N Line Remote Error Indication) The M0 and M1 octets are used for back reporting the number of B2 errors received, known as remote error indication (REI-L). The value in this octet comes from the B2 error FIFO, as discussed with the B2 octet. The WIS standard does not support the M0 octet and recommends transmitting 0×00 in place of the M0 octet. However, the WIS standard supports the M1 octet in accordance with T1.416. Two methods for back-reporting exist and are controlled by G707_2000_REIL (2×EC40.12). Because a single frame can contain up to 1536 B2 errors while the M1 byte alone can only back report a maximum of 255 errors, a discrepancy exists. When G707_2000_REIL is deasserted, only the M1 byte is used and a maximum of 255 errors are back-reported. When G707_2000_REIL is asserted, two octets per frame are used for back reporting, the M1 octet and the M0 octet (not the first STS-1 octet, but the second STS1 octet). In this mode, a total of 1536 errors can be back-reported per frame. In the receive direction the VSC8486-04 detects and accumulate errors according to the G707_2000_REIL setting. The VSC8486-04 deviates from the G.707 standard by not interpreting REI-L values greater than 1536 as zero. The WIS standard defines a 32-bit REI-L counter REIL_CNT (2×00372×0038). This counter is non-saturating and so rolls over after its maximum count. The counter is cleared only on device reset. An additional 32-bit REI-L counter is provided at REIL_ERR_CNT (2×EC90-2×EC91) which is a saturating counter and is latched and cleared based upon a PMTICK event. Errors are accumulated since the previous PMTICK event. When the counter is nonzero, the REIL_NZ_PEND (2×EF04.2) event is asserted until read. A non-latch high version of this event REIL_NZ_STAT (2×EF03.2) is also available. This event can propagate an interrupt to either WIS_INTA or WIS_INTB based upon mask enable bits REIL_NZ_MASKA (2×EF05.2) and REIL_NZ_MASKB (2×EF06.2). The REIL_ERR_CNT can optionally be configured to increment on a block count basis, a maximum increment of 1 per errored frame regardless of the number of errors received. This mode is enabled by asserting REIL_BLK (2×EC61.4). 3.5.3.6 S1 (Synchronization Messaging) The S1 octet carries the synchronization status message and provides synchronization quality measures of the transmission link in the least significant 4 bits. The WIS standard does not support the S1 octet and requires the transmission of a 0×0F within the S1 octet. A value other than 0×0F can be programmed in TX_S1 (2×E61F). 3.5.3.7 Z1 and Z2 (Reserved for Line Growth) The WIS standard does not support the Z1 or Z2 octets and requires the transmission of 0×00 in their locations. Different Z1 and Z2 values can be transmitted by programming the values at TX_Z1 (2×E61F) and TX_Z2 (2×E620) respectively. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 44 Functional Descriptions 3.5.3.8 E2 (Orderwire) The WIS standard does not support the E2 octet and recommends transmitting 0×00 in place of the E2 octet. A value other than 0×00 can be transmitted by programming the intended value at TX_E1 (2×E620). 3.5.4 Pointer The H1 and H2 octets are used as a pointer within the SONET/SDH frame to locate the beginning of the path overhead and the beginning of the synchronous payload envelope (SPE). Within SONET/SDH the SPE can begin anywhere within the payload area, however IEEE Standard 802.3ae specifies that a transmitted SPE must always be positioned solely within a single SONET/SDH frame. The constant pointer value of 522 decimal (0×20A) must be contained in the first channel’s H1 and H2 octets. Together these conditions result in the H1 and H2 octets being 0×62 and 0×0A, respectively. These are the default values of TX_H1 (2×E615.7:0) and TX_H2 (2×E616.15:8). Programming these registers with alternate values does not alter the positioning of the SPE, but it might induce a loss of pointer (LOP-P) at the far end, or at least prevent the far end from extracting the proper payload. Furthermore, the WIS standard specifies the frame structure be a concatenated payload. For this reason, the H1 and H2 octets in channels 2 through 192 contain the concatenation indicator. The VSC8486-04 supports forcing the loss of pointer (LOP-P) and path alarm indication signal (AIS-P) state. The WIS standard specifies that a 0×00 be transmitted in the H3 octet. An alternate value can be transmitted by programming TX_H3 (2×E616.7:0). The WIS specification does not limit the pointer position within the receive SONET/SDH frame to allow interoperability to other SONET/SDH equipment. In addition to supporting the required SONET pointer rules, the VSC8486-04 pointer interpreter optionally supports SDH pointers. This is selectable using the SDH_RX_MODE (2×EC40.11) bit. The differences between SONET and SDH modes are as follows: • • • For SONET, the SS bits are not used and are ignored by the VSC8486-04 pointer interpreter. For SDH, these bits are set to 10 and are checked by the VSC8486-04 pointer interpreter to determine the pointer type. For SONET, all 192 bytes of H1 and H2 are checked by the pointer interpreter to determine the pointer type. For SDH, only the first 64 bytes (first AU-4 of an AU-4-64c) are checked. SONET and SDH have different increment/decrement rules. SONET uses '8 out of 10' GR-253-core objective rule, while SDH uses a majority detect rule. The H1 and H2 octets combine to form a word with several fields as shown in Figure 32, page 45. 3.5.4.1 Bit Designations Within Payload Pointer The 'N' bits [15:12] carry a New Data Flag (NDF). This mechanism allows an arbitrary change in the location of the payload. NDF is indicated by at least three out of the four N bits matching the code ‘1001’ (NDF enabled). Normal operation is indicated by three out of the four N bits matching the code ‘0110’ (normal NDF). The last ten bits of the pointer word ('D' bits and 'I' bits) carry the pointer value. The pointer value has a range from 0 to 782 that indicates the offset between the first byte after the H3 byte and the first byte of the SPE. The SS bits are located in bits 11 and 10 and are unused in SONET mode. In SDH mode, these bits are compared with pattern '10', and the pointer is considered invalid if it does not match. Because VSC8486-04 only supports concatenated frames, only the first pair of bytes (H1, H2) are called the primary pointer and have a normal format. The rest of the H1/H2 bytes contain the concatenation indication (CI). The format for the CI is NDF enabled with a pointer value of all ones. Figure 32 • 16-bit Designations within Payload Pointer H1 H2 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 N N N N S S I D I D I D I D I D VMDS-10298 VSC8486-04 Datasheet Revision 4.4 45 Functional Descriptions 3.5.4.2 Pointer Types The VSC8486-04 supports five different pointer types as described in the following table. A Normal Pointer indicates the current pointer, a New Data Flag indicates a new pointer location, and an AIS pointer indicates AIS. The Pointer Increment and Pointer Decrement mechanism adjusts the frequency offset between the frame overhead and SPE. A Pointer Increment is indicated by a Normal NDF that has the currently accepted pointer with the 'D' bits inverted. A Pointer Decrement is indicated by a Normal NDF that has the currently accepted pointer with 'I' bits inverted. Table 24 • H1/H2 Pointer Types Pointer Type nnnn Value Pointer Value SS bits Normal Three out of the four bits matching ‘0110’ 0 to 782 Matching in SDH mode, ignored in SONET mode New Data Flag (NDF) Three out of the four bits matching ‘1001’ 0 to 782 Matching in SDH mode, ignored in SONET mode AIS Pointer 1111 1111 1111 11 11 Pointer Increment Three out of the four bits matching ‘0110’ Current pointer with ‘I’ Matching in SDH mode, bits inverted. ignored in SONET mode Pointer Decrement Three out of the four bits matching ‘0110’ Current pointer with ‘D’ bits inverted. Matching in SDH mode, ignored in SONET mode Pointer Value SS bits 1111 1111 11 Matching in SDH mode, ignored in SONET mode Table 25 • Concatenation Indication Types Pointer Type nnnn Value Normal concatenation Three out of the four indication bits matching ‘1001’ 3.5.4.3 AIS concatenation indication Pointer value, nnnn value, and SS bits are the same as the AIS pointer Invalid concatenation indication Any other concatenation indication other than Normal CI or AIS CI Pointer Adjustment Rule The VSC8486-04 pointer interpreter adjusts the current pointer value according to rules listed in Section 9.1.6 of ANSI T1.105-1995. In addition, the following rule is observed: no increment/decrement is accepted for at least three frames following an increment/decrement or NDF operation. 3.5.4.4 Pointer Increment/Decrement Majority Rules In SONET mode, the pointer interpreter uses more restrictive GR-253-CORE objective rules, as follows: • • An increment is indicated by eight or more bits matching non-inverted D bits and inverted I bits. A decrement is indicated by eight or more bits matching non-inverted I bits and inverted D bits. In SDH mode, the majority rules are: • • • 3.5.4.5 An increment is indicated by three or more inverted I bits and two or fewer inverted D bits. A decrement is indicated by three or more inverted D bits and two or fewer inverted I bits. If both, three or more D bits are inverted and three or more I bits are inverted, no action is taken. Pointer Interpretation States The pointer interpreter algorithm for state transitions can be modeled as a finite state machine with three states, as shown in the following illustration. The three states are Normal (NORM), Loss of pointer (LOP), and Alarm Indication State (AIS). VMDS-10298 VSC8486-04 Datasheet Revision 4.4 46 Functional Descriptions Figure 33 • Pointer Interpreter State Diagram a, b, e NORM b a, b d c c LOP AIS d The conditions for transitions between these states are summarized in the following table. Table 26 • 3.5.4.6 Pointer Interpreter State Diagram Transitions Required Persistency Transitions States Description a NORM → NORM AIS → NORM =. 1 frame NDF enabled with pointer in range (0 to 782). SS bit match (if enabled). b NORM → NORM LOP → NORM AIS → NORM 3 frames =. NDF disabled (NORM pointer) with the same pointer value in range (0 to 782). SS bit match (if enabled). c NORM → AIS LOP → AIS =. AIS pointer (0×FFFF). d NORM → LOP AIS → LOP Anything other than transitions b and c or NDF 8 frames enabled (transition a) or AIS pointer when not in AIS state or NORM pointer when not in NORM state or NORM pointer with pointer value not equal to current or increment/decrement or CONC pointer or SS bit mismatch (if comparison is enabled). e Justification Valid increment or decrement indication. 3 frames 1 frame Valid Pointer Definition for Interpreter State Diagram Transitions During an AIS state, only an AIS pointer is a valid pointer. In NORM state, several definitions of “valid pointer” for purpose of LOP detection are possible according to GR-253-CORE. The VSC8486-04 follows the GR-253-CORE intended definition, but adds a single normal pointer that exactly matches the current 'valid' pointer value. Any change in the AIS state is reflected in the alarm bit AISP (2×0021.1). This latch-high register reports both the event and status information in consecutive reads. The AISP_PEND (2×EF00.1) bit remains asserted until read. This event can propagate an interrupt to either WIS_INTA or WIS_INTB, based on mask enable bits AISP_MASKA (2×EF01.1) and AISP_MASKB (2×EF02.1). Similarly, any change in the LOP state is reflected in the alarm bit LOPP (2×0021.0). This latch-high register reports both the event and status information in consecutive reads. The LOPP_PEND (2×EF00.0) bit remains asserted until read. This event can propagate an interrupt to either WIS_INTA or WIS_INTB, based upon the mask enable bits LOPP_MASKA (2×EF01.1) and LOPP_MASKB (2×EF02.1). VMDS-10298 VSC8486-04 Datasheet Revision 4.4 47 Functional Descriptions 3.5.5 Path Overhead The path overhead portion of the SONET/SDH frame supports an end-to-end trace identifier, a payload parity check, a payload type indicator, a status indicator, and a user channel. The following table lists each of the octets, including their function. Note: Extended WIS TOSI and ROSI do not support path overhead. 3.5.5.1 Table 27 • STS Path Overhead Octets Overhead Octet Function IEEE 802.3ae WIS Usage Recommended Value WIS Extension J1 Path trace message Specified value See the following A 1-, 16-, or 64-byte trace discussion of J1 message can be sent using (overhead octet) registers (2×0027-2×002E, 2×E700, 2×EA00-2×EA17) and received using registers (2×002F-2×0036, 2×EC20, 2×EB00-2×EB17). B3 Path error monitoring (path BIP-8) Supported C2 Path signal label Specified value 0×1A Register (2×E615). Supports persistency and mismatch detection (2×EC40). G1 Path status Supported As specified in T1.416 Ability to select between RDI-P and ERDI-P formats. F2 Path user channel Unsupported 0×00 Register (2×E618). H4 Multiframe indicator Unsupported 0×00 Register (2×E61A). Z3-Z4 Reserved for path growth Unsupported 0×00 Register (2×E61C, 2×E61E). N1 Tandem connection maintenance and path data channel Unsupported 0×00 Register (2×E621). Bit interleaved Both SONET and SDH mode B3 parity - 8 bits, as calculation is supported. specified in T1.416 J1 (Overhead Octet) By default, the J1 transmitted octet contains a 16-octet repeating path trace message whose contents are defined in J1_TXMSG (2×0027-2×002E). If no active message is being broadcast, a default path trace message is transmitted, consisting of 15 octets of zeros and a header octet formatted according to Section 5 of ANSI T1.269-2000. The header octet for the 15-octets of zero would be 0×89. The default values of J1_TXMSG (2×0027-2×002E) do not contain the 0×89 value of the header octet, thus software must write this value. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 48 Functional Descriptions The J1 octet in the receive direction by default is assumed to be carrying a 16-octet continuously repeating path trace message. The message is extracted from the incoming WIS frames and presented in J1_RXMSG (2×002F-2×0036). The WIS receive process does not delineate the message boundaries, thus the message might appear rotated between new frame alignment events. The VSC8486-04 supports two alternate message types, a single repeating octet and a 64-octet message. The message type can be independently selected for the transmit and receive direction. The transmit direction is configured using J1_TXLEN (2×E700.1:0) while J1_RXLEN (2×EC20.1:0) configures the receive path. When the transmit direction is configured for a 64-octet message, the first 16 octets are programmed in J1_TXMSG (2×0027-2×002E) while the 48 remaining octets are programmed in J1_TXMSG64 (2×EA002×EA17). Likewise, the first 16-octets of the receive message are stored in J1_RXMSG (2×002F2×0036), while the other 48 octets are stored in J1_RXMSG64 (2×EB00-2×EB17). The receive message is updated every 125 µs with the recently received octet. Any persistence or message matching is expected to take place within the station manager. 3.5.5.2 B3 (STS Path Error Monitoring) The B3 octet is a bit interleaved parity-8 (BIP-8) code, using even parity, calculated over the previous STS-192c SPE before scrambling. The computed BIP-8 is placed in the B3 byte of the following frame before scrambling. In the receive direction, the incoming frame is processed and a B3 octet is calculated over the received frame. The calculated value is then compared with the B3 value received in the following frame. The difference between the calculated and received octets are accumulated in block (maximum increment of 1 per errored frame) fashion into a B3 error register, B3_CNT (2×003B). This counter is non-saturating and so rolls over. The counter is cleared upon a device reset. An additional 32-bit B3 error counter is provided at B3_ERR_CNT (2×ECB4-2×ECB5) which is a saturating counter and is latched and cleared based upon a PMTICK event. Errors are accumulated starting from the previous PMTICK event. When the counter is nonzero, the B3_NZ_PEND (2×EF04.5) event is asserted until read. A non-latch high version of this event B3_NZ_STAT (2×EF03.5) is also available. This event can propagate an interrupt to either WIS_INTA or WIS_INTB, based on the mask enable bits B3_ERR_MASKA (2×EF05.5) and B3_ERR_MASKB (2×EF06.5). The B3_ERR_CNT can optionally be configured to increment on a block count basis, a maximum increment of 1 per errored frame regardless of the number of errors received. The B3_BLK (2×EC61.9) control bit, if asserted, places the B3_ERR_CNT counter in block increment mode. It is possible that two sets of B3 bytes (from two SONET/SDH frames) are received by the Rx WIS logic in a period of time when only one G1 octet is transmitted. In this situation, one of the two B3 error counts delivered to the Tx WIS logic is discarded. This situation occurs when the receive data rate is faster than the transmit data rate. Similarly, when the transmit data rate is faster than the receive data rate, a B3 error count is not available for REI-P insertion into the G1 octets of the transmitted SONET/SDH frame. A value of zero is transmitted in this case. This behavior is achieved by using a FIFO to transfer the detected B3 error count from the receive to transmit domains. A FIFO overflow or underflow condition is not considered an error. Instead it is recovered from gracefully as described above. A FIFO overflow or underflow eventually occurs, unless the transmit and receive interfaces are running at the same average data rate. Because the received and transmitted frames can differ by, at most, 40 ppm (±20 ppm) and still meet the industry standards, this “slip” can happen no more often than once every 3.1 seconds. 3.5.5.3 C2 (STS Path Signal Label and Path Label Mismatch) The C2 octet contains a value intended to describe the type of payload carried within the SONET/SDH frame. The WIS standard calls for a 0×1A to be transmitted. This is the default value of TX_C2 (2×EC15). As specified in T1.416, a path label mismatch (PLM-P) (2×0021.2) event occurs when the C2 octet in five consecutive frames contain a value other than the expected one. The expected value is set in C2_EXP (2×EC40.7:0), whose default value 0×1A is compliant with the WIS standard. Whenever a value of 0×00 is accepted (received for five or more consecutive frames) the unequipped path pending, UNEQ_PEND (2×EF04.10), event is asserted until read. A non-latch high version of this VMDS-10298 VSC8486-04 Datasheet Revision 4.4 49 Functional Descriptions event UNEQ_STAT (2×EF03.10) is also available. This event can propagate an interrupt to either WIS_INTA or WIS_INTB, based on the mask enable bits UNEQ_MASKA (2×EF05.10) and UNEQ_MASKB (2×EF06.10). If the accepted value is not an unequipped label (0×00) and it differs from the programmed expected value, C2_EXP, then a path label mismatch, PLMP (2×0021.2), is asserted. Similarly the PLM_PEND (2×EF00.2) event is asserted until read. This event can propagate an interrupt to either WIS_INTA or WIS_INTB, based on the mask enable bits PLM_MASKA (2×EF01.2) and PLM_MASKB (2×EF02.2). Although PLM-P is not a path level defect, it does cause a change in the setting of one of the ERDI-P codes, as described in Table 28, page 51. 3.5.5.4 G1 (Remote Path Error Indication) The most significant four bits of the G1 octet is used for back reporting the number of B3 block errors received at the near end. This is typically known as path remote error indication (REI-P). The value in this octet comes from the B3 error FIFO, as discussed with the B3 octet. The WIS standard defines a 16-bit REI-P counter REIP_CNT (2×0025). The WIS standard defines this counter to operate as a block counter as opposed to an individual errored bit counter. This counter is non-saturating and so rolls over after its maximum count. The counter does not clear upon a read, but instead only upon reset as defined in the WIS specification. When the counter is nonzero, the REIP_WISNZ_PEND (2×EF04.3) event is asserted until read. A non-latch high version of this event REIP_WISNZ_STAT (2×EF03.3) is also available. This event can propagate an interrupt to either WIS_INTA or WIS_INTB, based on the mask enable bits REIP_WISNZ_MASKA (2×EF05.3) and REIP_WISNZ_MASKB (2×EF06.3), respectively. An additional 32-bit REI-P counter is provided at REIP_ERR_CNT (2×EC80-2×EC81) which is a saturating counter and is latched and cleared based upon a PMTICK event. Errors are accumulated since the previous PMTICK event. When the counter is nonzero, the REIP_EWISNZ_PEND (2×EF04.1) event is asserted until read. A non-latch high version of this event REIP_EWISNZ_STAT (2×EF03.1) is also available. This event can propagate an interrupt to either WIS_INTA or WIS_INTB, based on the mask enable bits REIP_EWISNZ_MASKA (2×EF05.1) and REIP_EWISNZ_MASKB (2×EF06.1), respectively. The REIP_ERR_CNT can optionally be configured to increment on a block count basis, a maximum increment of 1 per errored frame regardless of the number of errors received. This mode is enabled by asserting REIP_BLK (2×EC61.5). 3.5.5.5 G1 (Path Status) In addition to back-reporting the far end B3 BIP-8 error count, the G1 octet carries status information from the far end device known as path remote defect indicator (RDI-P). T1.416 allows either support of 1bit RDI-P or 3-bit ERDI-P, but indicates ERDI-P is preferred. VSC8486-04 supports both modes and can be independently configured for the Rx and Tx directions by configuring RX_G1_MODE (2×EC40.8) and TX_G1_MODE (2×E600.10). ERDI-P is the default for both directions. The different structures for this octet are shown in the following illustrations. Figure 34 • Path Status (G1) Byte for ERDI_RDIN = 0 G1 REI (B3) 1 2 3 RDI-P 4 5 Remote Defect Indicator Remote Error Indicator count from B3 (0-8 value) Reserved 6 Spare 7 Set to 00 by transmitter 8 Ignored by receiver Figure 35 • Path Status (G1) Byte for ERDI_RDIN = 1 G1 REI (B3) 1 2 3 Remote Error Indicator count from B3 (0-8 value) ERDI-P 4 5 6 Spare 7 Enhanced Remote Defect Indicator (see following table) VMDS-10298 VSC8486-04 Datasheet Revision 4.4 8 Ignored by receiver 50 Functional Descriptions Enhanced RDI is defined for SONET-based systems as listed in GR-253-CORE (Issue 3), reproduced here in the following table, and as a possible enhancement of SDH-based systems (G.707/Y.1322 (10/2000) Appendix VII (not an integral part of that recommendation)). Table 28 • RDI-P and ERDI-P Bit Settings and Interpretation G1 Bits 5, 6, and 7 Priority of ERDIP Codes Trigger Interpretation 000/011 Not applicable No defects. No RDI-P defect 100/111 Not applicable Path alarm indication signal (AIS- One-bit RDI-P defect P). The remote device sends all ones for H1, H2, H3, and the entire STS SPE. Path loss of pointer (LOP-P). 001 4 No defects. No ERDI-P defect 010 3 Path label mismatch (PLM-P). Path loss of code group delineation (LCD-P). ERDI-P payload defect 101 1 Path alarm indication signal (AIS- ERDI-P server defect P). The remote device sends all ones for H1, H2, H3 and entire STS SPE. Path loss of pointer (LOP-P). 110 2 Path unequipped (UNEQ-P). The ERDI-P connectivity defect received C2 byte is 0×00. Path trace identifier mismatch (TIM-P). This error is not automatically generated, but can be forced using MDIO. In the receive direction, with RX_G1_MODE (2×EC40.8) = 0, an RDI-P defect is the occurrence of the RDI-P signal in 10 contiguous frames. An RDI-P defect terminates when no RDI-P signal is detected in 10 contiguous frames. An RDI-P event asserts FERDIP_PEND (2×EF04.8) until read. A non-latch high version of the far-end RDI-P status can be found in FERDIP_STAT (2×EF03.8). This event can propagate an interrupt to either WIS_INTA or WIS_INTB, based on the mask enable bits FERDIP_MASKA (2×EF05.8) and FERDIP_MASKB (2×EF06.8). When RX_G1_MODE (2×EC40.8) = 1, an ERDI-P defect is the occurrence of any one of three ERDI-P signals in 10 contiguous frames. An ERDI-P defect terminates when no ERDI-P signal is detected in 10 contiguous frames. The “010” code triggers the latch high register bit FE_PLM-P_LCD-P (2×0021.10). It also asserts FE_PLM-P_LCD-P_PEND (2×EF00.10) until read. This event can propagate an interrupt to either WIS_INTA or WIS_INTB, based on the mask enable bits FE_PLM-P_LCD-P_MASKA (2×EF01.10) and FE_PLM-P_LCD-P_MASKB (2×EF02.10), respectively. The “101” code triggers the latch high register bit FE_AIS-P_LOP-P (2×0021.9). It also asserts FE_AISP_LOP-P_PEND (2×EF00.9) until read. This event can propagate an interrupt to either WIS_INTA or WIS_INTB, based on the mask enable bits FE_AIS-P_LOP-P_MASKA (2×EF01.9) and FE_AIS-P_LOPP_MASKB (2×EF02.9), respectively. The “110” code asserts the FE_UNEQ-P_PEND (2×EF04.9) until read. A non-latch-high version of this register FE_UNEQ_STAT (2×EF03.9) is also available. This event can propagate an interrupt to either WIS_INTA or WIS_INTB, based on the mask enable bits FE_UNEQ-P_MASKA (2×EF05.9) and FE_UNEQ-P_MASKB (2×EF06.9), respectively. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 51 Functional Descriptions 3.5.5.6 F2 (Path User Channel) The WIS standard does not support the F2 octet and recommends transmitting 0×00 in place of the F2 octet. A value other than 0×00 can be transmitted by programming the intended value at TX_F2 (2×E618). 3.5.5.7 H4 (Multi-frame Indicator) The WIS standard does not support the H4 multi-frame octet and recommends transmitting 0×00 in place of the H4 octet. A value other than 0×00 can be transmitted by programming the intended value at TX_H4 (2×E61A). 3.5.5.8 Z3-Z4 (Reserved for Path Growth) The WIS standard does not support the Z3-Z4 octets and recommends transmitting 0×00 in their place. A value other than 0×00 can be transmitted by programming the intended value at TX_Z3 (2×E61C) and TX_Z4 (2×E61E) respectively. 3.5.5.9 N1 (Tandem Connection Maintenance/Path Data Channel) The WIS standard does not support the N1 octet and recommends transmitting 0×00 in place of the N1 octet. A value other than 0×00 can be transmitted by programming the intended value at TX_N1 (2×E621). 3.5.5.10 Loss of Code group Delineation After the overhead is stripped, the payload is passed to the PCS. If the PCS block losses synchronization and cannot delineate valid code groups, the PCS passes a loss of code group delineation (LCD-P) alarm to the WIS. This alarm triggers the latch high register bit LCD-P (2×0021.3). It also asserts LCD-P_PEND (2×EF00.3) until read. This event can propagate an interrupt to either WIS_INTA or WIS_INTB, based on the mask enable bits LCD-P_MASKA (2×EF01.3) and LCD-P_MASKB (2×EF02.3), respectively. The WIS specification calls for a LCD-P defect persisting continuously for more than 3 ms to be back reported to the far end. Upon device reset a LCD-P shall also be back reported until the PCS signals that valid code groups are being delineated. The LCD-P defect deasserts (and is not back reported) after the condition is absent continuously for at least 1 ms. 3.5.6 Reading Statistical Counters The VSC8486-04 contains several counters that can be read using the MDIO interface. For each error count, there are two sets of counters. The first set is the standard WIS counter implemented according to IEEE Standard 802.3ae, and the second set is for statistical counts using PMTICK. To read the IEEE Standard 802.3ae counters, the Station Manager must read the most significant register of the 32-bit counter first. This read action latches the internal error counter value into the MDIO readable registers. A subsequent read of the least significant register does not latch new values, but returns the value latched at the time of the most significant register read. Since the IEEE Standard 802.3ae counters are independently latched it can be difficult to get a clear picture of the timeframes in which errors were received. The PMTICK counters are all latched together, thereby providing a complete snapshot in time. When PMTICK is asserted the internal error counter values are copied into their associated registers and the internal counters are reset. There are three methods of asserting PMTICK. • • • The Station Manager can asynchronously assert PMTICK_FRC (2×EC60.0) to latch the values at a given time, regardless of the PMTICK_ENA (2×EC60.2) setting. The VSC8486-04 can be configured to latch and clear the statistical counters at a periodic interval as determined by the timer (count) value in PMTICK_DUR (2×EC60.15:3). In this mode the PMTICK_SRC (2×EC60.1) must be configured for internal mode and the PMTICK_ENA (2×EC60.2) bit must be asserted. The receive path clock is used to drive the PMTICK counter, thus the periodicity of the timer can vary during times of loss of lock and loss of frame. The VSC8486-04 can be configured to latch and clear the statistical counters at the occurrence of a rising edge detected at the PMTICK input pin. In this mode the PMTICK_SOURCE (2×EC60.1) bit must be deasserted, and the PMTICK_ENA (2×EC60.2) must be asserted. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 52 Functional Descriptions Regardless of PMTICK_SRC (2×EC60.1), when the PMTICK event occurs the PMTICK_PEND (2×EF04.14) is asserted until read. This event can propagate an interrupt to either WIS_INTA or WIS_INTB, based on the mask enable bits PMTICK_MASKA (2×EF05.14) and PMTICK_MASKB (2×EF06.14), respectively. Given the size of the error counters and the maximum allowable error counts per frame, care must be taken in the frequency of polling the registers to ensure accurate values. All PMTICK counters saturate at their maximum values. Table 29 • PMTICK Counters Maximum Increase Count Per Frame Maximum Increase Count Per Second Time Until Overflow 8 64,000 67,109 Counter Name Description Registers B1_ERROR_CNT B1 section error count B1_ERROR_CNT1, B1_ERROR_CNT0 B2_ERROR_CNT B2 line error count B2_ERROR_CNT1, B2_ERROR_CNT0 1536 12,288,000 350 B3_ERROR_CNT B3 path error count 8 64,000 67,109 FAR_B3_ERROR_CN Far end B3 path T error count FAR_B3_ERROR_CNT1 8 , FAR_B3_ERROR_CNT0 64,000 67,109 FAR_B2_ERROR_CN Far end B2 line T error count FAR_B2_ERROR_CNT1 1536 , FAR_B2_ERROR_CNT0 12,288,000 350 B3_ERROR_CNT1, B3_ERROR_CNT0 Both individual and block mode accumulation of B1, B2, and B3 error indications are supported and selectable using the control bits B1_BLK, B2_BLK, and B3_BLK. In individual accumulation mode, ‘0’, the counter is incremented for each bit mismatch between the calculated B1, B2, and/or B3 error and the extracted B1, B2, and/or B3. In block accumulation mode, ‘1’, the counter is incremented only once for any nonzero number of bit mismatches between the calculated B1, B2, and/or B3 and the extracted B1, B2, and/or B3 (maximum of 1 error per frame). 3.5.7 Defects and Anomalies All defects and anomalies listed in the following table can be forced and masked by the user. The VSC8486-04 does not automatically generate TIM-P, but does support forcing defects using MDIO. Table 30 • Defects and Anomalies Defect or Anomaly Description Type Force Bit Status Bit Far end PLM-P These two errors are Far end defect or LCD-P indistinguishable when reported by the far end through the G1 octet (ERDI-P), because the far end reports both PLM-P and LCD-P with the same error code. 2×EC31.10 2×0021.10 Far end AIS-P or LOP-P 2×EC31.12 2×0021.9 These two errors are indistinguishable when reported by the far end through the G1 octet (ERDI-P), because the far end reports both AIS-P and LOP-P with the same error code. Far end defect VMDS-10298 VSC8486-04 Datasheet Revision 4.4 53 Functional Descriptions Table 30 • Defect or Anomaly Defects and Anomalies (continued) Description Type PLM-P Path label mismatch. The detection and reporting of the PLM-P defect follows section 7.5 of ANSI T1.4161999. Near end defect; 2×EC31.14 propagated to PCS AIS-L Generated on LOPC, LOS, LOF, if Near end defect enabled by AISL_ON_LOPC (2×EE00.6), AISL_ON_LOS (2×EE00.5), AISL_ON_LOF (2×EE00.4), or when forced by user. AIS-P Path alarm indication signal. Near end defect; 2×EC30.1 propagated to PCS 2×0021.1 LOP-P Path loss of pointer. Nine Near end defect; 2×EC30.0 consecutive invalid pointers result in propagated to PCS loss of pointer detection. See Figure 33, page 47 for pointer state machine. 2×0021.0 LCD-P Path loss of code group delineation. Near end defect See Table 28, page 51. This is also reported to the far end if it persists for at least 3 ms. 2×EC31.2 2×0021.3 LOPC Loss of optical carrier alarm. This is Near end defect an input from the XFP module’s loss of signal output. The polarity can be inverted for use with other module types. This defect can be used independently or in place of LOS. 2×EC30.12 2×EF03.11 LOS The PMA circuitry detects a Loss Of Near end defect Signal (LOS) defect if the input signal falls below the assert threshold. Refer the PMA LOS section for more details. When a PMA LOS is declared the framer is held in reset to prevent it from looking for a frame boundary. 2×EC30.11 2×0021.6 SEF Severely errored frame. Generated Near end defect; 2×EC31.7 when device cannot frame to A1 A2 propagated to PCS pattern. SEF indicates synchronization process is not in the SYNC state, as defined by the state diagram of IEEE 802.3ae clause 50.4.2. LOF Generated when SEF persists for 3 ms. Terminated when no SEF occurs for 1 ms to 3 ms. Near end defect Force Bit Status Bit 2×0021.2 The AIS-L defect is only 2×EC30.3/2 processed and reported by ×0021.4 the WIS Receive process; it is never transmitted by the WIS Transmit process according to IEEE 802.3ae. 2×EC31.6 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 2×0021.11 2×0021.7 54 Functional Descriptions Table 30 • Defects and Anomalies (continued) Defect or Anomaly Description Type Force Bit Status Bit B1 PMTICK error count is nonzero BIP-N(S) - 32-bit near end section BIP error counter is nonzero. Near end anomaly 2×EC31.5 2×EF03.7 B2 PMTICK error count is nonzero BIP-N(L) - 32-bit near end line BIP error counter is nonzero. Near end anomaly 2×EC31.4 2×EF03.6 B3 PMTICK error count is nonzero BIP-N(P) - 32-bit near end path BIP Near end anomaly error counter is nonzero. 2×EC31.3 2×EF03.5 REI-L Line remote error indicator octet is nonzero. Far end BIP-N(L). Far end anomaly 2×EC31.8 2×EF03.4 REI-L PMTICK Line remote error indicator is error count is nonzero. Far end BIP-N(L). nonzero Far end anomaly 2×EC31.1 2×EF03.2 RDI-L Line remote defect indicator. Far end defect 2×EC30.2 2×0021.5 REI-P Path remote error indicator octet is nonzero. Far end BIP-N(P). Far end anomaly 2×EC31.9 2×EF03.3 REI-P PMTICK Path remote error indicator. Far end Far end anomaly error count is BIP-N(P). nonzero 2×EC31.0 2×EF03.1 UNEQ-P Unequipped path. Near end defect 2×EC31.15 2×EF03.10 Far end UNEQ-P Far end unequipped path. Far end defect 2×EC31.11 2×EF03.9 3.5.8 Interrupt and Interrupt Masking The VSC8486-04 generates interrupts for each defect and anomaly. The interrupts for the BIP error counts (B1, B2, and B3 counters) and the interrupts for the far end error counts (REI-L and REI-P) are generated when the PMTICK counters become nonzero. Mask enable bits propagate the interrupt pending event to the pins WIS_INTA and WIS_INTB. Each event can be optionally masked for each WIS_INTA/B pin. For each defect or anomaly defined in IEEE Standard 802.3ae, the VSC8486-04 supports the standard WIS register. In addition the VSC8486-04 supports another set of registers in the WIS Vendor Specific area. These registers provide a STATUS bit to indicate the current real-time status of the event, a PENDING bit to indicate if the STATUS bit has changed state, and two mask enable bits for each interrupt pin (WIS_INTA and WIS_INTB). The STATUS bit is set if and only if the interrupt currently exists. This STATUS bit does not latch. The defects and anomalies are constructed in a hierarchy such that lower order alarms are squelched when higher order events are detected. For more information about the dependencies between squelches and events, see the E-WIS interrupt registers, beginning with Table 169, page 142 and Table 100, page 119. 3.5.9 Overhead Serial Interfaces The VSC8486-04 includes provisions for off-chip processing of the critical SONET/SDH transport overhead 9-bit words through two independent serial interfaces. The transmit overhead serial interface VMDS-10298 VSC8486-04 Datasheet Revision 4.4 55 Functional Descriptions (TOSI) is used to insert 9-bit words into the transmit frames, and the receive overhead serial interface (ROSI) is used to recover the 9-bit words from the received frames. The interfaces each consists of three pins: a clock output, a frame pulse output, and a data input (Tx) /output (Rx). These I/O are LVTTL compatible for easy connection to an external device such as an FPGA. Note: Extended WIS TOSI and ROSI do not support path overhead. 