0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
VSC8522XJQ-04

VSC8522XJQ-04

  • 厂商:

    ACTEL(微芯科技)

  • 封装:

    TQFP302

  • 描述:

    IC TELECOM INTERFACE 302TQFP

  • 数据手册
  • 价格&库存
VSC8522XJQ-04 数据手册
VSC8522-02 Datasheet 12-Port 10/100/1000BASE-T PHY with QSGMII MAC Microsemi Headquarters One Enterprise, Aliso Viejo, CA 92656 USA Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 Email: sales.support@microsemi.com www.microsemi.com ©2018 Microsemi, a wholly owned subsidiary of Microchip Technology Inc. All rights reserved. Microsemi and the Microsemi logo are registered trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners. Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer’s responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided “as is, where is” and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice. About Microsemi Microsemi, a wholly owned subsidiary of Microchip Technology Inc. (Nasdaq: MCHP), offers a comprehensive portfolio of semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Learn more at www.microsemi.com. VMDS-10397. 4.2 2/19 Contents 1 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 1.2 1.3 1.4 Revision 4.2 Revision 4.1 Revision 4.0 Revision 2.0 ....................................................................... ....................................................................... ....................................................................... ....................................................................... 1 1 1 1 2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.1 Register and Bit Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3.1 3.2 Key Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 4 Functional Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12 Operating Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 SerDes MAC Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4.2.1 QSGMII MAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 PHY Addressing and Port Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4.3.1 PHY Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4.3.2 SerDes Port Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Cat5 Twisted Pair Media Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4.4.1 Voltage-Mode Line Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4.4.2 Cat5 Autonegotiation and Parallel Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 4.4.3 1000BASE-T Forced Mode Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 4.4.4 Automatic Crossover and Polarity Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 4.4.5 Manual HP Auto-MDIX Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 4.4.6 Link Speed Downshift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 4.4.7 Energy Efficient Ethernet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Reference Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4.5.1 Configuring the REFCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4.5.2 Single-Ended REFCLK Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4.5.3 Differential REFCLK Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Ethernet Inline Powered Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 IEEE 802.3af PoE Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 ActiPHY Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4.8.1 Low Power State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.8.2 Link Partner Wake-Up State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.8.3 Normal Operating State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Serial Management Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.9.1 SMI Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.9.2 SMI Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 LED Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.10.1 LED Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.10.2 LED Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.10.3 Enhanced Serial LED Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 GPIO Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Testing Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.12.1 Ethernet Packet Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.12.2 CRC Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.12.3 Far-End Loopback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 VMDS-10397 VSC8522-02 Datasheet Revision 4.2 iii 4.13 4.12.4 Near-End Loopback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.12.5 Connector Loopback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.12.6 SerDes Loopbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.12.7 VeriPHY Cable Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.12.8 JTAG Boundary Scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.12.9 JTAG Instruction Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.12.10 Boundary Scan Register Cell Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.12.11 JTAG Boundary Scan Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 19 19 22 22 22 24 24 24 5 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.1 5.2 5.3 5.4 5.5 IEEE Standard and Main Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1.1 Mode Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1.2 Mode Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1.3 Device Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1.4 Autonegotiation Advertisement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1.5 Link Partner Autonegotiation Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1.6 Autonegotiation Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1.7 Transmit Autonegotiation Next Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1.8 Autonegotiation Link Partner Next Page Receive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1.9 1000BASE-T Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1.10 1000BASE-T Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1.11 MMD Access Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1.12 MMD Address or Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1.13 1000BASE-T Status Extension 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1.14 100BASE-TX Status Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1.15 1000BASE-T Status Extension 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1.16 Bypass Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1.17 Error Counter 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1.18 Error Counter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1.19 Error Counter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1.20 Extended Control and Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Extended PHY Control 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2.1 Extended PHY Control 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2.2 Interrupt Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2.3 Interrupt Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2.4 Device Auxiliary Control and Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2.5 LED Mode Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2.6 LED Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2.7 Extended Page Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Extended Page 1 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3.1 Cu Media CRC Good Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3.2 Extended Mode Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3.3 ActiPHY Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3.4 PoE and Miscellaneous Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3.5 Ethernet Packet Generator Control 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3.6 Ethernet Packet Generator Control 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Extended Page 2 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.4.1 Cu PMD Transmit Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.4.2 EEE Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Extended Page 3 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5.1 MAC SerDes PCS Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5.2 MAC SerDes PCS Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5.3 MAC SerDes Clause 37 Advertised Ability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5.4 MAC SerDes Clause 37 Link Partner Ability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5.5 MAC SerDes Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5.6 Media SerDes Transmit Good Packet Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VMDS-10397 VSC8522-02 Datasheet Revision 4.2 25 27 28 28 29 29 30 30 30 31 31 32 32 32 33 33 34 35 35 35 35 36 37 37 38 39 40 40 41 41 42 42 43 44 44 45 45 45 46 47 47 48 49 49 49 50 iv 5.6 5.7 5.5.7 Media SerDes Transmit CRC Error Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . General Purpose Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.6.1 COMA_MODE Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.6.2 GPIO Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.6.3 GPIO Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.6.4 GPIO Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.6.5 Global Command and SerDes Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.6.6 MAC Mode and Fast Link Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.6.7 Enhanced LED Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.6.8 Global Interrupt Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Clause 45 Registers to Support Energy Efficient Ethernet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.7.1 PCS Status 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.7.2 EEE Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.7.3 EEE Wake Error Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.7.4 EEE Advertisement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.7.5 EEE Link Partner Advertisement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 50 51 51 51 51 52 52 53 53 54 55 55 55 56 56 6 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.1 6.2 6.3 6.4 DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.1.1 VDD_IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.1.2 Internal Pull-Up or Pull-Down Resistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.1.3 Reference Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 6.1.4 Enhanced SerDes Interface (QSGMII) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 6.1.5 Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 6.2.1 Reference Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 6.2.2 Enhanced SerDes Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6.2.3 Enhanced SerDes Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 6.2.4 Enhanced Serial LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 6.2.5 Enhanced SerDes Driver Jitter Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 6.2.6 Enhanced SerDes Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 6.2.7 Enhanced SerDes Receiver Jitter Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 6.2.8 JTAG Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 6.2.9 Serial Management Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 6.2.10 Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 6.2.11 Serial LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 6.2.12 Power Supply Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Stress Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 7 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 7.1 7.2 7.3 7.4 Pin Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pins by Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.2.1 JTAG Interface Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.2.2 MAC SerDes/QSGMII Interface Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.2.3 Miscellaneous Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.2.4 Multipurpose Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.2.5 Power Supply Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.2.6 Reserved Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.2.7 Serial Management Interface Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.2.8 Twisted Pair Interface Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pins by Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pins by Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 69 69 69 70 70 71 71 72 72 74 78 8 Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 8.1 Package Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 VMDS-10397 VSC8522-02 Datasheet Revision 4.2 v 8.2 8.3 Thermal Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Moisture Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 9 Design Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 9.1 9.2 9.3 9.4 9.5 9.6 9.7 10BASE-T mode unable to re-establish link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Software script for link performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10BASE-T signal amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Clause 45 register 7.60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Clause 45 register 3.22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Clause 45 register 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Clause 45 register address post-increment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 85 85 85 85 85 85 10 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 VMDS-10397 VSC8522-02 Datasheet Revision 4.2 vi Figures Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16 Figure 17 Figure 18 Figure 19 Figure 20 Figure 21 Figure 22 Figure 23 Figure 24 Figure 25 Figure 26 Figure 27 Figure 28 Figure 29 Figure 30 QSGMII Application Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 QSGMII MAC Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Cat5 Media Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Low Power Idle Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.5 V CMOS Single-Ended REFCLK Input Resistor Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.3 V CMOS Single-Ended REFCLK Input Resistor Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 AC-Coupling Required for REFCLK Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Inline Powered Ethernet Switch Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 ActiPHY State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 SMI Read Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 SMI Write Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 MDINT Configured as an Open-Drain (Active-Low) Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 MDINT Configured as an Open-Source (Active-High) Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Far-End Loopback Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Near-End Loopback Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Connector Loopback Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Data Loops of the SerDes Macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Test Access Port and Boundary Scan Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Register Space Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 QSGMII DC Transmit Test Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 QSGMII Transient Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Enhanced Serial LED Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 JTAG Interface Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Test Circuit for TDO Disable Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 SMI Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Serial LED Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Pin Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Package Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 VMDS-10397 VSC8522-02 Datasheet Revision 4.2 vii Tables Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 Table 8 Table 9 Table 10 Table 11 Table 12 Table 13 Table 14 Table 15 Table 16 Table 17 Table 18 Table 19 Table 20 Table 21 Table 22 Table 23 Table 24 Table 25 Table 26 Table 27 Table 28 Table 29 Table 30 Table 31 Table 32 Table 33 Table 34 Table 35 Table 36 Table 37 Table 38 Table 39 Table 40 Table 41 Table 42 Table 43 Table 44 Table 45 Table 46 Table 47 Table 48 Table 49 Table 50 Table 51 Table 52 Table 53 Table 54 PHY Address Range Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 SerDes Port Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Supported MDI Pair Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 REFCLK Frequency Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 LED Mode and Function Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 IDCODE JTAG Device Identification Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 USERCODE JTAG Device Identification Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 JTAG Interface Instruction Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 IEEE 802.3 Standard Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Main Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Mode Control, Address 0 (0x00) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Mode Status, Address 1 (0x01) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Identifier 1, Address 2 (0x02) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Identifier 2, Address 3 (0x03) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Device Autonegotiation Advertisement, Address 4 (0x04) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Autonegotiation Link Partner Ability, Address 5 (0x05) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Autonegotiation Expansion, Address 6 (0x06) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Autonegotiation Next Page Transmit, Address 7 (0x07) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Autonegotiation LP Next Page Receive, Address 8 (0x08) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 1000BASE-T Control, Address 9 (0x09) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 1000BASE-T Status, Address 10 (0x0A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 MMD EEE Access, Address 13 (0x0D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 MMD Address or Data Register, Address 14 (0x0E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 1000BASE-T Status Extension 1, Address 15 (0x0F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 100BASE-TX Status Extension, Address 16 (0x10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 1000BASE-T Status Extension 2, Address 17 (0x11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Bypass Control, Address 18 (0x12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Extended Control and Status, Address 19 (0x13) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Extended Control and Status, Address 20 (0x14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Extended Control and Status, Address 21 (0x15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Extended Control and Status, Address 22 (0x16) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Extended PHY Control 1, Address 23 (0x17) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Extended PHY Control 2, Address 24 (0x18) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Interrupt Mask, Address 25 (0x19) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Interrupt Status, Address 26 (0x1A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Auxiliary Control and Status, Address 28 (0x1C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 LED Mode Select, Address 29 (0x1D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 LED Behavior, Address 30 (0x1E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Extended/GPIO Page Access, Address 31 (0x1F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Extended Registers Page 1 Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Cu Media CRC Good Counter, Address 18E1 (0x12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Extended Mode Control, Address 19E1 (0x13) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Extended PHY Control 3, Address 20E1 (0x14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Extended PHY Control 4, Address 23E1 (0x17) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 EPG Control 1, Address 29E1 (0x1D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 EPG Control 2, Address 30E1 (0x1E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Extended Registers Page 2 Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Cu PMD Transmit Control, Address 16E2 (0x10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 EEE Control, Address 17E2 (0x11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Extended Registers Page 3 Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 MAC SerDes PCS Control, Address 16E3 (0x10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 MAC SerDes PCS Status, Address 17E3 (0x11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 MAC SerDes Cl37 Advertised Ability, Address 18E3 (0x12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 MAC SerDes Cl37 LP Ability, Address 19E3 (0x13) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 VMDS-10397 VSC8522-02 Datasheet Revision 4.2 viii Table 55 Table 56 Table 57 Table 58 Table 59 Table 60 Table 61 Table 62 Table 63 Table 64 Table 65 Table 66 Table 67 Table 68 Table 69 Table 70 Table 71 Table 72 Table 73 Table 74 Table 75 Table 76 Table 77 Table 78 Table 79 Table 80 Table 81 Table 82 Table 83 Table 84 Table 85 Table 86 Table 87 Table 88 Table 89 Table 90 Table 91 Table 92 Table 93 Table 94 Table 95 Table 96 Table 97 Table 98 Table 99 Table 100 Table 101 MAC SerDes Status, Address 20E3 (0x14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Media SerDes Tx Good Packet Counter, Address 21E3 (0x15) . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Media SerDes Tx CRC Error Counter, Address 22E3 (0x16) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 General Purpose Registers Page Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 COMA_MODE Control, Address 14G (0x0E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 GPIO Input, Address 15G (0x0F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 GPIO Output, Address 16G (0x10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 GPIO Input/Output Configuration, Address 17G (0x11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Global Command and SerDes Configuration, Address 18G (0x12) . . . . . . . . . . . . . . . . . . . . . . . . 