1200V-150mW SiC FET
Rev. C, December 2019
DATASHEET
Description
UJ3C120150K3S
CASE
CASE
D (2)
This SiC FET device is based on a unique ‘cascode’ circuit
configuration, in which a normally-on SiC JFET is co-packaged with a Si
MOSFET to produce a normally-off SiC FET device. The device’s
standard gate-drive characteristics allows for a true “drop-in
replacement” to Si IGBTs, Si FETs, SiC MOSFETs or Si superjunction
devices. Available in the TO-247-3L package, this device exhibits ultralow gate charge and exceptional reverse recovery characteristics,
making it ideal for switching inductive loads, and any application
requiring standard gate drive.
Features
w Typical on-resistance RDS(on),typ of 150mW
w Maximum operating temperature of 175°C
G (1)
w Excellent reverse recovery
w Low gate charge
w Low intrinsic capacitance
1
w ESD protected, HBM class 2
2 3
S (3)
Typical applications
Part Number
Package
Marking
w EV charging
UJ3C120150K3S
TO-247-3L
UJ3C120150K3S
w PV inverters
w Switch mode power supplies
w Power factor correction modules
w Motor drives
w Induction heating
Datasheet: UJ3C120150K3S
Rev. C, December 2019
1
Maximum Ratings
Parameter
Symbol
VDS
VGS
Drain-source voltage
Gate-source voltage
Continuous drain current 1
ID
Pulsed drain current 2
Single pulsed avalanche energy 3
Power dissipation
Maximum junction temperature
Operating and storage temperature
IDM
EAS
Ptot
TJ,max
TJ, TSTG
Max. lead temperature for soldering,
1/8” from case for 5 seconds
TL
Test Conditions
DC
TC = 25°C
TC = 100°C
TC = 25°C
L=15mH, IAS =2A
TC = 25°C
Value
Units
1200
-25 to +25
18.4
13.8
38
30
166.7
175
-55 to 175
V
V
A
A
A
mJ
W
°C
°C
250
°C
1. Limited by TJ,max
2. Pulse width tp limited by TJ,max
3. Starting TJ = 25°C
Thermal Characteristics
Parameter
Thermal resistance, junction-to-case
Datasheet: UJ3C120150K3S
Symbol
Test Conditions
RqJC
Rev. C, December 2019
Value
Min
Typ
Max
0.7
0.9
Units
°C/W
2
Electrical Characteristics (TJ = +25°C unless otherwise specified)
Typical Performance - Static
Parameter
Drain-source breakdown voltage
Total drain leakage current
Total gate leakage current
Drain-source on-resistance
Gate threshold voltage
Gate resistance
Symbol
Test Conditions
BVDS
VGS=0V, ID=1mA
IDSS
IGSS
RDS(on)
VG(th)
RG
Value
Min
Typ
Max
1200
V
VDS=1200V,
VGS=0V, TJ=25°C
2
VDS=1200V,
VGS=0V, TJ=175°C
17
VDS=0V, TJ=25°C,
VGS=-20V / +20V
4
20
VGS=12V, ID=5A,
TJ=25°C
150
180
VGS=12V, ID=5A,
TJ=125°C
VGS=12V, ID=5A,
TJ=175°C
VDS=5V, ID=10mA
Units
50
mA
mA
mW
250
330
3.5
f=1MHz, open drain
4.4
4.6
5.5
V
W
Typical Performance - Reverse Diode
Parameter
Diode continuous forward current 1
Diode pulse current 2
Forward voltage
Test Conditions
IS
TC=25°C
18.4
A
IS,pulse
TC=25°C
38
A
VFSD
Reverse recovery charge
Qrr
Reverse recovery time
trr
Datasheet: UJ3C120150K3S
Value
Symbol
Min
Typ
VGS=0V, IF=5A,
TJ=25°C
1.46
VGS=0V, IF=5A,
TJ=175°C
2
VR=800V, IF=13A,
VGS=0V, RG_EXT=20W
di/dt=1700A/ms,
TJ=150°C
Rev. C, December 2019
Max
Units
2
V
63
nC
28
ns
3
Typical Performance - Dynamic
Parameter
Value
Symbol
Test Conditions
Ciss
Coss
Crss
VDS=100V, VGS=0V
f=100kHz
738
58
1.8
pF
Effective output capacitance, energy
related
Coss(er)
VDS=0V to 800V,
VGS=0V
34
pF
Effective output capacitance, time
related
Coss(tr)
VDS=0V to 800V,
VGS=0V
68
pF
COSS stored energy
Eoss
VDS=800V, VGS=0V