3.5.9.1 Transmit Overhead Serial Interface (TOSI) The TOSI port enables the user to individually program 222 separate 9-bit words in the SONET/SDH overhead. The SONET/SDH frame rate is 8 kHz as signaled by the frame pulse (TFPOUT) signal. The TOSI port is clocked from a divided-down version of the WIS transmit clock made available on TCLKOUT. To provide a more standard clock rate, 9-bit dummy words are added per frame resulting in a clock running at one five-hundred-twelfth of the line rate or 19.44 MHz. For each 9-bit word, the external device indicates the desire to transmit that byte by using an enable indicator bit (EIB) that is appended to the beginning of the 9-bit word. If EIB = 0, the data on the serial interface is ignored for that overhead 9bit word. If EIB = 1, the serial interface data takes precedence over the value generated within the VSC8486-04. The first EIB bit should be transmitted by the external device on the first rising edge of TCLKOUT after TFPOUT, as illustrated in the following illustration. The data should be provided with the most significant bit (MSB) first. After reception of the TOSI data for a complete frame, the values are placed in the overhead for the next transmitted frame. Figure 36 • TOSI Timing Diagram TCLKOUT TFPOUT Padding Dummy Bits TDAIN A1 EIB A1 Bit 1 A1 Bit 2 A1 Bit 3 Some 9-bit words are error masks, such that the transmitted 9-bit word is the XOR of the TOSI 9-bit word and the pre-defined value within the chip if the EIB is enabled. This feature is best used for test purposes only. The order of the 9-bit word required by the TOSI port is summarized in the following table, where the number of registers is the number of bytes on the serial interface and the number of bytes is the number of STS channels on which the byte is transmitted. For H1 and H2 pointers, bytes 2 to 192 are concatenation indication bytes consistent with STS-192c frames. There are not 192 different point locations as in STS-192 frames. Table 31 • TOSI/ROSI Addresses Byte Name 9-Bit Word TOSI/ ROSI Byte Order Frame Boundary A1 0 1 192 Programmable byte that is identical for all locations Frame Boundary A2 1 1 192 Programmable byte that is identical for all locations Section Trace J0 2 1 1 Programmable byte Section Growth Z0 3 1 191 Programmable byte that is identical for all locations Number of Number Registers of Bytes Type VMDS-10298 VSC8486-04 Datasheet Revision 4.4 56 Functional Descriptions Table 31 • TOSI/ROSI Addresses (continued) Byte Name 9-Bit Word Dummy Byte TOSI/ ROSI Byte Order Number of Number Registers of Bytes Type 4 1 1 Programmable byte Section BIP-8 B1 5 1 1 TOSI inserts error mask; ROSI extracts XOR of B1 value and received data Orderwire E1 6 1 1 Programmable byte Section User Channel F1 7 1 1 Programmable byte Dummy Byte 8 1 1 Programmable bytes Section DCC 1 D1 9 1 1 Programmable byte Section DCC 2 D2 10 1 1 Programmable byte Section DCC 3 D3 11 1 1 Programmable byte 12 1 1 Programmable byte Dummy Byte Pointer 1 H1 13 1 1 Programmable byte affecting the first H1 byte Pointer 2 H2 14 1 1 Programmable byte affecting the first H2 byte Pointer Action H3 15 1 192 Programmable byte that is identical for all locations 16 1 1 Programmable byte 17 to 208 192 192 TOSI inserts error mask for each byte; ROSI extracts XOR of B2 value and received data for each byte Automatic Protection K1 Switching (APS) channel and Remote Defect Indicator (RDI) 209 1 1 Programmable byte Automatic Protection K2 Switching (APS) channel and Remote Defect Indicator (RDI) 210 1 1 Programmable byte Dummy Byte 211 1 1 Programmable byte Dummy Byte Line BIP-8 B2 Line DCC 4 D4 212 1 1 Programmable byte Line DCC 5 D5 213 1 1 Programmable byte Line DCC 6 D6 214 1 1 Programmable byte 215 1 1 Programmable byte Dummy Byte Line DCC 7 D7 216 1 1 Programmable byte Line DCC 8 D8 217 1 1 Programmable byte Line DCC 9 D9 218 1 1 Programmable byte 219 1 1 Programmable byte 220 1 1 Programmable byte Dummy Byte Line DCC 10 D10 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 57 Functional Descriptions Table 31 • TOSI/ROSI Addresses (continued) Byte Name 9-Bit Word TOSI/ ROSI Byte Order Line DCC 11 D11 221 1 1 Programmable byte Line DCC 12 D12 222 1 1 Programmable byte 223 1 1 Programmable byte Dummy Byte 3.5.9.2 Number of Number Registers of Bytes Type Synchronization Message S1 224 1 1 Programmable byte Growth 1 Z1 225 1 191 Programmable byte that is identical for all locations Growth 2 Z2 226 1 190/191 Programmable byte that is identical for all locations; dependent upon 2×EC40.12 STS-1 REI-L M0 227 1 1 Programmable byte STS-N REI-L M1 228 1 1 Programmable byte Orderwire 2 E2 229 1 1 Programmable byte Dummy Byte 230 1 1 Programmable byte Padding Dummy Bytes 231 to 269 39 No function Receive Overhead Serial Interface (ROSI) The ROSI port extracts the same 222 overhead 9-bit words from the SONET/SDH frame, and consists of the clock output (RCLKOUT), frame pulse output (RFPOUT), and data output (RDAOUT). The ROSI port is clocked from a divided-down version of the WIS receive clock, and is valid during in-frame conditions only. As with the TOSI port, 9-bit dummy words are provided each frame period resulting in a 19.44 MHz RCLKOUT frequency. For each 9-bit word, including the 9-bit dummy words, an extra ‘0’ bit is stuffed at the beginning of each byte so that the TOSI and ROSI clock rates are identical. The first stuff bit for each frame is transmitted by RDAOUT on the first rising edge of RCLKOUT after the frame pulse (RFPOUT). Since the Receive path overhead can be split across two frames, the VSC8486-04 buffers the overhead for an additional frame time so that a complete path overhead is presented. Table 31, page 56, outlines the order for each of the 9-bit words presented on the ROSI port. With the exception of the M0/M1 9-bit words, the extracted 9-bit words are from the first channel position. In place of parity and error 9-bit words, the VSC8486-04 outputs the result of an XOR between the calculated BIP and the received value. Therefore, a count of ones within each of the BIP 9-bit words should correspond with the internal error accumulators. The following figure shows the functional timing for the ROSI interface. The following illustration shows the functional timing of the ROSI port. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 58 Functional Descriptions Figure 37 • ROSI Timing Diagram RCLKOUT RFPOUT RDAOUT 3.5.10 Padding Dummy Bits ‘0’ Stuff A1 Bit 1 A1 Bit 2 A1 Bit 3 Pattern Generator and Checker The VSC8486-04 implements the square wave, PRBS31, and mixed-frequency test patterns as described in section 50.3.8 of IEEE Standard 802.3ae as well as the Test Signal Structure (TSS) and continuous identical digits (CID) pattern. The square wave pattern is selected asserting WIS_TEST_PAT_SEL (2×0007.3) while the generator is enabled by asserting WIS_TEST_PAT_GEN (2×0007.1). When WIS_TEST_PAT_SEL (2×0007.3) is deasserted the mixed frequency test pattern is selected. The square wave frequency is configured according to WIS_SQWV_LEN (2×0600.7:4). The WIS_TEST_PAT_ANA (2×0007.2) bit is used to enable the test pattern checker in the receive path. The checker does not operate on square wave receive traffic. Error counts from the mixed frequency pattern are presented in the SONET/SDH BIP-8 counters, B1_CNT (2×003C), B2_CNT (2×0039), and B3_CNT (2×003B). The VSC8486-04 supports the PRBS31 test pattern as reflected in PRBS31_SUPPORT (2×0008.1). The transmitter/generator is enabled by asserting WIS_TEST_PRBS_GEN (2×0007.4) while the receiver/checker is enabled by asserting WIS_TEST_PRBS_ANA (2×0007.5). As the mixed frequency/square wave test patterns have priority over the PRBS31 pattern, TEST_PAT_GEN (2×0007.1) must be disabled for the PRBS31 test pattern to be sent. Error counts from the PRBS31 checker are available in WIS_TEST_PAT_CNT (2×0009). This register does not roll over after reaching its maximum count and is cleared after every read operation. Two status bits are available from the PRBS checker. The PRBS_NZ (2×EC51.1) bit indicates whether the error counter is nonzero. The PRBS_SYNC (2×EC51.0) bit if asserted indicates that checker is synchronized and actively checking received bits. For test purposes, the PRBS generator can inject single bit errors. By asserting PRBS_INJ_ERR (2×EC50.1), a single bit error is injected, resulting in three bit errors being detected within the checker. The value of three comes from the specification, which indicates one error should be detected for each tap within the checker. 3.5.11 Protocol Implementation Conformance Statement The device supports all mandatory options and functions given in the Protocol Implementation Conformance Statement (PICS) in section 50.6 of IEEE Standard 802.3ae. Of the “Major capabilities/options,” the device supports the optional MDIO and PRBS31 Test-pattern mode, but does not support the optional XSBI compatible interface. 3.6 Physical Coding Sublayer The physical coding sublayer (PCS) is defined in IEEE Standard 802.3ae Clause 49. The PCS is responsible for transferring data between the XGMII or XGXS clock domain and the WIS/PMA clock domain. In addition, the PCS encodes and scrambles the data for efficient transport across the given medium. The following illustration provides a block diagram of the PCS including how it glues the XGMII/XGXS blocks to the WIS/PMA blocks and shows the alternate paths used by the E-PCS block which is discussed later. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 59 Functional Descriptions Figure 38 • PCS Block Diagram Tx PCS and EPCS 64 LAN 64b/66b Encoder and Scrambler 66 FIFO 66 64 66 WIS / PMA XGMII / XGXS ELAN Firecode Encoder 66:64 GearBox Rx PCS and EPCS LAN 64b/66b Decoder and Descrambler 64 66 66:64 GearBox FIFO 64 66 ELAN Firecode Decoder 3.6.1 Control Codes The VSC8486-04 supports the use of all control codes and ordered sets necessary for 10 GbE and 10 GFC operation. The following table lists the control characters, notation, and control codes. Table 32 • Control Codes Control Character Notation1 XGMII Control Code Idle /I/ 0×07 0×00 K28.0 or K28.3 or K28.5 Start /S/ 0×fb Encoded by block type field K27.7 Terminate /T/ 0×fd Encoded by block type field K29.7 Error /E/ 0×fe 0×1e K30.7 Sequence ordered_set /Q/ 0×9c Encoded by block type field plus O code Reserved 0 0×1c 0×2d K28.0 0×3c 0×33 K28.1 /R/ Reserved 1 10-G BASE-R 10-G BASE-R Control Code O Code 0×0 8b/10b Code2 K28.4 Reserved 2 /A/ 0×7c 0×4b K28.3 Reserved 3 /K/ 0×bc 0×55 K28.5 Reserved 4 0×dc 0×66 K28.6 Reserved 5 0×f7 0×78 K23.7 0×5c Encoded by block type field plus O code Signal ordered_set3 /Fsig/ 0×F VMDS-10298 VSC8486-04 Datasheet Revision 4.4 K28.2 60 Functional Descriptions 1. 2. 3. The codes for /A/, /K/ and /R/ are used on the XAUI interface to signal idle. They are not present on the XGMII when no errors have occurred, but certain bit errors cause the PHY XS to send them on the XGMII. For information only. The 8b/10b code is specified in Clause 36. Usage of the 8b/10b code for 10 Gbps operation is specified in Clause 4. Reserved for INCITS T11 - 10 GFC µs. 3.6.2 Transmit Path In the transmit direction, the PCS accepts data from the XGMII or XGXS interface, depending on PCS_XGMII_SRC (3×8005.8), which has its own clock domain, and transfers the data into the PMA transmit clock domain. Clock rate disparity compensation takes place in a FIFO. The overflow/underflow status bits for the FIFO can be monitored at (3×8009.1:0). Based on the FIFO’s fill level, idle characters are added or removed as needed. Two counters accumulate the number of added and removed idle characters, TX_IDLE_ADD (3×800C) and TX_IDLE_DROP (3×800D). These counters can be used to gain some insight into the clock rate disparity. Once in the PMA clock domain, the characters are checked for validity. The occurrence of invalid characters cause the PCS_TXCHARERR_CNT (3×8014) register to increment. Likewise the occurrence of an invalid sequence causes the PCS_TXSEQERR_CNT (3×8012) register to increment. Transmitted data is handled according to IEEE Standard 802.3ae Clause 49. The characters are then processed in a two-step manner. First the 64-bits are encoded and a 2-bit header is calculated to form a single 66-bit block. The two header bits are used for block delineation and classification. The only valid header codes are ‘01’ to indicate a payload of all data octets and ‘10’ to indicate the presence of one or more control characters within the payload. The second step is to maintain a DC balanced signal on the serial line, thus the 64-bit encoded payload is scrambled using a self-synchronizing scrambler that implements the polynomial G(x) = 1 + x39 + x58. The header bits are not scrambled as they are already DC balanced. For debug purposes, the scrambler can be disabled by deasserting SCR_DIS (3×8005.9). The 66-bit blocks are then passed to the PMA through a 66:64 gearbox. The gearbox merely feeds the 66-bit data into the WIS/PMA’s 64-bit data path. 3.6.3 Receive Path In the receive direction, the PCS accepts data from the WIS/PMA block and reformats it for transmission to the XGMII or XGXS interface. Because of the data path width mismatches between the WIS/PMA and the PCS, a 64:66 gearbox is needed. The gearbox also performs block synchronization/alignment based upon the 2-bit synchronization header. When the receive logic receives 64 continuous valid sync headers the BLOCK_LOCK (3×0021.15) bit is asserted. This bit is a latch-low bit; therefore, a second read of the bit returns the current status. If 16 invalid block sync. headers are detected within a 125 µs period, the PCS_HIGHBER (3×0021.14) bit is asserted. This bit is a latch-high bit, and therefore a second read of the bit returns the current status. Once block synchronization is achieved, the occurrence of errored blocks are accumulated in the PCS_ERRORED_BLOCKS (3×0021.7:0) counter. An errored block is one that has one or more of the following defects: • • • • • The sync field has a value of 00 or 11. The block type field contains a reserved value. Any control character contains an incorrect value. For more information about control code values, see Table 32, page 60. Any O code contains an incorrect value. For more information about control code values, see Table 32, page 60. The set of eight XGMII characters does not have a corresponding block format shown in the following illustration. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 61 Functional Descriptions Figure 39 • 64b/66b Block Formats Input Data Sync Bit Position: 0 Block Payload 1 2 65 Data Block Format: D0 D1 D2 D3/D4 D5 D6 D7 01 D0 D1 D2 D3 D4 D5 D6 D7 Block Type Field Control Block Formats: C0 C1 C2 C3/C4 C5 C6 C7 10 0x1e C0 C1 C2 C3 C0 C1 C2 C3/O4 D5 D6 D7 C0 C1 C2 C3/S4 D5 D6 D7 10 0x2d C0 C1 C2 C3 10 0x33 C0 C1 C2 C3 O0 D1 D2 D3/S4 D5 D6 D7 10 0x66 D1 D2 D3 O0 O0 D1 D2 D3/O4 D5 D6 D7 10 0x55 D1 D2 D3 O0 O4 S0 D1 D2 D3/D4 D5 D6 D7 10 0x78 D1 D2 D3 D1 O0 D1 D2 D3/C4 C5 C6 C7 10 0x4b T0 C1 C2 C3/C4 C5 C6 C7 10 0x87 D0 T1 C2 C3/C4 C5 C6 C7 10 0x99 D0 D2 C1 D3 C4 O4 D4 O0 C5 C6 C7 D5 D6 D7 D5 D6 D7 D5 D6 D7 D5 D5 D6 D6 D7 D7 C4 C5 C6 C7 C2 C3 C4 C5 C6 C7 C2 C3 C4 C5 C6 C7 C4 C5 C6 C7 C4 C5 C6 C7 C5 C6 C7 C6 C7 D0 D1 T2 C3/C4 C5 C6 C7 10 0xaa D0 D1 D0 D1 D2 T3/C4 C5 C6 C7 10 0xb4 D0 D1 D2 C3 D0 D1 D2 D3/T4 C5 C6 C7 10 0xcc D0 D1 D2 D3 D0 D1 D2 D3/D4 T5 C6 C7 10 0xd2 D0 D1 D2 D3 D4 D0 D1 D2 D3/D4 D5 T6 C7 10 0xe1 D0 D1 D2 D3 D4 D5 D0 D1 D2 D3/D4 D5 D6 T7 10 0xff D0 D1 D2 D3 D4 D5 C7 D6 Valid blocks then recover their original payload data by being descrambled. The descrambler is the same polynomial as used by the transmitter. For test purposes, the descrambler can be disabled by asserting DSCR_DIS (3×8005.10). The data is checked for valid characters and sequencing. The occurrence of invalid characters causes the RXCHARERR_CNT (3×8015) to increment, while the occurrence of a sequence error causes the RXSEQERR_CNT (3×8011) to increment. The data is passed from the PMA/WIS clock domain to the XGMII or XGXS clock domain through a FIFO. The overflow/underflow status bits for the FIFO are reflected in RX_OFLOW (3×8009.3) and RX_UFLOW (3×8009.2). Based upon the FIFO’s fill level, idle characters are added or removed as needed. RX_IDLE_ADD (3×800E) and RX_IDLE_DROP (3×800F) accumulate the number of added and dropped idle characters at this interface. 3.6.4 PCS Test Modes The PCS block offers all of the standard defined test pattern generators and analyzers. In addition the VSC8486-04 supports a 64-bit static user pattern and the optional PRBS31 pattern. Two error counters are available. Each are saturating counters and cleared upon a read operation. The first, PCS_ERR_CNT (3×002B), is located in the IEEE Standard area while the 32-bit, PCS_VSERR_CNT (3×8007-3×8008), is located in the vendor specific area. The IEEE specification defines two test pattern modes, a square wave generator and a pseudo-random test pattern. The square wave generator is enabled by first selecting the square wave pattern by asserting PCS_TSTPAT_SEL (3×002A.1) then enabling the test pattern generator PCS_TSTPAT_GEN (3×002A.3). The period of the square wave can be controlled in terms of bit times by writing to PCS_SQPW (3×8004) There is no associated square wave checker within the VSC8486-04. The pseudo-random test pattern is selected by deasserting PCS_TSTPAT_SEL (3×002A.1). The pseudorandom test pattern contains two data modes. When PCS_TSTDAT_SEL (3×002A.0) is deasserted, the pseudo-random pattern is a revolving series of four blocks with each block 128-bits in length. The four VMDS-10298 VSC8486-04 Datasheet Revision 4.4 62 Functional Descriptions blocks are the resultant bit sequence produced by the PCS scrambler when pre-loaded with the following seeds: • • • • PCS_SEEDA (3×0022-3×0025) PCS_SEEDA invert PCS_SEEDB (3×0026-3×0029) PCS_SEEDB invert The pattern generator is enabled by asserting PCS_TSTPAT_GEN (3×002A.3), while the analyzer is enabled by asserting PCS_TSTPAT_ANA (3×002A.2). Errors are accumulated in the clear-on-read saturating counter, PCS_ERR_CNT (3×002B). In pseudo-random pattern mode, the error counter counts the number of errored blocks. Support for the optional PRBS31 pattern is indicated by PCS_PRBS31_ABILITY (3×0020.2) whose default is high. The PRBS31 test generator is selected by asserting PCS_PRBS31_GEN (3×202A.4) while the checker is enabled by asserting PCS_PRBS31_ANA (3×202A.5). IEEE standards specify that the error counter should increment for each linear feedback shift register (LFSR) tap that a bit is in error. Therefore, a single bit error increments the counter by 3 as there are three taps in the PRBS31 polynomial. The user defined 64-bit static pattern can be written to PCS_USRPAT (3×8000-3×8003) and enabled by asserting PCS_USRPAT_ENA (3×8005.0) and PCS_TSTPAT_GEN (3×002A.3). 3.7 Extended Physical Coding Sublayer The VSC8486-04 provides an optional Extended PCS (E-PCS) mode to improve link quality (BER), provide a supervisory channel, and monitor the error rate at the PHY level. The E-PCS feature utilizes the frame format specified in the Common Electrical I/O Protocol (CEI-P) document created as an Implementation Agreement (IA) within the Optical Network Forum’s (OIF). The CEI-P maintains a similar EMI spectrum as that generated by a standard PCS. The E-PCS mode operates at the same line rate as PCS and therefore does not require any special clocks or changes to the PMD layer. When enabled, E-PCS mode provides a net electrical coding gain (NECG) of approximately 2.5 dB. For example, a link operating without E-PCS at a BER of 10-10 would operate at a BER of better than 10-16 with E-PCS. Electronic dispersion compensated (EDC) applications produce burst errors due to the commonly used decision feedback equalizer (DFE) architecture. DFEs typically used in 10GBASE-LRM produce burst errors that are typically the same bit length as the number of taps. E-PCS mode is capable of correcting burst-errors up to 7 bits in length, which is a common DFE tap size. E-PCS mode is supported when the VSC8486-04 device is configured in LAN mode only, not in WAN mode. 3.7.1 Autonegotiation The VSC8486-04 can be configured to autonegotiate between standard and extended PCS modes or can be controlled manually. The AUTONEG input pin, if set low, places the device into manual mode, meaning that E-PCS is enabled only when the EPCS input pin is set high. Both the AUTONEG and EPCS pins can be overridden by software by setting the AUTONEG_OVR (1×E605.13) and EPCS_OVR (1×E605.11) bits. Once overridden, the autonegotiation and E-PCS states are dependent upon the settings of AUTONEG_FORCE (1×E605.12) and EPCS_FORCE (1×E605.10). In autonegotiation mode the device transmits in the format defined by the EPCS mode after reset or power-up. The high-speed received data is processed by both the PCS and the E-PCS. If the received format is different than the transmitted format, the device switches the format to match the received data. During a loss of lock (LOL), the device continues to transmit in the currently negotiated format, but VMDS-10298 VSC8486-04 Datasheet Revision 4.4 63 Functional Descriptions changes to a new format if the receiver detects one. The following table describes the logic of the EPCS and AUTONEG bits. E-PCS Logic Table 33 • 3.7.2 EPCS AUTONEG Transmission Format 0 0 Standard PCS. 0 1 Device begins transmitting in standard PCS format, but switches to E-PCS format if and only if the receiver detects E-PCS format. 1 0 Extended PCS. 1 1 Device begins transmitting in E-PCS format, but switches to standard PCS if and only if the receiver detects PCS data. Frame Format The frame format for E-PCS mode is given in Section 4.2 of the OIF CEI-P. The two-bit overhead of the 64B/66B PCS frame is replaced with a single overhead bit, thereby freeing up one bit per PCS frame. By accumulating these saved bits over 24 PCS frames, there are 24 new bits available to implement the supervisory channel and FEC firecode. Seventeen of these bits (OH[19:3]) are used for framing, scrambler synchronization, error detection, and forward error correction. Three of these bits (OH[0:2]) are used to optionally determine link state and assist in error detection and forward error correction. Four of these bits (S[0:3]) are used as a supervisory channel. Figure 40 • E-PCS Frame Format O rd e r o f T ra n s m i s s i o n F0 O rd e r o f T ra n s m is s io n F 1564 F 65 F 195 6 4 P a yl o a d b i ts T 6 4 P a yl o a d b i ts T 6 4 P a yl o a d b i ts T 6 4 P a yl o a d b i ts T 6 4 P a yl o a d b i ts T 6 4 P a yl o a d b i ts T 6 4 P a yl o a d b i ts T 6 4 P a yl o a d b i ts T 6 4 P a yl o a d b i ts T 6 4 P a yl o a d b i ts T 6 4 P a yl o a d b i ts T 6 4 P a yl o a d b i ts T 6 4 P a yl o a d b i ts T 6 4 P a yl o a d b i ts T 6 4 P a yl o a d b i ts T 6 4 P a yl o a d b i ts T 6 4 P a yl o a d b i ts T 6 4 P a yl o a d b i ts T 6 4 P a yl o a d b i ts T 6 4 P a yl o a d b i ts T 6 4 P a yl o a d b i ts T 6 4 P a yl o a d b i ts T 6 4 P a yl o a d b i ts T 6 4 P a yl o a d b i ts S [0 ] S [1 ] S [2 ] S [3 ] O H [1 9 :0 ] F 1583 F EC [19:0] 3.7.3 F 130 T XOR 'b 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Link State Machines The Rx and Tx Link training State Machines (LSMs) are compliant with the CEI-P specification. TX_LSM (3×E604.7:5) reports the current state of the Tx Link State Machine. This state information can be used for diagnostics or monitoring of link training success. By default the Tx_LSM_ENA (3×E602.6) bit is deasserted, meaning that the Tx LSM skips the training sequence and handshake and moves directly to the idle state. If the VSC8486-04 is used in a system where training is desired, the Tx_LSM_ENA (3×E602.6) bit must be asserted during initial configuration. If Tx_LSM_ENA (3×E602.6) is asserted, the Tx LSM can be forced to restart and retrain the link by asserting TX_LSM_RESTART (3×E602.5). This bit has no value when operating with TX_LSM_ENA (3×E602.6) deasserted. Although intended for applications with multiple clients, the TX_LSM_HOLD (3×E602.4) is available for payload synchronization purposes. The TX_LSM_TIMEOUT (2×E603) value, also referred to as D1 in the CEI-P VMDS-10298 VSC8486-04 Datasheet Revision 4.4 64 Functional Descriptions specification, is used to progress the LSM from the training state to the operational state in the case of a simplex (uni-directional) link application. Within the receive link state machine the current state is reflected in RX_LSM (3×E605.2:0). The criteria for moving among Rx LSM states is based upon consecutive state indications being stable for a number of frames. This number, also known as the accepted value, is set in RX_LSM_R1 (3×E602.3:0) in units of CEI-P frames. The link’s status of in-frame or out-of-frame is indicated in RX_IN_FRM (3×E605.4). The following illustration shows the E-PCS Framing State Diagram. The in-frame condition occurs when the number of consecutive E-PCS frames without parity errors (M2) exceeds 4. The out-of-frame condition occurs when the number of consecutive frames with parity errors (M1) exceeds 15. Figure 41 • E-PCS Framing State Diagram Good FEC Check Parity in M2 Consecutive Frames Out-OfFrame In-Frame Bad FEC Check Parity in M1 Consecutive Frames 3.7.4 FEC Controls and Feedback The forward error correction (FEC) code also known as the Firecode, occupies the last 20 bits within the E-PCS frame. Two counters are used to provide a rough indication of the link quality. The RX_FIXED_CNT (3×E605) frame counter displays the number of E-PCS frames in which errors were corrected over the previous one second. The RX_UNFIXED_CNT (3×E606) frame counter increments upon each E-PCS frame where the number of errors exceed the Firecode algorithm, namely an error burst greater than 7 bits per frame. The user must assert LATCH_N_CLR_CNT (3×E601.1) to latch the internal counter values into the MDIO accessible registers and clear the internal counters. For purposes of BER characterization, the error correction mechanism can be disabled by deasserting EPCS_CORR (3×E601.2). By default, error correction is enabled. 3.7.5 Supervisory Channel The four supervisory channel bits per E-PCS frame can be set for two different configurations. The first configuration involves sending static values as defined in TX_SCHAN (3×E601.7:10). These static bits are enabled by TX_SCHAN_EN (3×E601.6). The second configuration, which is the default, involves sending a 136-bit repeating message in a bit-wise fashion utilizing S[0]. In this mode, S[3:1] are automatically set to zero. The 136-bit message contains 8-bits of framing (0×7E) and a 128-bits of user programmable area. The intended 128-bit message is programmed in TX_MSG (3×E60A–3×E611). Once the message is programmed, the user must assert the TX_NEW_MSG (3×E601.0) bit. This action latches the 128-bit message into internal registers, which are serialized and repetitively streamed out in the S[0] bit. In the received direction, the S[0] bit is monitored for the framing byte (0×7E) to appear 136-bits apart, which is defined as frame alignment. After alignment, the incoming message bits are written to RX_MSG (3×E612-3×E619). Whenever the previous message and the current message differ. the RX_NEW_MSG (3×E604.3) bit asserts. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 65 Functional Descriptions It is important to note that with a simplistic framing algorithm based upon a single byte (0×7E) occurring repeatedly 136-bits apart, any message containing the 0×7E byte can cause a false frame alignment. In such a case software must reconstruct the intended message. 3.8 XGMII Extender Sublayer The PHY XS block interfaces from the four-lane 10 Gbps attachment unit interface (XAUI) to the PCS. Each AC-coupled lane has 8b/10b encoded data running at 3.125 Gbps (3.1875 Gbps for 10 GFC). 3.8.1 XAUI Receiver The XAUI interface features on-chip terminations of 100 Ω for all XAUI inputs, as shown in the following illustration. Figure 42 • XAUI Input Simplified Schematic Equalization Control 0.1 µF XRX[3:0]P + VDD12X 50 Ω 50 Ω 0.1 µF 3.8.2 XRX[3:0]N _ XAUI Loss of Signal Each XRX[3:0]P/N channel's input buffer has a loss of signal (LOS) detection that can be accessed through the MDIO registers (4×8012.3:0). For each XAUI lane, a loss of signal level status is set low when the differential signal peak-to-peak swing exceeds the global deassert threshold level for that lane. The XAUI LOS assert and deassert thresholds cannot be set independently. Two bits in register (4×8011.3:2) are used to program four separate deassert and assert level ranges, as shown in the following table. For each lane, a high indicates that the signal amplitude is below the assert threshold level. The LOS status bits are considered undefined when the signal swing is between the deassert threshold and assert threshold. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 66 Functional Descriptions The approximate upper (deassert) and lower (assert) threshold levels are shown in the following table. Table 34 • LOS Assert/ Deassert Threshold Range (4×8011.3:2) 3.8.3 XAUI Lane LOS Threshold Summary Assert Threshold (mV) Deassert Threshold (mV) 00 (default) 50 175 Lane 3; bit 3 Lane 2; bit 2 Lane 1; bit 1 Lane 0; bit 0 For each lane: 1: LOS declared 0: LOS not declared 01 60 185 Lane 3; bit 3 Lane 2; bit 2 Lane 1; bit 1 Lane 0; bit 0 For each lane: 1: LOS declared 0: LOS not declared 10 70 195 Lane 3; bit 3 Lane 2; bit 2 Lane 1; bit 1 Lane 0; bit 0 For each lane: 1: LOS declared 0: LOS not declared 11 80 205 Lane 3; bit 3 Lane 2; bit 2 Lane 1; bit 1 Lane 0; bit 0 For each lane: 1: LOS declared 0: LOS not declared LOS Status (4×8012.3:0) Remarks XAUI Receiver Equalization Incoming data on the XRX[3:0]P/N inputs typically contains a substantial amount of intersymbol interference (ISI) or deterministic jitter, which reduces the ability of the receiver to recover data without errors. Each XAUI lane includes a programmable equalizer circuit designed to effectively reduce the ISI resulting from copper cables or long printed circuit board (PCB) traces. XAUI lane equalization settings are programmed by writing to the appropriate bits in register LANE_EQ (4×8010.15:0) as shown in the following table. Table 35 • XAUI Receiver Lane Equalization Setting EQ Control Bits Per Lane EQ Setting Per Lane Remarks Lane 3 Lane 2 Lane 1 Lane 0 0000: 0.0 dB (default) 0001: 1.4 dB 0010: 2.2 dB 0011: 2.8 dB 0100: Not defined 0101: 4.5 dB 0110: 5.4 dB 0111: 6.1 dB 1000: Not defined 1001: 6.2 dB 1010: 7.1 dB 1011: 7.8 dB 1100: Not defined 1101: 10.0 dB 1110: 10.8 dB 1111: 11.6 dB Optimum XAUI lane equalization settings are application specific. Typically, micro-strip traces require less equalization to compensate because of lower losses than stripline construction. Normally, no equalization adjustment is required for XAUI tracks less than approximately 3 inches in FR-4 (microstrip or stripline). Beyond 3 inches, some amount of equalization is recommended for best performance. (4×8010.3:0) (4×8010.7:4) (4×8010.11:8) (4×8010.15:12) VMDS-10298 VSC8486-04 Datasheet Revision 4.4 67 Functional Descriptions 3.8.4 XAUI Clock and Data Recovery At the XAUI receiver, each channel contains an independent clock recovery unit (CRU) that accepts the selected serial input source, extracts the high-speed clock, and retimes the data. Each CRU automatically locks on to data and, if the data is not present, it automatically locks to the reference clock. The clock recovery unit must perform bit synchronization, which occurs when the CRU locks onto and properly samples the incoming serial data. 3.8.5 XAUI Code Group Synchronization The retimed serial data stream is delineated into 10-bit code groups by the deserializer. A special 7-bit comma pattern, 0011111xxx or 1100000xxx (where x is don’t care), is recognized by the receiver as a 10bit code group boundary. Character, or code group, alignment occurs when the deserializer synchronizes the 10-bit code group boundary to a comma pattern in the incoming serial data stream. If the receiver identifies a comma pattern in the incoming data stream that is misaligned to the current framing boundary and the receiver is in LOS state, the receiver re-synchronizes the recovered data to align the data to the new comma pattern. Re-synchronization ensures that the comma character is output on the internal 10-bit bus so that bits 0 through 9 equal 0011111xxx or 1100000xxx. If the comma pattern is aligned with the current framing boundary, then the re-synchronization does not change the current alignment. The detection of a series of consecutive 10-bit code group violations is the mechanism by which loss of synchronization, LANE_SYNC (4×0018.3:0), is declared by the XAUI receiver. The loss of synchronization condition is cleared by the detection of a series of comma characters that are properly aligned on code group boundaries. For additional information, see IEEE Standard 802.3ae Clause 48, Figure 48-7 and the following illustration. Figure 43 • LOS State Diagram Any Comma RESETN or SDET LOW LOS Invalid Code Group Aligned Comma COM DET1 Invalid Code Group Aligned Comma COM DET2 Invalid Code Group COM DET3 Invalid Code Group Aligned Comma Invalid Code Group Invalid Code Group SYNC4 Three Consecutive Valid Code Groups SYNC3 Invalid Code Group SYNC2 Three Consecutive Valid Code Groups SYNC1 Three Consecutive Valid Code Groups Comma detection is enabled only when in the loss of synchronization (LOS) state rather than at all times. This is desirable to prevent incorrect character realignment due to the appearance of false commas, resulting from single-bit errors. 3.8.6 XAUI Lane Deskew XAUI lane skew occurs due to the skew between channels of a XAUI transmitter and the skew accumulated across the transmission medium. The VSC8486-04 can deskew up to 63-bit periods of lane-to-lane skew by using elastic buffers. XAUI channel lane deskew is performed by detecting the alignment character /A/ on all four lanes. The PHY XS LANES_ALIGNED bit (4×0018.12), when read as one, indicates all lanes are aligned. For inter-channel alignment to occur, the ||A|| ordered set consisting of four /A/ code groups must appear, one /A/ on each of the four XAUI lanes. This provides a unique synchronization point across the four serial data streams, which are used to align the received channels. Alignment status is governed by the VMDS-10298 VSC8486-04 Datasheet Revision 4.4 68 Functional Descriptions reception of ||A|| ordered sets across the inputs, as shown in the following loss of alignment (LOA) state diagram. Figure 44 • LOA State Diagram Aligned ||A|| RESETN or LOS LOA Deskew Error Aligned ||A|| ALIGN DET1 Deskew Error Aligned ||A|| ALIGN DET2 Deskew Error Deskew Error Notes: Deskew error mean simultaneous detection of /A/ on at least one, but fewer than four lanes. Aligned ||A|| Deskew Error ALIGN4 Aligned (||A||) means simultaneous detection of /A/ on all four changes. ALIGN DET3 Deskew Error ALIGN3 Aligned ||A|| Deskew Error ALIGN2 Aligned ||A|| ALIGN1 Aligned ||A|| Successive synchronization points must be separated by at least 170 bit periods in order for up to 63 bit periods of lane to lane skew to be corrected unambiguously. An IEEE compliant source of XAUI data provides a minimum spacing between sync points of 17 code groups, or 170 bit periods (at least 16 other IDLE code groups must occur between consecutive occurrences of ||A||). The alignment mechanism is always enabled when code group synchronization is attained on all four channels. 3.8.7 10b/8b Decoder The 10-bit code group from the deserializer is decoded in the 10b/8b decoder, which outputs the data and control bits to the physical coding sublayer (PCS). If the 10-bit code group does not match a valid code, a code group error is generated that increments the code group error counter GRPERR_CNT_LSW/MSW (4×8003/4×8004). Similarly, if the running disparity of the code group does not match the expected value, a disparity error is generated that increments a running disparity error counter DISPERR_CNT_LSW/MSW (4×8006/4×8007). 3.8.8 8b/10b Encoder and Serializer Each channel contains an 8b/10b encoder that translates 8-bit data fed internally from the PCS block into a 10-bit code word. This data is then routed into a multiplexer that serializes the word, using the synthesized transmit clock. The most significant bit of the 10-bit data is transmitted first. Each channel has a serial output port, XTX[3:0]P/N, which consists of a differential XAUI output buffer operating at 3.125 Gbps (3.1875 Gbps for 10 GFC). 3.8.9 XAUI Transmitter On the XAUI PHY transmit side (XTX[3:0]P/N), each polarity of the CML-type output driver is backterminated with 50 Ω to VDDA12, providing a 100 Ω differential output impedance. 3.8.10 XAUI Transmitter Pre-Emphasis The XAUI output stages include programmable peaking of the transmitted signal for each lane called preemphasis. The following illustration shows the pre-emphasis waveform definition. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 69 Functional Descriptions Figure 45 • XAUI Output Differential Voltage with Pre-emphasis De-emphasis level = 20*Log10(Vdiffnom/Vdiffde-emp) dB XTXnP Vdiffnom Vdiffde-emp XTXnN DATA ---> 1 1 0 0 When used, transmit pre-emphasis causes the XAUI transmitter signals to be shaped to mitigate skin effect distortion, as shown in the preceding illustration. When signal pre-emphasis is employed, the effects of pre-distortion and skin effect distortion offset each other, and a higher quality waveform results at the receiving device. XAUI lane pre-emphasis settings are programmed by writing to the appropriate bits in XAUI_PE_CFG (4×8011), as shown in the following table. Optimum XAUI lane pre-emphasis settings are applicationspecific. Normally no pre-emphasis adjustment is required for XAUI tracks less than approximately 5 inches in FR-4 (microstrip or stripline). Beyond about 5 inches, some amount of pre-emphasis is recommended for best performance. Table 36 • 3.8.11 XAUI Transmitter Lane Pre-emphasis Setting Pre-emphasis Control Bits Pre-emphasis Setting Per Lane Lane 3 (4×8011.5:4) 00: 0.0 dB (default) Lane 2 (4×8011.8:7) 01: 2.5 dB Lane 1 (4×8011.11:10) 10: 6.0 dB Lane 0 (4×8011.14:13) 11: 12.0 dB XAUI Transmitter Programmable-Output Swing All XAUI output lanes include two peak-to-peak voltage swing settings. Asserting HS_ENA (4×8011.1) increases the output swing on all lanes by approximately 20% over the default output swing. 3.8.12 XGMII Tx Input Interface The VSC8486-04 expects to receive a continuous stream of data and control characters from the MAC or 10 GFC equivalent at the XGMII input. The XGMII interface is organized into four groups of eight data VMDS-10298 VSC8486-04 Datasheet Revision 4.4 70 Functional Descriptions bits (octet) and one control bit. Octets originating from a MAC device are received on TXD[31:0] in octetstriped fashion with the first octet appearing on TXD[7:0] (lane 0), the second on TXD[15:8] (lane 1), and so forth. Within the octets, bit ordering is set so that bit 0 of a serial bit stream appears on TXD0, bit 1 appears on TXD1, and so forth. Within each octet, the lowest-numbered bit (bit 0 in the first octet, bit 8 in the second octet, etc.) is considered the LSB. XGMII data is latched into the VSC8486-04 on both the rising and falling edges of TXCLK, which serves as a timing reference for the transfer of TXD[31:0] and TXC[3:0] across the XGMII interface. TXCLK is 156.25 (159.375) MHz clock, ±100 ppm. The XGMII interface follows the high-speed transceiver logic (HSTL) electrical specifications for a 1.5 V supply voltage, as specified in EIA/JESD8-6 for Class I output buffers. The HSTL inputs are designed to function with or without termination. For the specifications and timing diagrams, see XGMII Specifications, page 198. Simplified diagrams of the XGMII input and output structures are illustrated in the following illustration. Figure 46 • XGMII Input Simplified Schematic VDDHTL TXD[31:0] TXCLK TXC[3:0] PRE-AMP AMP + LEVEL SHIFT CORE HVREF INTERNAL REFERENCE GENERATOR 3.8.13 XGMII Rx Output Interface The VSC8486-04 provides a continuous stream of data and control characters to the MAC or 10GFC equivalent on its XGMII outputs. The XGMII interface is organized into four groups of eight data bits (octet) and one control bit. Octets originating from the PCS block are transmitted on RXD[31:0] in octet striped fashion, with the first octet appearing on RXD[7:0] (lane 0), the second on RXD[15:8] (lane 1), and so forth. Within the octets, bit ordering is such that bit 0 of a serial bit stream appears on RXD0, bit 1 appears on RXD1, and so forth. Within each octet, the lowest-numbered bit (bit 0 in the first octet, bit 8 in the second octet, and so forth.) is considered the LSB. XGMII data is latched to the output of the VSC8486-04 on both rising and falling edges of RXCLK, which serves as a timing reference for the transfer of RXD[31:0] and RXC[3:0] across the XGMII interface. The RXCLK output is 156.25 MHz (159.375 MHz) ±100 ppm. The XGMII interface follows the high-speed transceiver logic (HSTL) electrical specifications for a 1.5 V supply voltage, as specified in the EIA/JESD8-6 for Class I output buffers. The HSTL outputs are designed to function with or without termination and swing from the ground rail to the power supply rail without termination. For more information about specifications and timing diagrams, see XGMII Specifications, page 198. For more information about the simplified diagrams of the XGMII output structures, see the following diagram. