0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
AD1938WBSTZ-RL

AD1938WBSTZ-RL

  • 厂商:

    AD(亚德诺)

  • 封装:

    LQFP48_7X7MM

  • 描述:

    IC CODEC 24BIT 4ADC/8DAC 48LQFP

  • 数据手册
  • 价格&库存
AD1938WBSTZ-RL 数据手册
4 ADC/8 DAC with PLL, 192 kHz, 24-Bit Codec AD1938 Data Sheet FEATURES GENERAL DESCRIPTION PLL generated or direct master clock Low EMI design 108 dB DAC/107 dB ADC dynamic range and SNR −94 dB THD + N 3.3 V single supply Tolerance for 5 V logic inputs Supports 24 bits and 8 kHz to 192 kHz sample rates Differential ADC input Single-ended DAC output Log volume control with autoramp function SPI controllable for flexibility Software-controllable clickless mute Software power-down Right-justified, left-justified, I2S-justified, and TDM modes Master and slave modes up to 16-channel input/output 48-lead LQFP package Qualified for automotive applications The AD1938 is a high performance, single-chip codec that provides four analog-to-digital converters (ADCs) with input and eight digital-to-analog converters (DACs) with single-ended output using the Analog Devices, Inc., patented multibit sigma-delta (Σ-Δ) architecture. An SPI port is included, allowing a microcontroller to adjust volume and many other parameters. The AD1938 operates from 3.3 V digital and analog supplies. The AD1938 is available in a 48-lead (single-ended output) LQFP package. Other members of this family include a differential DAC output and I2C® control port version. The AD1938 is designed for low EMI. This consideration is apparent in both the system and circuit design architectures. By using the on-board PLL to derive the master clock from the LR clock or from an external crystal, the AD1938 eliminates the need for a separate high frequency master clock and can also be used with a suppressed bit clock. The DACs and ADCs are designed using the latest Analog Devices continuous time architectures to further minimize EMI. By using 3.3 V supplies, power consumption is minimized, further reducing emissions. APPLICATIONS Automotive audio systems Home Theater Systems Set-top boxes Digital audio effects processors FUNCTIONAL BLOCK DIAGRAM DIGITAL AUDIO INPUT/OUTPUT AD1938 SERIAL DATA PORT DAC DAC SDATA OUT ADC ANALOG AUDIO INPUTS ADC CLOCKS DIGITAL FILTER ADC SDATA IN TIMING MANAGEMENT AND CONTROL (CLOCK AND PLL) ADC DAC DIGITAL FILTER AND VOLUME CONTROL DAC DAC ANALOG AUDIO OUTPUTS DAC DAC DAC CONTROL DATA INPUT/OUTPUT 05582-001 PRECISION VOLTAGE REFERENCE SPI CONTROL PORT Figure 1. Rev. E Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2006–2013 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com AD1938 Data Sheet TABLE OF CONTENTS Features .............................................................................................. 1 Analog-to-Digital Converters (ADCs) .................................... 13 Applications ....................................................................................... 1 Digital-to-Analog Converters (DACs) .................................... 13 General Description ......................................................................... 1 Clock Signals ............................................................................... 13 Functional Block Diagram .............................................................. 1 Reset and Power-Down ............................................................. 14 Revision History ............................................................................... 2 Serial Control Port ..................................................................... 14 Specifications..................................................................................... 3 Power Supply and Voltage Reference....................................... 15 Test Conditions ............................................................................. 3 Serial Data Ports—Data Format ............................................... 15 Analog Performance Specifications ........................................... 3 Time-Division Multiplexed (TDM) Modes ............................ 15 Crystal Oscillator Specifications................................................. 4 Daisy-Chain Mode ..................................................................... 19 Digital Input/Output Specifications........................................... 5 Control Registers ............................................................................ 24 Power Supply Specifications........................................................ 5 Definitions ................................................................................... 24 Digital Filters ................................................................................. 6 PLL and Clock Control Registers ............................................. 24 Timing Specifications .................................................................. 7 DAC Control Registers .............................................................. 25 Absolute Maximum Ratings ............................................................ 8 ADC Control Registers.............................................................. 27 Thermal Resistance ...................................................................... 8 Additional Modes ....................................................................... 29 ESD Caution .................................................................................. 8 Applications Circuits...................................................................... 30 Pin Configuration and Function Descriptions ............................. 9 Outline Dimensions ....................................................................... 31 Typical Performance Characteristics ........................................... 11 Ordering Guide .......................................................................... 31 Theory of Operation ...................................................................... 13 REVISION HISTORY 7/08—Rev. 0 to Rev. A 2/13—Rev. D to Rev. E Change to tCLH Parameter, Table 7 .................................................. 7 Changes to Table 7.............................................................................7 Changes to Figure 2 ...........................................................................9 Changes to Table 10 ..........................................................................9 Changes to Clock Signals Section ................................................ 13 Changes to Reset and Power-Down Section ............................... 14 Change to Serial Control Port Section ........................................ 