52 MAC Mode and Fast Link Configuration, Address 19G (0x13) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Enhanced LED Control, Address 25G (0x19) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Global Interrupt Status, Address 29G (0x1D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Clause 45 Registers Page Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 PCS Status 1, Address 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 EEE Capability, Address 3.20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 EEE Wake Error Counter, Address 3.22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 EEE Advertisement, Address 7.60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 EEE Advertisement, Address 7.61 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 VDD_IO DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Internal Pull-Up or Pull-Down Resistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Reference Clock DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Enhanced SerDes Driver DC Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Enhanced SerDes Receiver DC Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 QSGMII to 1000BASE-T Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Reference Clock AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Enhanced SerDes Outputs AC Specifications, QSGMII Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Enhanced Serial LEDs AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Enhanced SerDes Driver Jitter Characteristics, QSGMII Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Enhanced SerDes Inputs AC Specifications, QSGMII Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Enhanced SerDes Receiver Jitter Tolerance, QSGMII Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 JTAG Interface AC Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 SMI Interface AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 NRESET Timing Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Serial LEDs AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Stress Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Pin Type Symbol Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 JTAG Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 MAC SerDes/QSGMII Interface Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Miscellaneous Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Multipurpose Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Power Supply Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Reserved Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Serial Management Interface Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Twisted Pair Interface Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Thermal Resistances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 VMDS-10397 VSC8522-02 Datasheet Revision 4.2 ix Revision History 1 Revision History The revision history describes the changes that were implemented in the document. The changes are listed by revision, starting with the most current publication. 1.1 Revision 4.2 Revision 4.2 of this datasheet was published in February 2019. In revision 4.2, VeriPHY descriptions were updated and VeriPHY register information was deleted. For functional details of the VeriPHY suite and operating instructions, see the ENT-AN0125 PHY, Integrated PHY-Switch VeriPHY - Cable Diagnostics application note. 1.2 Revision 4.1 Revision 4.1 of this datasheet was published in May 2014. The following is a summary of the changes made to the datasheet: • • • • • • 1.3 Information about the device SerDes MAC and the device media interface was updated. Neither the integrated SerDes media access controller (MAC) or the enhanced SerDes media interface of the device include internal AC-decoupling capacitors; external capacitors must be used. The functional block diagram of the device was changed to show the correct direction of the SERDES_E(3:1)_TXN, the SERDES_E(3:1)_RXP, and the SERDES_E(3:1)_RXN signals. Information about AC-coupling, which is required when using a differential reference clock (REFCLK) input, was added. Information about the typical input impedance for a differential REFCLK signal (RI) was added. The order of the information in the Pins by Function section was changed to match the alphabetical sort in the Pins spreadsheet attached to this document. References to SFP functionality, Basic Serial LED functionality, and Parallel LED signal detection (part of the Enhanced LED Control) were removed from this document. These functions are not supported in this device. The Functional Group of pins 40, 41, 42, 43, 44, 45, 47, 49, 50, A14, and A15 were changed from Multipurpose to Miscellaneous. Revision 4.0 Revision 4.0 of this datasheet was published in December 2012. In revision 4.0 of the document, errata items, which were previously published in the VSC8522-02 Errata revision 1.0 as open issues, are now reconciled in the datasheet. Now that the information is available in the datasheet, the previously published errata document no longer applies, and it has been removed from the Microsemi Web site. 1.4 Revision 2.0 • Revision 2.0 of this datasheet was published in September 2012. This was the first publication of the document. VMDS-10397 VSC8522-02 Datasheet Revision 4.2 1 Introduction 2 Introduction This document consists of descriptions and specifications for both functional and physical aspects of the VSC8522-02 12-port 10/100/1000BASE-T PHY device for the Ethernet market segment. In addition to datasheets, the Microsemi Web site offers an extensive library of documentation, support files, and application materials specific to each device. The address of the Microsemi Web site is www.microsemi.com. 2.1 Register and Bit Conventions This document refers to registers by their address and bit number in decimal notation. A range of bits is indicated with a colon. For example, a reference to address 26, bits 15 through 14 is shown as 26.15:14. A register with an E and a number attached (example 27E1) means it is a register contained within extended register page number 1. A register with a G attached (example 13G) means it is a GPIO page register. Bit numbering follows the IEEE standard with bit 15 being the most significant bit and bit 0 being the least significant bit. VMDS-10397 VSC8522-02 Datasheet Revision 4.2 2 Overview 3 Overview The VSC8522-02 is a low-power 12-port Gigabit Ethernet transceiver. It has a low electromagnetic interference (EMI) line driver and integrated line side termination resistors that conserve both power and printed circuit board (PCB) space. Microsemi’s mixed signal and digital signal processing (DSP) architecture is a key operational feature of the VSC8522-02, assuring robust performance even under less-than-favorable environmental conditions. It supports both half-duplex and full duplex 10BASE-T, 100BASE-TX, and 1000BASE-T communication speeds over Category 5 (Cat5) unshielded twisted pair (UTP) cable at distances greater than 100 m, displaying excellent tolerance to NEXT, FEXT, echo, and other types of ambient environmental and system electronic noise. The following illustration shows a high-level, general view of a typical VSC8522-02 application. Figure 1 • QSGMII Application Diagram QSGMII 1.0 V 2.5 V QSGMII Ethernet MAC QSGMII Ethernet MAC VSC8522 12 ports copper media QSGMII MAC interface 12× RJ-45 and Magnetics QSGMII Ethernet MAC 3.1 Key Features This section lists the main features and benefits of the VSC8522-02 device. Low Power • • • • Low power consumption of approximately 425 mW per port in 1000BASE-T mode, 200 mW per port in 100BASE-TX mode, and 225 mW per port in 10BASE-T mode ActiPHY™ link down power savings PerfectReach™ smart cable reach algorithm IEEE 802.3az Energy Efficient Ethernet idle power savings Wide Range of Support • • • • • Compliant with IEEE 802.3 (10BASE-T, 100BASE-TX, and 1000BASE-T) specifications Support for >16 kB jumbo frames in all speeds with programmable synchronization FIFOs Supports Cisco QSGMII v1.3, IEEE 1149.1 JTAG boundary scan, and IEEE 1149.6 AC-JTAG Support for applications that need to meet 2 kV CDE, IEC 61000-4-2 at 8 kV Available in a low-cost, 302-pin TQFP package with a 24 mm × 24 mm body size for low-power, fanless applications Flexibility • • • • 3.2 VeriPHY® cable diagnostics suite provides extensive network cable operating conditions and status Patented, low EMI line driver with integrated line side termination resistors Serial LED interface option Extensive test features including near end, far end, copper media connector, SerDes MAC loopback, and Ethernet packet generator with CRC error counter to decrease time-to-market Block Diagram The following illustration shows the primary functional blocks of the VSC8522-02 device. VMDS-10397 VSC8522-02 Datasheet Revision 4.2 3 Overview SERDES_E[3:1]_TXP SERDES_E[3:1]_TXN SERDES_E[3:1]_RXP SERDES_E[3:1]_RXN COMA_MODE NRESET MDC MDIO GPIO_30 Auto-Negotiation (SGMII, FIFOs) Block Diagram Serial MAC Interface (SerDes) Figure 2 • 10/100/ 1000BASE-T PCS Management and Control Interface (MIIM) 10/100/ 1000BASE-T PMA MDI Twisted Pair Interface PLL and Analog JTAG LED Interface P[11:0]_D0P P[11:0]_D0N P[11:0]_D1P P[11:0]_D1N P[11:0]_D2P P[11:0]_D2N P[11:0]_D3P P[11:0]_D3N REFCLK_P REFCLK_N REFCLK_SEL[2:0] REF_FILT_[2:0] REF_REXT_[2:0] SERDES_REXT_[1:0] GPIO_[8:5] GPIO_[3:0] JTAG_TRST JTAG_TMS JTAG_CLK JTAG_DO JTAG_DI VMDS-10397 VSC8522-02 Datasheet Revision 4.2 4 Functional Descriptions 4 Functional Descriptions This section provides detailed information about the functionality of the VSC8522-02 device, available configurations, operational features, and testing functionality. It includes descriptions of the various device interfaces and their configuration. With the information in this section, the device setup parameters can be determined for configuring the VSC8522-02 part for use in a particular application. 4.1 Operating Mode The VSC8522-02 supports 10/100/1000BASE-T media through the QSGMII MAC-to-Cat5 Link Partner operating mode (ports 8-11). For more information, see Figure 1, page 3. 4.2 SerDes MAC Interface The VSC8522-02 SerDes MAC interface performs data serialization and deserialization functions using an integrated SerDes block. The interface operates in QSGMII mode. The Enhanced SerDes block includes an integrated termination resistor. Register 19G is a global register and only needs to be set once to configure the device. The other register bits are configured on a per-port basis and the operation either needs to be repeated for each port, or a broadcast write needs to be used by setting register 22, bit 0 to configure all the ports simultaneously. 4.2.1 QSGMII MAC The VSC8522-02 device supports a QSGMII MAC to convey four ports of network data and port speed between 10BASE-T, 100BASE-T, and 1000BASE-T data rates and operates in both half-duplex and fullduplex at all port speeds. To configure the device for QSGMII MAC mode, set register 19G, bits 15:14 = 00 or 10. This device also supports SGMII MAC-side autonegotiation on each individual port and is enabled through register 16E3, bit 7, of that port. Figure 3 • QSGMII MAC Interface TxP 0.1 µF SERDES_E_RxP PHY Port_n TxN 0.1 µF SERDES_E_RxN 0.1 µF SERDES_E_TxP QSGMII MAC RxP 100 Ω RxN 4.3 0.1 µF QSGMII Mux 100 Ω 100 Ω PHY Port_n-1 PHY Port_n-2 PHY Port_n-3 SERDES_E_TxN PHY Addressing and Port Mapping This section contains information about PHY addressing and port mapping. 4.3.1 PHY Addressing The VSC8522-02 includes two external PHY address pins to allow control of multiple PHY devices on a system board that are sharing a common management bus. Based on the settings of these two address VMDS-10397 VSC8522-02 Datasheet Revision 4.2 5 Functional Descriptions control pins, the internal PHYs in the VSC8522-02 device take on the address ranges as shown in the following table. Table 1 • 4.3.2 PHY Address Range Selection PHYADD4 PHYADD3 Internal PHY Addresses 0 0 0–11 0 1 12–23 1 0 4–15 1 1 20–31 SerDes Port Mapping The VSC8522-02 includes three 5 GHz enhanced SerDes macros. The following table shows the SerDes port mapping in QSGMII to CAT5 mode of operation. Table 2 • SerDes Port Mapping Interface Pins Mode SERDES_E1_TXP, SERDES_E1_TXN QSGMII0 SERDES_E1_RXP, SERDES_E1_RXN QSGMII0 SERDES_E2_TXP, SERDES_E2_TXN QSGMII1 SERDES_E2_RXP, SERDES_E2_RXN QSGMII1 SERDES_E3_TXP, SERDES_E3_TXN QSGMII2 SERDES_E3_RXP, SERDES_E3_RXN QSGMII2 4.4 Cat5 Twisted Pair Media Interface The VSC8522-02 twisted pair interface is compliant with IEEE 802.3-2008 and the IEEE 802.3az standard for Energy Efficient Ethernet. 4.4.1 Voltage-Mode Line Driver Unlike many other gigabit PHYs, the VSC8522-02 uses a patented voltage-mode line driver that allows it to fully integrate the series termination resistors, which are required to connect the PHY’s Cat5 interface to an external 1:1 transformer. Also, the interface does not require the user to place an external voltage on the center tap of the magnetic. The following illustration shows the connections. VMDS-10397 VSC8522-02 Datasheet Revision 4.2 6 Functional Descriptions Figure 4 • Cat5 Media Interface PHY Port_n RJ-45 Transformer TXVPA_n 1 A+ TXVNA_n 2 A– TXVPB_n 3 B+ 6 B– 4 C+ 5 C– 7 D+ 8 D– 0.1 µF 0.1 µF TXVNB_n TXVPC_n 0.1 µF TXVNC_n TXVPD_n 0.1 µF TXVND_n 75 Ω 75 Ω 1000 pF, 2 kV 75 Ω 75 Ω 4.4.2 Cat5 Autonegotiation and Parallel Detection The VSC8522-02 supports twisted pair autonegotiation, as defined by IEEE 802.3-2008 Clause 28 and IEEE 802.3az. The autonegotiation process evaluates the advertised capabilities of the local PHY and its link partner to determine the best possible operating mode. In particular, autonegotiation can determine speed, duplex configuration, and master or slave operating modes for 1000BASE-TX. Autonegotiation also enables a connected MAC to communicate with its link partner MAC through the VSC8522-02 using optional next pages, which set attributes that may not otherwise be defined by the IEEE standard. If the Cat5 link partner does not support autonegotiation, the VSC8522-02 automatically uses parallel detection to select the appropriate link speed. Autonegotiation is disabled by clearing register 0, bit 12. If autonegotiation is disabled, the state of register bits 0.6, 0.13, and 0.8 determine the device operating speed and duplex mode. Note that while 10BASE-T and 100BASE-T do not require autonegotiation, Clause 40 has defined 1000BASE-T to require autonegotiation. 4.4.3 1000BASE-T Forced Mode Support VSC8522-02 provides support for a 1000BASE-T forced test mode. In this mode, the PHY can be forced into 1000BASE-T mode and does not require manual setting of master/slave at the two ends of the link. This mode is for test purposes only, and should not be used in normal operation. To configure a PHY in this mode, set register 17E2, bit 5 = 1 and register 0, bits 6 and 13 = 10. 4.4.4 Automatic Crossover and Polarity Detection For trouble-free configuration and management of Ethernet links, the VSC8522-02 includes a robust automatic crossover detection feature for all three speeds on the twisted-pair interface (10BASE-T, 100BASE-T, and 1000BASE-T). Known as HP Auto-MDIX, the function is fully compliant with Clause 40 of IEEE 802.3-2008. VMDS-10397 VSC8522-02 Datasheet Revision 4.2 7 Functional Descriptions Additionally, the device detects and corrects polarity errors on all MDI pairs — a useful capability that exceeds the requirements of the standard. Both HP Auto-MDIX detection and polarity correction are enabled in the device by default. Default settings can be changed using device register bits 18.5:4. Status bits for each of these functions are located in register 28. Note: The VSC8522-02 can be configured to perform HP Auto-MDIX, even when autonegotiation is disabled and the link is forced into 10/100 speeds. To enable this feature, set register 18.7 to 0. To disable the feature, set register 0.12 to 0. The HP Auto-MDIX algorithm successfully detects, corrects, and operates with any of the MDI wiring pair combinations listed in the following table. Table 3 • Supported MDI Pair Combinations 1, 2 3, 6 4, 5 7, 8 Mode A B C D Normal MDI B A D C Normal MDI-X A B D C Normal MDI with pair swap on C and D pair B A C D Normal MDI-X with pair swap on C and D pair 4.4.5 Manual HP Auto-MDIX Setting As an alternative to HP Auto-MDIX detection, the PHY can be forced to be MDI or MDI-X using register 19E1, bits 3:2. Setting these bits to 10 forces MDI and setting 11 forces MDI-X. Leaving the bits 00 enables the HP Auto-MDIX setting to be based on register 18, bits 7 and 5. 4.4.6 Link Speed Downshift For operation in cabling environments that are incompatible with 1000BASE-T, the VSC8522-02 provides an automatic link speed downshift option. When enabled, the device automatically changes its 1000BASE-T autonegotiation advertisement to the next slower speed after a set number of failed attempts at 1000BASE-T. No reset is required to get out of this state if a subsequent link partner with 1000BASE-T support is connected. This feature is useful in setting up in networks using older cable installations that include only pairs A and B, and not pairs C and D. To configure and monitor link speed downshifting, set register 20E1, bits 4:1. For more information, see Table 43, page 43. 4.4.7 Energy Efficient Ethernet The VSC8522-02 supports the IEEE 802.3az Energy Efficient Ethernet standard that is currently in development. This new standard provides a method for reducing power consumption on an Ethernet link during times of low utilization. It uses low power idles (LPI) to achieve this objective. Figure 5 • Low Power Idle Operation Active Low-Power Idle Active Wake Tq Quiet Refresh Ts Refresh Sleep Active Quiet Active Quiet Tr Using LPI, the usage model for the link is to transmit data as fast as possible and then return to a low power idle state. Energy is saved on the link by cycling between active and low power idle states. During VMDS-10397 VSC8522-02 Datasheet Revision 4.2 8 Functional Descriptions LPI, power is reduced by turning off unused circuits and using this method, energy use scales with bandwidth utilization. The VSC8522-02 uses LPI to optimize power dissipation in 100BASE-TX and 1000BASE-T modes of operation. In addition, the IEEE 802.3az standard defines a 10BASE-Te mode that reduces transmit signal amplitude from 5 Vp-p to ~3.3 Vp-p. This mode reduces power consumption in 10 Mbps link speed and fully interoperates with legacy 10BASE-T compliant PHYs over 100 m Cat5 cable or better. To configure the VSC8522-02 in 10BASE-Te mode, set register 17E2.15 to 1 for each port. Additional Energy Efficient Ethernet features are controlled through Clause 45 registers. For more information, see Clause 45 Registers to Support Energy Efficient Ethernet, page 54. 4.5 Reference Clock The device reference clock can be a 25 MHz, 125 MHz, or 156.25 MHz clock signal. It can be either a differential reference clock or a single-ended clock. However, 25 MHz single-ended operation is not recommended when using QSGMII due to the jitter specification requirements of this interface. For more information, see Reference Clock, page 58. 4.5.1 Configuring the REFCLK There are three REFCLK_SEL pins to configure the REFCLK speed. The following table shows the functionality and associated REFCLK frequency. Table 4 • REFCLK Frequency Selection REFCLK_SEL2 REFCLK_SEL1 REFCLK_SEL0 REFCLK Frequency 4.5.2 0 0 0 125 MHz 0 0 1 156.25 MHz 1 0 0 25 MHz Single-Ended REFCLK Input To use a single-ended REFCLK, an external resistor network is required. The purpose of the network is to limit the amplitude and to adjust the center of the swing. The configurations for a single-ended REFCLK are shown in the following illustrations. Figure 6 • 2.5 V CMOS Single-Ended REFCLK Input Resistor Network 2.5 V CMOS 220 Ω 910 Ω REFCLK_P VDD_A REFCLK_N VSS Figure 7 • 3.3 V CMOS Single-Ended REFCLK Input Resistor Network 3.3 V CMOS 270 Ω 430 Ω REFCLK_P VDD_A REFCLK_N VSS VMDS-10397 VSC8522-02 Datasheet Revision 4.2 9 Functional Descriptions 4.5.3 Differential REFCLK Input AC-coupling is required when using a differential REFCLK. Differential clocks must be capacitively coupled and LVDS-compliant. The following illustration shows the configuration. Figure 8 • AC-Coupling Required for REFCLK Input REFCLK_P PHY Equivalent Termination Circuit 0.1 µF 50 Ω 50 Ω REFCLK_N VTT (Internal Voltage) 0.1 µF 4.6 Ethernet Inline Powered Devices The VSC8522-02 can detect legacy inline powered devices in Ethernet network applications. Inline powered detection capability is useful in systems that enable IP phones and other devices (such as wireless access points) to receive power directly from their Ethernet cable, similar to office digital phones receiving power from a private branch exchange (PBX) office switch over telephone cabling. This type of setup eliminates the need for an external power supply and enables the inline powered device to remain active during a power outage, assuming that the Ethernet switch is connected to an uninterrupted power supply, battery, back-up power generator, or other uninterruptable power source. For more information about legacy inline powered device detection, visit the Cisco Web site at www.cisco.com. The following illustration shows an example of an inline powered Ethernet switch application. VMDS-10397 VSC8522-02 Datasheet Revision 4.2 10 Functional Descriptions Figure 9 • Inline Powered Ethernet Switch Diagram Gigabit Switch Processor Control SMI QSGMII Interface PHY_port0 PHY_port1 PHY_portn Transformer Transformer Transformer RJ-45 I/F RJ-45 I/F RJ-45 I/F Link Partner Link Partner Inline, Power-Over-Ethernet (PoE) Power Supply Cat5 Link Partner The following procedure describes the process that an Ethernet switch must perform to process inline power requests made by a link partner (LP) that is, in turn, capable of receiving inline power: 1. 2. 3. 4. 5. 6. Enable the inline powered device detection mode on each VSC8522-02 PHY using its serial management interface. Set register bit 23E1.10 to 1. Ensure that the VSC8522-02 autonegotiation enable bit (register 0.12) is also set to 1. In the application, the device sends a special fast link pulse (FLP) signal to the LP. Reading register bit 23E1.9:8 returns 00 during the search for devices that require power over Ethernet (PoE). The VSC8522-02 PHY monitors its inputs for the FLP signal looped back by the LP. An LP capable of receiving PoE loops back the FLP pulses when the LP is in a powered down state. This is reported when VSC8522-02 register bit 23E1.9:8 reads back 01. It can also be verified as an inline power detection interrupt by reading VSC8522-02 register bit 26.9, which should be a 1, and which is subsequently cleared and the interrupt de-asserted after the read. If an LP device does not loop back the FLP after a specific time, VSC8522-02 register bit 23E1.9:8 automatically resets to 10. If the VSC8522-02 PHY reports that the LP requires PoE, the Ethernet switch must enable inline power on this port, externally of the PHY. The PHY automatically disables inline powered device detection if the VSC8522-02 register bits 23E1.9:8 automatically resets to 10, and then automatically changes to its normal autonegotiation process. A link is then auto-negotiated and established when the link status bit is set (register bit 1.2 is set to 1). In the event of a link failure (indicated when VSC8522-02 register bit 1.2 reads 0), the inline power should be disabled to the inline powered device external to the PHY. The VSC8522-02 PHY disables its normal autonegotiation process and re-enables its inline powered device detection mode. VMDS-10397 VSC8522-02 Datasheet Revision 4.2 11 Functional Descriptions 4.7 IEEE 802.3af PoE Support The VSC8522-02 is compatible with switch designs that are intended for use in systems that supply power to data terminal equipment (DTE) by means of the MDI or twisted pair cable, as described in IEEE 802.3af Clause 33. 