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 71 Functional Descriptions Figure 47 • XGMII Output Structure and Termination VDDHTL P-Buffer CORE CONTROL and LEVEL SHIFT RXD[31:0] RXC[3:0] RXCLK N-Buffer GND GND Note: During normal operation, simultaneous switching output (SSO) noise generated inside the XGMII block may be higher than expected. SSO noise impairs XGMII output at the output buffers, resulting in apparently high jitter and violation of setup and hold times. However, the clock and data signals are actually moving in the same direction when power supplies fluctuate, which happens with SSO injection. Because clock and data are tracking each other, the setup and hold times for every individual clock cycle maintain a tight relationship. Specified setup and hold times will be met when ripple noise from the external power supply for HSTL logic is kept under 30 mV and clock and the data trace lengths are within 7 cm. For more information about TXCLK and TXCLK timing parameters, see Table 310, page 199. 3.9 MDIO Serial Interface The VSC8486-04 contains a management data input/output (MDIO) interface, as specified in IEEE Standard 802.3ae Clause 45. This section provides an overview of the operation of the MDIO interface. For more information, see IEEE Standard 802.3ae Clause 45. 3.9.1 MDIO Interface Operation The operational sublayers within the device are individually known as MDIO-manageable devices (MMDs). Using the PRTAD[4:0] pins, the station management entity (STA) can access up to 32 PHYs. Using the 5-bit DEVAD field within the management frame format, up to 32 MMDs can be addressed in each PHY. The MDIO-manageable device addresses are shown in the following table. Table 37 • MDIO-Manageable Device Addresses Device Address MMD Name 0 Reserved 1 PMA 2 WIS 3 PCS 4 PHY XS 5 DTE XS (not implemented) 6:29 Reserved VMDS-10298 VSC8486-04 Datasheet Revision 4.4 72 Functional Descriptions Table 37 • MDIO-Manageable Device Addresses (continued) Device Address MMD Name 30 Vendor-specific name for twowire serial CPU interface 31 Vendor specific name The management frame format supports indirect addressing to provide more accessible register space within each MMD. For more information, see Figure 48, page 74. The management frame field structure is shown in the following table. Table 38 • Management Frame Format for Indirect Register Access Management Frame Fields Frame PRE ST OP PRTAD DEVAD TA Address/Data Idle Address 1...1 00 00 PPPPP EEEEE 10 AAAAAAAAAAAAAAAA Z Write 1...1 00 01 PPPPP EEEEE 10 DDDDDDDDDDDDDDDD Z Read 1...1 00 11 PPPPP EEEEE Z0 DDDDDDDDDDDDDDDD Z Read increment 1...1 00 10 PPPPP EEEEE Z0 DDDDDDDDDDDDDDDD Z A 16-bit address register stores the address of the register to be accessed by data transaction frames. The address register is overwritten by address frames. Upon device-reset, the contents of the address register is set to zero. At power up, the contents of the address register are undefined. Write, read, and post-read-increment-address frames access the register whose address is stored in the address register. Write and read frames do not modify the contents of the address register. After receiving a post-read-increment-address frame and completing the read operation, the address register is incremented by one. When the register contains 65,535, the address register is not incremented. The idle condition is a high-impedance state. All tri-state drivers are disabled, and the pull-up resistor pulls the MDIO line to a one. At the beginning of each transaction, the station management entity (STA) sends a preamble (PRE) sequence of 32 continuous one-bits on MDIO during 32 corresponding cycles on the management data clock (MDC), providing a pattern that the MMD uses to establish synchronization. All MMDs observe the 32 continuous one-bits before responding to any transaction. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 73 Functional Descriptions Figure 48 • MDIO Frame Format ST PRE 32 OP PA 5 DA 5 TA D 16 Z The MDIO frame format consists of the eight segments, shown above. Definitions for the segments are shown in the following table. PRE 32 32 bits of 1 supplied by the STA. ST 2 bits of 0, which indicates the start of frame. OP 2 bits of Op-Code as described in IEEE 802.3ae Clause 45. PA 5 5 bits of port address, which provides up to 32 ports to a physical bus. DA 5 5 bits of destination MMD address, which provides up to 32 MMDs to a port. TA 2 bits of turnaround time to change the bus ownership from the STA to MMD if required. D 16 16 bits for address/data driven on the bus by the current master of the bus, the STA for write operation, and the MMD for a read or read-address-increment operation. Z Idle time, bus tri-stated. The start of frame (ST) is indicated by the ‘00’ pattern. Frames containing the ST = ‘01’ pattern that is defined in IEEE Standard 802.3ae Clause 22, are ignored. The operation code (OP) indicates the type of transaction being performed by the frame. A ‘00’ pattern indicates that the frame payload contains the address of the register to access. A ‘01’ pattern indicates that the frame payload contains data to be written to the register whose address is provided in the previous address frame. A ‘11’ pattern indicates that the frame is a read operation. A ‘10’ pattern indicates that the frame is a post-read-increment-address operation. The port address (PRTAD) consists of five bits. The first bit to be transmitted and received is the MSB. The device address (DEVAD) also consists of five bits. The first bit transmitted and received is the MSB. Turnaround (TA) is a two-bit time spacing between the DEVAD field and data field of a frame to avoid contention during a read transaction. For a read or post-read-increment-address transaction, the STA and MMD remain in a high-impedance state for the first-bit time of the turnaround. The MMD drives a zero bit during the second bit time of the turnaround of a read or post-read-increment-address transaction. During a write or address transaction, the STA drives a one for the first bit time of the turnaround and a zero for the second bit time of the turnaround. The address or data field consists of 16 bits. For an address cycle, it contains the address of the register to be accessed on the next cycle. For read, write, and increment read cycles, the field contains the data for the register. The first bit transmitted and received is bit 15. MDIO is a bidirectional signal that can be sourced by STA or the MMD. When STA sources the MDIO signal, a minimum of 10 ns of setup time and 10 ns of hold time with reference to the rising edge of MDC is provided, as shown in the following illustration. Figure 49 • Timing with MDIO Sourced by STA VIH(MIN) MDC VIH(MIN) VIH(MIN) MDIO VIH(MIN) 10 ns minimum 10 ns minimum VMDS-10298 VSC8486-04 Datasheet Revision 4.4 74 Functional Descriptions When MDIO is sourced by the MMD, it is sampled by the STA synchronously with respect to the rising edge of MDC. The clock-to-output delay from the MMD, as measured at STA, is a minimum of 0 ns and a maximum of 300 ns, as shown in the following illustration. For MDIO data sourcing, the last MDC of the STA must provide a falling edge before the MDC is tri-stated. Without this falling edge, the last bit of data sourced by the MMD write cycle will not be completed. Figure 50 • Timing with MDIO Sourced by MMD VIH(MIN) MDC VIH(MIN) VIH(MIN) MDIO VIH(MIN) 0 ns minimum 300 ns maximum 3.10 Two-Wire Serial Interface The VSC8486-04 contains a two-wire serial management interface that provides a communication bus to slave peripherals such as non-volatile registers (NVR) or digital optical monitor (DOM) devices. The bus is intended to facilitate serial communication within a XENPAK/X2 module or with an XFP-compliant device; however, other devices can also be used. The two-wire serial bus is controlled using the MDIO interface. The two-wire serial interface is an industry-standard, master-only controller and supports two rates: standard (100 kbps) and fast (400 kbps). The MDIO control registers are shown in the following illustration. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 75 Functional Descriptions Figure 51 • Serial Management Interface Microsemi Device STW Module (Device 30) Control/Command 1Ex8000 Instruction Register 1Ex8001 MDIO MDIO DECODER MDC Slave Device Address 1Ex8002 STW Register Address 1Ex8003 Configuration Register 1Ex8004 STW Registers STW Slave Register Address STW Slave Address STWSDA STW CONTROLLER STWSCL The two-wire serial interface uses a bidirectional data and clock signal named STWSDA and STWSCL, respectively. The two-wire serial write protect pin STWWP, when pulled high, inhibits two-wire serial write activity. The two-wire serial interface controller supports 7-bit addressing, as configured in STW_ADDR_MODE (1E×8004.11). Writing to the MDIO register STW_CTRL1 (1E×8000) initiates activity on the two-wire serial interface. The device supports automatic mode of operation, in which up to 256 bytes are automatically copied from an external NVR device to the internal two-wire serial interface registers or vice versa. The two-wire serial controller logic operates independently from the MDIO interface. Thus, when the MDIO initiates a two-wire serial read/write command, the MDIO logic is not halted or locked while waiting for the two-wire serial command to complete. Because there is no queuing of two-wire serial commands, station management software must poll the two-wire serial controller to ensure that each two-wire serial command is complete before initiating the next command. 3.10.1 Two-Wire Serial Controller The two-wire serial bus is controlled using five registers located in device 30 (0×1E). 3.10.1.1 STW_CTRL1 (1E×8000) This register is the same as the NVR Control/Status register x8000 defined in XENPAK MSA Revision 3.0, with one exception. In addition to the XENPAK defined structure, the VSC8486-04 uses bit 8 of this register to set the two-wire serial interface operational mode. The MDIO decoder activates the two-wire serial interface module by writing to this register. Writes to this register through MDIO during a two-wire serial interface action are ignored. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 76 Functional Descriptions 3.10.1.2 STW_DEVADDR (1E×8002) This register stores the two-wire serial slave device address that is read or written. The 7-bit address is entered into bits 6:0 in the register. The two-wire serial controller does not directly use the register contents, but instead latches the contents into internal logic when SYNC_ADDR (1E×8001.9) is asserted. This allows the address register to be updated while the two-wire serial controller is active. All XFP modules use the same seven-bit address 0×A0, which, when entered into the registers, become 0×50. 3.10.1.3 STW_REGADDR (1E×8003) This register is used to store the address of the two-wire serial target register, which is used to store the data read from or written to the slave device. Similar to register 1E×8002, this register is not directly used by the two-wire serial controller, but is latched into internal logic when SYNC_REGADDR (1E×8001.8) is asserted. 3.10.1.4 STW_CFG1 (1E×8004) This register is used to configure the desired operating mode for the two-wire serial controller. Bits 11:9 configure the two-wire serial interface master bus controller operating characteristics, bus signaling speed, and addressing mode. Bit 12 sets the two-wire serial controller to make block reads or writes in accordance with the XENPAK or XFP register maps. The XFP or XENPAK register contents are mapped into 256 eight-bit registers beginning at internal address 1E×8007 and ending with 1E×8106. The two-wire serial controller is initiated by writing to the STW_CTRL1 (1E×8000). After each transaction begins the controller updates the STW_CMDSTAT (1E×8000.3:2) field with a ‘10’ command in progress status. In this state, the MDIO interface cannot read or write to the two-wire serial control registers. After the controller completes the data read or write transaction, the STW_CMDSTAT (1E×8000.3:2) field is updated to either ‘01’ to reflect a successful operation or ‘11’ to reflect a failed operation. The MDIO interface then regains access to the two-wire serial controller registers. The following illustration shows the state diagram of the two-wire serial controller. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 77 Functional Descriptions Figure 52 • Two-Wire Serial Access State Diagram RESET IDLE cmd_status = 00 wr 8000h Bit 5 0 = read Bit 5 1 = write RESET may enter invoke a read CMD_Pending cmd_status = 10 cmd_code = reset NVR NO resources free? IN_Progress cmd_status = 10 exec (cmd_code) exec() returned? NO YES YES cmd succeeded ? VAR = 01 NO VAR = 11 CMD_Complete cmd_status = VAR rd_8000h 3.10.2 Automatic Mode Automatic mode provides easy access to non-volatile registers (NVR), such as EEPROM, used in XENPAK and XFP modules. In automatic mode, the two-wire serial interface controller performs reads or writes to different sections of non-volatile memory according to the value of the extended command bits, STW_EXT_CMD (1E×8000.1:0). A value of ‘11’ reads or writes all NVR contents, which is compliant with XENPAK MSA revision 3.0, section 10.10. STW_CMD (1E×8000.5) determines whether the operation is read or write. In automatic mode, the two-wire serial interface maps internal registers 1E×8007 through 1E×8106 to external NVR address 0 to 255. To perform an automatic read, first write STW_DEVADDR (1E×8002), and then write STW_CTRL1 (1E×8000) using the proper settings. The two-wire serial interface controller reads the data stored in a certain section of NVR, which is defined by STW_EXT_CMD (1E×8000.1:0), and saves data to the corresponding section of internal VSC8486-04 registers. For example, if the data written to STW_CTRL1 (1E×8000) is 0×0000, the two-wire serial interface controller reads XFP VMDS-10298 VSC8486-04 Datasheet Revision 4.4 78 Functional Descriptions EEPROM bytes 2-57, and stores the data in registers 1E×8009 to 1E×8040. The automatic write operation is similar. The auto read or write operations are compatible with the ATMEL AT24Cxx series serial two-wire EEPROM. For a detailed description of the read or write operations, see the ATMEL AT24Cxx Series Two-Wire Serial EEPROM specification. After the read or write operation is complete, the two-wire serial interface controller writes to STW_CMD_STATUS (1E×8000.3:2) to set the appropriate code. A ‘01’ indicates a successful operation, and a ‘11’ indicates a failed operation. Use the following procedure to perform an automatic block read operation: 1. 2. 3. 3.11 Write the address of the slave device to the Slave Device Address register (1E×8002) (50’h for XFP modules). Write to the configuration register (1E×8004) bit 12 = 1 (XFP module). Write 0×0000 to STW_CTRL1 (1E×8000). XFP bytes 2 through 57 are auto read. XFP or SFP+ Module Interface Several VSC8486-04 I/O pins can be reconfigured (using MDIO) from their default function to interface with all of the XFP or SFP+ status and control I/O pins, including the two-wire serial bus. In an XFP host application, the recommended pin connections are as shown in the following illustration. Figure 53 • VSC8486-04 to XFP Host Recommended Interface Connections VC C 3 4.7 kΩ to 10 kΩ L o w -S p e e d In te rfa c e W IS_IN T B P_D W N _R ST 3.3 V M ST C O D E0 M O D _A B S 3.3 V G PI W IS_IN T A M ST C O D E1 M O D _N R 3.3 V VC C 3 IN T ER R U PT N M ST C O D E2 CPU 3.3 V L O PC 4.7 kΩ to 10 kΩ R X_L O S T X_D IS T X_A L A R M 3.3 V SC L ST W SC L 3.3 V ST W SD A SD A XFP M o d u le VSC8486 H ig h -S p e e d In te rfa c e T XD O U T P T XD O U T N C L K 64A P C L K 64A N TD+ TD- 0.1 µF R EF C L K + 0.1 µF R EF C L K - VC C 3 R XIN P RD+ R XIN N RDM O D _D ESEL 4.7 kΩ to 10 kΩ In an SFP+ host application, the recommended pin connections are as shown in the following illustration. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 79 Functional Descriptions Figure 54 • VSC8486-04 to SFP+ Host Recommended Interface Connections VCC3 Low-Speed Interface WIS_INTB TXDISABLE 3.3 V RATESEL[1] 3.3 V GPI RATESEL[0] WIS_INTA 3.3 V MOD_DEF[0]_PRESENT MSTCODE1 CPU 3.3 V TXFAULT MSTCODE2 3.3 V LOPC RX_LOS 3.3 V MOD_DEF[1]_SCL STWSCL 3.3 V STWSDA MOD_DEF[2]_SDA SFP+ Module VSC8486 High-Speed Interface TXDOUTP TD+ TXDOUTN TD- RXINP RD+ RXINN RD- Note: To avoid a criss-cross in the connection to SFP+, it is recommended the TXDOUTP/N polarity be swapped. To program the TXDOUTP/N polarity, use register 1×8000.7. Each of the recommended low-speed interface signals used on the VSC8486-04 in an XFP or SFP+ host application are summarized in the following table. Note: Because the VSC8486-04 device operates at 10 gigabits, the SFP+ module pins KSO (pin 7) and RS1 (pin 9) should be tied high externally. Table 39 • XFP or SFP+ Host Application Pin Connections Summary VSC8486-04 Pin I/O Default Operation XFP Host Operation SFP+ Host Operation WIS_INTB Open-drain output XFP module P_DWN_RST XFP module SFP+ module P_DWN_RST TXDISABLE Pull-up resistor provided inside the XFP or SFP+ module. See register 1×E902.2:0 and 1×E901.9 for additional options. Polarity invert (1×E902.1 and 1×E605.15). MSTCODE01 LVTTL input Two-wire serial high-speed master code0 MOD_ABS Not used with SFP+ See interrupt pending register (2×EF00.14:12) and mask (2×EF01.14:12) and pin status (1×E607.15:13). MSTCODE11 LVTTL input Two-wire serial high-speed master code1 MOD_NR GPIO_PRESEN See interrupt pending register T (2×EF00.14:12) and mask (2×EF01.14:12) and pin status (1×E607.15:13). MSTCODE21 LVTTL input Two-wire serial high-speed master code2 INTERRUPTN GPIO_TXFAULT See interrupt pending register (2×EF00.14:12) and mask (2×EF01.14:12) and pin status (1×E607.15:13). LOPC LVTTL input Loss of optical signal Loss of optical Loss of optical signal signal Comments Provide pull-up externally, nominally 4.7 kΩ. Provide pin status on 1×E607.0. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 80 Functional Descriptions Table 39 • VSC8486-04 Pin XFP or SFP+ Host Application Pin Connections Summary (continued) I/O Default Operation XFP Host Operation SFP+ Host Operation Comments TX_ALARM Open-drain output Global SERDES transmit channel fault TX_DIS Not used with SFP+ For XFP, configure as GPO using 1×E901.14:13 set to 10 (default is 00) and then use 1×E901.8 set to force. STWSCL Open-drain output Two-wire serial clock source SCL SCL Two-wire serial interface clock. See 1×E900.3:0. STWSDA Bidirectional open-drain output Two-wire serial bidirectional data line SDA SDA Two-wire serial interface data line. See 1×E900.3:0. TXDOUTP/N CML diff pair XFI Tx output TD+/– TD+/– 10-gigabit serial data from the VSC8486-04 to the XFP or SFP+ module. REFCLKAP/N CML diff pair Div/64 REFCLKP/N output reference clock to XFP REFCLKP/N For XFP, CLK64AP/N (CMU/64) enabled by default. Disable using CLK64A_EN or register 1×E602.9. RXINP/N CML diff pair XFI Rx output RD+/- 10-gigabit serial data to the VSC8486-04 from the XFP or SFP+ module. WIS_INTA Open-drain output 1. RD+/- Selectable WIS Output to CPU Output to CPU interrupt output Global XFP or SFP+ alarm interrupt signal to CPU. With the MSTCODE[2:0] pins utilized for XFP or SFP+ operation, the two-wire serial interface can still be used in high-speed mode. To accomplish this, assert register bit 1×E900.3 to set the master code from registers 1×E900.2:0 instead of from the MSTCODE[2:0] pins. 3.11.1 General Purpose and LED Driver Outputs The VSC8486-04 includes several output pins that are capable of directly driving light emitting diodes (LEDs) and are programmable through MDIO. These outputs use open drain configuration and require pull-up resistors as shown in the following diagram. Figure 55 • Interrupt/Status/Activity LED Connections 3.3 V 330 VSC8486 3.3 V 330 WIS_INTB 3.3 V 330 3.3 V (Non-GPO) WIS_INTA LASI 330 3.3 V 330 RX_ALARM TX_ALARM VMDS-10298 VSC8486-04 Datasheet Revision 4.4 81 Functional Descriptions The following table includes configuration options for the general purpose output (GPO) pins. Registers 1×E900, 1×E901, and 1×E902 are used to program the GPO function. Table 40 • GPO Configuration Control Summary Pin Name Source Select GPO Mode Output Control WIS_INTB (L6) 1×E901.9 0: XFP module reset or SFP+ TXDISABLE (default) 1: WIS interrupt B function If WIS interrupt B enabled WIS_INTB_POL (1×E605.15). (1×E901.9 = 1), then EWIS_MASKB_1 (2×EF02). 1×E607.2 displays WIS_INTB EWIS_INTR_MASKB2 (2×EF06). pin status. Other Controls LASI (E5) 1×E901.10 0: Normal LASI output (default) 1: GPO mode If GPO mode is active (1×E901.10 = 1), then bit 1×E901.6 is transmitted to LASI. LASI output is disabled by default and enabled using 1E×9002.0 (reference is Xenpak 3.0). RX_ALARM 1×E901.12:11 (C4) 00: Normal RX_ALARM (default) 01: Rx link/activity LED 10: GPO mode 11: Reserved If GPO mode is active (1×E901.12:11 = 10), then bit GPO_RXALARM (1×E901.7) is transmitted to RX_ALARM. RX_ALARM is clear on read by default and controlled using 1E×9003 (reference is Xenpak 3.0). Other controls: Rx LED mode control (1×E901.1:0) and Rx data activity LED blink time (1×E901.4). TX_ALARM 1×E901.14:13 (E4) 00: Normal TX_ALARM (default) 01: Tx Link/Activity mode 10: GPO mode 11: Reserved If GPO mode is active (1×E901.14:13 = 10), then bit GPO_TXALARM (1×E901.8) is transmitted to TX_ALARM. TX_ALARM is clear on read by default and controlled using 1E×9004 (reference is Xenpak 3.0). Other controls: Tx LED mode control (1×E901.3:2) and Tx data activity LED blink time (1×E901.5). When the RX_ALARM output is programmed to Rx Link/Activity mode, an external LED responds as follows: Rx Activity Status indicates receipt of ||S|| characters, and Rx Link Status indicates PCS block lock = 1. (LED is on during block lock.) The Combination Rx Link/Activity Status mode (1×E901.12:11 = 01) indicates the following: • • • LED is off – Rx Link is down LED is on steady – Rx Link is up, but no ||S|| characters received LED blinking – Link is up and receiving ||S|| characters (steady state blink with off time set to approximately 100 milliseconds) When the TX_ALARM output is programmed to Tx Link/Activity mode, an external LED responds as follows: Tx Activity Status indicates transmission of ||S|| characters, and Tx Link Status indicates XAUI Lanes is aligned or is transmitting ||S|| characters when the transmitted traffic source is XGMII. The Combination Tx Link/Activity Status mode (1×E901.14:13 = 01) indicates the following: • • • LED is off – Tx Link is down LED is on steady – Tx Link is up, but no ||S|| characters transmitted LED blinking – Tx Link is up and transmitting ||S|| characters (steady state blink with off time set to approximately 100 milliseconds) Both Rx and Tx combination link/activity status outputs initially hold the LED on for up to 5 seconds, even if data activity begins in less time. If the link is down, the LED is off, regardless of elapsed time. Note: The link/activity status outputs work for PCS mode and E-PCS mode. 3.12 JTAG Access Port A JTAG access port is provided on the VSC8486-04 transceiver to facilitate device level and board-level testing. All pins except the 3-Gbps and 10-Gbps serial I/O pins and some analog pins can be accessed VMDS-10298 VSC8486-04 Datasheet Revision 4.4 82 Functional Descriptions or controlled through this port. This port is compliant with IEEE Standard 1149.1-2001 (subsequently referred to as the JTAG specification) with the five control TTL signals listed in the following table. Table 41 • JTAG TTL Signals Signal Description TCK Test clock input TMS Test mode select input TDI Test data input TDO Test data output TRSTB Test reset input These signals control the Test Access Port (TAP) and associated circuitry to enable boundary and internal scan testing operations. To ensure reliability, a TRSTB input (instead of a power-on reset circuit) is provided to initialize the JTAG logic. This input, TRST* in the JTAG specification, is asserted when in the low (logic 0) state. The TRSTB, TDI, and TMS input pins have an on-chip, high-impedance, pull-up resistor connected to the VDDTTL supply so that an un-driven input behaves as though a logic 1 were applied. Because the TAP controller is reset from the TRSTB signal and not a power-on reset circuit, the TAP controller, without a reset, can come up in an indeterminate state, thereby affecting the mode of inputs and outputs. It is imperative that users ensure that the TAP controller is reset prior to normal operation. This can be achieved by tying TRSTB low (logic 0) if JTAG is undesired or ensuring the pull-down is strong enough to overcome the internal pull-up resistor, yet weak enough that the JTAG exerciser can overcome the pulldown. Boundary scan and internal scan testing is supported through the JTAG standard TAP and associated circuitry. This circuitry consists of a TAP controller, an instruction register with decoder, and four data registers, including a device ID register, a boundary scan register, a bypass register and the internal scan chain register. In general, these data registers consist of two parts: a serial shift register and a parallel output (or shadow) register. The parallel output registers maintain their values during shift operations and are loaded with new values from the shift register during an update state. The following illustration shows the architecture of the boundary scan test circuitry. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 83 Functional Descriptions Figure 56 • JTAG TAP Boundary Scan Test Architecture (Not Implemented) TDO The TAP controller is a synchronous state machine that captures and shifts test data through the test registers. State transitions occur on the rising edge of TCK and are controlled by the TMS signal as illustrated in the following illustration. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 84 Functional Descriptions Figure 57 • TAP Controller State Diagram The following table describes the TAP Controller states. Table 42 • TAP Controller States TAP Controller State Test-Logic-Reset Description Activating TRSTB forces the TAP Controller to asynchronously enter the Test-Logic-Reset state. This state is also entered synchronously within five TCK cycles if TMS is held high. In Test-Logic-Reset state all of the associated test logic is reset and disabled, allowing the device to operate normally. The Instruction register is loaded with the IDCODE instruction while the data registers are reset to logic 0. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 85 Functional Descriptions Table 42 • TAP Controller States (continued) TAP Controller State 3.12.1 Description Run-Test/Idle Run-Test/Idle state is an idle state in which the test logic is disabled and the device operates normally. It is different than the Test-Logic-Reset state in that the current state of the test logic is maintained. Select-DR-Scan, Select-IR-Scan These states are single TCK states that allow the selection of data register scan operations or Instruction register scan operations. Capture-DR Capture-DR state causes the selected serial data register to be loaded in parallel with a data value determined by the current instruction. The data is loaded on the rising edge of TCK as the TAP Controller transitions to the next state. Shift-DR Shift-DR state causes the selected data register to shift one bit in the direction going from TDI (MSB) towards TDO (LSB). Repeated single-bit shifts are performed on each rising TCK edge that TMS is held low. Exit1-DR, Exit2-DR These states are single TCK states at the end of a data register shift that allow a return to the Shift-DR state without going through the Capture-DR state, or allow the state machine to exit the data register shifting process back to the idle condition. TDO transitions to the high-impedance state on the first falling edge of TCK after the Exit1-DR state is entered. Pause-DR Pause-DR state allows the data register shifting process to be suspended without change or loss of the data register contents. Update-DR Update-DR state causes the parallel output (shadow) register part of the selected data register to be updated to match the value currently stored in the serial data register part. This update occurs on the first falling edge of TCK after the Update-DR state is entered. (Currently only the boundary scan register has parallel output registers.) Capture-IR Capture-IR state causes the Instruction register serial part to be loaded in parallel with status information. The status is loaded on the rising edge of TCK as the TAP Controller transitions to the next state. (Currently the status information is simply the IDCODE instruction.) Shift-IR Shift-IR state causes the Instruction register to shift one bit in the direction going from TDI (MSB) towards TDO (LSB). Repeated single-bit shifts are performed on each rising TCK edge that TMS is held low. Exit1-IR, Exit2-IR These states are single TCK states at the end of an Instruction register shift that allow a return to the Shift-IR state without going through the Capture-IR state, or allow the state machine to exit the Instruction register shifting process back to the idle condition. TDO transitions to the highimpedance state on the first falling edge of TCK after the Exit1-IR state is entered. Pause-IR Pause-IR state allows the Instruction register shifting process to be suspended without change or loss of the Instruction register contents. Update-IR Update-IR state causes the instruction currently loaded into the serial shift register part of the Instruction register to be loaded into the parallel output (shadow) register part of the Instruction register. This causes the instruction to become active. This activation of the instruction occurs on the first falling edge of TCK after the Update-IR state is entered. Instruction Register The four-bit Instruction register and associated decode circuitry determine the operation performed by the scan test logic, and which data register is selected in the scan path for the operation. In the Test- VMDS-10298 VSC8486-04 Datasheet Revision 4.4 86 Functional Descriptions Logic-Reset state, the Instruction register is initialized to the IDCODE instruction. The Instruction register is then loaded with status information during the Capture-IR state, in which the two least-significant bits must be 01 for scan-path testing purposes (currently the status information is the IDCODE instruction). Serially-loaded instructions become active at the Update-IR state. The following table lists supported test instructions, including the data register selected for each test, plus the device-operating mode during the selected test. When the device is in test mode, the output pins are affected by the test operation. In normal mode, device inputs, outputs and internal logic are unaffected by the test operation. Supported Boundary Scan Test Instructions Table 43 • Instruction Code Instruction Selected Data Register Device Operating Mode 0000 EXTEST Boundary Scan Test 0001 IDCODE Device ID Normal 0010 SAMPLE/PRELOA Boundary Scan D Normal 1111 BYPASS Bypass Normal All others Invalid Unknown Unknown The following table provides a description of each supported test instruction. Table 44 • Boundary Scan Test Instruction Descriptions Instruction Description EXTEST The EXTEST instruction enables board-level interconnect testing and device I/O level testing by allowing device inputs to be observed and controlled. The device inputs are captured during the CaptureDR state and subsequently shifted out on TDO with the Shift-DR state. Device outputs can be set by providing the desired values on TDI during the Shift-DR state, and then driving the outputs with the loaded values at the Update-DR state. IDCODE The IDCODE instruction enables the Device ID register to be read by serially-shifting bit values out on TDO with the Shift-DR state. This instruction is automatically loaded by entering the Test-Logic-Reset state in addition to the normal serial instruction loading mechanism. SAMPLE/ PRELOAD The SAMPLE/PRELOAD instruction enables observation of device inputs and internal output signals while the normal operation. The signal values are loaded into the boundary scan register during the Capture-DR state and observed by shifting the values out with the Shift-DR state. The pre-load aspect of this instruction occurs at the Update-DR state, when values in the serial part of the boundary scan register are loaded into the parallel output (shadow) part. This allows the boundary scan register to be pre-loaded for subsequent test operations such as EXTTEST or CLAMP. BYPASS The BYPASS instruction allows serial data on TDI to be transferred to TDO with only one TCK delay. This facilitates board-level testing by allowing the serial test data to quickly pass on to the next device. The bypass register is loaded with a logic 0 during the Capture-DR state. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 87 Functional Descriptions 3.12.2 Device ID Register The 32-bit device ID register is used to identify the manufacturer, part number, and version of the device through the JTAG test access port. When the IDCODE instruction is loaded, this identification data is loaded into the Device ID shift register during the Capture-DR state, and can be shifted out on TDO through the use of the Shift-DR state. The following table includes a description of the device identification information. Note: The version number depicted does not necessarily reflect the latest revision of the VSC8486-04 device. Device Identification Information Table 45 • Type Version Number Part Number Manufacturer ID Fixed Register bits [31...28] [27...12] [11...1] 0 Hex value 0×2 0×8486 0×074 2 3.12.3 Bypass Register The single-bit Bypass register enables system serial test data to bypass the device with only one TCK cycle delay. This register is used in the scan path during the BYPASS instruction. This register is set to logic 0 during the Capture-DR state. 3.12.4 Boundary Scan Register The 127-bit Boundary Scan register (BSR) provides the means to force values on the device outputs and to capture values on the device inputs (and internal output signals). The direction of shift is from TDI (MSB), through bits 1-127, to TDO (LSB). The BSR bits and their associated device signals are summarized in the following table. A full Boundary Scan Description Language (BSDL) file is available upon request. Table 46 • Boundary Scan Register Bits BSR Bit Device Signal BSR Cell Type BSR Bit Device Signal BSR Cell Type 0 RXALARM OUT 39 TXD[29] IN 1 TXALARM OUT 40 TXD[30] IN 2 LASI OUT 41 TXD[31] IN 3 REFSEL1 IN 42 TXC[3] IN 4 REFSEL0 IN 43 PMTICK IN 5 SPLITLOOPN IN 44 TXONOFFI IN 6 TXD[0] IN 45 WIS_INTA OUT 7 TXD[1] IN 46 LP_16B IN 8 TXD[2] IN 47 LP_XGMII IN 9 TXD[3] IN 48 FORCE_AIS IN 10 TXD[4] IN 49 WANMODE IN 11 TXD[5] IN 50 LPP_10B IN 12 TXD[6] IN 51 RFPOUT OUT 13 TXD[7] IN 52 LP_XAUI IN 14 TXC[0] IN 53 CLK64A_EN IN 15 TXD[8] IN 54 LOPC IN 16 TXD[9] IN 55 RCLKOUT OUT 17 TXD[10] IN 56 RDAOUT OUT VMDS-10298 VSC8486-04 Datasheet Revision 4.4 88 Functional Descriptions Table 46 • Boundary Scan Register Bits (continued) BSR Bit Device Signal BSR Cell Type BSR Bit Device Signal BSR Cell Type 18 IN 57 OUT TXD[11] TCLKOUT 19 TXC[1] IN 58 TDAIN IN 20 TXD[13] IN 59 XTX0 Linkage bit 21 TXD[14] IN 60 XTX1 Linkage bit 22 TXD[15] IN 61 XTX2 Linkage bit 23 TXD[12] IN 62 XTX3 Linkage bit 24 TXCLK IN 63 XRX3 Linkage bit 25 TXD[16] IN 64 XRX2 Linkage bit 26 TXD[17] IN 65 XRX1 Linkage bit 27 TXD[18] IN 66 XRX0 Linkage bit 28 TXD[19] IN 67 IOMODESEL IN 29 TXD[20] IN 68 TFPOUT OUT 30 TXD[21] IN 69 MSTCODE[0] IN 31 TXD[22] IN 70 EPCS IN 32 TXC[2] IN 71 MSTCODE[1] IN 33 TXD[23] IN 72 AUTONEG IN 34 TXD[24] IN 73 STWWP IN 35 TXD[25] IN 74 MSTCODE[2] IN 36 TXD[26] IN 75 PRTAD[0] IN 37 TXD[27] IN 76 PRTAD[1] IN 38 TXD[28] IN 77 PRTAD[2] IN 78 PRTAD[3] IN 119 MDC IN 79 PRTAD[4] IN 120 STWSCL IN 80 MDIO IN 121 STWSCL OUT 81 MDIO OUT 122 STWSDA IN 82 RXC[3] OUT 123 STWSDA OUT 83 RXD[31] OUT 124 WIS_INTB OUT 84 RXD[30] OUT 125 RESETN IN 85 RXD[29] OUT 126 RXINOFFN IN 86 RXD[28] OUT 87 RXD[27] OUT 88 RXD[26] OUT 89 RXD[25] OUT 90 RXD[24] OUT 91 RXC[2] OUT 92 RXD[23] OUT 93 RXD[22] OUT 94 RXD[21] OUT VMDS-10298 VSC8486-04 Datasheet Revision 4.4 89 Functional Descriptions Table 46 • 3.13 Boundary Scan Register Bits (continued) BSR Bit Device Signal BSR Cell Type 95 RXD[20] OUT 96 RXD[19] OUT 97 RXD[18] OUT 98 RXD[17] OUT 99 RXD[16] OUT 100 RXCLK OUT 101 RXD[13] OUT 102 RXD[15] OUT 103 RXD[14] OUT 104 RXC[1] OUT 105 RXD[12] OUT 106 RXD[11] OUT 107 RXD[10] OUT 108 RXD[9] OUT 109 RXD[6] OUT 110 RXC[0] OUT 111 RXD[7] OUT 112 RXD[8] OUT 113 RXD[5] OUT 114 RXD[4] OUT 115 RXD[3] OUT 116 RXD[2] OUT 117 RXD[1] OUT 118 RXD[0] OUT BSR Bit Device Signal BSR Cell Type Synchronous Ethernet The VSC8486-04 device supports two modes for Synchronous Ethernet implementation: conventional mode and enhanced mode. The conventional mode requires either a REFCLK from an external narrow-banded PLL, which provides a 156.25 MHz clock ±200 ppm even without any input to lock onto, or a REFCLK from an external oscillator to hold in its place until a clean recovered clock is available. The enhanced mode eliminates this transient period or clock switching by providing separate clock sources for the PMA’s CMU and CRU. An external PLL is required for jitter clean up. This section presents the differences between the conventional and enhanced modes. 3.13.1 About Conventional Mode For Synchronous Ethernet application in conventional mode, the recovered clock from the XFI input data is used to generate the REFCLK for the transmitter of all PHYs and in turn the REFCLK is needed to recover the clock. Because the REFCLK and recovered clock are needed and are dependent on each other, the conventional method for Synchronous Ethernet configuration is to provide the REFCLK from an external narrow-banded PLL so that the PLL output is within 100 ppm of the required 156.25 MHz, even if there is no input at the PLL for the PLL to lock onto. When the recovered clock is available from the VSC8486-04 device, the PLL will lock onto the recovered clock to achieve synchronization between the Tx clock and the Rx clock of the PHY. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 90 Functional Descriptions Another alternative is to start with an oscillator to generate the required 156.25 MHz and then switch to a recovered clock (with clean jitter and adjusted frequency) when available. A typical overview of how to perform synchronization of the CMU transmit clock to the CRU recovered clock are as follows: • • • • • • Recover the clock from the XFI input in each line card Indicate the strength of the recovered clock signal Select the recovered clock from the different line cards Translate the recovered clock frequency to the reference clock frequency Clean up the jitter of the recovered clock Distribute the recovered clock as the transmit clock to all PHYs Figure 58 • Clock Path Distribution, Conventional Mode CLK64B PHY 1 REFCLK CLK64B CLK64B Timing Module PHY 2 x64/x66 VCO REFCLK 156.25 MHz oscillator REFCLK CLK64B PHY 6 REFCLK RXLOLn Note: Each PHY is the line card provides a signal to the timing module. 