0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
UF3C065030K3S

UF3C065030K3S

  • 厂商:

    ACTIVE-SEMI

  • 封装:

    TO-247-3

  • 描述:

    通孔 N 通道 650 V 85A(Tc) 441W(Tc) TO-247-3

  • 数据手册
  • 价格&库存
UF3C065030K3S 数据手册
650V-27mW SiC FET Rev. C, December 2019 DATASHEET Description UF3C065030K3S CASE CASE D (2) This SiC FET device is based on a unique ‘cascode’ circuit configuration, in which a normally-on SiC JFET is co-packaged with a Si MOSFET to produce a normally-off SiC FET device. The device’s standard gate-drive characteristics allows for a true “drop-in replacement” to Si IGBTs, Si FETs, SiC MOSFETs or Si superjunction devices. Available in the TO-247-3L package, this device exhibits ultralow gate charge and exceptional reverse recovery characteristics, making it ideal for switching inductive loads when used with recommended RC-snubbers, and any application requiring standard gate drive. Features w Typical on-resistance RDS(on),typ of 27mW w Maximum operating temperature of 175°C G (1) w Excellent reverse recovery w Low gate charge w Low intrinsic capacitance 1 w ESD protected, HBM class 2 2 3 w Very low switching losses (required RC-snubber loss negligible . under typical operating conditions) S (3) Typical applications Part Number Package Marking UF3C065030K3S TO-247-3L UF3C065030K3S w EV charging w PV inverters w Switch mode power supplies w Power factor correction modules w Motor drives w Induction heating Datasheet: UF3C065030K3S Rev. C, December 2019 1 Maximum Ratings Parameter Symbol VDS VGS Drain-source voltage Gate-source voltage Continuous drain current 1 ID Pulsed drain current 2 Single pulsed avalanche energy 3 Power dissipation Maximum junction temperature Operating and storage temperature IDM EAS Ptot TJ,max TJ, TSTG Max. lead temperature for soldering, 1/8” from case for 5 seconds TL Test Conditions DC TC = 25°C TC = 100°C TC = 25°C L=15mH, IAS =4A TC = 25°C Value Units 650 -25 to +25 85 62 230 120 441 175 -55 to 175 V V A A A mJ W °C °C 250 °C 1. Limited by TJ,max 2. Pulse width tp limited by TJ,max 3. Starting TJ = 25°C Thermal Characteristics Parameter Thermal resistance, junction-to-case Datasheet: UF3C065030K3S Symbol Test Conditions RqJC Rev. C, December 2019 Value Min Typ Max 0.26 0.34 Units °C/W 2 Electrical Characteristics (TJ = +25°C unless otherwise specified) Typical Performance - Static Parameter Drain-source breakdown voltage Total drain leakage current Total gate leakage current Drain-source on-resistance Gate threshold voltage Gate resistance Symbol Test Conditions BVDS VGS=0V, ID=1mA IDSS IGSS RDS(on) VG(th) RG Value Min Typ Max 650 V VDS=650V, VGS=0V, TJ=25°C 6 VDS=650V, VGS=0V, TJ=175°C 30 VDS=0V, TJ=25°C, VGS=-20V / +20V 6 20 VGS=12V, ID=50A, TJ=25°C 27 35 VGS=12V, ID=50A, TJ=125°C VGS=12V, ID=50A, TJ=175°C VDS=5V, ID=10mA Units 150 mA mA mW 35 43 4 f=1MHz, open drain 5 4.5 6 V W Typical Performance - Reverse Diode Parameter Diode continuous forward current 1 Diode pulse current 2 Forward voltage Test Conditions IS TC=25°C 85 A IS,pulse TC=25°C 230 A VFSD Reverse recovery charge Qrr Reverse recovery time trr Reverse recovery charge Qrr Reverse recovery time trr Datasheet: UF3C065030K3S Value Symbol Min Typ VGS=0V, IF=20A, TJ=25°C 1.3 VGS=0V, IF=20A, TJ=175°C 1.35 VR=400V, IF=50A, VGS=-5V, RG_EXT=20W di/dt=1300A/ms, TJ=25°C