0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
AD5317RBRUZ-RL7

AD5317RBRUZ-RL7

  • 厂商:

    AD(亚德诺)

  • 封装:

    TSSOP-16_5X4.4MM

  • 描述:

    IC DAC 10BIT SPI/SRL 16TSSOP

  • 数据手册
  • 价格&库存
AD5317RBRUZ-RL7 数据手册
四通道、10位nanoDAC®, 内置2 ppm/°C基准电压源和SPI接口 AD5317R 产品特性 功能框图 低漂移2.5 V基准电压源:2 ppm/°C(典型值) 小型封装:3 mm × 3 mm、16引脚LFCSP GND VREF AD5317R 2.5V REFERENCE VLOGIC INPUT REGISTER DAC REGISTER STRING DAC A SCLK VOUTA BUFFER INTERFACE LOGIC SYNC SDIN INPUT REGISTER DAC REGISTER STRING DAC B VOUTB BUFFER INPUT REGISTER DAC REGISTER STRING DAC C VOUTC BUFFER SDO INPUT REGISTER DAC REGISTER STRING DAC D VOUTD BUFFER LDAC RESET POWER-ON RESET GAIN ×1/×2 RSTSEL GAIN POWERDOWN LOGIC 10800-001 总不可调整误差(TUE):±0.1% FSR(最大值) 失调误差:±1.5 mV(最大值) 增益误差:±0.1% FSR(最大值) 高驱动能力:20 mA,0.5 V(供电轨) 用户可选增益:1或2(GAIN引脚) 复位到零电平或中间电平(RSTSEL引脚) 1.8 V逻辑兼容 带回读或菊花链的50 MHz SPI 低毛刺:0.5 nV-s 鲁棒的HBM(额定值为4 kV)和FICDM ESD(额定值为1.5 kV)性 能 低功耗:3.3 mW (3 V) 2.7 V至5.5 V电源供电 温度范围:−40°C至+105°C VDD 图1. 应用 数字增益和失调电压调整 可编程衰减器 工业自动化 数据采集系统 表1. 相关器件 概述 接口 SPI AD5317R属于nanoDAC®系列,是一款低功耗、四通道、 10位缓冲电压输出DAC。该器件内置2.5 V、2 ppm/˚C内部 基准电压源(默认使能)和增益选择引脚,满量程输出为2.5 V (增益=1)或5 V(增益=2)。它采用2.7 V至5.5 V单电源供电, 代号 内部 外部 内部 外部 2 IC 1 产品特色 1.5 mV的失调误差性能。该器件提供3 mm × 3 mm LFCSP和 1. 精确直流性能 AD5317R还内置一个上电复位电路和一个RSTSEL引脚,确 保DAC输出上电至零电平或中间电平,直到执行一次有效 的写操作为止。此外所有器件均具有各通道独立掉电特 性,在掉电模式下,器件在3 V时的功耗降至4 uA。 AD5317R采用多功能SPI接口,时钟速率最高达50 MHz,包 含一个为1.8 V/3 V/5 V逻辑电平准备的VLOGIC引脚。 10位 AD53171 AD5316R AD5316 AD5317和AD5317R引脚不兼容、软件不兼容。 通过设计保证单调性,并具有小于0.1% FSR的增益误差和 TSSOP封装。 12位 AD5684R AD5684 AD5694R AD5694 总不可调整误差:±0.1% FSR(最大值) 失调误差:±1.5 mV(最大值) 增益误差:±0.1% FSR(最大值) 2. 低漂移2.5 V片内基准电压源。 典型温度系数为2 ppm/°C 最大温度系数为5 ppm/°C 3. 两种封装选择。 3 mm × 3 mm、16引脚LFCSP 16引脚TSSOP Rev. 0 Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2012 Analog Devices, Inc. All rights reserved. ADI中文版数据手册是英文版数据手册的译文,敬请谅解翻译中可能存在的语言组织或翻译错误,ADI不对翻译中存在的差异或由此产生的错误负责。如需确认任何词语的准确性,请参考ADI提供 的最新英文版数据手册。 AD5317R 目录 特性......................................................................................................1 写命令和更新命令 ....................................................................21 应用......................................................................................................1 菊花链操作 .................................................................................21 功能框图 .............................................................................................1 回读操作......................................................................................22 概述......................................................................................................1 掉电工作模式 .............................................................................22 产品特色 .............................................................................................1 加载DAC(硬件LDAC引脚) .....................................................23 修订历史 .............................................................................................2 LDAC屏蔽寄存器......................................................................23 技术规格 .............................................................................................3 硬件复位(RESET) ......................................................................24 交流特性........................................................................................5 复位选择引脚(RSTSEL) ...........................................................24 时序特性........................................................................................6 内部基准电压源设置................................................................25 菊花链和回读时序特性 .............................................................7 回流焊 ..........................................................................................25 绝对最大额定值................................................................................9 长期温度漂移 .............................................................................25 