3.13.2 Using Conventional Mode Use the following recommended procedure for Synchronous Ethernet in conventional mode. Set register bit 1×E602.5 to high to enable the CLK64B output and set register bits 1×E602.4:3 to 00. These settings enable the CLK64b output and programs the output as a divide-by-64 recovery clock from the XFI input. 1. Before the recovered clock of a particular line card is selected as the REFCLK, complete one of the two steps to notify the timing module that the recovered clock is stabilized and valid for use: – Read the Receiver Loss of Lock signal from register bit 2×EF03.12. or 2. 3. – Configure the WIS_INTA/B as the LOL indicator by using register bits 2×EF05.12 (WIS_INTA) or 2×EF06.12 (WIS_INTB). Select the corresponding CLK64B output to use as a reference clock when the RXLOL indicates a valid signal from the VSC8486-04 device. Multiply the CLK64B output by 64 and then divide-by-66 to obtain the required 156.25 MHz clock. REFCLK is used for the transmit clock for the CMU and the hint clock for the CRU inside the VMDS-10298 VSC8486-04 Datasheet Revision 4.4 91 Functional Descriptions 4. VSC8486-04 device. Due to the 156.25 MHz frequency in LAN mode and the 161 MHz frequency of the CLK64B output, this step is required to obtain the necessary 156.25 MHz clock. Provide an external PLL to clean the recovered clock jitter of the VSC8486-04 device. External PLL allows the REFCLK to use the recovered clock jitter to meet the jitter generation specifications of the XFI. All line cards can now use the clean output clock from the PLL as the REFCLK, which in turn can be used as the Tx clock of the CMU on each PHY. Therefore, the clock that is synchronized to the input data of the selected line card, will be distributed and propagated to other systems. When using this procedure for Synchronous Ethernet implementation, one consideration is that the REFCLK is needed as the hint clock for the CRU of the PHY and the recovered clock from the CRU is used for the REFCLK for all the line cards including the same PHY. To resolve this dependency, a clock source such as an oscillator is used at start up as the REFCLK to allow the CRU to recover the clock from the XFI input data. Once the recovered clock is available, the external PLL will lock to it and clean up the jitter to provide the REFCLK. The clock source is then switched from the oscillator to this PLL output. The output of the PLL and oscillator must be within 100 ppm to provide an acceptable transient environment. Another method to resolve this dependency is to use a narrow band PLL that will output 156.25 MHz ± 100 ppm even if there is no input to the PLL for it to lock on to. When an input it available to lock on, the output of the PLL is frequency locked to the input. Additionally, some PLLs can accept an input of 161 MHz or 156.25 MHz to generate the required 156.25 MHz REFCLK which resolves the frequency matching issue between the CLK64B and the REFCLK. 3.13.3 About Enhanced Mode The VSC8486-04 device is designed with enhancements that allows for a simplified start up synchronization process that eliminates the need for an external narrow banded PLL and transient period of switching clocks. This section describes the enhancements that simplify the synchronization process. Reference Clock Source Signals Separate reference clock source signals are provided for the PMA’s CMU, CRU, and for XAUI operation. The following table provides the reference clock source signals and recommendations for Synchronous Ethernet application. Table 47 • 3.13.3.1 Synchronous Ethernet Reference Clock Source Synchronous Ethernet (Recommended) CRU/CMU/Block Reference Clock Source CRU of PMA REFCLK, WREFCLK, and VREFCLK REFCLK CMU of PMA REFCLK, WREFCLK, VREFCLK, and internal recovered clock REFCLK XUAI block REFCLK only REFCLK only MUXs and Register Bits Additional MUXs and register bits were added to provide additional flexibility in controlling the clock sources to the different blocks of the VSC8486-04 device for Synchronous Ethernet implementation. When 1×E602.2 is high, the register 1×E604.7:0 should be set to one of the following: 10011001: REFCLK = 156.25 MHz, VREFCLK = 161.1328125 MHz. 10011011: REFCLK = 156.25 MHz, VREFCLK = 644.53125 MHz. 10011101: REFCLK = 156.25 MHz, VREFCLK = 156.25 MHz. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 92 Functional Descriptions The following table lists the added register bits and descriptions for the VSC8486-04 device. Table 48 • Synchronous Ethernet Register Bits Register Bit Description 1×E602 2 Clock mode override. When this bit is enabled, register 1×E604 can be used to program the clock sources used by the CMU and CRU. 0: Disables the mode override (default). 1: Enables the mode override. 1×E604 7 Clock source for CMU linetime mode when register 1×E602.2 = 1 and linetime mode = 1. 0: Reserved. 1: CMU clock is from the CRU recovered clock. Divided by 64. 6:5 Clock source to CRU when 1×E602.2 = 2. 00: CRU source clock is from REFCLK. 01: Clock source to CRU is from WREFCLK input. Divided by 64. 1×: Clock source to CRU is from WREFCLK input. Divided by 16. 4:3 Clock source to CMU when 1×E602.2 = 1. 00: Reserved. 01: Clock source to CMU is from REFCLK input. 10: Clock source to CMU is from internal CRU recovered clock. 11: Clock source to CMU is from VREFCLK input. 2:1 Provides selection of clock ratio for CMU when register 1×E602.2 = 1. 00: Divided by 64. Only valid when 1×E604.4:3 = 01, 10, 11. 01: Divided by 16. Only valid when 1×E604.4:3 = 01, 10, 11. 1×: Divided by 66. Only valid when 1×E604.4:3 = 00, 01, 10. 0 Provides selection of clock ratio for CRU when 1×E602.2 = 1. 0: Divided by 64. Only valid when 1×E604.6:5 = 01, 1×. 1: Divided by 66. Only valid when 1×E604.6:5 = 00. A significant benefit of using Synchronous Ethernet in enhanced mode is the ability to eliminate the transient period that occurs in conventional mode because the REFCLK is needed to recover the clock from the input data. WREFCLK and VREFCLK can be divided-by 16, 64, or 66, whereas the REFCLK can only be divided-by 66. For improved jitter performance in WAN applications, the VREFCLK dividedby 16 is preferred. The recovered CLK64B could be set to a PLL that takes in the CLK64B and provides a 4× CLK64B. A narrow band PLL would no longer be required and the need to adjust a /66 REFCLK from a /64 recovered clock is eliminated. The REFCLK and WREFCLK if needed, can be used as free running clocks from oscillators full time. These features provide a more effective implementation using a common PLL. Using the REFCLK for both the XAUI block and the clock source for the PMA's CRU, while leaving the WREFCLK unused, provides for a more cost effective solution. The VREFCLK can be selected to be at the same frequency as the CLK64B, for example 161 MHz. A 1:1 PLL is still required to clean up the jitter from CLK64B to the VREFCLK input block. A free running clock source is needed for the PMA's CRU through the REFCLK. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 93 Functional Descriptions Figure 59 • Synchronous Ethernet Block Diagram XAUI XFI OUTPUT_1 CMU CLK64A_1 VREFCLK_1 XFI INPUT_1 CRU CLK64B_1 VSC8486 VCO XFI OUTPUT_2 CMU CLK64A_2 VREFCLK_2 XAUI CLK64B_2 CRU XFI INPUT_2 VSC8486 REFCLK_1 3.13.4 REFCLK_2 Using Enhanced Mode The additional MUX register bits and separate clocks that are provided in the VSC8486-04 device lead to the distribution of clock paths and simplifies the start up synchronization process for Synchronous Ethernet operation. Use the following recommended procedure for Synchronous Ethernet in enhanced mode. 1. 2. 3. Set registers 1×E602.2 = 1, 1×E604.6:5 = 0, and 1×E604.0 = 1. These settings configure a free running oscillator based clock at 156.25 MHz which in turn is used for the XAUI block and the hint clock of the CRU to recover the CLK64B from the XFI input data. Set register bit 1×E602.5 to high to enable the CLK64B output and set register bits 1×E602.4:3 to 00. These settings enable the CLK64b output and programs the output as a divide-by-64 recovery clock from the rate of the XFI input. Before the recovered clock of a particular line card is selected as the REFCLK, complete one of the two steps to notify the timing module that the recovered clock is stabilized and valid for use: – Read the Receiver Loss of Lock signal from register bit 2×EF03.12. or 4. 5. – Configure the WIS_INTA/B as the LOL indicator by using register bits 2×EF05.12 (WIS_INTA) or 2×EF06.12 (WIS_INTB). Select the corresponding CLK64B output to use as a reference clock when the RXLOL indicates a valid signal from the VSC8486-04 device. Set register bits 1×E604.4:3 = 10 and 1×E604.2:1 = 01. These register settings require a 644 MHz clock which needs to be derived from the CLK64B and requires low jitter. The PLL output is phase locked to the CLK64B and is distributed to the device on all line cards, which in turn is the VREFCLK that is the transmit clock of the CMU on each PHY. Therefore, the clock that is synchronized to the input data of the selected line card is distributed and propagated to other systems. A free running REFCLK of 156.25 MHz is required for the PHYs. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 94 Functional Descriptions Figure 60 • Clock Path Distribution, Enhanced Mode PHY 1 REFCLK WREFCLK VREFCLK Linetime = 1 Wanmode = 0 REFSEL0 = 0 CLK64B PHY 2 REFCLK CLK64B WREFCLK Timing Module VCO VREFCLK Linetime = 1 Wanmode = 0 REFSEL0 = 0 CLK64B Note: REFCLK is from a 156.25 MHz oscillator CLK64B = 161 MHz VREFCLK is CLK64B × 4 = 644 MHz PHY 6 REFCLK WREFCLK VREFCLK CLK64B VMDS-10298 VSC8486-04 Datasheet Revision 4.4 Linetime = 1 Wanmode = 0 REFSEL0 = 0 95 Registers 4 Registers This section describes the registers for the VSC8486-04 device. The registers marked reserved and factory test should not be read or written to, because doing so may produce undesired effects. The default value documented for registers is based on the value at reset; however, in some cases, that value may change immediately after reset. The access type for each register is shown using the following abbreviations: • • • • • • RO: Read Only ROCR: Read Only, Clear on Read RO/LH: Read Only, Latch High RO/LL: Read Only, Latch Low RW: Read and Write RWSC: Read Write Self Clearing The registers are organized into the following sections: • • • • • 4.1 Device 1: PMA Registers, page 96 Device 2: WIS Registers, page 115 Device 3: PCS Registers, page 153 Device 4: PHY-XS Registers, page 166 Device 30: NVR and DOM Registers, page 179 Device 1: PMA Registers The following tables provide settings for the registers related to the PMA. Table 49 • PMA_CTRL1: PMA Control 1 (1×0000) Bit Name Access Description Default 15 SOFT_RST RWSC Reset all MMDs. 0: Normal operation. 1: Reset. 0 14 Reserved RO Reserved (value always 0, writes ignored). 0 13 SPEED_SEL_A RO Indicates whether the device operates at 10 Gbps 1 and above. 0: Unspecified. 1: Operates at 10 Gbps and above. 12 Reserved RO Reserved (value always 0, writes ignored). 0 11 LOW_PWR RW PMA low power mode control. 0: Normal. 1: Low power mode. TXEN is cleared low and everything except MDIO, SPI, and reference clock receiver is disabled. 0 10:7 Reserved RO Reserved (value always 0, writes ignored). 0 6 SPEED_SEL_B RO Indicates whether the device operates at 10 Gbps 1 and above. 0: Unspecified. 1: Operation at 10 Gbps and above. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 96 Registers Table 49 • PMA_CTRL1: PMA Control 1 (1×0000) (continued) Bit Name Access Description Default 5:2 SPEED_SEL_C RO Speed selection. 1xxx: Reserved x1xx: Reserved xx1x: Reserved 0001: Reserved. 0000: 10 Gbps. 0 1 Reserved RO Reserved (value always 0, writes ignored). 0 0 LPBK_J_PMA RW PMA/WIS system loopback J. 0: Disable. 1: Enable. All zeros output on XFI. 0 Table 50 • Bit PMA_STAT1: PMA Status 1 (1×0001) Name Access Description Default 15:8 Reserved RO Reserved (ignore when read). 0 7 FAULT RO Indicates a fault condition on either the 0 transmit or receive paths. 0: Fault condition not detected. PMA receive local fault (1×0008.10) = 0 and PMA transmit local fault (1×0008.11) = 0. Note: 1: Fault condition detected. PMA receive local fault (1×0008.10) = 1 or PMA transmit local fault (1×0008.11) = 1. 6:3 Reserved RO Reserved (ignore when read). 0 2 LNK_STAT RO/LL Receive link status. 0: PMA receive link down. (RXLOS = 1 and SUPPRESS_RXLOS = 0) or (RXLOCK = 0 and SUPPRESS_RXLOL = 0). 1: PMA receive link up. (RXLOS = 0 or SUPPRESS_RXLOS = 1) and (RXLOCK = 1 or SUPPRESS_RXLOL = 1). 1 1 LOW_PWR_ABILIT RO Y Indicates that MMD supports low power mode. 1 0: PMA does not support low power mode. 1: PMA supports low power mode. 0 Reserved Reserved (ignore when read). Table 51 • RO 0 PMA_DEVID1: PMA Device Identifier 1 (1×0002) Bit Name Access Description Default 15:0 DEV_ID_MSW RO Upper 16 bits of a 32-bit unique PMA device identifier. Bits 3-18 of the device manufacturer’s OUI. 0×0007 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 97 Registers Table 52 • PMA_DEVID2: PMA Device Identifier 2 (1×0003) Bit Name Access Description 15:0 DEV_ID_LSW RO Lower 16 bits of a 32-bit unique PMA device 0×0400 identifier. Bits 19-24 of the device manufacturer’s OUI. Six-bit model number, and a four-bit revision number. Table 53 • Default PMA_SPEED: PMA Speed Capability (1×0004) Bit Name Access Description Default 15:1 Reserved RO Reserved for future speeds (value always 0, writes ignored) 0 0 RATE_ABILITY RO PMA rate capability 0: Not capable of 10 Gbps 1: Capable of 10 Gbps 1 Table 54 • PMA_DEVPKG1: PMA Devices in Package 1 (1×0005) Bit Name Access Description Default 15:6 Reserved RO Reserved (ignore when read) 0 5 DTE_XS_PRES RO Indicates whether DTE XS is present in the package 0: Not present 1: Present 0 4 PHY_XS_PRES RO Indicates whether PHY XS is present in the package 0: Not present 1: Present 1 3 PCS_PRES RO Indicates whether PCS is present in the package 1 0: Not present 1: Present 2 WIS_PRES RO Indicates whether WIS is present in the package 0: Not present 1: Present 1 PMD_PMA_PRE RO S Indicates whether PMA is present in the package 1 0: Not present 1: Present 0 CLS22_PRES Indicates whether Clause 22 registers are present 0 in the package 0: Not present 1: Present RO VMDS-10298 VSC8486-04 Datasheet Revision 4.4 1 98 Registers Table 55 • PMA_DEVPKG2: PMA Devices in Package 2 (1×0006) Bit Name Access Description Default 15 VS2_PRES RO Vendor specific device 2 present 0: Not present 1: Present 0 14 VS1_PRES RO Vendor specific device 1 present 0: Not present 1: Present 0 13:0 Reserved RO Reserved (ignore when read) 0 Table 56 • PMA_CTRL2: PMA Control 2 (1×0007) Bit Name Access Description Default 15:3 Reserved RO Reserved. 0 2:0 PMA_MODE RW Indicates the PMA type selected 0 111: 10GBASE-SR 110: 10GBASE-LR 101: 10GBASE-ER 100: 10GBASE-LX-4 011: 10GBASE-SW 010: 10GBASE-LW 001: 10GBASE-EW 000: Reserved When these bits are set to 10GBASE-SW, 10GBASE-LW or 10GBASE-EW, the WAN mode is enabled. Table 57 • PMA_STAT2: PMA Status 2 (1×0008) Bit Name Access Description Default 15:14 DEV_PRES RO Reflects the presence of a MMD responding at this address. 00: No device responding at this address. 01: No device responding at this address. 10: Device responding at this address. 11: No device responding at this address. 10 13 FAULT_TX_ABILITY RO Indicates a fault condition on the transmit path. 0: PMA does not have the ability to detect a fault condition on the transmit path. 1: PMA has the ability to detect a fault condition on the transmit path. 1 12 FAULT_RX_ABILITY RO Indicates a fault condition on the receive path. 1 0: PMA does not have the ability to detect a fault condition on the receive path. 1: PMA has the ability to detect a fault condition on the receive path. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 99 Registers Table 57 • PMA_STAT2: PMA Status 2 (1×0008) (continued) Bit Name Access Description 11 FAULT_TX RO/LH Indicates a fault condition on the transmit 0 path. 0: No faults asserted. TXFAULT = 0 and TXLOCK = 1. 1: Fault asserted. TXFAULT = 1 or TXLOCK = 0. Linked to 1E×9004.4. A read to either 1×0008.11 or 1E×9004.4 clears both bits if the fault condition no longer exists. 10 FAULT_RX RO/LH Indicates a fault condition on the receive path. 0 0: No faults asserted. (RXLOS = 0 or SUPPRESS_RXLOS = 1) and (RXLOCK = 1 or SUPPRESS_RXLOL = 1). 1: Fault asserted. (RXLOS = 1 and SUPPRESS_RXLOS = 0) or (RXLOCK = 0 and SUPPRESS_RXLOL = 0). Linked to 1E×9003.4. A read to either 1×0008.10 or 1E×9003.4 clears both bits if the fault condition no longer exists. 9 Reserved RO Reserved (ignore when read). 8 TXDIS_ABILITY RO Device capability to disable the transmit path. 0 0: Not capable. 1: Capable. To disable PMD, use GPO_TXALARM (1×E901.8). Transmit output of the VSC8486-04 device is disabled by means of 1×0000.11 or 1×E605.9:8. 7 BASE_SR_ABILITY RO Device capability to support 10GBASE-SR. 0: Not capable. 1: Capable. 1 6 BASE_LR_ABILITY RO Device capability to support 10GBASE-LR. 0: Not capable. 1: Capable. 1 5 BASE_ER_ABILITY RO Device capability to support 10GBASE-ER. 0: Not capable. 1: Capable. 1 4 BASE_LX4_ABILITY RO Device capability to support 10GBASE-LX4. 0: Not capable. 1: Capable. 0 3 BASE_SW_ABILITY RO Device capability to support 10GBASE-SW. 0: Not capable. 1: Capable. 1 2 BASE_LW_ABILITY RO Device capability to support 10GBASE-LW. 0: Not capable. 1: Capable. 1 1 BASE_EW_ABILITY RO Device capability to support 10GBASE-EW. 0: Not capable. 1: Capable. 1 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 Default 0 100 Registers Table 57 • PMA_STAT2: PMA Status 2 (1×0008) (continued) Bit Name 0 PMA_LPBK_ABILIT RO Y Table 58 • Access Description Default Device capability to support a PMA loopback. 1 0: Not capable. 1: Capable. PMA_CTRL3: PMA Control 3 (1×0009) Bit Name Access Description Default 15:5 Reserved RO Reserved (value always 0, writes ignored). 0 4:1 Reserved RO Reserved (value always 0, writes ignored). 0 0 TX_DIS RW Not supported. 0 To disable the transmit output, use the low power mode (1×0000.11), external pin TXONOFFI, or the TXONOFFI override and force bits 1×E605.9:8. Additionally, the PMD transmitter output can be disabled by using the GPO_TXALARM (1×E901.8). Table 59 • PMA_STAT3: PMA Status 3 (1×000A) Bit Name Access Description Default 15:5 Reserved RO Reserved (value always 0, writes ignored). 0 4:1 Reserved RO Reserved (value always 0, writes ignored). 0 0 RX_SD RO Receive signal detected. 0: Signal not detected. (RXLOS = 1 and SUPPRESS_RXLOS = 0). 1: Signal detected. (RXLOS = 0 or SUPPRESS_RXLOS = 1). 0 Table 60 • Factory Test Register (1×000B-000D) Bit Name Access Description Default 15:0 Reserved RO Factory test only; do not modify this bit group 0 Table 61 • PMA_PKGID1: PMA Package Identifier 1 (1×000E) Bit Name Access Description Default 15:0 PKG_ID_MSW RO Upper 16 bits of a 32-bit unique PMA package identifier. Bits 3-18 of the device manufacturer’s OUI. 0 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 101 Registers Table 62 • PMA_PKGID2: PMA Package Identifier 2 (1×000F) Bit Name Access Description 15:0 PKG_ID_LSW RO Lower 16 bits of a 32-bit unique PMA package 0 identifier. Bits 19-24 of the device manufacturer’s OUI. Six-bit model number, and a four-bit revision number. Table 63 • Default PMA_CFG1: PMA Configuration 1 (1×8000) Bit Name Access Description 15:14 CRU_LOOP_BANDWIDTH[1:0 RW ] CRU loop bandwidth adjustment 00: ~10 MHz 01: ~13 MHz 10: ~16 MHz 11: ~19 MHz 10 13 RX_SQU_MAN_EN RW Rx_SQUELCHING manual mode enable. 0: Enable 1: Disable For more information, see Table 68, page 104. 1 12 Reserved RO Factory test only; do not modify this bit 1 11 Reserved RO Factory test only; do not modify this bit 0 10 Reserved RWSC Factory test only; do not modify this bit 1 9 Reserved RW Factory test only; do not modify this bit 0 8 LPBKN_K RW Disable PMA serial loopback (loopback K) 0: Enable 1: Disable 1 7 TX_DATAINVN RW Selects polarity of the transmit XFI/SFI data 0: Invert Tx data polarity 1: Normal operation 1 6 TX_MSBSEL RW Selects the transmission bit order 0: MSB transmitted first with bit 63 being the MSB 1: LSB transmitted first with bit 0 being the MSB (IEEE style) 1 5 Reserved RW Factory test only; do not modify this bit 0 4 Reserved RW Factory test only; do not modify this bit 1 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 Default 102 Registers Table 63 • PMA_CFG1: PMA Configuration 1 (1×8000) (continued) Bit Name Access Description 3 RX_LOSDATASQN RW Selects data squelch mode (See Lock 1 to Reference Table within the text) 0: Automatic data squelch mode 1: Manual data squelch mode 2 RX_LCKREFN RW Selects Lock to Reference (See Lock 1 to Reference Table within the text) 0: Lock to Refclk (squelch data) 1: Normal operation 1 RX_DATAINVN RW Selects polarity of the receive XFI/SFI 1 data 0: Invert Rx data polarity 1: Normal operation 0 RX_MSBSELN RW Selects the receive bit order 1 0: MSB received first with bit 63 being the MSB 1: LSB received first with bit 0 being the MSB (IEEE style) Table 64 • Default Factory Test Register (1×8001) Bit Name Access Description Default 15:1 Reserved RO Reserved (ignore when read) 0 0 Reserved RO Factory test only; do not modify this bit 1 Table 65 • PMA_RXEQ_CTRL: PMA Rx Equalization Control (1×8002) Bit Name Access Description Default 15 Reserved RO Factory test only; do not modify this bit 1 14:11 RX_EQ_CTR RW L Amount of receive signal equalization 1111 10:0 Reserved Factory test only; do not modify this bit group 10101010101 Table 66 • RO PMA_STAT4: PMA Status 4 (1×E600) Bit Name Access Description Default 15:4 Reserved RO Reserved (ignore when read) 0 3 Reserved RO Factory test only; do not modify this bit 1 2 TXLOCKERRN RO Transmit clock multiplier lock error status 0: Lock error 1: Normal operation 1 1 RXLOCKERRN RO Receive clock recovery lock error status 0: Lock error 1: Normal operation 1 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 103 Registers Table 66 • PMA_STAT4: PMA Status 4 (1×E600) (continued) Bit Name Access Description Default 0 RXLOSN RO Receiver loss of signal status 0: Loss of signal 1: Normal operation N/A1 1. The status of this bit changes and is dependent on the condition of the connected PMD. Table 67 • PMA_CTRL4: PMA Control 4 (1×E601) Bit Name Access Description Default 15:8 Reserved RO Factory test only; do not modify this bit group 10101010 7:4 TX_EMPH_SEL RW Amount of PMA transmit pre-emphasis Type 1 0000: 1.8 dB (default) 0100: 2.7 dB 1000: 3.3 dB 1111: 3.9 dB Type 2 0000: 3.8 dB 0100: 4.8 dB 1000: 6.2 dB 1111: 6.4 dB 0 3:0 TX_SLEW_SEL RW Amount of PMA transmit slew rate 0000: Type 1 1111: Type 2 all others: Reserved 0 Table 68 • PMA_CTRL5: PMA Control 5 (1×E602) Bit Name Access Description Default 15 TX_SQUELCH RW Enables transmit data squelch. Force all zeros out the serial interface 0: Disable 1: Enable 0 14 RX_SQUELCH RW Enables received data squelch. Forces all zeros 0 into the core. 0: Disable 1: Enable To enable the RX_SQUELCH manually, register 1×8000.13 must be set to 0. Otherwise, the default setting is to squelch the RX output automatically. For more information, see Table 63, page 102. 13 Reserved RW Factory test only; do not modify this bit 0 12 Reserved RW Factory test only; do not modify this bit 0 11 Reserved RW Factory test only; do not modify this bit 0 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 104 Registers Table 68 • PMA_CTRL5: PMA Control 5 (1×E602) (continued) Bit Name 10 Description Default FULLSWG_EXVCO RW Enables high swing on EXVCOPU/PD output signals 0: Low swing 1: High swing 0 9 CLK64A_ENA RW Enables the CLK64A output signal. This signal is used when CLK64A_SRC is asserted. 0: Disable 1: Enable 0 8:7 CLK64A_SEL RW Selects which internal clock signal to output on 0 CLK64A 00: CMU divided by 64 01: CMU divided by 66 10: CRU divided by 64 11: REFCK 6 CLK64A_SRC RW Selects the source of the CLK64_EN signal 0 0: Enables CLK64A through the CLK64_EN pin 1: Enables CLK64A through the CLK64A_ENA (1×E602.9) 5 CLK64B_ENA RW Enables the CLK64B output 0: Disable 1: Enable 4:3 CLK64B_SEL RW Selects which internal clock signal to output on 0 CLK64B 00: CRU divided by 64 01: CMU divided by 66 10: CMU divided by 64 11: Factory test 2 SYNC_E RW Enables mode override for Synchronous 0 Ethernet application. Enabling this bit allows usage of the REFCLK, WREFCLK, and VREFCLK clocks for the XAUI, CMU, and CRU blocks separately in LAN mode. For more information, see register Table 70, page 106. 1 Reserved RO Reserved (value always 0, writes ignored) 0 0 Reserved RO Reserved (value always 0, writes ignored) 0 Table 69 • Access 0 High-Speed Data Output (Signal Quality Control) (1×E603) Bit Name Access Description Default 15:8 OUT_DEMP R/W Output de-emphasis adjustment. 00000000: Minimum de-emphasis. 11111111: Maximum de-emphasis. Values in between are not linear. 0 7:0 OUT_SWING R/W Output swing adjustment. 00000000: Minimum swing. 11111111: Maximum swing. Values in between are not linear. 0 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 105 Registers Table 70 • Synchronous Ethernet Clock Control (1×E604) Bit Name Access Description 15 GAIN_SEL R/W XFI input gain factor select. 0 0: Enable high gain factor. 1: Enable low gain factor. Low gain factor is similar to the low gain factor in VSC8476-01 device. Note: For applications that do not require high input gain, set this bit to 1 for optimal jitter tolerance. 14:8 Reserved R/W Reserved. 7 CMU_INTCLK_EN R/W CMU clock source. 0 0: Reserved. 1: CMU REFCLK is from internal CRU recovered clock divided by 64. 6:5 CRU_CLKSEL R/W CRU clock source. 00: CRU source clock is from REFCLK 01: CRU source clock is from WREFCLK (divided by 64). 10: CRU source clock is from WREFCLK (divided by 16). 11: Reserved. 0 4:3 CMU_CLKSEL R/W CMU clock source. 00: Reserved. 01: CMU source clock is from REFCLK. 10: CMU source clock is from internal CRU recovered clock and bit 7 needs to be set to 1. 11: CMU source clock is from VREFCLK. 0 2:1 CMUCLK_DVDR R/W Divider for CMU clock. 00: CMU source clock is divided by 64. 01: CMU source clock is divided by 16. 1×: CMU source clock is divided by 66. 0 0 CRUCLK_DVDR R/W Divider for CRU clock 0: CRU source clock is divided by 64. 1: CRU source clock is divided by 66. 0 Table 71 • Default 0 DEV_CTRL3: DEVICE Control 3 (1×E605) Bit Name Access Description Default 15 WIS_INTB_POL RW Active level (polarity) used for the output pin, WIS_INTB 0: Active low 1: Active high 0 14 WIS_INTA_POL RW Active level (polarity) used for the output pin, WIS_INTA 0: Active low 1: Active high 0 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 106 Registers Table 71 • DEV_CTRL3: DEVICE Control 3 (1×E605) (continued) Bit Name Access Description 13 AUTONEG_OVR RW Enables overriding the input pin value and instead 0 use the force bit setting 0: Use the AUTONEG input pin state 1: Override enable 12 AUTONEG_FRC RW Value to be used if the override bit is enabled 0: If AUTONEG_OVR = 1, AUTONEG = 0 1: If AUTONEG_OVR = 1, AUTONEG = 1 11 EPCS_OVR RW Enables overriding the input pin value and instead 0 use the force bit setting 0: Use the EPCS input pin state 1: Override enable 10 EPCS_FRC RW Value to be used if the override bit is enabled 0: If EPCS_OVR = 1, EPCS = 0 1: If EPCS_OVR = 1, EPCS = 1 9 TXONOFF_OVR RW Enables overriding the input pin value and instead 0 use the force bit setting 0: Use the TXONOFFI pin state 1: Use the TXONOFF_FRC value when TXONOFFI pin = low. Note: The TXONOFFI pin must be set high for register bits 9:8 to override the transmit output. 8 TXONOFF_FRC RW Value to be used if the override bit is enabled 0 0: If TXONOFF_OVR = 1, TXONOFFI = 0 1: If TXONOFF_OVR = 1, TXONOFFI = 1 Note: The TXONOFFI pin must be set high for register bits 9:8 to override the transmit output. 7 REFSEL0_OVR RW Enables overriding the input pin value and instead 0 use the force bit setting 0: Use the REFSEL0 input pin state 1: Override enable 6 REFSEL0_FRC RW Value to be used if the override bit is enabled 0: If REFSEL0_OVR = 1, REFSEL0 = 0 1: If REFSEL0_OVR = 1, REFSEL0 = 1 0 5 Reserved RO Reserved (ignored when read) 0 4 LINETIME_FRC RW Force the device into linetime mode 0: Normal operation 1: Linetime enable 0 3 WAN_OVR RW Enables overriding the input pin value and instead 0 use the force bit setting 0: Use the WAN input pin state 1: Override enable 2 WAN_FRC RW Value to be used if the override bit is enabled 0 0: If WAN_OVR = 1, WAN is disabled regardless of any other control setting 1: If WAN_OVR = 1, WAN is enabled regardless of any other control setting VMDS-10298 VSC8486-04 Datasheet Revision 4.4 Default 0 0 107 Registers Table 71 • DEV_CTRL3: DEVICE Control 3 (1×E605) (continued) Bit Name 1 SUPPRESS_RXLO RW L Disable receive LOL status from propagating into 0 the fault logic 0: Receive LOL signal is used for fault logic 1: Receive LOL signal is ignored by fault logic 0 SUPPRESS_RXLO RW S Disable receive LOS status from propagating into 0 the fault logic 0: Receive LOS signal is used for fault logic 1: Receive LOS signal is ignored by fault logic Table 72 • Access Description Default DEV_STAT1: DEVICE Status 1 (1×E606) Bit Name Access Description Default 15 WAN_STAT RO Status of WAN mode 0: Disabled 1: Enabled 0 14 WAN_MODE_PSTAT RO Input level received on the WAN_MODE pin 0: Low 1: High 0 13 LINETIME_STAT RO Current state of the linetime signal 0: Low 1: High 0 12 REFSEL0_PSTAT RO Input level received on the REFSEL0 pin 0: Low 1: High 0 11 LPP_10B_PSTAT RO Input level received on the LPP_10B pin 0: Low 1: High 0 10 LP_XAUI_PSTAT RO Input level received on the LP_XAUI pin 0: Low 1: High 0 9 SPLITLOOPN_PSTA RO T Input level received on the SPLITLOOPN pin 0: Low 1: High 0 8 LP_XGMII_PSTAT RO Input level received on the LP_XGMII pin 0: Low 1: High 0 7 LP_16B_PSTAT RO Input level received on the LP_16B pin 0: Low 1: High 0 6 IOMODESEL_PSTA RO T Input level received on the IOMODESEL pin 0: Low 1: High 0 5 AUTONEG_PSTAT Input level received on the AUTONEG pin 0: Low 1: High 0 RO VMDS-10298 VSC8486-04 Datasheet Revision 4.4 108 Registers Table 72 • DEV_STAT1: DEVICE Status 1 (1×E606) (continued) Bit Name Access Description Default 4 EPCS_PSTAT RO Input level received on the EPCS pin 0: Low 1: High 0 3 TXONOFF_PSTAT RO Input level received on the TXONOFFI pin 0: Low 1: High 0 2 Reserved RO Factory test only; do not modify this bit 0 1 Reserved RO Factory test only; do not modify this bit 0 0 Reserved RO Factory test only; do not modify this bit 0 Table 73 • DEV_STAT2: DEVICE Status 2 (1×E607) Bit Name Access Description 15:13 MST_CODE_PSTA RO T Received signal levels of the MST_CODE[2:0] 0 input pins. 12 Reserved RO Factory test only; do not modify this bit. 0 11 Reserved RO Factory test only; do not modify this bit. 0 10 Reserved RO Factory test only; do not modify this bit. 0 9 Reserved RO Factory test only; do not modify this bit. 0 8 Reserved RO Factory test only; do not modify this bit. 0 7 Reserved RO Factory test only; do not modify this bit. 0 6 EPCS_PSTAT RO Input level received on the EPCS pin. 0: Low. 1: High. 0 5 AUTONEG_PSTAT RO Input level received on the AUTONEG pin. 0: Low. 1: High. 0 4 FORCEAIS_PSTAT RO Input level received on the FORCEAIS pin. 0: Low. 1: High. 0 3 WIS_INTA_PSTAT RO Output level sent on the WIS_INTA pin. 0: Low. 1: High. 0 2 WIS_INTB_PSTAT RO Output level sent on the WIS_INTB pin. 0: Low. 1: High. 0 1 PMTICK_PSTAT RO Input level received on the TESTEN pin. 0: Low. 1: High. 0 0 LOPC_PSTAT RO Input level received on the LOPC pin. 0: Low. 1: High. 0 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 Default 109 Registers Table 74 • PMA_LOS_ASSERT: PMA Loss of Signal Assert Control (1×E700) Bit Name Access Description Default 15:10 Reserved RO Reserved. 0 9 Reserved RW Factory test only; do not modify this bit. 0 8 Reserved RW Factory test only; do not modify this bit. 0 7 Reserved RW Factory test only; do not modify this bit. 0 6 LOS_MODE_SEL RW Selects which style of LOS monitoring to use. 0 0: Monitor LOS at the input. 1: Monitor LSO after signal cleanup. Must be 0 for correct sensitivity performance in the VSC8486-04. 5:0 LOS_ASSERT_DA RW C Table 75 • Set the LOS assert voltage threshold. 001100: Less than 75 mV. 010010: Greater than 110 mV. All else: Reserved. 0 PMA_LOS_DEASSERT: PMA Loss of Signal Deassert Control (1×E701) Bit Name Access Description Default 15 LOS_EN RW Enables LOS circuitry. 0: Enable PMA LOS. 1: Disable PMA LOS. 1 14:12 LOS_WIN RW LOS report/clear time setting. 0 11:8 VCM_ADJ RW Input receiver common mode voltage adjust. 1000 Observable on RXINCM (pin N3). 7 Reserved RW Factory test only; do not modify this bit 0 6 Reserved RW Factory test only; do not modify this bit 0 5:0 LOS_DEASSERT_DA RW C Set the LOS deassert voltage threshold. 001100: Less than 75 mV. 010010: Greater than 110 mV. All else: Reserved. 0 Table 76 • PMA_LOS_STAT: PMA Loss of Signal Status (1×E702) Bit Name Access Description Default 15:3 Reserved RO Reserved 0 2 LOS_ASSERT_STAT RO Assert comparison (see also 1×E700.5:0) 0: Assert threshold is less than peak detector monitor 1: Assert threshold is greater than peak detector monitor N/A1 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 110 Registers Table 76 • PMA_LOS_STAT: PMA Loss of Signal Status (1×E702) (continued) Bit Name 1 LOS_DEASSERT_STA RO T Deassert comparison (see also 1×E701.5:0) N/A1 0: Deassert threshold is less than peak detector monitor 1: Deassert threshold is greater than peak detector monitor 0 LOS_STAT Loss of signal status (identical to 1×E600.0) N/A1 0: Loss of signal 1: Normal operation 1. Access RO Description Default The status of this bit changes and is dependent on the condition of the connected PMD. Table 77 • DEV_ID: DEVICE Identifier (1×E800) Bit Name Access Description Default 15:0 CHIP_ID RO Contains the identification number of the device 0×8486 Table 78 • DEV_REV: DEVICE Revision (1×E801) Bit Name Access Description Default 15:0 CHIP_REV RO Contains the revision number of the device 0×0004 Table 79 • Factory Test Register (1×E900) Bit Name Access Description Default 15:0 Reserved RO Factory test only; do not modify this bit group 0 Table 80 • DEV_GPIO_CTRL: DEVICE General Purpose I/O Control (1×E901) Bit Name Access Description Default 15 Reserved RO Reserved (value always 0, writes ignored) 0 14:13 TXALARM_SEL RW Selects source of TXALARM output 00: Normal TXALARM 01: Tx link/activity LED 10: GPO mode 11: Reserved 0 12:11 RXALARM_SEL RW Selects source of RXALARM output 00: Normal RXALARM 01: Rx link/activity LED 10: GPO mode 11: Reserved 0 10 LASI_SEL RW Selects source of LASI output 0: Normal LASI output 1: GPO mode 0 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 111 Registers Table 80 • DEV_GPIO_CTRL: DEVICE General Purpose I/O Control (1×E901) (continued) Bit Name Access Description Default 9 WIS_INTB_SEL RW Selects source of WIS_INTB output 0: XFP module reset or SFP+ TXDISABLE 1: WIS interrupt B function 0 8 GPO_TXALARM RW Transmitted on TXALARM when in GPO mode 0 7 GPO_RXALARM RW Transmitted on RXALARM when in GPO mode 0 6 GPO_LASI RW Transmitted on LASI when in GPO mode 0 5 TX_LED_BLINK_TIM E RW Tx data activity LED blink time 0: 50 ms interval 1: 100 ms interval 1 4 RX_LED_BLINK_TIM RW E Rx data activity LED blink time 0: 50 ms interval 1: 100 ms interval 1 3:2 TX_LED_MODE RW 00: Display Tx link status (XAUI mode)/display 10 Tx data activity status (XGMII mode) 01: Display Tx data activity status 10: Display combination of link and data activity status (XAUI mode)/display data activity status (XGMII mode) 11: Reserved 1:0 RX_LED_MODE RW Rx LED mode control 00: Display Rx link status 01: Display Rx data activity status 10: Display combo of link and data activity status 11: Reserved Table 81 • 10 DEV_XFP_CTRL: DEVICE XFP Control (1×E902) Bit Name Access Description Default 15:3 Reserved RO Reserved (value always 0, writes ignored) 0 2 XFP_RST_ON_LOWPW RW R XFP Select for XFP reset on low power mode 0: No low power mode contribution to XFP reset 1: XFP reset in low power mode 1 or SFP+_Tx_DIS SFP+ Select for Tx_DIS 0: SFP+ module functioning regardless of no low power mode 1: Disables SFP+ module in low power mode VMDS-10298 VSC8486-04 Datasheet Revision 4.4 112 Registers Table 81 • DEV_XFP_CTRL: DEVICE XFP Control (1×E902) (continued) Bit Name Access Description Default 1 XFP_RST_INV RW 0 or XFP Invert XFP reset state on WIS_INTB 0: Active high 1: Active low SFP+_Tx_DIS_INV SFP+ Invert SFP+ Tx_DIS state on WIS_INTB 0: Active high 1: Active low 0 XFP_RST RW or XFP Force XFP power-down reset 0: Normal operation 1: Hold in power down reset state 0 SFP+_DIS SFP+ Force SFP+ transmit to be disabled 0: Normal operation 1: Hold the SFP+ transmit in disable state Table 82 • Factory Test Register (1×EC00) Bit Name Access Description Default 15:0 TEST RO Factory test only; do not modify this bit group 0 Table 83 • Factory Test (1×EC01–EC34) Bit Name Access Description Default 15:0 Reserved RO Reserved (value always 0, writes ignored) 0 Table 84 • Factory Test (1×ED00–ED0F) Bit Name Access Description Default 15:0 TEST RW Factory test only; do not modify this bit group 0 Table 85 • Factory Test Register (1×EF00) Bit Name Access Description Default 15:0 TEST RO Factory test only; do not modify this bit group 0 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 113 Registers Table 86 • DEV_RST_CTRL: DEVICE Block Reset Control (1×EF01) Bit Name Access Description 15 STW_CTRL_RST RWSC A block level software reset for the two-wire 0 serial controller. Note: This register only resets the local two-wire serial circuit. It cannot be used to reset downstream SFP+/XFP devices. 14:9 Reserved RW Reserved 0 8 RST_WIS_TX RWSC Reset the WIS Tx path 0: Normal operation 1: WIS Tx path reset 0 7 RST_WIS_TXFIFO RWSC Reset the Tx WIS FIFO 0: Normal operation 1: Tx WIS FIFO reset 0 6 RST_WIS_TXFIFOPTR RWSC Reset the Tx WIS FIFO pointers 0: Normal operation 1: Tx WIS FIFO pointer reset 0 5 RST_WIS_INTR RWSC Reset the WIS interrupt tree 0: Normal operation 1: Reset WIS interrupt tree 0 4 RST_WIS_RXFIFO RWSC Reset the Rx WIS FIFO 0: Normal operation 1: Rx WIS FIFO reset 0 3 RST_WIS_RX RWSC Reset the WIS Rx path 0: Normal operation 1: WIS Rx path reset 0 2 RST_PCS_TX RWSC Reset the PCS Tx path 0: Normal operation 1: PCS Tx path reset 0 1 RST_PCS_RX RWSC Reset the PCS Rx path 0: Normal operation 1: PCS Rx path reset 0 0 RST_XGXS_FIFO RWSC Reset the XGXS FIFO 0: Normal operation 1: XGXS FIFO reset 0 Table 87 • Default DEV_XFI_CTRL2: DEVICE XFI Loopback Control 2 (1×EF10) Bit Name Access Description Default 15:3 Reserved RO Reserved (value always 0, writes ignored) 0 2 XFI_LPBK_OVR RW Override the default data pattern to transmit out the XFI port while in loopback 0: Normal operation 1: Override XFI transmit data according to bits 1:0. 