650V-27mW SiC FET
Rev. D, December 2019
DATASHEET
Description
UJ3C065030K3S
CASE
CASE
D (2)
This SiC FET device is based on a unique ‘cascode’ circuit
configuration, in which a normally-on SiC JFET is co-packaged with a Si
MOSFET to produce a normally-off SiC FET device. The device’s
standard gate-drive characteristics allows for a true “drop-in
replacement” to Si IGBTs, Si FETs, SiC MOSFETs or Si superjunction
devices. Available in the TO-247-3L package, this device exhibits ultralow gate charge and exceptional reverse recovery characteristics,
making it ideal for switching inductive loads and any application
requiring standard gate drive.
Features
w Typical on-resistance RDS(on),typ of 27mW
w Maximum operating temperature of 175°C
G (1)
w Excellent reverse recovery
w Low gate charge
w Low intrinsic capacitance
1
2 3
w ESD protected, HBM class 2
S (3)
Typical applications
Part Number
Package
Marking
UJ3C065030K3S
TO-247-3L
UJ3C065030K3S
w EV charging
w PV inverters
w Switch mode power supplies
w Power factor correction modules
w Motor drives
w Induction heating
Datasheet: UJ3C065030K3S
Rev. D, December 2019
1
Maximum Ratings
Parameter
Symbol
VDS
VGS
Drain-source voltage
Gate-source voltage
Continuous drain current 1
ID
Pulsed drain current 2
Single pulsed avalanche energy 3
Power dissipation
Maximum junction temperature
Operating and storage temperature
IDM
EAS
Ptot
TJ,max
TJ, TSTG
Max. lead temperature for soldering,
1/8” from case for 5 seconds
TL
Test Conditions
DC
TC = 25°C
TC = 100°C
TC = 25°C
L=15mH, IAS =4A
TC = 25°C
Value
Units
650
-25 to +25
85
62
230
120
441
175
-55 to 175
V
V
A
A
A
mJ
W
°C
°C
250
°C
1. Limited by TJ,max
2. Pulse width tp limited by TJ,max
3. Starting TJ = 25°C
Thermal Characteristics
Parameter
Thermal resistance, junction-to-case
Datasheet: UJ3C065030K3S
Symbol
Test Conditions
RqJC
Rev. D, December 2019
Value
Min
Typ
Max
0.26
0.34
Units
°C/W
2
Electrical Characteristics (TJ = +25°C unless otherwise specified)
Typical Performance - Static
Parameter
Drain-source breakdown voltage
Total drain leakage current
Total gate leakage current
Drain-source on-resistance
Gate threshold voltage
Gate resistance
Symbol
Test Conditions
BVDS
VGS=0V, ID=1mA
IDSS
IGSS
RDS(on)
VG(th)
RG
Value
Min
Typ
Max
650
V
VDS=650V,
VGS=0V, TJ=25°C
6
VDS=650V,
VGS=0V, TJ=175°C
30
VDS=0V, TJ=25°C,
VGS=-20V / +20V
6
20
VGS=12V, ID=50A,
TJ=25°C
27
35
VGS=12V, ID=50A,
TJ=125°C
VGS=12V, ID=50A,
TJ=175°C
VDS=5V, ID=10mA
Units
150
mA
mA
mW
35
43
4
f=1MHz, open drain
5
4.5
6
V
W
Typical Performance - Reverse Diode
Parameter
Diode continuous forward current 1
Diode pulse current 2
Forward voltage
Test Conditions
IS
TC=25°C
85
A
IS,pulse
TC=25°C
230
A
VFSD
Reverse recovery charge
Qrr
Reverse recovery time
trr
Datasheet: UJ3C065030K3S
Value
Symbol
Min
Typ
VGS=0V, IF=20A,
TJ=25°C
1.3
VGS=0V, IF=20A,
TJ=175°C
1.35
VR=400V, IF=50A,
VGS=0V, RG_EXT=20W
di/dt=1550A/ms,
TJ=150°C
Rev. D, December 2019
Max
Units
1.4
V
400
nC
33
ns
3
Typical Performance - Dynamic
Parameter
Value
Symbol
Test Conditions
Ciss
Coss
Crss
VDS=100V, VGS=0V
f=100kHz
1500
320
2.3
pF
Effective output capacitance, energy
related
Coss(er)
VDS=0V to 400V,
VGS=0V
230
pF
Effective output capacitance, time
related
Coss(tr)
VDS=0V to 400V,
VGS=0V
520
pF
COSS stored energy
Eoss
VDS=400V, VGS=0V
18.5