ESD警告.........................................................................................9 热滞 ..............................................................................................25 引脚配置和功能描述 .....................................................................10 应用信息 ...........................................................................................26 典型性能参数 ..................................................................................11 微处理器接口 .............................................................................26 术语....................................................................................................17 AD5317R与ADSP-BF531接口 .................................................26 工作原理 ...........................................................................................19 AD5317R与SPORT接口 ...........................................................26 数模转换器 .................................................................................19 布局指南......................................................................................26 传递函数......................................................................................19 电流隔离接口 .............................................................................27 DAC架构 .....................................................................................19 外形尺寸 ...........................................................................................28 串行接口......................................................................................20 订购指南......................................................................................28 独立操作......................................................................................21 修订历史 2012年7月—修订版0:初始版 Rev. 0 | Page 2 of 28 AD5317R 技术规格 除非另有说明,VDD = 2.7 V至5.5 V;VREF = 2.5 V;1.8 V ≤ VLOGIC ≤ 5.5 V;所有规格均相对于TMIN至TMAX而言。RL = 2 kΩ; CL = 200 pF。 表2. 参数 静态性能1 分辨率 相对精度 微分非线性 零代码误差 失调误差 满量程误差 增益误差 总不可调整误差 最小值 10 ±0.12 0.4 +0.1 +0.01 ±0.02 ±0.01 0 0 短路电流4 供电轨上的负载阻抗5 上电时间 基准输出 输出电压6 基准电压源TC7, 8 输出阻抗2 输出电压噪声2 输出电压噪声密度2 负载调整率(源电流)2 负载调整率(吸电流)2 输出电流负载能力2 电压调整率2 长期稳定性/漂移2 热滞2 VREF 2 × VREF 单位 位 LSB LSB mV mV % of FSR % of FSR % of FSR % of FSR µV/°C ppm mV/V µV µV/mA µV 80 V V nF nF kΩ µV/mA 80 µV/mA 40 25 2.5 mA Ω µs 2 10 容性负载稳定性 阻性负载3 负载调整率 ±0.5 ±0.5 1.5 ±1.5 ±0.1 ±0.1 ±0.1 ±0.2 ±1 ±1 0.15 ±2 ±3 ±2 失调误差漂移2 增益温度系数2 直流电源抑制比2 直流串扰2 输出特性2 输出电压范围 典型值 最大值 1 2.4975 2 0.04 12 240 20 40 ±5 100 12 125 25 2.5025 5 V ppm/°C Ω µV p-p nV/√Hz µV/mA µV/mA mA µV/V ppm ppm ppm Rev. 0 | Page 3 of 28 测试条件/注释 通过设计保证单调性 DAC寄存器载入全0 DAC寄存器载入全1 外部基准电压源;增益 = 2;TSSOP 内部基准电压源;增益 = 1;TSSOP 用FSR/°C表示 DAC代码 = 中间电平;VDD = 5 V ± 10% 单通道、满量程输出变化引起 负载电流变化引起 (各通道)掉电引起 增益 = 1 增益 = 2;参见图29 RL = ∞ RL = 1 kΩ 5 V ± 10%,DAC代码 = 中间电平;-30 mA ≤ IOUT ≤ +30 mA 3 V ± 10%,DAC代码 = 中间电平;-20 mA ≤ IOUT ≤ +20 mA 见图29 退出掉电模式;VDD = 5 V 环境温度 参见“术语”部分 0.1 Hz至10 Hz 环境温度下;f = 10 kHz,CL = 10 nF 环境温度 环境温度 VDD ≥ 3 V 环境温度 处于125°C下1000小时后 第一个周期 其它周期 AD5317R 参数 逻辑输入2 输入电流 输入低电压VINL 输入高电压VINH 引脚电容 逻辑输出(SDO)2 输出低电压VOL 输出高电压VOH 悬空态输出 电容 电源要求 VLOGIC ILOGIC VDD IDD 正常模式9 全掉电模式10 最小值 典型值 最大值 单位 测试条件/注释 ±2 0.3 × VLOGIC µA V V pF 每引脚 0.4 V V pF ISINK = 200 ISOURCE = 200 A 5.5 3 5.5 5.5 V µA V V 0.7 1.3 4 6 mA mA µA µA 0.7 × VLOGIC 2 VLOGIC − 0.4 4 1.8 2.7 VREF + 1.5 0.59 1.1 1 增益 = 1 增益 = 2 VIH = VDD, VIL = GND, VDD = 2.7 V至5.5 V 内部基准电压源关闭 内部基准电压源开启,满量程 −40°C至+85°C −40°C至+105°C 除非另有说明,直流规格均在输出端无负载的情况下测得。上行死区 = 10 mV,仅存在于VREF = VDD且增益 = 1时或VREF/2 = VDD且增益 = 2时。线性度计算使用缩 减的代码范围:4至1020。 2 通过设计和特性保证,但未经生产测试。 3 通道A和通道B的合并输出电流最高达30 mA。类似地,在结温高达110°C下,通道C和通道D的合并输出电流最高达30 mA。 4 VDD = 5 V。器件包含限流功能,旨在保护器件免受暂时性过载条件影响。限流期间可能会超过结温。在规定的最大结温以上工作可能会影响器件的可靠性。 5 从任一供电轨吸取负载电流时,相对于该供电轨的输出电压裕量受输出器件的25 Ω典型通道电阻限制。例如,当吸电流为1 mA时,最小输出电压 = 25 Ω × 1 mA = 25 mV(见图29)。 6 初始精度预焊回流为±750 μV;输出电压包括预调理漂移的影响。参见“术语”部分。 7 基准电压源在两个温度上进行调整和测试,且表征温度范围为−40°C至+105°C。 8 基准电压源温度系数采用黑盒法计算。详情见“术语”部分。 9 接口未启用。所有DAC启用。DAC输出端无负载。 10 所有DAC掉电。 