0 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 114 Registers Table 87 • DEV_XFI_CTRL2: DEVICE XFI Loopback Control 2 (1×EF10) (continued) Bit Name 1:0 XFI_TXDATA_SEL RW 4.2 Access Description Default Selects the data pattern to transmit out the XFI port while in loopback 00: 0×00FF repeating pattern 01: All zeros 10: All ones 11: Tx data from WIS/PCS 0 Device 2: WIS Registers The following tables provide settings for the registers related to WIS. Table 88 • WIS_CTRL1: WIS Control 1 (2×0000) Bit Name Access Description Default 15 SOFT_RST RWSC Reset all MMDs. 0: Normal operation. 1: Reset. 0 14 LPBK_J RW Enables WIS system loopback (loopback J). 0: Disable. 1: Enable. 0 13 SPEED_SEL_A RO WIS speed capability. 0: Unspecified. 1: Operates at 10 Gbps or above. 1 12 Reserved RO Reserved. 0 11 LOW_PWR RW Enter low power mode. 0 0: Normal operation. 1: Low power mode. The XAUI and PMA highspeed output driver are disabled. TXEN is active to indicate low power state. Register bit TXEN_INV (1×E602.12) selects whether TXEN is active high or low. 10:7 Reserved RO Reserved. 0 6 SPEED_SEL_B RO WIS speed capability. 0: Unspecified. 1: Operates at 10 Gbps or above. 1 5:2 SPEED_SEL_C RO WIS speed selection. 1xxx: Reserved. x1xx: Reserved. xx1x: Reserved. 0001: Reserved. 0000: 10 Gbps. 0 1:0 Reserved RO Reserved. 0 Table 89 • WIS_STAT1: WIS Status 1 (2×0001) Bit Name Access Description Default 15:8 Reserved RO Reserved. 0 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 115 Registers Table 89 • WIS_STAT1: WIS Status 1 (2×0001) (continued) Bit Name Access Description Default 7 FAULT RO 0: No faults asserted. 1: Fault asserted. For more information about the cause of the fault, see Table 176, page 152. 0 6:3 Reserved RO Reserved. 0 2 LNK_STAT RO/LL WIS receive link status. Link up means no AIS- 1 P, AIS-L, PLM-P, or SEF alarms. 0: Link down. 1: Link up. Link up: AIS-P = 0 and AIS-L = 0 and PLMP = 0 and WIS SEF = 0. Note: WIS link down: AIS-P = 1 or AISL = 1 or PLM-P = 1 or WIS SEF = 1. 1 LOW_PWR_ABILIT Y RO Low power mode support ability. 0: Not supported. 1: Supported. 1 0 Reserved RO Reserved. 0 Table 90 • WIS_DEVID1: WIS Device Identifier 1 (2×0002) Bit Name Access Description Default 15:0 DEV_ID_MSW RO Upper 16 bits of a 32-bit unique WIS device identifier. Bits 3-18 of the device manufacturer’s OUI. 0×0007 Table 91 • WIS_DEVID2: WIS Device Identifier 2 (2×0003) Bit Name Access Description 15:0 DEV_ID_LSW RO 0×0400 Lower 16 bits of a 32-bit unique WIS device identifier. Bits 19-24 of the device manufacturer’s OUI. Six-bit model number, and a four-bit revision number. Table 92 • Default WIS_SPEED: WIS Speed Capability (2×0004) Bit Name Access Description Default 15:1 Reserved RO Reserved 0 0 RATE_ABILITY RO WIS rate capability 0: Not capable of 10 Gbps 1: Capable of 10 Gbps 1 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 116 Registers Table 93 • WIS_DEVPKG1: WIS Devices in Package 1 (2×0005) Bit Name Access Description Default 15:6 Reserved RO Reserved 0 5 DTE_XS_PRES RO Indicates whether DTE XS is present in the package 0: Not present 1: Present 0 4 PHY_XS_PRES RO Indicates whether PHY XS is present in the 1 package (this bit depends upon the IOMODESEL pin setting) 0: Not present 1: Present 3 PCS_PRES RO Indicates whether PCS is present in the package 1 0: Not present 1: Present 2 WIS_PRES RO Indicates whether WIS is present in the package 0: Not present 1: Present 1 1 PMD_PMA_PRE RO S Indicates whether PMA/PMD is present in the package 0: Not present 1: Present 1 0 CLS22_PRES Indicates whether Clause 22 registers are present 0 in the package 0: Not present 1: Present Table 94 • RO WIS_DEVPKG2: WIS Devices in Package 2 (2×0006) Bit Name Access Description Default 15 VS2_PRES RO Vendor specific device 2 present 0: Not present 1: Present 0 14 VS1_PRES RO Vendor specific device 1 present 0: Not present 1: Present 0 13:0 Reserved RO Reserved 0 Table 95 • WIS_CTRL2: WIS Control 2 (2×0007) Bit Name Access Description Default 15:6 Reserved RO Reserved. 0 5 TEST_PRBS31_AN A RW Enables WIS PRBS31 test pattern checking function. 0: Disabled. 1: Enabled. 0 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 117 Registers Table 95 • WIS_CTRL2: WIS Control 2 (2×0007) (continued) Bit Name 4 TEST_PRBS31_GE RW N Enables WIS PRBS31 test pattern generation 0 function. 0: Disable. 1: Enable. 3 TEST_PAT_SEL RW Selects the pattern type sent by the transmitter 0 when TEST_PAT_GEN (2×0007.1) is low. 0: Mixed frequency test pattern. 1: Square wave. 2 TEST_PAT_ANA RW Enables the WIS test pattern checker. Doing 0 so prevents the loss of code-group delineation (LCD-P) alarm from being set while the WIS is receiving the mixed frequency test pattern. 0: Disable. 1: Enable. 1 TEST_PAT_GEN RW Enables WIS test pattern generation. 0: Disable. 1: Enable. 0 0 WAN_MODE RW Enables 10GBASE-W logic and sets the speed of the WIS-PMA interface to 9.95328 Gbps. The proper reference clock frequency must be provided to set the data rate. There are multiple ways to enable WAN mode. 0: Disable. 1: Enable. 0 Table 96 • Access Description Default WIS_STAT2: WIS Status 2 (2×0008) Bit Name Access Description Default 15:14 DEV_PRES RO Reflects the presence of a MMD responding at this address 00: No device responding at this address 01: No device responding at this address 10: Device responding at this address 11: No device responding at this address 10 13:2 Reserved RO Reserved 0 1 PRBS31_ABILITY RO Indicates if WIS supports PRBS31 pattern testing 0: Not supported 1: Supported 1 0 BASE_R_ABILIT Y Indicates if WIS supports a bypass to allow support of 10GBASE-R 0: Not supported 1: Supported 1 RO VMDS-10298 VSC8486-04 Datasheet Revision 4.4 118 Registers Table 97 • WIS_TSTPAT_CNT: WIS Test Pattern Error Counter (2×0009) Bit Name Access Description 15:0 TSTPAT_CNT ROCR PRBS31 test pattern error counter. The saturating 0 counter clears on read. The error count is not valid until the SYNC bit in 2×EC51.0 is asserted. The error count can be incrementing while the checker is acquiring sync. To clear the invalid error count when sync is achieved, read 2×0009. After the counter begins to increment, the counting is not affected by changes to the pattern synchronization. Table 98 • Default WIS_PKGID1: WIS Package Identifier 1 (2×000E) Bit Name Access Description 15:0 PKG_ID_MSW RO 0 Upper 16 bits of a 32-bit unique WIS package identifier. Bits 3-18 of the device manufacturer’s OUI. Six-bit model number and a four-bit revision number. Table 99 • Default WIS_PKGID2: WIS Package Identifier 2 (2×000F) Bit Name Access Description Default 15:0 PKG_ID_LSW RO 0 Lower 16 bits of a 32-bit unique WIS package identifier. Bits 19-24 of the device manufacturer’s OUI. Six-bit model number and a four-bit revision number. Table 100 • WIS_STAT3: WIS Status 3 (2×0021) Bit Name Access Description Default 15:12 Reserved RO Reserved 0 11 SEF RO/LH Severely errored frame 0: No SEF detected 1: SEF detected 0 10 FEPLMP_LCDP RO/LH Indicates far-end PLM-P/LCD-P defect in WIS Rx 0 0: No far-end path label mismatch/loss of codegroup delineation 1: Far-end path label mismatch/loss of codegroup delineation 9 FEAISP_LOPP RO/LH Indicates far-end AIS-P/LOP-P defect in WIS Rx 0 0: Far-end path alarm indication signal/path loss of pointer 1: No far-end path alarm indication signal/path loss of pointer 8 Reserved RO Reserved VMDS-10298 VSC8486-04 Datasheet Revision 4.4 0 119 Registers Table 100 • WIS_STAT3: WIS Status 3 (2×0021) (continued) Bit Name Access Description Default 7 LOF RO/LH Loss of frame 0: Loss of frame flag lowered 1: Loss of frame flag raised 0 6 LOS RO/LH Loss of signal 0: Loss of signal flag lowered 1: Loss of signal flag raised 0 5 RDIL RO/LH Line remote defect indication 0: Line remote defect flag lowered 1: Line remote defect flag raised 0 4 AISL RO/LH Line alarm indication signal 0: Line alarm indication flag lowered 1: Line alarm indication flag raised 0 3 LCDP RO/LH 0 Path loss of code-group delineation 0: Path loss of code-group delineation flag lowered 1: Path loss of code-group delineation flag raised 2 PLMP RO/LH Path label mismatch 0: Path label mismatch flag lowered 1: Path label mismatch flag raised 0 1 AISP RO/LH Path alarm indication signal 0: Path alarm indication signal lowered 1: Path alarm indication signal raised 0 0 LOPP RO/LH Loss of pointer 0: Loss of pointer flag lowered 1: Loss of pointer flag raised 0 Table 101 • WIS_REI_CNT: WIS Far-End Path Block Error Count (2×0025) Bit Name Access Description Default 15:0 REIP_CNT RO 0 Far-end path block error count. Counter wraps around to 0 when it is incremented beyond its maximum error count of 65,535. Table 102 • WIS_TXJ1: WIS Tx J1s (2×0027-002E) Bit Name Access Description Default 15:8 TX_J1_ODD RW Contains one octet of the transmitted path trace message. The transmitted path trace octet 1 is in address 2×0027. Octet 3 is in address 2×0028. Octet 15 is in address 2×002E. 00 (registers 2×0027 to 2×002D) VMDS-10298 VSC8486-04 Datasheet Revision 4.4 0×89 (register 2×002E) 120 Registers Table 102 • WIS_TXJ1: WIS Tx J1s (2×0027-002E) (continued) Bit Name Access Description Default 7:0 TX_J1_EVEN RW Contains one octet of the transmitted 0 path trace message. The transmitted path trace octet 0 is in address 2×0027. Octet 2 is in address 2×0028. Octet 14 is in address 2×002E. Table 103 • WIS_RXJ1: WIS Rx J1s (2×002F-0036) Bit Name Access Description Default 15:8 RX_J1_ODD RO Contains one octet of the received path trace 0 message. The received path trace octet 1 is in address 2×002F. Octet 3 is in address 2×0030. Octet 15 is in address 2×0036. 7:0 RX_J1_EVEN RO Contains one octet of the received path trace 0 message. The received path trace octet 0 is in address 2×002F. Octet 2 is in address 2×0030. Octet 14 is in address 2×0036. Table 104 • WIS_REIL_CNT1: WIS Far-End Line BIP Errors 1 (2×0037) Bit Name Access 15:0 REIL_ERR_CNT_MS RO W Description Default Most significant word of the WIS far-end line 0 BIP error counter. Table 105 • WIS_REIL_CNT0: WIS Far-End Line BIP Errors 0 (2×0038) Bit Name Access Description Default 15:0 REIL_ERR_CNT_LS W RO Least significant word of the WIS far-end line 0 BIP error counter. Table 106 • WIS_B2_CNT1: WIS L-BIP Error Count 1 (2×0039) Bit Name Access Description Default 15:0 B2_CNT_MSW RO Most significant word of the WIS line BIP error counter. 0 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 121 Registers Table 107 • WIS_B2_CNT0: WIS L-BIP Error Count 0 (2×003A) Bit Name Access Description Default 15:0 B2_CNT_LSW RO Least significant word of the WIS line BIP error counter. 0 Table 108 • WIS_B3_CNT: WIS P-BIP Block Error Count (2×003B) Bit Name Access Description Default 15:0 B3_CNT RO Path block error counter. 0 Counter wraps around to 0 when it is incremented beyond its maximum error count of 65,535. Cleared on WIS reset. Table 109 • WIS_B1_CNT: WIS S-BIP Error Count (2×003C) Bit Name Access Description Default 15:0 B1_CNT RO 0 Section BIP error counter. Counter wraps around to 0 when it is incremented beyond its maximum error count of 65,535. Cleared on WIS reset. Table 110 • WIS_TXJ0: WIS Transmit J0s (2×0040-0047) Bit Name Access Description Default 15:8 TX_J0_ODD RW Contains one octet of the transmitted section trace message. The transmitted section trace octet 1 is in address 2×0040. Octet 3 is in address 2×0041. Octet 15 is in address 2×0047. 00 (registers 2×0040 to 2×0046) 7:0 TX_J0_EVEN RW 0×89 (register 2×0047) 0 Contains one octet of the transmitted section trace message. The transmitted section trace octet 0 is in address 2×0040. Octet 2 is in address 2×0041. Octet 14 is in address 2×0047. Table 111 • WIS_RXJ0: WIS Rx J0s (2×0048-004F) Bit Name Access Description 15:8 RX_J0_ODD RO Contains one octet of the received section trace 0 message. The received section trace octet 1 is in address 2×0048. Octet 3 is in address 2×0049. Octet 15 is in address 2×004F. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 Default 122 Registers Table 111 • WIS_RXJ0: WIS Rx J0s (2×0048-004F) (continued) Bit Name Access Description Default 7:0 RX_J0_EVEN RO Contains one octet of the received section trace 0 message. The received section trace octet 0 is in address 2×0048. Octet 2 is in address 2×0049. Octet 14 is in address 2×004F. Table 112 • EWIS_TXCTRL1: WIS Vendor-Specific Tx Control 1 (2×E600) Bit Name Access Description 15 REIL_TXBLK_MOD RW E Selects either using B2 block error count or bit 0 error count mode to generate the M0/M1 bytes for REI-L back reporting. 0: Bit error mode 1: Block error mode 14 REIP_TXBLK_MOD RW E Selects either using B3 block error count or bit 0 error count mode to generate the G1 byte for REI-L back reporting. 0: Bit error mode 1: Block error mode 13 Reserved RW Factory test only; do not modify this bit group. 0 12 SCR RW Enables transmit WIS scrambler 0: Disable 1: Enable 1 11 FRC_TX_TIMP RW Force transmission of a TIM-P condition within 0 the G1 byte 0: Normal operation. 1: Force TIM-P 10 ERDI_TX_MODE RW Selects ERDI as the transmit WIS G1 byte mode 0: RDI mode 1: ERDI mode 1 9 SDH_TX_MODE RW Selects the format of the WIS frame structure 0: SONET mode 1: SDH mode 1 8 Reserved RW Factory test only; do not modify this bit 0 7:4 SQ_WV_PW RW Selects the transmit WIS square wave test pattern length 0000 - 0011: Invalid 0100: 4 zeros and 4 ones 0101: 5 zeros and 5 ones 0110: 6 zeros and 6 ones 0111: 7 zeros and 7 ones 1000: 8 zeros and 8 ones 1001: 9 zeros and 9 ones 1010: 10 zeros and 10 ones 1011: 11 zeros and 11 ones 1100 - 1111: Invalid 0100 3 Reserved RW Factory test only; do not modify this bit 0 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 Default 123 Registers Table 112 • EWIS_TXCTRL1: WIS Vendor-Specific Tx Control 1 (2×E600) (continued) Bit Name Access Description Default 2 FRC_TX_RDI RW Force transmission of RDI-L in the K2 byte 0: Normal operation 1: Force RDI-L 0 1 FRC_TX_AISL RW Force transmission of AIS-L in the K2 byte. 0 AIS-L takes precedence over RDI-L if both are asserted. 0: Normal operation. 1: Force AIS-L 0 LPBK_H RW Enables WIS network loopback (loopback H) 0: Disable 1: Enable 0 Table 113 • Factory Test Register (2×E601) Bit Name Access Description Default 15:2 Reserved RO Factory test only; do not modify this bit group 0 1 Reserved RW Factory test only; do not modify this bit 0 0 Reserved RWSC Factory test only; do not modify this bit 0 Table 114 • Factory Test Register (2×E602) Bit Name Access Description Default 15:8 Reserved RO Factory test only; do not modify this bit group 0 7:0 Reserved RW Factory test only; do not modify this bit 0 Table 115 • Factory Test Register (2×E603) Bit Name Access Description Default 15:0 Reserved RW Factory test only; do not modify this bit group 0 Table 116 • Factory Test Register (2×E604) Bit Name Access Description Default 15:0 Reserved RW Factory test only; do not modify this bit group 0 Table 117 • Factory Test Register (2×E605) Bit Name Access Description Default 15:0 Reserved RW Factory test only; do not modify this bit group 0 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 124 Registers Table 118 • EWIS_TX_A1_A2: E-WIS Tx A1/A2 Octets (2×E611) Bit Name Access Description Default 15:8 TX_A1 RW A1 byte to be transmitted when the TOSI data is inactive. 0×F6 7:0 TX_A2 RW A2 byte to be transmitted when the TOSI data is inactive. 0×28 Table 119 • EWIS_TX_Z0_E1: E-WIS Tx Z0/E1 Octets (2×E612) Bit Name Access Description Default 15:8 TX_Z0 RW Z0 byte to be transmitted when the TOSI data is 0×CC inactive 7:0 TX_E1 RW E1 byte to be transmitted when the TOSI data is 0 inactive Table 120 • EWIS_TX_F1_D1: E-WIS Tx F1/D1 Octets (2×E613) Bit Name Access Description Default 15:8 TX_F1 RW F1 byte to be transmitted when the TOSI data is inactive 0 7:0 TX_D1 RW D1 byte to be transmitted when the TOSI data is inactive 0 Table 121 • EWIS_TX_D2_D3: E-WIS Tx D2/D3 Octets (2×E614) Bit Name Access Description Default 15:8 TX_D2 RW D2 byte to be transmitted when the TOSI data is inactive 0 7:0 TX_D3 RW D3 byte to be transmitted when the TOSI data is inactive 0 Table 122 • EWIS_TX_C2_H1: E-WIS Tx C2/H1 Octets (2×E615) Bit Name Access Description Default 15:8 TX_C2 RW C2 byte 0×1A 7:0 TX_H1 RW H1 byte to be transmitted when the TOSI data is inactive 0×62 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 125 Registers Table 123 • EWIS_TX_H2_H3: E-WIS Tx H2/H3 Octets (2×E616) Bit Name Access Description Default 15:8 TX_H2 RW H2 byte to be transmitted when the TOSI data is inactive 0×0A 7:0 TX_H3 RW H3 byte to be transmitted when the TOSI data is inactive 0 Table 124 • EWIS_TX_G1_K1: E-WIS Tx G1/K1 Octets (2×E617) Bit Name Access Description Default 15:8 Reserved RW Factory test only; do not modify this bit group 0 7:0 TX_K1 RW K1 byte to be transmitted when the TOSI data is inactive 0 Table 125 • EWIS_TX_K2_F2: E-WIS Tx K2/F2 Octets (2×E618) Bit Name Access Description Default 15:8 TX_K2 RW K2 byte to be transmitted when the TOSI data is inactive 0 7:0 TX_F2 RW F2 byte 0 Table 126 • EWIS_TX_D4_D5: E-WIS Tx D4/D5 Octets (2×E619) Bit Name Access Description Default 15:8 TX_D4 RW D4 byte to be transmitted when the TOSI data is inactive 0 7:0 TX_D5 RW D5 byte to be transmitted when the TOSI data is inactive 0 Table 127 • EWIS_TX_D6_H4: E-WIS Tx D6/H4 Octets (2×E61A) Bit Name Access Description Default 15:8 TX_D6 RW D6 byte to be transmitted when the TOSI data is inactive 0 7:0 TX_H4 RW H4 byte 0 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 126 Registers Table 128 • EWIS_TX_D7_D8: E-WIS Tx D7/D8 Octets (2×E61B) Bit Name Access Description Default 15:8 TX_D7 RW D7 byte to be transmitted when the TOSI data is inactive 0 7:0 TX_D8 RW D8 byte to be transmitted when the TOSI data is inactive 0 Table 129 • EWIS_TX_D9_Z3: E-WIS Tx D9/Z3 Octets (2×E61C) Bit Name Access Description Default 15:8 TX_D9 RW D9 byte to be transmitted when the TOSI data is inactive 0 7:0 TX_Z3 RW Z3 byte 0 Table 130 • EWIS_TX_D10_D11: E-WIS Tx D10/D11 Octets (2×E61D) Bit Name Access Description Default 15:8 TX_D10 RW D10 byte to be transmitted when the TOSI data is 0 inactive 7:0 TX_D11 RW D11 byte to be transmitted when the TOSI data is 0 inactive Table 131 • EWIS_TX_D12_Z4: E-WIS Tx D12/Z4 Octets (2×E61E) Bit Name Access Description Default 15:8 TX_D12 RW D12 byte to be transmitted when the TOSI data is 0 inactive 7:0 TX_Z4 RW Z4 byte 0 Table 132 • EWIS_TX_S1_Z1: E-WIS Tx S1/Z1 Octets (2×E61F) Bit Name Access Description Default 15:8 TX_S1 RW S1 byte to be transmitted when the TOSI data is inactive 0×0F 7:0 TX_Z1 RW Z1 byte to be transmitted when the TOSI data is inactive 0 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 127 Registers Table 133 • EWIS_TX_Z2_E2: E-WIS Tx Z2/E2 Octets (2×E620) Bit Name Access Description Default 15:8 TX_Z2 RW Z2 byte to be transmitted when the TOSI data is inactive 0 7:0 TX_E2 RW E2 byte to be transmitted when the TOSI data is inactive 0 Table 134 • EWIS_TX_N1: E-WIS Tx N1 Octet (2×E621) Bit Name Access Description Default 15:8 TX_N1 RW N1 byte 0 7:0 Reserved RO Reserved 0 Table 135 • Factory Test Register (2×E622) Bit Name Access Description Default 15:8 Reserved RO Factory test only; do not modify this bit group 0 7:0 Reserved RO Factory test only; do not modify this bit group 0 Table 136 • EWIS_TX_MSGLEN: E-WIS Tx Trace Message Length Control (2×E700) Bit Name Access Description Default 15:4 Reserved RO Reserved 0 3:2 J0_TXLEN RW Selects length of transmitted section trace message 00: 16-byte trace length 01: 64-byte trace length 10: 1-byte trace length 11: 1-byte trace length 0 1:0 J1_TXLEN RW Selects length of transmitted path trace message 0 00: 16-byte trace length 01: 64-byte trace length 10: 1-byte trace length 11: 1-byte trace length Table 137 • EWIS_TXJ0: E-WIS Tx J0s 16-63 (2×E800-E817) Bit Name Access Description 15:8 J0_TX64_ODD RW Contains one octet of the transmitted section 0 trace message. Octet 17 is in 2×E800, octet 19 is in 2×E801, and so on. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 Default 128 Registers Table 137 • EWIS_TXJ0: E-WIS Tx J0s 16-63 (2×E800-E817) (continued) Bit Name Access Description Default 7:0 J0_TX64_EVEN RW Contains one octet of the transmitted section 0 trace message. Octet 16 is in 2×E800, octet 18 is in 2×E801, and so on. Table 138 • EWIS_RXJ0: E-WIS Rx J0s 16-63 (2×E900-E917) Bit Name Access Description Default 15:8 J0_RX64_ODD RO Contains one octet of the received section trace message. Octet 17 is in 2×E900, octet 19 is in 2×E901, and so on. 0 7:0 J0_RX64_EVEN RO Contains one octet of the received section trace message. Octet 16 is in 2×E900, octet 18 is in 2×E901, and so on. 0 Table 139 • EWIS_TXJ1: E-WIS Tx WIS J1s 16-63 (2×EA00-EA17) Bit Name Access Description Default 15:8 J1_TX64_ODD RW Contains one octet of the transmitted path trace message. Octet 17 is in 2×EA00, octet 19 is in 2×EA01, and so on. 0 7:0 J1_TX64_EVEN RW Contains one octet of the transmitted path trace message. Octet 16 is in 2×EA00, octet 18 is in 2×EA01, and so on. 0 Table 140 • EWIS_RXJ1: E-WIS Rx J1s 16-63 (2×EB00-EB17) Bit Name Access Description Default 15:8 J1_RX64_ODD RO Contains one octet of the received path trace message. Octet 17 is in 2×EB00, octet 19 is in 2×EB01, and so on. 0 7:0 J1_RX64_EVEN RO Contains one octet of the received path trace message. Octet 16 is in 2×EB00, octet 18 is in 2×EB01, and so on. 0 Table 141 • EWIS_RX_FRM_CTRL1: E-WIS Rx Framer Control 1 (2×EC00) Bit Name Access Description Default 15 Reserved RO Reserved 0 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 129 Registers Table 141 • EWIS_RX_FRM_CTRL1: E-WIS Rx Framer Control 1 (2×EC00) (continued) Bit Name Access Description Default 14:10 HUNT_A1 RW The number of consecutive A1 octets that the receive framer must find before it can exit the HUNT state 0: Undefined 1-16: 1-16 17-31: Undefined 00100 9:5 PRESYNC_A1 RW The number of consecutive A1 octets in the presync pattern preceding the first A2 octet 0: 1 1-16: 1-16 17-31: 16 10000 4:0 PRESYNC_A2 RW The number of consecutive A2 octets in the presync pattern following the last A1 octet 0: Only the four MSB of the first A2 byte are compared 1-16: 1-16 17-31: 16 10000 Table 142 • EWIS_RX_FRM_CTRL2: E-WIS Rx Framer Control 2 (2×EC01) Bit Name Access Description Default 15:13 Reserved RO Reserved. 0 12:8 SYNC_PAT RW Synchronization pattern to be used after the 00010 presync pattern has been detected. 0: Sync pattern is A1 plus the four most significant bits of A2. 1: Sync pattern is two A1s plus one A2 (A1A1A2). 2-16: Sync pattern is the number of consecutive A1s followed by the same number of A2s. For example, the sync pattern is A1A1A2A2 when 2 is the setting. 17-31: Undefined. 7:4 SYNC_ENTRY_CN RW T Number of consecutive frame boundaries to be 0100 detected after finding the presync pattern before the framer can enter the SYNC state. 0: 1. 1-15: 1-15. 3:0 SYNC_EXIT_CNT Number of consecutive frame boundary 0100 location errors tolerated/detected before exiting the SYNC state. 0: 1. 1-15: 1-15. RW Table 143 • EWIS_LOF_CTRL1: E-WIS Loss of Frame Control 1 (2×EC02) Bit Name Access Description Default 15:12 Reserved RO Reserved 0 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 130 Registers Table 143 • EWIS_LOF_CTRL1: E-WIS Loss of Frame Control 1 (2×EC02) (continued) Bit Name Access Description Default 11:6 LOF_T1 RW Defines the number of frames periods (nominally 0×18 125 microseconds) during which OOF must persist to trigger LOF. This is not a count of continuous frames. An integrating counter is used. 0×0: Undefined. 0×1: 1 frame time (125 µs). 0×2: 2 frame times (250 µs). --0×18: 24 frame times (3 ms). 0×3F: 63 frame times (7.875 ms). 5:0 LOF_T2 RW Defines the number of consecutive frame periods (nominally 125 µs) during which OOF status must not be true in order to clear loss of frame set count (the counter associated with 2×EC02.11:6). 0×0: Undefined. 0×1: 1 frame time (125 µs). 0×2: 2 frame times (250 µs). --0×18: 24 frame times (3 ms). 0×3F: 63 frame times (7.875 ms). 0×18 Table 144 • EWIS_LOF_CTRL2: E-WIS Loss of Frame Control 2 (2×EC03) Bit Name Access Description Default 15:7 Reserved RO Reserved 0 6:1 LOF_T3 RW Defines number of consecutive frames (normally 0×18 125 µs) for which the receive framer must be in its sync state in order to clear the LOF status 0×0: Undefined 0×1: 1 frame time (125 µs) 0×2: 2 frame times (250 µs) --0×18: 24 frame times (3 ms) 0×3F: 63 frame times (7.875 ms) 0 Reserved RW Factory test only; do not modify this bit 0 Table 145 • EWIS_RX_CTRL1: E-WIS Rx Control 1 (2×EC10) Bit Name Access Description Default 15:2 Reserved RO Reserved 0 1 DSCR_ENA RW Enables the WIS descrambler 0: Disable 1: Enable 1 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 131 Registers Table 145 • EWIS_RX_CTRL1: E-WIS Rx Control 1 (2×EC10) (continued) Bit Name Access Description Default 0 B3_CALC_MOD E RW Selects whether or not the fixed stuff bytes are 1 included in the receive Path BIP error calculation 0: The fixed stuff bytes are excluded from the B3 calculation 1: The fixed stuff bytes are included in the B3 calculation Table 146 • EWIS_RX_MSGLEN: E-WIS Rx Trace Message Length Control (2×EC20) Bit Name Access Description Default 15:4 Reserved RO Reserved 0 3:2 J0_RX_LEN RW Selects the expected length of the received Section trace message 00: 16-byte trace length 01: 64-byte trace length 10: 1-byte trace length 11: 1-byte trace length 0 1:0 J1_RX_LEN RW Selects the length of the expected Path trace message 00: 16-byte trace length 01: 64-byte trace length 10: 1-byte trace length 11: 1-byte trace length 0 Table 147 • EWIS_RX_ERR_FRC1: E-WIS Rx Error Force Control 1 (2×EC30) Bit Name Access Description Default 15:13 Reserved RO Reserved 0 12 FRC_LOPC RW Force a loss of optical carrier (LOPC) condition 0 0: Normal operation 1: Force LOPC 11 FRC_LOS RW Force a loss of signal (LOS) condition in the WIS receive data path 0: Normal operation 1: Forced receive LOS 0 10 FRC_OOF RW Force the receive framer into the out-of-frame (OOF) state 0: Normal operation 1: Force receive OOF 0 9 LOPC_POL_SEL RW Selects the polarity of the LOPC input pin 0: LOPC asserted when input is low 1: LOPC asserted when input is high 0 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 132 Registers Table 147 • EWIS_RX_ERR_FRC1: E-WIS Rx Error Force Control 1 (2×EC30) (continued) Bit Name Access Description Default 8 RXLOF_ON_LOP RW C Selects whether or not the LOPC input has any 0 effect on alarm conditions detected by the device 0: LOPC condition does not effect the state of the LOF or SEF status, nor the state of the receive path framer 1: LOF and SEF are asserted and the receive path framer is put into its out-of-frame state during an LOPC condition 7:4 APS_THRES RW Defines the number of consecutive frames received before asserting the AIS-L and RDI-L alarms 3-15: Threshold value All others: Reserved 0101 3 FRC_RX_AISL RW Force a line alarm indication signal (AIS-L) condition in the WIS receive data path 0: Normal operation 1: Device forced into Rx AIS-L condition 0 2 FRC_RX_RDIL RW Force a line remote defect identifier (RDI-L) condition in the WIS receive data path 0: Normal operation 1: Device forced into Rx RDI-L condition 0 1 FRC_RX_AISP RW Force a path alarm indication signal (AIS-P) condition in the WIS receive data path 0: Normal operation 1: Device forced into Rx AIS-P condition 0 0 FRC_RX_LOP RW Force a loss of pointer (LOP) condition to the starting location of the frame’s SPE (synchronous payload envelope) in the WIS receive data path 0: Normal operation 1: Device forced into Rx LOP condition 0 Table 148 • EWIS_RX_ERR_FRC2: E-WIS Rx Error Force Control 2 (2×EC31) Bit Name Access Description 15 FRC_RX_UNEQP RW Force a unequipped path (UNEQ-P) defect in 0 the WIS receive data path. 0: Normal operation. 1: Device forced into Rx UNEQ-P condition. 14 FRC_RX_PLMP RW Force a payload label mismatch (PLM-P) defect in the WIS receive data path. 0: Normal operation. 1: Device forced into Rx PLM-P condition. 0 13 FRC_RX_RDIP RW Force a far-end path remote defect identifier condition in the WIS receive data path. 0: Normal operation. 1: Device forced into Rx far-end RDI-P condition. 0 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 Default 133 Registers Table 148 • EWIS_RX_ERR_FRC2: E-WIS Rx Error Force Control 2 (2×EC31) (continued) Bit Name Access Description Default 12 FRC_RX_FE_AISP RW Force a far-end path alarm indication signal condition in the WIS receive data path. 0: Normal operation. 1: Device forced into Rx far-end AIS-P condition. 0 11 FRC_RX_FE_UNEQ RW P Force a far-end unequipped path defect in the 0 WIS receive data path. 0: Normal operation. 1: Device forced into Rx far-end UNEQ-P condition. 10 FRC_RX_FE_PLMP RW Force a far-end payload label mismatch defect 0 in the WIS receive data path. 0: Normal operation. 1: Device forced into Rx far-end PLM-P condition. 9 FRC_RX_REIP RW Force a path remote error indication (REI-P) condition in the WIS receive data path. The error is reflected in register 2×EF04.3. 0: Normal operation. 1: Device forced into Rx REI-P condition. 0 8 FRC_RX_REIL RW Force a line remote error indication (REI-L) condition in the WIS receive data path. The error is reflected in register 2×EF04.4. 0: Normal operation. 1: Device forced into Rx REI-L condition. 0 7 FRC_RX_SEF RW Force a severely errored frame (SEF) condition in the WIS receive data path. 0: Normal operation. 1: Device forced into Rx SEF condition. 0 6 FRC_RX_LOF RW Force a loss of frame (LOF) condition in the WIS receive data path. 0: Normal operation. 1: Device forced into Rx LOF condition. 0 5 FRC_RX_B1 RW Force a PMTICK B1 BIP error condition (B1NZ) in the WIS receive data path. 0: Normal operation. 1: Device forced into PMTICK B1 BIP error condition. 0 4 FRC_RX_B2 RW Force a PMTICK B2 BIP error condition (B2NZ) in the WIS receive data path. 0: Normal operation. 1: Device forced into PMTICK B2 BIP error condition. 0 3 FRC_RX_B3 RW Force a PMTICK B3 BIP error condition (B3NZ) in the WIS receive data path. 0: Normal operation. 1: Device forced into PMTICK B3 BIP error condition. 0 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 134 Registers Table 148 • EWIS_RX_ERR_FRC2: E-WIS Rx Error Force Control 2 (2×EC31) (continued) Bit Name Access Description Default 2 FRC_RX_LCDP RW Force a loss of code-group delineation (LCD- 0 P) defect in the WIS receive data path. 0: Normal operation. 1: Device forced into Rx LCD-P condition. 1 FRC_RX_REIL_NZ RW Force a far-end line BIP error condition (far0 end B2NZ) in the WIS receive data path. The error is reflected in register 2×EF04.2. 0: Normal operation. 1: Device forced into Rx far-end line BIP error condition. 0 FRC_RX_REIP_NZ RW Force a far-end path BIP error condition (far- 0 end B3NZ) in the WIS receive data path. The error is reflected in register 2×EF04.1. 0: Normal operation. 1: Device forced into Rx far-end path BIP error condition. Table 149 • EWIS_MODE_CTRL: E-WIS Mode Control (2×EC40) Bit Name Access Description Default 15:13 Reserved RO Reserved. 0 12 REI_MODE RW Selects REI extraction from the M0/M1 bytes in the WIS receive data path. 0: SONET mode enabled. Uses M1 only. 1: SDH mode enabled. Uses M0 and M1. 0 11 SDH_RX_MODE RW Selects H1/H2 pointer processing. 0: SONET mode. 1: SDH mode. 0 10:9 Reserved RW Factory test only; do not modify this bit group. 0 8 RX_ERDI_MODE RW Selects ERDI-P/RDI-P extraction from the G1 byte in the WIS received data. 0: RDI-P is reported in bit 5, bits 6 and 7 are unused. 1: ERDI is reported in bits 5-7. 101 indicates far-end AIS-P. 110 indicates far-end UNEQ-P. 010 indicates far-end PLM-P. 1 7:0 C2_EXP Expected C2 receive octet. A PLM-P alarm is generated if this octet value is not received. 0×1A RW Table 150 • Factory Test Register (2×EC41) Bit Name Access Description Default 15:0 Reserved RO Factory test only; do not modify this bit group. 0 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 135 Registers Table 151 • EWIS_PRBS31_ANA_CTRL: E-WIS PRBS31 Analyzer Control (2×EC50) Bit Name Access Description Default 15:2 Reserved RO Reserved. 0 1 PRBS31_FRC_ER RW R Inject a single bit error into the WIS PRBS31 pattern checker. A single bit error results in the error counter incrementing by 3 (one error for each tap of the checker). 0: Normal operation. 1: Inject error. 0 0 PRBS31_FRC_SAT RWSC Force the PRBS31 pattern error counter to a 0 value of 65528. This can be useful for testing the saturating feature of the counter. 0: Normal operation. 1: Force the PRBS31 error counter to a value of 65528. Forcing the counter to 65528 through this bit has no effect on register 2×EC51.1. Table 152 • EWIS_PRBS31_ANA_STAT: E-WIS PRBS31 Analyzer Status (2×EC51) Bit Name Access Description Default 15:2 Reserved RO Reserved. 0 1 PRBS31_ERR RO Status bit indicating if the WIS PRBS31 error counter is non-zero. 0: Counter is zero. 1: Counter is non-zero. When the WIS PRBS31 analyzer is disabled, this bit might still be on. When the analyzer is re-enabled, this bit is cleared. If needed, the device reset can be used to clear the status. 0 0 PRBS31_ANA_STAT RO E Indicates when the Rx WIS PRBS31 pattern 0 checker is synchronized to the incoming data. 0: PRBS31 pattern checker is not synchronized to the data. PRBS31 error counter value is not valid. 1: PRBS31 pattern checker is synchronized to the data. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 136 Registers Table 153 • EWIS_PMTICK_CTRL: E-WIS Performance Monitor Control (2×EC60) Bit Name Access Description Default 15:3 PMTICK_DUR RW Sets the interval for updating the PMTICK error counters when the PMTICK_SRC bit is 1. The value represents the number of 125 µs increments between PMTICK events. 0: Undefined. 1: Undefined. 2: 250 µs. --8: 1 ms. 8000: 1 second 8191: 1.024 seconds 0×1F40 2 PMTICK_ENA RW Enables the PMTICK counters to be updated on a 0 PMTICK event. The source of the PMTICK event is determined by the PMTICK_SRC bit. 0: Disable. 1: Enable. 1 PMTICK_SRC RW Selects how the PMTICK counters are updated. 1 The PMTICK counters are updated with the selected source only if the PMTICK enable bit is set. 0: PMTICK counters updated on a rising edge of the PMTICK pin. 1: PMTICK counters updated when the PMTICK. counter reaches its terminal count. 0 PMTICK_FRC RWSC Force the PMTICK counters to update, regardless 0 of the PMTICK_ENA or PMTICK_SRC settings. 0: Normal operation. 1: Forces PMTICK event. Table 154 • EWIS_CNT_CFG: E-WIS Counter Configuration (2×EC61) Bit Name Access Description Default 15:12 Reserved RO Reserved 0 11 B1_BLK_MODE RW Enables block mode (increment once for each 0 errored frame) counting for the B1 BIP PMTICK counter. 0: Bit mode 1: Block mode 10 B2_BLK_MODE RW Enables block mode (increment once for each 0 errored frame) counting for the B2 BIP PMTICK counter 0: Bit mode 1: Block mode 9 B3_BLK_MODE RW Enables block mode (increment once for each 0 errored frame) counting for the B3 BIP PMTICK counter 0: Bit mode 1: Block mode VMDS-10298 VSC8486-04 Datasheet Revision 4.4 137 Registers Table 154 • EWIS_CNT_CFG: E-WIS Counter Configuration (2×EC61) (continued) Bit Name Access Description Default 8:6 Reserved RO Reserved 0 5 REIP_BLK_MODE RW Enables block mode (increment once for each 0 errored frame) counting for the REI-P (far-end B3 error count in the G1 byte) PMTICK counter 0: Bit mode 1: Block mode 4 REIL_BLK_MODE RW Enables block mode (increment once for each errored frame) counting for the REI-L (far-end B2 error count in the M0/M1 byte) PMTICK counter 0: Bit mode 1: Block mode 0 3:0 Reserved Reserved 0 RO Table 155 • EWIS_CNT_STAT: E-WIS Counter Status (2×EC62) Bit Name Access Description Default 15:3 Reserved RO Reserved 0 2 REIP_CNT_STAT RO Status bit indicating if the REI-P (far-end B3) PMTICK counter is non-zero 0: Counter is zero 1: Counter is non-zero Counter is not impacted by FRC_RX_REIP or FRC_RX_REIP_NZ. 0 1 REIL_CNT_STAT RO Status bit indicating if the REI-L (far-end B2) PMTICK counter is non-zero 0: Counter is zero 1: Counter is non-zero Counter is not impacted by FRC_RX_REIL or FRC_RX_REIL_NZ. 0 0 Reserved Factory test only; do not modify this bit 0 RO Table 156 • EWIS_REIP_CNT1: E-WIS P-REI Counter 1 (MSW) (2×EC80) Bit Name Access Description 15:0 REIP_ERR_CNT_MS W RO PMTICK statistical error count of the far-end 0 B3 errors (reported in the G1 byte). 16 MSB are in this register, 16 LSB are in the next register. The count is updated only on a PMTICK event. The counter saturates to all ones. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 Default 138 Registers Table 157 • EWIS_REIP_CNT0: E-WIS P-REI Counter 0 (LSW) (2×EC81) Bit Name Access Description 15:0 REIP_ERR_CNT_LS RO W Default PMTICK statistical error count of the far-end 0 B3 errors (reported in the G1 byte). 16 LSB are in this register, 16 MSB are in the previous register. The count is updated only on a PMTICK event. The counter saturates to all ones. Table 158 • EWIS_REIL_CNT1: E-WIS L-REI Counter 1 (MSW) (2×EC90) Bit Name Access 15:0 REIL_ERR_CNT_MS RO W Description Default PMTICK statistical error count of the far-end 0 B2 errors (reported in the M0/M1 bytes). 16 MSB are in this register, 16 LSB are in the next register. The count is updated only on a PMTICK event. The counter saturates to all ones. Table 159 • EWIS_REIL_CNT0: E-WIS L-REI Counter 0 (LSW) (2×EC91) Bit Name Access Description Default 15:0 REIL_ERR_CNT_LS W RO PMTICK statistical error count of the far-end 0 B2 errors (reported in the M0/M1 bytes). 16 LSB are in this register, 16 MSB are in the previous register. The count is updated only on a PMTICK event. The counter saturates to all ones. Table 160 • Factory Test Register (2×ECA0) Bit Name Access Description Default 15:7 Reserved RO Factory test only; do not modify this bit group 0 6:0 Reserved RO Factory test only; do not modify this bit group 0 Table 161 • EWIS_B1_ERR_CNT1: E-WIS S-BIP Error Counter 1 (MSW) (2×ECB0) Bit Name Access Description 15:0 B1_ERR_CNT_MS W RO PMTICK statistical error count of the B1 BIP 0 errors. 16 MSB are in this register, 16 LSB are in the next register. The count is updated only on a PMTICK event. The counter saturates to all ones. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 Default 139 Registers Table 162 • EWIS_B1_ERR_CNT0: E-WIS S-BIP Error Counter 0 (LSW) (2×ECB1) Bit Name Access Description Default 15:0 B1_ERR_CNT_LS W RO PMTICK statistical error count of the B1 BIP 0 errors. 16 LSB are in this register, 16 MSB are in the previous register. The count is updated only on a PMTICK event. The counter saturates to all ones. Table 163 • EWIS_B2_ERR_CNT1: E-WIS L-BIP Error Counter 1 (MSW) (2×ECB2) Bit Name Access Description Default 15:0 B2_ERR_CNT_MS W RO PMTICK statistical error count of the B2 BIP 0 errors. 16 MSB are in this register, 16 LSB are in the next register. The count is updated only on a PMTICK event. The counter saturates to all ones. Table 164 • EWIS_B2_ERR_CNT0: E-WIS L-BIP Error Counter 0 (LSW) (2×ECB3) Bit Name Access 15:0 B2_ERR_CNT_LSW RO Description Default PMTICK statistical error count of the B2 BIP 0 errors. 