14 Changes to Table 11 ....................................................................... 14 Changes to Figure 24 and Figure 25 ............................................ 22 Changes to Figure 26...................................................................... 23 Changes to Definitions Section .................................................... 24 Changes to Table 16 ....................................................................... 24 Change to Additional Modes Section .......................................... 29 Change to Figure 30 ....................................................................... 30 7/11—Rev. C to Rev. D Changes to Table 10, DSDATAx/ASDATAx Pin Descriptions ... 9 1/11—Rev. B to Rev. C Added Automotive Information ................................. Throughout Change to Table 2, Introductory Text ............................................ 4 Change to Table 4, Introductory Text ............................................ 5 Change to Table 7, Introductory Text ............................................ 7 Changes to Ordering Guide .......................................................... 31 8/09—Rev. A to Rev. B Changes to Table 16 Title............................................................... 24 Changes to Figure 18 and Table 19 Titles .................................... 25 Changes to Table 20 Title............................................................... 26 Changes to Table 23 and Table 24 Titles ...................................... 27 Changes to Table 25 Title............................................................... 28 Changes to Ordering Guide .......................................................... 31 5/06—Revision 0: Initial Version Rev. E | Page 2 of 32 Data Sheet AD1938 SPECIFICATIONS TEST CONDITIONS Performance of all channels is identical, exclusive of the interchannel gain mismatch and interchannel phase deviation specifications. Supply voltages (AVDD, DVDD) Temperature range1 Master clock Input sample rate Measurement bandwidth Word width Load capacitance (digital output) Load current (digital output) Input voltage high Input voltage low 1 3.3 V as specified in Table 1 and Table 2 12.288 MHz (48 kHz fS, 256 × fS mode) 48 kHz 20 Hz to 20 kHz 24 bits 20 pF ±1 mA or 1.5 kΩ to ½ DVDD supply 2.0 V 0.8 V Functionally guaranteed at −40°C to +125°C case temperature. ANALOG PERFORMANCE SPECIFICATIONS Specifications guaranteed at an ambient temperature of 25°C. Table 1. Parameter ANALOG-TO-DIGITAL CONVERTERS ADC Resolution Dynamic Range No Filter (RMS) With A-Weighted Filter (RMS) Total Harmonic Distortion + Noise Full-Scale Input Voltage (Differential) Gain Error Interchannel Gain Mismatch Offset Error Gain Drift Interchannel Isolation CMRR Input Resistance Input Capacitance Input Common-Mode Bias Voltage DIGITAL-TO-ANALOG CONVERTERS Dynamic Range No Filter (RMS) With A-Weighted Filter (RMS) With A-Weighted Filter (Average) Total Harmonic Distortion + Noise Single-Ended Version Single-Ended Version Full-Scale Output Voltage Gain Error Interchannel Gain Mismatch Offset Error Gain Drift Conditions Min All ADCs 20 Hz to 20 kHz, −60 dB input 98 100 −1 dBFS −10 −0.25 −10 100 mV rms, 1 kHz 100 mV rms, 20 kHz Typ Max Unit 24 Bits 102 105 −96 1.9 dB dB dB V rms % dB mV ppm/°C dB dB dB kΩ pF V 0 100 −110 55 55 14 10 1.5 −87 +10 +0.25 +10 20 Hz to 20 kHz, −60 dB input 98 100 0 dBFS Two channels running Eight channels running −92 −86 0.88 (2.48) −10 −0.2 −25 −30 Rev. E | Page 3 of 32 104 106 108 −4 dB dB dB −75 +10 +0.2 +25 +30 dB dB V rms (V p-p) % dB mV ppm/°C AD1938 Parameter Interchannel Isolation Interchannel Phase Deviation Volume Control Step Volume Control Range De-emphasis Gain Error Output Resistance at Each Pin REFERENCE Internal Reference Voltage External Reference Voltage Common-Mode Reference Output Data Sheet Conditions Min Typ 100 0 0.375 95 Max ±0.6 100 FILTR pin FILTR pin CM pin 1.32 1.50 1.50 1.50 Min Typ 1.68 Unit dB Degrees dB dB dB Ω V V V Specifications measured at a case temperature of 125°C. Table 2. Parameter ANALOG-TO-DIGITAL CONVERTERS ADC Resolution Dynamic Range No Filter (RMS) With A-Weighted Filter (RMS) Total Harmonic Distortion + Noise Full-Scale Input Voltage (Differential) Gain Error Interchannel Gain Mismatch Offset Error DIGITAL-TO-ANALOG CONVERTERS Dynamic Range No Filter (RMS) With A-Weighted Filter (RMS) With A-Weighted Filter (Average) Total Harmonic Distortion + Noise Single-Ended Version Single-Ended Version Full-Scale Output Voltage Gain Error Interchannel Gain Mismatch Offset Error Gain Drift REFERENCE Internal Reference Voltage External Reference Voltage Common-Mode Reference Output Conditions All ADCs 20 Hz to 20 kHz, −60 dB input 95 97 −1 dBFS −10 −0.25 −10 Max 24 Bits 102 105 −96 1.9 dB dB dB V rms % dB mV 0 −87 +10 +0.25 +10 20 Hz to 20 kHz, −60 dB input 98 100 0 dBFS Two channels running Eight channels running 104 106 108 −92 −86 0.8775 (2.482) −10 −0.2 −25 −30 FILTR pin FILTR pin CM pin 1.32 −4 1.50 1.50 1.50 dB dB dB −70 +10 +0.2 25 30 1.68 CRYSTAL OSCILLATOR SPECIFICATIONS Table 3. Parameter Transconductance Unit Min Typ 3.5 Rev. E | Page 4 of 32 Max Unit mmhos dB dB V rms (V p-p) % dB mV ppm/°C V V V Data Sheet AD1938 DIGITAL INPUT/OUTPUT SPECIFICATIONS −40°C < TC < +125°C, DVDD = 3.3 V ± 10%. Table 4. Parameter High Level Input Voltage (VIH) High Level Input Voltage (VIH) Low Level Input Voltage (VIL) Input Leakage High Level Output Voltage (VOH) Low Level Output Voltage (VOL) Input Capacitance Conditions/Comments MCLKI/XI pin IIH @ VIH = 2.4 V IIL @ VIL = 0.8 V IOH = 1 mA IOL = 1 mA Min 2.0 2.2 Typ Max 0.4 5 Unit V V V µA µA V V pF 0.8 10 10 DVDD − 0.60 POWER SUPPLY SPECIFICATIONS Table 5. Parameter SUPPLIES Voltage Digital Current Normal Operation Power-Down Analog Current Normal Operation Power-Down DISSIPATION Operation All Supplies Digital Supply Analog Supply Power-Down, All Supplies POWER SUPPLY REJECTION RATIO Signal at Analog Supply Pins Conditions/Comments Min Typ Max Unit DVDD AVDD Master clock = 256 fS fS = 48 kHz fS = 96 kHz fS = 192 kHz fS = 48 kHz to 192 kHz 3.0 3.0 3.3 3.3 3.6 3.6 V V 56 65 95 2.0 mA mA mA mA 74 23 mA mA 429 185 244 83 mW mW mW mW 50 50 dB dB Master clock = 256 fS, 48 kHz 1 kHz, 200 mV p-p 20 kHz, 200 mV p-p Rev. E | Page 5 of 32 AD1938 Data Sheet DIGITAL FILTERS Table 6. Parameter ADC DECIMATION FILTER Pass Band Pass-Band Ripple Transition Band Stop Band Stop-Band Attenuation Group Delay DAC INTERPOLATION FILTER Pass Band Pass-Band Ripple Transition Band Stop Band Stop-Band Attenuation Group Delay Mode All modes, typical @ 48 kHz Factor