4.8 ActiPHY Power Management In addition to the IEEE-specified power-down control bit (device register bit 0.11), the device also includes an ActiPHY power management mode for each PHY. This mode enables support for powersensitive applications. It utilizes a signal-detect function that monitors the media interface for the presence of a link to determine when to automatically power-down the PHY. The PHY wakes up at a programmable interval and attempts to wake up the link partner PHY by sending a burst of FLP over copper media. The ActiPHY power management mode in the VSC8522-02 is enabled on a per-port basis during normal operation at any time by setting register bit 28.6 to 1. The following operating states are possible when ActiPHY mode is enabled: • • • Low power state LP wake-up state Normal operating state (link-up state) The VSC8522-02 switches between the low power state and LP wake-up state at a programmable rate (the default is two seconds) until signal energy has been detected on the media interface pins. When signal energy is detected, the PHY enters the normal operating state. If the PHY is in its normal operating state and the link fails, the PHY returns to the low power state after the expiration of the link status timeout timer. After reset, the PHY enters the low power state. When autonegotiation is enabled in the PHY, the ActiPHY state machine operates as described. If autonegotiation is disabled and the link is forced to use 10BASE-T or 100BASE-TX modes while the PHY is in its low power state, the PHY continues to transition between the low power and LP wake-up states until signal energy is detected on the media pins. At that time, the PHY transitions to the normal operating state and stays in that state even when the link is dropped. If autonegotiation is disabled while the PHY is in the normal operation state, the PHY stays in that state when the link is dropped and does not transition back to the low power state. The following illustration shows the relationship between ActiPHY states and timers. Figure 10 • ActiPHY State Diagram Low Power State Signal Energy Detected on Media FLP Burst or Clause 37 Restart Signal Sent Sleep Timer Expires Timeout Timer Expires and Auto-negotiation Enabled LP Wake-up State Normal Operation State VMDS-10397 VSC8522-02 Datasheet Revision 4.2 12 Functional Descriptions 4.8.1 Low Power State In the low power state, all major digital blocks are powered down. However, the following functionality is provided: • • SMI interface (MDC, MDIO, and MDINT pins) CLKOUT In this state, the PHY monitors the media interface pins for signal energy. The PHY comes out of low power state and transitions to the normal operating state when signal energy is detected on the media. This happens when the PHY is connected to one of the following: • • Autonegotiation-capable link partner Another PHY in enhanced ActiPHY LP wake-up state In the absence of signal energy on the media pins, the PHY periodically transitions from low-power state to LP wake-up state, based on the programmable sleep timer (register bits 20E1.14:13). The actual sleep time duration is randomized from –80 ms to 60 ms to avoid two linked PHYs in ActiPHY mode entering a lock-up state during operation. 4.8.2 Link Partner Wake-Up State In the link partner wake-up state, the PHY attempts to wake up the link partner. Up to three complete FLP bursts are sent on alternating pairs A and B of the Cat5 media for a duration based on the wake-up timer, which is set using register bits 20E1.12:11. In this state, the following functionality is provided: • • SMI interface (MDC, MDIO, and MDINT pins) CLKOUT After sending signal energy on the relevant media, the PHY returns to the low power state. 4.8.3 Normal Operating State In the normal operating state, the PHY establishes a link with a link partner. When the media is unplugged or the link partner is powered down, the PHY waits for the duration of the programmable link status time-out timer, which is set using register bit 28.7 and bit 28.2. It then enters the low power state. 4.9 Serial Management Interface The VSC8522-02 device includes an IEEE 802.3-compliant serial management interface (SMI) that is affected by use of its MDC and MDIO pins. The SMI provides access to device control and status registers. The register set that controls the SMI consists of 32 16-bit registers, including all required IEEE-specified registers. Also, there are additional pages of registers accessible using device register 31. Energy Efficient Ethernet control registers are available through the SMI using Clause 45 registers and Clause 22 register access in registers 13 through 14. For more information, see Table 22, page 32 and Table 67, page 54. The SMI is a synchronous serial interface with input data to the VSC8522-02 on the MDIO pin that is clocked on the rising edge of the MDC pin. The output data is sent on the MDIO pin on the rising edge of the MDC signal. The interface can be clocked at a rate from 0 MHz to 12.5 MHz, depending on the total load on MDIO. An external 2-kΩ pull-up resistor is required on the MDIO pin. 4.9.1 SMI Frames Data is transferred over the SMI using 32-bit frames with an optional, arbitrary-length preamble. Before the first frame can be sent, at least two clock pulses on MDC must be provided with the MDIO signal at logic one to initialize the SMI state machine. The following illustrations show the SMI frame format for read and write operations. VMDS-10397 VSC8522-02 Datasheet Revision 4.2 13 Functional Descriptions Figure 11 • SMI Read Frame Station manager drives MDIO PHY drives MDIO MDC MDIO Z Z 1 0 1 Idle Preamble SFD (optional) 1 0 A4 A3 A2 A1 A0 R4 R3 R2 R1 R0 Z PHY Address Read Register Address to PHY 0 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 Z TA Register Data from PHY Z Idle Figure 12 • SMI Write Frame Station manager drives MDIO (PHY tri-states MDIO during the entire sequence) MDC MDIO Z Z 1 0 1 0 1 A4 A3 A2 A1 A0 R4 R3 R2 R1 R0 Idle Preamble SFD Write (optional) PHY Address Register Address to PHY 1 0 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 Z TA Register Data from PHY Z Idle The following list provides additional information about the terms used in the SMI read and write timing diagrams. 4.9.1.1 Idle During idle, the MDIO node goes to a high-impedance state. This allows an external pull-up resistor to pull the MDIO node up to a logical 1 state. Because the idle mode should not contain any transitions on MDIO, the number of bits is undefined during idle. 4.9.1.2 Preamble By default, preambles are not expected or required. The preamble is a string of ones. If it exists, the preamble must be at least one bit; otherwise, it can be of an arbitrary length. 4.9.1.3 Start of Frame (SFD) A pattern of 01 indicates the start of frame. If the pattern is not 01, all following bits are ignored until the next preamble pattern is detected. 4.9.1.4 Read or Write Opcode A pattern of 10 indicates a read. A 01 pattern indicates a write. If the bits are not either 01 or 10, all following bits are ignored until the next preamble pattern is detected. 4.9.1.5 PHY Address The particular VSC8522-02 responds to a message frame only when the received PHY address matches its physical address. The physical address is 5 bits long (4:0). 4.9.1.6 Register Address The next five bits are the register address. 4.9.1.7 Turnaround The two bits used to avoid signal contention when a read operation is performed on the MDIO are called the turnaround (TA) bits. During read operations, the VSC8522-02 drives the second TA bit, a logical 0. VMDS-10397 VSC8522-02 Datasheet Revision 4.2 14 Functional Descriptions 4.9.1.8 Data The 16-bits read from or written to the device are considered the data or data stream. When data is read from a PHY, it is valid at the output from one rising edge of MDC to the next rising edge of MDC. When data is written to the PHY, it must be valid around the rising edge of MDC. 4.9.1.9 Idle The sequence is repeated. 4.9.2 SMI Interrupt The SMI includes an output interrupt signal, MDINT, for signaling the station manager when certain events occur in the VSC8522-02. The MDINT pin can be configured for open-drain (active-low) by tying the pin to a pull-up resistor and to VDDIO. The following illustration shows this configuration. Figure 13 • MDINT Configured as an Open-Drain (Active-Low) Pin VDDIO PHY_n Interrupt Pin Enable (Register 25.15) External Pull-up Resistor at the Station Manager for Open-drain (Active-low Mode) MDINT (to the Station Manager) MDINT Interrupt Pin Status (Register 26.15) Alternatively, the MDINT pin can be configured for open-source (active-high) by tying the pin to a pulldown resistor and to VSS. The following illustration shows this configuration. Figure 14 • MDINT Configured as an Open-Source (Active-High) Pin VDDIO Interrupt Pin Enable (Register 25.15) MDINT Interrupt Pin Status (Register 26.15) PHY_n MDINT (to the Station Manager) External Pull -down at the Station Manager For Open-source (Active-high Mode) When a PHY generates an interrupt, the MDINT pin is asserted (driven high or low, depending on resistor connection) if the interrupt pin enable bit (MII register 25.15) is set. 4.10 LED Interface The VSC8522-02 outputs four LED signals per port (LED0, LED1, LED2, and LED3) through an enhanced serial LED mode. For more information, see Enhanced Serial LED Mode, page 17. The polarity of the LED outputs is programmable and can be changed through register 17E2.13:10. The default polarity is active low. 4.10.1 LED Modes Each LED pin can be configured to display different status information that can be selected by setting the LED mode in register 29. The modes listed in the following table are equivalent to the setting used in register 29 to configure each LED pin. The default LED state is active low and can be changed by VMDS-10397 VSC8522-02 Datasheet Revision 4.2 15 Functional Descriptions modifying the value in register 17E2, bits 13:10. The blink/pulse-stretch is dependent on the LED behavior setting in register 30. Table 5 • LED Mode and Function Summary Mode Function Name LED State and Description 0 Link/Activity 1 = No link in any speed on any media interface. 0 = Valid link at any speed on any media interface. Blink or pulse-stretch = Valid link at any speed on any media interface with activity present. 1 Link1000/Activity 1 = No link in 1000BASE-T. 0 = Valid 1000BASE-T. Blink or pulse-stretch = Valid 1000BASE-T link with activity present. 2 Link100/Activity 1 = No link in 100BASE-TX. 0 = Valid 100BASE-TX. Blink or pulse-stretch = Valid 100BASE-TX link with activity present. 3 Link10/Activity 1 = No link in 10BASE-T. 0 = Valid 10BASE-T link. Blink or pulse-stretch = Valid 10BASE-T link with activity present. 4 Link100/1000/Activity 1 = No link in 100BASE-TX or 1000BASE-T. 0 = Valid 100BASE-TX or 1000BASE-T link. Blink or pulse-stretch = Valid 100BASE-TX or 1000BASE-T link with activity present. 5 Link10/1000/Activity 1 = No link in 10BASE-T or 1000BASE-T. 0 = Valid 10BASE-T or 1000BASE-T link. Blink or pulse-stretch = Valid 10BASE-T or 1000BASE-T link with activity present. 6 Link10/100/Activity 1 = No link in 10BASE-T, or 100BASE-TX. 0 = Valid 10BASE-T or 100BASE-TX, link. Blink or pulse-stretch = Valid 10BASE-T, or 100BASE-TX link with activity present. 7 Duplex/Collision 1 = Link established in half-duplex mode, or no link established. 0 = Link established in full-duplex mode. Blink or pulse-stretch = Link established in half-duplex mode but collisions are present. 8 Collision 1 = No collision detected. Blink or pulse-stretch = Collision detected. 9 Activity 1 = No activity present. Blink or pulse-stretch = Activity present (becomes TX activity present if register bit 30.14 is set to 1). 10 Autonegotiation Fault 1 = No autonegotiation fault present. 0 = Autonegotiation fault occurred. 11 Reserved Reserved. 12 Force LED Off 1 = De-asserts the LED(1). 13 Force LED On 0 = Asserts the LED(1). 1. Setting this mode suppresses LED blinking after reset. VMDS-10397 VSC8522-02 Datasheet Revision 4.2 16 Functional Descriptions 4.10.2 LED Behavior Several LED behaviors can be programmed into the VSC8522-02. Use the settings in register 30 to program LED behavior, which includes the following: 4.10.2.1 LED Combine Enables an LED to display the status for a combination of primary and secondary modes. This can be enabled or disabled for each LED pin. For example, a copper link running in 1000BASE-T mode and activity present can be displayed with one LED by configuring an LED pin to Link1000/Activity mode. The LED asserts when linked to a 1000BASE-T partner and also blinks or performs pulse-stretch when activity is either transmitted by the PHY or received by the Link Partner. When disabled, the combine feature only provides status of the selected primary function. In this example, only Link1000 asserts the LED, and the secondary mode, activity, does not display if the combine feature is disabled. 4.10.2.2 LED Blink or Pulse-Stretch This behavior is used for activity and collision indication. This can be uniquely configured for each LED pin. Activity and collision events can occur randomly and intermittently throughout the link-up period. Blink is a 50% duty cycle oscillation of asserting and de-asserting an LED pin. Pulse-stretch guarantees that an LED is asserted and de-asserted for a specific period of time when activity is either present or not present. These rates can also be configured using a register setting. 4.10.2.3 Rate of LED Blink or Pulse-Stretch This behavior controls the LED blink rate or pulse-stretch length when blink/pulse-stretch is enabled on an LED pin. The blink rate, which alternates between a high and low voltage level at a 50% duty cycle, can be set to 2.5 Hz, 5 Hz, 10 Hz, or 20 Hz. For pulse-stretch, the rate can be set to 50 ms, 100 ms, 200 ms, or 400 ms. The blink rate selection for PHY0 globally sets the rate used for all LED pins on all PHY ports. 4.10.2.4 LED Pulsing Enable To provide additional power savings, the LEDs (when asserted) can be pulsed at 5 kHz, 20% duty cycle. 4.10.2.5 LED Blink After Reset The LEDs will blink for one second after power-up and after any time all resets have been de-asserted. This can be disabled through register 19E1, bit 11 = 0. 4.10.2.6 Pulse Programmable Control These bits add the ability to width and frequency of LED pulses. This feature facilities power reduction options. 4.10.3 Enhanced Serial LED Mode VSC8522-02 can be configured to output up to four LED signals per port on a serial stream that can be de-serialized externally to drive LEDs on the system board. This functionality is controlled by setting register 25G, bits 7:1. In this mode, the serial LED_DATA is shifted out on the falling edge of LED_CLK and is latched in the external serial to parallel converter on the rising edge of LED_CLK. The falling edge of LED_LD signal can be used to shift the data from the shift register in the converter to the parallel output drive register. If a separate parallel output drive register is not used in the external serial to parallel converter, then the LEDs will blink at a high frequency as the data bits are being shifted through which may be undesirable. The LED_PULSE signal provides a 5 kHz pulse stream whose duty cycle can be modulated to turn on/off LEDs at a high rate. This signal can be tied to the output enable signal of the serial to parallel converter to provide the LED dimming functionality to save energy. 4.11 GPIO Pins The VSC8522-02 provides nine multiplexed multipurpose pins. For more information about the available GPIO pins, see LED and Multi/General Purpose Input and Output Pins, page 99, and for information about configuring them, see General Purpose Registers, page 50. VMDS-10397 VSC8522-02 Datasheet Revision 4.2 17 Functional Descriptions 4.12 Testing Features The VSC8522-02 device includes several testing features designed to facilitate performing system-level debugging and in-system production testing. This section describes the available features. 4.12.1 Ethernet Packet Generator The Ethernet packet generator (EPG) can be used at each of the 10/100/1000BASE-T speed settings for copper Cat5 media to isolate problems between the MAC and the VSC8522-02, or between a locally connected PHY and its remote link partner. Enabling the EPG feature effectively disables all MAC interface transmit pins and selects the EPG as the source for all data transmitted onto the twisted pair interface. Important The EPG is intended for use with laboratory or in-system testing equipment only. Do not use the EPG testing feature when the VSC8522-02 is connected to a live network. To enable the VSC8522-02 EPG feature, set the device register bit 29E1.15 to 1. When the EPG is enabled, packet loss occurs during transmission of packets from the MAC to the PHY. However, the PHY receive output pins to the MAC are still active when the EPG is enabled. If it is necessary to disable the MAC receive pins as well, set the register bit 0.10 to 1. When the device register bit 29E1.14 is set to 1, the PHY begins transmitting Ethernet packets based on the settings in registers 29E1 and 30E1. These registers set: • • • • • • Source and destination addresses for each packet Packet size Inter-packet gap FCS state Transmit duration Payload pattern If register bit 29E1.13 is set to 0, register bit 29E1.14 is cleared automatically after 30,000,000 packets are transmitted. 4.12.2 CRC Counters A set of cyclical redundancy check (CRC) counters is available in all PHYs in VSC8522-02 to monitor traffic on the copper interface. The device CRC counters operate in 10/100/1000BASE-T mode as follows: • • • After receiving a packet on the media interface, register bit 15 in register 18E1 or register 28E3 is set and cleared after being read. The packet then is counted by either the good CRC counter or the bad CRC counter. Both CRC counters are also automatically cleared when read. The good CRC counter’s highest value is 9,999 packets. After this value is reached, the counter clears on the 10,000th packet and continues to count additional packets beyond that value. The bad CRC counter stops counting when it reaches its maximum counter limit of 255 packets. 4.12.2.1 Copper Interface CRC Counters Two separate CRC counters are available and reside between the copper interface PCSs and SerDes MAC interface. There is a 14-bit good CRC counter available through register bits 18E1.13:0 and a separate 8-bit bad CRC counter available in register bits 23E1.7:0. 4.12.3 Far-End Loopback The far-end loopback testing feature is enabled by setting register bit 23.3 to 1. When enabled, it forces incoming data from a link partner on the current media interface, into the MAC interface of the PHY, to be retransmitted back to the link partner on the media interface as shown in the following illustration. In addition, the incoming data also appears on the receive data pins of the MAC interface. Data present on the transmit data pins of the MAC interface is ignored when using this testing feature. VMDS-10397 VSC8522-02 Datasheet Revision 4.2 18 Functional Descriptions Figure 15 • Far-End Loopback Diagram PHY_port_n RX Link Partner RXD TXD TX MAC Cat5 4.12.4 Near-End Loopback When the near-end loopback testing feature is enabled, transmitted data (TXD) is looped back in the PCS block onto the receive data signals (RXD), as shown in the following illustration. When using this testing feature, no data is transmitted over the network. To enable near-end loopback, set the device register bit 0.14 to 1. Figure 16 • Near-End Loopback Diagram PHY_port_n RX Link Partner RXD TXD TX MAC Cat5 4.12.5 Connector Loopback The connector loopback testing feature allows the twisted pair interface to be looped back externally. When using this feature, the PHY must be connected to a loopback connector or a loopback cable. Pair A should be connected to pair B, and pair C to pair D, as shown in the following illustration. The connector loopback feature functions at all available interface speeds. Figure 17 • Connector Loopback Diagram A Cat5 B RXD PHY_port_n C TXD MAC D When using the connector loopback testing feature, the device autonegotiation, speed, and duplex configuration is set using device registers 0, 4, and 9. For 1000BASE-T connector loopback, the following additional writes are required. Execute the additional writes in the following order: 1. 2. 4.12.6 Enable the 1000BASE-T connector loopback. Set register bit 24.0 to 1. Disable pair swap correction. Set register bit 18.5 to 1. SerDes Loopbacks For test purposes, the enhanced SerDes macro interfaces provide several data loops. The following illustration shows the SerDes loopbacks. VMDS-10397 VSC8522-02 Datasheet Revision 4.2 19 Functional Descriptions Figure 18 • Data Loops of the SerDes Macro n bit IF n bit IF DIRECT_TX DIRECT_RX SLIVER Digital interface, configuration, and control logic D Q Facility Loop HS-ref. clock HS-ref. clock RC-PLL DES n:1 SER 1:n Equipment-Loop Input-Loop OB Analog Service Modules (BIAS, clk tree buffers, ESD protection, ) IB Pad-Loop RX 4.12.6.1 TX QSGMII Mode When the MAC interface is configured in QSGMII mode, write the following 16-bit value to register 18G: Bits 15:12 0x9 Bits 11:8: Port address (0xC to 0xE) Bits 7:4: Loopback type Bits 3:0: 0x2 where loopback type is: 0x0: No loopback 0x1: Pad loopback 0x2: Input loopback 0x4: Facility loopback 0x8: Equipment loopback and port addresses (bits 11:8) are: 0xC: Enhanced SerDes macro for ports 0–3 VMDS-10397 VSC8522-02 Datasheet Revision 4.2 20 Functional Descriptions 0xD: Enhanced SerDes macro for ports 4–7 0xE: Enhanced SerDes macro for ports 8-11 Note: Loopback configuration affects all four ports associated with a QSGMII. Individual port loopback within a QSGMII is not possible. 