16 LSB are in this register, 16 MSB are in the previous register. The count is updated only on a PMTICK event. The counter saturates to all ones. Table 165 • EWIS_B3_ERR_CNT1: E-WIS P-BIP Error Counter 1 (MSW) (2×ECB4) Bit Name Access 15:0 B3_ERR_CNT_MSW RO Description Default PMTICK statistical error count of the B3 BIP 0 errors. 16 MSB are in this register, 16 LSB are in the next register. The count is updated only on a PMTICK event. The counter saturates to all ones. Table 166 • EWIS_B3_ERR_CNT0: E-WIS P-BIP Error Counter 0 (LSW) (2×ECB5) Bit Name Access Description 15:0 B3_ERR_CNT_LS W RO PMTICK statistical error count of the B3 BIP 0 errors. 16 LSB are in this register, 16 MSB are in the previous register. The count is updated only on a PMTICK event. The counter saturates to all ones. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 Default 140 Registers Table 167 • Factory Test Register (2×ED00–ED08) Bit Name Access Description Default 15:0 Reserved RO Factory test only; do not modify this bit group 0 Table 168 • EWIS_RXTX_CTRL: E-WIS Rx to Tx Control (2×EE00) Bit Name Access Description Default 15:7 Reserved RO Reserved. 0 6 RXAISL_ON_LOP RW C Selects if an LOPC condition contributes to the 0 Rx AIS-L alarm. 0: LOPC condition does not cause the AIS-L alarm to be set. 1: LOPC condition causes the AIS-L alarm to be set. 5 RXAISL_ON_LOS RW Selects if an LOS condition contributes to the Rx 0 AIS-L alarm. 0: LOS condition does not cause the AIS-L alarm to be set. 1: LOS condition causes the AIS-L alarm to be set. 4 RXAISL_ON_LOF RW Selects if an LOF condition contributes to the Rx 0 AIS-L alarm. 0: LOF condition does not cause the AIS-L alarm to be set. 1: LOF condition causes the AIS-L alarm to be set. 3 TXRDIL_ON_LOP RW C Selects if a RDI-L is reported in the Tx frame’s 0 K2 byte when an LOPC condition is detected. 0: RDI-L is not reported when LOPC is detected. 1: RDI-L is reported when LOPC is detected. 2 TXRDIL_ON_LOS RW Selects whether or not RDI-L is reported in the Tx frame’s K2 byte when an LOS condition is detected. 0: RDI-L is not reported when LOS is detected. 1: RDI-L is reported when LOS is detected. 0 1 TXRDIL_ON_LOF Selects whether or not RDI-L is reported in the Tx frame’s K2 byte when an LOF condition is detected. 0: RDI-L is not reported when LOF is detected. 1: RDI-L is reported when LOF is detected. 0 0 TXRDIL_ON_AISL RW RW Selects whether or not RDI-L is reported in the 0 Tx frame’s K2 byte when a Rx AIS-L condition is detected. 0: RDI-L is not reported when a Rx AIS-L condition is detected. 1: RDI-L is reported when a Rx AIS-L condition is detected. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 141 Registers Table 169 • EWIS_PEND1: E-WIS Interrupt Pending 1 (2×EF00) Bit Name Access Description Default 15 Reserved RO Reserved. 0 14 MSTCODE2_PEND ROCR Interrupt pending. MSTCODE[2] input pin has changed state since this register was last read. The MSTCODE[2] pin status is reported in 1×E607.15. 0: MSTCODE[2] pin has not changed state since last read of this register. 1: MSTCODE[2] pin has changed state. 0 13 MSTCODE1_PEND ROCR Interrupt pending. MSTCODE[1] input pin has changed state since this register was last read. The MSTCODE[1] pin status is reported in 1×E607.14. 0: MSTCODE[1] pin has not changed state since last read of this register. 1: MSTCODE[1] pin has changed state. 0 12 MSTCODE0_PEND ROCR Interrupt pending. MSTCODE[0] input pin has changed state since this register was last read. The MSTCODE[1] pin status is reported in 1×E607.13. 0: MSTCODE[0] pin has not changed state since last read of this register. 1: MSTCODE[0] pin has changed state. 0 11 SEF_PEND ROCR Interrupt pending. SEF has changed state since this register was last read. 0: SEF condition has not changed state. 1: SEF condition has changed state. 0 10 FEPLMP_LCDP_PEN ROCR D Interrupt pending. Far-end path label mismatch (PLM-P)/loss of code-group delineation (LCD-P) condition has changed state since this register was last read. 0: PLM-P/LCD-P has not changed state. 1: PLM-P/LCD-P condition has changed state. 0 9 FEAISP_LOPP_PEND ROCR Interrupt pending. Far-end path alarm 0 indication signal (AIS-P)/path loss of pointer (LOP) condition has changed state since this register was last read. 0: Far-end AIS-P/LOP-P condition has not changed state. 1: Far-end AIS-P/LOP-P condition has changed state. 8 Reserved RO Reserved 0 7 LOF_PEND ROCR Interrupt pending. Loss of frame (LOF) condition has changed state since this register was last read. 0: LOF condition has not changed state. 1: LOF condition has changed state. 0 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 142 Registers Table 169 • EWIS_PEND1: E-WIS Interrupt Pending 1 (2×EF00) (continued) Bit Name Access Description Default 6 LOS_PEND ROCR Interrupt pending. Loss of signal (LOS) condition has changed state since this register was last read. This bit does not assert if LOPC is active at the time LOS changes state. 0: LOS condition has not changed state. 1: LOS condition has changed state. 0 5 RDIL_PEND ROCR Interrupt pending. Line remote defect indication (RDI-L) has changed state since this register was last read. 0: RDI-L condition has not changed state. 1: RDI-L condition has changed state. 0 4 AISL_PEND ROCR Interrupt pending. Line alarm indication signal (AIS-L) has changed state since this register was last read. This bit does not assert if LOPC, LOS, LOF, or SEF are asserted at the time AIS-L changes state. 0: AIS-L condition has not changed state. 1: AIS-L condition has changed state. 0 3 LCDP_PEND ROCR Interrupt pending. Loss of code-group 0 delineation (LCD-P) has changed state since this register was last read. This bit does not assert if AIS-L, AIS-P, UNEQ-P, or PLM-P are asserted at the time LCD-P changes state. 0: LCD-P condition has not changed state. 1: LCD-P condition has changed state. 2 PLMP_PEND ROCR Interrupt pending. Path label mismatch 0 (PLM-P) has changed state since this register was last read. This bit does not assert if LOP-P or AIS-P are asserted at the time PLM-P changes state. 0: PLM-P condition has not changed state. 1: PLM-P condition has changed state. 1 AISP_PEND ROCR Interrupt pending. Path alarm indication 0 signal (AIS-P) has changed state since this register was last read. This bit does not assert if LOPC, LOS, SEF, LOF, or AIS-L are asserted at the time AIS-P changes state. 0: AIS-P condition has not changed state. 1: AIS-P condition has changed state. 0 LOPP_PEND ROCR Interrupt pending. Path loss of pointer (LOP- 0 P) has changed state since this register was last read. 0: LOP-P condition has not changed state. 1: LOP-P condition has changed state. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 143 Registers Table 170 • EWIS_MASKA_1: E-WIS Interrupt Mask A 1 (2×EF01) Bit Name Access Description Default 15 Reserved RO Reserved 0 14 MSTCODE2_MASKA RW Enables propagation of MSTCODE2_PEND 0 to the WIS_INTA pin 0: Disable 1: Enable 13 MSTCODE1_MASKA RW Enables propagation of MSTCODE1_PEND 0 to the WIS_INTA pin 0: Disable 1: Enable 12 MSTCODE0_MASKA RW Enables propagation of MSTCODE0_PEND 0 to the WIS_INTA pin 0: Disable 1: Enable 11 SEF_MASKA RW Enables propagation of SEF_PEND to the WIS_INTA pin 0: Disable 1: Enable 0 10 FEPLMP_LCDP_MAS KA RW Enables propagation of FEPLMP_LCDP_PEND to the WIS_INTA pin 0: Disable 1: Enable 0 9 FEAISP_LOPP_MASK RW A 0 Enables propagation of FEAISP_LOPP_PEND to the WIS_INTA pin 0: Disable 1: Enable 8 Reserved RO Reserved 0 7 LOF_MASKA RW Enables propagation of LOF_PEND to the WIS_INTA pin 0: Disable 1: Enable 0 6 LOS_MASKA RW Enables propagation of LOS_PEND to the WIS_INTA pin 0: Disable 1: Enable 0 5 RDIL_MASKA RW Enables propagation of RDIL_PEND to the 0 WIS_INTA pin 0: Disable 1: Enable 4 AISL_MASKA RW Enables propagation of AISL_PEND to the WIS_INTA pin 0: Disable 1: Enable 3 LCDP_MASKA RW Enables propagation of LCDP_PEND to the 0 WIS_INTA pin 0: Disable 1: Enable VMDS-10298 VSC8486-04 Datasheet Revision 4.4 0 144 Registers Table 170 • EWIS_MASKA_1: E-WIS Interrupt Mask A 1 (2×EF01) (continued) Bit Name Access Description Default 2 PLMP_MASKA RW Enables propagation of PLMP_PEND to the 0 WIS_INTA pin 0: Disable 1: Enable 1 AISP_MASKA RW Enables propagation of AISP_PEND to the WIS_INTA pin 0: Disable 1: Enable 0 LOPP_MASKA RW Enables propagation of LOPP_PEND to the 0 WIS_INTA pin 0: Disable 1: Enable 0 Table 171 • EWIS_MASKB_1: E-WIS Interrupt Mask B 1 (2×EF02) Bit Name Access Description Default 15 Reserved RO Reserved 0 14 MSTCODE2_MASKB RW Enables propagation of MSTCODE2_PEND 0 to the WIS_INTB pin 0: Disable 1: Enable 13 MSTCODE1_MASKB Enables propagation of MSTCODE1_PEND to the WIS_INTB pin 0: Disable 1: Enable 12 MSTCODE0_MASKB Enables propagation of MSTCODE0_PEND to the WIS_INTB pin 0: Disable 1: Enable 11 SEF_MASKB RW Enables propagation of SEF_PEND to the WIS_INTB pin 0: Disable 1: Enable 0 10 FEPLMP_LCDP_MAS KB RW Enables propagation of FEPLMP_LCDP_PEND to the WIS_INTB pin 0: Disable 1: Enable 0 9 FEAISP_LOPP_MASK RW B 0 Enables propagation of FEAISP_LOPP_PEND to the WIS_INTB pin 0: Disable 1: Enable 8 Reserved RO Reserved 0 7 LOF_MASKB RW Enables propagation of LOF_PEND to the WIS_INTB pin 0: Disable 1: Enable 0 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 145 Registers Table 171 • EWIS_MASKB_1: E-WIS Interrupt Mask B 1 (2×EF02) (continued) Bit Name Access Description Default 6 LOS_MASKB RW Enables propagation of LOS_PEND to the WIS_INTB pin 0: Disable 1: Enable 0 5 RDIL_MASKB RW Enables propagation of RDIL_PEND to the 0 WIS_INTB pin 0: Disable 1: Enable 4 AISL_MASKB RW Enables propagation of AISL_PEND to the WIS_INTB pin 0: Disable 1: Enable 3 LCDP_MASKB RW Enables propagation of LCDP_PEND to the 0 WIS_INTB pin 0: Disable 1: Enable 2 PLMP_MASKB RW Enables propagation of PLMP_PEND to the 0 WIS_INTB pin 0: Disable 1: Enable 1 AISP_MASKB RW Enables propagation of AISP_PEND to the WIS_INTB pin 0: Disable 1: Enable 0 LOPP_MASKB RW Enables propagation of LOPP_PEND to the 0 WIS_INTB pin 0: Disable 1: Enable 0 0 Table 172 • EWIS_INTR_STAT2: E-WIS Interrupt Status 2 (2×EF03) Bit Name Access Description Default 15:14 Reserved RO Reserved 0 13 TXLOL_STAT RO PMA CMU loss of lock status 0: No PMA CMU lock error 1: PMA CMU lock error 0 12 RXLOL_STAT RO PMA CRU loss of lock status 0: No PMA CRU lock error 1: PMA CRU lock error 0 11 LOPC_STAT RO Loss of optical carrier (LOPC) status 0: The LOPC input pin is deasserted 1: The LOPC input pin is asserted 0 10 UNEQP_STAT RO Unequipped path (UNEQ-P) status 0: UNEQ-P is deasserted 1: UNEQ-P is asserted 0 9 FEUNEQP_STAT RO Far-end unequipped path (UNEQ-P) status 0: Far-end UNEQ-P is deasserted 1: Far-end UNEQ-P is asserted 0 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 146 Registers Table 172 • EWIS_INTR_STAT2: E-WIS Interrupt Status 2 (2×EF03) (continued) Bit Name Access Description Default 8 FERDIP_STAT RO Far-end path remote defect identifier (RDI-P) status 0: Far-end RDI-P is deasserted 1: Far-end RDI-P is asserted 0 7 B1_NZ_STAT RO PMTICK B1 BIP (B1_ERR_CNT) counter status 0 0: B1_ERR_CNT is zero 1: B1_ERR_CNT is non-zero 6 B2_NZ_STAT RO PMTICK B2 BIP (B2_ERR_CNT) counter status 0 0: B2_ERR_CNT is zero 1: B2_ERR_CNT is non-zero 5 B3_NZ_STAT RO PMTICK B3 BIP (B3_ERR_CNT) counter status 0 0: B3_ERR_CNT is zero 1: B3_ERR_CNT is non-zero 4 REIL_STAT RO Line remote error indication (REI-L) value status 0 0: The REI-L value in the last received frame reported no errors 1: The REI-L value in the last received frame reported errors 3 REIP_STAT RO Path remote error indication (REI-P) value status 0 0: The REI-P value in the last received frame reported no errors 1: The REI-P value in the last received frame reported errors Note: When an invalid REI-P value of 9 to 15 is received, the REI-P status bit will be triggered, even though the REI-P counter is not incremented. 2 REIL_NZ_STAT RO PMTICK REI-L (REIL_ERR_CNT) counter status 0 0: REIL_ERR_CNT is zero 1: REIL_ERR_CNT is non-zero 1 REIP_NZ_STAT RO PMTICK REI-P (REIP_ERR_CNT) counter status 0: REIP_ERR_CNT is zero 1: REIP_ERR_CNT is non-zero 0 0 HIGH_BER_STA RO T PCS high bit error rate (BER) status 0: No high BER 1: The PCS block indicates a high bit error rate 0 Table 173 • EWIS_INTR_PEND2: E-WIS Interrupt Pending 2 (2×EF04) Bit Name Access Description Default 15 Reserved RO Reserved. 0 14 PMTICK_PEND ROCR Interrupt pending. A PMTICK event (regardless of the source) has occurred since this register was last read. 0: A PMTICK event has not occurred. 1: A PMTICK event occurred. 0 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 147 Registers Table 173 • EWIS_INTR_PEND2: E-WIS Interrupt Pending 2 (2×EF04) (continued) Bit Name Access Description Default 13 TXLOL_PEND ROCR Interrupt pending. PMA CMU lock signal (TXLOL_STAT) has changed state since this register was last read. 0: TXLOL_STAT has not changed state. 1: TXLOL_STAT has changed state. 0 12 RXLOL_PEND ROCR Interrupt pending. PMA CRU lock signal (RXLOL_STAT) has changed state since this register was last read. 0: RXLOL_STAT has not changed state. 1: RXLOL_STAT has changed state. 0 11 LOPC_PEND ROCR Interrupt pending. Loss of optical carrier (LOPC) 0 input pin (LOPC_STAT) has changed state since this register was last read. 0: LOPC_STAT has not changed state. 1: LOPC_STAT has changed state. 10 UNEQP_PEND ROCR Interrupt pending. Unequipped path 0 (UNEQP_STAT) has changed state since this register was last read. This bit does not assert if LOP-P or AIS-P are asserted at the time UNEQP changes state. 0: UNEQP_STAT has not changed state. 1: UNEQP_STAT has changed state. 9 FEUNEQP_PEND ROCR Interrupt pending. Far-end unequipped path 0 (FEUNEQP_STAT) has changed state since this register was last read. 0: FEUNEQP_STAT has not changed state. 1: FEUNEQP_STAT has changed state. 8 FERDIP_PEND ROCR Interrupt pending. Far-end path remote defect identifier (FERDIP_STAT) has changed state since this register was last read. 0: FERDIP_STAT has not changed state. 1: FERDIP_STAT has changed state. 7 B1_NZ_PEND ROCR Interrupt pending. PMTICK B1 error counter 0 (B1_ERR_CNT) has changed from zero to a non-zero value since this register was last read. This bit does not assert if LOS or LOF are asserted at the time B1_NZ changes from 0 to 1. 0: B1_NZ_STAT has not changed from a 0 to 1 state. 1: B1_NZ_STAT has changed from a 0 to 1 state. 6 B2_NZ_PEND ROCR Interrupt pending. PMTICK B2 error counter 0 (B2_ERR_CNT) has changed from zero to a non-zero value since this register was last read. This bit does not assert if AIS-L is asserted at the time B2_NZ changes from 0 to 1. 0: B2_NZ_STAT has not changed from a 0 to 1 state. 1: B2_NZ_STAT has changed from a 0 to 1 state. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 0 148 Registers Table 173 • EWIS_INTR_PEND2: E-WIS Interrupt Pending 2 (2×EF04) (continued) Bit Name Access Description Default 5 B3_NZ_PEND ROCR Interrupt pending. PMTICK B3 error counter 0 (B3_ERR_CNT) has changed from zero to a non-zero value since this register was last read. This bit does not assert if LOP-P or AIS-P are asserted at the time B3_NZ changes from 0 to 1. 0: B3_NZ_STAT has not changed from a 0 to 1 state. 1: B3_NZ_STAT has changed from a 0 to 1 state. 4 REIL_PEND ROCR Interrupt pending. REI-L changed from zero to non-zero. 0: REI-L has not received a non-zero value. 1: REI-L has received a non-zero value. 0 3 REIP_PEND ROCR Interrupt pending. REI-P changed from zero to non-zero. 0: REI-P has not received a non-zero value. 1: REI-P has received a non-zero value. 0 2 REIL_NZ_PEND ROCR Interrupt pending. PMTICK far-end B2 error 0 counter (REIL_ERR_CNT) has changed from a zero to a non-zero value since this register was read. 0: REIL_NZ_STAT has not changed from a 0 to 1 state. 1: REIL_NZ_STAT has changed from a 0 to 1 state. 1 REIP_NZ_PEND ROCR Interrupt pending. PMTICK far-end B3 error 0 counter (REIP_ERR_CNT) has changed from a zero to a non-zero value since this register was read. 0: REIP_NZ_STAT has changed from a 0 to 1 state. 1: REIP_NZ_STAT has changed from a 0 to 1 state. 0 HIGH_BER_PEND ROCR Interrupt pending. PCS high bit error rate (BER) 0 condition has changed state since this register was read. 0: No change in PCS high BER condition. 1: PCS high BER condition has changed state. Table 174 • EWIS_INTR_MASKA2: E-WIS Interrupt Mask A 2 (2×EF05) Bit Name Access Description Default 15 Reserved RO Reserved 0 14 PMTICK_MASKA RW Enables propagation of PMTICK_PEND 0 to the WIS_INTA pin 0: Disable 1: Enable VMDS-10298 VSC8486-04 Datasheet Revision 4.4 149 Registers Table 174 • EWIS_INTR_MASKA2: E-WIS Interrupt Mask A 2 (2×EF05) (continued) Bit Name Access Description Default 13 TXLOL_MASKA RW Enables propagation of TXLOL_PEND to the WIS_INTA pin 0: Disable 1: Enable 0 12 RXLOL_MASKA RW Enables propagation of RXLOL_PEND to the WIS_INTA pin 0: Disable 1: Enable 0 11 LOPC_MASKA RW Enables propagation of LOPC_PEND to 0 the WIS_INTA pin 0: Disable 1: Enable 10 UNEQP_MASKA RW Enables propagation of UNEQP_PEND 0 to the WIS_INTA pin 0: Disable 1: Enable 9 FEUNEQP_MASKA RW 0 Enables propagation of FEUNEQP_PEND to the WIS_INTA pin 0: Disable 1: Enable 8 FERDIP_MASKA RW Enables propagation of FERDIP_PEND 0 to the WIS_INTA pin 0: Disable 1: Enable 7 B1_NZ_MASKA RW Enables propagation of B1_NZ_PEND to the WIS_INTA pin 0: Disable 1: Enable 0 6 B2_NZ_MASKA RW Enables propagation of B2_NZ_PEND to the WIS_INTA pin 0: Disable 1: Enable 0 5 B3_NZ_MASKA RW Enables propagation of B3_NZ_PEND to the WIS_INTA pin 0: Disable 1: Enable 0 4 REIL_MASKA RW Enables propagation of REIL_PEND to the WIS_INTA pin 0: Disable 1: Enable 0 3 REIP_MASKA RW Enables propagation of REIP_PEND to 0 the WIS_INTA pin 0: Disable 1: Enable 2 REIL_NZ_MASKA RW Enables propagation of REIL_NZ_PEND to the WIS_INTA pin 0: Disable 1: Enable VMDS-10298 VSC8486-04 Datasheet Revision 4.4 0 150 Registers Table 174 • EWIS_INTR_MASKA2: E-WIS Interrupt Mask A 2 (2×EF05) (continued) Bit Name Access Description Default 1 REIP_NZ_MASKA RW Enables propagation of REIP_NZ_PEND to the WIS_INTA pin 0: Disable 1: Enable 0 0 HIGH_BER_MASKA RW Enables propagation of 0 HIGH_BER_PEND to the WIS_INTA pin 0: Disable 1: Enable Table 175 • EWIS_INTR_MASKB2: E-WIS Interrupt Mask B 2 (2×EF06) Bit Name Access Description Default 15 Reserved RO Reserved 0 14 PMTICK_MASKB RW Enables propagation of PMTICK_PEND 0 to the WIS_INTB pin 0: Disable 1: Enable 13 TXLOL_MASKB RW Enables propagation of TXLOL_PEND to the WIS_INTB pin 0: Disable 1: Enable 12 RXLOL_MASKB RW Enables propagation of RXLOL_PEND 0 to the WIS_INTB pin 0: Disable 1: Enable 11 LOPC_MASKB RW Enables propagation of LOPC_PEND to 0 the WIS_INTB pin 0: Disable 1: Enable 10 UNEQP_MASKB RW Enables propagation of UNEQP_PEND 0 to the WIS_INTB pin 0: Disable 1: Enable 9 FEUNEQP_MASKB RW Enables propagation of 0 FEUNEQP_PEND to the WIS_INTB pin 0: Disable 1: Enable 8 FERDIP_MASKB RW Enables propagation of FERDIP_PEND 0 to the WIS_INTB pin 0: Disable 1: Enable 7 B1_NZ_MASKB RW Enables propagation of B1_NZ_PEND to the WIS_INTB pin 0: Disable 1: Enable VMDS-10298 VSC8486-04 Datasheet Revision 4.4 0 0 151 Registers Table 175 • EWIS_INTR_MASKB2: E-WIS Interrupt Mask B 2 (2×EF06) (continued) Bit Name Access Description Default 6 B2_NZ_MASKB RW Enables propagation of B2_NZ_PEND to the WIS_INTB pin 0: Disable 1: Enable 0 5 B3_NZ_MASKB RW Enables propagation of B3_NZ_PEND to the WIS_INTB pin 0: Disable 1: Enable 0 4 REIL_MASKB RW Enables propagation of REIL_PEND to 0 the WIS_INTB pin 0: Disable 1: Enable 3 REIP_MASKB RW Enables propagation of REIP_PEND to 0 the WIS_INTB pin 0: Disable 1: Enable 2 REIL_NZ_MASKB RW Enables propagation of REIL_NZ_PEND to the WIS_INTB pin 0: Disable 1: Enable 0 1 REIP_NZ_MASKB RW Enables propagation of REIP_NZ_PEND to the WIS_INTB pin 0: Disable 1: Enable 0 0 HIGH_BER_MASKB RW Enables propagation of HIGH_BER_PEND to the WIS_INTB pin 0: Disable 1: Enable 0 Table 176 • WIS Fault Control (2×EF07) Bit Name Access Description Default 15:11 Reserved RW Reserved 00111 10 WIS_FAULT_ON_FEPLM P RW 1: Trigger WIS_FAULT 0: No trigger 0 9 WIS_FAULT_ON_FEAISP RW 1: Trigger WIS_FAULT 0: No trigger 0 8 WIS_FAULT_ON_RDIL RW 1: Trigger WIS_FAULT 0: No trigger 0 7 WIS_FAULT_ON_SEF RW 1: Trigger WIS_FAULT 0: No trigger 1 6 WIS_FAULT_ON_LOF RW 1: Trigger WIS_FAULT 0: No trigger 1 5 WIS_FAULT_ON_LOS RW 1: Trigger WIS_FAULT 0: No trigger 1 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 152 Registers Table 176 • WIS Fault Control (2×EF07) (continued) 4.3 Bit Name Access Description Default 4 WIS_FAULT_ON_AISL RW 1: Trigger WIS_FAULT 0: No trigger 1 3 WIS_FAULT_ON_LCDP RW 1: Trigger WIS_FAULT 0: No trigger 1 2 WIS_FAULT_ON_PLMP RW 1: Trigger WIS_FAULT 0: No trigger 1 1 WIS_FAULT_ON_ASIP RW 1: Trigger WIS_FAULT 0: No trigger 1 0 WIS_FAULT_ON_LOPP RW 1: Trigger WIS_FAULT 0: No trigger 1 Device 3: PCS Registers The following tables provide settings for the registers related to the PCS. Table 177 • PCS_CTRL1: PCS Control 1 (3×0000) Bit Name Access Description Default 15 SOFT_RST RWSC Reset all MMDs 0: Normal operation 1: Reset 0 14 LPBK_G RW Enables PCS system loopback (loopback G) 0 0: Disable 1: Enable XFI outputs 0×00FF 13 SPEED_SEL_A RO PCS speed capability 0: Unspecified 1: Operates at 10 Gbps or above 1 12 Reserved RO Reserved (value always 0, writes ignored) 0 11 LOW_PWR RW Enter low power mode on all MMDs 0: Normal operation 1: Low power 0 10:7 Reserved RO Reserved (value always 0, writes ignored) 0 6 SPEED_SEL_B RO PCS speed capability 0: Unspecified 1: Operates at 10 Gbps or above 1 5:2 SPEED_SEL_C RO PCS speed selection 1xxx: Reserved x1xx: Reserved xx1x: Reserved 0001: Reserved 0000: 10 Gbps 0000 1:0 Reserved RO Reserved (value always 0, writes ignored) 0 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 153 Registers Table 178 • PCS_STAT1: PCS Status 1 (3×0001) Bit Name Access Description Default 15:8 Reserved RO Reserved (ignore when read). 0 7 FAULT RO PCS fault status. Asserted when either the PCS FAULT_RX (3×0008.10) or PCS FAULT_TX (3×0008.11) is asserted. 0: No faults asserted. 1: Fault asserted. 0 6:3 Reserved RO Reserved (ignore when read). 0 2 RX_LNK_STAT RO/LL PCS receive link status. 0: Link down. 1: Link up. 1 1 LOW_PWR_ABILITY RO Low power mode support ability. 0: Not supported. 1: Supported. 1 0 Reserved Reserved (ignore when read). 0 RO Table 179 • PCS_DEVID1: PCS Device Identifier 1 (3×0002) Bit Name Access Description Default 15:0 DEV_ID_LSW RO Upper 16 bits of a 32-bit unique PCS device identifier. Bits 3-18 of the device manufacturer’s OUI. 0×0007 Table 180 • PCS_DEVID2: PCS Device Identifier 2 (3×0003) Bit Name Access Description Default 15:0 DEV_ID_MSW RO 0×0400 Lower 16 bits of a 32-bit unique PCS device identifier. Bits 19-24 of the device manufacturer’s OUI. Six-bit model number, and a four-bit revision number. Table 181 • PCS_SPEED: PCS Speed Capability (3×0004) Bit Name Access Description Default 15:1 Reserved RO Reserved for future speeds (value always 0, writes ignored) 0 0 RATE_ABILITY RO PCS rate capability 0: Not capable of 10 Gbps 1: Capable of 10 Gbps 1 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 154 Registers Table 182 • PCS_DEVPKG1: PCS Devices in Package 1 (3×0005) Bit Name Access Description Default 15:6 Reserved RO Reserved. 0 5 DTE_XS_PRES RO Indicates whether DTE XS is present in 0 the package. 0: Not present. 1: Present. 4 PHY_XS_PRES RO Indicates whether PHY XS is present in 1 the package (this bit depends upon the IOMODESEL pin setting). 0: Not present. 1: Present. 3 PCS_PRES RO Indicates whether PCS is present in the 1 package. 0: Not present. 1: Present. 2 WIS_PRES RO Indicates whether WIS is present in the 1 package. 0: Not present. 1: Present. 1 PMD_PMA_PRE RO S Indicates whether PMA/PMD is present 1 in the package. 0: Not present. 1: Present. 0 CLS22_PRES Indicates whether Clause 22 registers are present in the package. 0: Not present. 1: Present. RO 0 Table 183 • PCS_DEVPKG2: PCS Devices in Package 2 (3×0006) Bit Name Access Description Default 15 VS2_PRES RO Vendor specific device 2 present 0: Not present 1: Present 0 14 VS1_PRES RO Vendor specific device 1 present 0: Not present 1: Present 0 13:0 Reserved RO Reserved 0 Table 184 • PCS_CTRL2: PCS Control 2 (3×0007) Bit Name Access Description Default 15:2 Reserved RO Reserved 0 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 155 Registers Table 184 • PCS_CTRL2: PCS Control 2 (3×0007) (continued) Bit Name Access Description Default 1:0 PCS_MODE RW Indicates the PCS type selected 11: Reserved 10: 10GBASE-W PCS 01: Reserved 00: 10GBASE-R PCS 0 Table 185 • PCS_STAT2: PCS Status 2 (3×0008) Bit Name Access Description Default 15:14 DEV_PRES RO Reflects the presence of a MMD responding at 10 this address. 00: No device responding at this address. 01: No device responding at this address. 10: Device responding at this address. 11: No device responding at this address. 13:12 Reserved RO Reserved. 11 FAULT_TX RO/LH Indicates a fault condition on the transmit path. 0 0: No faults asserted. 1: Fault asserted. Set error triggers with 3×E600.1. Linked to 1E×9004.3. A read to either 1E×9004.3 or 3×0008.11 clears both bits if a fault condition no longer exists. 10 FAULT_RX RO/LH Indicates a fault condition on the receive path. 0 0: No faults asserted. 1: Fault asserted. Set error triggers with 3×E600.0. Linked to 1E×9003.3. A read to either 1E×9003.3 or 3×0008.10 clears both bits if a fault condition no longer exists. 9:3 Reserved RO Reserved. 0 2 BASE_W_ABILITY RO Device capability to support 10GBASE-W. 0: Not capable. 1: Capable. 1 1 BASE_X_ABILITY RO Device capability to support 10GBASE-X. 0: Not capable. 1: Capable. 0 0 BASE_R_ABILITY RO Device capability to support 10GBASE-R. 0: Not capable. 1: Capable. 1 0 Table 186 • PCS_PKGID1: PCS Package Identifier 1 (3×000E) Bit Name Access Description Default 15:0 PKG_ID_MSW RO Upper 16 bits of a 32-bit unique PCS package identifier. Bits 3-18 of the device manufacturer’s OUI. 0 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 156 Registers Table 187 • PCS_PKGID2: PCS Package Identifier 2 (3×000F) Bit Name Access Description Default 15:0 PKG_ID_LSW RO Lower 16 bits of a 32-bit unique PCS package 0 identifier. Bits 19-24 of the device manufacturer’s OUI. Six-bit model number, and a four-bit revision number. Table 188 • PCS_10GBASEX_STAT: PCS 10G BASE-X Status (3×0018) Bit Name Access Description Default 15:0 BASE_X_STAT RO This device does not implement 10GBASE-X. 0 Table 189 • PCS_10GBASEX_CTRL: PCS 10G BASE-X Control (3×0019) Bit Name Access Description Default 15:0 BASE_X_CTRL RO This device does not implement 10GBASE-X. 0 Table 190 • PCS_10GBASER_STAT1: PCS 10G BASE-R Status 1 (3×0020) Bit Name Access Description Default 15:13 Reserved RO Reserved. 0 12 BASE_R_RXLCK_STA RO T 10GBASE-R receive link status. This does not apply during PCS pattern testing. 0: Link down. 1: Link up. Note: Receive link status reflects BLOCK_LOCK and not HIGH_BER. 0 11:3 Reserved RO Reserved. 0 2 PRBS31_ABILITY RO PCS PRBS31 pattern test capability. 0: Not capable. 1: Capable. 1 1 HIGH_BER RO 10GBASE-R PCS high BER status. This does not apply during PCS pattern testing. 0: High BER deasserted. 1: High BER asserted. 0 0 BLOCK_LOCK RO 10GBASE-R PCS block lock status. This does not apply during PCS pattern testing. 0: Not locked. 1: Locked. 0 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 157 Registers Table 191 • PCS_10GBASER_STAT2: PCS 10G BASE-R Status 2 (3×0021) Bit Name 15 Access Description Default BLOCK_LOCK_LATCHE RO/LL D Latched block lock status. 0: 10GBASE-R PCS does not have block lock. 1: 10GBASE-R PCS has block lock. 1 14 HIGH_BER_LATCHED RO/LH Latched high BER status. 0: 10GBASE-R PCS has not reported a high BER. 1: 10GBASE-R PCS has reported a high BER. 0 13:8 BER_CNT ROCR Saturating (non-rollover) clear on read BER counter. This does not apply during PCS pattern testing. 0 7:0 ERR_BLK_CNT ROCR Saturating (non-rollover) clear on read 0 errored block counter. This does not apply during PCS pattern testing. Table 192 • PCS_SEEDA3: PCS Test Pattern Seed A 3 (3×0022) Bit Name Access 15:0 TSTPAT_SEEDA_15_0 RW Description Default Bits 15:0 of the 58-bit seed A test pattern. Used during PCS pseudo-random test. 0 Table 193 • PCS_SEEDA2: PCS Test Pattern Seed A 2 (3×0023) Bit Name Access Description 15:0 TSTPAT_SEEDA_31_1 RW 6 Bits 31:16 of the 58-bit seed A test pattern. Used during PCS pseudo-random test. Default 0 Table 194 • PCS_SEEDA1: PCS Test Pattern Seed A 1 (3×0024) Bit Name Access Description 15:0 TSTPAT_SEEDA_47_3 RW 2 Bits 47:32 of the 58-bit seed A test pattern. Used during PCS pseudo-random test. Default 0 Table 195 • PCS_SEEDA0: PCS Test Pattern Seed A 0 (3×0025) Bit Name Access Description Default 15:10 Reserved RO Reserved 0 9:0 TSTPAT_SEEDA_57_4 RW 8 Bits 57:48 of the 58-bit seed A test pattern. Used during PCS pseudo-random test. 0 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 158 Registers Table 196 • PCS_SEEDB3: PCS Test Pattern Seed B 3 (3×0026) Bit Name Access 15:0 TSTPAT_SEEDB_15_ RW 0 Description Default Bits 15:0 of the 58-bit seed B test pattern. Used during PCS pseudo-random test. 0 Table 197 • PCS_SEEDB2: PCS Test Pattern Seed B 2 (3×0027) Bit Name Access Description 15:0 TSTPAT_SEEDB_31_16 RW Bits 31:16 of the 58-bit seed B test pattern. Used during PCS pseudo-random test. Default 0 Table 198 • PCS_SEEDB1: PCS Test Pattern Seed B 1 (3×0028) Bit Name Access Description 15:0 TSTPAT_SEEDB_47_3 RW 2 Bits 47:32 of the 58-bit seed B test pattern. Used during PCS pseudo-random test. Default 0 Table 199 • PCS_SEEDB0: PCS Test Pattern Seed B 0 (3×0029) Bit Name Access Description Default 15:10 Reserved RO Reserved 0 9:0 TSTPAT_SEEDB_57_4 RW 8 Bits 57:48 of the 58-bit seed B test pattern. Used during PCS pseudo-random test. 0 Table 200 • PCS_TSTPAT_CTRL: PCS Test Pattern Control (3×002A) Bit Name Access Description Default 15:6 Reserved RO Reserved 0 5 PCS_PRBS31_AN A RW Enables PRBS31 test pattern analysis 0: Disable 1: Enable 0 4 PCS_PRBS31_GE N RW Enables PRBS31 test pattern generation 0: Disable 1: Enable 0 3 PCS_TSTPAT_GEN RW Enables PCS test pattern generator 0: Disable 1: Enable 0 2 PCS_TSTPAT_ANA RW Enables PCS test pattern analyzer 0: Disable 1: Enable 0 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 159 Registers Table 200 • PCS_TSTPAT_CTRL: PCS Test Pattern Control (3×002A) (continued) Bit Name Access Description Default 1 PCS_TSTPAT_SEL RW Selects which test pattern to be used during the PCS_TSTPAT_GEN/ANA 0: Pseudo-Random 1: Square Wave (generation only) 0 PCS_TSTDAT_SEL RW Data to be sent during the pseudo-random pattern 0 test after the loading of seed A or seed B 0: 64-bit encoding for 2 local fault ordered sets 1: 64 zeros 0 Table 201 • PCS_TSTPAT_CNT: PCS Test Pattern Error Counter (3×002B) Bit Name Access Description Default 15:0 Test error counter ROCR Clear on read test pattern error counter. A 32-bit 0 version of this counter is available in 3×80073×8008. This counter is a saturating counter. Table 202 • PCS_USRPAT0: PCS User Test Pattern 0 (3×8000) Bit Name Access 15:0 TSTPAT_USR_15_0 RW Description Default Bits 15:0 of the 64-bit user pattern to be sent 0 instead of local fault ordered sets during pseudo-random testing. Active when 3×8005.0 is asserted. Table 203 • PCS_USRPAT1: PCS User Test Pattern 1 (3×8001) Bit Name Access 15:0 TSTPAT_USR_31_1 RW 6 Description Default Bits 31:16 of the 64-bit user pattern to be sent 0 instead of local fault ordered sets during pseudo-random testing. Active when 3×8005.0 is asserted. Table 204 • PCS_USRPAT2: PCS User Test Pattern 2 (3×8002) Bit Name Access 15:0 TSTPAT_USR_47_32 RW Description Default Bits 47:22 of the 64-bit user pattern to be sent 0 instead of local fault ordered sets during pseudo-random testing. Active when 3×8005.0 is asserted. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 160 Registers Table 205 • PCS_USRPAT3: PCS User Test Pattern 3 (3×8003) Bit Name Access 15:0 TSTPAT_USR_63_48 RW Description Default Bits 63:48 of the 64-bit user pattern to be sent 0 instead of local fault ordered sets during pseudo-random testing. Active when 3×8005.0 is asserted Table 206 • PCS_SQPW_CTRL: PCS Square Wave Pulse Width Control (3×8004) Bit Name Access Description Default 15:4 Reserved RO Reserved 0 3:0 SQ_WV_PW RW Pulse width of the generated square wave test 0 pattern. This is the number of consecutive low bit times and the number of consecutive high bit times. Only values of 4 through 11 bits are valid. Table 207 • PCS_CFG1: PCS Configuration 1 (3×8005) Bit Name Access Description Default 15:11 Reserved RO Reserved 0 10 DSCR_DIS RW Disable Rx block descrambler 0: Enable 1: Disable 0 9 SCR_DIS RW Disable Tx block scrambler 0: Enable 1: Disable 0 8 PCS_XGMII_SRC RW Select between XGXS and external XGMII as 0 the source of data for the PCS 0: XGXS source 1: External XGMII source 7 PHYXS_XGMII_SR C RW Select between PCS and external XGMII as the source of data for the XGXS 0: PCS source 1: External XGMII source 0 6 XGMII_OE RW External XGMII output enable 0: Disable 1: Enable 0 5 Reserved RW Factory test only; do not modify this bit 0 4 Reserved RW Factory test only; do not modify this bit 0 3 LPBK_F RW Enables loopback F (PCS network loopback) 0: Disable 1: Enable 0 2 LPBK_E RW Enables loopback E (PCS system loopback) 0: Disable 1: Enable 0 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 161 Registers Table 207 • PCS_CFG1: PCS Configuration 1 (3×8005) (continued) Bit Name Access Description Default 1 Reserved RO Reserved 0 0 USR_PAT_EN RW Selects the user test pattern in 3×8000 to 3×8003 for pseudo-random test 0: Standard test pattern 1: User test pattern 0 Table 208 • PCS_ERR_CNT0: PCS Test Error Counter 0 (3×8007) Bit Name Access 15:0 TSTPAT_ERR_CNT RO 0 Description Default Lower 16 bits of the 32-bit test error counter. 0 This counter is a saturating (non-rollover) counter that is cleared upon a consecutive read to 3×8007 and 3×8008. The contents of this register are identical to 3×002B. Table 209 • PCS_ERR_CNT1: PCS Test Error Counter 1 (3×8008) Bit Name Access 15:0 TSTPAT_ERR_CNT RO 1 Description Default Upper 16 bits of the 32-bit test error counter. 0 This counter is a saturating (non-rollover) counter that is cleared upon a consecutive read to 3×8007 and 3×8008. Note: When the PCS test counter value reaches 32’hFFFFFFFFD, it will not saturate to 32’hFFFFFFFFF, even if the next 64-bit block has three or more bits in error. Table 210 • Factory Test Register (3×8009) Bit Name Access Description Default 15:0 Reserved RO Factory test only; do not modify this bit group 0 Table 211 • Factory Test Register (3×800C) Bit Name Access Description Default 15:0 Reserved ROCR Factory test only; do not modify this bit group 0 Table 212 • Factory Test Register (3×800D) Bit Name Access Description Default 15:0 Reserved ROCR Factory test only; do not modify this bit group 0 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 162 Registers Table 213 • Factory Test Register (3×800E) Bit Name Access Description Default 15:0 Reserved ROCR Factory test only; do not modify this bit group 0 Table 214 • Factory Test Register (3×800F) Bit Name Access Description Default 15:0 Reserved ROCR Factory test only; do not modify this bit group 0 Table 215 • Factory Test Register (3×8010) Bit Name Access Description Default 15:0 Reserved ROCR Factory test only; do not modify this bit group 0 Table 216 • Factory Test Register (3×8011) Bit Name Access Description Default 15:0 Reserved ROCR Factory test only; do not modify this bit group 0 Table 217 • Factory Test Register (3×8012) Bit Name Access Description Default 15:0 Reserved ROCR Factory test only; do not modify this bit group 0 Table 218 • Factory Test Register (3×8013) Bit Name Access Description Default 15:0 Reserved ROCR Factory test only; do not modify this bit group 0 Table 219 • Factory Test Register (3×8014) Bit Name Access Description Default 15:0 Reserved ROCR Factory test only; do not modify this bit group 0 Table 220 • Factory Test Register (3×8015) Bit Name Access Description Default 15:0 Reserved ROCR Factory test only; do not modify this bit group 0 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 163 Registers Table 221 • PCS_CFG2: PCS Configuration 2 (3×E600) Bit Name Access Description Default 15:3 Reserved RO Reserved 0 2 PR58_INV_DIS RW Disable the periodic inversion of the psuedo-random test pattern for both transmit and receive paths 0: Enable 1: Disable 0 1 FAULT_TX_SE RW L Selects error types to trigger a transmit fault 0 0: FIFO over/underflow condition only 1: Character encoding error, block encoding error, FIFO over/underflow condition Note: For optimal fault indication coverage, set to 1. 0 RX_STAT_SEL RW 0 Selects contributing logic for receive link status 0: BLOCK_LOCK = 0 1: BLOCK_LOCK = 0 or HIGH_BER = 1 Note: For optimal fault indication coverage, set to 1. Table 222 • Factory Test Register (3×E601) Bit Name Access Description Default 15:0 Reserved RO Factory test only; do not modify this bit group 0 Table 223 • Factory Test Register (3×E602) Bit Name Access Description Default 15:0 Reserved RO Factory test only; do not modify this bit group 0 Table 224 • Factory Test Register (3×E603) Bit Name Access Description Default 15:0 Reserved RW Factory test only; do not modify this bit group 0 Table 225 • EPCS_STAT1: E-PCS Status 1 (3×E604) Bit Name Access Description Default 15:8 Reserved RO Reserved 0 7:5 LSM_TX_STATE RO Current Tx LSM state 0 4 LSM_RX_STAT Status of Rx framing 0: E-PCS is not framed 1: E-PCS is framed 0 RO VMDS-10298 VSC8486-04 Datasheet Revision 4.4 164 Registers Table 225 • EPCS_STAT1: E-PCS Status 1 (3×E604) (continued) Bit Name Access Description 3 RX_MSG_RDY ROCR Notification that a new HDLC message has been 0 received 0: No change to HDLC frame 1: New HDLC frame received 2:0 LSM_RX_STATE RO Current Rx LSM state Default 0 Table 226 • EPCS_CORR_CNT: E-PCS Corrected FEC Error Counter (3×E605) Bit Name Access 15:0 CORR_ERR_CN RO T Description Default Count of corrected E-PCS frames over the previous second. Counter is reset every second. Counter is not cumulative and does not roll over. Saturating (non-rollover) counter is cleared by assertion of CLR_CNT. Cleared when 3×E601.1 is set. 0 Table 227 • EPCS_UCORR_CNT: E-PCS Uncorrected FEC Error Counter (3×E606) Bit Name Access 15:0 UNCORR_ERR_CN RO T Description Default Count of uncorrected E-PCS frames over the previous second. Counter is reset every second. Counter is not cumulative and does not roll over. Saturating (non-rollover) counter is cleared by assertion of CLR_CNT. Cleared when 3×E601.1 is set. 0 Table 228 • EPCS_TXMSG: E-PCS Tx Message (3×E60A-E611) Bit Name Access Description Default 15:0 TX_MSG RW 128-bit message for in-band transmission to the far end link partner. The 3×E60A is the MSW while 3×E611 is the LSW. 0 Table 229 • EPCS_RXMSG: E-PCS Rx Message (3×E612-E619) Bit Name Access Description Default 15:0 RX_MSG RO 128-bit message received from the far end link partner. Frame delineation is not supported, thus higher level software must determine the MSW. 0 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 165 Registers Table 230 • Factory Test Register (3×E61A) Bit Name Access Description Default 15:3 Reserved RO Factory test only; do not modify this bit group 0 2 Reserved RW Factory test only; do not modify this bit 0 1 Reserved RW Factory test only; do not modify this bit 0 0 Reserved RW Factory test only; do not modify this bit 0 Table 231 • Factory Test Register (3×E61B) Bit Name Access Description Default 15:8 Reserved RW Factory test only; do not modify this bit group 0×10 7:0 Reserved RW Factory test only; do not modify this bit group 0×14 Table 232 • Factory Test Register (3×E61C) Bit Name Access Description Default 15:0 Reserved RO Factory test only; do not modify this bit group 0 Table 233 • Factory Test Register (3×E61D) Bit Name Access Description Default 15:5 Reserved RO Factory test only; do not modify this bit group 0 4:0 Reserved RO Factory test only; do not modify this bit group 0 4.4 Device 4: PHY-XS Registers The following tables provide settings for the registers related to the PHY-XS. Table 234 • PHYXS_CTRL1: PHY XS Control 1 (4×0000) Bit Name Access Description Default 15 SOFT_RST RWSC Reset all MMDs 0: Normal operation. 