0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
AD628_07

AD628_07

  • 厂商:

    AD(亚德诺)

  • 封装:

  • 描述:

    AD628_07 - High Common-Mode Voltage, Programmable Gain Difference Amplifier - Analog Devices

  • 数据手册
  • 价格&库存
AD628_07 数据手册
High Common-Mode Voltage, Programmable Gain Difference Amplifier AD628 FEATURES High common-mode input voltage range ±120 V at VS = ±15 V Gain range 0.1 to 100 Operating temperature range: −40°C to +85°C Supply voltage range Dual supply: ±2.25 V to ±18 V Single supply: 4.5 V to 36 V Excellent ac and dc performance Offset temperature stability RTI: 10 μV/°C maximum Offset: ±1.5 V mV maximum CMRR RTI: 75 dB minimum, dc to 500 Hz, G = +1 FUNCTIONAL BLOCK DIAGRAM REXT2 +VS 7 6 REXT1 RG –IN 8 100k Ω 10k Ω G = +0.1 –IN A1 +IN 10k Ω –IN A2 +IN 5 OUT +IN 1 100k Ω 10k Ω 2 3 4 AD628 VREF APPLICATIONS High voltage current shunt sensing Programmable logic controllers Analog input front end signal conditioning +5 V, +10 V, ±5 V, ±10 V, and 4 to 20 mA Isolation Sensor signal conditioning Power supply monitoring Electrohydraulic controls Motor controls CFILT Figure 1. 130 120 110 100 CMRR (dB) 90 80 70 60 50 40 30 10 100 VS = ±15V GENERAL DESCRIPTION The AD628 is a precision difference amplifier that combines excellent dc performance with high common-mode rejection over a wide range of frequencies. When used to scale high voltages, it allows simple conversion of standard control voltages or currents for use with single-supply ADCs. A wideband feedback loop minimizes distortion effects due to capacitor charging of Σ-Δ ADCs. A reference pin (VREF) provides a dc offset for converting bipolar to single-sided signals. The AD628 converts +5 V, +10 V, ±5 V, ±10 V, and 4 to 20 mA input signals to a single-ended output within the input range of single-supply ADCs. The AD628 has an input common mode and differential mode operating range of ±120 V. The high common mode, input impedance makes the device well suited for high voltage measurements across a shunt resistor. The inverting input of the buffer amplifier is available for making a remote Kelvin connection. VS = ±2.5V 1k FREQUENCY (Hz) 10k 100k Figure 2. CMRR vs. Frequency of the AD628 A precision 10 kΩ resistor connected to an external pin is provided for either a low-pass filter or to attenuate large differential input signals. A single capacitor implements a lowpass filter. The AD628 operates from single and dual supplies and is available in an 8-lead SOIC_N or an 8-lead MSOP. It operates over the standard industrial temperature range of −40°C to +85°C. Rev. G Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2002–2007 Analog Devices, Inc. All rights reserved. 02992-002 02992-001 –VS AD628 TABLE OF CONTENTS Features .............................................................................................. 1 Applications....................................................................................... 1 General Description ......................................................................... 1 Functional Block Diagram .............................................................. 1 Revision History ............................................................................... 2 Specifications..................................................................................... 3 Absolute Maximum Ratings............................................................ 7 Thermal Characteristics .............................................................. 7 ESD Caution.................................................................................. 7 Pin Configuration and Function Descriptions............................. 8 Typical Performance Characteristics ............................................. 9 Test Circuits..................................................................................... 13 Theory of Operation ...................................................................... 15 Applications Information .............................................................. 16 Gain Adjustment ........................................................................ 16 Input Voltage Range................................................................... 16 Voltage Level Conversion.......................................................... 