4.12.6.2 Facility Loop The recovered and de-multiplexer deserializer data output is looped back to the serializer data input and replaces the data delivered by the digital core. This test loop provides the possibility to test the complete analog macro data path from outside including input buffer, clock and data recovery, serialization and output buffer. The data received by the input buffer must be transmitted by the output buffer after some delay. Additional configuration of the Enhanced SerDes macro is required for facility loopback mode. When entering facility loopback mode, the set = 1 option should be run; when exiting facility loopback mode, the set = 0 option should be run. The following software script must be executed after running the command to enable/disable facility loopback mode. PhyWrite(PhyBaseAddr, 31, 0x0010); PhyWrite(PhyBaseAddr, 18, 0x8s13); // where "s" is the physical address of the SerDes macro PhyWrite(PhyBaseAddr, 18, 0xd7d3); PhyWrite(PhyBaseAddr, 18, 0x8007); tmp1 = PhyRead(PhyBaseAddr, 18); tmp2 = tmp1 & 0x0ff0; if (set) tmp3 = tmp2 | 0x0100; else tmp3 = tmp2 & 0x0ef0; tmp4 = tmp3 | 0x8006; PhyWrite(PhyBaseAddr, 18, tmp4); PhyWrite(PhyBaseAddr, 18, 0x9p40); // where "p" is the logical address of the SGMII or QSGMII interface PhyBaseAddr is the base address of the internal PHYs and is equal to 0, 12, 4, or 20 based on the value of the PHYADD4 and PHYADD3 pins. For more information, see Table 1, page 6. The value of s is 1–3 and corresponds to the physical address of the enhanced SerDes macro. The value of p is 0–2 and is the logical address of the QSGMII lane that corresponds to the enhanced SerDes macro with physical address s. For more information about address mapping, see Table 2, page 6. 4.12.6.2.1 Equipment Loop The 1-bit data stream at the serializer output is looped back to the deserializer and replaces the received data stream from the input buffer. This test loop provides the possibility to verify the digital data path internally. The transmit data goes through the serialization, the clock and data recovery and deserialization before the data is fed back to the digital core. 4.12.6.2.2 Input Loop The received 1-bit data stream of the input buffer is looped back asynchronously to the output buffer. This test loop provides the possibility to the test only the analog parts of the QSGMII interface because only the input and output buffer are part of this loop. 4.12.6.2.3 Pad Loop The 1-bit data stream at the output buffer output is looped back to the input buffer input and added to the differential pad signal. Therefore, the input pad should not be driven when the output loop is activated. The test loop provides a means to test the complete QSGMII macro data path, including the input and output buffers. VMDS-10397 VSC8522-02 Datasheet Revision 4.2 21 Functional Descriptions 4.12.7 VeriPHY Cable Diagnostics The VSC8522-02 includes a comprehensive suite of cable diagnostic functions that are available using SMI reads and writes. These functions enable a variety of cable operating conditions and status to be accessed and checked. The VeriPHY suite has the ability to identify the cable length and operating conditions and to isolate a variety of common faults that can occur on Cat5 twisted pair cabling. For functional details of the VeriPHY suite and the operating instructions, see the ENT-AN0125 PHY, Integrated PHY-Switch VeriPHY - Cable Diagnostics application note. 4.12.8 JTAG Boundary Scan The VSC8522-02 supports the test access port (TAP) and boundary scan architecture described in IEEE 1149.1. The device includes an IEEE 1149.1-compliant test interface, referred to as a JTAG TAP interface. The JTAG boundary scan logic on the VSC8522-02, accessed using its TAP interface, consists of a boundary scan register and other logic control blocks. The TAP controller includes all IEEE-required signals (TMS, TCK, TDI, and TDO), in addition to the optional asynchronous reset signal NTRST. The following illustration shows the TAP and boundary scan architecture. Figure 19 • Test Access Port and Boundary Scan Architecture Boundary Scan Register Device Identification Register Bypass Register Control Instruction Register, Instruction Decode Control TDI TMS NTRST MUX, DFF TDO Control Test Access Port Controller Select TDO Enable TCK After a TAP reset, the device identification register is serially connected between TDI and TDO by default. The TAP instruction register is loaded either from a shift register when a new instruction is shifted in, or, if there is no new instruction in the shift register, a default value of 6’b100100 (IDCODE) is loaded. Using this method, there is always a valid code in the instruction register, and the problem of toggling instruction bits during a shift is avoided. Unused codes are mapped to the BYPASS instruction. 4.12.9 JTAG Instruction Codes The VSC8522-02 supports the following instruction codes: VMDS-10397 VSC8522-02 Datasheet Revision 4.2 22 Functional Descriptions 4.12.9.1 EXTEST Allows tests of the off-chip circuitry and board-level interconnections by sampling input pins and loading data onto output pins. Outputs are driven by the contents of the boundary-scan cells, which have to be updated with valid values, with the PRELOAD instruction, prior to the EXTEST instruction. 4.12.9.2 SAMPLE/PRELOAD Allows a snapshot of inputs and outputs during normal system operation to be taken and examined. It also allows data values to be loaded into the boundary-scan cells prior to the selection of other boundaryscan test instructions. 4.12.9.3 IDCODE Provides the version number (bits 31:28), device family ID (bits 27:12), and the manufacturer identity (bits 11:1) to be serially read from the device. The following table provides information about the meaning of IDCODE binary values stored in the device JTAG registers. Table 6 • 4.12.9.4 IDCODE JTAG Device Identification Register Descriptions Description Device Version Family ID Manufacturing Identity LSB Bit field 31–28 27–12 11–1 0 Binary value 0000 1011 0000 0000 0001 000 0111 0100 1 USERCODE Provides the version number (bits 31:28), part number (bits 27:12), and the manufacturer identity (bits 11:1) to be serially read from the device. The following table provides information about the meaning of USERCODE binary values stored in the device JTAG registers. Table 7 • 4.12.9.5 USERCODE JTAG Device Identification Register Descriptions Description Device Version Model Number Manufacturing Identity LSB Bit field 31–28 27–12 11–1 0 Binary value 0010 1000 0101 0010 0010 000 0111 0100 1 CLAMP Allows the state of the signals driven from the component pins to be determined from the boundary scan register while the bypass register is selected as the serial path between TDI and TDO. While the CLAMP instruction is selected, the signals driven from the component pins do not change. 4.12.9.6 HIGHZ Places the component in a state in which all of its system logic outputs are placed in a high-impedance state. In this state, an in-circuit test system can drive signals onto the connections normally driven by a component output without incurring a risk of damage to the component. This makes it possible to use a board where not all of the components are compatible with the IEEE 1149.1 standard. 4.12.9.7 BYPASS The bypass register contains a single shift-register stage and is used to provide a minimum-length serial path (one TCK clock period) between TDI and TDO to bypass the device when no test operation is required. VMDS-10397 VSC8522-02 Datasheet Revision 4.2 23 Functional Descriptions The following table provides information about the location and IEEE compliance of the JTAG instruction codes used in the VSC8522-02. Instructions not explicitly listed in the table are reserved. For more information about these IEEE specifications, visit the IEEE Web site at www.IEEE.org. Table 8 • JTAG Interface Instruction Codes Instruction Code Selected Register Register Width IEEE 1149.1 EXTEST 6'b000000 Boundary-Scan 161 Mandatory SAMPLE/PREL 6'b000001 OAD Boundary-Scan 161 Mandatory IDCODE 6'b100100 Device Identification 32 Optional USERCODE 6'b100101 Device Identification 32 Optional CLAMP 6'b000010 Bypass Register 1 Optional HIGHZ 6'b000101 Bypass Register 1 Optional BYPASS 6'b111111 Bypass Register 1 Mandatory IEEE 1149.6 EXTEST_PULS 6'b000011 E Boundary-Scan Register 161 Mandatory EXTEST_TRAI N Boundary-Scan Register 161 Mandatory 6'b000100 4.12.10 Boundary Scan Register Cell Order All inputs and outputs are observed in the boundary scan register cells. All outputs are additionally driven by the contents of boundary scan register cells. Bidirectional pins have all three related boundary scan register cells: input, output, and control. The complete boundary scan cell order is available as a BSDL file format on the Microsemi Web site at www.microsemi.com. 4.12.11 JTAG Boundary Scan Interface The IEEE 1149.6 AC-JTAG solution integrated on all SerDes ports of the VSC8522-02 extends the capability of IEEE 1149.1 boundary scan for robust board-level testing. This interface is backwardcompatible to the IEEE 1149.1 standard. 4.13 Configuration The VSC8522-02 can be configured by setting internal memory registers using the management interface. VMDS-10397 VSC8522-02 Datasheet Revision 4.2 24 Registers 5 Registers This section provides information about how to configure the VSC8522-02 using its internal memory registers and the management interface. The VSC8522-02 uses several different types of registers: • • • • IEEE Clause 22 device registers with addresses from 0 to 31 Three pages of extended registers with addresses from 16E1–30E1, 16E2–30E2, and 16E3–30E3 General-purpose registers with addresses from 0G to 30G IEEE Clause 45 devices registers accessible through the Clause 22 registers 13 and 14 to support IEEE 802.3az Energy Efficient Ethernet registers The following illustration shows the relationship between the device registers and their address spaces. Figure 20 • Register Space Diagram 0 1 2 3 . . . 13 14 15 0G 1G 2G 3G . . . . . 15G Clause 45 Registers IEEE 802.3 Standard Registers General Purpose Registers 16 17 18 19 . . . . . 30 Main Registers 31 0x0000 • • 5.1 16E1 17E1 18E1 19E1 . . . . . 30E1 Extended Registers 1 16E2 17E2 18E2 19E2 . . . . . 30E2 0x0001 Extended Registers 2 16E3 17E3 18E3 19E3 . . . . . 30E3 Extended Registers 3 0x0002 0x0003 16G 17G 18G 19G . . . . . 30G 0x0010 Reserved Registers—For main registers 16–31, extended registers 16E1–30E1, 16E2–30E2, 16E3–30E3, and general purpose registers 0G–30G, any bits marked as Reserved should be processed as read-only and their states as undefined. Reserved Bits—In writing to registers with reserved bits, use a read-modify-then-write technique, where the entire register is read but only the intended bits to be changed are modified. Reserved bits cannot be changed and their read state cannot be considered static or unchanging. IEEE Standard and Main Registers In the VSC8522-02, the page space of the standard registers consists of the IEEE standard registers and the Microsemi standard registers. The following table lists the names of the registers associated with the addresses as dictated by the IEEE standard. Table 9 • IEEE 802.3 Standard Registers Address Name 0 Mode Control 1 Mode Status 2 PHY Identifier 1 3 PHY Identifier 2 4 Autonegotiation Advertisement 5 Autonegotiation Link Partner Ability 6 Autonegotiation Expansion VMDS-10397 VSC8522-02 Datasheet Revision 4.2 25 Registers Table 9 • IEEE 802.3 Standard Registers (continued) Address Name 7 Autonegotiation Next-Page Transmit 8 Autonegotiation Link Partner Next-Page Receive 9 1000BASE-T Control 10 1000BASE-T Status 11–12 Reserved 13 Clause 45 access registers from IEEE 802.3 Table 22-6 and 22.24.3.11-12 and Annex 22D 14 Clause 45 access registers from IEEE 802.3 Table 22-6 and 22.24.3.11-12 and Annex 22D 15 1000BASE-T Status Extension 1 The following table lists the names of the registers in the main page space of the device. These registers are accessible only when register address 31 is set to 0x0000. Table 10 • Main Registers Address Name 16 100BASE-TX Status Extension 1 17 1000BASE-T Status Extension 2 18 Bypass Control 19 Error Counter 1 20 Error Counter 2 21 Error Counter 3 22 Extended Control and Status 23 Extended PHY Control 1 24 Extended PHY Control 2 25 Interrupt Mask 26 Interrupt Status 27 Reserved 28 Auxiliary Control and Status 29 LED Mode Select 30 LED Behavior 31 Extended Register Page Access VMDS-10397 VSC8522-02 Datasheet Revision 4.2 26 Registers 5.1.1 Mode Control The device register at memory address 0 controls several aspects of VSC8522-02 functionality. The following table shows the available bit settings in this register and what they control. Table 11 • Mode Control, Address 0 (0x00) Bit Name Access Description Default 15 Software reset R/W Self-clearing. Restores all serial management interface (SMI) registers to default state, except for sticky and super-sticky bits. 1: Reset asserted. 0: Reset de-asserted. Wait [X] after setting this bit to initiate another SMI register access. 0 14 Loopback R/W 1: Loopback enabled. 0 0: Loopback disabled. When loop back is enabled, the device functions at the current speed setting and with the current duplex mode setting (bits 6, 8, and 13 of this register). 13 Forced speed selection LSB R/W Least significant bit. MSB is bit 6. 00: 10 Mbps. 01: 100 Mbps. 10: 1000 Mbps. 11: Reserved. 0 12 Autonegotiation enable R/W 1: Autonegotiation enabled. 0: Autonegotiation disabled. 1 11 Power-down R/W 1: Power-down enabled. 0 10 Isolate R/W 1: Disable MAC interface outputs and ignore 0 MAC interface inputs. 9 Restart autonegotiation R/W Self-clearing bit. 1: Restart autonegotiation on media interface. 0 8 Duplex R/W 1: Full-duplex. 0: Half-duplex. 0 7 Collision test enable R/W 1: Collision test enabled. 0 6 Forced speed selection MSB R/W Most significant bit. LSB is bit 13. 00: 10 Mbps. 01: 100 Mbps. 10: 1000 Mbps. 11: Reserved. 10 5:0 Reserved RO Reserved. All zeros VMDS-10397 VSC8522-02 Datasheet Revision 4.2 27 Registers 5.1.2 Mode Status The register at address 1 in the device main registers space allows you to read the currently enabled mode setting. The following table shows possible readouts of this register. Table 12 • Mode Status, Address 1 (0x01) Bit Name Access Description Default 15 100BASE-T4 capability RO 1: 100BASE-T4 capable. 0 14 100BASE-TX FDX capability RO 1: 100BASE-TX FDX capable. 1 13 100BASE-TX HDX capability RO 1: 100BASE-TX HDX capable. 1 12 10BASE-T FDX capability RO 1: 10BASE-T FDX capable. 1 11 10BASE-T HDX capability RO 1: 10BASE-T HDX capable. 1 10 100BASE-T2 FDX capability RO 1: 100BASE-T2 FDX capable. 0 9 100BASE-T2 HDX capability RO 1: 100BASE-T2 HDX capable. 0 8 Extended status enable RO 1: Extended status information present in register 15. 1 7 Reserved RO 6 Preamble suppression capability RO 1: MF preamble can be suppressed. 0: MF required. 1 5 Autonegotiation complete RO 1: Autonegotiation complete. 0 4 Remote fault RO Latches high. 1: Far-end fault detected. 0 3 Autonegotiation capability RO 1: Autonegotiation capable. 1 2 Link status RO Latches low. 1: Link is up. 0 1 Jabber detect RO Latches high. 1: Jabber condition detected. 0 0 Extended capability RO 1: Extended register capable. 1 5.1.3 Note: Reserved. 1 Device Identification All 16 bits in both register 2 and register 3 in the VSC8522-02 are used to provide information associated with aspects of the device identification. The following tables list the expected readouts. Table 13 • Identifier 1, Address 2 (0x02) Bit Name Access Description Default 15:0 Organizationally unique identifier (OUI) RO 0×0007 Table 14 • OUI most significant bits (3:18) Identifier 2, Address 3 (0x03) Bit Name Access Description Default 15:10 OUI RO OUI least significant bits (19:24) 000001 9:4 Microsemi model number RO VSC8522-02 (0x2f) 101111 3:0 Device revision number RO VMDS-10397 VSC8522-02 Datasheet Revision 4.2 0011 28 Registers 5.1.4 Autonegotiation Advertisement The bits in address 4 in the main registers space control the VSC8522-02 ability to notify other devices of the status of its autonegotiation feature. The following table shows the available settings and readouts. Device Autonegotiation Advertisement, Address 4 (0x04) Table 15 • Bit Name Access Description Default 15 Next page transmission request R/W 1: Request enabled 0 14 Reserved RO Reserved 0 13 Transmit remote fault R/W 1: Enabled 0 12 Reserved R/W Reserved 0 11 Advertise asymmetric pause R/W 1: Advertises asymmetric pause 0 10 Advertise symmetric pause R/W 1: Advertises symmetric pause 0 9 Advertise100BASE-T4 R/W 1: Advertises 100BASE-T4 0 8 Advertise100BASE-TX FDX R/W 1: Advertise 100BASE-TX FDX 1 7 Advertise100BASE-TX HDX R/W 1: Advertises 100BASE-TX HDX 1 6 Advertise10BASE-T FDX R/W 1: Advertises 10BASE-T FDX 1 5 Advertise10BASE-T HDX R/W 1: Advertises 10BASE-T HDX 4:0 Advertise selector R/W 5.1.5 1 00001 Link Partner Autonegotiation Capability The bits in main register 5 can be used to determine if the Cat5 link partner (LP) used with the VSC8522-02 is compatible with the autonegotiation functionality. Table 16 • Autonegotiation Link Partner Ability, Address 5 (0x05) Bit Name Access Description 15 LP next page transmission request RO 1: Requested 0 14 LP acknowledge RO 1: Acknowledge 0 13 LP remote fault RO 1: Remote fault 0 12 Reserved RO Reserved 0 11 LP advertise asymmetric pause RO 1: Capable of asymmetric pause 0 10 LP advertise symmetric pause RO 1: Capable of symmetric pause 0 9 LP advertise 100BASE-T4 RO 1: Capable of 100BASE-T4 0 8 LP advertise 100BASE-TX FDX RO 1: Capable of 100BASE-TX FDX 0 7 LP advertise 100BASE-TX HDX RO 1: Capable of 100BASE-TX HDX 0 6 LP advertise 10BASE-T FDX RO 1: Capable of 10BASE-T FDX 0 5 LP advertise 10BASE-T HDX RO 1: Capable of 10BASE-T HDX 0 4:0 LP advertise selector RO VMDS-10397 VSC8522-02 Datasheet Revision 4.2 Default 00000 29 Registers 5.1.6 Autonegotiation Expansion The bits in main register 6 work together with those in register 5 to indicate the status of the LP autonegotiation functioning. The following table shows the available settings and readouts. Autonegotiation Expansion, Address 6 (0x06) Table 17 • Bit Name Access Description Default 15:5 Reserved RO Reserved. All zeros 4 Parallel detection fault RO This bit latches high. 1: Parallel detection fault. 0 3 LP next page capable RO 1: LP is next page capable. 0 2 Local PHY next page capable RO 1: Local PHY is next page capable. 1 1 Page received RO This bit latches low. 1: New page is received. 0 0 LP is autonegotiation capable RO 1: LP is capable of autonegotiation. 0 5.1.7 Transmit Autonegotiation Next Page The settings in register 7 in the main registers space provide information about the number of pages in an autonegotiation sequence. The following table shows the settings available. Table 18 • Autonegotiation Next Page Transmit, Address 7 (0x07) Bit Name Access Description Default 15 Next page R/W 1: More pages follow 0 14 Reserved RO Reserved 0 13 Message page R/W 1: Message page 0: Unformatted page 1 12 Acknowledge 2 R/W 1: Complies with request 0: Cannot comply with request 0 11 Toggle RO 1: Previous transmitted LCW = 0 0: Previous transmitted LCW = 1 0 10:0 Message/unformatted code R/W 5.1.8 00000000001 Autonegotiation Link Partner Next Page Receive The bits in register 8 of the main register space work together with register 7 to determine certain aspects of the LP autonegotiation. The following table shows the possible readouts. Table 19 • Autonegotiation LP Next Page Receive, Address 8 (0x08) Bit Name Access Description Default 15 LP next page RO 1: More pages follow 0 14 Acknowledge RO 1: LP acknowledge 0 13 LP message page RO 1: Message page 0: Unformatted page 0 12 LP acknowledge 2 RO 1: LP complies with request 0 11 LP toggle RO 1: Previous transmitted LCW = 0 0: Previous transmitted LCW = 1 0 10:0 LP message/unformatted code RO VMDS-10397 VSC8522-02 Datasheet Revision 4.2 All zeros 30 Registers 5.1.9 1000BASE-T Control The VSC8522-02’s 1000BASE-T functionality is controlled by the bits in register 9 of the main register space. The following table shows the settings and readouts available. Table 20 • 1000BASE-T Control, Address 9 (0x09) Bit Name Access Description Default 15:13 Transmitter test mode R/W 000: Normal. 001: Mode 1: Transmit waveform test. 010: Mode 2: Transmit jitter test as master. 011: Mode 3: Transmit jitter test as slave. 100: Mode 4: Transmitter distortion test. 101–111: Reserved 000 12 Master/slave manual R/W configuration 1: Master/slave manual configuration enabled. 0 11 Master/slave value R/W This register is only valid when bit 9.12 is set to 1. 1: Configure PHY as master during negotiation. 0: Configure PHY as slave during negotiation. 0 10 Port type R/W 1: Multi-port device. 0: Single-port device. 1 9 1000BASE-T FDX capability R/W 1: PHY is 1000BASE-T FDX capable. 1 8 1000BASE-T HDX capability R/W 1: PHY is 1000BASE-T HDX capable. 1 7:0 Reserved R/W Reserved. 0x00 Note: Transmitter test mode (bits 15:13) operates in the manner described in IEEE 802.3 section 40.6.1.1.2. When using any of the transmitter test modes, the automatic media-sense feature must be disabled. For more information, see Extended PHY Control 2, page 37. 5.1.10 1000BASE-T Status The bits in register 10 of the main register space can be read to obtain the status of the 1000BASE-T communications enabled in the device. The following table shows the readouts. Table 21 • 1000BASE-T Status, Address 10 (0x0A) Bit Name Access Description Default 15 Master/slave configuration fault RO This bit latches high. 1: Master/slave configuration fault detected. 0: No master/slave configuration fault detected. 0 14 Master/slave configuration resolution RO 1: Local PHY configuration resolved to master. 0: Local PHY configuration resolved to slave. 1 13 Local receiver status RO 1: Local receiver is operating normally. 0 12 Remote receiver status RO 1: Remote receiver OK. 0 11 LP 1000BASE-T FDX capability RO 1: LP 1000BASE-T FDX capable. 0 10 LP 1000BASE-T HDX capability RO 1: LP 1000BASE-T HDX capable. 0 VMDS-10397 VSC8522-02 Datasheet Revision 4.2 31 Registers 1000BASE-T Status, Address 10 (0x0A) (continued) Table 21 • Bit Name Access Description Default 9:8 Reserved RO Reserved. 00 7:0 Idle error count RO Self-clearing register. 0x00 5.1.11 MMD Access Control Register The bits in register 13 of the main register space are a window to the EEE registers as defined in IEEE 802.3az Clause 45. MMD EEE Access, Address 13 (0x0D) Table 22 • Bit Name Access Description 15:14 Function R/W 13:5 Reserved R/W Reserved 4:0 DVAD Device address as defined in IEEE 802.3az table 45-1 5.1.12 R/W 00: Address 01: Data, no post increment 10: Data, post increment for read and write 11: Data, post increment for write only MMD Address or Data Register The bits in register 14 of the main register space are a window to the EEE registers as defined in IEEE 802.3az Clause 45. Table 23 • MMD Address or Data Register, Address 14 (0x0E) Bit Name Access Description 15:0 Register Address/Data R/W 5.1.13 If register 13.15:14 = 2'b00, address of register of the device that is specified by 13.4:0. Otherwise, the data to be written to or read from the register. 