mJ
Total gate charge
Gate-drain charge
Gate-source charge
QG
QGD
QGS
VDS=400V, ID=50A,
VGS = -5V to15V
51
11
19
nC
Turn-on delay time
td(on)
Input capacitance
Output capacitance
Reverse transfer capacitance
Rise time
Turn-off delay time
Fall time
tr
td(off)
tf
Turn-on energy
EON
Turn-off energy
EOFF
Total switching energy
Datasheet: UJ3C065030K3S
ETOTAL
Min
Typ
Max
Units
44
VDS=400V, ID=50A, Gate
Driver =-5V to +15V,
Turn-on RG,EXT=1W,
Turn-off RG,EXT=20W
Inductive Load,
FWD: UJ3D065030TS,
TJ=150°C
Rev. D, December 2019
26
63
ns
17
657
330
mJ
987
4
200
200
150
150
Drain Current, ID (A)
Drain Current, ID (A)
Typical Performance Diagrams
Vgs = 15V
100
Vgs = 10V
Vgs = 8V
Vgs = 7.5V
50
Vgs = 7V
100
Vgs = 15V
Vgs = 10V
Vgs = 8V
50
Vgs = 7V
Vgs = 6.5V
Vgs = 6.5V
0
0
0
1
2 3 4 5 6 7 8
Drain-Source Voltage, VDS (V)
9
10
Figure 1. Typical output characteristics at TJ = - 55°C,
tp < 250ms
100
2
3 4 5 6 7 8 9
Drain-Source Voltage, VDS (V)
10
2.0
Vgs = 15V
Vgs = 10V
Vgs = 8V
Vgs = 7V
Vgs = 6.5V
Vgs = 6V
150
1
Figure 2. Typical output characteristics at TJ = 25°C,
tp < 250ms
On Resistance, RDS_ON (P.U.)
Drain Current, ID (A)
200
0
50
1.5
1.0
0.5
0.0
0
0
1
2 3 4 5 6 7 8
Drain-Source Voltage, VDS (V)
9
Figure 3. Typical output characteristics at TJ = 175°C,
tp < 250ms
Datasheet: UJ3C065030K3S
-75 -50 -25 0 25 50 75 100 125 150 175
Junction Temperature, TJ (°C)
10
Figure 4. Normalized on-resistance vs. temperature
at VGS = 12V and ID = 50A
Rev. D, December 2019
5
150
Tj = 175°C
Tj = 25°C
Tj = - 55°C
80
60
40
20
Tj = 25°C
Tj = 175°C
100
75
50
25
0
0
0
25
50
75
100
Drain Current, ID (A)
125
150
Figure 5. Typical drain-source on-resistances at VGS =
12V
0
2 3 4 5 6 7 8
Gate-Source Voltage, VGS (V)
9
10
Gate-Source Voltage, VGS (V)
20
5
4
3
2
1
0
-100
1
Figure 6. Typical transfer characteristics at VDS = 5V
6
Threshold Voltage, Vth (V)
Tj = -55°C
125
Drain Current, ID (A)
On-Resistance, RDS(on) (mW)
100
15
10
5
0
-5
-50
0
50
100
150
Junction Temperature, TJ (°C)
Figure 7. Threshold voltage vs. junction temperature
at VDS = 5V and ID = 10mA
Datasheet: UJ3C065030K3S
0
200
10
20
30
40
Gate Charge, QG (nC)
50
60
Figure 8. Typical gate charge at VDS = 400V and ID =
50A
Rev. D, December 2019
6
0
0
Vgs = - 5V
Vgs = 0V
-25
Drain Current, ID (A)
Drain Current, ID (A)
Vgs = -5V
Vgs = 5V
Vgs = 8V
-50
-75
-100
Vgs = 0V
-25
Vgs = 5V
Vgs = 8V
-50
-75
-100
-4
-3
-2
-1
Drain-Source Voltage, VDS (V)
0
Figure 9. 3rd quadrant characteristics at TJ = -55°C
-4
-3
-2
-1
Drain-Source Voltage, VDS (V)
0
Figure 10. 3rd quadrant characteristics at TJ = 25°C
0
45
35
-25
30
-50
EOSS (mJ)
Drain Current, ID (A)
40
Vgs = - 5V
-75
25
20
Vgs = 0V
15
Vgs = 5V
10
Vgs = 8V
5
0
-100
-4
-3
-2
-1
Drain-Source Voltage, VDS (V)
Figure 11. 3rd quadrant characteristics at TJ = 175°C
Datasheet: UJ3C065030K3S
0
0
100 200 300 400 500
Drain-Source Voltage, VDS (V)
600
Figure 12. Typical stored energy in COSS at VGS = 0V
Rev. D, December 2019
7
10,000
100
DC Drain Current, ID (A)
Capacitance, C (pF)
Ciss
1,000
Coss
100
10
Crss
80
60
40
20
0
1
0
100 200 300 400 500
Drain-Source Voltage, VDS (V)
-75 -50 -25 0 25 50 75 100 125 150 175
Case Temperature, TC (°C)
600
Figure 13. Typical capacitances at f = 100kHz and VGS
= 0V
Figure 14. DC drain current derating
Thermal Impedance, ZqJC (°C/W)
Power Dissipation, Ptot (W)