1 Rev. 0 | Page 4 of 28 AD5317R 交流特性 除非另有说明,VDD = 2.7 V至5.5 V;VREF = 2.5 V;RL = 2 kΩ至GND;CL = 200 pF至GND;1.8 V ≤ VLOGIC ≤ 5.5 V;所有规格均 相对于TMIN至TMAX而言。1 表3. 参数2 输出电压建立时间 压摆率 数模转换毛刺脉冲 数字馈通 数字串扰 模拟串扰 DAC间串扰 总谐波失真4 输出噪声频谱密度 输出噪声 1 2 3 4 最小值 典型值 最大值 单位 5 7 µs 0.8 V/µs 0.5 nV-sec 0.13 nV-sec 0.1 nV-sec 0.2 nV-sec 0.3 nV-sec −80 dB 300 nV/√Hz 6 µV p-p 通过设计和特性保证,但未经生产测试。 参见“术语”部分。 温度范围:−40°C至+105°C,典型值25°C。 以数字方式生成频率为1 kHz的正弦波。 Rev. 0 | Page 5 of 28 测试条件/注释3 ¼到¾量程建立到±1 LSB 主进位1 LSB变化 环境温度下;BW = 20 kHz,VDD = 5 V,fOUT = 1 kHz DAC代码 = 中间电平,10 kHz,增益 = 2 0.1 Hz至10 Hz AD5317R 时序特性 所有输入信号均在tR = tF = 1 ns/V(10%到90%的VDD)情况下标定并从(VIL + VIH)/2电平起开始计时。参见图2。VDD = 2.7 V至5.5 V; 1.8 V ≤ VLOGIC ≤ 5.5 V;VREFIN = 2.5 V。除非另有说明,所有规格均相对于TMIN至TMAX而言。 表4. 参数1 SCLK周期时间 SCLK高电平时间 SCLK低电平时间 SYNC到SCLK下降沿建立时间 数据建立时间 数据保持时间 SCLK下降沿到SYNC上升沿 最短SYNC高电平时间 SYNC下降沿到SCLK下降沿忽略 LDAC低电平脉冲宽度 SCLK下降沿到LDAC上升沿 SCLK下降沿到LDAC下降沿 RESET低电平最小脉冲宽度 RESET脉冲启动时间 上电时间2 2 2.7 V ≤ VLOGIC ≤ 5.5 V 最小值 最大值 20 10 10 10 5 5 10 20 10 15 20 20 30 30 4.5 VDD = 2.7 V至5.5 V且1.8 V ≤ VLOGIC ≤ VDD时,最大SCLK频率为50 MHz。通过设计和特性保证,未经生产测试。 AD5317R退出掉电模式进入正常工作模式所需的时间,第32个时钟沿到DAC中间电平值的90%,且输出端无负载。 t9 t1 SCLK t8 t3 t4 t2 t7 SYNC t5 SDIN t6 DB23 DB0 t12 t10 LDAC1 t11 LDAC2 RESET VOUT t13 t14 10800-002 1 1.8 V ≤ VLOGIC < 2.7 V 最小值 最大值 33 16 16 15 8 8 15 20 16 25 30 20 30 30 4.5 符号 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 1ASYNCHRONOUS LDAC UPDATE MODE. 2SYNCHRONOUS LDAC UPDATE MODE. 图2. 串行写入操作 Rev. 0 | Page 6 of 28 单位 ns ns ns ns ns ns ns ns ns ns ns ns ns ns µs AD5317R 菊花链和回读时序特性 所有输入信号均在tR = tF = 1 ns/V(10%到90%的VDD)情况下标定并从(VIL + VIH)/2电平起开始计时。请参见图4和图5。VDD = 2.7 V 至5.5 V;1.8 V ≤ VLOGIC ≤ 5.5 V;VREFIN = 2.5 V。除非另有说明,所有规格均相对于TMIN至TMAX而言。 表5. 参数1 SCLK周期时间 SCLK高电平时间 SCLK低电平时间 SYNC到SCLK下降沿 数据建立时间 数据保持时间 SCLK下降沿到SYNC上升沿 最短SYNC高电平时间 最短SYNC高电平时间 SCLK上升沿到SDO数据有效时间 SCLK下降沿到SYNC上升沿 符号 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 1.8 V ≤ VLOGIC < 2.7 V 最小值 最大值 66 33 33 33 5 5 15 60 60 36 15 2.7 V ≤ VLOGIC ≤ 5.5 V 最小值 最大值 40 20 20 20 5 5 10 30 30 25 10 单位 ns ns ns ns ns ns ns ns ns ns ns SYNC上升沿到SCLK上升沿 t12 15 10 ns 1 VDD = 2.7 V至5.5 V且1.8 V ≤ VLOGIC ≤ VDD时,最大SCLK频率为25 MHz或15 MHz。通过设计和特性保证,未经生产测试。 电路图和时序图 200µA VOH (MIN) CL 20pF 200µA 10800-003 TO OUTPUT PIN IOL IOH 图3.数字输出(SDO)时序规格的负载电路 SCLK 24 48 t11 t8 t12 t4 SYNC SDIN t6 DB23 DB0 INPUT WORD FOR DAC N DB23 DB0 t10 INPUT WORD FOR DAC N + 1 DB23 SDO UNDEFINED DB0 INPUT WORD FOR DAC N 图4.菊花链时序图 Rev. 0 | Page 7 of 28 10800-004 t5 AD5317R t1 SCLK 24 1 t8 t4 t3 24 1 t7 t2 t9 SYNC t6 t5 DB23 DB0 DB23 INPUT WORD SPECIFIES REGISTER TO BE READ SDO DB23 DB0 NOP CONDITION t10 DB0 UNDEFINED DB23 DB0 SELECTED REGISTER DATA CLOCKED OUT 图5. 回读时序图 Rev. 0 | Page 8 of 28 10800-005 SDIN AD5317R 绝对最大额定值 除非另有说明,TA = 25°C。 注意,超出上述绝对最大额定值可能会导致器件永久性损 表6. 坏。这只是额定最值,不表示在这些条件下或者在任何其 参数 VDD至GND VLOGIC至GND VOUT至GND VREF至GND 数字输入电压至GND 工作温度范围 存储温度范围 结温 16引脚TSSOP,θJA热阻, 0气流(4层板) 16引脚LFCSP,θJA热阻, 0气流(4层板) 回流焊峰值温度, 无铅(J-STD-020) ESD HBM1 FICDM 1 额定值 −0.3 V至+7 V −0.3 V至+7 V −0.3 V至V DD + 0.3 V −0.3 V至V DD + 0.3 V −0.3 V至V LOGIC + 0.3 V −40°C至+105°C −65°C至+150°C 125°C 112.6°C/W 它超出本技术规范操作章节中所示规格的条件下,器件能 够正常工作。长期在绝对最大额定值条件下工作会影响器 件的可靠性。 ESD警告 70°C/W 260°C 4 kV 1.5 kV 人体模型(HBM)分类。 Rev. 0 | Page 9 of 28 ESD(静电放电)敏感器件。 带电器件和电路板可能会在没有察觉的情况下放 电。尽管本产品具有专利或专有保护电路,但在遇 到高能量ESD时,器件可能会损坏。因此,应当采 取适当的ESD防范措施,以避免器件性能下降或功 能丧失。 AD5317R 引脚配置和功能描述 13 RESET 14 RSTSEL 16 VOUTB 15 VREF AD5317R VOUTA 1 11 SYNC VDD 3 10 SCLK 9 VLOGIC 16 RSTSEL VOUTB 2 15 RESET VOUTA 3 14 SDIN 13 SYNC GND 4 GAIN 8 LDAC 7 SDO 6 VOUTD 5 VOUTC 4 VREF 1 10800-006 NOTES 1. THE EXPOSED PAD MUST BE TIED TO GND. 图6. 16引脚LFCSP的引脚配置 TOP VIEW (Not to Scale) 12 SCLK VOUTC 6 11 VLOGIC VOUTD 7 10 GAIN SDO 9 LDAC VDD 5 TOP VIEW (Not to Scale) AD5317R 8 10800-007 12 SDIN GND 2 图7. 16引脚TSSOP引脚配置 表7. 引脚功能描述 LFCSP 1 2 3 引脚编号 TSSOP 3 4 5 名称 VOUTA GND VDD 4 5 6 6 7 8 VOUTC VOUTD SDO 7 9 LDAC 8 10 GAIN 9 10 11 12 VLOGIC SCLK 11 13 SYNC 12 14 SDIN 13 15 RESET 14 16 RSTSEL 15 1 VREF 16 17 2 N/A VOUTB EPAD 描述 DAC A的模拟输出电压。输出放大器能以轨到轨方式工作。 