1: Reset 0 14 LPBK_A RW Enables PHY XS network loopback (loopback A) 0 0: Disable 1: Enable Register 4×E600.1 must be set to 1 to enable loopback A. 13 SPEED_SEL_A RO PHY XS speed capability 0: Unspecified 1: Operates at 10 Gbps or above 1 12 Reserved RO Reserved (value always 0, writes ignored) 0 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 166 Registers Table 234 • PHYXS_CTRL1: PHY XS Control 1 (4×0000) (continued) Bit Name Access Description Default 11 LOW_PWR RW PHY XS low power mode control 0: Normal operation 1: Low Power 0 10:7 Reserved RO Reserved (value always 0, writes ignored) 0 6 SPEED_SEL_B RO PHY XS Speed capability 0: Unspecified 1: Operates at 10 Gbps or above 1 5:2 SPEED_SEL_C RO PHY XS speed selection 1xxx: Reserved x1xx: Reserved xx1x: Reserved 0001: Reserved 0000: 10 Gbps 0 1:0 Reserved RO Reserved (value always 0, writes ignored) 0 Table 235 • PHYXS_STAT1: PHY XS Status1 (4×0001) Bit Name Access Description Default 15:8 Reserved RO Reserved (ignore when read) 0 7 FAULT RO PHY XS fault status. Asserted when either the 0 PHY XS FAULT_RX (4×0008.10) or PHY XS FAULT_TX (4×0008.11) is asserted. 0: No faults asserted. 1: Fault asserted. 6:3 Reserved RO Reserved (ignore when read) 2 TX_LNK_STAT RO/LL 1 PHY XS transmit link status 0: PHY XS transmit link is down (4×0018.12 = 0) 1: PHY XS transmit link is up (4×0018.12 = 1) 1 LOW_PWR_ABILITY RO Low power mode support ability 0: Not supported 1: Supported 1 0 Reserved Reserved (ignore when read) 0 RO 0 Table 236 • PHYXS_DEVID1: PHY XS Device Identifier 1 (4×0002) Bit Name Access Description Default 15:0 DEV_ID_LSW RO Upper 16 bits of a 32-bit unique PHY XS device identifier. Bits 3-18 of the device manufacturer’s OUI. Device identifier bits 31:16. 0×0007 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 167 Registers Table 237 • PHYXS_DEVID2: PHY XS Device Identifier 2 (4×0003) Bit Name Access Description Default 15:0 DEV_ID_MSW RO Lower 16 bits of a 32-bit unique PHY XS device 0×0400 identifier. Bits 19-24 of the device manufacturer’s OUI. Six-bit model number, and a four-bit revision number. Device identifier bits 15:0. Table 238 • PHYXS_SPEED: PHY XS Speed Capability (4×0004) Bit Name Access Description Default 15:1 Reserved RO Reserved for future speeds (value always 0, writes ignored) 0 0 RATE_ABILITY RO PHY XS rate capability 0: Not capable of 10 Gbps 1: Capable of 10 Gbps 1 Table 239 • PHYXS_DEVPKG1: PHY XS Devices in Package 1 (4×0005) Bit Name Access Description Default 15:6 Reserved RO Reserved (ignore when read). 0 5 DTE_XS_PRES RO Indicates whether device includes DTS XS. 0: Not present. 1: Present. 0 4 PHY_XS_PRES RO Indicates whether device includes PHY XS. 0: Not present. 1: Present. 1 3 PCS_PRES RO Indicates whether PCS is present in the package. 1 0: Not present. 1: Present. 2 WIS_PRES RO Indicates whether WIS is present in the package. 1 0: Not present. 1: Present. 1 PMD_PMA_PRE RO S Indicates whether PMA/PMD is present in the package. 0: Not present. 1: Present. 0 CLS22_PRES Indicates whether Clause 22 registers are present 0 in the package. 0: Not present. 1: Present. RO VMDS-10298 VSC8486-04 Datasheet Revision 4.4 1 168 Registers Table 240 • PHYXS_DEVPKG2: PHY XS Devices in Package 2 (4×0006) Bit Name Access Description Default 15 VS2_PRES RO Vendor specific device 2 present 0: Not present 1: Present 0 14 VS1_PRES RO Vendor specific device 1 present 0: Not present 1: Present 0 13:0 Reserved RO Reserved (ignore when read) 0 Table 241 • PHYXS_STAT2: PHY XS Status 2 (4×0008) Bit Name Access Description Default 15:14 DEV_PRES RO Reflects the presence of a MMD responding at 10 this address. 10: Device responding at this address. 11: No device responding at this address. 10: No device responding at this address. 00: No device responding at this address. 13:12 Reserved RO Reserved (ignore when read). 11 FAULT_TX RO/LH Indicates a fault condition on the transmit path. 0 0: No fault condition. XGXS lanes are aligned, 4×0018.12 = 1. 1: Fault condition. XGXS lanes are not aligned, 4×0018.12 = 0. Linked to 1E×9004.0. Read to either register clears both bits if fault condition no longer exits. 10 FAULT_RX RO/LH Indicates a fault condition on the receive path. 0: Rx PCS block is locked to the data and not reporting a high bit error rate. 1: Rx PCS block is not locked to the data or reporting a high bit error rate. 0 9:0 Reserved RO Reserved (ignore when read). 0 0 Table 242 • PHYXS_STAT3: PHY XS Status 3 (4×0018) Bit Name Access Description Default 15:13 Reserved RO Reserved (ignore when read) 0 12 LANES_ALIGNED RO PHY XGXS lane alignment status 0: PHY XS transmit lanes are not aligned 1: PHY XS transmit lanes are aligned 0 11 PATT_ABILITY PHY XGXS test pattern generation ability 0: PHY XS is not able to generate test patterns 1: PHY XS is able to generate test patterns 1 RO VMDS-10298 VSC8486-04 Datasheet Revision 4.4 169 Registers Table 242 • PHYXS_STAT3: PHY XS Status 3 (4×0018) (continued) Bit Name Access Description Default 10 LPBK_ABILITY RO PHY XGXS loopback ability 1 0: PHY XS does not have the ability to perform a loopback function 1: PHY XS has the ability to perform a loopback function 9:4 Reserved RO Reserved (ignore when read) 0 3 LANE3_SYNC RO PHY XGXS lane 3 synchronization status 0: Not synchronized 1: Synchronized 0 2 LANE2_SYNC RO PHY XGXS lane 2 synchronization status 0: Not synchronized 1: Synchronized 0 1 LANE1_SYNC RO PHY XGXS lane 1 synchronization status 0: Not synchronized 1: Synchronized 0 0 LANE0_SYNC RO PHY XGXS lane 0 synchronization status 0: Not synchronized 1: Synchronized 0 Table 243 • PHYXS_TSTCTRL1: PHY XGXS Test Control 1 (4×0019) Bit Name Access Description Default 15:3 Reserved RO Reserved (value always 0, writes ignored) 0 2 TST_PATT_CHK_EN RW A PHYXS test pattern checker enable 0: Disable 1: Enable 0 1:0 TST_PATT_CHK_SE RW L PHYXS test pattern checker pattern select 111: 27 PRBS Pattern 110: Fibre Channel CJPAT 101: Continuous jitter test pattern 100: Continuous random test pattern 011: Disable pattern generator 010: Mixed frequency test pattern 001: Low frequency test pattern 000: High frequency test pattern MSB is 4×8000.3. Additionally, two types of CJPAT patterns are provided. For more information, see Table 267, page 179. 0 Table 244 • PHYXS_TSTCTRL2: PHY XS Test Control 2 (4×8000) Bit Name Access Description Default 15:5 Reserved RO Reserved 0 4 TST_PATT_GEN_EN RW A PHYXS test pattern generator enable 0: Disable 1: Enable 0 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 170 Registers Table 244 • PHYXS_TSTCTRL2: PHY XS Test Control 2 (4×8000) (continued) Bit Name Access Description Default 3 TST_PATT_MODE RW Transmit test pattern checker select bit 2 Use with register 4×0019.1:0 0 2:0 TST_PATT_GEN_SE RW L PHYXS test pattern generator select 011 111: 27 PRBS pattern 110: Fibre Channel CJPAT 101: Continuous jitter test pattern 100: Continuous random test pattern 011: Disable pattern generator 010: Mixed frequency test pattern 001: Low frequency test pattern 000: High frequency test pattern Two types of CJPAT patterns are provided. For more information, see Table 267, page 179. Table 245 • PHYXS_TSTSTAT: PHY XS Test Pattern Check Status (4×8001) Bit Name Access Description Default 15:4 Reserved RO Reserved 0 3 LANE3_PATT_CHK RO Lane 3 test pattern check result 0: Pattern check fail 1: Pattern check pass 0 2 LANE2_PATT_CHK RO Lane 2 test pattern check result 0: Pattern check fail 1: Pattern check pass 0 1 LANE1_PATT_CHK RO Lane 1 test pattern check result 0: Pattern check fail 1: Pattern check pass 0 0 LANE0_PATT_CHK RO Lane 0 test pattern check result 0: Pattern check fail 1: Pattern check pass 0 Table 246 • Factory Test Register (4×8002) Bit Name Access Description Default 15:0 Reserved RO Factory test only; do not modify this bit group 0 Table 247 • Factory Test Register (LSW) (4×8003) Bit Name Access Description Default 15:0 Reserved RO Factory test only; do not modify this bit group 0 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 171 Registers Table 248 • Factory Test Register (4×8004) Bit Name Access Description Default 15:0 Reserved RO Factory test only; do not modify this bit group 0 Table 249 • Factory Test Register (4×8005) Bit Name Access Description Default 15:0 Reserved RO Factory test only; do not modify this bit group 0 Table 250 • Factory Test Register (4×8006) Bit Name Access Description Default 15:0 Reserved RO Factory test only; do not modify this bit group 0 Table 251 • Factory Test Register (4×8007) Bit Name Access Description Default 15:0 Reserved RO Factory test only; do not modify this bit group 0 Table 252 • Factory Test Register (4×8008) Bit Name Access Description Default 15:0 Reserved RO Factory test only; do not modify this bit group 0 Table 253 • Factory Test Register (4×8009) Bit Name Access Description Default 15:0 Reserved RO Factory test only; do not modify this bit group 0 Table 254 • Factory Test Register (4×800A) Bit Name Access Description Default 15:0 Reserved RO Factory test only; do not modify this bit group 0 Table 255 • PHYXS_TPERR_CTRL: PHY XS Test Pattern Error Counter Control (4×800B) Bit Name Access Description Default 15:5 Reserved RO Reserved 0 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 172 Registers Table 255 • PHYXS_TPERR_CTRL: PHY XS Test Pattern Error Counter Control (4×800B) (continued) Bit Name Access Description Default 4 TP_CNT_CLR RWSC Clear test pattern mismatch error counter 0: Normal operation 1: Clear counter 0 3 TP_CNT_ENA RW Test pattern mismatch error counter enable 0: Disable 1: Enable 1 2:0 TP_CNT_SEL RW Selects test pattern mismatch error source 111: Reserved 110: Reserved 101: Reserved 100: Cumulative error count on all lanes 011: Error count on lane 3 010: Error count on lane 2 001: Error count on lane 1 000: Error count on lane 0 100 Table 256 • PHYXS_TPERR_CNT0: PHY XS Test Pattern Error Counter 0 (LSW) (4×800C) Bit Name Access Description Default 15:0 TP_CNT_LSW RO Test pattern mismatch error counter. Lower 16bits of the saturating (non-rollover) counter. Saturating counter. 0 Table 257 • PHYXS_TPERR_CNT0: PHY XS Test Pattern Error Counter 1 (MSW) (4×800D) Bit Name Access Description Default 15:0 TP_CNT_MSW RO Test pattern mismatch error counter. Upper 16bits of the saturating (non-rollover) counter. Saturating counter. 0 Table 258 • PHYXS_XAUI_CTRL1: PHY XS XAUI Control 1 (4×800E) Bit Name Access Description Default 15:14 Reserved RO Reserved. 0 13 LPBK_B RW Loopback B enable (PHY XS shallow system). 0: Disable. 1: Enable. High-speed transmitter outputs transmit data. Use register 1×EF10 to select options to transmit all ones, all zeros, 0×00FF pattern, or XAUI data. 0 12 Reserved RWSC Factory test only; do not modify this bit. 1 11 Reserved RO Factory test only; do not modify this bit. 1 10 Reserved RO Factory test only; do not modify this bit. 0 9 Reserved RO Factory test only; do not modify this bit. 0 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 173 Registers Table 258 • PHYXS_XAUI_CTRL1: PHY XS XAUI Control 1 (4×800E) (continued) Bit Name Access Description Default 8:5 RX_SQUELCH_XAU RW I Force receive XAUI data to zero (bit 8 0 corresponds to lane 3, and bit 5 corresponds to lane 0). 0: Normal operation. 1: Force data to zero. 4 Reserved RO Factory test only; do not modify this bit. 0 3 Reserved RW Factory test only; do not modify this bit. 0 2 Reserved RO Reserved. 0 1 Reserved RO Reserved. 0 0 Reserved RW Factory test only; do not modify this bit. 0 Table 259 • PHYXS_XAUI_CTRL2: PHY XS XAUI Control 2 (4×800F) Bit Name Access Description Default 15:13 Reserved RO Reserved 0 12 Reserved RW Factory test only; do not modify this bit 0 11 Reserved RW Factory test only; do not modify this bit 0 10 RX_LANE_SWA P RW Swaps receive lane 0 with lane 3 and lane 1 with 1 lane 2 0: Enable 1: Disable 9 TX_LANE_SWAP RW Swaps transmit lane 0 with lane 3 and lane 1 with 1 lane 2 0: Enable 1: Disable 8 Reserved RW Factory test only; do not modify this bit 0 7 Reserved RW Factory test only; do not modify this bit 0 6 RX_INV RW Disable XAUI input (receive) data invert 0: Enable 1: Disable 1 5 TX_INV RW Disable XAUI output (transmit) data invert 0: Enable 1: Disable 1 4 Reserved RO Reserved 0 3 Reserved RW Factory test only; do not modify this bit 0 2 LPBK_C RW Enables loopback C (XAUI side loopback at XGMII interface) 0: Disable 1: Enable 0 1 LPBK_D RW Enables loopback D (XFI side loopback at XGMII 0 interface) 0: Disable 1: Enable 0 Reserved RW Factory test only; do not modify this bit VMDS-10298 VSC8486-04 Datasheet Revision 4.4 0 174 Registers Table 260 • PHYXS_RXEQ_CTRL: PHY XS XAUI Rx Equalization Control (4×8010) Bit Name Access Description Default 15:12 LANE0_EQ RW Equalization setting for XAUI input lane 0 0000: 0 dB 0001: 1.41 dB 0010: 2.24 dB 0011: 2.83 dB 0101: 4.48 dB 0110: 5.39 dB 0111: 6.07 dB 1001: 6.18 dB 1010: 7.08 dB 1011: 7.79 dB 1101: 9.96 dB 1110: 10.84 dB 1111: 11.55 dB 0 11:8 LANE1_EQ RW Equalization setting for XAUI input lane 1 Refer to bits [15:12] for settings 0 7:4 LANE2_EQ RW Equalization setting for XAUI input lane 2 Refer to bits [15:12] for settings 0 3:0 LANE3_EQ RW Equalization setting for XAUI input lane 3 Refer to bits [15:12] for settings 0 Table 261 • PHYXS_TXPE_CTRL: PHY XS XAUI Tx Pre-emphasis Control (4×8011) Bit Name Access Description Default 15 Reserved RO Reserved. 0 14:13 LANE0_PE RW Pre-emphasis setting for XAUI output lane 0. 00: 0 dB. 01: ~2.5 dB. 10: ~6 dB. 11: ~12 dB. 0 12 Reserved RO Reserved. 0 11:10 LANE1_PE RW Pre-emphasis setting for XAUI output lane 1. Refer to bits [14:13] for settings. 0 9 Reserved RO Reserved. 0 8:7 LANE2_PE RW Pre-emphasis setting for XAUI output lane 2. Refer to bits [14:13] for settings. 0 6 Reserved RO Reserved. 0 5:4 LANE3_PE RW Pre-emphasis setting for XAUI output lane 3. Refer to bits [14:13] for settings. 0 3:2 LOS_THRES RW The following estimated settings can be used for 0 various LOS_THRES. 11: 80 mV to 205 mV differential peak-to-peak. 10: 70 mV to 195 mV differential peak-to-peak. 01: 60 mV to 185 mV differential peak-to-peak. 00: 50 mV to 175 mV differential peak-to-peak. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 175 Registers Table 261 • PHYXS_TXPE_CTRL: PHY XS XAUI Tx Pre-emphasis Control (4×8011) (continued) Bit Name Access Description Default 1 HS_ENA RW Enables XAUI output high swing mode. 0 0: Disable. 1: Enable. Low swing mode is recommended as there is no significant output amplitude difference between high swing mode and low swing mode. 0 Reserved RO Reserved. 0 Table 262 • PHYXS_RXLOS_STAT: PHY XS Rx Loss of Signal Status (4×8012) Bit Name Access Description Default 15:7 Reserved RO Reserved 0 6 GLBL_SYNC RO PHY XS code group synchronization status 0: At least one lane is not in sync 1: All lanes are in sync 0 5 XS_LOL RO PHY XS PLL loss of lock 0: PLL in lock 1: PLL loss of lock 0 4 Reserved RO Reserved 0 1 3 LANE3_LOS RO Loss of signal status for lane 3 XAUI input 0: Lane 3 signal present 1: Lane 3 loss of signal 0 2 LANE2_LOS RO Loss of signal status for lane 2 XAUI input1 0: Lane 2 signal present 1: Lane 2 loss of signal 0 1 LANE1_LOS RO Loss of signal status for lane 1 XAUI input1 0: Lane 1 signal present 1: Lane 1 loss of signal 0 0 LANE0_LOS RO Loss of signal status for lane 0 XAUI input1 0: Lane 0 signal present 1: Lane 0 loss of signal 0 1. While there is no issue on the actual data path, this real time detection signal can chatter when the amplitude of the input signal is larger than 1200 mV or the equivalent frequency is above 1.6 GHz Table 263 • PHYXS_RXSD_STAT: PHY XS Rx Signal Detect Status (4×E600) Bit Name Access Description Default 15:2 Reserved RO Factory test only; do not modify this bit group 0 1 GLBL_SIG_DET RW Disable signal detect function of all XAUI inputs 0 0: Enabled 1: Disabled When no signal is connected to XAUI bus, set this bit to 1 for proper loopback A function. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 176 Registers Table 263 • PHYXS_RXSD_STAT: PHY XS Rx Signal Detect Status (4×E600) (continued) Bit Name Access Description Default 0 SIG_DET RO Global signal detect status 0: No signal detected in at least one lane 1: Signal detected in all lanes N/A Table 264 • Factory Test Register (4×E601) Bit Name Access Description Default 15:9 Reserved RO Reserved 0 8 Reserved RW Factory test only; do not modify this bit 0 7:0 Reserved RW Factory test only; do not modify this bit group 0×01 Table 265 • PHYXS_TXPD_CTRL: PHY XS XAUI Tx Power Down Control (4×E602) Bit Name Access Description Default 15 Reserved RO Reserved 0 14 LANE3_TX_PD RW Power down XAUI lane 3 from the system host into the VSC8486-04 device 0: Powered up 1: Powered down Not changed with lane swap control (4×800F) 0 13 LANE2_TX_PD RW Power down XAUI lane 2 from the system host into the VSC8486-04 device 0: Powered up 1: Powered down Not changed with lane swap control (4×800F) 0 12 LANE1_TX_PD RW Power down XAUI lane 1 from the system host into the VSC8486-04 device 0: Powered up 1: Powered down Not changed with lane swap control (4×800F) 0 11 LANE0_TX_PD RW Power down XAUI lane 0 from the system host into the VSC8486-04 device 0: Powered up 1: Powered down Not changed with lane swap control (4×800F) 0 10:9 LPBK_B_CLK RW Selects which of the four recovered clocks will be 0 used for loopback B (PHY XS shallow system loopback) 11: Lane 3 10: Lane 2 01: Lane 1 00: Lane 0 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 177 Registers Table 265 • PHYXS_TXPD_CTRL: PHY XS XAUI Tx Power Down Control (4×E602) (continued) Bit Name Access Description Default 8 LPBK_B_CLKSE RW L Enables automatic clock selection for loopback B 1 and select which of the four recovered XAUI receive lane clocks will be used to retime the transmit data 0: Manual select (see bits 10:9) 1: Auto select 7:6 Reserved RO Factory test only; do not modify this bit group 0 5:4 Reserved RO Factory test only; do not modify this bit group 0 3:2 Reserved RO Factory test only; do not modify this bit group 0 1:0 Reserved RO Factory test only; do not modify this bit group 0 Table 266 • PHYXS_RXPD_CTRL: PHY XS XAUI Rx Power Down Control (4×E603) Bit Name Access Description Default 15:10 Reserved RO Reserved 0 9 Reserved RW Factory test only; do not modify this bit 0 8 Reserved RW Factory test only; do not modify this bit 1 7 LANE3_RX_PD RW Power down XAUI lane 3 from the VSC8486-04 device into the system host 0: Powered up 1: Powered down 0 6 LANE2_RX_PD RW Power down XAUI lane 2 from the VSC8486-04 device into the system host 0: Powered up 1: Powered down 0 5 LANE1_RX_PD RW Power down XAUI lane 1 from the VSC8486-04 device into the system host 0: Powered up 1: Powered down 0 4 LANE0_RX_PD RW Power down XAUI lane 0 from the VSC8486-04 device into the system host 0: Powered up 1: Powered down 0 3 LANE3_RX_SQU RW Force to zero PHY XS Rx lane 3 high-speed data 0 that is output from the VSC8486-04 device 0: Output normal 1: Output squelched 2 LANE2_RX_SQU RW Force to zero PHY XS Rx lane 2 high-speed data 0 that is output from the VSC8486-04 device 0: Output normal 1: Output squelched 1 LANE1_RX_SQU RW Force to zero PHY XS Rx lane 1 high-speed data 0 that is output from the VSC8486-04 device 0: Output normal 1: Output squelched VMDS-10298 VSC8486-04 Datasheet Revision 4.4 178 Registers Table 266 • PHYXS_RXPD_CTRL: PHY XS XAUI Rx Power Down Control (4×E603) (continued) Bit Name Access 0 LANE0_RX_SQU RW Description Default Force to zero PHY XS Rx lane 0 high-speed data 0 that is output from the VSC8486-04 device 0: Output normal 1: Output squelched Table 267 • FC_CJPAT_SEL (4×E604) Bit Name Access Description Default 15:2 Reserved RW Reserved 0 1 FC_CJPAT_CHK_MOD3 RW 1 0: Revision 3.5 compliant CJPAT checker. 1: Revision 3.1 compliant CJPAT checker. 1 0 FC_CJPAT_GEN_MOD3 RW 1 0: Revision 3.5 compliant CJPAT generator. 1 1: Revision 3.1 compliant CJPAT generator. Table 268 • Factory Test Register (4×E610) Bit Name Access Description Default 15:4 Reserved RO Reserved 0 3:0 Reserved RW Factory test only; do not modify this bit group 0 4.5 Device 30: NVR and DOM Registers The following tables provide settings for the registers related to the NVR and DOM. Table 269 • STW_CTRL1: STW Control 1 (1E×8000) Bit Name Access Description Default 15:13 Reserved RO Reserved 0 12:9 Reserved RW Reserved 0 8 STW_MODE RW Two-wire serial operating mode control. Must be set to 0. Do not write 1 to this bit. 0: Automatic mode 0 7:6 Reserved RO Reserved 0 5 STW_CMD RW Command type for automatic mode 0: Read 1: Write 0 4 Reserved RO Reserved 0 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 179 Registers Table 269 • STW_CTRL1: STW Control 1 (1E×8000) (continued) Bit Name Access Description Default 3:2 STW_CMD_STATU S RO Command status (these bits clear on read, but 0 if a condition persists, the bits maintain their value) 00: Idle 01: Command completed successfully 10: Command in progress 11: Command failed Note: If this register becomes stuck in command-in-progress state (10), it must be restored to idle state by issuing a software reset command through register 1×EF01.15. 1:0 STW_EXT_CMD RW Extended command; the range of addressing 0 is influenced by STW_MSA_TYPE 00: XENPAK (11-118), XFP (2-57) 01: XENPAK (119-166), XFP (72-111) 10: XENPAK (167-255), XFP (0-127) 11: XENPAK (0-255), XFP (128-255) Table 270 • STW_DEVADDR: STW Device Address (1E×8002) Bit Name Access Description Default 15:7 Reserved RW Reserved 0 6:3 STW_DEV_TYP E RW Target two-wire serial slave device type 0 2:0 STW_ADDR RW Target two-wire serial slave device address 0 Table 271 • STW_REGADDR: STW Register Address (1E×8003) Bit Name Access Description Default 15:0 STW_REG RW Intended register address to access within the two-wire serial slave device 0 Table 272 • STW_CFG1: STW Configuration 1 (1E×8004) Bit Name Access Description Default 15:13 Reserved RW Reserved 0 12 STW_MSA_MODE RW MSA register map compliance type; this influences the STW_EXT_CMD selection. 0: XENPAK 1: XFP 0 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 180 Registers Table 272 • STW_CFG1: STW Configuration 1 (1E×8004) (continued) Bit Name Access 11 STW_ADDR_MODE RW Selects the two-wire serial device addressing 0 mode 0: 7-bit 1: Reserved 10:9 STW_SPEED_MOD RW E Selects the two-wire serial bus speed 00: Standard (100 kHz) 01: Fast (400 kHz) 1×: Reserved 0 8:0 Reserved Reserved 0 RW Description Default Table 273 • NVR Memory Map (1E×8007-8106) Bit Name Access Description Default 15:8 Reserved RO Reserved 0 RW Consult the XENPAK or XFP specifications for a description of the NVR mapping. 0 7:0 Table 274 • DOM_RXALRM_CTRL: DOM Rx Alarm Control (1E×9000) Bit Name Access Description Default 15:5 Reserved RO Reserved 0 4 FAULT_RX_PMA_ENA RW PMA receive local fault enable 0: Disable 1: Enable 1 3 FAULT_RX_PCS_ENA RW PCS receive local fault enable 0: Disable 1: Enable 1 2 VEND_SPEC RO Vendor Specific 0 1 FLAG_RX_ENA RW RX_FLAG enable 0: Disable 1: Enable 0 0 FAULT_RX_PHYXS_EN RW A PHY XS receive local fault enable 0: Disable 1: Enable 1 Table 275 • DOM_TXALRM_CTRL: DOM Tx Alarm Control (1E×9001) Bit Name Access Description Default 15:5 Reserved RO Reserved 0 4 FAULT_TX_PMA_ENA RW PMA transmit local fault enable 0: Disable 1: Enable 1 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 181 Registers Table 275 • DOM_TXALRM_CTRL: DOM Tx Alarm Control (1E×9001) (continued) Bit Name Access Description Default 3 FAULT_TX_PCS_ENA RW PCS transmit local fault enable 0: Disable 1: Enable 1 2 VEND_SPEC RO Vendor specific 0 1 FLAG_TX_ENA RW TX_FLAG enable 0: Disable 1: Enable 0 0 FAULT_TX_PHYXS_EN RW A PHY XS transmit local fault enable 0: Disable 1: Enable 1 Table 276 • DOM_LASI_CTRL: DOM Link Alarm Status Interrupt Control (1E×9002) Bit Name Access Description Default 15:3 Reserved RO Reserved 0 2 ALARM_RX_ENA RW Receive alarm enable 0: Disable 1: Enable 0 1 ALARM_TX_ENA RW Transmit alarm enable 0: Disable 1: Enable 0 0 ALARM_LS_ENA RW Link status alarm enable 0: Disable 1: Enable 0 Table 277 • DOM_RXALRM_STAT: DOM Rx Alarm Status (1E×9003) Bit Name Access Description Default 15:5 Reserved RO Reserved 0 4 FAULT_RX_PMA_STAT RO/LH PMA receiver local fault 0: No fault asserted 1: Fault asserted See also 1×0008.10 0 3 FAULT_RX_PCS_STAT RO/LH PCS receive local fault 0: No fault asserted 1: Fault asserted See also 3×0008.10 0 2 Vendor Specific RO Vendor specific 0 1 FLAG_RX_STAT RO/LH Receive flag status 0: No fault asserted 1: Fault asserted 0 0 FAULT_RX_PHYXS_STA RO/LH T PHY XS receive local fault 0: No fault asserted 1: Fault asserted See also 4×0008.10 0 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 182 Registers Table 278 • DOM_TXALRM_STAT: DOM Tx Alarm Status (1E×9004) Bit Name Access Description Default 15:5 Reserved RO Reserved 0 4 FAULT_TX_PMA_STAT RO/LH PMA transmit local fault status 0: No fault asserted 1: Fault asserted See also 1×0008.11 0 3 FAULT_TX_PCS_STAT RO/LH PCS transmit local fault status 0: No fault asserted 1: Fault asserted See also 3×0008.11 0 2 Vendor Specific RO Vendor specific 0 1 FLAG_TX_STAT RO/LH Transmit flag fault status 0: No fault asserted 1: Fault asserted 0 0 FAULT_TX_PHYXS_STA RO/LH T PHY XS transmit local fault status 0: No fault asserted 1: Fault asserted See also 4×0008.11 0 Table 279 • DOM_LASI_STAT: DOM Link Alarm Status Interrupt Status (1E×9005) Bit Name Access Description Default 15:3 Reserved RO Reserved 0 2 ALARM_RX_STAT RO Receive alarm status 0: No fault asserted 1: Fault asserted 0 1 ALARM_TX_STAT RO Transmit alarm status 0: No fault asserted 1: Fault asserted 0 0 ALARM_LS_STAT RO/LH Link status alarm status 0: No status change 1: Status change 0 Table 280 • DOM_TXFLAG_CTRL: DOM Tx Flag Control (1E×9006) Bit Name Access Description Default 15:8 Reserved RW Reserved 0 7 TXFLAG_HI_TEMP_ENA RW High temperature alarm enable 0: Disable 1: Enable 0 6 TXFLAG_LO_TEMP_ENA RW Low temperature alarm enable 0: Disable 1: Enable 0 5:4 Reserved Reserved 0 RW VMDS-10298 VSC8486-04 Datasheet Revision 4.4 183 Registers Table 280 • DOM_TXFLAG_CTRL: DOM Tx Flag Control (1E×9006) (continued) Bit Name Access Description Default 3 TXFLAG_HI_LBIAS_ENA RW Laser bias current high alarm enable 0: Disable 1: Enable 0 2 TXFLAG_LO_LBIAS_ENA RW Laser bias current low alarm enable 0: Disable 1: Enable 0 1 TXFLAG_HI_TXPWR_EN RW A Laser output power high alarm enable 0: Disable 1: Enable 0 0 TXFLAG_LO_TXPWR_EN RW A Laser output power low alarm enable 0: Disable 1: Enable 0 Table 281 • DOM_RXFLAG_CTRL: DOM Rx Flag Control (1E×9007) Bit Name Access Description Default 15:8 Reserved RW 0 7 RXFLAG_HI_RXPWR_EN RW A Receive optical power high alarm enable 0 0: Disable 1: Enable 6 RXFLAG_LO_RXPWR_EN RW A Receive optical power low alarm enable 0: Disable 1: Enable 0 5:0 Reserved Reserved 0 RW Reserved Table 282 • Factory Test Register (1E×A000-A027) Bit Name Access Description Default 15:0 Reserved RO Factory test only; do not modify this bit group 0 Table 283 • Factory Test Register (1E×A048-A05F) Bit Name Access Description Default 15:0 Reserved RO Factory test only; do not modify this bit group 0 Table 284 • Factory Test Register (1E×A060-A06D) Bit Name Access Description Default 15:0 Reserved RO Factory test only; do not modify this bit group 0 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 184 Registers Table 285 • Factory Test Register (1E×A06E) Bit Name Access Description Default 15:0 Reserved RO Factory test only; do not modify this bit group 0 Table 286 • Factory Test Register (1E×A06F) Bit Name Access Description Default 15:0 Reserved RO Factory test only; do not modify this bit group 0 Table 287 • DOM_TXALARM: DOM Tx Alarm Flags (1E×A070) Bit Name Access Description Default 15:8 Reserved RO Reserved 0 7 ALARM_HI_XCVRTEMP_ST AT RO Transceiver temperature high alarm status 0: No alarm asserted 1: Alarm asserted 0 6 ALARM_LO_XCVRTEMP_ST RO AT Transceiver temperature low alarm status 0: No alarm asserted 1: Alarm asserted 0 5:4 Reserved RO Reserved 0 3 ALARM_HI_LBIAS_STAT RO Laser bias current high alarm status 0: No alarm asserted 1: Alarm asserted 0 2 ALARM_LO_LBIAS_STAT RO Laser bias current low alarm status 0: No alarm asserted 1: Alarm asserted 0 1 ALARM_HI_TXPWR_STAT RO Laser output power high alarm status 0 0: No alarm asserted 1: Alarm asserted 0 ALARM_LO_TXPWR_STAT RO Laser output power low alarm status 0: No alarm asserted 1: Alarm asserted 0 Table 288 • DOM_RXALARM: DOM Rx Alarm Flags (1E×A071) Bit Name Access Description Default 15:8 Reserved RO Reserved 0 7 ALARM_HI_RXPWR_STA RO T Receive optical power high alarm status 0: No alarm asserted 1: Alarm asserted 0 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 185 Registers Table 288 • DOM_RXALARM: DOM Rx Alarm Flags (1E×A071) (continued) Bit Name Access Description 6 ALARM_LO_RXPWR_STA RO T Receive optical power low alarm status 0: No alarm asserted 1: Alarm asserted 0 5:0 Reserved Reserved 0 RO Default Table 289 • Factory Test Register (1E×A072-A073) Bit Name Access Description Default 15:0 Reserved RO Factory test only; do not modify this bit group 0 Table 290 • DOM_TXWARN: DOM Tx Warning Flags (1E×A074) Bit Name Access Description Default 15:8 Reserved RO Reserved 0 7 WARN_HI_XCVRTEMP_STA RO T Transceiver temperature high warning 0 status 0: No warning asserted 1: Warning asserted 6 WARN_LO_XCVRTEMP_ST RO AT Transceiver temperature low warning 0 status 0: No warning asserted 1: Warning asserted 5:4 Reserved RO Reserved 3 WARN_HI_LBIAS_STAT RO Laser bias current high warning status 0 0: No warning asserted 1: Warning asserted 2 WARN_LO_LBIAS_STAT RO Laser bias current low warning status 0 0: No warning asserted 1: Warning asserted 1 WARN_HI_TXPWR_STAT RO Laser output power high warning status 0: No warning asserted 1: Warning asserted 0 0 WARN_LO_TXPWR_STAT RO Laser output power low warning status 0: No warning asserted 1: Warning asserted 0 0 Table 291 • DOM_RXWARN: DOM Rx Warning Flags (1E×A075) Bit Name Access Description Default 15:8 Reserved RO 0 Reserved VMDS-10298 VSC8486-04 Datasheet Revision 4.4 186 Registers Table 291 • DOM_RXWARN: DOM Rx Warning Flags (1E×A075) (continued) Bit Name Access Description 7 WARN_HI_RXPWR_STA RO T Receive optical power high warning status 0 0: No warning asserted 1: Warning asserted 6 WARN_LO_RXPWR_STA RO T Receive optical power low warning status 0: No warning asserted 1: Warning asserted 0 5:0 Reserved Reserved 0 RO Default Table 292 • Factory Test Register (1E×A076-A077) Bit Name Access Description Default 15:0 Reserved RO Factory test only; do not modify this bit group 0 Table 293 • Factory Test Register (1E×A0C0-A0FF) Bit Name Access Description Default 15:0 Reserved RO Factory test only; do not modify this bit group 0 Table 294 • Factory Test Register (1E×A100) Bit Name Access Description Default 15:0 Reserved RW Reserved 0 Table 295 • Factory Test Register (1E×A101-A106) Bit Name Access Description Default 7:0 Reserved RW Factory test only; do not modify this bit group 0 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 187 Electrical Specifications 5 Electrical Specifications This section provides the DC characteristics, AC characteristics, recommended operating conditions, and stress ratings for the VSC8486-04 device. 5.1 DC Characteristics This section contains the DC specifications for the VSC8486-04 device. 5.1.1 LVTTL Inputs and Outputs The following table shows the LVTTL I/O specifications for the VSC8486-04 device. Table 296 • LVTTL I/O Specifications Parameter Symbol Minimum Maximum Unit Condition Output high voltage VOH 2.4 1.8 1.4 1.1 0.88 VDDTTL VDDTTL VDDTTL VDDTTL VDDTTL V VDDTTL = 3.3 V and IOH = –4 mA VDDTTL = 2.5 V and IOH = –4 mA VDDTTL = 1.8 V and IOH = –2 mA VDDTTL = 1.5 V and IOH = –2 mA VDDTTL = 1.2 V and IOH = –1 mA Output high voltage, open drain VOH_OD 3.2 2.4 1.7 1.4 0.9 VDDTTL VDDTTL VDDTTL VDDTTL VDDTTL V VDDTTL = 3.3 V and IOH = 100 µA VDDTTL = 2.5 V and IOH = 100 µA VDDTTL = 1.8 V and IOH = 100 µA VDDTTL = 1.5 V and IOH = 100 µA VDDTTL = 1.2 V and IOH = 100 µA Output low voltage (LVTTL, open drain) VOL 0.0 0.0 0.0 0.0 0.0 0.5 0.5 0.4 0.2 0.2 V VDDTTL = 3.3 V and IOL = 4 mA VDDTTL = 2.5 V and IOL = 4 mA VDDTTL = 1.8 V and IOL = 2 mA VDDTTL = 1.5 V and IOL = 2 mA VDDTTL = 1.2 V and IOL = 1 mA Input high voltage VIH 2.0 1.7 1.2 1.05 0.85 VDDTTL VDDTTL VDDTTL VDDTTL VDDTTL V VDDTTL = 3.3 V VDDTTL = 2.5 V VDDTTL = 1.8 V VDDTTL = 1.5 V VDDTTL = 1.2 V Input low voltage 0.0 0.0 0.0 0.0 0.0 0.8 0.8 0.6 0.45 0.4 V VDDTTL = 3.3 V VDDTTL = 2.5 V VDDTTL = 1.8 V VDDTTL = 1.5 V VDDTTL = 1.2 V 500 µA VIH = VDDTTL µA VIL = 0 V VIL Input high current IIH Input low current 5.1.2 IIL –50 Reference Clock REFCLKP/N has an exposed center tap (REFTERM), whereas WREFCLKP/N and VREFCLKP/N do not. For more information about reference clock inputs, see Reference Clock Inputs, page 22. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 188 Electrical Specifications The following table shows the reference clock input specifications for the VSC8486-04 device. Table 297 • Reference Clock Input Specifications Parameter Symbol Input voltage Minimum Maximum Unit Condition ∆VREFCLK 150 2000 mV Measured peak-topeak both sides driven 300 2000 mV Measured peak-topeak single-ended driven 700 950 mV Input common-mode voltage VCM REFTERM voltage VREFTER Typical 0.67 × VDD12TX M 5.1.3 V VDD12TX = 1.2 V MDIO Interface The following table shows the MDIO interface specifications for the VSC8486-04 device. Table 298 • MDIO Interface Characteristics Parameter Symbol Minimum Maximum Unit VIH 0.84 VDDTTL V VIL 0 0.36 V VOH 1.0 VDDTTL V IOH = –100 µA Output low voltage VOL 0 0.2 V IOL = 100 µA Output high current IOH –4 mA VI = 1.5 V Output low current IOL mA VI = 0.2 V Input capacitance CIN 10 pF Bus loading CL 470 pF Input high voltage1 Input low voltage Output high 1. 2. 5.2 voltage2 4.0 Condition Input is 3.3 V tolerant. Output is open drain and pulled up to 1.5 V through a 4.7 kΩ resistor. AC Characteristics This section contains the AC specifications for the VSC8486-04 device. 5.2.1 10-Gigabit Inputs and Outputs The following table shows the serial data input specifications for the VSC8486-04 device. The specifications refer to points A and D in the XFI specification, unless specified otherwise. Table 299 • 10-Gigabit Serial Data Input Specifications Parameter Symbol Minimum Data differential input swing ∆VSWING_DIFF 55 Typical Maximum Unit Condition 1050 mV Measured peak-topeak both sides driven with no offset applied VMDS-10298 VSC8486-04 Datasheet Revision 4.4 189 Electrical Specifications Table 299 • 10-Gigabit Serial Data Input Specifications (continued) Parameter Symbol Minimum Data single∆VSWING_SE ended input swing Typical 110 Differential input impedance1 RZDE_TERM 98 Differential input return loss1 SDD11 12 Reflected differential to common mode conversion1 SCD11 Termination resistor current ITERM RXDATA input common-mode voltage VRXINCM 1. 2. Maximum Unit Condition 1050 mV Measured peak-topeak single-ended driven with no offset applied Ω RXIN+ to RXIN– dB 0.1 GHz to 2 GHz 2 See 2 GHz to 11.1 GHz 10 25 0.68 × VDD12RX dB 0.1 GHz to 11.1 GHz mA RXIN to RXINCM V Limited sample size tested under nominal conditions. Return loss is SDD11(dB) < –6.68 + 12.1 × log10(ƒ/5.5 GHz), with ƒ in GHz. Figure 61 • 10-Gigabit Data Input Compliance Mask Y2 Voltage Y1 0 –Y1 –Y2 0.0 X1 1–X1 1.0 Normalized Time (UI) VMDS-10298 VSC8486-04 Datasheet Revision 4.4 190 Electrical Specifications Sinusoidal Jitter Tolerance (UIp-p) Figure 62 • Datacom Sinusoidal Jitter Tolerance –20 dB/Dec 5.0 0.05 0.04 0.4 4 40 Frequency (MHz) The following table shows the CRU input specifications for the VSC8486-04 device. Table 300 • 10-Gigabit Data Input Specifications for CRU Parameter Symbol Difference ∆fREFCLK between REFCK frequency (with appropriate multiplier) and 10gigabit input data frequency Minimum Maximum Unit –100 100 ppm Condition Total jitter tolerance TOLJIT_P-P 0.70 UI Calibrated and measured at point C", as specified in SFF-8431 revision 4.1 using the following EQ and CRU BW settings: 1×8002.14:11 = 1101 1×E604.15 = 1 1×8000.15:14 = 00 Board channel loss is 3 dB. 99% jitter 99%JJIT_p-p 0.42 UI Calibrated and measured at point C", as specified in SFF-8431 revision 4.1 using the following EQ, gain, and CRU BW settings: 1×8002.14:11 = 1110 1×E604.15 = 1 1×8000.15:14 = 00 Board channel loss is 3 dB. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 191 Electrical Specifications Table 300 • 10-Gigabit Data Input Specifications for CRU (continued) Parameter Symbol Pulse width shrinkage jitter Minimum Maximum Unit Condition DDPWSJIT_p-p 0.3 UI Calibrated and measured at point C", as specified in SFF-8431 revision 4.1 using the following EQ, gain, and CRU BW settings: 1×8002.14:11 = 1110 1×E604.15 = 1 1×8000.15:14 = 00 Board channel loss is 3 dB. Sinusoidal jitter, Datacom SJ_DAT See Figure 62, page 191 Eye mask (X1) X1 0.35 Eye mask (Y1) Y1 Eye mask (Y2) Y2 150 425 SFF-8431 specification revision 4.1 Datacom mask. UI Calibrated and measured at point C", as specified in SFF-8431 revision 4.1 using the following EQ, gain, and CRU BW settings: 1×8002.14:11 = 1110 1×E604.15 = 1 1×8000.15:14 = 00 Board channel loss is 3 dB. See Figure 61, page 190. mV Calibrated and measured at point C", as specified in SFF-8431 revision 4.1 using the following EQ, gain, and CRU BW settings: 1×8002.14:11 = 1110 1×E604.15 = 1 1×8000.15:14 = 00 Board channel loss is 3 dB. See Figure 61, page 190. mV Calibrated and measured at point C", as specified in SFF-8431 revision 4.1 using the following EQ, gain, and CRU BW settings: 1×8002.14:11 = 1110 1×E604.15 = 1 1×8000.15:14 = 00 Board channel loss is 3 dB. See Figure 61, page 190. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 192 Electrical Specifications The following table shows the MUX output specifications for the VSC8486-04 device. Table 301 • 10-Gigabit Data Output Specifications for MUX Parameter Symbol TXDOUTP/N VSE_FE single-ended output swing at far end Minimum Typical 95 Maximum Unit Condition 350 mV Calibrated and measured at point B, as specified in SFF-8431 revision 4.1 using the following PE and DE/swing settings: 1×E601.7:0 = 0x8b 1×E603 = 0x00 Board channel loss is 3 dB. Common-mode output voltage TXDOUTP/N1 VCM 0.9 V Common-mode return loss1 SCC22 See2 dB 0.01 GHz to 2.5 GHz. 3 dB 2.5 GHz to 11.1 GHz. Differential output return loss1 SDD22 –12 dB 0.01 GHz to 2 GHz. See3 dB 2 GHz to 11.1 GHz. 1. 