10.8
mJ
Total gate charge
Gate-drain charge
Gate-source charge
QG
QGD
QGS
VDS=800V, ID=13A,
VGS = -5V to15V
30
6
10
nC
Turn-on delay time
td(on)
Input capacitance
Output capacitance
Reverse transfer capacitance
Rise time
Turn-off delay time
Fall time
tr
td(off)
tf
Turn-on energy
EON
Turn-off energy
EOFF
Total switching energy
Datasheet: UJ3C120150K3S
ETOTAL
VDS=800V, ID=13A, Gate
Driver =-5V to +15V,
Turn-on RG,EXT=1W,
Turn-off RG,EXT=20W
Inductive Load,
FWD: UJ3D1205TS
TJ=150°C
Rev. C, December 2019
Min
Typ
Max
Units
21
10
36
ns
7
175
46
mJ
221
4
40
40
30
30
Drain Current, ID (A)
Drain Current, ID (A)
Typical Performance Diagrams
Vgs = 15V
Vgs = 7V
Vgs = 6.5V
Vgs = 6V
Vgs = 5.5V
20
10
20
Vgs = 15V
Vgs = 7V
Vgs = 6.5V
10
Vgs = 6V
Vgs = 5.5V
0
0
0
1
2
3
4
5
6
7
8
Drain-Source Voltage, VDS (V)
9
10
Figure 1. Typical output characteristics at TJ = - 55°C,
tp < 250ms
0
2
3
4
5
6
7
8
9
Drain-Source Voltage, VDS (V)
10
Figure 2. Typical output characteristics at TJ = 25°C,
tp < 250ms
40
2.5
On Resistance, RDS_ON (P.U.)
Vgs = 15V
Drain Current, ID (A)
1
Vgs = 6V
30
Vgs = 5.5V
Vgs = 5V
Vgs = 4.5V
20
10
2.0
1.5
1.0
0.5
0.0
0
0
1
2
3
4
5
6
7
8
Drain-Source Voltage, VDS (V)
9
Figure 3. Typical output characteristics at TJ = 175°C,
tp < 250ms
Datasheet: UJ3C120150K3S
-75 -50 -25 0 25 50 75 100 125 150 175
Junction Temperature, TJ (°C)
10
Figure 4. Normalized on-resistance vs. temperature
at VGS = 12V and ID = 5A
Rev. C, December 2019
5
30
Tj = 175°C
Tj = 25°C
Tj = - 55°C
600
500
400
300
200
Tj = 25°C
Tj = 175°C
20
15
10
5
100
0
0
0
5
10
15
20
25
Drain Current, ID (A)
30
35
Figure 5. Typical drain-source on-resistances at VGS =
12V
0
2 3 4 5 6 7 8
Gate-Source Voltage, VGS (V)
9
10
Gate-Source Voltage, VGS (V)
20
5
4
3
2
1
0
-100
1
Figure 6. Typical transfer characteristics at VDS = 5V
6
Threshold Voltage, Vth (V)
Tj = -55°C
25
Drain Current, ID (A)
On-Resistance, RDS(on) (mW)
700
15
10
5
0
-5
-50
0
50
100
150
Junction Temperature, TJ (°C)
Figure 7. Threshold voltage vs. junction temperature
at VDS = 5V and ID = 10mA
Datasheet: UJ3C120150K3S
0
200
10
20
30
Gate Charge, QG (nC)
40
Figure 8. Typical gate charge at VDS = 800V and ID =
13A
Rev. C, December 2019
6
0
-2
Vgs = -5V
-4
Vgs = 5V
Vgs = 0V
Vgs = 8V
-6
-8
-10
-12
Vgs = 0V
-4
Vgs = 5V
Vgs = 8V
-6
-8
-10
-12
-14
-14
-4
-3
-2
-1
Drain-Source Voltage, VDS (V)
0
Figure 9. 3rd quadrant characteristics at TJ = -55°C
-4
-3
-2
-1
Drain-Source Voltage, VDS (V)
0
Figure 10. 3rd quadrant characteristics at TJ = 25°C
0
25
-2
20
-4
EOSS (mJ)
Drain Current, ID (A)
Vgs = - 5V
-2
Drain Current, ID (A)
Drain Current, ID (A)
0
-6
Vgs = - 5V
-8
Vgs = 0V
-10
Vgs = 5V
10
5
Vgs = 8V
-12
15
0
-14
-4
-3
-2
-1
Drain-Source Voltage, VDS (V)
Figure 11. 3rd quadrant characteristics at TJ = 175°C
Datasheet: UJ3C120150K3S
0
0
200
400
600
800 1000
Drain-Source Voltage, VDS (V)
1200
Figure 12. Typical stored energy in COSS at VGS = 0V
Rev. C, December 2019
7
10,000
20
Ciss
1,000
100
DC Drain Current, ID (A)
Capacitance, C (pF)
18
Coss
10
Crss
16
14
12
10
8
6
4
2
0
1
0
-75 -50 -25 0 25 50 75 100 125 150 175
Case Temperature, TC (°C)
200 400 600 800 1000 1200
Drain-Source Voltage, VDS (V)
Figure 13. Typical capacitances at f = 100kHz and VGS
= 0V
Figure 14. DC drain current derating
Thermal Impedance, ZqJC (°C/W)