器件上所有电路的接地基准点。 电源输入引脚。该器件可以采用2.7 V至5.5 V电源供电,电源应通过并联的10 μF电容和0.1 μF 电容去耦至GND。 DAC C的模拟输出电压。输出放大器能以轨到轨方式工作。 DAC D的模拟输出电压。输出放大器能以轨到轨方式工作。 串行数据输出。可用于以菊花链形式将多个AD5317R器件连接在一起或用于回读。串行数 据在SCLK上升沿传输,而且在该时钟下降沿有效。 LDAC支持两种工作模式:异步和同步。发送脉冲使该引脚变为低电平后,当输入寄存器有 新数据时,可以更新任意或全部DAC寄存器。因此,所有DAC输出可以同时更新。也可以 将该引脚永久接为低电平。 范围设置引脚。当该引脚与GND相连时,所有四个DAC的输出范围均为0 V至VREF。当该引 脚与VDD相连时,所有四个DAC的输出范围均为0 V至2 x VREF。 数字电源。电压范围为1.8 V至5.5 V。 串行时钟输入。数据在串行时钟输入的下降沿读入移位寄存器。数据能够以最高50 MHz 的速率传输。 低电平有效控制输入。这是输入数据的帧同步信号。当SYNC变为低电平时,数据在后续 24个时钟的下降沿读入。 串行数据输入。该器件有一个24位输入移位寄存器。数据在串行时钟输入的下降沿读入 寄存器。 异步复位输入。RESET输入对下降沿敏感。当RESET为低电平时,所有LDAC脉冲都被忽略。 当RESET有效时,输入寄存器和DAC寄存器更新为零电平或中间电平,具体取决于RSTSEL 引脚的状态。 上电复位引脚。将该引脚连接至GND时,可将所有四个DAC上电至零电平。将该引脚连 接至VDD时,则可将所有四个DAC上电至中间电平。 基准电压。AD5317R具有同样的基准电压引脚。使用内部基准电压源时,此引脚为基准 输出。使用外部基准电压源时,此引脚为基准输入。此引脚默认用作基准输出。 DAC B的模拟输出电压。输出放大器能以轨到轨方式工作。 裸露焊盘。裸露焊盘必须连接到GND。 Rev. 0 | Page 10 of 28 AD5317R 典型性能参数 2.5015 2.5010 1600 VDD = 5V DEVICE 1 DEVICE 2 DEVICE 3 DEVICE 4 DEVICE 5 1400 1200 1000 NSD (nV/ Hz) VREF (V) 2.5005 2.5000 2.4995 800 600 2.4990 400 2.4985 200 –20 0 20 40 60 80 100 120 TEMPERATURE (°C) 0 10 10800-212 2.4980 –40 VDD = 5V TA = 25°C 1k 10k 100k 1M FREQUENCY (Hz) 图11. 内部基准电压源噪声谱密度与频率的关系 图8. 内部基准电压与温度的关系(B级) 90 100 10800-111 2.5020 VDD = 5V VDD = 5V TA = 25°C 80 NUMBER OF UNITS 70 60 50 1 40 30 20 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 TEMPERATURE DRIFT (ppm/°C) CH1 2µV 60 2.5000 VDD = 5.5V 0 HOUR 168 HOURS 500 HOURS 1000 HOURS 2.4999 50 VDD = 5V TA = 25°C 2.4998 VREF (V) 40 30 2.4997 2.4996 20 2.4995 10 2.4994 0 2.498 2.499 2.500 2.501 VREF (V) 2.502 10800-251 HITS M1.0s 图12. 内部基准电压源噪声(0.1 Hz至10 Hz) 图9. 基准电压输出温度漂移直方图 2.4993 –0.005 –0.003 –0.001 0.001 0.003 ILOAD (A) 图13. 内部基准电压与负载电流的关系 图10. 基准电压源长期稳定性/漂移 Rev. 0 | Page 11 of 28 0.005 10800-113 0 10800-112 0 10800-250 10 AD5317R 2.5002 10 TA = 25°C D1 8 2.5000 6 4 ERROR (LSB) D3 2.4996 2.4994 INL 0 DNL –2 –4 –6 2.4992 D2 3.0 3.5 4.0 –8 4.5 5.0 5.5 VDD (V) VDD = 5V TA = 25°C INTERNAL REFERENCE = 2.5V –10 –40 10800-117 2.4990 2.5 2 10 60 10800-124 VREF (V) 2.4998 110 TEMPERATURE (°C) 图17. INL误差和DNL误差与温度的关系 图14. 内部基准电压与电源电压的关系 10 0.5 8 6 0.3 ERROR (LSB) INL (LSB) 4 0.1 –0.1 2 INL 0 DNL –2 –4 –6 VDD = 5V TA = 25°C INTERNAL REFERENCE = 2.5V –8 0 156 312 468 625 781 938 CODE –10 10800-118 –0.5 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 VREF (V) 图15. INL 5.0 10800-125 –0.3 图18. INL误差和DNL误差与VREF 的关系 0.5 10 8 6 0.3 ERROR (LSB) 0.1 –0.1 2 INL 0 DNL –2 –4 –6 –8 –0.5 0 156 312 468 625 CODE 781 938 VDD = 5V TA = 25°C INTERNAL REFERENCE = 2.5V –10 2.7 3.2 3.7 4.2 4.7 5.2 SUPPLY VOLTAGE (V) 图19. INL误差和DNL误差与电源电压的关系 图16. DNL Rev. 0 | Page 12 of 28 10800-126 –0.3 10800-119 DNL (LSB) 4 AD5317R 1.5 0.10 0.08 1.0 0.04 0.5 FULL-SCALE ERROR 0.02 0 ERROR (mV) GAIN ERROR –0.02 ZERO-CODE ERROR 0 OFFSET ERROR –0.5 –0.06 –1.0 60 80 100 120 TEMPERATURE (°C) VDD = 5V TA = 25°C INTERNAL REFERENCE = 2.5V –1.5 2.7 10800-127 TOTAL UNADJUSTED ERROR (% of FSR) 0.8 0.6 ZERO-CODE ERROR 0.2 OFFSET ERROR 20 40 60 80 100 120 TEMPERATURE (°C) 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.08 0.08 TOTAL UNADJUSTED ERROR (% of FSR) 0.10 0.04 GAIN ERROR 0 FULL-SCALE ERROR –0.04 –0.06 4.7 5.2 SUPPLY VOLTAGE (V) 10800-129 ERROR (% of FSR) 0.06 VDD = 5V –0.08 T = 25°C A INTERNAL REFERENCE = 2.5V –0.10 2.7 3.2 3.7 4.2 0 20 40 60 80 100 120 图24. TUE与温度的关系 0.10 0.02 –20 TEMPERATURE (°C) 图21. 零代码误差和失调误差与温度的关系 –0.02 5.2 VDD = 5V 0.09 TA = 25°C INTERNAL REFERENCE = 2.5V 0.08 0 –40 10800-128 ERROR (mV) 1.0 0 4.7 0.10 1.2 –20 4.2 图23. 零编码误差和失调误差与电源电压的关系 VDD = 5V 1.4 T = 25°C A INTERNAL REFERENCE = 2.5V 0 –40 3.7 SUPPLY VOLTAGE (V) 图20. 增益误差和满量程误差与温度的关系 0.4 3.2 10800-131 VDD = 5V –0.08 T = 25°C A INTERNAL REFERENCE = 2.5V –0.10 –40 –20 0 20 40 10800-130 –0.04 0.06 0.04 0.02 0 –0.02 –0.04 –0.06 V = 5V –0.08 T DD= 25°C A INTERNAL REFERENCE = 2.5V –0.10 2.7 3.2 3.7 4.2 4.7 SUPPLY VOLTAGE (V) 图25. TUE与电源电压的关系(增益=1) 图22. 