Min 0.4375 fS Typ Max 21 ±0.015 24 27 0.5 fS 0.5625 fS kHz dB kHz kHz dB µs 79 22.9844/fS 48 kHz mode, typical @ 48 kHz 96 kHz mode, typical @ 96 kHz 192 kHz mode, typical @ 192 kHz 48 kHz mode, typical @ 48 kHz 96 kHz mode, typical @ 96 kHz 192 kHz mode, typical @ 192 kHz 48 kHz mode, typical @ 48 kHz 96 kHz mode, typical @ 96 kHz 192 kHz mode, typical @ 192 kHz 48 kHz mode, typical @ 48 kHz 96 kHz mode, typical @ 96 kHz 192 kHz mode, typical @ 192 kHz 48 kHz mode, typical @ 48 kHz 96 kHz mode, typical @ 96 kHz 192 kHz mode, typical @ 192 kHz 48 kHz mode, typical @ 48 kHz 96 kHz mode, typical @ 96 kHz 192 kHz mode, typical @ 192 kHz Rev. E | Page 6 of 32 0.4535 fS 0.3646 fS 0.3646 fS 479 22 35 70 ±0.01 ±0.05 ±0.1 0.5 fS 0.5 fS 0.5 fS 0.5465 fS 0.6354 fS 0.6354 fS 24 48 96 26 61 122 70 70 70 25/fS 11/fS 8/fS 521 115 42 Unit kHz kHz kHz dB dB dB kHz kHz kHz kHz kHz kHz dB dB dB µs µs µs Data Sheet AD1938 TIMING SPECIFICATIONS −40°C < TC < +125°C, DVDD = 3.3 V ± 10%. Table 7. Parameter INPUT MASTER CLOCK (MCLK) AND RESET tMH Condition Comments Min Max Unit MCLK duty cycle DAC/ADC clock source = PLL clock @ 256 fS, 384 fS, 512 fS, and 768 fS DAC/ADC clock source = direct MCLK @ 512 fS (bypass on-chip PLL) PLL mode, 256 fS reference Direct 512 fS mode 40 60 % 40 60 % 6.9 13.8 27.6 MHz MHz ns tMCLK 10 60 ms % tMH fMCLK fMCLK tPDR tPDRR PLL Lock time 256 fS VCO Clock, Output Duty Cycle, MCLKO/XO Pin SPI PORT tCCH tCCL fCCLK tCDS tCDH tCLS tCLH tCLH tCOE tCOD tCOH tCOTS DAC SERIAL PORT tDBH tDBL tDLS tDLH tDLS tDDS tDDH ADC SERIAL PORT tABH tABL tALS tALH tALS tABDD AUXILIARY INTERFACE tAXDS tAXDH tDXDD tXBH tXBL tDLS tDLH MCLK frequency RST low RST recovery Reset to active output 15 4096 MCLK and LR clock input 40 See Figure 11 CCLK high CCLK low CCLK frequency CIN setup CIN hold CLATCH setup CLATCH hold CLATCH high COUT enable COUT delay COUT hold COUT tristate DBCLK high DBCLK low DLRCLK setup DLRCLK hold DLRCLK skew DSDATA setup DSDATA hold ABCLK high ABCLK low ALRCLK setup ALRCLK hold ALRCLK skew ASDATA delay AAUXDATA setup AAUXDATA hold DAUXDATA delay AUXBCLK high AUXBCLK low AUXLRCLK setup AUXLRCLK hold 35 35 fCCLK = 1/tCCP, only tCCP shown in Figure 11 To CCLK rising From CCLK rising To CCLK rising From CCLK rising Not shown in Figure 11 From CCLK falling From CCLK falling From CCLK falling, not shown in Figure 11 From CCLK falling See Figure 24 Slave mode Slave mode To DBCLK rising, slave mode From DBCLK rising, slave mode From DBCLK falling, master mode To DBCLK rising From DBCLK rising See Figure 25 Slave mode Slave mode To ABCLK rising, slave mode From ABCLK rising, slave mode From ABCLK falling, master mode From ABCLK falling To AUXBCLK rising From AUXBCLK rising From AUXBCLK falling To AUXBCLK rising From AUXBCLK rising Rev. E | Page 7 of 32 10 10 10 10 10 10 30 30 30 30 10 10 10 5 −8 10 5 10 10 10 5 −8 +8 +8 18 10 5 18 10 10 10 5 ns ns MHz ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns AD1938 Data Sheet ABSOLUTE MAXIMUM RATINGS THERMAL RESISTANCE Table 8. Parameter Analog (AVDD) Digital (DVDD) Input Current (Except Supply Pins) Analog Input Voltage (Signal Pins) Digital Input Voltage (Signal Pins) Operating Temperature Range (Case) Storage Temperature Range Rating −0.3 V to +3.6 V −0.3 V to +3.6 V ±20 mA –0.3 V to AVDD + 0.3 V −0.3 V to DVDD + 0.3 V −40°C to +125°C −65°C to +150°C Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. θJA represents thermal resistance, junction-to-ambient; θJC represents the thermal resistance, junction-to-case. All characteristics are for a 4-layer board. Table 9. Thermal Resistance Package Type 48-Lead LQFP ESD CAUTION Rev. E | Page 8 of 32 θJA 50.1 θJC 17 Unit °C/W Data Sheet AD1938 ADC2LP ADC1RN ADC1RP ADC1LN ADC1LP CM AVDD 46 45 44 43 42 41 40 39 38 37 AGND 1 36 AGND MCLKI/XI 2 35 FILTR MCLKO/XO 3 34 AGND AGND 4 33 AVDD AVDD 5 AD1938 32 AGND OL3 6 31 OR2 OR3 TOP VIEW (Not to Scale) 7 30 OL2 OL4 8 29 OR1 OR4 9 28 OL1 PD/RST 10 27 CLATCH DSDATA4 11 26 CCLK DGND 12 25 DGND 18 19 20 21 22 23 24 ASDATA1 ABCLK ALRCLK CIN COUT DSDATA1 17 ASDATA2 16 DBCLK 15 DLRCLK 14 DSDATA2 DVDD 13 DSDATA3 SINGLE-ENDED OUTPUT 05582-002 ADC2LN 47 ADC2RN LF 48 ADC2RP AVDD PIN CONFIGURATION AND FUNCTION DESCRIPTIONS Figure 2. Pin Configuration, 48-Lead LQFP Table 10. Pin Function Descriptions Pin No. 1 2 3 4 5 6 7 8 9 10 11 In/Out I I O I I O O O O I I/O Mnemonic AGND MCLKI/XI MCLKO/XO AGND AVDD OL3 OR3 OL4 OR4 PD/RST DSDATA4 12 13 14 I I I/O DGND DVDD DSDATA3 15 I/O DSDATA2 16 17 18 19 I I/O I/O I/O DSDATA1 DBCLK DLRCLK ASDATA2 20 21 22 23 24 25 O I/O I/O I I/O I ASDATA1 ABCLK ALRCLK CIN COUT DGND Description Analog Ground. Master Clock Input/Crystal Oscillator Input. Master Clock Output/Crystal Oscillator Output. Analog Ground. Analog Power Supply. Connect to analog 3.3 V supply. DAC 3 Left Output. DAC 3 Right Output. DAC 4 Left Output. DAC 4 Right Output. Power-Down Reset (Active Low). DAC Serial Input 4. Data input to DAC4 data in/TDM DAC2 data out (dual-line mode)/AUX DAC2 data out (to external DAC2). Digital Ground. Digital Power Supply. Connect to digital 3.3 V supply. DAC Serial Input 3. Data input to DAC3 data in/TDM DAC2 data in (dual-line mode)/AUX ADC2 data in (from external ADC2). DAC Serial Input 2. Data input to DAC2 data in/TDM DAC data out/AUX ADC1 data in (from external ADC1). DAC Serial Data Input 1. Data input to DAC1 data in/TDM DAC data in/TDM data in. Bit Clock for DACs. LR Clock for DACs. ADC Serial Data Output 2. Data output from ADC2/TDM ADC data in/AUX DAC1 data out (to external DAC1). ADC Serial Data Output 1. Data output from ADC1/TDM ADC data out/TDM data out. Bit Clock for ADCs. LR Clock for ADCs. Control Data Input (SPI). Control Data Output (SPI). Digital Ground. Rev. E | Page 9 of 32 AD1938 Pin No. 