17 Current Loop Receiver .............................................................. 18 Monitoring Battery Voltages..................................................... 18 Filter Capacitor Values............................................................... 19 Kelvin Connection ..................................................................... 19 Outline Dimensions ....................................................................... 20 Ordering Guide .......................................................................... 20 REVISION HISTORY 4/07—Rev. F to Rev. G Changes to Features.......................................................................... 1 Changes to Figure 22...................................................................... 11 Changes to Figure 25...................................................................... 13 Changes to Voltage Level Conversion Section............................ 17 Changes to Monitoring Battery Voltages Section ...................... 18 Changes to Figure 34...................................................................... 18 Changes to Figure 35...................................................................... 19 Updated Outline Dimensions ....................................................... 20 3/06—Rev. E to Rev. F Changes to Table 1............................................................................ 3 Changes to Figure 3.......................................................................... 7 Replaced Voltage Level Conversion Section ............................... 16 Changes to Figure 32 and Figure 33............................................. 17 Updated Outline Dimensions ....................................................... 19 Changes to Ordering Guide .......................................................... 19 5/05—Rev. D to Rev. E Changes to Table 1........................................................................... 3 Changes to Table 2........................................................................... 5 Changes to Figure 33..................................................................... 18 3/05—Rev. C to Rev. D Updated Format................................................................ Universal Changes to Table 1........................................................................... 3 Changes to Table 2........................................................................... 5 4/04—Rev. B to Rev. C Updated Format................................................................ Universal Changes to Specifications ............................................................... 3 Changes to Absolute Maximum Ratings...................................... 7 Changes to Figure 3......................................................................... 7 Changes to Figure 26..................................................................... 13 Changes to Figure 27..................................................................... 13 Changes to Theory of Operation................................................. 14 Changes to Figure 29..................................................................... 14 Changes to Table 5......................................................................... 15 Changes to Gain Adjustment Section......................................... 15 Added the Input Voltage Range Section..................................... 15 Added Figure 30 ............................................................................ 15 Added Figure 31 ............................................................................ 15 Changes to Voltage Level Conversion Section .......................... 16 Changes to Figure 32..................................................................... 16 Changes to Table 6......................................................................... 16 Changes to Figure 33 and Figure 34............................................ 17 Changes to Figure 35..................................................................... 18 Changes to Kelvin Connection Section...................................... 18 6/03—Rev. A to Rev. B Changes to General Description ................................................... 1 Changes to Specifications............................................................... 