500
400
300
200
100
0
-75 -50 -25 0 25 50 75 100 125 150 175
Case Temperature, TC (°C)
Figure 15. Total power dissipation
Datasheet: UJ3C065030K3S
0.1
0.01
D = 0.5
D = 0.3
D = 0.1
D = 0.05
D = 0.02
D = 0.01
Single Pulse
0.001
1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01
Pulse Time, tp (s)
Figure 16. Maximum transient thermal impedance
Rev. D, December 2019
8
1200
10ms
10
100ms
1ms
1
DC
Switching Energy (mJ)
Drain Current, ID (A)
100
10ms
1000
800
Etot
Eon
Eoff
600
400
200
0.1
0
1
10
100
1000
Drain-Source Voltage, VDS (V)
0
Figure 17. Safe operation area at TC = 25°C, D = 0,
Parameter tp
10
20
30
40
Drain Current, ID (A)
50
60
Figure 18. Clamped inductive switching energy vs.
drain current at TJ = 150°C
800
1000
800
Turn-Off Energy, Eoff (mJ)
Turn-on Energy, Eon (mJ)
VDS = 400V, VGS = -5V/15V
RG_ON=1W, RG_OFF=20W,
FWD: UJ3D06530TS
1ms
600
VDS = 400V, ID = 50A,
VGS = -5V/15V, TJ = 150°C
FWD: UJ3D065030TS
400
200
VDS = 400V, ID = 50A,
VGS = -5V/15V, TJ = 150°C
FWD: UJ3D065030TS
600
400
200
0
0
0
5
10
15
Total External Turn-on RG, RG_EXT (W)
Figure 19. Clamped inductive switching turn-on
energy vs. RG,EXT_ON
Datasheet: UJ3C065030K3S
0
20
20
40
60
80
Total External Turn-off RG, RG,EXT (W)
100
Figure 20. Clamped inductive switching turn-off
energy vs. RG,EXT_OFF
Rev. D, December 2019
9
Switching Energy (mJ)
1200
1000
Etot
Eon
Eoff
800
600
400
VGS = -5V/15V,
RG_ON = 1W, RG_OFF = 20W,
FWD: UJ3D065030TS
200
0
0
25
50
75 100 125 150
Junction Temperature, TJ (°C)
175
Figure 21. Clamped inductive switching energy vs.
junction temperature at VDS =400V and ID = 50A
Applications Information
SiC FETs are enhancement-mode power switches formed by a highvoltage SiC depletion-mode JFET and a low-voltage silicon MOSFET
connected in series. The silicon MOSFET serves as the control unit
while the SiC JFET provides high voltage blocking in the off state. This
combination of devices in a single package provides compatibility with
standard gate drivers and offers superior performance in terms of low
on-resistance (RDS(on)), output capacitance (Coss), gate charge (QG), and
reverse recovery charge (Qrr) leading to low conduction and switching
losses. The SiC FETs also provide excellent reverse conduction
capability eliminating the need for an external anti-parallel diode.
Information on all products and contained herein is intended for
description only. No license, express or implied, to any intellectual
property rights is granted within this document.
UnitedSiC assumes no liability whatsoever relating to the choice,
selection or use of the UnitedSiC products and services described
herein.
Like other high performance power switches, proper PCB layout
design to minimize circuit parasitics is strongly recommended due to
the high dv/dt and di/dt rates. An external gate resistor is
recommended when the FET is working in the diode mode in order to
achieve the optimum reverse recovery performance. For more
information on SiC FET operation, see www.unitedsic.com.
Disclaimer
UnitedSiC reserves the right to change or modify any of the products
and their inherent physical and technical specifications without prior
notice. UnitedSiC assumes no responsibility or liability for any errors
or inaccuracies within.
Datasheet: UJ3C065030K3S
Rev. D, December 2019
10