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 In/Out I I O O O O I I I O I I O I I I I I I I I O I Data Sheet Mnemonic CCLK CLATCH OL1 OR1 OL2 OR2 AGND AVDD AGND FILTR AGND AVDD CM ADC1LP ADC1LN ADC1RP ADC1RN ADC2LP ADC2LN ADC2RP ADC2RN LF AVDD Description Control Clock Input (SPI). Latch Input for Control Data (SPI). DAC 1 Left Output. DAC 1 Right Output. DAC 2 Left Output. DAC 2 Right Output. Analog Ground. Analog Power Supply. Connect to analog 3.3 V supply. Analog Ground. Voltage Reference Filter Capacitor Connection. Bypass with 10 µF||100 nF to AGND. Analog Ground. Analog Power Supply. Connect to analog 3.3 V supply. Common-Mode Reference Filter Capacitor Connection. Bypass with 47 µF||100 nF to AGND. ADC1 Left Positive Input. ADC1 Left Negative Input. ADC1 Right Positive Input. ADC1 Right Negative Input. ADC2 Left Positive Input. ADC2 Left Negative Input. ADC2 Right Positive Input. ADC2 Right Negative Input. PLL Loop Filter, Return to AVDD. Analog Power Supply. Connect to analog 3.3 V supply. Rev. E | Page 10 of 32 Data Sheet AD1938 TYPICAL PERFORMANCE CHARACTERISTICS 0.10 0 0.08 0.06 MAGNITUDE (dB) MAGNITUDE (dB) 0.04 0.02 0 –0.02 –0.04 –50 –100 –0.08 –0.10 0 05582-006 05582-003 –0.06 –150 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 12 24 36 48 FREQUENCY (kHz) FREQUENCY (Hz) Figure 3. ADC Pass-Band Filter Response, 48 kHz Figure 6. DAC Stop-Band Filter Response, 48 kHz 0.10 0 –10 –20 0.05 MAGNITUDE (dB) MAGNITUDE (dB) –30 –40 –50 –60 –70 0 –0.05 –90 –100 0 05582-007 05582-004 –80 –0.10 5000 10000 15000 20000 25000 30000 35000 40000 0 24 FREQUENCY (Hz) 48 72 96 FREQUENCY (kHz) Figure 4. ADC Stop-Band Filter Response, 48 kHz Figure 7. DAC Pass-Band Filter Response, 96 kHz 0.06 0 MAGNITUDE (dB) 0.02 0 –0.02 –50 –100 –0.06 0 8 16 05582-008 –0.04 05582-005 MAGNITUDE (dB) 0.04 –150 0 24 24 48 72 FREQUENCY (kHz) FREQUENCY (kHz) Figure 5. DAC Pass-Band Filter Response, 48 kHz Figure 8. DAC Stop-Band Filter Response, 96 kHz Rev. E | Page 11 of 32 96 AD1938 Data Sheet 0.5 0 0.4 0.3 –2 MAGNITUDE (dB) 0.1 0 –0.1 –4 –6 –0.2 –0.4 –0.5 0 8 16 32 64 –10 48 05582-010 –8 –0.3 05582-009 MAGNITUDE (dB) 0.2 64 80 FREQUENCY (kHz) FREQUENCY (kHz) Figure 10. DAC Stop-Band Filter Response, 192 kHz Figure 9. DAC Pass-Band Filter Response, 192 kHz Rev. E | Page 12 of 32 96 Data Sheet AD1938 THEORY OF OPERATION ANALOG-TO-DIGITAL CONVERTERS (ADCS) There are four ADC channels in the AD1938 configured as two stereo pairs with differential inputs. The ADCs can operate at a nominal sample rate of 48 kHz, 96 kHz, or 192 kHz. The ADCs include on-board digital antialiasing filters with 79 dB stopband attenuation and linear phase response, operating at an oversampling ratio of 128 (48 kHz, 96 kHz, and 192 kHz modes). Digital outputs are supplied through two serial data output pins (one for each stereo pair) and a common frame clock (ALRCLK) and bit clock (ABCLK). Alternatively, one of the TDM modes can be used to access up to 16 channels on a single TDM data line. The ADCs must be driven from a differential signal source for best performance. The input pins of the ADCs connect to internal switched capacitors. To isolate the external driving op amp from the glitches caused by the internal switched capacitors, each input pin should be isolated by using a series connected, external, 100 Ω resistor together with a 1 nF capacitor connected from each input to ground. This capacitor must be of high quality, for example, ceramic NPO or polypropylene film. The differential inputs have a nominal common-mode voltage of 1.5 V. The voltage at the common-mode reference pin (CM) can be used to bias external op amps to buffer the input signals (see the Power Supply and Voltage Reference section). The inputs can also be ac-coupled and do not need an external dc bias to CM. A digital high-pass filter can be switched in line with the ADCs under serial control to remove residual dc offsets. It has a 1.4 Hz, 6 dB per octave cutoff at a 48 kHz sample rate. The cutoff frequency scales directly with sample frequency. DIGITAL-TO-ANALOG CONVERTERS (DACS) The AD1938 DAC channels are arranged as single-ended, four stereo pairs giving eight analog outputs for minimum external components. The DACs include on-board digital reconstruction filters with 70 dB stop-band attenuation and linear phase response, operating at an oversampling ratio of 4 (48 kHz or 96 kHz modes) or 2 (192 kHz mode). Each channel has its own independently programmable attenuator, adjustable in 255 steps in increments of 0.375 dB. Digital inputs are supplied through four serial data input pins (one for each stereo pair), a common frame clock (DLRCLK), and a bit clock (DBCLK). Alternatively, one of the TDM modes can be used to access up to 16 channels on a single TDM data line. Each output pin has a nominal common-mode dc level of 1.5 V and swings ±1.27 V for a 0 dBFS digital input signal. A single op amp, third-order, external, low-pass filter is recommended to remove high frequency noise present on the output pins. The use of op amps with low slew rate or low bandwidth can cause high frequency noise and tones to fold down into the audio band; therefore, exercise care in selecting these components. The voltage at CM, the common-mode reference pin, can be used to bias the external op amps that buffer the output signals (see the Power Supply and Voltage Reference section). CLOCK SIGNALS The on-chip phase locked loop (PLL) can be selected to reference the input sample rate from either of the LRCLK pins or 256, 384, 512, or 768 times the sample rate, referenced to the 48 kHz mode from the MCLKI/XI pin. The default at power-up is 256 × fS from the MCLKI/XI pin. In 96 kHz mode, the master clock frequency stays at the same absolute frequency; therefore, the actual multiplication rate is divided by 2. In 192 kHz mode, the actual multiplication rate is divided by 4. For example, if a device in the AD193x family is programmed in 256 × fS mode, the frequency of the master clock input is 256 × 48 kHz = 12.288 MHz. If the AD193x is then switched to 96 kHz operation (by writing to the SPI port), the frequency of the master clock should remain at 12.288 MHz, which becomes 128 × fS. In 192 kHz mode, this becomes 64 × fS. The internal clock for the ADCs is 256 × fS for all clock modes. The internal clock for the DACs varies by mode: 512 × fS (48 kHz mode), 256 × fS (96 kHz mode), or 128 × fS (192 kHz mode). By default, the on-board PLL generates this internal master clock from an external clock. A direct 512 × fS (referenced to 48 kHz mode) master clock can be used for either the ADCs or DACs if selected in the PLL and Clock Control 1 register. Note that it is not possible to use a direct clock for the ADCs set to the 192 kHz mode. It is required that the on-chip PLL be used in this mode. The PLL can be powered down in the PLL and Clock Control 0 register. To ensure reliable locking when changing PLL modes, or if the reference clock is unstable at power-on, power down the PLL and then power it back up when the reference clock stabilizes. The internal master clock can be disabled in the PLL and Clock Control 0 register to reduce power dissipation when the AD1938 is idle. The clock should be stable before it is enabled. Unless a standalone mode is selected (see the Serial Control Port section), the clock is disabled by reset and must be enabled by writing to the SPI port for normal operation. To maintain the highest performance possible, limit