Power Dissipation, Ptot (W)
200
150
100
50
0
-75 -50 -25 0 25 50 75 100 125 150 175
Case Temperature, TC (°C)
Figure 15. Total power dissipation
Datasheet: UJ3C120150K3S
1
0.1
0.01
D = 0.5
D = 0.3
D = 0.1
D = 0.05
D = 0.02
D = 0.01
Single Pulse
0.001
1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01
Pulse Time, tp (s)
Figure 16. Maximum transient thermal impedance
Rev. C, December 2019
8
400
1ms
10ms
100ms
Switching Energy (mJ)
Drain Current, ID (A)
10
1
1ms
DC
300
250
Etot
Eon
Eoff
200
150
100
50
10ms
0
0.1
1
0
10
100
1000
Drain-Source Voltage, VDS (V)
Figure 17. Safe operation area at TC = 25°C, D = 0,
Parameter tp
5
10
Drain Current, ID (A)
15
20
Figure 18. Clamped inductive switching energy vs.
drain current at TJ = 150°C
300
125
250
Turn-Off Energy, EOFF (mJ)
Turn-on Energy, EON (mJ)
VDS = 800V, VGS = -5V/15V
RG_ON = 1W, RG_OFF = 20W
FWD: UJ3D1205TS
TJ = 150°C
350
200
150
VDS = 800V, VGS = -5V/15V
ID = 13A, TJ = 150°C
FWD:UJ3D1205TS
100
50
100
75
50
VDS = 800V, VGS = -5V/15V
ID = 13A, TJ = 150°C
FWD: UJ3D1205TS
25
0
0
0
5
10
15
Total External RG, RG,EXT_ON (W)
Figure 19. Clamped inductive switching turn-on
energy vs. RG,EXT_ON
Datasheet: UJ3C120150K3S
0
20
20
40
60
80
Total External RG, RG,EXT_OFF (W)
100
Figure 20. Clamped inductive switching turn-off
energy vs. RG,EXT_OFF
Rev. C, December 2019
9
Switching Energy (mJ)
300
Etot
Eon
Eoff
250
200
150
VGS = -5V/15V, RG_ON = 1W,
RG_OFF = 20W
FWD: UJ3D1205TS
100
50
0
0
25
50
75 100 125 150
Junction Temperature, TJ (°C)
175
Figure 21. Clamped inductive switching energy vs.
junction temperature at VDS = 800V and ID = 13A
Applications Information
SiC FETs are enhancement-mode power switches formed by a highvoltage SiC depletion-mode JFET and a low-voltage silicon MOSFET
connected in series. The silicon MOSFET serves as the control unit
while the SiC JFET provides high voltage blocking in the off state. This
combination of devices in a single package provides compatibility with
standard gate drivers and offers superior performance in terms of low
on-resistance (RDS(on)), output capacitance (Coss), gate charge (QG), and
reverse recovery charge (Qrr) leading to low conduction and switching
losses. The SiC FETs also provide excellent reverse conduction
capability eliminating the need for an external anti-parallel diode.
Information on all products and contained herein is intended for
description only. No license, express or implied, to any intellectual
property rights is granted within this document.
UnitedSiC assumes no liability whatsoever relating to the choice,
selection or use of the UnitedSiC products and services described
herein.
Like other high performance power switches, proper PCB layout
design to minimize circuit parasitics is strongly recommended due to
the high dv/dt and di/dt rates. An external gate resistor is
recommended when the FET is working in the diode mode in order to
achieve the optimum reverse recovery performance. For more
information on SiC FET operation, see www.unitedsic.com.
Disclaimer
UnitedSiC reserves the right to change or modify any of the products
and their inherent physical and technical specifications without prior
notice. UnitedSiC assumes no responsibility or liability for any errors
or inaccuracies within.
Datasheet: UJ3C120150K3S
Rev. C, December 2019
10