增益误差和满量程误差与电源电压的关系 Rev. 0 | Page 13 of 28 5.2 10800-132 ERROR (% of FSR) 0.06 1.0 –0.01 0.8 –0.02 0.6 –0.03 0.4 –0.04 0.2 –0.05 –0.06 SINKING 5V 0 –0.2 –0.07 –0.4 –0.08 –0.6 VDD = 5V –0.09 T = 25°C A INTERNAL REFERENCE = 2.5V –0.10 0 156 312 468 SINKING 2.7V SOURCING 5V SOURCING 2.7V –0.8 624 780 936 1023 –1.0 CODE 0 10 20 25 30 图29. 上裕量/下裕量与负载电流的关系 7 VDD = 5V TA = 25°C EXTERNAL REFERENCE = 2.5V VDD = 5V 6 TA = 25°C GAIN = 2 INTERNAL 5 REFERENCE = 2.5V 20 0xFFFF 4 15 VOUT (V) HITS 15 LOAD CURRENT (mA) 图26. TUE与代码的关系 25 5 10800-200 ΔVOUT (V) 0 10800-133 TOTAL UNADJUSTED ERROR (% of FSR) AD5317R 10 0xC000 3 0x8000 2 0x4000 1 0x0000 0 5 540 560 580 600 620 640 IDD (mA) –2 –0.06 10800-135 0 –0.04 –0.02 图27. 采用外部基准电压源时的IDD 直方图(5 V) 0.02 0.04 0.06 图30. 5 V时的源电流和吸电流能力 5 VDD = 5V 30 T = 25°C A INTERNAL REFERENCE = 2.5V 25 VDD = 3V TA = 25°C 4 EXTERNAL REFERENCE = 2.5V GAIN = 1 0xFFFF 3 0xC000 VOUT (V) 20 15 2 0x8000 1 0x4000 10 0 5 0x0000 0 1000 1020 1040 1060 1080 1100 IDD FULL SCALE (mA) 1120 1140 10800-136 –1 图28. 采用内部基准电压源时的IDD 直方图(VREF = 2.5 V,增益 = 2) Rev. 0 | Page 14 of 28 –2 –0.06 –0.04 –0.02 0 0.02 0.04 LOAD CURRENT (A) 图31. 3 V时的源电流和吸电流能力 0.06 10800-139 HITS 0 LOAD CURRENT (A) 10800-138 –1 AD5317R 3 CH A CH B CH C CH D SYNC 1.4 1.2 FULL-SCALE 2 ZERO CODE VOUT (V) CURRENT (mA) 1.0 0.8 0.6 GAIN = 2 EXTERNAL REFERENCE, FULL-SCALE GAIN = 1 1 0.4 0.2 60 110 0 –5 TEMPERATURE (°C) 3.5 3.0 5 10 TIME (µs) 图35. 退出掉电模式进入中间电平 图32. 电源电流与温度的关系 4.0 0 10800-143 10 10800-140 0 –40 VDD = 5V TA = 25°C INTERNAL REFERENCE = 2.5V 2.5008 DAC A DAC B DAC C DAC D 2.5003 VOUT (V) VOUT (V) 2.5 2.0 2.4998 2.4993 CHANNEL B TA = 25°C VDD = 5.25V INTERNAL REFERENCE = 2.5V CODE = 7FFF TO 8000 ENERGY = 0.227206nV-sec 2.4988 0 2 4 6 VDD = 5V 0.5 TA = 25°C INTERNAL REFERENCE = 2.5V 1/4 TO 3/4 SCALE 0 10 20 40 80 160 320 TIME (µs) 10800-141 1.0 图33. 建立时间(5 V) 12 0.003 6 CH A CH B CH C CH D VDD CH B CH C CH D 5 4 0.03 3 0.02 2 0.01 1 0 0 VOUT AC-COUPLED (V) 0.002 0.04 0.001 0 TA = 25°C INTERNAL REFERENCE = 2.5V –0.01 –10 –5 0 5 TIME (µs) 10 –1 15 图34. 上电复位至0 V –0.002 0 5 10 15 TIME (µs) 图37. 模拟串扰(通道A) Rev. 0 | Page 15 of 28 20 25 10800-145 –0.001 10800-142 VOUT (V) 0.05 10 图36. 数模转换毛刺脉冲 VDD (V) 0.06 8 TIME (µs) 10800-144 1.5 AD5317R 20 T VDD = 5V TA = 25°C INTERNAL REFERENCE = 2.5V 0 –20 THD (dBV) –40 1 –60 –80 –100 –120 –140 VDD = 5V TA = 25°C EXTERNAL REFERENCE = 2.5V A CH1 802mV 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 FREQUENCY (Hz) 图38. 0.1 Hz至10 Hz输出噪声图,外部基准电压源 10800-149 M1.0s –180 10800-146 CH1 10µV –160 图41. 1 kHz时的总谐波失真 4.0 T 3.9 3.8 0nF 0.1nF 10nF 0.22nF 4.7nF VDD = 5V TA = 25°C INTERNAL REFERENCE = 2.5V VOUT (V) 3.7 1 3.6 3.5 3.4 3.3 3.2 VDD = 5V TA = 25°C INTERNAL REFERENCE = 2.5V A CH1 802mV VDD = 5V TA = 25°C 1400 INTERNAL REFERENCE = 2.5V FULL-SCALE MIDSCALE ZERO-SCALE 800 600 400 200 1k 10k FREQUENCY (Hz) 100k 1M 10800-148 NSD (nV/ Hz) 1000 100 1.605 1.610 1.615 1.620 图42. 建立时间与容性负载的关系 1200 0 10 1.600 TIME (ms) 图39. 0.1 Hz至10 Hz输出噪声图,2.5 V内部基准电压源 1600 1.595 图40. 噪声频谱密度 Rev. 0 | Page 16 of 28 1.625 1.630 10800-150 M1.0s 3.0 1.590 10800-147 CH1 10µV 3.1 AD5317R 术语 相对精度或积分非线性(INL) 直流电源抑制比(PSRR) 对于DAC,相对精度或积分非线性是指DAC输出与通过 DC PSRR表示电源电压变化对DAC输出的影响大小,是指 DAC传递函数的两个端点的直线之间的最大偏差,单位为 DAC满量程输出的条件下VOUT变化量与VDD变化量之比, LSB。图15给出了典型的INL与代码的关系图。 用mV/V表示。VREF保持在2.5 V,而VDD的变化范围为±10%。 差分非线性(DNL) 输出电压建立时间 微分非线性是指任意两个相邻编码之间所测得变化值与理 输出电压建立时间是指对于一个¼至¾满量程输入变化, 想的1 LSB变化值之间的差异。最大±1 LSB的额定微分非线 DAC输出建立为指定电平所需的时间。该时间从SYNC上 性可确保单调性。本DAC通过设计保证单调性。图16所示 升沿开始测量。 为典型DNL与代码的关系图。 数模转换毛刺脉冲 零代码误差 数模转换毛刺脉冲是DAC寄存器中的编码输入变化时注入 零代码误差衡量将零电平码(0x0000)载入DAC寄存器时的 到模拟输出的脉冲。在数字输入代码主进位发生1LSB转换 输出误差。理想情况下,输出应为0V。在AD5317R中,零 (0x7FFF到0x8000)时测量,它一般定义为以nV-sec为单位 代码误差始终为正值,因为在DAC和输出放大器中的失调 的毛刺面积(见图36)。 误差的共同作用下,DAC输出不能低于0 V。零代码误差用 mV表示。图21所示为零代码误差与温度的关系图。 数字馈通 数字馈通衡量从DAC的数字输入注入到DAC的模拟输出的 满量程误差 脉冲,但在DAC输出未更新时进行测量。单位为nV-秒, 满量程误差衡量将满量程代码(0xFFFF)载入DAC寄存器时 测量数据总线上发生满量程编码变化时的情况,即全0至 的输出误差。理想情况下,输出应为VDD − 1 LSB。满量程 全1,反之亦然。 误差用满量程范围的百分比(% FSR)表示。图20所示为满量 程误差与温度的关系图。 噪声频谱密度 噪声频谱密度衡量内部产生的随机噪音。