the clock jitter of the internal master clock signal to less than a 300 ps rms time interval error (TIE). Even at these levels, extra noise or tones can appear in the DAC outputs if the jitter spectrum contains large spectral peaks. If the internal PLL is not used, it is best to use an independent crystal oscillator to generate the master clock. In addition, it is especially important that the clock signal not pass through an FPGA, CPLD, or other large digital chip (such as a DSP) before being applied to the AD1938. In most cases, this induces clock jitter due to the sharing of common power and ground connections with other unrelated digital output signals. When the PLL is used, jitter in Rev. E | Page 13 of 32 AD1938 Data Sheet the reference clock is attenuated above a certain frequency depending on the loop filter. RESET AND POWER-DOWN The function of the RST pin sets all the control registers to their default settings. To avoid pops, reset does not power down the analog outputs. After RST is deasserted, and the PLL acquires lock condition, an initialization routine runs inside the AD1938. This initialization lasts for approximately 256 master clock cycles. The power-down bits in the PLL and Clock Control 0, DAC Control 1, and ADC Control 1 registers power down the respective sections. All other register settings are retained. To guarantee proper start up, the RST pin should be pulled low by an external resistor. SERIAL CONTROL PORT The AD1938 has an SPI control port that permits programming and reading back of the internal control registers for the ADCs, DACs, and clock system. There is also a standalone mode available for operation without serial control that is configured at reset using the serial control pins. All registers are set to default, except the internal master clock enable which is set to 1, and ADC BCLK and LRCLK master/slave is set by the COUT pin. Refer to Table 11 for details. Standalone mode only supports stereo mode with an I2S data format and 256 fS master clock rate. It is recommended to use a weak pull-up resistor on CLATCH in applications that have a microcontroller. This pullup resistor ensures that the AD1938 recognizes the presence of a microcontroller. The SPI control port of the AD1938 is a 4-wire serial control port. The format is similar to the Motorola SPI format except the input data-word is 24 bits wide. The serial bit clock and latch can be completely asynchronous to the sample rate of the ADCs and DACs. Figure 11 shows the format of the SPI signal. The first byte is a global address with a read/write bit. For the AD1938, the address is 0x04, shifted left one bit due to the R/W bit. The second byte is the AD1938 register address and the third byte is the data. Table 11. Standalone Mode Selection ADC Clocks Slave Master CIN 0 0 COUT 0 1 tCLS tCCH tCCL tCCP CLATCH CCLK 0 0 CLATCH 0 0 tCLH tCOTS CCLK tCDS tCDH COUT D23 D22 D9 tCOE D9 D8 D0 D8 D0 05582-011 CIN tCOD Figure 11. Format of SPI Signal Rev. E | Page 14 of 32 Data Sheet AD1938 All digital inputs are compatible with TTL and CMOS levels. All outputs are driven from the 3.3 V DVDD supply and are compatible with TTL and 3.3 V CMOS levels. The ADC and DAC internal voltage reference (VREF) is brought out on FILTR and should be bypassed as close as possible to the chip, with a parallel combination of 10 μF and 100 nF. Any external current drawn should be limited to less than 50 μA. The internal reference can be disabled in the PLL and Clock Control 1 register, and FILTR can be driven from an external source. This configuration can be used to scale the DAC output to the clipping level of a power amplifier based on its power supply voltage. The ADC input gain varies by the inverse ratio. The total gain from ADC input to DAC output remains constant. The CM pin is the internal common-mode reference. It should be bypassed as close as possible to the chip, with a parallel combination of 47 μF and 100 nF. This voltage can be used to bias external op amps to the common-mode voltage of the input and output signal pins. The output current should be limited to less than 0.5 mA source and 2 mA sink. TIME-DIVISION MULTIPLEXED (TDM) MODES The AD1938 serial ports also have several different TDM serial data modes. The first and most commonly used configurations are shown in Figure 12 and Figure 13. In Figure 12, the ADC serial port outputs one data stream consisting of four on-chip ADCs followed by four unused slots. In Figure 13, the eight on-chip DAC data slots are packed into one TDM stream. In this mode, both DBCLK and ABCLK are 256 fS. The I/O pins of the serial ports are defined according to the serial mode selected. For a detailed description of the function of each pin in TDM and auxiliary modes, see Table 12. The AD1938 allows systems with more than eight DAC channels to be easily configured by the use of an auxiliary serial data port. The DAC TDM-AUX mode is shown in Figure 14. In this mode, the AUX channels are the last four slots of the TDM data stream. These slots are extracted and output to the AUX serial port. It should be noted that due to the high DBCLK frequency, this mode is available only in the 48 kHz/44.1 kHz/32 kHz sample rate. The AD1938 also allows system configurations with more than four ADC channels as shown in Figure 15 and Figure 16 that show using 8 ADCs and 16 ADCs, respectively. Again, due to the high ABCLK frequency, this mode is available only in the 48 kHz/44.1 kHz/32 kHz sample rate. Combining the AUX ADC and DAC modes results in a system configuration of 8 ADCs and 12 DACs. The system, then, consists of two external stereo ADCs, two external stereo DACs, and one AD1938. This mode is shown in Figure 17 (combined AUX ADC and DAC modes). LRCLK 256 BCLKs BCLK DATA SERIAL DATA PORTS—DATA FORMAT The eight DAC channels use a common serial bit clock (DBCLK) and a common left-right framing clock (DLRCLK) in the serial data port. The four ADC channels use a common serial bit clock (ABCLK) and left-right framing clock (ALRCLK) in the serial data port. The clock signals are all synchronous with the sample rate. The normal stereo serial modes are shown in Figure 23. The ADC and DAC serial data modes default to I2S. The ports can also be programmed for left-justified, right-justified, and TDM modes. The word width is 24 bits by default and can be programmed for 16 or 20 bits. The DAC serial formats are programmable according to the DAC Control 0 register. The polarity of the DBCLK and DLRCLK is programmable according to DAC Control 1 register. The ADC serial formats and serial clock polarity are programmable