VR=400V, IF=50A, VGS=-5V, RG_EXT=20W di/dt=1300A/ms, TJ=150°C Rev. C, December 2019 Max Units 1.4 V 218 nC 38 ns 188 nC 35 ns 3 Typical Performance - Dynamic Parameter Value Symbol Test Conditions Ciss Coss Crss VDS=100V, VGS=0V f=100kHz 1500 293 2 pF Effective output capacitance, energy related Coss(er) VDS=0V to 400V, VGS=0V 215 pF Effective output capacitance, time related Coss(tr) VDS=0V to 400V, VGS=0V 480 pF COSS stored energy Eoss VDS=400V, VGS=0V 17.5 mJ Total gate charge Gate-drain charge Gate-source charge QG QGD QGS VDS=400V, ID=50A, VGS = -5V to 15V 51 11 19 nC Turn-on delay time td(on) Input capacitance Output capacitance Reverse transfer capacitance tr Rise time td(off) Turn-off delay time tf Fall time 4 EON 4 EOFF Turn-on energy including RS energy Turn-off energy including RS energy Total switching energy including RS energy4 ETOTAL Snubber RS energy during turn-on ERS_ON Snubber RS energy during turn-off ERS_OFF td(on) Turn-on delay time tr Rise time td(off) Turn-off delay time tf Fall time 4 EON 4 EOFF Turn-on energy including RS energy Turn-off energy including RS energy Total switching energy including RS energy4 ETOTAL Snubber RS energy during turn-on ERS_ON Snubber RS energy during turn-off ERS_OFF Min Typ Max Units 45 VDS=400V, ID=50A, Gate Driver =-5V to +15V, Turn-on RG,EXT=1.8W, Turn-off RG,EXT=22W Inductive Load, FWD: same device with VGS = -5V and RG = 22W, RC snubber: RS=5W and CS=330pF, TJ=25°C 28 59 ns 18 752 178 930 mJ 4.4 11.3 VDS=400V, ID=50A, Gate Driver =-5V to +15V, Turn-on RG,EXT=1.8W, Turn-off RG,EXT=22W Inductive Load, FWD: same device with VGS = -5V and RG = 22W, RC snubber: RS=5W and CS=330pF, TJ=150°C 43 28 61 ns 17 704 195 899 mJ 4.2 11.3 4. The switching performance are evaluated with a RC snubber circuit as shown in Figure 24. Datasheet: UF3C065030K3S Rev. C, December 2019 4 200 200 150 150 Drain Current, ID (A) Drain Current, ID (A) Typical Performance Diagrams Vgs = 15V Vgs = 10V Vgs = 8V Vgs = 7.5V Vgs = 7V Vgs = 6.5V 100 50 0 Vgs = 15V Vgs = 10V Vgs = 8V Vgs = 7V Vgs = 6.5V 50 0 0 1 2 3 4 5 6 7 8 Drain-Source Voltage, VDS (V) 9 10 Figure 1. Typical output characteristics at TJ = - 55°C, tp < 250ms 200 100 1 2 3 4 5 6 7 8 9 Drain-Source Voltage, VDS (V) 10 Figure 2. Typical output characteristics at TJ = 25°C, tp < 250ms 2.0 Vgs = 15V Vgs = 10V Vgs = 8V Vgs = 7V Vgs = 6.5V Vgs = 6V 150 0 On Resistance, RDS_ON (P.U.) Drain Current, ID (A) 100 50 1.5 1.0 0.5 0.0 0 0 1 2 3 4 5 6 7 8 Drain-Source Voltage, VDS (V) 9 Figure 3. Typical output characteristics at TJ = 175°C, tp < 250ms Datasheet: UF3C065030K3S -75 -50 -25 0 25 50 75 100 125 150 175 Junction Temperature, TJ (°C) 10 Figure 4. Normalized on-resistance vs. temperature at VGS = 12V and ID = 50A Rev. C, December 2019 5 150 Tj = 175°C Tj = 25°C Tj = - 55°C 80 60 40 20 Tj = 25°C Tj = 175°C 100 75 50 25 0 0 0 25 50 75 100 Drain Current, ID (A) 125 150 Figure 5. Typical drain-source on-resistances at VGS = 12V 0 2 3 4 5 6 7 8 Gate-Source Voltage, VGS (V) 9 10 Gate-Source Voltage, VGS (V) 20 5 4 3 2 1 0 -100 1 Figure 6. Typical transfer characteristics at VDS = 5V 6 Threshold Voltage, Vth (V) Tj = -55°C 125 Drain Current, ID (A) On-Resistance, RDS(on) (mW) 100 15 10 5 0 -5 -50 0 50 100 150 Junction Temperature, TJ (°C) Figure 7. Threshold voltage vs. junction temperature at VDS = 5V and ID = 10mA Datasheet: UF3C065030K3S 0 200 10 20 30 40 Gate Charge, QG (nC) 50 60 Figure 8. Typical gate charge at VDS = 400V and ID = 50A Rev. C, December 2019 6 0 Vgs = -5V Vgs = 0V Vgs = 5V Vgs = 8V -25 Drain Current, ID (A) Drain Current, ID (A) 0 -50 -75 -100 -25 -50 -75 -100 -4 -3 -2 -1 Drain-Source Voltage, VDS (V) 0 Figure 9. 