1000BASE-T Status Extension 1 Register 15 provides additional information about the operation of the device 1000BASE-T communications. The following table shows the readouts available. Table 24 • Bit 1000BASE-T Status Extension 1, Address 15 (0x0F) Name Access Description Default 15 1000BASE-X FDX capability RO 1: PHY is 1000BASE-X FDX capable 0 14 1000BASE-X HDX capability RO 1: PHY is 1000BASE-X HDX capable 0 13 1000BASE-T FDX capability RO 1: PHY is 1000BASE-T FDX capable 1 12 1000BASE-T HDX capability RO 1: PHY is 1000BASE-T HDX capable 1 11:0 Reserved Reserved 0x000 RO VMDS-10397 VSC8522-02 Datasheet Revision 4.2 32 Registers 5.1.14 100BASE-TX Status Extension Register 16 in the main registers page space of the VSC8522-02 provides additional information about the status of the device’s 100BASE-TX operation. Table 25 • 100BASE-TX Status Extension, Address 16 (0x10) Bit Name Access Description Default 15 100BASE-TX Descrambler RO 1: Descrambler locked. 0 14 100BASE-TX lock error RO Self-clearing bit. 1: Lock error detected. 0 13 100BASE-TX disconnect state RO Self-clearing bit. 1: PHY 100BASE-TX link disconnect detected. 0 12 100BASE-TX current link status RO 1: PHY 100BASE-TX link active. 0 11 100BASE-TX receive error RO Self-clearing bit. 1: Receive error detected. 0 10 100BASE-TX transmit error RO Self-clearing bit. 1: Transmit error detected. 0 9 100BASE-TX SSD error RO Self-clearing bit. 1: Start-of-stream delimiter error detected. 0 8 100BASE-TX ESD error RO Self-clearing bit. 1: End-of-stream delimiter error detected. 0 7:0 Reserved RO Reserved 5.1.15 1000BASE-T Status Extension 2 The second status extension register is at address 17 in the device main registers space. It provides information about another set of parameters associated with 1000BASE-T communications. For information about the first status extension register, see Table 24, page 32. Table 26 • 1000BASE-T Status Extension 2, Address 17 (0x11) Bit Name Access Description Default 15 1000BASE-T descrambler RO 1: Descrambler locked. 0 14 1000BASE-T lock error RO Self-clearing bit. 1: Lock error detected. 0 13 1000BASE-T disconnect state RO Self-clearing bit. 1: PHY 1000BASE-T link disconnect detected. 0 12 1000BASE-T current link status RO 1: PHY 1000BASE-T link active. 0 11 1000BASE-T receive error RO Self-clearing bit. 1: Receive error detected. 0 10 1000BASE-T transmit error RO Self-clearing bit. 1: Transmit error detected. 0 9 1000BASE-T SSD error RO Self-clearing bit. 1: Start-of-stream delimiter error detected. 0 VMDS-10397 VSC8522-02 Datasheet Revision 4.2 33 Registers Table 26 • 1000BASE-T Status Extension 2, Address 17 (0x11) (continued) Bit Name Access Description Default 8 1000BASE-T ESD error RO Self-clearing bit. 1: End-of-stream delimiter error detected. 0 7 1000BASE-T carrier extension error RO Self-clearing bit. 1: Carrier extension error detected. 0 6 Non-compliant BCM5400 detected RO 1: Non-compliant BCM5400 link partner detected. 0 0 5 MDI crossover error RO 1: MDI crossover error was detected. 4:0 Reserved RO Reserved 5.1.16 Bypass Control The bits in this register control aspects of functionality in effect when the device is disabled for the purpose of traffic bypass. The following table shows the settings available. Table 27 • Bypass Control, Address 18 (0x12) Bit Name Access Description Default 15 Transmit disable R/W 1: PHY transmitter disabled. 0 14 4B5B encoder/decoder R/W 1: Bypass 4B/5B encoder/decoder. 0 13 Scrambler R/W 1: Bypass scrambler. 0 12 De-scrambler R/W 1: Bypass de-scrambler. 0 11 PCS receive R/W 1: Bypass PCS receiver. 0 10 PCS transmit R/W 1: Bypass PSC transmit. 0 9 LFI timer R/W 1: Bypass Link Fail Inhibit (LFI) timer. 0 8 Reserved RO Reserved. 7 HP Auto-MDIX at forced 10/100 R/W Sticky bit. 1: Disable HP Auto-MDIX at forced 10/100 speeds. 1 6 Non-compliant BCM5400 detect disable R/W Sticky bit. 1: Disable non-compliant BCM5400 detection. 0 5 Disable pair swap R/W correction (HP Auto-MDIX when autonegotiation enabled) Sticky bit. 0 1: Disable the automatic pair swap correction. 4 Disable polarity correction R/W Sticky bit. 1: Disable polarity inversion correction on each subchannel. 0 3 Parallel detect control R/W Sticky bit. 1: Do not ignore advertised ability. 0: Ignore advertised ability. 1 2 Pulse shaping filter R/W 1: Disable pulse shaping filter 0 1 Disable automatic 1000BASE-T next page exchange R/W Sticky bit. 0 1: Disable automatic 1000BASE-T next page exchanges. VMDS-10397 VSC8522-02 Datasheet Revision 4.2 34 Registers Table 27 • Bypass Control, Address 18 (0x12) (continued) Bit Name Access Description 0 Reserved RO Default Reserved. Note: If bit 18.1 is set to 1 in this register, automatic exchange of next pages is disabled, and control is returned to the user through the SMI after the base page is exchanged. The user then must send the correct sequence of next pages to the link partner, determine the common capabilities, and force the device into the correct configuration following the successful exchange of pages. 5.1.17 Error Counter 1 The bits in register 19 provide an error counter. The following table shows the settings available. Table 28 • Extended Control and Status, Address 19 (0x13) Bit Name Access Description 15:8 Reserved RO Reserved. 7:0 100/1000BASE-TX receive error counter RO 8-bit counter that saturates when it reaches 255. These bits are self-clearing when read. 5.1.18 Default 0x00 Error Counter 2 The bits in register 20 provide an error counter. The following table shows the settings available. Table 29 • Extended Control and Status, Address 20 (0x14) Bit Name Access Description 15:8 Reserved RO Reserved. 7:0 100/1000BASE-TX false carrier counter RO 8-bit counter that saturates when it reaches 255. These bits are self-clearing when read. 5.1.19 Default 0x00 Error Counter 3 The bits in register 21 provide an error counter. The following table shows the settings available. Table 30 • Extended Control and Status, Address 21 (0x15) Bit Name Access Description 15:8 Reserved RO Reserved. 7:0 Copper media link disconnect counter RO 8-bit counter that saturates when it reaches 255. These bits are self-clearing when read. 5.1.20 Default 0x00 Extended Control and Status The bits in register 22 provide additional device control and readouts. The following table shows the settings available. Table 31 • Extended Control and Status, Address 22 (0x16) Bit Name Access Description Default 15 Force 10BASE-T link high R/W Sticky bit. 1: Bypass link integrity test. 0: Enable link integrity test. 0 14 Jabber detect disable R/W Sticky bit. 1: Disable jabber detect. 0 VMDS-10397 VSC8522-02 Datasheet Revision 4.2 35 Registers Table 31 • Extended Control and Status, Address 22 (0x16) (continued) Bit Name Access Description Default 13 Disable 10BASE-T echo R/W Sticky bit. 1: Disable 10BASE-T echo. 1 12 Disable SQE mode R/W Sticky bit. 1: Disable SQE mode. 1 11:10 10BASE-T squelch control R/W Sticky bit. 00: Normal squelch. 01: Low squelch. 10: High squelch. 11: Reserved. 00 9 Sticky reset enable R/W Super-sticky bit. 1: Enabled. 1 8 EOF Error RO This bit is self-clearing. 1: EOF error detected. 0 7 10BASE-T disconnect state RO This bit is self-clearing. 1: 10BASE-T link disconnect detected. 0 6 10BASE-T link status RO 1: 10BASE-T link active. 0 5:1 Reserved RO Reserved. 0 SMI broadcast write R/W Sticky bit. 1: Enabled. 0 The following information applies to the extended control and status bits: • • • • 5.2 When bit 22.15 is set, the link integrity state machine is bypassed and the PHY is forced into a link pass status. When bits 22.11:10 are set to 00, the squelch threshold levels are based on the IEEE standard for 10BASE-T. When set to 01, the squelch level is decreased, which can improve the bit error rate performance on long loops. When set to 10, the squelch level is increased and can improve the bit error rate in high-noise environments. When bit 22.9 is set, all sticky register bits retain their values during a software reset. Clearing this bit causes all sticky register bits to change to their default values upon software reset. Super-sticky bits retain their values upon software reset regardless of the setting of bit 22.9. When bit 22.0 is set, if a write to any PHY register (registers 0–31, including extended registers), the same write is broadcast to all PHYs. For example, if bit 22.0 is set to 1 and a write to PHY0 is executed (register 0 is set to 0x1040), all PHYs’ register 0s are set to 0x1040. Disabling this bit restores normal PHY write operation. Reads are still possible when this bit is set, but the value that is read corresponds only to the particular PHY being addressed. Extended PHY Control 1 The following table shows the settings available. Table 32 • Extended PHY Control 1, Address 23 (0x17) Bit Name Access Description Default 15:13 Reserved RO Reserved. 110 12 Reserved R/W Reserved. 0 11:4 Reserved RO Reserved. 0 3 Far-end loopback R/W mode 1: Enabled. 0 2:0 Reserved Reserved. RO VMDS-10397 VSC8522-02 Datasheet Revision 4.2 36 Registers 5.2.1 Extended PHY Control 2 The second set of extended controls is located in register 24 in the main register space for the device. The following table shows the settings and readouts available. Table 33 • Extended PHY Control 2, Address 24 (0x18) Bit Name Access Description Default 15:13 100BASE-TX edge rate R/W control Sticky bit. 011: +5 Edge rate (slowest). 010: +4 Edge rate. 001: +3 Edge rate. 000: +2 Edge rate. 111: +1 Edge rate. 110: Default edge rate. 101: –1 Edge rate. 100: –2 Edge rate (fastest). 000 12 PICMG 2.16 reduced power mode R/W Sticky bit. 1: Enabled. 0 11:6 Reserved RO Reserved. 5:4 Jumbo packet mode R/W Sticky bit. 00: Normal IEEE 1.5 kB packet length. 01: 9 kB jumbo packet length (12 kB with 60 ppm or better reference clock). 10: 12 kB jumbo packet length (16 kB with 70 ppm or better reference clock). 11: Reserved. 3:1 Reserved RO Reserved. 0 1000BASE-T connector R/W loopback 1: Enabled. 00 0 Note: When bits 5:4 are set to jumbo packet mode, the default maximum packet values are based on 100 ppm driven reference clock to the device. Controlling the ppm offset between the MAC and the PHY as specified in the bit description results in a higher jumbo packet length. 5.2.2 Interrupt Mask These bits control the device interrupt mask. The following table shows the settings available. Table 34 • Interrupt Mask, Address 25 (0x19) Bit Name Access Description Default 15 MDINT interrupt status enable R/W Sticky bit. 1: Enabled. 0 14 Speed state change mask R/W Sticky bit. 1: Enabled. 0 13 Link state change mask R/W Sticky bit. 1: Enabled. 0 12 FDX state change mask R/W Sticky bit. 1: Enabled. 0 11 Autonegotiation error mask R/W Sticky bit. 1: Enabled. 0 10 Autonegotiation complete mask R/W Sticky bit. 1: Enabled. 0 VMDS-10397 VSC8522-02 Datasheet Revision 4.2 37 Registers Table 34 • Interrupt Mask, Address 25 (0x19) (continued) Bit Name Access Description Default 9 Inline powered device (PoE) detect mask R/W Sticky bit. 1: Enabled. 0 8 Symbol error interrupt mask R/W Sticky bit. 1: Enabled. 0 7 Reserved RO Reserved. 0 6 TX FIFO over/underflow interrupt mask R/W Sticky bit. 1: Enabled. 0 5 RX FIFO over/underflow interrupt mask R/W Sticky bit. 1: Enabled. 0 4 AMS media changed mask R/W Sticky bit. 1: Enabled. 0 3 False-carrier interrupt mask R/W Sticky bit. 1: Enabled. 0 2 Link speed downshift detect mask R/W Sticky bit. 1: Enabled. 0 1 Master/Slave resolution error mask R/W Sticky bit. 1: Enabled. 0 0 RX_ER interrupt mask R/W Sticky bit. 1: Enabled. 0 Note: When bit 25.15 is set, the MDINT pin is enabled. When enabled, the state of this pin reflects the state of bit 26.15. Clearing this bit only inhibits the MDINT pin from being asserted. Also, before enabling this bit, read register 26 to clear any previously inactive interrupts pending that will cause bit 25.15 to be set. 5.2.3 Interrupt Status The status of interrupts already written to the device are available for reading from register 26 in the main registers space. The following table shows the expected readouts. Table 35 • Interrupt Status, Address 26 (0x1A) Bit Name Access Description Default 15 Interrupt status RO Self-clearing bit. 1: Interrupt pending. 0 14 Speed state change status RO Self-clearing bit. 1: Interrupt pending. 0 13 Link state change status RO Self-clearing bit. 1: Interrupt pending. 0 12 FDX state change status RO Self-clearing bit. 1: Interrupt pending. 0 11 Autonegotiation error status RO Self-clearing bit. 1: Interrupt pending. 0 10 Autonegotiation complete status RO Self-clearing bit. 1: Interrupt pending. 0 9 Inline powered device detect status RO Self-clearing bit. 1: Interrupt pending. 0 8 Symbol error status RO Self-clearing bit. 1: Interrupt pending. 0 VMDS-10397 VSC8522-02 Datasheet Revision 4.2 38 Registers Table 35 • Interrupt Status, Address 26 (0x1A) (continued) Bit Name Access Description Default 7 Fast link failure detect status RO Self-clearing bit. 1: Interrupt pending. 0 6 TX FIFO over/underflow detect status RO Self-clearing bit. 1: Interrupt pending. 0 5 RX FIFO over/underflow detect status RO Self-clearing bit. 1: Interrupt pending. 0 4 AMS media changed mask RO Self-clearing bit. 1: Interrupt pending. 0 3 False-carrier interrupt status RO Self-clearing bit. 1: Interrupt pending. 0 2 Link speed downshift detect status RO Self-clearing bit. 1: Interrupt pending. 0 1 Master/Slave resolution error status RO Self-clearing bit. 1: Interrupt pending. 0 0 RX_ER interrupt status RO Self-clearing bit. 1: Interrupt pending. 0 The following information applies to the interrupt status bits: • • • • 5.2.4 All set bits in this register are cleared after being read (self-clearing). If bit 26.15 is set, the cause of the interrupt can be read by reading bits 26.14:0. For bits 26.14 and 26.12, bit 0.12 must be set for this interrupt to assert. For bit 26.2, bits 4.8:5 must be set for this interrupt to assert. For bit 26.0, this interrupt will not occur when RX_ER is used for carrier-extension decoding of a link partner’s data transmission. Device Auxiliary Control and Status Register 28 provides control and status information for several device functions not controlled or monitored by other device registers. The following table shows the settings available and the expected readouts. Table 36 • Auxiliary Control and Status, Address 28 (0x1C) Bit Name Access Description Default 15 Autonegotiation complete RO Duplicate of bit 1.5. 0 14 Autonegotiation disabled RO Inverted duplicate of bit 0.12. 0 13 HP Auto-MDIX crossover indication RO 1: HP Auto-MDIX crossover performed internally. 0 12 CD pair swap RO 1: CD pairs are swapped. 0 11 A polarity inversion RO 1: Polarity swap on pair A. 0 10 B polarity inversion RO 1: Polarity swap on pair B. 0 9 C polarity inversion RO 1: Polarity swap on pair C. 0 8 D polarity inversion RO 1: Polarity swap on pair D. 0 VMDS-10397 VSC8522-02 Datasheet Revision 4.2 39 Registers Table 36 • Auxiliary Control and Status, Address 28 (0x1C) (continued) Bit Name 7 ActiPHY link status time-out R/W control [1] Sticky bit. Bits 7 and 2 are part of the 0 ActiPHY Link Status time-out control. Bit 7 is the MSB. 00: 1 second. 01: 2 seconds. 10: 3 seconds. 11: 4 seconds. 6 ActiPHY mode enable R/W Sticky bit. 1: Enabled. 0 5 FDX status RO 1: Full-duplex. 0: Half-duplex. 00 4:3 Speed status RO 00: Speed is 10BASE-T. 01: Speed is 100BASE-TX. 10: Speed is 1000BASE-T. 11: Reserved. 0 2 ActiPHY link status time-out R/W control [0] Sticky bit. Bits 7 and 2 are part of the 1 ActiPHY Link Status time-out control. Bit 7 is the MSB. 00: 1 second. 01: 2 seconds. 10: 3 seconds. 11: 4 seconds. 1:0 Media mode status 00: No media selected. 01: Reserved. 10: SerDes media selected. 11: Reserved. 5.2.5 Access Description RO Default 00 LED Mode Select The device LED outputs are controlled using the bits in register 29 of the main register space. The following table shows the information needed to access the functionality of each of the outputs. Table 37 • 5.2.6 LED Mode Select, Address 29 (0x1D) Bit Name Access Description Default 15:12 LED3 mode select R/W Sticky bit. Select from LED modes 0–15. 1000 11:8 LED2 mode select R/W Sticky bit. Select from LED modes 0–15. 0000 7:4 LED1 mode select R/W Sticky bit. Select from LED modes 0–15. 0010 3:0 LED0 mode select R/W Sticky bit. Select from LED modes 0–15. 0001 LED Behavior The bits in register 30 control and enable you to read the status of the pulse or blink rate of the device LEDs. The following table shows the settings you can write to the register or read from the register. Table 38 • LED Behavior, Address 30 (0x1E) Bit Name Access Description 15:13 Reserved RO Default Reserved. VMDS-10397 VSC8522-02 Datasheet Revision 4.2 40 Registers LED Behavior, Address 30 (0x1E) (continued) Table 38 • Bit Name Access Description Default 12 LED pulsing enable R/W Sticky bit. 0 0: Normal operation. 1: LEDs pulse with a 5 kHz, programmable duty cycle when active. 11:10 LED blink/pulsestretch rate R/W Sticky bit. 00: 2.5 Hz blink rate/400 ms pulse-stretch. 01: 5 Hz blink rate/200 ms pulse-stretch. 10: 10 Hz blink rate/100 ms pulse-stretch. 11: 20 Hz blink rate/50 ms pulse-stretch. The blink rate selection for PHY0 globally sets the rate used for all LED pins on all PHY ports. 9:0 Reserved RO Reserved. 01 Note: Bits 30.11:10 are active only in port 0 and affect the behavior of LEDs for all the ports. 5.2.7 Extended Page Access To provide functionality beyond the IEEE 802.3-specified registers and main device registers, the VSC8522-02 includes an extended set of registers that provide an additional 15 register spaces. The register at address 31 controls the access to the extended registers for the VSC8522-02. Accessing the GPIO page register space is similar to accessing the extended page registers. The following table shows the settings available. Extended/GPIO Page Access, Address 31 (0x1F) Table 39 • 5.3 Bit Name Access Description 15:0 Extended/GPIO page R/W register access Default 0x0000: Register 16–30 accesses main register 0x0000 space. Writing 0x0000 to register 31 restores the main register access. 0x0001: Register 16–30 accesses extended register space 1 0x0002: Register 16–30 accesses extended register space 2 0x0003: Register 16–30 accesses extended register space 3 0x0010: Register 0–30 accesses GPIO register space Extended Page 1 Registers To access the extended page 1 registers (16E1–30E1), enable extended register access by writing 0x0001 to register 31. Writing 0x0000 to register 31 restores the main register access. When extended page 1 register access is enabled, reads and writes to registers 16–30 affect the extended registers 16E1–30E1 instead of those same registers in the IEEE-specified register space. Registers 0–15 are not affected by the state of the extended page register access. Table 40 • Extended Registers Page 1 Space Address Name 16E1–17E1 Reserved 18E1 Cu Media CRC Good Counter 19E1 Extended Mode Control (LED blink control and MDI control) VMDS-10397 VSC8522-02 Datasheet Revision 4.2 41 Registers Table 40 • Extended Registers Page 1 Space (continued) Address Name 20E1 Extended PHY Control 3 (ActiPHY) 21E1–22E1 Reserved 23E1 Extended PHY Control 4 (PoE and CRC error counter) 27E1–28E1 Reserved 5.3.1 29E1 Ethernet Packet Generator (EPG) Control 1 30E1 EPG Control 2 Cu Media CRC Good Counter Register 18E1 makes it possible to read the contents of the CRC good counter for packets that are received on the Cu media interface; the number of CRC routines that have executed successfully. The following table shows the expected readouts. Table 41 • Cu Media CRC Good Counter, Address 18E1 (0x12) Bit Name Access Description Default 15 Packet since last read RO Self-clearing bit. 1: Packet received since last read. 0 14 Reserved RO Reserved. 13:0 Cu Media CRC good counter contents RO Self-clearing counter containing the 0x0000 number of packets with valid CRCs modulo 10,000. This counter does not saturate and will roll over to 0 on the next good packet received after 9,999. 5.3.2 Extended Mode Control Register 19E1 controls the extended LED and other chip modes. The following table shows the settings available. Table 42 • Extended Mode Control, Address 19E1 (0x13) Bit Name Access Description Default 15:12 Reserved RO Reserved. 0 11 LED Reset Blink Suppress R/W 1: Blink LEDs after COMA_MODE is deasserted. 0: Suppress LED blink after COMA_MODE is deasserted. 0 10:4 Reserved RO Reserved 0 3:2 Force MDI crossover R/W 00: Normal HP Auto-MDIX operation. 01: Reserved. 10: Copper media forced to MDI. 11: Copper media forced MDI-X. 00 1:0 Reserved RO Reserved VMDS-10397 VSC8522-02 Datasheet Revision 4.2 42 Registers 5.3.3 ActiPHY Control Register 20E1 controls the device ActiPHY sleep timer, its wake-up timer, the frequency of the CLKOUT signal, and its link speed downshifting feature. The following table shows the settings available. Table 43 • Extended PHY Control 3, Address 20E1 (0x14) Bit Name Access Description Default 15 Disable carrier extension R/W 1: Disable carrier extension in SGMII1000BASE-T copper links. 1 14:13 ActiPHY sleep timer R/W Sticky bit. 00: 1 second. 01: 2 seconds. 10: 3 seconds. 11: 4 seconds. 01 12:11 ActiPHY wake-up timer R/W Sticky bit. 00: 160 ms. 01: 400 ms. 10: 800 ms. 11: 2 seconds. 00 10 Reserved RO Reserved 9 PHY address reversal R/W 1: Enabled 8 Reserved RO Valid only on PHY0. 7:6 Media mode status RO 00: No media selected. 01: Copper media selected. 10: SerDes media selected. 11: Reserved. 00 5 Enable 10BASE-T no preamble mode R/W Sticky bit. 1: 10BASE-T will assert RX_DV indication when data is presented to the receiver even without a preamble preceding it. 0 4 Enable link speed R/W auto-downshift feature Sticky bit. 1: Enable auto link speed downshift from 1000BASE-T. 0 3:2 Link speed auto downshift control R/W Sticky bit. 00: Downshift after 2 failed 1000BASE-T autonegotiation attempts. 01: Downshift after 3 failed 1000BASE-T autonegotiation attempts. 10: Downshift after 4 failed 1000BASE-T autonegotiation attempts. 11: Downshift after 5 failed 1000BASE-T autonegotiation attempts. 01 1 Link speed auto downshift status RO 0: No downshift. 1: Downshift is required or has occurred. 0 0 Reserved RO Reserved VMDS-10397 VSC8522-02 Datasheet Revision 4.2 Address 43 Registers 5.3.4 PoE and Miscellaneous Functionality The register at address 23E1 controls various aspects of inline powering and the CRC error counter in the VSC8522-02. Table 44 • Extended PHY Control 4, Address 23E1 (0x17) Bit Name Access Description 15:11 PHY address RO PHY address; latched on reset. 10 Inline powered device detection R/W Sticky bit. 1: Enabled. 0 9:8 Inline powered device detection status RO Only valid when bit 10 is set. 00: Searching for devices. 01: Device found; requires inline power. 10: Device found; does not require inline power. 11: Reserved. 00 7:0 Cu Media CRC error counter RO Self-clearing bit. 0x00 RC error counter for packets received on the Cu media interface. The value saturates at 0xFF and subsequently clears when read and restarts count. 