according to ADC Control 1 register. Both DAC and ADC serial ports are programmable to become the bus masters according to DAC Control 1 register 32 BCLKs SLOT 1 LEFT 1 SLOT 2 RIGHT 1 SLOT 3 LEFT 2 SLOT 4 RIGHT 2 SLOT 5 SLOT 6 SLOT 7 SLOT 8 SLOT 7 LEFT 4 SLOT 8 RIGHT 4 LRCLK BCLK MSB MSB–1 MSB–2 05582-012 The AD1938 is designed for 3.3 V supplies. Separate power supply pins are provided for the analog and digital sections. These pins should be bypassed with 100 nF ceramic chip capacitors, as close to the pins as possible, to minimize noise pickup. A bulk aluminum electrolytic capacitor of at least 22 μF should also be provided on the same PCB as the codec. For critical applications, improved performance is obtained with separate supplies for the analog and digital sections. If this is not possible, it is recommended that the analog and digital supplies be isolated by means of a ferrite bead in series with each supply. It is important that the analog supply be as clean as possible. and ADC Control 2 register. By default, both ADC and DAC serial ports are in the slave mode. DATA Figure 12. ADC TDM (8-Channel I2S Mode) LRCLK 256 BCLKs BCLK DATA Rev. E | Page 15 of 32 32 BCLKs SLOT 1 LEFT 1 SLOT 2 RIGHT 1 SLOT 3 LEFT 2 SLOT 4 RIGHT 2 SLOT 5 LEFT 3 SLOT 6 RIGHT 3 LRCLK BCLK MSB MSB–1 MSB–2 DATA Figure 13. DAC TDM (8-Channel I2S Mode) 05582-013 POWER SUPPLY AND VOLTAGE REFERENCE AD1938 Data Sheet Table 12. Pin Function Changes in TDM-AUX Modes Mnemonic ASDATA1 ASDATA2 DSDATA1 DSDATA2 DSDATA3 DSDATA4 ALRCLK ABCLK DLRCLK DBCLK Stereo Modes ADC1 Data Out ADC2 Data Out DAC1 Data In DAC2 Data In DAC3 Data In DAC4 Data In ADC LRCLK In/ADC LRCLK Out ADC BCLK In/ADC BCLK Out DAC LRCLK In/DAC LRCLK Out DAC BCLK In/DAC BCLK Out TDM Modes ADC TDM Data Out ADC TDM Data In DAC TDM Data In DAC TDM Data Out DAC TDM Data In 2 (Dual-Line Mode) DAC TDM Data Out 2 (Dual-Line Mode) ADC TDM Frame Sync In/DC TDM Frame Sync Out ADC TDM BCLK In/ADC TDM BCLK Out DAC TDM Frame Sync In/DAC TDM Frame Sync Out DAC TDM BCLK In/DAC TDM BCLK Out AUX Modes TDM Data Out AUX Data Out 1 (to Ext. DAC 1) TDM Data In AUX Data In 1 (from Ext. ADC 1) AUX Data In 2 (from Ext. ADC 2) AUX Data Out 2 (to Ext. DAC 2) TDM Frame Sync In/TDM Frame Sync Out TDM BCLK In/TDM BCLK Out AUX LRCLK In/AUX LRCLK Out AUX BCLK In/AUX BCLK Out ALRCLK ABCLK DSDATA1 (TDM_IN) UNUSED SLOTS EMPTY EMPTY EMPTY AUXILIARY DAC CHANNELS APPEAR AT AUX DAC PORTS 8 ON-CHIP DAC CHANNELS EMPTY DAC L1 DAC R1 DAC L2 DAC R2 DAC L3 DAC R3 DAC L4 DAC R4 AUX L1 AUX R1 AUX L2 AUX R2 32 BITS MSB DLRCLK (AUX PORT) LEFT RIGHT ASDATA2 (AUX1_OUT) MSB MSB DSDATA4 (AUX2_OUT) MSB MSB Figure 14. 16-Channel AUX DAC Mode Rev. E | Page 16 of 32 05582-014 DBCLK (AUX PORT) Data Sheet AD1938 ALRCLK ABCLK 8 ON-CHIP DAC CHANNELS DSDATA1 (TDM_IN) DAC L1 ASDATA1 (TDM_OUT) ADC L1 DAC R1 DAC L2 DAC R2 DAC L3 DAC R3 ADC R2 AUX L1 AUX R1 4 ON-CHIP ADC CHANNELS ADC R1 ADC L2 DAC L4 DAC R4 4 AUX ADC CHANNELS AUX L2 AUX R2 32 BITS MSB DLRCLK (AUX PORT) LEFT RIGHT DSDATA2 (AUX1_IN) MSB MSB DSDATA3 (AUX2_IN) MSB MSB 05582-015 DBCLK (AUX PORT) Figure 15. 8-Channel AUX ADC Mode ALRCLK ABCLK ASDATA1 (TDM_OUT) 4 ON-CHIP ADC CHANNELS ADC L1 ADC R1 ADC L2 AUXILIARY ADC CHANNELS ADC R2 AUX L1 AUX R1 AUX L2 UNUSED SLOTS AUX R2 UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED 32 BITS MSB DLRCLK (AUX PORT) LEFT RIGHT DSDATA2 (AUX1_IN) MSB MSB DSDATA3 (AUX2_IN) MSB MSB Figure 16. 16-Channel AUX ADC Mode Rev. E | Page 17 of 32 05582-016 DBCLK (AUX PORT) AD1938 Data Sheet ALRCLK ABCLK UNUSED SLOTS DSDATA1 (TDM_IN) EMPTY ASDATA1 (TDM_OUT) ADC L1 DLRCLK (AUX PORT) EMPTY EMPTY EMPTY 4 ON-CHIP ADC CHANNELS ADC R1 ADC L2 AUXILIARY DAC CHANNELS APPEAR AT AUX DAC PORTS 8 ON-CHIP DAC CHANNELS ADC R2 DAC L1 DAC R1 DAC L2 DAC R2 DAC L3 DAC R3 DAC L4 AUXILIARY ADC CHANNELS AUX L1 AUX R1 AUX L2 DAC R4 AUX L1 AUX R1 AUX L2 AUX R2 UNUSED SLOTS AUX R2 UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED UNUSED LEFT RIGHT DSDATA2 (AUX1_IN) MSB MSB DSDATA3 (AUX2_IN) MSB MSB ASDATA2 (AUX1_OUT) MSB MSB DSDATA4 (AUX2_OUT) MSB MSB Figure 17. Combined AUX DAC and ADC Mode Rev. E | Page 18 of 32 05582-017 DBCLK (AUX PORT) Data Sheet AD1938 There are two configurations for the ADC port to work in daisy-chain mode. The first one is with an ABCLK at 256 fS shown in Figure 21. The second configuration is shown in Figure 22. Note that in the 512 fS ABCLK mode, the ADC channels occupy the first eight slots; the second eight slots are empty. The TDM_IN of the first AD1938 must be grounded in all modes of operation. DAISY-CHAIN MODE The AD1938 allows a daisy-chain configuration to expand the system to 8 ADCs and 16 DACs (see Figure 18). In this mode, the DBCLK frequency is 512 fS. The first eight slots of the DAC TDM data stream belong to the first AD1938 in the chain and the last eight slots belong to the second AD1938. The second AD1938 is the device attached to the DSP TDM port. The I/O pins of the serial ports are defined according to the serial mode selected. See Table 13 for a detailed description of the function of each pin. See Figure 26 for a typical AD1938 configuration with two external stereo DACs and two external stereo ADCs. To accommodate 16 channels at a 96 kHz sample rate, the AD1938 can be configured into a dual-line TDM mode as shown in Figure 19. This mode allows a slower DBCLK than normally required by the one-line TDM mode. Again, the first four channels of each TDM input belong to the first AD1938 in the chain and the last four channels belong to the second AD1938. Figure 23 through Figure 25 show the serial mode formats. For maximum flexibility, the polarity of LRCLK and BCLK are programmable. In these figures, all of the clocks are shown with their normal polarity. The default mode is I2S. The dual-line TDM mode can also be used to send data at a 192 kHz sample rate into the AD1938 as shown in Figure 20. DLRCLK DBCLK 8 DAC CHANNELS OF THE FIRST IC IN THE CHAIN DSDATA1 (TDM_IN) OF THE SECOND AD193x DAC L1 DAC R1 DAC L2 DSDATA2 (TDM_OUT) OF THE SECOND AD193x THIS IS THE TDM TO THE FIRST AD193x DAC R2 DAC L3 DAC R3 DAC L4 DAC R4 8 DAC CHANNELS OF THE SECOND IC IN THE CHAIN DAC L1 DAC R1 DAC L2 DAC R2 DAC L3 DAC R3 DAC L4 DAC R4 DAC L1 DAC R1 DAC L2 DAC R2 DAC L3 DAC R3 DAC L4 DAC R4 8 UNUSED SLOTS FIRST AD193x SECOND AD193x DSP MSB Figure 18. Single-Line DAC TDM Daisy-Chain Mode (Applicable to 48 kHz Sample Rate, 16-Channel, Two-AD1938 Daisy Chain) Rev. E | Page 19 of 32 05582-018 32 BITS AD1938 Data Sheet DLRCLK DBCLK 8 DAC CHANNELS OF THE FIRST IC IN THE CHAIN DSDATA1 (IN) DAC L1 DAC R1 DAC L2 8 DAC CHANNELS OF THE SECOND IC IN THE CHAIN