随机噪声表示为 增益误差 频谱密度(nV/√Hz)。测量方法是将DAC加载到中间电平, 增益误差衡量DAC的量程误差,是指DAC传递特性的斜率 然后测量输出端噪声。单位为nV/√Hz。噪声频谱密度曲线 与理想值之间的偏差,用% FSR表示。 图如图40所示。 失调误差漂移 直流串扰 失调误差漂移衡量失调误差随温度的变化,用μV/°C表示。 直流串扰是一个DAC输出电平因响应另一个DAC输出变化 而发生的直流变化。其测量方法是让一个DAC发生满量程 增益温度系数 增益温度系数用来衡量增益误差随温度的变化,用ppm FSR/°C表示。 输出变化(或软件关断并上电),同时监控另一个保持中间 电平的DAC。单位为μV。 负载电流变化引起的直流串扰用来衡量一个DAC的负载电流 失调误差 变化对另一个保持中间电平的DAC的影响。单位为μV/mA。 失调误差是指传递函数线性区内VOUT(实际)和VOUT(理想)之 间的差值,用mV表示。失调误差在AD5317R上是通过将 数字串扰 代码4载入DAC寄存器测得。该值可以为正,也可为负。 数字串扰是指一个输出为中间电平的DAC,其输出因响应 另一个DAC的输入寄存器的满量程编码变化(全0至全1或 相反)而引起的毛刺脉冲,该值在独立模式下进行测量,用 nV-sec表示。 Rev. 0 | Page 17 of 28 AD5317R 模拟串扰 基准电压源TC 模拟串扰是指一个DAC的输出因响应另一个DAC输出的变 基准电压源TC衡量基准输出电压随温度的变化。基准电压 化引起毛刺脉冲,它的测量方法是,向一个DAC加载满刻 源TC利用黑盒法计算,该方法将温度系数(TC)定义为基准 度代码变化(全0至全1或相反),然后执行软件LDAC并监控 电压输出在给定温度范围内的最大变化,用ppm/°C表示, 数字编码未改变的DAC的输出。毛刺面积用nV-sec表示。 计算公式如下: 模拟串扰 模拟串扰是指一个DAC的输出因响应另一个DAC输出的变 化引起毛刺脉冲,它的测量方法是,向一个DAC加载满刻 度代码变化(全0至全1或相反),然后执行软件LDAC并监控 数字编码未改变的DAC的输出。毛刺面积用nV-sec表示。 其中: VREFmax是在整个温度范围内测量的最大基准电压输出。 VREFmin是在整个温度范围内测量的最小基准电压输出。 总谐波失真(THD) VREFnom是标称基准输出电压2.5 V。 总谐波失真(THD)是指理想正弦波与使用DAC时其衰减形 TempRange为额定温度范围:−40°C至+105℃。 式的差别。正弦波用作DAC的参考,而THD用来衡量DAC 输出端存在的谐波。单位为dB。 Rev. 0 | Page 18 of 28 AD5317R 工作原理 数模转换器 电阻串结构如图44所示。它只是一串电阻,各电阻的值为 AD5317R是一款四通道、10位、串行输入、电压输出DAC, R。载入DAC寄存器的代码决定抽取电阻串上哪一个节点 内置基准电压源,采用2.7 V至5.5 V电源供电。数据通过三 的电压,以馈入输出放大器。抽取电压的方法是将连接电 线式串行接口以24位字格式写入AD5317R。AD5317R内置 阻串与放大器的开关之一闭合。由于该DAC是一电阻串, 一个上电复位电路,确保DAC输出上电至已知的输出状 因此可以保证单调性。 态。它们也有软件掉电模式,可以将典型功耗降至4 μA。 VREF 传递函数 R 内部基准电压源默认使能。DAC的输入编码为直接二进 R 制,使用外部基准电压源时的理想输出电压为: TO OUTPUT AMPLIFIER R 其中: D是载入DAC寄存器的二进制编码的十进制等效值:10位 器件:0至1023。 R N为DAC分辨率(10位)。 Gain是输出放大器的增益,默认设置为1。 R 10800-053 可使用增益选择引脚将其设置为x1或x2。当该引脚与GND相 连时,所有四个DAC的输出范围均为0 V至VREF。当该引脚 与VDD相连时,所有四个DAC的输出范围均为0 V至2 x VREF。 图44. 电阻串结构 输出放大器 DAC架构 输出缓冲放大器可以在其输出端产生轨到轨电压,输出范 DAC架构由一个电阻串DAC和一个输出放大器构成。图43 围为0 V至VDD。实际范围取决于VREF的值、GAIN引脚、失 为DAC架构框图。 调误差和增益误差。GAIN引脚选择输出的增益。 VREF • 如果此引脚连接到GND,所有四个输出的增益均为1, 2.5V REF 且输出范围为0 V至VREF。 • 如果此引脚连接到VDD,则所有四个输出的增益均为2, REF (+) DAC REGISTER RESISTOR STRING REF (–) GND VOUTX GAIN (GAIN = 1 OR 2) 图43. DAC单通道架构框图 且输出范围为0 V至2 × VREF。 10800-052 INPUT REGISTER 该输出放大器能驱动连接至GND的一个与2 nF电容并联的 1 kΩ负载。压摆率为0.8 V/μs,¼到¾量程建立时间为5 μs。 Rev. 0 | Page 19 of 28 AD5317R 串行接口 表8. 命令位定义 AD5317R具有三线式串行接口(SYNC、SCLK和SDIN),与 SPI、QSPI™和MICROWIRE接口标准以及大多数DSP兼 容。典型写序列的时序图参见图2。AD5317R带有一个 SDO引脚,允许用户以菊花链形式将多个器件连接在一起 (参见“菊花链操作”部分)或进行回读。 输入移位寄存器 AD5317R的输入移位寄存器为24位宽。数据以MSB(DB23) 优先方式载入,并且前四位为命令位C3至C0(见表8),然 后是4位DAC地址位(DAC A、DAC B、DAC C和DAC D, 见表9),最后是数据字位。 数据字包括10位输入代码和6个无关位(见图45)。这些数据 位在SCLK的24个下降沿传送至输入寄存器,并在SYNC上 C3 0 0 0 命令 C2 0 0 0 C1 0 0 1 C0 0 1 0 0 0 0 0 0 1 1 1 … 1 0 1 1 1 1 0 0 0 … 1 1 0 0 1 1 0 0 1 … 1 1 0 1 0 1 0 1 0 … 1 描述 无操作 写入输入寄存器n(取决于LDAC) 以输入寄存器n的内容更新DAC 寄存器n 写入并更新DAC通道n DAC掉电/上电 硬件LDAC屏蔽寄存器 软件复位(上电复位) 内部基准电压源设置寄存器 设置DCEN寄存器(菊花链使能) 设置回读寄存器(回读使能) 保留 保留 保留 表9. 地址位和选定的DAC 升沿进行更新。 地址位 DAC C 0 0 1 0 0 1 DAC D 0 0 0 1 0 1 命令可以在单DAC通道、多DAC通道或所有DAC通道上执 行,具体取决于所选的地址位(见表9)。 1 DAC B 0 1 0 0 1 1 DAC A 1 0 0 0 1 1 可使用地址位来选择任意组合的DAC通道。 DB23 (MSB) C3 C2 选定的DAC通道1 DAC A DAC B DAC C DAC D DAC A和DAC B 所有DAC DB0 (LSB) C1 C0 DAC DAC DAC DAC D9 D C B A D8 D7 D6 D5 D4 D3 D2 D1 D0 X X X X X X COMMAND BITS 10800-054 DATA BITS ADDRESS BITS 图45. AD5317R输入移位寄存器内容 Rev. 0 | Page 20 of 28 AD5317R 独立操作 AD5317R 68HC11* 写序列通过将SYNC线拉低来启动。来自SDIN线的数据在 SCLK的下降沿进入24位输入移位寄存器。输入24个数据位 的最后一位后,应将SYNC拉高。接着执行程序化的功 能,即DAC寄存器内容会根据LDAC发生变化和/或工作模 式会改变。如果在第24个时钟周期之前拉高SYNC,则无 MOSI SDIN SCK SCLK PC7 SYNC PC6 LDAC SDO MISO 效数据可能会被加载到DAC中。必须在下一个写入序列之 前至少将SYNC拉高20 ns(单通道,见图2中的t8),这样才能 SDIN 用SYNC下降沿启动下一个写序列。在写序列之间空闲 AD5317R 时,SYNC应处于电源轨电平,以进一步降低器件功耗。 SCLK SYNC保持24个SCLK下降沿的低电平,DAC则会在SYNC SYNC 的上升沿更新。 LDAC SDO 当数据传送至寻址DAC的输入寄存器后,所有DAC寄存器 和输出端可以通过将LDAC置为低电平并使SYNC线保持高 SDIN 电平来更新。 AD5317R 写命令和更新命令 SCLK 写入输入寄存器n(取决于LDAC) SYNC 命令0001允许用户逐个写入各个DAC的专用输入寄存器。 LDAC LDAC屏蔽寄存器控制)。 *ADDITIONAL PINS OMITTED FOR CLARITY. 以输入寄存器n的内容更新DAC寄存器n 命令0010会在DAC寄存器/输出中加载选定输入寄存器的内 容并直接更新DAC输出。 10800-057 SDO 当 LDAC为 低 电 平 时 , 输 入 寄 存 器 是 透 明 的 ( 如 果 不 由 图46. 