5.3.5 Default Ethernet Packet Generator Control 1 The EPG control register provides access to and control of various aspects of the EPG testing feature. There are two separate EPG control registers. The following table shows the settings available in the first register. Table 45 • EPG Control 1, Address 29E1 (0x1D) Bit Name Access Description Default 15 EPG enable R/W 1: Enable EPG 0 14 EPG run or stop R/W 1: Run EPG 0 13 Transmission duration R/W 1: Continuous (sends in 10,000-packet increments) 0: Send 30,000,000 packets and stop 0 12:11 Packet length R/W 00: 125 bytes 01: 64 bytes 10: 1518 bytes 11: 10,000 bytes (jumbo packet) 0 10 Inter-packet gap R/W 1: 8,192 ns 0: 96 ns 0 9:6 Destination address R/W Lowest nibble of the 6-byte destination address 0001 5:2 Source address R/W Lowest nibble of the 6-byte destination address 0000 1 Payload type R/W 1: Randomly generated payload pattern 0: Fixed based on payload pattern 0 0 Bad frame check sequence (FCS) generation R/W 1: Generate packets with bad FCS 0: Generate packets with good FCS 0 VMDS-10397 VSC8522-02 Datasheet Revision 4.2 44 Registers The following information applies to the EPG control number 1: • • • • • 5.3.6 Do not run the EPG when the VSC8522-02 is connected to a live network. Bit 29E1.13 (continuous EPG mode control): When enabled, this mode causes the device to send continuous packets. When disabled, the device continues to send packets only until it reaches the next 10,000-packet increment mark. It then ceases to send packets. The 6-byte destination address in bits 9:6 is assigned one of 16 addresses in the range of 0xFF FF FF FF FF F0 through 0xFF FF FF FF FF FF. The 6-byte source address in bits 5:2 is assigned one of 16 addresses in the range of 0xFF FF FF FF FF F0 through 0xFF FF FF FF FF FF. If any of bits 13:0 are changed while the EPG is running (bit 14 is set to 1), bit 14 must be cleared and then set back to 1 for the change to take effect and to restart the EPG. Ethernet Packet Generator Control 2 Register 30E1 consists of the second set of bits that provide access to and control over the various aspects of the EPG testing feature. The following table shows the settings available. Table 46 • EPG Control 2, Address 30E1 (0x1E) Bit Name Access Description 15:0 EPG packet payload R/W Data pattern repeated in the payload of packets generated by the EPG Default 0x00 Note: If any of bits 15:0 in this register are changed while the EPG is running (bit 14 of register 29E1 is set to 1), that bit (29E1.14) must first be cleared and then set back to 1 for the change to take effect and to restart the EPG. 5.4 Extended Page 2 Registers To access the extended page 2 registers (16E2–30E2), enable extended register access by writing 0x0002 to register 31. For more information, see Table 39, page 41. When extended page 2 register access is enabled, reads and writes to registers 16–30 affect the extended registers 16E2–30E2 instead of those same registers in the IEEE-specified register space. Registers 0–15 are not affected by the state of the extended page register access. Writing 0x0000 to register 31 restores the main register access. The following table lists the addresses and register names in the extended register page 2 space. These registers are accessible only when the device register 31 is set to 0x0002. Table 47 • Extended Registers Page 2 Space Address Name 16E2 Cu PMD Transmit Control 17E2 EEE Control 18E2–30E2 Reserved 5.4.1 Cu PMD Transmit Control The register at address 16E2 consists of the bits that provide control over the amplitude settings for the transmit side Cu PMD interface. These bits provide the ability to make small adjustments in the signal amplitude to compensate for minor variations in the magnetics from different vendors. Extreme caution must be exercised when changing these settings from the default values as they have a direct impact on VMDS-10397 VSC8522-02 Datasheet Revision 4.2 45 Registers the signal quality. Changing these settings also affects the linearity and harmonic distortion of the transmitted signals. Contact Microsemi for further help with changing these values. Cu PMD Transmit Control, Address 16E2 (0x10) Table 48 • 5.4.2 Bit Name Access Description 15:12 1000BASE-T signal amplitude trim R/W Change 1000BASE-T 0000 signal amplitude Default 11:8 100BASE-TX signal amplitude trim R/W Change 100BASE-TX 0010 signal amplitude 7:4 10BASE-T signal amplitude trim R/W Change 10BASE-T signal amplitude 1111 3:0 10BASE-Te signal amplitude trim R/W Change 10BASE-Te signal amplitude 0000 EEE Control The register at address 17E2 consists of the bits that provide additional control over the chip behavior in Energy Efficient Ethernet (IEEE 802.3az) mode for debug and to allow interoperation with legacy MACs that do not support IEEE 802.3az. Table 49 • EEE Control, Address 17E2 (0x11) Bit Name Access Description Default 15 Enable 10BASE-Te R/W Enable Energy Efficient (IEEE 802.3az) 10BASE-Te operating mode. 0 14 Reserved RO Reserved. 0 13:10 Invert LED polarity R/W Invert polarity of LED[3:0] signals. Default is to 0000 drive an active low signal on the LED pins. 9:6 Reserved R/O Reserved. 5 Enable 1000BASE-T R/W force mode 0 1: Enable 1000BASE-T force mode to allow PHY to link up in 1000BASE-T mode without forcing master/slave when register 0, bits 6 and 13 are set to 2'b10. 4 Force transmit LPI R/W 1: Enable the EPG to transmit LPI on the MDI 0 instead of normal idles when receiving normal idles from the MAC. 0: Transmit idles being received from the MAC. 3 Inhibit 100BASE-TX transmit EEE LPI R/W 1: Disable transmission of EEE LPI on transmit 0 path MDI in 100BASE-TX mode when receiving LPI from MAC. 2 Inhibit 100BASE-TX receive EEE LPI R/W 1: Disable transmission of EEE LPI on receive path MAC interface in 100BASE-TX mode when receiving LPI from the MDI. 1 Inhibit 1000BASE-T transmit EEE LPI R/W 1: Disable transmission of EEE LPI on transmit 0 path MDI in 1000BASE-T mode when receiving LPI from MAC. 0 Inhibit 1000BASE-T receive EEE LPI R/W 1: Disable transmission of EEE LPI on receive 0 path MAC interface in 1000BASE-T mode when receiving LPI from the MDI. VMDS-10397 VSC8522-02 Datasheet Revision 4.2 0 46 Registers 5.5 Extended Page 3 Registers To access the extended page 3 registers (16E3–30E3), enable extended register access by writing 0x0003 to register 31. For more information, see Table 39, page 41. When extended page 3 register access is enabled, reads and writes to registers 16–30 affect the extended registers 16E3–30E3 instead of those same registers in the IEEE-specified register space. Registers 0–15 are not affected by the state of the extended page register access. Writing 0x0000 to register 31 restores the main register access. The following table lists the addresses and register names in the extended register page 3 space. These registers are accessible only when the device register 31 is set to 0x0003. Table 50 • Extended Registers Page 3 Space Address Name 16E3 MAC SerDes PCS Control 17E3 MAC SerDes PCS Status 18E3 MAC SerDes Clause 37 Advertised Ability 19E3 MAC SerDes Clause 37 Link Partner Ability 20E3 MAC SerDes Status 21E3 Media SerDes Transmit Good Packet Counter 22E3 Media SerDes Transmit CRC Error Counter 23E3–30E3 Reserved 5.5.1 MAC SerDes PCS Control The register at address 16E3 consists of the bits that provide access to and control over MAC SerDes PCS block. The following table shows the settings available. Table 51 • MAC SerDes PCS Control, Address 16E3 (0x10) Bit Name Access Description Default 15 MAC interface disable R/W Sticky bit. 1: 1000BASE-X MAC interface disable when media link down. 0 14 MAC interface restart R/W Sticky bit. 1: 1000BASE-X MAC interface restart on media link change. 0 13 MAC interface PD enable R/W Sticky bit. 1: MAC interface autonegotiation parallel detect enable. 0 12 MAC interface autonegotiation restart R/W Self-clearing bit. 1: Restart MAC interface autonegotiation. 0 11 Force advertised ability R/W 1: Force 16-bit advertised ability from register 18E3. 0 VMDS-10397 VSC8522-02 Datasheet Revision 4.2 47 Registers Table 51 • MAC SerDes PCS Control, Address 16E3 (0x10) (continued) Bit Name Access Description 10:8 SGMII preamble control R/W 000 = No effect on the start of packet. 001 001 = If both the first two nibbles of the 10/100 packet are not 0x5, a byte of 0x55 must be prefixed to the output, otherwise there will be no effect on the start of packet. 010 = If both the first two nibbles of the 10/100 packet are not 0x5, a byte of 0x55 must be prefixed to the output. An additional byte of 0x55 must be prefixed to the output if the next two nibbles are also not 0x5. 011–111 = Reserved. 7 MAC SerDes autonegotiation enable R/W 1: MAC SerDes ANEG enable. 6 SerDes polarity at input of MAC R/W 1: Invert polarity of signal received at input 0 of MAC. 5 SerDes polarity at output of R/W MAC 1: Invert polarity of signal at output of MAC. 4 Fast link status enable R/W 1: Use fast link fail indication as link status 0 indication to MAC SerDes 0: Use normal link status indication to MAC SerDes 3 Unidirectional enable R/W 1: Enable transmit on MAC interface 0 regardless of whether the PHY has determined that a valid link has been established. 0: Enable transmit on MAC interface only when the PHY has determined that a valid link has been established. 2:0 Reserved RO Reserved. 5.5.2 Default 0 MAC SerDes PCS Status The register at address 17E3 consists of the bits that provide status from the MAC SerDes PCS block. The following table shows the settings available. Table 52 • MAC SerDes PCS Status, Address 17E3 (0x11) Bit Name Access Description 15:13 Reserved RO Reserved 12 SGMII alignment error RO 1: SGMII alignment error occurred 11 MAC interface LP autonegotiation restart RO 1: MAC interface link partner autonegotiation restart request occurred 10 Reserved RO Reserved 9:8 MAC remote fault RO 01, 10, and 11: Remote fault detected from MAC 00: No remote fault detected from MAC 7 Asymmetric pause advertisement RO 1: Asymmetric pause advertised by MAC VMDS-10397 VSC8522-02 Datasheet Revision 4.2 48 Registers Table 52 • MAC SerDes PCS Status, Address 17E3 (0x11) (continued) Bit Name Access Description 6 Symmetric pause advertisement RO 1: Symmetric pause advertised by MAC 5 Full duplex advertisement RO 1: Full duplex advertised by MAC 4 Half duplex advertisement RO 1: Half duplex advertised by MAC 3 MAC interface LP autonegotiation capable RO 1: MAC interface link partner autonegotiation capable 2 MAC interface link status RO 1: MAC interface link status connected 1 MAC interface autonegotiation complete RO 1: MAC interface autonegotiation complete 0 MAC interface PCS signal detect RO 1: MAC interface PCS signal detect present 5.5.3 MAC SerDes Clause 37 Advertised Ability The register at address 18E3 consists of the bits that provide access to and control over MAC SerDes Clause 37 advertised ability. The following table shows the settings available. Table 53 • MAC SerDes Cl37 Advertised Ability, Address 18E3 (0x12) Bit Name Access Description Default 15:0 MAC SerDes advertised ability R/W 0x0000 5.5.4 Current configuration code word being advertised (this register is read/write if 16E3.11 = 1) MAC SerDes Clause 37 Link Partner Ability The register at address 19E3 consists of the bits that provide status of the MAC SerDes link partner’s Clause 37 advertised ability. The following table shows the settings available. Table 54 • 5.5.5 MAC SerDes Cl37 LP Ability, Address 19E3 (0x13) Bit Name Access Description 15:0 MAC SerDes LP ability RO Last configuration code word received from link partner MAC SerDes Status The register at address 20E3 consists of the bits that provide access to MAC SerDes status. The following table shows the settings available. Table 55 • MAC SerDes Status, Address 20E3 (0x14) Bit Name Access Description 15 K28.5 comma realignment RO Self-clearing bit. 1: a K28.5 comma re-alignment has occurred 14 SerDes signal detect RO Self-clearing bit. Sticky bit. 1: SerDes signal detection occurred 13:0 Reserved RO Reserved VMDS-10397 VSC8522-02 Datasheet Revision 4.2 49 Registers 5.5.6 Media SerDes Transmit Good Packet Counter The register at address 21E3 consists of the bits that provide status of the media SerDes transmit good packet counter. The following table shows the settings available. Media SerDes Tx Good Packet Counter, Address 21E3 (0x15) Table 56 • 5.5.7 Bit Name Access Description 15 Tx good packet counter active RO 1: Transmit good packet counter active 14 Reserved RO Reserved 13:0 Tx good packet count RO Transmit good packet count modulo 10000 Media SerDes Transmit CRC Error Counter The register at address 22E3 consists of the bits that provide status of the media SerDes transmit packet count that had a CRC error. The following table shows the settings available. Media SerDes Tx CRC Error Counter, Address 22E3 (0x16) Table 57 • 5.6 Bit Name Access Description 15:8 Reserved RO 7:0 Tx CRC packet count RO Reserved Transmit CRC packet count (saturates at 255) General Purpose Registers Accessing the General Purpose register space is similar to accessing the extended page registers. Set register 31 to 0x0010. This sets all 32 registers to the general purpose register space. To restore main register page access, write 0x0000 to register 31. The following table lists the addresses and register names in the general purpose register page space. These registers are accessible only when the device register 31 is set to 0x0010. Table 58 • General Purpose Registers Page Space Address Name 0G–12G Reserved 13G Reserved 14G COMA_MODE Control 15G GPIO Input 16G GPIO Output 17G GPIO Output Enable 18G Global Command and SerDes Configuration 19G MAC Mode and Fast Link Configuration 20G–24G Reserved 25G Enhanced LED Control 26G–28G Reserved 29G Global Interrupt Status 30G Reserved VMDS-10397 VSC8522-02 Datasheet Revision 4.2 50 Registers 5.6.1 COMA_MODE Control Register 14G configures the functionality of the COMA_MODE input pin. COMA_MODE Control, Address 14G (0x0E) Table 59 • Bit Name Access Description 15:14 Reserved RO Reserved 13 COMA_MODE output enable (active low) R/W 1: COMA_MODE pin is an input 0: COMA_MODE pin is an output 12 COMA_MODE output data R/W Value to output on the COMA_MODE pin 0 when it is configured as an output 11 COMA_MODE input data RO Data read from the COMA_MODE pin 10 Reserved R/W Reserved 0 9 Tri-state enable for LEDs R/W 1: Tri-state LED output signals instead of driving them high. This allows those signals to be pulled above VDDIO using an external pull-up resistor. 0: Drive LED bus output signals to high and low values as appropriate. 0 8:0 Reserved RO Reserved. 0 5.6.2 Default 1 GPIO Input The input register contains information about the input to the device GPIO pins. Read from this register to access the data on the device GPIO pins. The following table shows the readout you can expect. GPIO Input, Address 15G (0x0F) Table 60 • 5.6.3 Bit Name Access Description 15:2 Reserved RO 1:0 GPIO input RO Default Reserved Data read from the GPIO_[3:2] pins GPIO Output The output register allows you to access and control the output from the device GPIO pins. The following table shows the values you can write. Table 61 • 5.6.4 GPIO Output, Address 16G (0x10) Bit Name Access Description 15:2 Reserved RO 1:0 GPIO output R/W Default Reserved Data written to the GPIO_[3:2] pins 0x00 GPIO Pin Configuration Register 17G in the GPIO register space controls whether a particular GPIO pin functions as an input or an output. The following table shows the settings available. Table 62 • GPIO Input/Output Configuration, Address 17G (0x11) Bit Name Access Description 15:2 Reserved RO Default Reserved VMDS-10397 VSC8522-02 Datasheet Revision 4.2 51 Registers Table 62 • GPIO Input/Output Configuration, Address 17G (0x11) (continued) Bit Name Access Description Default 1:0 GPIO_[3:2] pin input or output enable R/W 0x00 5.6.5 1: Pin is configured as an output. 0: Pin is configured as an input. Global Command and SerDes Configuration Register 18G is a command window. Bit 15 tells the internal processor to execute the command. When bit 15 is cleared the command has completed. Software needs to wait until bit 15 = 0 before proceeding with the next PHY register access. The following table lists the values to write to register 18G to execute the various commands. Table 63 • Command Value Enable 12 PHYs MAC SGMII 0x80B0 Enable 12 PHYs MAC QSGMII 0x80A0 Enable 4 PHYs (PHY8 to PHY11) media 1000BASE-X 0x8F81(1) Enable 4 PHYs (PHY8 to PHY11) media 100BASE-FX 0x8F91(1) 1. 5.6.6 Global Command and SerDes Configuration, Address 18G (0x12) The “F” in the command has a bit representing each of the four PHYs. To exclude a PHY from the configuration, set its bit to 0. For example, the configuration of PHY 3 and PHY 2 to 1000BASE-X would be 1100 or a “C” and the command would be 0x8CC1. MAC Mode and Fast Link Configuration Register 19G controls the MAC interface mode and the selection of the source PHY for the fast link failure indication. The following table shows the settings available for the FAST_LINK_STATUS pin. Table 64 • MAC Mode and Fast Link Configuration, Address 19G (0x13) Bit Name Access Description Default 15:14 MAC interface mode select for all PHYs in the VSC8522-02 R/W Select MAC interface mode 00: QSGMII to CAT5 mode 01: SGMII to CAT5 mode 10: QSGMII to CAT5 mode 11: Reserved 00 13:4 Reserved RO Reserved 3:0 Fast link failure port setting R/W 0000: PHY0 0001: PHY1 0010: PHY2 0011: PHY3 0100: PHY4 0101: PHY5 0110: PHY6 0111: PHY7 1000: PHY8 1001: PHY9 1010: PHY10 1011: PHY11 1100–1111: Output disabled VMDS-10397 VSC8522-02 Datasheet Revision 4.2 0xF 52 Registers 5.6.7 Enhanced LED Control The following table contains the bits to control advanced functionality of the serial LED signals. Enhanced LED Control, Address 25G (0x19) Table 65 • Bit Name 15:8 LED pulsing duty cycle R/W control Programmable control for LED pulsing duty cycle when bit 30.12 is set to 1. Valid settings are between 0 and 198. A setting of 0 corresponds to a 0.5% duty cycle and 198 corresponds to a 99.5% duty cycle. Intermediate values change the duty cycle in 0.5% increments 00 7 Serial LED output 2 enable R/W Enable the serial LED output functionality for GPIO_5, GPIO_6, GPIO_7, and GPIO_8 pins 1: Pins function as serial LED outputs 0: Pins retain their normal function 0 6 Serial LED output 1 enable R/W Enable the serial LED output functionality for GPIO_[3:0] pins 1: Pins function as serial LED outputs 0: Pins retain their normal function 0 5:3 Serial LED frame rate selection R/W Select frame rate of serial LED stream 000: 2500 Hz frame rate 001: 1000 Hz frame rate 010: 500 Hz frame rate 011: 250 Hz frame rate 100: 200 Hz frame rate 101: 125 Hz frame rate 110: 40 Hz frame rate 111: Reserved. 2:1 Serial LED select R/W Select which LEDs from each PHY to enable on 00 the serial stream 00: Enable all 4 LEDs of each PHY 01: Enable LEDs 2, 1 and 0 of each PHY 10: Enable LEDs 1 and 0 of each PHY 11: Enable LED 0 of each PHY 0 Reserved RO Reserved. 5.6.8 Access Description Default 0 Global Interrupt Status The following table contains the interrupt status from the various sources to indicate which one caused that last interrupt on the pin. Table 66 • Global Interrupt Status, Address 29G (0x1D) Bit Name 15:12 Reserved Access Description RO Reserved 11 PHY11 interrupt source (1) RO PHY11 interrupt source indication 0: PHY caused the interrupt 1: PHY did not cause an interrupt 10 PHY10 interrupt source(1) RO PHY10 interrupt source indication 0: PHY caused the interrupt 1: PHY did not cause an interrupt VMDS-10397 VSC8522-02 Datasheet Revision 4.2 53 Registers Table 66 • Bit Name Access Description 9 PHY9 interrupt source(1) RO PHY9 interrupt source indication 0: PHY caused the interrupt 1: PHY did not cause an interrupt 8 PHY8 interrupt source(1) RO PHY8 interrupt source indication 0: PHY caused the interrupt 1: PHY did not cause an interrupt 7 PHY7 interrupt source(1) RO PHY7 interrupt source indication 0: PHY caused the interrupt 1: PHY did not cause an interrupt 6 PHY6 interrupt source(1) RO PHY6 interrupt source indication 0: PHY caused the interrupt 1: PHY did not cause an interrupt 5 PHY5 interrupt source(1) RO PHY5 interrupt source indication 0: PHY caused the interrupt 1: PHY did not cause an interrupt 4 PHY4 interrupt source(1) RO PHY4 interrupt source indication 0: PHY caused the interrupt 1: PHY did not cause an interrupt 3 PHY3 interrupt source(1) RO PHY3 interrupt source indication 0: PHY caused the interrupt 1: PHY did not cause an interrupt 2 PHY2 interrupt source(1) RO PHY2 interrupt source indication 0: PHY caused the interrupt 1: PHY did not cause an interrupt 1 PHY1 interrupt source(1) RO PHY1 interrupt source indication 0: PHY caused the interrupt 1: PHY did not cause an interrupt 0 PHY0 interrupt source(1) RO PHY0 interrupt source indication 0: PHY caused the interrupt 1: PHY did not cause an interrupt 1. 