DAC R2 DSDATA2 (OUT) DSDATA3 (IN) DAC L3 DAC R3 DAC L4 DAC R4 DSDATA4 (OUT) DAC L1 DAC R1 DAC L2 DAC R2 DAC L1 DAC R1 DAC L2 DAC R2 DAC L3 DAC R3 DAC L4 DAC R4 DAC L3 DAC R3 DAC L4 DAC R4 32 BITS FIRST AD193x SECOND AD193x 05582-019 MSB DSP Figure 19. Dual-Line DAC TDM Mode (Applicable to 96 kHz Sample Rate, 16-Channel, Two-AD1938 Daisy Chain); DSDATA3 and DSDATA4 Are the Daisy Chain DLRCLK DBCLK DSDATA1 DAC L1 DAC R1 DAC L2 DAC R2 DSDATA2 DAC L3 DAC R3 DAC L4 DAC R4 05582-020 32 BITS MSB Figure 20. Dual-Line DAC TDM Mode (Applicable to 192 kHz Sample Rate, 8-Channel Mode) ALRCLK ABCLK 4 ADC CHANNELS OF SECOND IC IN THE CHAIN ASDATA1 (TDM_OUT OF THE SECOND AD193x IN THE CHAIN) ADC L1 ADC R1 ADC L2 ADC R2 ASDATA2 (TDM_IN OF THE SECOND AD193x IN THE CHAIN) ADC L1 ADC R1 ADC L2 ADC R2 4 ADC CHANNELS OF FIRST IC IN THE CHAIN ADC L1 ADC R1 ADC L2 ADC R2 32 BITS SECOND AD193x DSP MSB Figure 21. ADC TDM Daisy-Chain Mode (256 fS BCLK, Two-AD193x Daisy Chain) Rev. E | Page 20 of 32 05582-021 FIRST AD193x Data Sheet AD1938 ALRCLK ABCLK 4 ADC CHANNELS OF SECOND IC IN THE CHAIN 4 ADC CHANNELS OF FIRST IC IN THE CHAIN ASDATA1 (TDM_OUT OF THE SECOND AD193x IN THE CHAIN) ADC L1 ADC R1 ADC L2 ADC R2 ASDATA2 (TDM_IN OF THE SECOND AD193x IN THE CHAIN) ADC L1 ADC R1 ADC L2 ADC R2 ADC L1 ADC R1 ADC L2 ADC R2 32 BITS SECOND AD193x DSP 05582-022 FIRST AD193x MSB Figure 22. ADC TDM Daisy-Chain Mode (512 fS BCLK, Two-AD193x Daisy Chain) LEFT CHANNEL LRCLK RIGHT CHANNEL BCLK SDATA LSB MSB LSB MSB LEFT-JUSTIFIED MODE—16 BITS TO 24 BITS PER CHANNEL LEFT CHANNEL LRCLK RIGHT CHANNEL BCLK SDATA LSB MSB LSB MSB I2S-JUSTIFIED MODE—16 BITS TO 24 BITS PER CHANNEL LEFT CHANNEL LRCLK RIGHT CHANNEL BCLK SDATA MSB LSB MSB LSB RIGHT-JUSTIFIED MODE—SELECT NUMBER OF BITS PER CHANNEL LRCLK BCLK MSB MSB LSB LSB DSP MODE—16 BITS TO 24 BITS PER CHANNEL 1/fS NOTES 1. DSP MODE DOES NOT IDENTIFY CHANNEL. 2. LRCLK NORMALLY OPERATES AT fS EXCEPT FOR DSP MODE WHICH IS 2 × fS. 3. BCLK FREQUENCY IS NORMALLY 64 × LRCLK BUT MAY BE OPERATED IN BURST MODE. Figure 23. Stereo Serial Modes Rev. E | Page 21 of 32 05582-023 SDATA AD1938 Data Sheet tDBH tDBP DBCLK tDBL tDLH tDLS DLRCLK tDDS DSDATAx LEFT-JUSTIFIED MODE MSB MSB–1 tDDH tDDS DSDATAx I2S-JUSTIFIED MODE MSB tDDH tDDS tDDS MSB LSB tDDH tDDH 05582-024 DSDATAx RIGHT-JUSTIFIED MODE Figure 24. DAC Serial Timing tABH ABCLK tABL tALH tALS ALRCLK tABDD ASDATAx LEFT-JUSTIFIED MODE MSB MSB–1 tABDD ASDATAx I2S-JUSTIFIED MODE MSB ASDATAx RIGHT-JUSTIFIED MODE MSB Figure 25. ADC Serial Timing Rev. E | Page 22 of 32 LSB 05582-025 tABDD Data Sheet AD1938 Table 13. Pin Function Changes in TDM and AUX Modes (Replication of Table 12) Stereo Modes ADC1 Data Out ADC2 Data Out DAC1 Data In DAC2 Data In DAC3 Data In DAC4 Data In ADC LRCLK In/ADC LRCLK Out ADC BCLK In/ADC BCLK Out DAC LRCLK In/DAC LRCLK Out DAC BCLK In/DAC BCLK Out TDM Modes ADC TDM Data Out ADC TDM Data In DAC TDM Data In DAC TDM Data Out DAC TDM Data In 2 (Dual-Line Mode) DAC TDM Data Out 2 (Dual-Line Mode) ADC TDM Frame Sync In/DC TDM Frame Sync Out ADC TDM BCLK In/ADC TDM BCLK Out DAC TDM Frame Sync In/DAC TDM Frame Sync Out DAC TDM BCLK In/DAC TDM BCLK Out TxDATA TxCLK TFS (NC) RxDATA SHARC® RxCLK 12.288MHz LRCLK AUX ADC 1 LRCLK BCLK DATA MCLK AUX Modes TDM Data Out AUX Data Out 1 (to Ext. DAC 1) TDM Data In AUX Data In 1 (from Ext. ADC 1) AUX Data In 2 (from Ext. ADC 2) AUX Data Out 2 (to Ext. DAC 2) TDM Frame Sync In/TDM Frame Sync Out TDM BCLK In/TDM BCLK Out AUX LRCLK In/AUX LRCLK Out AUX BCLK In/AUX BCLK Out SHARC IS RUNNING IN SLAVE MODE (INTERRUPT-DRIVEN) 30MHz FSYNC-TDM (RFS) BCLK ASDATA1 ALRCLK ABCLK DSDATA1 AUX DATA DAC 1 MCLK DBCLK DLRCLK AD1938 BCLK DSDATA2 DATA DSDATA3 TDM MASTER AUX MASTER MCLK MCLKI/XI LRCLK AUX ADC 2 LRCLK ASDATA2 DSDATA4 BCLK AUX DATA DAC 2 MCLK Figure 26. Example of AUX Mode Connection to SHARC (AD1938 as TDM Master/AUX Master Shown) Rev. E | Page 23 of 32 05582-026 Mnemonic ASDATA1 ASDATA2 DSDATA1 DSDATA2 DSDATA3 DSDATA4 ALRCLK ABCLK DLRCLK DBCLK AD1938 Data Sheet CONTROL REGISTERS DEFINITIONS The global address for the AD1938 is 0x04, shifted left one bit due to the R/W bit. All registers are reset to 0, except for the DAC volume registers that are set to full volume. Note that the first setting in each control register parameter is the default setting. Table 14. Register Format Bit Global Address R/W Register Address Data 23:17 16 15:8 7:0 Table 15. Register Addresses and Functions Address 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Function PLL and Clock Control 0 PLL and Clock Control 1 DAC Control 0 DAC Control 1 DAC Control 2 DAC individual channel mutes DAC L1 volume control DAC R1 volume control DAC L2 volume control DAC R2 volume control DAC L3 volume control DAC R3 volume control DAC L4 volume control DAC R4 volume control ADC Control 0 ADC Control 1 ADC Control 2 PLL AND CLOCK CONTROL REGISTERS Table 16. PLL and Clock Control Register 0 Bit 0 2:1 4:3 6:5 7 Value 0 1 00 01 10 11 00 01 10 11 00 01 10 11 0 1 Function Normal operation Power-down INPUT 256 (× 44.1 kHz or 48 kHz) INPUT 384 (× 44.1 kHz or 48 kHz) INPUT 512 (× 44.1 kHz or 48 kHz) INPUT 768 (× 44.1 kHz or 48 kHz) XTAL oscillator enabled 256 × fS VCO output 512 × fS VCO output Off MCLKI/XI DLRCLK ALRCLK Reserved Disable: ADC and DAC idle Enable: ADC and DAC active Description PLL power-down MCLKI/XI pin functionality (PLL active), master clock rate setting MCLKO/XO pin, master clock rate setting PLL input Internal master clock enable Rev. E | Page 24 of 32 Data Sheet AD1938 Table 17. PLL and Clock Control Register 1 Bit 0 1 2 3 7:4 Value 0 1 0 1 0 1 0 1 0000 Function PLL clock MCLK PLL clock MCLK Enabled Disabled Not locked Locked Reserved Description DAC clock source select ADC clock source select On-chip voltage reference PLL lock indicator (read-only) DAC CONTROL REGISTERS Table 18. DAC Control Register 0 Bit 0 2:1 5:3 7:6 Value 0 1 00 01 10 11 000 001 010 011 100 101 110 111 00 01 10 11 Function Normal Power-down 32 kHz/44.1 kHz/48 kHz 64 kHz/88.2 kHz/96 kHz 128 kHz/176.4 kHz/192 kHz Reserved 1 0 8 12 16 Reserved Reserved Reserved Stereo (normal) TDM (daisy chain) DAC AUX mode (ADC-, DAC-, TDM-coupled) Dual-line TDM Description Power-down Sample rate SDATA delay (BCLK periods) Serial format Table 19. DAC Control Register 1 Bit 0 2:1 3 4 5 6 7 Value 0 1 00 01 10 11 0 1 0 1 0 1 0 1 0 1 Function Latch in mid cycle (normal) Latch in at end of cycle (pipeline) 64 (2 channels) 128 (4 channels) 256 (8 channels) 512 (16 channels) Left low Left high Slave Master Slave Master DBCLK pin Internally generated Normal Inverted Description BCLK active edge (TDM in) BCLKs per frame LRCLK polarity LRCLK master/slave BCLK master/slave BCLK source BCLK polarity Rev. E | Page 25 of 32 AD1938 Data Sheet Table 20. DAC Control Register 2 Bit 0 2:1 4:3 5 7:6 Value 0 1 00 01 10 11 00 01 10 11 0 1 00 Function Unmute Mute Flat 48 kHz curve 44.1 kHz curve 32 kHz curve 24 20 Reserved 16 Noninverted Inverted Reserved Description Master mute De-emphasis (32 kHz/44.1 kHz/48 kHz mode only) Word width DAC output polarity Table 21. DAC Individual Channel Mutes Bit 0 1 2 3 4 5 6 7 Value 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Function Unmute Mute Unmute Mute Unmute Mute Unmute Mute Unmute Mute Unmute Mute Unmute Mute Unmute Mute Description DAC 1 left mute DAC 1 right mute DAC 2 left mute DAC 2 right mute DAC 3 left mute DAC 3 right mute DAC 4 left mute DAC 4 right mute Table 22. DAC Volume Controls Bit 7:0 Value 0 1 to 254 255 Function No attenuation −3/8 dB per step Full attenuation Description DAC volume control Rev. E | Page 26 of 32 Data Sheet AD1938 ADC CONTROL REGISTERS Table 23. ADC Control Register 0 Bit 0 1 2 3 4 5 7:6 Value 0 1 0 1 0 1 0 1 0 1 0 1 00 01 10 11 Function Normal Power down Off On Unmute Mute Unmute Mute Unmute Mute Unmute Mute 32 kHz/44.1 kHz/48 kHz 64 kHz/88.2 kHz/96 kHz 128 kHz/176.4 kHz/192 kHz Reserved Description Power-down High-pass filter ADC L1 mute ADC R1 mute ADC L2 mute ADC R2 mute Output sample rate Table 24. ADC Control Register 1 Bit 1:0 4:2 6:5 7 Value 00 01 10 11 000 001 010 011 100 101 110 111 00 01 10 11 0 1 Function 24 20 Reserved 16 1 0 8 12 16 Reserved Reserved Reserved Stereo TDM (daisy chain) ADC AUX mode (ADC-, DAC-, TDM-coupled) Reserved Latch in mid cycle (normal) Latch in at end of cycle (pipeline) Rev. E | Page 27 of 32 Description Word width SDATA delay (BCLK periods) Serial format BCLK active edge (TDM in) AD1938 Data Sheet Table 25. ADC Control Register 2 Bit 0 1 2 3 5:4 6 7 Value 0 1 0 1 0 1 0 1 00 01 10 11 0 1 0 1 Function 50/50 (allows 32, 24, 20, or 16 bit clocks (BCLKs) per channel) Pulse (32 BCLKs per channel) Drive out on falling edge (DEF) Drive out on rising edge Left low Left high Slave Master 64 128 256 512 Slave Master ABCLK pin Internally generated Rev. E | Page 28 of 32 Description LRCLK format BCLK polarity LRCLK polarity LRCLK master/slave BCLKs per frame BCLK master/slave BCLK source Data Sheet AD1938 ADDITIONAL MODES The AD1938 offers several additional modes for board level design enhancements. To reduce the EMI in board level design, serial data can be transmitted without an explicit BCLK. See Figure 27 for an example of a DAC TDM data transmission mode that does not require high speed DBCLK. This configuration is applicable when the AD1938 master clock is generated by the PLL with the DLRCLK as the PLL reference frequency. To relax the requirement for the setup time of the AD1938 in cases of high speed TDM data transmission, the AD1938 can latch in the data using the falling edge of DBCLK. This effectively dedicates the entire BCLK period to the setup time. This mode is useful in cases where the source has a large delay time in the serial data driver. Figure 28 shows this pipeline mode of data transmission. Both the BLCK-less and pipeline modes are available on the ADC serial data port. DLRCLK 32 BITS INTERNAL DBCLK DSDATAx DLRCLK 05582-027 INTERNAL DBCLK TDM-DSDATAx Figure 27. Serial DAC Data Transmission in TDM Format Without DBCLK (Applicable Only If PLL Locks to DLRCLK. This Mode Is Also Available in the ADC Serial Data Port.) DLRCLK DBCLK DSDATAx 05582-028 DATA MUST BE VALID AT THIS BCLK EDGE MSB Figure 28. I2S Pipeline Mode in DAC Serial Data Transmission (Applicable in Stereo and TDM, Useful for High Frequency TDM Transmission. This Mode Is Also Available in the ADC Serial Data Port.) Rev. E | Page 29 of 32 AD1938 Data Sheet APPLICATIONS CIRCUITS Typical applications circuits are shown in Figure 29 through Figure 32. Figure 29 shows a typical ADC input filter circuit. Recommended loop filters for LR clock and master clock as the PLL reference are shown in Figure 30. Output filters for the DAC outputs are shown in Figure 31 and Figure 32 for the noninverting and inverting cases. 120pF 5.76kΩ 5.76kΩ 3 – 1 OP275 + + 120pF 6 5 OP275 ADCxN 1nF NPO DAC OUT 100pF 5.76kΩ – 240pF NPO 4.7µF 237Ω 5.76kΩ 1nF NPO 4.7µF 237Ω 7 ADCxP + + 3 4.75kΩ 4.75kΩ 270pF NPO 11kΩ + LF 39nF DAC OUT 5.6nF 2.2nF 562Ω AVDD2 604Ω 4.7µF – 4.99kΩ + 3.3nF NPO AUDIO OUTPUT 49.9kΩ 4.99kΩ 68pF NPO 2 11kΩ 3.01kΩ VREF 390pF 3.32kΩ AVDD2 MCLK 270pF NPO 05582-030 LF 1 Figure 31. Typical DAC Output Filter Circuit (Single-Ended, Noninverting) Figure 29. Typical ADC Input Filter Circuit LRCLK 2 + OP275 05582-031 2 100pF Figure 30. Recommended Loop Filters for LRCLK and MCLK PLL Reference 0.1µF 3 – OP275 + 1 604Ω 4.7µF + 2.2nF NPO AUDIO OUTPUT 49.9kΩ 05582-032 600Z 05582-029 AUDIO INPUT Figure 32. Typical DAC Output Filter Circuit (Single-Ended, Inverting) Rev. E | Page 30 of 32 Data Sheet AD1938 OUTLINE DIMENSIONS 9.20 9.00 SQ 8.80 1.60 MAX 37 48 36 1 PIN 1 7.20 7.00 SQ 6.80 TOP VIEW 1.45 1.40 1.35 0.15 0.05 0.20 0.09 7° 3.5° 0° 0.08 COPLANARITY SEATING PLANE VIEW A (PINS DOWN) 25 12 13 VIEW A 0.50 BSC LEAD PITCH 24 0.27 0.22 0.17 ROTATED 90° CCW COMPLIANT TO JEDEC STANDARDS MS-026-BBC 051706-A 0.75 0.60 0.45 Figure 33. 48-Lead Low Profile Quad Flat Package [LQFP] (ST-48) Dimensions shown in millimeters ORDERING GUIDE Model1, 2, 3 AD1938YSTZ AD1938YSTZRL AD1938WBSTZ AD1938WBSTZ-RL EVAL-AD1938AZ Temperature Range –40°C to +105°C –40°C to +105°C –40°C to +105°C –40°C to +105°C Package Description 48-Lead LQFP 48-Lead LQFP, 13” Tape and Reel 48-Lead LQFP 48-Lead LQFP, 13” Tape and Reel Evaluation Board Package Option ST-48 ST-48 ST-48 ST-48 1 Z = RoHS Compliant Part. For the AD1938YSTZ, AD1938YSTZRL, AD1938WBSTZ, and AD1938WBSTZ-RL: single-ended output; SPI control port. 3 W = Qualified for Automotive Applications. 2 AUTOMOTIVE PRODUCTS The AD1938WBSTZ and AD1938WBSTZ-RL models are available with controlled manufacturing to support the quality and reliability requirements of automotive applications. Note that these automotive models may have specifications that differ from the commercial models; therefore, designers should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for use in automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to obtain the specific Automotive Reliability reports for these models. Rev. E | Page 31 of 32 AD1938 Data Sheet NOTES ©2006–2013 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D05582-0-2/13(E) Rev. E | Page 32 of 32
AD1938WBSTZ-RL 价格&库存

很抱歉,暂时无法提供与“AD1938WBSTZ-RL”相匹配的价格&库存,您可以联系我们找货

免费人工找货