2. 3. Limited sample size tested under nominal conditions. Return loss is SCC22(dB) < –7 + 1.6 × ƒ, with ƒ in GHz. Return loss is SDD22(dB) < –6.68 + 12.1 × log10(ƒ/5.5 GHz), with ƒ in GHz. The following table shows the CMU output specifications in WAN mode for the VSC8486-04 device. Table 302 • 10-Gigabit Data Output Specifications for CMU, WAN Mode Parameter Symbol Minimum TXDOUTP/N jitter JGOUT RXDINP/N jitter tolerance 1. 2. JTOL 1.5 × SONET jitter mask Typical Unit Condition 0.06 UI Measured peak-to-peak. WREFCLK = 622.08 MHz low jitter. Reference clock required.1 Measured peak-to-peak using the following settings: 1×8002.12:11 = 0x2 1×8002.14:13 = 0x3 1×E604.15 = 0x1 1×8000.15:14 = 0x0 Compliant with 1.5 × SONET jitter mask. GR1377-CORE.2 For optimal JG and rise and fall time performance, adjustments might be required to the transmit preemphasis or transmit slew rate or both in register 1×E601. Measured 1 dB above minimum RXIN input sensitivity. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 193 Electrical Specifications The following table shows the CMU output specifications for the VSC8486-04 device. Table 303 • 10-Gigabit Data Output Specifications for CMU, LAN/SAN Mode Parameter Symbol TXDOUTP/N total jitter TJDOUT Minimum Maximum Unit Condition 0.28 UI Calibrated and measured at point B, as specified in SFF-8431 revision 4.1 using the following PE and DE/swing settings: 1×E601.7:0 = 0x8b 1×E603 = 0x00 Board channel loss is 3 dB. Data-dependant jitter DDJ 0.1 UI Calibrated and measured at point B, as specified in SFF-8431 revision 4.1 using the following PE and DE/swing settings: 1×E601.7:0 = 0x8b 1×E603 = 0x00 Board channel loss is 3 dB. Data-dependant pulse DDPWSp-p width shrinkage 0.055 UI Calibrated and measured at point B, as specified in SFF-8431 revision 4.1 using the following PE and DE/swing settings: 1×E601.7:0 = 0x8b 1×E603 = 0x00 Board channel loss is 3 dB. Uncorrelated jitter UJrms 0.023 UI Calibrated and measured at point B, as specified in SFF-8431 revision 4.1 using the following PE and DE/swing settings: 1×E601.7:0 = 0x8b 1×E603 = 0x00 Board channel loss is 3 dB. CLK64P/N jitter generation JGC64 0.11 UI Measured peak-to-peak. CLK64A and CLK64B in CMU/64, CMU/66, and CRU/64 modes. CLK64P/N output swing ∆V 800 mV Measured peak-to-peak. CLK64A and CLK64B in CMU/64, CMU/66, and CRU/64 modes. Eye mask (X1) X1 0.12 UI Calibrated and measured at point B, as specified in SFF-8431 revision 4.1 using the following PE and DE/swing settings: 1×E601.7:0 = 0x8b 1×E603 = 0x00 Board channel loss is 3 dB. See Figure 63, page 195. 320 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 194 Electrical Specifications Table 303 • 10-Gigabit Data Output Specifications for CMU, LAN/SAN Mode (continued) Parameter Symbol Eye mask (X2) X2 Eye mask (Y1) Y1 Eye mask (Y2) Y2 Minimum Maximum Unit Condition 0.33 UI Calibrated and measured at point B, as specified in SFF-8431 revision 4.1 using the following PE and DE/swing settings: 1×E601.7:0 = 0x8b 1×E603 = 0x00 Board channel loss is 3 dB. See Figure 63, page 195. mV Calibrated and measured at point B, as specified in SFF-8431 revision 4.1 using the following PE and DE/swing settings: 1×E601.7:0 = 0x8b 1×E603 = 0x00 Board channel loss is 3 dB. See Figure 63, page 195. mV Calibrated and measured at point B, as specified in SFF-8431 revision 4.1 using the following PE and DE/swing settings: 1×E601.7:0 = 0x8b 1×E603 = 0x00 Board channel loss is 3 dB. See Figure 63, page 195. 95 350 Figure 63 • 10-Gigabit Data Output Compliance Mask Y2 Voltage Y1 0 –Y1 –Y2 0.0 X1 X2 1–X2 1–X1 1.0 Normalized Time (UI) VMDS-10298 VSC8486-04 Datasheet Revision 4.4 195 Electrical Specifications 5.2.2 XAUI Inputs and Outputs The following shows the XAUI input specifications for the VSC8486-04 device. Table 304 • XAUI Input Specifications Parameter Symbol Minimum Input baud rate ƒ 3.125 – 100 ppm Unit interval UI Typical Maximum Unit 3.1875 + 100 ppm Gbps 320 Condition ps 3.125 Gbps – 100 ppm to 3.1875 Gbps + 100 ppm Differential input VIN_DIFF amplitude 75 1600 mV AC-coupled, measured peak-to-peak each side (both sides driven) Common-mode VIN_CM input voltage 0.75 VDDA12 – 0.05 V Midpoints between high and low voltages, measured at DC 10 dB 100 Ω differential reference impedance 6 dB 100 MHz to 2.5 GHz, 25 Ω reference impedance ps Between true and complement inputs Differential return loss1 RLIDIFF Common-mode RLICM return loss1 75 Differential skew SKDIFF Jitter tolerance, total TOLTJ 0.65 UI Measured peak-to-peak, see IEEE 802.3ae-2002, clause 47.3.4 Jitter tolerance, deterministic TOLDJ 0.37 UI Measured peak-to-peak, see IEEE 802.3ae-2002, clause 47.3.4 Jitter tolerance, deterministic plus random jitter TOLDJ+RJ 0.55 UI Measured peak-to-peak, see IEEE 802.3ae-2002, clause 47.3.4 1. Limited sample size tested under nominal conditions. Sinusoidual Jitter Amplitude (UIp-p) Figure 64 • XAUI Receiver Input Sinusoidal Jitter Tolerance 8.5 0.1 22.1 k 1.875 M 20 M Frequency (Hz) VMDS-10298 VSC8486-04 Datasheet Revision 4.4 196 Electrical Specifications The following table shows the XAUI output specifications for the VSC8486-04 device. Table 305 • XAUI Output Specifications Parameter Symbol Output baud rate ƒ Minimum Typical 3.125 – 100 ppm Unit interval UI Differential output voltage XVOUT_DIFF 100 Output impedance1 ZOUT Differential output return loss1 Maximum Unit 3.1875 + 100 ppm Gbps ps 3.125 Gbps – 100 ppm to 3.1875 Gbps + 100 ppm. mV Single-ended, AC-coupled. Measured peak-to-peak at far end, both sides driven with no offset applied. HISWNG = 0. 98 Ω Differential. RLODIFF 10 dB 100 MHz to 781.25 MHz, reducing 20 dB per decade up to 3.5 GHz. Includes onchip circuitry, packaging, and off-chip components. 100 Ω test source. Common-mode output return loss1 RLOCM 6 dB 100 MHz to 2.5 GHz over valid output levels. Includes on-chip circuitry, packaging, and off-chip components. 25 Ω test source. Total jitter TJ 0.55 UI Measured peak-to-peak at far end template. Deterministic jitter DJ 0.37 UI Measured peak-to-peak at far end template. Eye mask (X1) X1 0.275 UI Measured at far end template. See Figure 65, page 198. Eye mask (X2) X2 0.40 UI Measured at far end template. See Figure 65, page 198. Eye mask (A1) A1 mV HISWNG = 0. Measured at far end template. See Figure 65, page 198. Eye mask (A2) A2 mV HISWNG = 0. Measured at far end template. See Figure 65, page 198. 1. 320 Condition 800 100 800 Limited sample size tested under nominal conditions. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 197 Electrical Specifications Differential Signal Amplitude (V) Figure 65 • XAUI Output Compliance Mask A2 A1 0 –A1 –A2 0 X1 X2 1–X2 1–X1 1 Normalized Bit Time (UI) 5.2.3 XGMII Specifications The following table shows the XGMII input specifications for the VSC8486-04 device. Table 306 • XGMII Input Specifications Parameter Symbol Minimum Typical Maximum Unit Condition Input reference voltage VHVREF 0.68 0.75 0.9 V Measured peak-to-peak. AC noise on VHVREF may not exceed 2% VHVREF(DC). DC input high voltage VIH_DC VHVREF + 0.1 VDDHTL V DC input low voltage VIL_DC 0 VHVREF – 0.1 V AC input high voltage VIH_AC VHVREF + 0.2 AC input low voltage VIL_AC V VHVREF – 0.2 V Figure 66 • XGMII Input/Output Level Reference Diagram VDDHTL VOH_AC VOH_DC VIH_DC VIH_AC VHVREF VIL_DC VIL_AC VOL_DC VOL_AC GND VMDS-10298 VSC8486-04 Datasheet Revision 4.4 198 Electrical Specifications The following table shows the XGMII output specifications for the VSC8486-04 device. Table 307 • XGMII Output Specifications Parameter Symbol Minimum DC output high voltage VOH VDDHTL – 0.4 DC output low voltage VOL RXCLK output duty cycle DCRXCLK 45 Maximum Unit Condition V IOH = 8 mA (VTT = VDDHTL / 2, RT = 50 Ω) 0.4 V IOH = |–8 mA| (VTT = VDDHTL / 2, RT = 50 Ω) 55 % Figure 67 • XGMII Interface Timing Diagram tPWMIN TX_CLK, RX_CLK VREF TXC, TXD, RXC, RXD VREF tSETUP 5.2.4 tPWMIN tSETUP tHOLD tHOLD Timing and Reference Clock The following tables show the timing and reference clock specifications for the VSC8486-04 device. Table 308 • Reset Timing Parameter Symbol Minimum Unit Condition Minimum reset pulse width TRESET 0.1 µs All power supplies are stable Table 309 • Reference Clock Specifications Parameter Symbol Minimum REFCK frequency fREFCLK 153.00 MHz – 159.37 MHz + 100 ppm 100 ppm REFCKP/N duty cycle DCREFCK 40 Maximum 60 Unit Condition MHz Pins: REFSEL[1:0] = 00 % Table 310 • TXCLK and RXCLK Timing Parameters Parameter Symbol Driver Receiver Unit Setup time tSETUP 960 480 ps Hold time tHOLD 960 480 ps Minimum pulse width tPWMIN 2.5 ns VMDS-10298 VSC8486-04 Datasheet Revision 4.4 199 Electrical Specifications Figure 68 • Parametric Measurement Setup Rise Time and Fall Time 80% 20% tF tR Figure 69 • Timing with MDIO Sourced by STA VIH(MIN) MDC VIH(MIN) VIH(MIN) MDIO VIH(MIN) 10 ns minimum 10 ns minimum Figure 70 • Timing with MDIO Sourced by MMD VIH(MIN) MDC VIH(MIN) VIH(MIN) MDIO VIH(MIN) 0 ns minimum 300 ns maximum 5.3 Operating Conditions The following table shows the recommended operating conditions for the VSC8486-04 device. To ensure that the control pins remain set to the desired configured state when the VSC8486-04 device is powered up, it is required to perform a reset through the reset pin after power-up and after the control pins are steady for 1 ms. Table 311 • Recommended Operating Conditions Parameter Symbol 1.5 V power supply VDDHTL voltage 1.5 V power supply IDDHTL current Minimum Typical Maximum Unit 1.43 1.5 1.58 V 150 mA Condition Outputs terminated 50 Ω to VREF, data toggling with 50% duty cycle 10 Outputs unterminated, data toggling with 50% duty cycle 1 Outputs unterminated, static data VMDS-10298 VSC8486-04 Datasheet Revision 4.4 200 Electrical Specifications Table 311 • Recommended Operating Conditions (continued) Parameter Typical Maximum Unit 1.2 V power supply VDD12RX 1.14 VDD12TX voltage VDDA12 VDD12X VDD12PCS 1.2 1.26 V 1.2 V power supply IDD12 current 625 Power PDD12 consumption at 1.2 V power supply 753 998 839 1130 3.3 2.5 1.8 1.5 1.2 3.47 2.63 1.89 1.58 1.26 TTL I/O power supply voltage VDDTTL TTL I/O power supply current IDDTTL Operating temperature1 T 1. 5.4 Symbol Minimum 3.14 2.38 1.71 1.43 1.14 mA VDDHTL = ground. XAUI to 10 gigabit data in LAN mode mW XAUI to XFI in LAN XAUI to XFI in WAN 3 –40 Condition 95 V VDDTTL = 3.3 V VDDTTL = 2.5 V VDDTTL = 1.8 V VDDTTL = 1.5 V VDDTTL = 1.2 V mA VDDTTL = 3.3 V, 2.5 V, 1.8 V, 1.5 V °C Minimum specification is ambient temperature, and the maximum is case temperature. Stress Ratings This section contains the stress ratings for the VSC8486-04 device. Warning Stresses listed in the following table may be applied to devices one at a time without causing permanent damage. Functionality at or exceeding the values listed is not implied. Exposure to these values for extended periods may affect device reliability Table 312 • Stress Ratings Parameter Symbol Minimum Maximum Unit 3.3 V power supply voltage, potential to ground VDDTTL –0.5 3.8 V 2.5 V power supply voltage, potential to ground VDDTTL –0.5 2.9 V 1.8 V power supply voltage, potential to ground VDDTTL –0.5 2.1 V 1.5 V power supply voltage, potential to ground VDDHTL –0.5 1.9 V 1.2 V power supply voltage, potential to ground VDD12 –0.5 1.32 V DC input voltage VI –0.3 VDDTTL, VDDHTL, or VDD12 + 0.3 V Output current (LVTTL) IO_VDDTTL –16 16 mA Absolute XAUI output voltage VXAUI_ABS –0.4 2.3 V Storage temperature TS 150 °C Electrostatic discharge voltage, charged device model VESD_CDM –200 200 V Electrostatic discharge voltage, human body model VESD_HBM 1000 V –65 –1000 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 201 Electrical Specifications Warning This device can be damaged by electrostatic discharge (ESD) voltage. Microsemi recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures may adversely affect reliability of the device. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 202 Pin Descriptions 6 Pin Descriptions The VSC8486-04 device has 256 pins, which are described in this section. The pin information is also provided as an attached Microsoft Excel file, so that you can copy it electronically. In Adobe Reader, double-click the attachment icon. 6.1 Pin Diagram The following illustration shows the pin diagram for the VSC8486-04 device, as seen from the top view. Figure 71 • Pin Diagram 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 A NC REFCKP VSS TXD1 TXD5 TXD8 TXD12 TXC1 TXD18 TXD22 XTX3N XTX3P TXD27 XRX3N XRX3P NC B REFCKN REFTERM VSS TXD0 TXD4 TXC0 TXD11 TXD15 TXD17 TXD21 TXC2 TXD25 TXD26 TXD29 TXD30 TXD31 C VSS VSS VSS RXALARM TXD3 TXD7 TXD10 TXD14 TXD16 TXD20 TXD23 TXD24 HVREF TXD28 TXC3 XTX2N D WREFCKP VSS VSS VREFCKP TXD2 TXD6 TXD9 TXD13 TXCLK TXD19 LOPC CLK64A_EN LP_XAUI XTX2P E WREFCKN VSS CM UFILT TXALARM LASI NC REFSEL0 SPLITLOOPN NC TXONOFFI VSS VSS LPP_10B LP_16B LP_XGM II NC F VSS VSS NC VREFCKN VSS PM TICK NC NC RFPOUT VSS VDDA12 VDDA12 VSS WANMODE XAUIFILT XRX2N G VSS VSS EXVCODNN VDD12TX VSS VDDTTL VSS VDDHTL VDD12PCS VSS VDDA12 VDDA12 VSS VDD12X VSS XRX2P H TXDOUTP VSS VSS VDD12TX VDD12TX VDD12RX VSS VDDHTL VDDHTL VSS VDDA12 VDDA12 VSS VDD12X RCLKOUT VSS J TXDOUTN VSS CLK64AP CLK64BP CLK64BN VDD12RX VSS VDDHTL VDDHTL VSS VDDA12 VDDA12 VSS VDD12X RDAOUT VSS K VSS VSS CLK64AN VSS VSS VDDTTL VSS VDDHTL VDD12PCS VSS VDDA12 TCLKOUT VSS VDD12X VSS XTX1N L CRUFILT VSS VSS M DIO VSS WIS_INTB M DC RESETN MSTCODE2 MSTCODE1 VDDA12 TDAIN VSS VDD12X NC XTX1P M VSS VSS EXVCOUPP STWSDA STWSCL PRTAD4 PRTAD3 MSTCODE0 VSS VSS EPCS NC TFPOUT IOMODESEL N RXINP VSS RXINCM TM S RXD2 RXD6 RXD9 RXD13 RXCLK RXD19 PRTAD2 PRTAD1 PRTAD0 AUTONEG NC XRX1N P RXINN EXVCOUPN VSS TDI RXD3 RXD7 RXD10 RXD14 RXD16 RXD20 RXD23 RXD24 STWWP RXD28 RXC3 XRX1P R VSS NC TDO RXD0 RXD4 RXC0 RXD11 RXD15 RXD17 RXD21 RXC2 RXD25 RXD26 RXD29 RXD30 RXD31 T NC TRSTB TCK RXD1 RXD5 RXD8 RXD12 RXC1 RXD18 RXD22 XRX0P XRX0N RXD27 XTX0P XTX0N NC 6.2 EXVCODNP RXINOFFEN WIS_INTA FORCEAIS Pins by Function This section contains the functional pin descriptions for the VSC8486-04 device. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 203 Pin Descriptions 6.2.1 XFI 10-Gigabit Data Bus Interface The following table lists the pins associated with the XFI interface. Table 313 • XFI 10-Gigabit Data Bus Pins 6.2.2 Name Number RXINCM N3 I/O Type Description Analog Rx 10-gigabit serial data input resistor termination center tap RXINN P1 I CML Rx 10-gigabit serial data input, complement RXINP N1 I CML Rx 10-gigabit serial data input, true TXDOUTN J1 O CML Tx 10-gigabit serial data output, complement TXDOUTP H1 O CML Tx 10-gigabit serial data output, true XAUI 10-Gigabit Data Bus Interface The following table lists the pins associated with the XAUI interface. Table 314 • XAUI 10-Gigabit Data Bus Pins Name Number I/O XAUIFILT F15 Type Description Analog XAUI CMU filter capacitor (1 µF) from this pin to ground. XRX0N T12 I CML XAUI channel 0 serial data input, complement. DL0 as specified in IEEE 802.3ae. XRX0P T11 I CML XAUI channel 0 serial data input, true. DL0 as specified in IEEE 802.3ae. XRX1N N16 I CML XAUI channel 1 serial data input, complement. DL1 as specified in IEEE 802.3ae. XRX1P P16 I CML XAUI channel 1 serial data input, true. DL1 as specified in IEEE 802.3ae. XRX2N F16 I CML XAUI channel 2 serial data input, complement. DL2 as specified in IEEE 802.3ae. XRX2P G16 I CML XAUI channel 2 serial data input, true. DL2 as specified in IEEE 802.3ae. XRX3N A14 I CML XAUI channel 3 serial data input, complement. DL3 as specified in IEEE 802.3ae. XRX3P A15 I CML XAUI channel 3 serial data input, true. DL3 as specified in IEEE 802.3ae. XTX0N T15 O CML XAUI channel 0 serial data output, complement. SL0 as specified in IEEE 803.3ae. XTX0P T14 O CML XAUI channel 0 serial data output, true. SL0 as specified in IEEE 803.3ae. XTX1N K16 O CML XAUI channel 1 serial data output, complement. SL1 as specified in IEEE 802.3ae. XTX1P L16 O CML XAUI channel 1 serial data output, true. SL1 as specified in IEEE 802.3ae. XTX2N C16 O CML XAUI channel 2 serial data output, complement. SL2 as specified in IEEE 802.3ae. XTX2P D16 O CML XAUI channel 2 serial data output, true. SL2 as specified in IEEE 803.3ae. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 204 Pin Descriptions Table 314 • XAUI 10-Gigabit Data Bus Pins (continued) 6.2.3 Name Number I/O Type Description XTX3N A11 O CML XAUI channel 3 serial data output, complement. SL3 as specified in IEEE 802.3ae. XTX3P A12 O CML XAUI channel 3 serial data output, true. SL3 as specified in IEEE 802.3ae. XGMII 10-Gigabit Data Bus Interface The following table lists the pins associated with the XGMII interface. Table 315 • XGMII 10-Gigabit Data Bus Pins Name Number I/O HVREF C13 Type Description Analog HSTL I/O reference input voltage. RXC0 R6 O HSTL XGMII control bit for lane 0 (bits 0–7). RXC1 T8 O HSTL XGMII control bit for lane 1 (bits 8–15). RXC2 R11 O HSTL XGMII control bit for lane 2 (bits 16–23). RXC3 P15 O HSTL XGMII control bit for lane 3 (bits 24–31). RXCLK N9 O HSTL Double data rate reference for the transfer of RXD and RXC signals. RXD0 R4 O HSTL XGMII output (lane 0; bit 0). RXD1 T4 O HSTL XGMII output (lane 0; bit 1). RXD10 P7 O HSTL XGMII output (lane 1; bit 2). RXD11 R7 O HSTL XGMII output (lane 1; bit 3). RXD12 T7 O HSTL XGMII output (lane 1; bit 4). RXD13 N8 O HSTL XGMII output (lane 1; bit 5). RXD14 P8 O HSTL XGMII output (lane 1; bit 6). RXD15 R8 O HSTL XGMII output (lane 1; bit 7). RXD16 P9 O HSTL XGMII output (lane 2; bit 0). RXD17 R9 O HSTL XGMII output (lane 2; bit 1). RXD18 T9 O HSTL XGMII output (lane 2; bit 2). RXD19 N10 O HSTL XGMII output (lane 2; bit 3). RXD2 O HSTL XGMII output (lane 0; bit 2). RXD20 P10 O HSTL XGMII output (lane 2; bit 4). RXD21 R10 O HSTL XGMII output (lane 2; bit 5). RXD22 T10 O HSTL XGMII output (lane 2; bit 6). RXD23 P11 O HSTL XGMII output (lane 2; bit 7). RXD24 P12 O HSTL XGMII output (lane 3; bit 0). RXD25 R12 O HSTL XGMII output (lane 3; bit 1). RXD26 R13 O HSTL XGMII output (lane 3; bit 2). RXD27 T13 O HSTL XGMII output (lane 3; bit 3). RXD28 P14 O HSTL XGMII output (lane 3; bit 4). RXD29 R14 O HSTL XGMII output (lane 3; bit 5). N5 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 205 Pin Descriptions Table 315 • XGMII 10-Gigabit Data Bus Pins (continued) Name Number I/O Type Description RXD3 P5 O HSTL XGMII output (lane 0; bit 3). RXD30 R15 O HSTL XGMII output (lane 3; bit 6). RXD31 R16 O HSTL XGMII output (lane 3; bit 7). RXD4 R5 O HSTL XGMII output (lane 0; bit 4). RXD5 T5 O HSTL XGMII output (lane 0; bit 5). RXD6 N6 O HSTL XGMII output (lane 0; bit 6). RXD7 P6 O HSTL XGMII output (lane 0; bit 7). RXD8 T6 O HSTL XGMII output (lane 1; bit 0). RXD9 N7 O HSTL XGMII output (lane 1; bit 1). TXC0 B6 I HSTL XGMII control bit for lane 0 (bits 0–7). TXC1 A8 I HSTL XGMII control bit for lane 1 (bits 8–15). TXC2 B11 I HSTL XGMII control bit for lane 2 (bits 16–23). TXC3 C15 I HSTL XGMII control bit for lane 3 (bits 24–31). TXCLK D9 I HSTL Timing reference for the clocking TXD and TXC signals. Data is sampled using both positive and negative edges of TXCLK. TXD0 B4 I HSTL XGMII input (lane 0; bit 0). TXD1 A4 I HSTL XGMII input (lane 0; bit 1). TXD10 C7 I HSTL XGMII input (lane 1; bit 2). TXD11 B7 I HSTL XGMII input (lane 1; bit 3). TXD12 A7 I HSTL XGMII input (lane 1; bit 4). TXD13 D8 I HSTL XGMII input (lane 1; bit 5). TXD14 C8 I HSTL XGMII input (lane 1; bit 6). TXD15 B8 I HSTL XGMII input (lane 1; bit 7). TXD16 C9 I HSTL XGMII input (lane 2; bit 0). TXD17 B9 I HSTL XGMII input (lane 2; bit 1). TXD18 A9 I HSTL XGMII input (lane 2; bit 2). TXD19 D10 I HSTL XGMII input (lane 2; bit 3). TXD2 I HSTL XGMII input (lane 0; bit 2). TXD20 C10 I HSTL XGMII input (lane 2; bit 4). TXD21 B10 I HSTL XGMII input (lane 2; bit 5). TXD22 A10 I HSTL XGMII input (lane 2; bit 6). TXD23 C11 I HSTL XGMII input (lane 2; bit 7). TXD24 C12 I HSTL XGMII input (lane 3; bit 0). TXD25 B12 I HSTL XGMII input (lane 3; bit 1). TXD26 B13 I HSTL XGMII input (lane 3; bit 2). TXD27 A13 I HSTL XGMII input (lane 3; bit 3). TXD28 C14 I HSTL XGMII input (lane 3; bit 4). TXD29 B14 I HSTL XGMII input (lane 3; bit 5). D5 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 206 Pin Descriptions Table 315 • XGMII 10-Gigabit Data Bus Pins (continued) 6.2.4 Name Number I/O Type Description TXD3 C5 I HSTL XGMII input (lane 0; bit 3). TXD30 B15 I HSTL XGMII input (lane 3; bit 6). TXD31 B16 I HSTL XGMII input (lane 3; bit 7). TXD4 B5 I HSTL XGMII input (lane 0; bit 4). TXD5 A5 I HSTL XGMII input (lane 0; bit 5). TXD6 D6 I HSTL XGMII input (lane 0; bit 6). TXD7 C6 I HSTL XGMII input (lane 0; bit 7). TXD8 A6 I HSTL XGMII input (lane 1; bit 0). TXD9 D7 I HSTL XGMII input (lane 1; bit 1). Serial Bus Interface The following table lists the pins associated with the serial bus interface. Table 316 • Serial Bus Interface Pins Name Number I/O Type Description MDC L7 I LVTTL Management data clock. Schmitt trigger. MDIO L4 I/O LVTTL (open drain) Management data bus bidirectional I/O. Requires external pull-up resistor (nominally 4.7 kΩ). MSTCODE0 M10 I LVTTL Two-wire serial interface master code, bit 0. Can also be used as general purpose input. MSTCODE1 L10 I LVTTL Two-wire serial interface master code, bit 1 or alternate XFP alarm input, internally pulled low. Can also be used as general purpose input. MSTCODE2 L9 I LVTTL Two-wire serial interface master code, bit 2 or alternate XFP alarm input, internally pulled low. Can also be used as general purpose input. RCLKOUT H15 O LVTTL WIS overhead receive serial data clock. RDAOUT J15 O LVTTL WIS overhead port receive serial data. RFPOUT F9 O LVTTL WIS overhead port receive frame pulse. STWSCL M7 I LVTTL Two-wire serial interface clock. Requires external pull-up resistor nominally 4.7 kΩ. STWSDA M6 I/O LVTTL Serial input/output data for the two-wire serial interface. Requires external pull-up resistor, nominally 4.7 kΩ. STWWP P13 I LVTTL Two-wire serial interface write protect. 0: Enable writes to two-wire serial slave. 1: Disable writes to two-wire serial slave. Internally pulled up. TCLKOUT K12 O LVTTL WIS overhead port transmit serial data clock TDAIN L12 I LVTTL WIS overhead port transmit serial data. TFPOUT M15 O LVTTL WIS overhead port transmit frame pulse. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 207 Pin Descriptions 6.2.5 Input and Output Reference Clocks The following table lists the pins associated with reference clocks. Table 317 • Input and Output Reference Clock Pins Name Number I/O Type Description CLK64A_EN D14 I LVTTL CLK64A enable. 1: CLK64A enabled (default, internally pulled up). 0: CLK64A disabled. CLK64AN K3 O CML Selectable clock, complement. CMU divided by 64, or CMU divided by 66, or CRU divided by 64, or REFCK. Default is CMU divided by 64. Normally used for XFP reference clock. CLK64AP J3 O CML Selectable clock, true. CMU divided by 64, or CMU divided by 66, or CRU divided by 64, or REFCK. Default is CMU divided by 64. Normally used for XFP reference clock. CLK64BN J5 O CML Selectable clock, complement. CMU divided by 64, or CMU divided by 66, or CRU divided by 64, or TEST_CLK. Default is CRU divided by 64 when enabled. CLK64BP J4 O CML Selectable clock, true. CMU divided by 64, or CMU divided by 66, or CRU divided by 64, or TEST_CLK. Default is CRU divided by 64 when enabled. REFCKN B1 I LVPECL Reference clock input, complement. Terminated 50 Ω to REFTERM. REFCKP A2 I LVPECL Reference clock input, true. Terminated 50 Ω to REFTERM. REFSEL0 E7 I LVTTL REFTERM B2 I LVPECL Reference clock input termination center tap. VREFCKN F4 I LVPECL WAN VCO reference clock, complement. The 10-gigabit CMU reference clock for WANMODE. 622.08 MHz VCSO input used in conjunction with external jitter attenuation PLL. VREFCKP D4 I LVPECL WAN VCO reference clock, true. The 10-gigabit CMU reference clock for WANMODE. 622.08 MHz VCSO input used in conjunction with external jitter attenuation PLL. WREFCKN E1 I LVPECL WAN reference clock, complement. Can be 155.52 MHz or 622.08 MHz. 622.08 MHz must be used for optimum jitter generation performance. WREFCKP D1 I LVPECL WAN Reference clock, true. Can be 155.52 MHz or 622.08 MHz. 622.08 MHz must be used for optimum jitter generation performance. WAN mode WREFCLK frequency select. 0: 622.08 MHz (default, internally pulled low). 1: 155.52 MHz. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 208 Pin Descriptions 6.2.6 Status and Control The following table lists the pins that issue status or enable various modes. Table 318 • Status and Control Pins Name Number I/O Type Description AUTONEG N14 I LVTTL Auto-negotiate enable. Adjusts Tx encoder to match Rx input data. 0: Device resets to state set by EPCS pin. 1: Device will auto-negotiate enhanced or standard PCS. Internally pulled low. EPCS M13 I LVTTL Extended-PCS enable. Sets start-up transmit encoder to E-PCS. 0: Device resets to IEEE standard PCS encoding 64/66B. 1: Device resets to EPCS encoding OIF-CEI “firecode.” Internally pulled low. FORCEAIS D12 I LVTTL When asserted, forces the receive WIS into an AIS-L state. IOMODESEL M16 I LVTTL Parallel interface mode selection pin. 0: XGMII (default, internally pulled low). 1: XAUI. LASI E5 O LVTTL (open drain) Link alarm status interrupt. Logical OR for RXALARM, TXALARM and LSALARM and as enabled by register 1E×9002. Open-drain output requires external pull-up resistor. LOPC D13 I LVTTL Loss of optical carrier normally connected to XFP RX_LOS output. LP_16B E14 I LVTTL Reserved for factory test only. Internally pulled low by default. LPP_10B E13 I LVTTL Reserved for factory test only. Internally pulled low by default. LP_XAUI D15 I LVTTL Simultaneous enable for system and network loopback paths B and D, respectively. 0: Normal operation. 1: Loopbacks B and D enabled. Internally pulled low. LP_XGMII E15 I LVTTL Selects PCS and XGXS data source. 0: PCS source from XGXS, XGXS source from PCS. 1: PCS source from XGMII, XGXS source from XGMII. Internally pulled low. PMTICK F6 I LVTTL WIS block counter sampling time control. PRTAD0 N13 I LVTTL Port address bit 0 (LOW = 0). Internally pulled down. PRTAD1 N12 I LVTTL Port address bit 1 (LOW = 0). Internally pulled down. PRTAD2 N11 I LVTTL Port address bit 2 (LOW = 0). Internally pulled down. PRTAD3 M9 I LVTTL Port address bit 3 (LOW = 0). Internally pulled low PRTAD4 M8 I LVTTL Port address bit 4 (LOW = 0). Internally pulled low RESETN L8 I LVTTL Global chip reset. Active LOW. Schmitt trigger. Internally pulled up. Reset is required after power up for proper operation. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 209 Pin Descriptions Table 318 • Status and Control Pins (continued) 6.2.7 Name Number I/O Type Description RXALARM C4 O LVTTL (open drain) Logical OR for alarms in register 1E×9003 and as enabled by register 1E×9000. Open-drain output requires external pull-up resistor. RXINOFFEN M5 I LVTTL 10-gigabit PMA input receiver DC offset correction loop enable. 0: Disable DC correction loop. 1: Enable DC correction loop. Internally pulled low. SPLITLOOP E8 N I LVTTL Enables simultaneous system and network loopback paths J and K, respectively. 1: Normal operation. 0: Loopbacks J and K enabled. Internally pulled high. TXALARM E4 O LVTTL (open drain) Logical OR for alarms in register 1E×9004 and as enabled by register 1E×9001. Open-drain output requires external pull-up resistor. Alternate GPO or Tx link/activity LED driver. TXONOFFI E10 I LVTTL Transmitter data mute. When set HIGH, transmitter is enabled. When set LOW, transmitter is disabled. Internally pulled up. Internal Schmitt trigger. WANMODE F14 I LVTTL WAN mode select. 0: LAN mode (default). 1: WAN mode. This can be overridden by setting 1×E605.3=1 and 1×E605.2=0. WIS_INTA D11 O LVTTL (open drain) WIS interrupt A, part of extended WIS. Open-drain output requires external pull-up resistor. Alternate GPO or LED driver. WIS_INTB L6 O LVTTL (open drain) WIS interrupt B, part of extended WIS. Open-drain output requires external pull-up resistor. Alternate GPO or LED driver. Phase Detector Outputs The following table lists the pins associated with phase detector outputs. Table 319 • Phase Detector Output Pins Name Number I/O Type Description EXVCOUP N P2 O CML Internal phase frequency detector down, complement EXVCOUPP M3 O CML Internal phase frequency detector down, true EXVCODN N G3 O CML Internal phase frequency detector up, complement EXVCODN P M4 O CML Internal phase frequency detector up, true VMDS-10298 VSC8486-04 Datasheet Revision 4.4 210 Pin Descriptions 6.2.8 Phase-Locked Loop Filter Capacitors The following table lists the pins associated with phase-locked loop filter capacitors. Table 320 • Phase-Locked Loop Filter Capacitor Pins Name Number I/O Type Description CMUFILT E3 Analog CMU filter connect capacitor (1 µF) from this pin to ground CRUFILT L1 Analog CRU filter capacitor (1 µF) from this pin to ground 6.2.9 JTAG Interface The following table lists the pins that control the JTAG test access port. Note: The JTAG interface does not support XFI and XAUI I/O testing capability. Table 321 • JTAG Interface Pins 6.2.10 Name Number I/O Type Description TCK T3 I LVTTL JTAG test access port test clock input. Internally pulled up. TDI P4 I LVTTL JTAG test access port test data input. Internally pulled up. TDO R3 O LVTTL JTAG test access port test data output. TMS N4 I LVTTL JTAG test access port test mode select input. Internally pulled up. TRSTB T2 I LVTTL JTAG test access port test logic reset input. Internally pulled up. For TAP controller reset, this input must be pulled low. In normal operation, this pin should be connected to ground. Power and Ground The following table lists the pins used for power and ground. Table 322 • Power and Ground Pins Name Number I/O Description VDD12PCS G9 K9 Power 1.2 V power supply (PCS). VDD12RX H6 J6 Power 1.2 V power for PMA serial 10-gigabit Rx. VDD12TX G4 H4 H5 Power 1.2 V power for PMA serial 10-gigabit Tx. VDD12× G14 H14 J14 K14 L14 Power 1.2 V power supply for XAUI I/O. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 211 Pin Descriptions Table 322 • Power and Ground Pins (continued) Name Number I/O Description VDDA12 F11 F12 G11 G12 H11 H12 J11 J12 K11 L11 Power 1.2 V analog power supply for XAUI I/O. VDDHTL G8 H8 H9 J8 J9 K8 Power HSTL I/O 1.5 V power supply. Left open if XGMII is not used. VDDTTL G6 K6 Power TTL power supply (1.2 V, 1.5 V, 1.8 V, or 3.3 V). VSS A3, B3, C1, GND C2, C3, D2, D3, E2, E11, E12, F1, F2, F5, F10, F13, G1, G2, G5, G7, G10, G13, G15, H2, H3, H7, H10, H13, H16, J2, J7, J10, J13, J16, K1, K2, K4, K5, K7, K10, K13, K15, L2, L3, L5, L13, M1, M2, M11, M12, N2, P3, R1 Ground. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 212 Pin Descriptions 6.2.11 Miscellaneous Pins The following table lists the miscellaneous pins used for the VSC8486-04 device. Table 323 • Miscellaneous Name Number I/O Description NC A1, A16, E6, E9, E16, F3, F7, F8, L15, M14, N15, T1, T16 NC No connect NC R2 NC Internally connected to ground. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 213 Package Information 7 Package Information The VSC8486-04 device is available in three package types. VSC8486SN-04 is a 256-pin, flip chip ball grid array (FCBGA) with a 17 mm × 17 mm body size, 1 mm pin pitch, and 3.22 mm maximum height. The device is also available in lead-free (Pb-free) packages, VSC8486XSN-04 and VSC8486YSN-04. Note that for VSC8486XSN-04, only the second-level interconnect is lead-free. Lead-free products from Microsemi comply with the temperatures and profiles defined in the joint IPC and JEDEC standard IPC/JEDEC J-STD-020. For more information, see the IPC and JEDEC standard. This section provides the package drawings, thermal specifications, and moisture sensitivity rating for the VSC8486-04 device. 7.1 Package Drawing The following illustrations show the package drawings for the VSC8486-04 device. Each drawing contains the top view, bottom view, side view, dimensions, tolerances, and notes. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 214 Package Information Figure 72 • Package Drawing for VSC8486SN-04 and VSC8486XSN-04 Top View A1 ball pad corner Bottom View 0.20 4× 17.0 A1 ball pad corner 8 6 4 2 16 14 12 10 9 7 5 3 1 15 13 11 X A Y B C 1.00 D E F G H 17.0 J K L M N P R T (1.00) (1.00) 1.00 Side View 0.20 Z Z 0.10 Z 3.22 maximum 0.4 nominal 1.10 nominal 2.44±0.18 3. 0.50±0.10 Ø 0.25 M Ø 0.10 M Z X Y Z 4. Seating plane Notes 1. 2. 3. 4. 5. All dimensions and tolerances are in millimeters (mm). The maximum solder ball matrix size is 16 mm × 16 mm. Dimension is measured at the maximum solder ball diameter, parallel to primary datum Z. Primary datum Z and seating plane are defined by the spherical crowns of the solder balls. Radial true position is represented by typical values. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 215 Package Information Figure 73 • Package Drawing for VSC8486YSN-04 Top View A1 ball pad corner Bottom View 0.20 4× 17.0 A1 ball pad corner 8 6 4 2 16 14 12 10 9 7 5 3 1 15 13 11 X A Y B C 1.00 D E F G H 17.0 J K L M N P R T (1.00) (1.00) 1.00 Side View 0.20 Z Z 0.15 Z 3.22 maximum 0.4 nominal 1.10 nominal 2.44±0.18 3. 0.50±0.10 Ø 0.25 M Ø 0.10 M Z X Y Z 4. Seating plane Notes 1. 2. 3. 4. 5. All dimensions and tolerances are in millimeters (mm). The maximum solder ball matrix size is 16 mm × 16 mm. Dimension is measured at the maximum solder ball diameter, parallel to primary datum Z. Primary datum Z and seating plane are defined by the spherical crowns of the solder balls. Radial true position is represented by typical values. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 216 Package Information 7.1.1 Thermal Specifications Thermal specifications for this device are based on the JEDEC standard EIA/JESD51-2 and have been modeled using a four-layer test board with two signal layers, a power plane, and a ground plane (2s2p PCB). For more information, see the JEDEC standard. Table 324 • Thermal Resistances θJA (°C/W) vs. Airflow (ft/min) Part Order Number θJC θJB 0 100 200 VSC8486SN-04 0.9 12 18 16 14 VSC8486XSN-04 0.9 12 18 16 14 VSC8486YSN-04 0.9 12 18 16 14 To achieve results similar to the modeled thermal resistance measurements, the guidelines for board design described in the JEDEC standard EIA/JESD51 series must be applied. For information about specific applications, see the following: EIA/JESD51-5, Extension of Thermal Test Board Standards for Packages with Direct Thermal Attachment Mechanisms EIA/JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages EIA/JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements EIA/JESD51-10, Test Boards for Through-Hole Perimeter Leaded Package Thermal Measurements EIA/JESD51-11, Test Boards for Through-Hole Area Array Leaded Package Thermal Measurements 7.1.2 Moisture Sensitivity This device is rated moisture sensitivity level 4 as specified in the joint IPC and JEDEC standard IPC/JEDEC J-STD-020. For more information, see the IPC and JEDEC standard. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 217 Design Guidelines 8 Design Guidelines This section provides recommended guidelines for designing with the VSC8486-04 device. 8.1 Power Supply Connection In XAUI mode, the VSC8486-04 operates from a single 1.2 V power supply. If XGMII is used, a 1.5 V power supply is required for HSTL I/O only. A 3.3 V LVTTL power supply is used to provide a compatible interface to other devices using low-speed LVTTL I/O. There are no power supply sequence requirements for the VSC8486-04. Functional power groups and associated pin locations are summarized in the following table. Table 325 • Power Supply and Pin Locations Power Supply (DC) VSC8486-04 Subsystem Group Name Pin Locations Typical Group Supply Current (LAN Mode) 1.2 V 10-gigabit VCO and Rx PLL VDD12RX H6, J6 110 mA 1.2 V 10-gigabit VCO and Tx PLL VDD12TX G4, H4, H5 65 mA 1.2 V XAUI Analog and PLL VDDA12 F11, F12, G11, G12, H11, H12, J11, J12, K11, L11 70 mA 1.2 V XAUI VDD12× G14, H14, J14, K14, L14 100 mA 1.2 V PCS VDD12PCS G9, K9 220 mA 1.5 V HSTL I/O VDDHTL G8, H8, H9, J8, J9, K8 36 mA 3.3 V LVTTL I/O VDDTTL K6, G6 5 mA GND A3, B3, C1, C2, C3, D2, D3, Not applicable E2, E11, E12, F1, F2, F5, F10, F13, G1, G2, G5, G7, G10, G13, G15, H2, H3, H7, H10, H13, H16, J2, J7, J10, J13, J16, K1, K2, K4, K5, K7, K10, K13, K15, L2, L3, L5, L13, M1, M2, M11, M12, N2, P3, R1 GND The following illustration shows the recommended filter structures for the VSC8486-04 functional power supply groups. Although not illustrated, it is recommended that each power supply pin have a 0402 size, XR7 dielectric, 0.01 µF ceramic capacitor. Place these capacitors in the pin field, close to the nearest ground pin to minimize connection traces and associated inductance. It is also recommended to isolate the different 1.2 V power supplies into four different islands on the same PCB layer. VMDS-10298 VSC8486-04 Datasheet Revision 4.4 218 Design Guidelines Figure 74 • Recommended Power Supply Isolation Schematic 1.2 V Linear Voltage Regulator + 22 µF VDD12X and VDD12PCS L VDD12TX 1.0 µF L = Ferrite bead Minimum 32 Ω at 100 MHz (3 places) 1.0 µF L VD12RX 1.0 µF 1.0 µF VSC8486 L VDDA12 1.0 µF 1.0 µF + 22 µF VDDHTL 1.5 V 3.3 V + 22 µF VDDTTL Figure 75 • Split Plane Layout Example Ferrite Beads (32 Ω at 100 MHz) VDD12RX VDD12TX VDDHTL VDD12X and VDD12PCS VDDA12 VMDS-10298 VSC8486-04 Datasheet Revision 4.4 219 Design Guidelines The following diagram shows an example of the 0402 size, 0.01 µF decoupling capacitors, located in the pin field. Figure 76 • Decoupling Capacitor Placement Example VMDS-10298 VSC8486-04 Datasheet Revision 4.4 220 Ordering Information 9 Ordering Information The VSC8486-04 device is available in three package types. VSC8486SN-04 is a 256-pin, flip chip ball grid array (FCBGA) with a 17 mm × 17 mm body size, 1 mm pin pitch, and 3.22 mm maximum height. The device is also available in lead-free (Pb-free) packages, VSC8486XSN-04 and VSC8486YSN-04. Note that for VSC8486XSN-04, only the second-level interconnect is lead-free. Lead-free products from Microsemi comply with the temperatures and profiles defined in the joint IPC and JEDEC standard IPC/JEDEC J-STD-020. For more information, see the IPC and JEDEC standard. The following table lists the ordering information for the VSC8486-04 device. Table 326 • Ordering Information Part Order Number Description VSC8486SN-04 256-pin FCBGA with a 17 mm × 17 mm body size, 1 mm pin pitch, and 3.22 mm maximum height VSC8486XSN-04 Lead-free (second-level interconnect only), 256-pin FCBGA with a 17 mm × 17 mm body size, 1 mm pin pitch, and 3.22 mm maximum height VSC8486YSN-04 Lead-free, 256-pin FCBGA with a 17 mm × 17 mm body size, 1 mm pin pitch, and 3.22 mm maximum height VMDS-10298 VSC8486-04 Datasheet Revision 4.4 221
VSC8486YSN-04 价格&库存

很抱歉,暂时无法提供与“VSC8486YSN-04”相匹配的价格&库存,您可以联系我们找货

免费人工找货
VSC8486YSN-04
    •  国内价格 香港价格
    • 1+198.003771+24.04800

    库存:11