3rd quadrant characteristics at TJ = -55°C -4 -3 -2 -1 Drain-Source Voltage, VDS (V) 0 Figure 10. 3rd quadrant characteristics at TJ = 25°C 0 45 Vgs = - 5V 40 Vgs = 0V -25 35 Vgs = 5V 30 Vgs = 8V EOSS (mJ) Drain Current, ID (A) Vgs = - 5V Vgs = 0V Vgs = 5V Vgs = 8V -50 25 20 15 -75 10 5 0 -100 -4 -3 -2 -1 Drain-Source Voltage, VDS (V) Figure 11. 3rd quadrant characteristics at TJ = 175°C Datasheet: UF3C065030K3S 0 0 100 200 300 400 500 Drain-Source Voltage, VDS (V) 600 Figure 12. Typical stored energy in COSS at VGS = 0V Rev. C, December 2019 7 10,000 100 DC Drain Current, ID (A) Capacitance, C (pF) Ciss 1,000 Coss 100 10 Crss 80 60 40 20 0 1 0 100 200 300 400 500 Drain-Source Voltage, VDS (V) -75 -50 -25 0 25 50 75 100 125 150 175 Case Temperature, TC (°C) 600 Figure 13. Typical capacitances at f = 100kHz and VGS = 0V Figure 14. DC drain current derating Thermal Impedance, ZqJC (°C/W) Power Dissipation, Ptot (W) 500 400 300 200 100 0 -75 -50 -25 0 25 50 75 100 125 150 175 Case Temperature, TC (°C) Figure 15. Total power dissipation Datasheet: UF3C065030K3S 0.1 0.01 D = 0.5 D = 0.3 D = 0.1 D = 0.05 D = 0.02 D = 0.01 Single Pulse 0.001 1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 Pulse Time, tp (s) Figure 16. Maximum transient thermal impedance Rev. C, December 2019 8 100 200 10ms 10 Qrr (nC) Drain Current, ID (A) 250 1ms 100ms DC 1 150 100 10ms 50 0.1 0 1 10 100 1000 Drain-Source Voltage, VDS (V) 0 Figure 17. Safe operation area at TC = 25°C, D = 0, Parameter tp 1400 600 400 200 175 Rs Etot Rs Eon Rs Eoff 18 Etot Eon Eoff 800 50 75 100 125 150 Junction Temperature, TJ (°C) Figure 18. Reverse recovery charge Qrr vs. junction temperture Snubber RS Energy (mJ) 1000 25 20 VDS = 400V, VGS = -5V/15V RC snubber: CS=330pF, RS=5W, FWD: same device with VGS=-5V, RG = 22W 1200 Switching Energy (mJ) VDS = 400V, IS = 50A, di/dt = 1300A/ms, VGS = -5V, RG =20W 1ms 16 14 12 10 8 6 4 2 0 0 0 10 20 30 40 Drain Current, ID (A) 50 60 0 10 20 30 40 Drain Current, ID (A) 50 60 (a) (b) Figure 19. Clamped inductive switching energy (a) and RC snubber energy loss (b) vs. drain current at TJ = 25°C, turn-on RG_EXT = 1.8W, and turn-off RG_EXT = 22W Datasheet: UF3C065030K3S Rev. C, December 2019 9 900 5 Turn-on Sunbber RS Energy (mJ) Turn-on Energy, Eon (mJ) 800 700 600 500 VDS = 400V, ID = 50A, VGS = -5V/15V, TJ = 25°C RC snubber: CS=330pF, RS = 5W FWD: same device with VGS = -5V, RG = 22W 400 300 200 100 0 4 3 2 1 0 0 5 10 15 20 25 Total External Turn-on RG, RG_EXT (W) 30 0 5 10 15 20 25 Total External Turn-on RG, RG_EXT (W) 30 (a) (b) Figure 20. Clamped inductive switching turn-on energy including RC snubber energy loss (a) and RC snubber energy loss (b) as a function of total external turn-on gate resistor RG_EXT 400 300 250 Turn-off Sunbber RS Energy (mJ) 350 Turn-Off Energy, Eoff (mJ) 15 VDS = 400V, ID = 50A, VGS = -5V/15V, TJ = 25°C RC snubber: CS=330pF, RS = 5W, FWD: same device with VGS = -5V 200 150 100 50 0 10 5 0 0 10 20 30 40 Total External Turn-off RG, RG,EXT (W) 50 0 10 20 30 40 Total External Turn-off RG, RG_EXT (W) 50 (a) (b) Figure 21. Clamped inductive switching turn-off energy including RC snubber energy loss (a) and RC snubber energy loss (b) as a function of total external turn-off gate resistor RG_EXT Datasheet: UF3C065030K3S Rev. C, December 2019 10 1000 18 750 Etot Eon Eoff 500 VGS = -5V/15V, RG_ON = 1.8W, RG_OFF = 22W, FWD: same device with VGS=-5V, RG=22W, RC snubber: CS = 330pF, RS = 5W 250 Snubber RS Energy (mJ) Switching Energy (mJ) 16 14 12 10 Rs Etot Rs Eon Rs Eoff 8 6 4 2 0 0 0 25 50 75 100 125 150 Junction Temperature, TJ (°C) 0 175 25 50 75 100 125 150 Junction Temperature, TJ (°C) 175 (a) (b) Figure 22. Clamped inductive switching energy including RC snubber energy loss (a) and RC snubber energy loss (b) as a function of junction temperature at ID = 50A and VDS = 400V 1000 40 Snubber RS Energy (mJ) Switching Energy (mJ) 35 800 Etot Eon Eoff 600 VGS = -5V/15V, RG_ON = 1.8W, RG_OFF = 22W, FWD: same device with VGS=-5V, RG=22W, RC snubber: RS = 5W 400 200 Rs Etot Rs Eon Rs Eoff 30 25 20 15 10 5 0 0 200 400 600 Snubber Capacitance, CS (pF) 800 0 0 200 400 600 Snubber Capacitance, CS (pF) 800 (a) (b) Figure 23. Clamped inductive switching energy including RC snubber energy loss (a) and RC snubber energy loss (b) as a function of snubber capacitance at ID = 50A, VDS = 400V, and TJ = 25°C Datasheet: UF3C065030K3S Rev. C, December 2019 11 Figure 24. Clamped inductive load switching test circuit An RC snubber (RS = 5W and CS = 330pF) is required to improve the turn-off waveforms. Applications Information SiC FETs are enhancement-mode power switches formed by a highvoltage SiC depletion-mode JFET and a low-voltage silicon MOSFET connected in series. The silicon MOSFET serves as the control unit while the SiC JFET provides high voltage blocking in the off state. This combination of devices in a single package provides compatibility with standard gate drivers and offers superior performance in terms of low on-resistance (RDS(on)), output capacitance (Coss), gate charge (QG), and reverse recovery charge (Qrr) leading to low conduction and switching losses. The SiC FETs also provide excellent reverse conduction capability eliminating the need for an external anti-parallel diode. Information on all products and contained herein is intended for description only. No license, express or implied, to any intellectual property rights is granted within this document. UnitedSiC assumes no liability whatsoever relating to the choice, selection or use of the UnitedSiC products and services described herein. Like other high performance power switches, proper PCB layout design to minimize circuit parasitics is strongly recommended due to the high dv/dt and di/dt rates. An external gate resistor is recommended when the FEt is working in the diode mode in order to achieve the optimum reverse recovery performance. For more information on SiC FET operation, see www.unitedsic.com. Disclaimer UnitedSiC reserves the right to change or modify any of the products and their inherent physical and technical specifications without prior notice. UnitedSiC assumes no responsibility or liability for any errors or inaccuracies within. Datasheet: UF3C065030K3S Rev. C, December 2019 12
UF3C065030K3S 价格&库存

很抱歉,暂时无法提供与“UF3C065030K3S”相匹配的价格&库存,您可以联系我们找货

免费人工找货