以菊花链方式连接AD5317R 当SYNC为低电平时,SCLK引脚不断施加到输入移位寄存 器。如果施加24个以上的时钟脉冲,数据将溢出输入移位 写入和更新DAC通道n(与LDAC无关) 寄存器,而出现在SDO线上。此数据在SCLK上升沿逐个输 命令0011允许用户写入DAC寄存器并直接更新DAC输出。 出,并在SCLK的下降沿有效。通过将SDO线路连接到菊花 链中下一个DAC的SDIN输入,即可构成菊花链接口。系 菊花链操作 对于包含数个DAC的系统,可利用SDO引脚通过菊花链方 式将多个器件连接起来。该功能通过软件可执行菊花链使 能(DCEN)命令来使能。命令1000保留用于该DCEN功能 (见表8)。通过将DCEN寄存器的位DB0置1可以使能菊花链 模式。默认设置为独立模式,其中DB0 = 0。表10列出了该 位的状态与器件工作模式的对应关系。 统中的每个DAC都需要24个时钟脉冲,因此总时钟周期数 必须等于24 × N,其中N为要更新的器件总数。如果SYNC 在并非24倍数的时钟周期变为高电平,则可能向DAC中载 入无效数据。当对所有器件的串行传输结束时,SYNC变 为高电平,这样可以锁存菊花链中各器件的输入数据,防 止额外的数据进入输入移位寄存器。串行时钟可以是连续 时钟或门控时钟。只有当SYNC可以在正确的时钟周期数 表10. 菊花链使能(DCEN)寄存器 内保持为低电平时,才能使用连续的SCLK时钟源。在门控 DB0 0 1 时钟模式下,必须采用包含确切时钟周期数的连续时钟, 描述 独立模式(默认) DCEN模式 在时钟周期结束后必须将SYNC置为高电平来锁存数据。 Rev. 0 | Page 21 of 28 AD5317R 回读操作 表11. 工作模式 回读模式通过软件可执行回读命令来调用。如果通过控制 用来选择要读取的寄存器。注意,回读期间只能选择一个 工作模式 正常工作 掉电模式 1 kΩ接GND 100 kΩ接GND 三态 DAC寄存器。余下的三个地址位必须设为逻辑0。写序列 通过设置相应位,可以关断任意或所有DAC(DAC A至DAC 中的余下数据位都是无关位。如果选择了多个位或未选择 D),使其进入选定模式。表12列出了掉电/上电期间输入移 任何位,则默认回读DAC通道A。在下一次SPI写操作期 位寄存器的内容。 寄存器中的菊花链模式禁用位禁用了SDO输出,则读操作 期间会自动启用该输出,之后再次禁用。命令1001保留用 于回读功能。该命令与DAC A至DAC D地址位之一配合使 间,SDO输出端的数据包含之前寻址寄存器的数据。 PDx1 0 PDx0 0 0 1 1 1 0 1 当输入移位寄存器中的位PDx1和位PDx0(其中x为选定的通 例如,要回读通道A的DAC寄存器,应当实施如下操作 道)均设为0时,器件正常工作,5 V时正常模式功耗为1.1 mA。 序列: 在三种掉电模式下,5 V时电源电流降至4 μA。不仅是供电 1. 将0x900000写入AD5317R输入寄存器。这会将器件配置 电流下降,输出级也从放大器输出切换为已知值的电阻网 络,这是有好处的,因为在掉电模式下器件的输出阻抗是 为读取模式,同时选中通道A的DAC寄存器。注意,从 已知的。有三种不同的掉电选项(见表11)。输出通过1 kΩ电 DB15至DB0的所有数据位都是无关位。 阻或100 kΩ电阻内部连接到GND,或者保持开路状态(三态)。 2. 然后执行第二个写操作,写入NOP条件0x000000。在此 图47显示了此输出级。 写入期间,来自寄存器的数据在SDO线路上逐个输出。 DB23至DB20包含未定义的数据,后16位则包含DB19至 DB4 DAC寄存器内容。 AMPLIFIER DAC VOUTX 掉电工作模式 POWER-DOWN CIRCUITRY 能(见表8)。这些掉电模式可通过软件编程,方法是设置输 RESISTOR NETWORK 10800-058 AD5317R支持三种独立的掉电模式。命令0100用于掉电功 入移位寄存器中的八个位(位DB7至位DB0)。每个DAC通 道对应两个位。表11列出了这两个位的状态与器件工作模 图47. 掉电模式下的输出级 式的对应关系。 在掉电模式有效时,偏置发生器、输出放大器、电阻串以及 其它相关线性电路全部关断。然而,掉电期间DAC寄存器 的内容不受影响。可在器件处于掉电模式下时更新DAC寄 存器。当VDD = 5 V时,退出掉电模式所需时间通常为4.5 μs。 表12. 关断/上电操作的24位输入移位寄存器内容1 DB23 0 DB22 1 DB21 0 命令位(C3至C0) 1 DB20 0 DB19 to DB16 X 地址位 (无关位) DB15 to DB8 X DB7 PDD1 DB6 PDD0 掉电 选择DAC D X = 无关位。 Rev. 0 | Page 22 of 28 DB5 PDC1 DB4 PDC0 掉电 选择DAC C DB3 PDB1 DB2 PDB0 掉电 选择DAC B DB1 PDA1 DB0 (LSB) PDA0 掉电 选择DAC A AD5317R 加载DAC(硬件LDAC引脚) LDAC屏蔽寄存器 AD5317RDAC具有由两个寄存器库组成的双缓冲接口:输 命令0101用于该软件LDAC功能。地址位被忽略。使用命令 入寄存器和DAC寄存器。用户可以写入任意组合的输入寄 0101写入DAC将加载4位LDAC寄存器(DB3至DB0)。各通道 存器。DAC寄存器更新由LDAC引脚控制。 的默认值为0,即LDAC引脚正常工作。将这些位设为1时, 可强制该DAC通道忽略LDAC引脚上发生的高低跃迁,不 OUTPUT AMPLIFIER VREF 10-BIT DAC LDAC DAC REGISTER 管硬件LDAC引脚的状态如何。在用户希望选择由哪个通 VOUTX 道来响应LDAC引脚的应用中,这种灵活性非常有用。 利用LDAC屏蔽寄存器,用户可以更加灵活地控制硬件 LDAC引脚(见表13)。如果将某一DAC通道的LDAC位(DB3 至DB0)设为0,则意味着该通道的更新受硬件LDAC引脚的 控制。 INPUT REGISTER 表13. LDAC覆写定义 INTERFACE LOGIC SDO 加载LDAC寄存器 10800-059 SCLK SYNC SDIN 图48. 单个DAC的输入加载电路示意图 DAC同步更新(LDAC保持低电平) 利用命令0001将数据输入输入寄存器时,LDAC保持低电 LDAC位 (DB3至DB0) LDAC 引脚 LDAC操作 0 1 1 or 0 X1 由LDAC引脚决定。 DAC通道更新并覆盖 LDAC引脚。DAC通道 视LDAC为1。 平。被寻址的输入寄存器和DAC寄存器均会在SYNC的上 升沿更新,并且输出开始发生变化(见表14)。 1 X = 无关位。 DAC迟延更新(LDAC变为低电平) 利用命令0001将数据输入输入寄存器时,LDAC保持高电 平。在SYNC变为高电平后通过拉低LDAC,异步更新所有 DAC输出。此时在LDAC的下降沿进行更新。 表14. 写命令和LDAC引脚真值表1 命令 0001 描述 写入输入寄存器n(取决于LDAC) 0010 以输入寄存器n的内容更新DAC寄存器n 0011 1 2 写入并更新DAC通道n 硬件LDAC 引脚状态 VLOGIC GND 2 VLOGIC 输入寄存器 内容 数据更新 数据更新 无变化 GND 无变化 VLOGIC GND 数据更新 数据更新 DAC寄存器内容 无变化(无更新) 数据更新 用输入寄存器 内容更新 用输入寄存器 内容更新 数据更新 数据更新 当硬件LDAC引脚上发生高电平至低电平转换时,始终会以未被LDAC屏蔽寄存器屏蔽(阻止)的通道上输入寄存器的内容来更新DAC寄存器的内容。 当LDAC永久接为低电平时,LDAC屏蔽位会被忽略。 Rev. 0 | Page 23 of 28 AD5317R 硬件复位(RESET) 复位选择引脚(RSTSEL) RESET是低电平有效复位引脚,可用于将输出清零至零电 AD5317R具有上电复位电路,可以在上电时控制输出电 平或中间电平。用户可通过RESET选择引脚来选择清零代 压。通过将RSTSEL引脚与低电平相连,输出会上电至零电 码值。RESET必须至少保持30 ns的低电平才能完成该操作 平 。 注 意 , 这 超 出 了 DAC的 线 性 区 域 范 围 。 通 过 将 (见图2)。当RESET信号变回高电平后,输出会保持为清零 RSTSEL引脚与高电平连接,VOUT会上电至中间电平。输出 值,直到设置新值。当RESET引脚为低电平时,无法用新 一直保持该电平,直到对DAC执行有效的写序列。 值更新输出。还有一个软件可执行的复位功能,它可将 DAC复位至上电复位代码。命令0110用于该软件复位功能 (见表8)。上电复位期间,LDAC或RESET上的所有事件都 会被忽略。 Rev. 0 | Page 24 of 28 AD5317R 内部基准电压源设置 长期温度漂移 内部基准电压源在上电时默认开启。要降低功耗,可以关 图50显示在150°下经过1000小时使用寿命测试后VREF值的 闭片内基准电压源。命令0111用于设置内部基准电压源。 变化情况。 