5.7 Global Interrupt Status, Address 29G (0x1D) (continued) This bit is set to 1 when the corresponding PHY’s Interrupt Status register 26 (0x1A) is read. Clause 45 Registers to Support Energy Efficient Ethernet This section describes the Clause 45 registers that are required to support Energy Efficient Ethernet. Access to these registers is through the IEEE standard registers 13 and 14 (MMD access control and MMD data or address registers) as described in section 4.2.11 and 4.2.12. The following table lists the addresses and register names in the Clause 45 register page space. Table 67 • Clause 45 Registers Page Space Address Name 3.1 PCS Status 1 3.20 EEE Capability 3.22 EEE Wake Error Counter 7.60 EEE Advertisement 7.61 EEE Link Partner Advertisement VMDS-10397 VSC8522-02 Datasheet Revision 4.2 54 Registers 5.7.1 PCS Status 1 The bits in the PCS Status 1 register provide a status of the EEE operation from the PCS for the link that is currently active. Table 68 • 5.7.2 PCS Status 1, Address 3.1 Bit Name Access Description 15:12 Reserved RO Reserved 11 Tx LPI received RO/LH 1: Tx PCS has received LPI 0: LPI not received 10 Rx LPI received RO/LH 1: Rx PCS has received LPI 0: LPI not received 9 Tx LPI indication RO 1: Tx PCS is currently receiving LPI 0: PCS is not currently receiving LPI 8 Rx LPI indication RO 1: Rx PCS is currently receiving LPI 0: PCS is not currently receiving LPI 7:3 Reserved RO Reserved 2 PCS receive link status RO 1: PCS receive link up 0: PCS receive link down 1:0 Reserved Reserved RO EEE Capability This register is used to indicate the capability of the PCS to support EEE functions for each PHY type. The following table shows the bit assignments for the EEE capability register. Table 69 • Bit 5.7.3 EEE Capability, Address 3.20 Name Access Description 15:3 Reserved RO 2 1000BASE-T EEE RO 1: EEE is supported for 1000BASE-T 0: EEE is not supported for 1000BASE-T 1 100BASE-TX EEE RO 1: EEE is supported for 100BASE-TX 0: EEE is not supported for 100BASE-TX 0 Reserved RO Reserved Reserved EEE Wake Error Counter This register is used by PHY types that support EEE to count wake time faults where the PHY fails to complete its normal wake sequence within the time required for the specific PHY type. The definition of the fault event to be counted is defined for each PHY and can occur during a refresh or a wakeup as defined by the PHY. This 16-bit counter is reset to all zeros when the EEE wake error counter is read or when the PHY undergoes hardware or software reset. EEE Wake Error Counter, Address 3.22 Table 70 • Bit Name Access Description 15:0 Wake error counter RO Count of wake time faults for a PHY VMDS-10397 VSC8522-02 Datasheet Revision 4.2 55 Registers 5.7.4 EEE Advertisement This register defines the EEE advertisement that is sent in the unformatted next page following a EEE technology message code. The following table shows the bit assignments for the EEE advertisement register. Table 71 • EEE Advertisement, Address 7.60 Bit Name Access Description 15:3 Reserved RO 2 1000BASE-T EEE R/W 1: Advertise that the 1000BASE-T has EEE capability 0: Do not advertise that the 1000BASE-T has EEE capability 0 1 100BASE-TX EEE R/W 1: Advertise that the 100BASE-TX has EEE capability 0: Do not advertise that the 100BASE-TX has EEE capability 0 0 Reserved RO Reserved 5.7.5 Default Reserved EEE Link Partner Advertisement All the bits in the EEE LP Advertisement register are read only. A write to the EEE LP advertisement register has no effect. When the AN process has been completed, this register will reflect the contents of the link partner’s EEE advertisement register. The following table shows the bit assignments for the EEE advertisement register. Table 72 • EEE Advertisement, Address 7.61 Bit Name Access Description 15:3 Reserved RO 2 1000BASE-T EEE RO 1: Link partner is advertising EEE capability for 1000BASE-T 0: Link partner is not advertising EEE capability for 1000BASE-T 1 100BASE-TX EEE RO 1: Link partner is advertising EEE capability for 100BASE-TX 0: Link partner is not advertising EEE capability for 100BASE-TX 0 Reserved RO Reserved Reserved VMDS-10397 VSC8522-02 Datasheet Revision 4.2 56 Electrical Specifications 6 Electrical Specifications This section provides the DC characteristics, AC characteristics, recommended operating conditions, and stress ratings for the VSC8522-02 device. 6.1 DC Characteristics This section contains the DC specifications for the VSC8522-02 device. 6.1.1 VDD_IO The following table shows the DC specifications for the pins referenced to VDD_IO. The specifications listed in the following table are valid only when VDD = 1.0 V, VDD_VS = 1.0 V, VDD_AL = 1.0 V, or VDD_AH = 2.5 V. Table 73 • VDD_IO DC Characteristics Parameter Symbol Minimum Maximum Unit Condition Output high voltage VOH 2.0 2.8 V IOH = –1.0 mA Output low voltage VOL –0.3 0.4 V IOL = 1.0 mA Input high voltage VIH 1.85 3.0 V Input low voltage VIL –0.3 0.7 V Input leakage current, GPIO pins IILEAK_GPIO –89 32 µA Internal resistor included –32 32 µA Internal resistor included Output leakage current, GPIO pins IOLEAK_GPIO –89 32 µA Internal resistor included Output leakage current, all other pins IOLEAK 32 µA Internal resistor included 6 mA Input leakage current, all IILEAK other pins –32 Output low current drive IOL strength Output high current drive IOH strength 6.1.2 –6 mA Internal Pull-Up or Pull-Down Resistors Internal pull-up or pull-down resistors are specified in the following table. For more information about signals with internal pull-up or pull-down resistors, see Pins by Function, page 69. All internal pull-up resistors are connected to their respective I/O supply. Table 74 • Internal Pull-Up or Pull-Down Resistors Parameter Symbol Minimum Typical Maximum Unit Internal pull-up resistor, GPIO pins RPU 33 53 90 kΩ Internal pull-up resistor, all other pins RPU 96 120 144 kΩ Internal pull-down resistor RPD 96 120 144 kΩ VMDS-10397 VSC8522-02 Datasheet Revision 4.2 57 Electrical Specifications 6.1.3 Reference Clock The following table shows the DC specifications for a differential reference clock input signal. Reference Clock DC Characteristics Table 75 • Parameter Symbol Minimum Input voltage range VIP,VIN –25 Input differential voltage VID Input common-mode voltage VICM Differential input impedance RI 1. 150 Typical (1) Maximum Unit 1260 mV 1000 0 1200 mV (2) mV Ω 100 To meet jitter specifications, the minimum input differential voltage must be 400 mV. When using a singleended clock input, the REFCLK_P low voltage must be less than VDDA – 200 mV, and the high voltage level must be greater than VDDA + 200 mV. The maximum common-mode voltage is provided without a differential signal. The common-mode voltage is only limited by the maximum and minimum input voltage range and by the differential amplitude of the input signal. 2. 6.1.4 Enhanced SerDes Interface (QSGMII) All DC specifications for the enhanced SerDes interface are compliant with QSGMII Specification Revision 1.3 and meet or exceed the requirements in the standard. They are also compliant with OIFCEI-02.0 requirements where applicable. The following table shows the DC specifications for the enhanced SerDes driver. Table 76 • Enhanced SerDes Driver DC Specifications Parameter Symbol Minimum Maximum Unit Condition Output differential peak voltage, QSGMII mode |VODp| 250 400 mV VDD_VS = 1.0 V RL = 100 Ω ±1% maximum drive Output current, drivers shorted to ground, SGMII and QSGMII modes |IOSA|, |IOSB| 40 mA Output current, drivers shorted together, SGMII and QSGMII modes |IOSAB| 12 mA The following table lists the DC specifications for the enhanced SerDes receiver. Table 77 • Enhanced SerDes Receiver DC Specifications Parameter Symbol Minimum Maximum Unit VI –0.25 1.2 V Input differential peak-to-peak voltage |VID| 100 1600 mV Input common-mode voltage VICM 0 1200 mV Receiver differential input impedance RI 80 120 Ω Input voltage range, VIA or 1. VIB(1) Typical 100 QSGMII DC input sensitivity is less than 400 mV. VMDS-10397 VSC8522-02 Datasheet Revision 4.2 58 Electrical Specifications Figure 21 • QSGMII DC Transmit Test Circuit VOA VOD = VOA – VOB 100 Ω ±1% VOS = ½ (VOA + VOB) VOB 6.1.5 Current Consumption The typical current consumption values in QSGMII to 1000BASE-T mode are based on nominal voltages with the MAC interface operating in QSGMII mode, and all media side ports operating in 1000BASE-T with full-duplex enabled. Data traffic is a 64-bit random data pattern at 100% utilization. QSGMII to 1000BASE-T Current Consumption Table 78 • Parameter Symbol Typical Worst-case power consumption PD 6.2 Maximum Unit 6.75 W Current with VDD at 1.0 V IVDD 1.15 A Current with VDD_A at 1.0 V IVDD_A 0.18 A Current with VDD_AH at 2.5 V IVDD_AH 1.37 A Current with VDD_AL at 1.0 V IVDD_AL 0.19 A Current with VDD_IO at 2.5 V IVDD_IO 0.06 A Current with VDD_VS at 1.0 V IVDD_VS 0.09 A AC Characteristics This section provides the AC specifications for the VSC8522-02 device. 6.2.1 Reference Clock To meet QSGMII jitter generation requirements, Microsemi requires the use of a differential reference clock source. Use of a 25 MHz single-ended reference clock is not recommended. However, to implement a QSGMII chip interconnect using a 25 MHz single-ended reference clock and achieve errorfree data transfer on that interface, use an Ethernet switch with higher jitter tolerance than specified in the standard, such as Microsemi VSC742x family of products. For more information about QSGMII interoperability when using a 25 MHz single-ended reference clock, contact your Microsemi representative. The following table shows the AC specifications for a differential reference clock input. Performance is guaranteed for 156.25 MHz and 125 MHz differential clocks only, however 25 MHz and single-ended clocks are also supported. Table 79 • Reference Clock AC Characteristics Parameter Symbol Minimum Typical Maximum Unit Reference clock frequency, REFCLK_SEL[2:0] = 100 ƒ –100 ppm 25.00 100 ppm MHz Reference clock frequency, REFCLK_SEL[2:0] = 000 ƒ –100 ppm 125.00 100 ppm MHz Reference clock frequency, REFCLK_SEL[2:0] = 001 ƒ –100 ppm 156.25 100 ppm MHz Duty cycle DC 40 50 60 % VMDS-10397 VSC8522-02 Datasheet Revision 4.2 Condition 59 Electrical Specifications Table 79 • Reference Clock AC Characteristics (continued) Parameter Symbol Rise time and fall time tR, tF Maximum Unit Condition 1.5 ns 20% to 80% threshold REFCLK input RMS jitter, bandwidth from 12 kHz to 500 kHz 20 ps REFCLK input RMS jitter, bandwidth from 500 kHz to 15 MHz 4 ps REFCLK input RMS jitter, bandwidth from 15 MHz to 40 MHz 20 ps REFCLK input RMS jitter, bandwidth from 40 MHz to 80 MHz 100 ps Jitter gain from REFCLK to SerDes output, bandwidth from 0 MHz to 0.1 MHz 0.3 dB Jitter gain from REFCLK to SerDes output, bandwidth from 0.1 MHz to 7 MHz 3 dB Jitter gain from REFCLK to SerDes output, bandwidth greater than 7 MHz 3 –20 × log dB (ƒ/7 MHz) 6.2.2 Minimum Typical Enhanced SerDes Interface All AC specifications for the enhanced SerDes interface are compliant with QSGMII Specification Revision 1.3 and meet or exceed the requirements in the standard. They are also compliant with the OIFCEI-02.0 requirements where applicable. The values in the tables in the following sections apply to QSGMII mode and are based on the test circuit shown in Figure 21, page 59. The transmit and receive eye specifications relate to the eye diagrams shown in the following illustration, with the compliance load as defined in the test circuit. Figure 22 • QSGMII Transient Parameters Transmitter Eye Mask Receiver Eye Mask R_Y2 Amplitude (mV) Amplitude (mV) T_Y2 T_Y1 0 –T_Y1 –T_Y2 R_Y1 0 –R_Y1 –R_Y2 0 T_X1 T_X2 1–T_X2 1–T_X1 Time (UI) 1.0 0 R_X1 0.5 1–R_X1 1.0 Time (UI) VMDS-10397 VSC8522-02 Datasheet Revision 4.2 60 Electrical Specifications 6.2.3 Enhanced SerDes Outputs The following table provides the AC specifications for the enhanced SerDes outputs in QSGMII mode. Table 80 • 6.2.4 Enhanced SerDes Outputs AC Specifications, QSGMII Mode Parameter Symbol Unit interval, 5G UI VOD rise time and fall time tR, tF Differential peak-to-peak output voltage VOD Differential output return loss, 100 MHz to 2.5 GHz Minimum Maximum Unit Condition 200 ps 30 96 ps 20% to 80% of VS RL = 100 Ω ±1% 30 mV Tx disabled RLO_DIFF 8 dB RL = 100 Ω ±1% Differential output return loss, 2.5 GHz to 5 GHz RLO_DIFF 8 dB – 16.6 log (ƒ/2.5 GHz) dB RL = 100 Ω ±1% Eye mask X1 T_X1 0.15 UI Eye mask X2 T_X2 0.4 UI Eye mask Y1 T_Y1 Eye mask Y2 T_Y2 200 mV 450 mV Enhanced Serial LEDs This section contains the AC specifications for the enhanced serial LEDs. The duty cycle of the LED_PULSE signal is programmable and can be varied from 0.5% to 99.5%. Table 81 • Enhanced Serial LEDs AC Characteristics Parameter Symbol Minimum Maximum Unit LED_CLK cycle time tCYC 255 257 ns Pause between LED_DATA bit sequences tPAUSE 387.712 24987 µs LED_CLK to LED_DATA tCO 127 129 ns LED_CLK to LED_LD tCL 255 257 ns LED_LD pulse width tLW 127 129 ns LED_PULSE cycle time tPULSE 199 201 µs Figure 23 • Enhanced Serial LED Timing tcyc tpause LED_CLK tcl t co LED_DATA Bit 1 Bit 2 Bit X Bit 1 Bit 2 t lw LED_LD t pulse LED_PULSE VMDS-10397 VSC8522-02 Datasheet Revision 4.2 61 Electrical Specifications 6.2.5 Enhanced SerDes Driver Jitter Characteristics The following table lists the jitter characteristics for the enhanced SerDes driver in QSGMII mode. Table 82 • 6.2.6 Enhanced SerDes Driver Jitter Characteristics, QSGMII Mode Parameter Symbol Maximum Unit Condition Total output jitter TJO 60 ps Measured according to IEEE 802.3.38.5. Deterministic output jitter DJO 10 ps Measured according to IEEE 802.3.38.5. Enhanced SerDes Inputs The following table lists the AC specifications for the enhanced SerDes inputs in QSGMII mode. Table 83 • Enhanced SerDes Inputs AC Specifications, QSGMII Mode Parameter Symbol Unit interval, 5G UI Differential input return loss, 100 MHz to 2.5 GHz RLI_DIFF 8 dB RL = 100 Ω ±1% Differential input return loss, 2.5 GHz to 5 GHz RLI_DIFF 8 dB – 16.6 log (ƒ/2.5 GHz) dB RL = 100 Ω ±1% Common-mode input return loss, 100 MHz to 2.5 GHz RLICM dB Eye mask X1 R_X1 0.3 UI Eye mask Y1 R_Y1 50 mV Eye mask Y2 R_Y2 450 mV 6.2.7 Minimum Maximum Unit Condition 200 ps 6 Enhanced SerDes Receiver Jitter Tolerance The following table lists the jitter tolerance for the enhanced SerDes receiver in QSGMII mode. Table 84 • Enhanced SerDes Receiver Jitter Tolerance, QSGMII Mode Parameter Symbol Maximum Unit Condition Bounded high-probability jitter(1) BHPJ 90 ps 92 ps peak-to-peak random jitter and 38 ps sinusoidal jitter (SJHF). Sinusoidal jitter, maximum SJMAX 1000 ps Sinusoidal jitter, high frequency SJHF 10 ps Total jitter tolerance TJTI 120 ps 1. 92 ps peak-to-peak random jitter and 38 ps sinusoidal jitter (SJHF). This is the sum of uncorrelated bounded high probability jitter (0.15 UI), and correlated bounded high probability jitter (0.30 UI). Uncorrelated bounded high probability jitter is distribution where the value of the jitter shows no correlation to any signal level being transmitted, formally defined as deterministic jitter (DJ). Correlated bounded high probability jitter is jitter distribution where the value of the jitter shows a strong correlation to the signal level being transmitted. VMDS-10397 VSC8522-02 Datasheet Revision 4.2 62 Electrical Specifications 6.2.8 JTAG Interface This section provides the AC specifications for the JTAG interface. The specifications meet or exceed the requirements of IEEE 1149.1-2001. The JTAG receive signal requirements are requested at the pin of the device. The JTAG_TRST signal is asynchronous to the clock, and does not have a setup or hold time requirement. Table 85 • JTAG Interface AC Specifications Parameter Symbol Minimum TCK frequency ƒ TCK cycle time tC 100 ns TCK high time tW(CH) 40 ns TCK low time tW(CL) 40 ns Setup time to TCK rising tSU 10 ns Hold time from TCK rising tH 10 ns TDO valid after TCK falling tV(C) Unit 10 MHz 28 TDO hold time from TCK falling tH(TDO) TDO disable time(1) tDIS nTRST time low tW(TL) 1. Maximum 0 30 30 Condition ns CL = 10 pF ns CL = 0 pF ns See Figure 25, page 64. ns The pin begins to float when a 300 mV change from the actual VOH/VOL level occurs. Figure 24 • JTAG Interface Timing Diagram tC TCK tW(CH) tW(CL) TDI TMS tSU tV(C) tH TDO tH(TDO) tDIS See definition. nTRST tW(TL) VMDS-10397 VSC8522-02 Datasheet Revision 4.2 63 Electrical Specifications Figure 25 • Test Circuit for TDO Disable Time 3.3 V 500 Ω From output under test 5 pF 500 Ω 6.2.9 Serial Management Interface This section contains the AC specifications for the serial management interface (SMI). Table 86 • SMI Interface AC Characteristics Parameter Symbol Minimum Maximum Unit ƒCLK 0.488 20.83 MHz MDC cycle time tCYC 48 2048 ns MDC time high tWH 20 ns CL = 50 pF MDC time low tWL 20 ns CL = 50 pF MDIO setup time to MDC tSU on write 15 ns MDIO hold time to MDC on write tH 15 ns MDC rise time, MDC = 0: 1 MHz tR 100 ns MDC rise time, MDC = 1 MHz: ƒCLK maximum tR tCYC × 10%(1) ns MDC fall time, MDC = 0: 1 MHz tF 100 ns MDC fall time, MDC = 1 MHz: ƒCLK maximum tF tCYC × 10%(1) ns MDC to MDIO valid tCO 300 ns MDC 1. frequency(1) Typical 10 Condition Time-dependant on the value of the external pullup resistor on the MDIO pin For ƒCLK greater than 1 MHz, the minimum rise time and fall time is in relation to the frequency of the MDC clock period. For example, if ƒCLK is 2 MHz, the minimum clock rise time and fall time is 50 ns. VMDS-10397 VSC8522-02 Datasheet Revision 4.2 64 Electrical Specifications Figure 26 • SMI Interface Timing tWH tWL MDC tCYC tSU tH MDIO (write) Data tCO MDIO (read) 6.2.10 Data Reset Timing This section contains the AC specifications that apply to device reset functionality. The signal applied to the NRESET input must comply with the specifications listed in the following table. Table 87 • NRESET Timing Specifications Parameter Symbol NRESET assertion time after power supplies tW and clock stabilize Minimum Maximum 2 Unit ms Recovery time from reset inactive to device fully active tREC 105 ms NRESET pulse width tW(RL) 100 ns Wait time between NRESET de-assert and access of the SMI interface tWAIT 105 ms Figure 27 • Reset Timing tcyc LED_CLK tco LED_DATA 6.2.11 tpause Bit 1 Bit 2 Bit X Bit 1 Serial LEDs This section contains the AC specifications for the serial LEDs. Table 88 • Serial LEDs AC Characteristics Parameter Symbol Minimum LED_CLK cycle time tCYC 1 µs 25 ms Pause between LED bit sequences tPAUSE LED_CLK to LED_DATA tCO Maximum 1 VMDS-10397 VSC8522-02 Datasheet Revision 4.2 Unit ns 65 Electrical Specifications Figure 28 • Serial LED Timing tcyc LED_CLK tco LED_DATA 6.2.12 tpause Bit 1 Bit 2 Bit X Bit 1 Power Supply Sequencing During power on and off, VDD_A and VDD_VS must never be more than 300 mV above VDD. VDD_VS must be powered, even if the associated interface is not used. These power supplies must not remain at ground or left floating. There are no sequencing requirements for VDD_AL, VDD_AH, or VDD_IO. These power supplies can remain at ground or left floating if not used. The NRESET and JTAG_nTRST inputs must be held low until all power supply voltages have reached their recommended operating condition values. 6.3 Operating Conditions The following table shows the recommended operating conditions for the device. Recommended Operating Conditions Table 89 • Parameter Symbol Minimum Typical Maximum Unit Power supply voltage for VDD VDD 0.95 1.00 1.05 V Power supply voltage for VDD_A VDD_A 0.95 1.00 1.05 V Power supply voltage for VDD_AH VDD_AH 2.38 2.50 2.62 V Power supply voltage for VDD_AL VDD_AL 0.95 1.00 1.05 V Power supply voltage for VDD_IO VDD_IO 2.38 2.50 2.62 V Power supply voltage for VDD_VS 1.00 1.05 V VDD_VS 0.95 VSC8522-02 operating temperature(1) T 0 125 °C VSC8522-04 operating temperature(1) T –40 125 °C 1. 6.4 Minimum specification is ambient temperature, and the maximum is junction temperature. Stress Ratings This section contains the stress ratings for the VSC8522-02 device. Warning Stresses listed in the following table may be applied to devices one at a time without causing permanent damage. Functionality at or exceeding the values listed is not implied. Exposure to these values for extended periods may affect device reliability. Table 90 • Stress Ratings Parameter Symbol Minimum Maximum Unit Power supply voltage for core supply VDD –0.3 1.10 V Power supply voltage for SerDes and Enhanced SerDes interfaces VDD_VS –0.3 1.32 V VMDS-10397 VSC8522-02 Datasheet Revision 4.2 66 Electrical Specifications Table 90 • Stress Ratings (continued) Parameter Symbol Minimum Maximum Unit Power supply voltage for analog circuits in twisted pair VDD_AL interface –0.3 1.10 V Power supply voltage for analog circuits in twisted pair VDD_AH interface –0.3 2.75 V Power supply voltage for MIIM, PI, and miscellaneous I/O –0.3 2.75 V 3.3 V 125 °C Electrostatic discharge voltage, charged device model VESD_CDM –500 500 V Electrostatic discharge voltage, human body model 1750 V VDD_IO Input voltage for GPIO and logic input pins Storage temperature TS –55 VESD_HBM –1750 Warning This device can be damaged by electrostatic discharge (ESD) voltage. Microsemi recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures may adversely affect reliability of the device. VMDS-10397 VSC8522-02 Datasheet Revision 4.2 67 Pin Descriptions 7 Pin Descriptions The VSC8522-02 device has 302 pins, which are described in this section. The pin information is also provided as an attached Microsoft Excel file, so that you can copy it electronically. In Adobe Reader, double-click the attachment icon. 7.1 Pin Diagram The following illustration shows the pin diagram for the VSC8522-02 device, as seen from the top view looking through the device. Figure 29 • Pin Diagram 224 223 222 221 220 219 218 217 216 215 214 213 212 211 210 209 208 207 206 205 204 203 202 201 200 199 198 197 196 195 194 193 192 191 190 189 188 187 186 185 184 183 182 181 180 179 178 177 176 175 174 173 172 171 170 169 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 A78 A77 A76 A75 A74 A73 A72 A71 A70 A69 A68 A67 A66 A65 A64 A63 A62 A61 A60 A59 A58 A57 A1 A56 A2 A55 A3 A54 A4 A53 A5 A52 A6 A51 A7 A50 A8 A49 A9 A48 A10 A47 A11 A46 A12 A45 A13 A44 A14 A43 A15 A42 A16 A41 A17 A40 A18 A19 A20 A21 A22 A23 A24 A25 A26 A27 A28 A29 A30 A31 A32 A33 A34 A35 A36 A37 A38 A39 168 167 166 165 164 163 162 161 160 159 158 157 156 155 154 153 152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 VMDS-10397 VSC8522-02 Datasheet Revision 4.2 68 Pin Descriptions 7.2 Pins by Function This section contains the functional pin descriptions for the VSC8522-02 device. The following table lists the definitions for the pin type symbols. Table 91 • Symbol Pin Type Symbol Definitions Pin Type Description 3V 7.2.1 3.3 V-tolerant pin. ABIAS Analog bias Analog bias pin. ADIFF Analog differential Analog differential signal pair. I Input Input without on-chip pull-up or pull-down resistor. I/O Bidirectional Bidirectional input or output signal. NC No connect No connect pins must be left floating. O Output Output signal. OD Open drain Open drain output. OS Open source Open source output. PD Pull-down On-chip pull-down resistor to VSS. PU Pull-up On-chip pull-up resistor to VDD_IO. ST Schmitt-trigger Input has Schmitt-trigger circuitry. JTAG Interface Pins The following table shows the functional pins for the JTAG interface. 7.2.2 Table 92 • JTAG Pins Name Pin Type Description JTAG_CLK 175 I, PU, ST, 3V JTAG clock pin JTAG_DI 174 I, PU, ST, 3V JTAG data input pin JTAG_DO 172 O JTAG data output pin JTAG_TMS 173 I, PU, ST, 3V JTAG test mode select pin JTAG_TRS 171 T I, PU, ST, 3V JTAG reset pin MAC SerDes/QSGMII Interface Pins The following table shows the functional pins for the MAC SerDes/QSGMII interface. Table 93 • MAC SerDes/QSGMII Interface Pins Name Pin Type Description SERDES_E[1:3]_RXN A31, A27, A21 ADIFF 6G SerDes receive negative polarity pins SERDES_E[1:3]_RXP A30, A28, A20 ADIFF 6G SerDes receive positive polarity pins SERDES_E[1:3]_TXN A33, A25, A23 ADIFF 6G SerDes transmit negative polarity pins SERDES_E[1:3]_TXP A32, A26, A22 ADIFF 6G SerDes transmit positive polarity pins SERDES_REXT_[0:1] 106, 107 ABIAS Analog bias calibration. Connect an external 620 Ω ±1% resistor between SERDES_REXT_1 and SERDES_REXT_0. VMDS-10397 VSC8522-02 Datasheet Revision 4.2 69 Pin Descriptions 7.2.3 Miscellaneous Pins The following table shows the miscellaneous pins. Table 94 • 7.2.4 Miscellaneous Pins Name Pin Type Description ESLED0_CLK 50 I/O Enhanced serial LED clock ESLED0_LD 49 I/O Enhanced serial LED load ESLED1_CLK 45 I/O LED direct-drive output Enhanced serial LED clock ESLED1_DO 44 I/O LED direct-drive output Enhanced serial LED data ESLED1_LD A14 I/O LED direct-drive output Enhanced serial LED load ESLED1_PULSE 43 I/O LED direct-drive output Enhanced serial LED pulse FAST_LINK_STATUS 38 I/O Fast link failure indication. GPIO_15 42 I/O LED direct-drive output General purpose I/O GPIO_16 41 I/O LED direct-drive output General purpose I/O GPIO_29 40 I/O General purpose I/O PHYADD[3:4] 222, 221 I, PD PHY address range select. REFCLK_N REFCLK_P 69 70 I, ADIFF Reference clock input. The input can be either differential or single-ended. In differential mode, REFCLK_P is the true part of the differential signal, and REFCLK_N is the complement part of the differential signal. In single-ended mode, REFCLK_P is used as single-ended LVTTL input, and the REFCLK_N should be pulled to VDD_A. Required applied frequency depends on REFCLK_SEL[2:0] input state. REFCLK_SEL[0:2] 216, 217, 215 I, PD Reference clock frequency select. 