若需关闭内部基准电压源,可通过命令0111设置输入移位 60 寄存器的软件可编程位DB0,如表16所示。表15显示DB0 位的状态与工作模式的对应关系。 50 表15. 内部基准电压源设置寄存器 40 HITS 内部基准电压源设置 寄存器(位DB0) 0 1 0 HOUR 168 HOURS 500 HOURS 1000 HOURS 操作 基准电压源开启(默认) 基准电压源关闭 30 20 回流焊 10 与所有IC基准电压电路一样,基准电压值存在焊接工艺引 2.498 2.499 2.500 2.502 VREF (V) 大程度地减少将器件焊接到电路板而造成的影响。表2的 图50. 1000小时后的基准电压漂移 输出电压规格包含此可靠性测试的影响。 图49显示了通过可靠性测试(预调理)测得的回流焊(SHR) 影响。 热滞 热滞是指当温度从环境温度变冷再变热之后回到环境温度 时基准电压上出现的电压差。 60 POSTSOLDER HEAT REFLOW 50 PRESOLDER HEAT REFLOW 热滞数据如图51所示。其测量条件是从环境温度变为− 40°C,然后变为+105°C,再回到环境温度。然后,测得两 次环境温度下测量结果之间的偏差VREF(如图51中的蓝色部 分所示)。接着,立即重复相同的温度切换和测量,其结果 40 HITS 2.501 10800-061 0 入的偏移。ADI公司执行称为预调理的可靠性测试,以最 如图51中的红色部分所示。 30 9 20 8 FIRST TEMPERATURE SWEEP SUBSEQUENT TEMPERATURE SWEEPS 7 10 2.499 2.500 2.501 2.502 VREF (V) HITS 2.498 10800-060 6 0 图49. SHR基准电压偏移 5 4 3 2 0 –200 –150 –100 –50 DISTORTION (ppm) 0 50 10800-062 1 图51. 热滞 表16. 内部基准电压源设置命令的24位输入移位寄存器内容1 DB23 (MSB) 0 1 DB22 DB21 1 1 命令位(C3至C0) DB20 1 DB19至DB16 X 地址位(无关位) X = 无关位。 Rev. 0 | Page 25 of 28 DB15至DB1 X 无关 DB0 (LSB) 1或0 基准电压源设置寄存器 AD5317R 应用信息 微处理器接口 布局布线指南 AD5317R通过一条串行总线实现与微处理器的接口,这条 在任何注重精度的电路中,精心考虑电源和接地回路布局 总线使用与DSP处理器和微控制器兼容的标准协议。通信 都有助于确保达到规定的性能。安装AD5317R所用的PCB 通道需要一个三线/四线接口,该接口包含一个时钟信号、 应经过专门设计,使AD5317R位于模拟平面。 一个数据信号和一个同步信号。这些器件需要24位数据 AD5317R应当具有足够大的10 ìF电源旁路电容,与每个电源 字,数据在SYNC的上升沿有效。 上的0.1 ìF电容并联,并且尽可能靠近封装,最好是正对着 AD5317R与ADSP-BF531接口 该器件。10 μF电容最好为钽电容。0.1 µF电容应具有低有效 AD5317R的SPI接口设计旨在能够轻松连接到业界标准DSP 串联电阻(ESR)和低有效串联电感(ESI),如高频时提供低 和微控制器。图52显示AD5317R连接到ADI公司的Blackfin® 阻抗接地路径的普通陶瓷型电容,以便处理内部逻辑开关 DSP。Blackfin具有一个集成的SPI端口,可以直接连接到 所引起的瞬变电流。 AD5317R的SPI引脚。 在一个电路板上使用多个器件的系统中,提供一定的散热 能力通常有助于功率耗散。 AD5317R AD5317R LFCSP型在器件底部具有裸露焊盘,该焊盘与器 件的GND电源相连。为了获得最佳性能,在设计母板和安 ADSP-BF531 PF9 PF8 装器件封装时需要有一些特殊考虑。为了改善散热、电气 SYNC SCLK SDIN LDAC RESET 和板级性能,需将封装底部的裸露焊盘焊接到PCB上相应 的散热焊盘上。为进一步改善散热性能,PCB焊盘区可以 10800-164 SPISELx SCK MOSI 设计一些散热通孔。 Figure 52. ADSP-BF531 Interface 可以扩大器件上的GND平面(如图54所示),以提供自然散 AD5317R与SPORT接口 热效应。 Analog Devices的ADSP-BF527有一个SPORT串行端口。图53 显示一个SPORT接口可以用于控制AD5317R。 AD5317R AD5317R ADSP-BF527 LDAC RESET BOARD 图53. SPORT接口 图54. 焊盘与电路板的连接 Rev. 0 | Page 26 of 28 10800-166 GPIO0 GPIO1 GND PLANE SYNC SCLK SDIN 10800-165 SPORT_TFS SPORT_TSCK SPORT_DTO AD5317R CONTROLLER 在很多过程控制应用中,都需要在控制器和被控制单元之 SERIAL CLOCK IN 间放置一个隔栅,以保护和隔离控制电路,防止危险的共 模电压破坏电路。ADI公司的iCoupler®产品可隔离高于2.5 kV SERIAL DATA OUT 的电压。AD5317R具有串行负载结构,其接口线保持在最 低 数 量 , 因 此 非 常 适 合 做 隔 离 接 口 。 图 55显 示 使 用 SYNC OUT ADuM14001 VIA VIB VIC ENCODE DECODE ENCODE DECODE ENCODE DECODE ENCODE DECODE VOA VOB VOC ADuM1400时与AD5317R的4通道隔离接口。更多信息请访 问:http://www.analog.com/icouplers。 LOAD DAC OUT 1 VID ADDITIONAL PINS OMITTED FOR CLARITY. 图55. 隔离接口 Rev. 0 | Page 27 of 28 VOD TO SCLK TO SDIN TO SYNC TO LDAC 10800-167 电流隔离接口 AD5317R 外形尺寸 PIN 1 INDICATOR 0.30 0.23 0.18 0.50 BSC 13 PIN 1 INDICATOR 16 1 12 1.75 1.60 SQ 1.45 EXPOSED PAD 9 TOP VIEW 0.80 0.75 0.70 4 8 0.50 0.40 0.30 5 FOR PROPER CONNECTION OF THE EXPOSED PAD, REFER TO THE PIN CONFIGURATION AND FUNCTION DESCRIPTIONS SECTION OF THIS DATA SHEET. 0.05 MAX 0.02 NOM COPLANARITY 0.08 0.20 REF SEATING PLANE 0.25 MIN BOTTOM VIEW 08-16-2010-E 3.10 3.00 SQ 2.90 COMPLIANT TO JEDEC STANDARDS MO-220-WEED-6. 图56. 16引脚引脚架构芯片级封装[LFCSP_WQ] 3 mm x 3 mm超薄体 (CP-16-22) 尺寸单位:mm 5.10 5.00 4.90 16 9 4.50 4.40 4.30 6.40 BSC 1 8 PIN 1 1.20 MAX 0.15 0.05 0.30 0.19 0.65 BSC COPLANARITY 0.10 0.20 0.09 8° 0° SEATING PLANE 0.75 0.60 0.45 COMPLIANT TO JEDEC STANDARDS MO-153-AB 图57. 16引脚超薄紧缩小型封装[TSSOP] (RU-16) 尺寸单位:mm 订购指南 型号1 AD5317RBCPZ-RL7 AD5317RBRUZ AD5317RBRUZ-RL7 1 分辨率 10位 10位 10位 温度 范围 −40°C至+105°C −40°C至+105°C −40°C至+105°C 精度 (典型值) ±0.12 LSB INL ±0.12 LSB INL ±0.12 LSB INL 基准电压 源温度系数 (ppm/°C) 最大5 最大5 最大5 Z = 符合RoHS标准的器件。 ©2012 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D10800sc -0-7/12(0) Rev. 0 | Page 28 of 28 封装 描述 16引脚 LFCSP_WQ 16引脚 TSSOP 16引脚 TSSOP 封装 选项 CP-16-22 RU-16 RU-16 标识 DG6
AD5317RBRUZ-RL7 价格&库存

很抱歉,暂时无法提供与“AD5317RBRUZ-RL7”相匹配的价格&库存,您可以联系我们找货

免费人工找货
AD5317RBRUZ-RL7
  •  国内价格
  • 1+38.45168
  • 10+33.41369
  • 30+30.34433

库存:20