0: Connect to pull-down or leave floating. 1: Connect to pull-up to VDD_IO. 000: 125 MHz (default). 001: 156.25 MHz. 100: 25 MHz. Multipurpose Pins The following table shows the functional descriptions for the multipurpose I/O pins. Table 95 • Multipurpose Pins Name Pin Type ESLED0_DO / GPIO_2 A15 I/O Enhanced serial LED data General purpose I/O ESLED0_PULSE / GPIO_3 47 Enhanced serial LED pulse General purpose I/O I/O Description VMDS-10397 VSC8522-02 Datasheet Revision 4.2 70 Pin Descriptions 7.2.5 Power Supply Pins The following table shows the power supply pins. All power supply pins must be connected to their respective voltage input, even though certain pin functions may not be used for a specific application. Table 96 • 7.2.6 Power Supply Pins Name Pin Type VDD_[1:41] 57, 58, 59, 76, 77, 78, 86, 87, 88, 1.0V 89, 90, 99, 100, 101, 102, 105, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, A10, A43, A44, A45, A61, A62, A72, A73 Connect to 1.0 V VDD_A_[1:15] 60, 63, 64, 68, 71, 72, 74, 80, 82, 1.0V 85, 91, 93, 95, 98, 104 Analog SerDes 1.0 V VDD_AH_[1:21] A2, A3, A4, A5, A7, A8, A9, A47, A48, A49, A50, A51, A53, A54, A55, A64, A65, A66, A67, A68, A69 2.5V Analog 2.5 V VDD_AL_[1:12] 1, 20, 37, 126, 127, 128, 129, 130, 133, 160, 183, 201 1.0V Analog 1.0 V VDD_IO_[1:11] 39, 56, 67, 83, 108, A59, A60, A71, A75, A76, A77 2.5V Connect to 2.5 V VDD_VS_[1:12] 61, 62, 73, 75, 79, 81, 84, 92, 94, 1.0V 96, 97, 103 Analog SerDes 1.0 V VSS_[1:16] VSS_163 A6, A13, A18, A19, A24, A29, A34, A39, A40, A41, A42, A46, A52, A58, A63, A70, A74 Ground 0V Description Reserved Pins The following table shows the reserved device pins. Except for pin 223 (RESERVED_0), which must be connected to ground, all RESERVED pins must be left floating. Table 97 • Reserved Pins Name Pin Type Description RESERVED_0 223 NC Reserved. Connect to ground. RESERVED_[3:8] 220, 218, 167, 168, 169, 170 NC Reserved. Leave unconnected. RESERVED_[10:18] A56, A57, 212, 213, A78, A1, A17, A16 NC Reserved. Leave unconnected. RESERVED_[22:30] 66, 65, A11, 53, 52, 48, 51, 219, 46 NC Reserved. Leave unconnected. RESERVED_[100:103] A38, A37, A36, A35 NC Reserved. Leave unconnected. VMDS-10397 VSC8522-02 Datasheet Revision 4.2 71 Pin Descriptions 7.2.7 Serial Management Interface Pins The following table shows the functional pins for the serial management interface. Table 98 • 7.2.8 Serial Management Interface Pins Name Pin Type Description COMA_MOD E 214 I/O, PU, ST, 3V When this pin is asserted high, all PHYs are held in a powered down state. When this pin is deasserted low, all PHYs are powered up and resume normal operation. This signal is also used to synchronize the operation of multiple chips on the same PCB to provide visual synchronization for LEDs driven from the separate chips. MDC 54 I Management data clock pin. MDINT A12 I/O, OD, OS Management interrupt signal. MDIO 55 I/O, OD Management data input/output pin. NRESET 224 I, PD, ST, 3V Device reset pin, active low. Twisted Pair Interface Pins The following table shows the functional pins for the twisted pair interface. Table 99 • Twisted Pair Interface Pins Name Pin Type Description P[0:11]_D0N 138, 146, 156, 165, 182, 191, 202, 210, 8, 16, 27, 35 ADIFF Connects to RJ45 pin 2 through a magnetic. P[0:11]_D0P 139, 147, 157, 166, ADIFF Connects to RJ45 Pin 1 through a magnetic. 184, 192, 203, 211, 9, 17, 28, 36 P[0:11]_D1N 136, 144, 154, 163, 180, 189, 199, 208, 6, 14, 25, 33 ADIFF Connects to RJ45 Pin 6 through a magnetic. P[0:11]_D1P 137, 145, 155, 164, 181, 190, 200, 209, 7, 15, 26, 34 ADIFF Connects to RJ45 Pin 3 through a magnetic. P[0:11]_D2N 134, 142, 152, 161, 178, 187, 197, 206, 4, 12, 23, 31 ADIFF Connects to RJ45 Pin 5 through a magnetic. P[0:11]_D2P 135, 143, 153, 162, 179, 188, 198, 207, 5, 13, 24, 32 ADIFF Connects to RJ45 Pin 4 through a magnetic. P[0:11]_D3N 131, 140, 150, 158, 176, 185, 195, 204, 2, 10, 21, 29 ADIFF Connects to RJ45 Pin 8 through a magnetic. P[11:0]_D3P 132, 141, 151, 159, 177, 186, 196, 205, 3, 11, 22, 30 ADIFF Connects to RJ45 Pin 7 through a magnetic. REF_FILT_[0:2] 148, 193, 18 ABIAS Copper media reference filter pins. Connect each of these pins to one external 1 µF capacitor each and then all going to ground. VMDS-10397 VSC8522-02 Datasheet Revision 4.2 72 Pin Descriptions Table 99 • Name Twisted Pair Interface Pins (continued) Pin Type REF_REXT_[0:2] 149, 194, 19 Description ABIAS Copper media reference external pins. Connect each of these pins to one external 2.0 kΩ (1%) resistor each and then all going to ground. VMDS-10397 VSC8522-02 Datasheet Revision 4.2 73 12-Port 10/100/1000BASE-T PHY with QSGMII MAC 7.3 Pins by Number This section provides a numeric list of the VSC8522-02 pins. 1 VDD_AL_1 2 P8_D3N 3 P8_D3P 4 P8_D2N 5 P8_D2P 6 P8_D1N 7 P8_D1P 8 P8_D0N 9 P8_D0P 10 P9_D3N 11 P9_D3P 12 P9_D2N 13 P9_D2P 14 P9_D1N 15 P9_D1P 16 P9_D0N 17 P9_D0P 18 REF_FILT_2 19 REF_REXT_2 20 VDD_AL_2 21 P10_D3N 22 P10_D3P 23 P10_D2N 24 P10_D2P 25 P10_D1N 26 P10_D1P 27 P10_D0N 28 P10_D0P 29 P11_D3N 30 P11_D3P 31 P11_D2N 32 P11_D2P 33 P11_D1N 34 P11_D1P 35 P11_D0N 36 P11_D0P 37 VDD_AL_3 38 FAST_LINK_STATUS 39 VDD_IO_1 40 GPIO_29 41 GPIO_16 42 GPIO_15 43 ESLED1_PULSE 44 ESLED1_DO 45 ESLED1_CLK 46 RESERVED_30 47 ESLED0_PULSE / GPIO_3 48 RESERVED_27 49 ESLED0_LD 50 ESLED0_CLK 51 RESERVED_28 52 RESERVED_26 53 RESERVED_25 54 MDC 55 MDIO 56 VDD_IO_2 57 VDD_1 58 VDD_2 59 VDD_3 60 VDD_A_1 61 VDD_VS_1 62 VDD_VS_2 63 VDD_A_2 64 VDD_A_3 65 RESERVED_23 66 RESERVED_22 67 VDD_IO_3 68 VDD_A_4 69 REFCLK_N 70 REFCLK_P 71 VDD_A_5 72 VDD_A_6 73 VDD_VS_3 74 VDD_A_7 75 VDD_VS_4 VMDS-10397 VSC8522-02 Datasheet Revision 4.2 74 Pins by number (continued) 76 VDD_4 114 VDD_22 77 VDD_5 115 VDD_23 78 VDD_6 116 VDD_24 79 VDD_VS_5 117 VDD_25 80 VDD_A_8 118 VDD_26 81 VDD_VS_6 119 VDD_27 82 VDD_A_9 120 VDD_28 83 VDD_IO_4 121 VDD_29 84 VDD_VS_7 122 VDD_30 85 VDD_A_10 123 VDD_31 86 VDD_7 124 VDD_32 87 VDD_8 125 VDD_33 88 VDD_9 126 VDD_AL_4 89 VDD_10 127 VDD_AL_5 90 VDD_11 128 VDD_AL_6 91 VDD_A_11 129 VDD_AL_7 92 VDD_VS_8 130 VDD_AL_8 93 VDD_A_12 131 P0_D3N 94 VDD_VS_9 132 P0_D3P 95 VDD_A_13 133 VDD_AL_9 96 VDD_VS_10 134 P0_D2N 97 VDD_VS_11 135 P0_D2P 98 VDD_A_14 136 P0_D1N 99 VDD_12 137 P0_D1P 100 VDD_13 138 P0_D0N 101 VDD_14 139 P0_D0P 102 VDD_15 140 P1_D3N 103 VDD_VS_12 141 P1_D3P 104 VDD_A_15 142 P1_D2N 105 VDD_16 143 P1_D2P 106 SERDES_REXT_0 144 P1_D1N 107 SERDES_REXT_1 145 P1_D1P 108 VDD_IO_5 146 P1_D0N 109 VDD_17 147 P1_D0P 110 VDD_18 148 REF_FILT_0 111 VDD_19 149 REF_REXT_0 112 VDD_20 150 P2_D3N 113 VDD_21 151 P2_D3P VMDS-10397 VSC8522-02 Datasheet Revision 4.2 75 Pins by number (continued) 152 P2_D2N 190 P5_D1P 153 P2_D2P 191 P5_D0N 154 P2_D1N 192 P5_D0P 155 P2_D1P 193 REF_FILT_1 156 P2_D0N 194 REF_REXT_1 157 P2_D0P 195 P6_D3N 158 P3_D3N 196 P6_D3P 159 P3_D3P 197 P6_D2N 160 VDD_AL_10 198 P6_D2P 161 P3_D2N 199 P6_D1N 162 P3_D2P 200 P6_D1P 163 P3_D1N 201 VDD_AL_12 164 P3_D1P 202 P6_D0N 165 P3_D0N 203 P6_D0P 166 P3_D0P 204 P7_D3N 167 RESERVED_5 205 P7_D3P 168 RESERVED_6 206 P7_D2N 169 RESERVED_7 207 P7_D2P 170 RESERVED_8 208 P7_D1N 171 JTAG_TRST 209 P7_D1P 172 JTAG_DO 210 P7_D0N 173 JTAG_TMS 211 P7_D0P 174 JTAG_DI 212 RESERVED_12 175 JTAG_CLK 213 RESERVED_13 176 P4_D3N 214 COMA_MODE 177 P4_D3P 215 REFCLK_SEL2 178 P4_D2N 216 REFCLK_SEL0 179 P4_D2P 217 REFCLK_SEL1 180 P4_D1N 218 RESERVED_4 181 P4_D1P 219 RESERVED_29 182 P4_D0N 220 RESERVED_3 183 VDD_AL_11 221 PHYADD4 184 P4_D0P 222 PHYADD3 185 P5_D3N 223 RESERVED_0 186 P5_D3P 224 NRESET 187 P5_D2N A1 RESERVED_15 188 P5_D2P A2 VDD_AH_1 189 P5_D1N A3 VDD_AH_2 VMDS-10397 VSC8522-02 Datasheet Revision 4.2 76 Pins by number (continued) A4 VDD_AH_3 A42 VSS_10 A5 VDD_AH_4 A43 VDD_35 A6 VSS_1 A44 VDD_36 A7 VDD_AH_5 A45 VDD_37 A8 VDD_AH_6 A46 VSS_11 A9 VDD_AH_7 A47 VDD_AH_8 A10 VDD_34 A48 VDD_AH_9 A11 RESERVED_24 A49 VDD_AH_10 A12 MDINT A50 VDD_AH_11 A13 VSS_2 A51 VDD_AH_12 A14 ESLED1_LD A52 VSS_12 A15 ESLED0_DO / GPIO_2 A53 VDD_AH_13 A16 RESERVED_18 A54 VDD_AH_14 A17 RESERVED_17 A55 VDD_AH_15 A18 VSS_163 A56 RESERVED_10 A19 VSS_3 A57 RESERVED_11 A20 SERDES_E3_RXP A58 VSS_13 A21 SERDES_E3_RXN A59 VDD_IO_6 A22 SERDES_E3_TXP A60 VDD_IO_7 A23 SERDES_E3_TXN A61 VDD_38 A24 VSS_4 A62 VDD_39 A25 SERDES_E2_TXN A63 VSS_14 A26 SERDES_E2_TXP A64 VDD_AH_16 A27 SERDES_E2_RXN A65 VDD_AH_17 A28 SERDES_E2_RXP A66 VDD_AH_18 A29 VSS_5 A67 VDD_AH_19 A30 SERDES_E1_RXP A68 VDD_AH_20 A31 SERDES_E1_RXN A69 VDD_AH_21 A32 SERDES_E1_TXP A70 VSS_15 A33 SERDES_E1_TXN A71 VDD_IO_8 A34 VSS_6 A72 VDD_40 A35 RESERVED_103 A73 VDD_41 A36 RESERVED_102 A74 VSS_16 A37 RESERVED_101 A75 VDD_IO_9 A38 RESERVED_100 A76 VDD_IO_10 A39 VSS_7 A77 VDD_IO_11 A40 VSS_8 A78 RESERVED_14 A41 VSS_9 VMDS-10397 VSC8522-02 Datasheet Revision 4.2 77 12-Port 10/100/1000BASE-T PHY with QSGMII MAC 7.4 Pins by Name This section provides an alphabetical list of the VSC8522-02 pins. COMA_MODE 214 ESLED0_CLK 50 ESLED0_DO / GPIO_2 A15 ESLED0_LD 49 ESLED0_PULSE / GPIO_3 47 ESLED1_CLK 45 ESLED1_DO 44 ESLED1_LD A14 ESLED1_PULSE 43 FAST_LINK_STATUS 38 GPIO_15 42 GPIO_16 41 GPIO_29 40 JTAG_CLK 175 JTAG_DI 174 JTAG_DO 172 JTAG_TMS 173 JTAG_TRST 171 MDC 54 MDINT A12 MDIO 55 NRESET 224 P0_D0N 138 P0_D0P 139 P0_D1N 136 P0_D1P 137 P0_D2N 134 P0_D2P 135 P0_D3N 131 P0_D3P 132 P1_D0N 146 P1_D0P 147 P1_D1N 144 P1_D1P 145 P1_D2N 142 P1_D2P 143 P1_D3N 140 P1_D3P 141 P10_D0N 27 P10_D0P 28 P10_D1N 25 P10_D1P 26 P10_D2N 23 P10_D2P 24 P10_D3N 21 P10_D3P 22 P11_D0N 35 P11_D0P 36 P11_D1N 33 P11_D1P 34 P11_D2N 31 P11_D2P 32 P11_D3N 29 P11_D3P 30 P2_D0N 156 P2_D0P 157 P2_D1N 154 P2_D1P 155 P2_D2N 152 P2_D2P 153 P2_D3N 150 P2_D3P 151 P3_D0N 165 P3_D0P 166 P3_D1N 163 P3_D1P 164 P3_D2N 161 P3_D2P 162 P3_D3N 158 P3_D3P 159 P4_D0N 182 P4_D0P 184 P4_D1N 180 P4_D1P 181 P4_D2N 178 VMDS-10397 VSC8522-02 Datasheet Revision 4.2 78 Pins by name (continued) P4_D2P 179 P9_D1P 15 P4_D3N 176 P9_D2N 12 P4_D3P 177 P9_D2P 13 P5_D0N 191 P9_D3N 10 P5_D0P 192 P9_D3P 11 P5_D1N 189 PHYADD3 222 P5_D1P 190 PHYADD4 221 P5_D2N 187 REF_FILT_0 148 P5_D2P 188 REF_FILT_1 193 P5_D3N 185 REF_FILT_2 18 P5_D3P 186 REF_REXT_0 149 P6_D0N 202 REF_REXT_1 194 P6_D0P 203 REF_REXT_2 19 P6_D1N 199 REFCLK_N 69 P6_D1P 200 REFCLK_P 70 P6_D2N 197 REFCLK_SEL0 216 P6_D2P 198 REFCLK_SEL1 217 P6_D3N 195 REFCLK_SEL2 215 P6_D3P 196 RESERVED_0 223 P7_D0N 210 RESERVED_3 220 P7_D0P 211 RESERVED_4 218 P7_D1N 208 RESERVED_5 167 P7_D1P 209 RESERVED_6 168 P7_D2N 206 RESERVED_7 169 P7_D2P 207 RESERVED_8 170 P7_D3N 204 RESERVED_10 A56 P7_D3P 205 RESERVED_11 A57 P8_D0N 8 RESERVED_12 212 P8_D0P 9 RESERVED_13 213 P8_D1N 6 RESERVED_14 A78 P8_D1P 7 RESERVED_15 A1 P8_D2N 4 RESERVED_17 A17 P8_D2P 5 RESERVED_18 A16 P8_D3N 2 RESERVED_22 66 P8_D3P 3 RESERVED_23 65 P9_D0N 16 RESERVED_24 A11 P9_D0P 17 RESERVED_25 53 P9_D1N 14 RESERVED_26 52 VMDS-10397 VSC8522-02 Datasheet Revision 4.2 79 Pins by name (continued) RESERVED_27 48 VDD_17 109 RESERVED_28 51 VDD_18 110 RESERVED_29 219 VDD_19 111 RESERVED_30 46 VDD_20 112 RESERVED_100 A38 VDD_21 113 RESERVED_101 A37 VDD_22 114 RESERVED_102 A36 VDD_23 115 RESERVED_103 A35 VDD_24 116 SERDES_E1_RXN A31 VDD_25 117 SERDES_E1_RXP A30 VDD_26 118 SERDES_E1_TXN A33 VDD_27 119 SERDES_E1_TXP A32 VDD_28 120 SERDES_E2_RXN A27 VDD_29 121 SERDES_E2_RXP A28 VDD_30 122 SERDES_E2_TXN A25 VDD_31 123 SERDES_E2_TXP A26 VDD_32 124 SERDES_E3_RXN A21 VDD_33 125 SERDES_E3_RXP A20 VDD_34 A10 SERDES_E3_TXN A23 VDD_35 A43 SERDES_E3_TXP A22 VDD_36 A44 SERDES_REXT_0 106 VDD_37 A45 SERDES_REXT_1 107 VDD_38 A61 VDD_1 57 VDD_39 A62 VDD_2 58 VDD_40 A72 VDD_3 59 VDD_41 A73 VDD_4 76 VDD_A_1 60 VDD_5 77 VDD_A_2 63 VDD_6 78 VDD_A_3 64 VDD_7 86 VDD_A_4 68 VDD_8 87 VDD_A_5 71 VDD_9 88 VDD_A_6 72 VDD_10 89 VDD_A_7 74 VDD_11 90 VDD_A_8 80 VDD_12 99 VDD_A_9 82 VDD_13 100 VDD_A_10 85 VDD_14 101 VDD_A_11 91 VDD_15 102 VDD_A_12 93 VDD_16 105 VDD_A_13 95 VMDS-10397 VSC8522-02 Datasheet Revision 4.2 80 Pins by name (continued) VDD_A_14 98 VDD_IO_4 VDD_A_15 104 VDD_IO_5 108 VDD_AH_1 A2 VDD_IO_6 A59 VDD_AH_2 A3 VDD_IO_7 A60 VDD_AH_3 A4 VDD_IO_8 A71 VDD_AH_4 A5 VDD_IO_9 A75 VDD_AH_5 A7 VDD_IO_10 A76 VDD_AH_6 A8 VDD_IO_11 A77 VDD_AH_7 A9 VDD_VS_1 61 VDD_AH_8 A47 VDD_VS_2 62 VDD_AH_9 A48 VDD_VS_3 73 VDD_AH_10 A49 VDD_VS_4 75 VDD_AH_11 A50 VDD_VS_5 79 VDD_AH_12 A51 VDD_VS_6 81 VDD_AH_13 A53 VDD_VS_7 84 VDD_AH_14 A54 VDD_VS_8 92 VDD_AH_15 A55 VDD_VS_9 94 VDD_AH_16 A64 VDD_VS_10 96 VDD_AH_17 A65 VDD_VS_11 97 VDD_AH_18 A66 VDD_VS_12 103 VDD_AH_19 A67 VSS_1 A6 VDD_AH_20 A68 VSS_2 A13 VDD_AH_21 A69 VSS_3 A19 VDD_AL_1 1 VSS_4 A24 VDD_AL_2 20 VSS_5 A29 VDD_AL_3 37 VSS_6 A34 VDD_AL_4 126 VSS_7 A39 VDD_AL_5 127 VSS_8 A40 VDD_AL_6 128 VSS_9 A41 VDD_AL_7 129 VSS_10 A42 VDD_AL_8 130 VSS_11 A46 VDD_AL_9 133 VSS_12 A52 VDD_AL_10 160 VSS_13 A58 VDD_AL_11 183 VSS_14 A63 VDD_AL_12 201 VSS_15 A70 VDD_IO_1 39 VSS_16 A74 VDD_IO_2 56 VSS_163 A18 VDD_IO_3 67 VMDS-10397 VSC8522-02 Datasheet Revision 4.2 83 81 Package Information 8 Package Information VSC8522XJQ-02 and VSC8522XJQ-04 are packaged in a lead-free (Pb-free), 302-pin, plastic thin quad flat package (TQFP) with an exposed pad, 24 mm × 24 mm body size, 1 mm body thickness, 0.4 mm pin pitch for the outer leads, 0.5 mm pin pitch for the inner leads, and 1.2 mm maximum height. Lead-free products from Microsemi comply with the temperatures and profiles defined in the joint IPC and JEDEC standard IPC/JEDEC J-STD-020. For more information, see the IPC and JEDEC standard. This section provides the package drawing, thermal specifications, and moisture sensitivity rating for the device. 8.1 Package Drawing The following illustration shows the package drawing for the device. The drawing contains the top view, bottom view, side view, detail views, dimensions, tolerances, and notes. VMDS-10397 VSC8522-02 Datasheet Revision 4.2 82 Package Information Figure 30 • Package Drawing Top View Bottom View 24.00 Pin 1 corner 5 6 Pin 1 corner 22.00 26.00 4 D 224 12.50 11.40 ±0.10 3 Detail B 224 1 1 13 (13×) 3 A78 A1 3 B 8.00 9.50 24.00 22.00 26.00 8.40 ±0.10 A 4 5 6 Detail D Detail C 0.20 (4×) C A-B D Side View Detail A Detail A 11°–13° H 2 0.10 C 0.08 2 9 Detail C 3 5M A-B 8.2 Gauge plane 0.60 ±0.15 1.00 0.40 ±0.10 D ( 4× ) 0.18 ±0.05 3 8 A, B, or D Ø 0.10 M H A-B D Detail E 0.50 BSC Odd land side Notes 14. 0.25 Even land side H 0.40 maximum cut width 0.25 maximum cut depth 9. 10. 11. 12. 13. 0°–7° Detail D Ø0 .0 6.8 5/5 .35 0.08 R min C 0.051+0.049 –0.051 0.40 BSC 4. 5. 6. 7. 8. C C C A-B D Detail B 3. 0° min 0.08/0.20 R H 1.20 1.00 max ±0.05 Seating plane 1. 2. 0.20 min 0.05 C Ø 0.08 M Ø 0.05 M H A-B D 0.20 (4×) H A-B D Detail E 0.05 0.22 ±0.05 (78×) 10.50 All dimensions and tolerances are in millimeters (mm). Datum plane H is located at the mold parting line and coincident lead, where the lead exits the plastic body at the bottom of the parting line. Datums A–B and D are determined at the centerline, between leads, where the leads exit the plastic body at datum plane H. Determined at seating plane C. Dimensions do not include a mold protrusion allowance of 0.254 mm. 8 Determined at datum plane H. Top of package may be smaller than the bottom of package by 0.15 mm. Dimension does not include a dambar protrusion allowance of 0.08 mm total in 14 excess of the pin width maximum. 0.144/0.200 Measured from the seating plane to the lowest point of the package body. Exposed pad size tolerance is 0.10 mm maximum. Exposed pad is coplanar with the bottom of the package within 0.05 mm. Unilateral coplanarity zone applies to the exposed pad and terminals. Mechanical connect tabs are counted as ground signal pins and are included in the total package pin count. Applies to the flat section of the lead between 0.10 mm and 0.25 mm from lead tip. D 0.50 BSC D Cross section C-C Ø 0.08 M 0.18 ±0.05 Base metal with lead finish C A-B D Cross section D-D 0.08 H 0.22 ±0.05 0 ±0.05 Base metal with lead finish 0.152 Mold compound Thermal Specifications Thermal specifications for this device are based on the JEDEC JESD51 family of documents. These documents are available on the JEDEC Web site at www.jedec.org. The thermal specifications are VMDS-10397 VSC8522-02 Datasheet Revision 4.2 83 Package Information modeled using a four-layer test board with two signal layers, a power plane, and a ground plane (2s2p PCB). For more information about the thermal measurement method used for this device, see the JESD51-1 standard. Table 100 • Thermal Resistances Symbol °C/W Parameter θJCtop 5.13 Die junction to package case top θJB 7.86 Die junction to printed circuit board θJA 15.39 Die junction to ambient θJMA at 1 m/s 11.53 Die junction to moving air measured at an air speed of 1 m/s θJMA at 2 m/s 9.34 Die junction to moving air measured at an air speed of 2 m/s To achieve results similar to the modeled thermal measurements, the guidelines for board design described in the JESD51 family of publications must be applied. For information about applications using QFP packages with an exposed pad, see the following: • • • • • 8.3 JESD51-2A, Integrated Circuits Thermal Test Method Environmental Conditions, Natural Convection (Still Air) JESD51-6, Integrated Circuit Thermal Test Method Environmental Conditions, Forced Convection (Moving Air) JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions, Junction-to-Board JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages JESD51-5, Extension of Thermal Test Board Standards for Packages with Direct Thermal Attachment Mechanisms Moisture Sensitivity This device is rated moisture sensitivity level 4 as specified in the joint IPC and JEDEC standard IPC/JEDEC J-STD-020. For more information, see the IPC and JEDEC standard. VMDS-10397 VSC8522-02 Datasheet Revision 4.2 84 Design Considerations 9 Design Considerations This section provides information about the design considerations for the VSC8522-02 device. 9.1 10BASE-T mode unable to re-establish link 10BASE-T mode is unable to re-establish link with the following devices if the link drops while sending data: SparX-III™ and Caracal™ family of switches, VSC8512-02, VSC8522-02, VSC8522-12, VSC8504, VSC8552, VSC8572, and VSC8574. No issue is observed for other link partner devices. The probability of this error occurring is low except in a test environment. The workaround is to contact Microsemi for the current API software release. This item was previously published in the VSC8522-02 Errata revision 1.0 as EA100054. 9.2 Software script for link performance Software script is required for improved link performance. PHY ports may exhibit suboptimal performance. Contact Microsemi for a script to be applied during system initialization. This item was previously published in the VSC8522-02 Errata revision 1.0 as EA100034. 9.3 10BASE-T signal amplitude 10BASE-T signal amplitude can be lower than the minimum specified in IEEE 802.3 paragraph 14.3.1.2.1 (2.2 V) at low supply voltages. This issue is not estimated to present any system level impact. Performance is not impaired with cables up to 130 m with various link partners. This item was previously published in the VSC8522-02 Errata revision 1.0 as EA100036. 9.4 Clause 45 register 7.60 Clause 45, register 7.60, bit 10 reads back as a logic 1. This is a reserved bit in the standard and should be ignored by software. This item was previously published in the VSC8522-02 Errata revision 1.0 as EA100037. 9.5 Clause 45 register 3.22 Clause 45, register 3.22 is cleared upon read only when extended page access register (register 31) is set to 0. This register cannot be read when page access register is set to a value other than 0. The workaround is to set the extended page access register to 0 before accessing clause 45, register 3.22. This item was previously published in the VSC8522-02 Errata revision 1.0 as EA100038. 9.6 Clause 45 register 3.1 Clause 45, register 3.1, Rx and Tx LPI received bits are cleared upon read only when extended page access register (register 31) is set to 0. The workaround is to set the extended page access register to 0 before accessing clause 45, register 3.1. This item was previously published in the VSC8522-02 Errata revision 1.0 as EA100039. 9.7 Clause 45 register address post-increment Clause 45 register address post-increment only works when reading registers and only when the extended page access register (register 31) is set to 0. The estimated impact is low, as there are very few Clause 45 registers in a Gigabit PHY, and they can be addressed individually. The workaround is to access Clause 45 registers individually. VMDS-10397 VSC8522-02 Datasheet Revision 4.2 85 Design Considerations This item was previously published in the VSC8522-02 Errata revision 1.0 as EA100040. VMDS-10397 VSC8522-02 Datasheet Revision 4.2 86 Ordering Information 10 Ordering Information The device is offered with two operating temperature ranges. The range for VSC8522-02 is 0 °C ambient to 125 °C junction. The range for VSC8522-04 is –40 °C ambient to 125 °C junction. VSC8522XJQ-02 and VSC8522XJQ-04 are packaged in a lead-free (Pb-free), 302-pin, plastic thin quad flat package (TQFP) with an exposed pad, 24 mm × 24 mm body size, 1 mm body thickness, 0.4 mm pin pitch for the outer leads, 0.5 mm pin pitch for the inner leads, and 1.2 mm maximum height. Lead-free products from Microsemi comply with the temperatures and profiles defined in the joint IPC and JEDEC standard IPC/JEDEC J-STD-020. For more information, see the IPC and JEDEC standard. The following table lists the ordering information for the device. Table 101 • Ordering Information Part Order Number Description VSC8522XJQ-02 Lead-free, 302-pin, plastic TQFP with an exposed pad, 24 mm × 24 mm body size, 1 mm body thickness, 0.4 mm pin pitch for the outer leads, 0.5 mm pin pitch for the inner leads, and 1.2 mm maximum height. The operating temperature is 0 °C ambient to 125 °C junction. VSC8522XJQ-04 Lead-free, 302-pin, plastic TQFP with an exposed pad, 24 mm × 24 mm body size, 1 mm body thickness, 0.4 mm pin pitch for the outer leads, 0.5 mm pin pitch for the inner leads, and 1.2 mm maximum height. The operating temperature is –40 °C ambient to 125 °C junction. VMDS-10397 VSC8522-02 Datasheet Revision 4.2 87
VSC8522XJQ-04 价格&库存

很抱歉,暂时无法提供与“VSC8522XJQ-04”相匹配的价格&库存,您可以联系我们找货

免费人工找货
VSC8522XJQ-04

库存:0