2 Changes to Ordering Guide ........................................................... 4 Changes to TPCs 4, 5, and 6 .......................................................... 5 Changes to TPC 9............................................................................ 6 Updated Outline Dimensions...................................................... 14 1/03—Rev. 0 to Rev. A Change to Ordering Guide............................................................. 4 11/02—Rev. 0: Initial Version Rev. G | Page 2 of 20 AD628 SPECIFICATIONS TA = 25°C, VS = ±15 V, RL = 2 kΩ, REXT1 = 10 kΩ, REXT2 = ∞, VREF = 0 V, unless otherwise noted. Table 1. Parameter DIFFERENTIAL AND OUTPUT AMPLIFIER Gain Equation Gain Range Offset Voltage vs. Temperature CMRR 3 Conditions G = +0.1 (1 + REXT1/REXT2) See Figure 29 VCM = 0 V; RTI of input pins 2 ; output amplifier G = +1 RTI of input pins; G = +0.1 to +100 500 Hz −40°C to +85°C VS = ±10 V to ±18 V Min AD628AR Typ Max Min AD628ARM Typ Max Unit V/V V/V mV μV/°C dB dB dB (μV/V)/°C dB V V kHz kHz μs V/μs nV/√Hz μV p-p V/V % ppm/°C ppm ppm mV μV/°C kΩ kΩ dB dB dB (μV/V)/°C kΩ % 0.1 1 −1.5 4 75 75 70 77 −120 −120 1 94 100 +1.5 8 0.11 −1.5 4 75 75 70 100 +1.5 8 Minimum CMRR Over Temperature vs. Temperature PSRR (RTI) Input Voltage Range Common Mode Differential Dynamic Response Small Signal Bandwidth −3 dB Full Power Bandwidth Settling Time Slew Rate Noise (RTI) Spectral Density DIFFERENTIAL AMPLIFIER Gain Error vs. Temperature Nonlinearity vs. Temperature Offset Voltage vs. Temperature Input Impedance Differential Common Mode CMRR 4 4 77 +120 +120 −120 −120 1 94 4 +120 +120 600 5 G = +0.1 G = +0.1, to 0.01%, 100 V step 600 5 40 0.3 40 0.3 300 15 0.1 +0.01 1 kHz 0.1 Hz to 10 Hz 300 15 0.1 +0.01 −0.1 3 RTI of input pins −1.5 +0.1 5 5 10 +1.5 8 −0.1 3 −1.5 +0.1 5 5 10 +1.5 8 220 55 75 75 70 1 10 −0.1 4 +0.1 −0.1 75 75 70 220 55 RTI of input pins; G = +0.1 to +100 500 Hz Minimum CMRR Over Temperature −40°C to +85°C vs. Temperature Output Resistance Error 1 10 4 +0.1 Rev. G | Page 3 of 20 AD628 Parameter OUTPUT AMPLIFIER Gain Equation Nonlinearity Offset Voltage vs. Temperature Output Voltage Swing Bias Current Offset Current CMRR Open-Loop Gain POWER SUPPLY Operating Range Quiescent Current TEMPERATURE RANGE 1 2 Conditions G = (1 + REXT1/REXT2) G = +1, VOUT = ±10 V RTI of output amp RL = 10 kΩ RL = 2 kΩ Min AD628AR Typ Max Min AD628ARM Typ Max Unit V/V ppm mV μV/°C V V nA nA dB dB V mA °C −0.15 −14.2 −13.8 1.5 0.2 0.5 +0.15 0.6 +14.1 +13.6 3 0.5 −0.15 −14.2 −13.8 1.5 0.2 130 130 0.5 +0.15 0.6 +14.1 +13.6 3 0.5 VCM = ±13 V VOUT = ±13 V 130 130 ±2.25 −40 ±18 1.6 +85 ±2.25 −40 ±18 1.6 +85 To use a lower gain, see the Gain Adjustment section. The addition of the difference amplifier and output amplifier offset voltage does not exceed this specification. ⎡ ⎤ ⎢ (0.1)(VCM ) ⎥ 3 Error due to common mode as seen at the output: VOUT = ⎢ ⎥ × [Output Amplifier Gain] . 75 ⎢ ⎥ ⎣ 10 20 ⎦ 4 ⎤ ⎡ ⎢ (0.1)(VCM ) ⎥ Error due to common mode as seen at the output of A1: VOUT A1 = ⎢ ⎥. 75 ⎥ ⎢ 10 20 ⎦ ⎣ Rev. G | Page 4 of 20 AD628 TA = 25°C, VS = 5 V, RL = 2 kΩ, REXT1 = 10 kΩ, REXT2 = ∞, VREF = 2.5 V, unless otherwise noted. Table 2. Parameter DIFFERENTIAL AND OUTPUT AMPLIFIER Gain Equation Gain Range Offset Voltage vs. Temperature CMRR 3 Minimum CMRR Over Temperature vs. Temperature PSRR (RTI) Input Voltage Range Common Mode 4 Differential Dynamic Response Small Signal Bandwidth – 3 dB Full Power Bandwidth Settling Time Slew Rate Noise (RTI) Spectral Density DIFFERENTIAL AMPLIFIER Gain Error Nonlinearity vs. Temperature Offset Voltage vs. Temperature Input Impedance Differential Common Mode CMRR 5 Minimum CMRR Over Temperature vs. Temperature Output Resistance Error OUTPUT AMPLIFIER Gain Equation Nonlinearity Output Offset Voltage vs. Temperature Output Voltage Swing Bias Current Offset Current CMRR Open-Loop Gain Conditions G = +0.1(1+ REXT1/REXT2) See Figure 29 VCM = 2.25 V; RTI of input pins 2 ; output amplifier G = +1 RTI of input pins; G = +0.1 to +100 500 Hz −40°C to +85°C VS = 4.5 V to 10 V Min AD628AR Typ Max Min AD628ARM Typ Max Unit V/V V/V mV μV/°C dB dB dB (μV/V)/°C dB V V kHz kHz μs V/μs nV/√Hz μV p-p V/V % ppm ppm mV μV/°C kΩ kΩ dB dB dB (μV/V)/°C kΩ % V/V ppm mV μV/°C V V nA nA dB dB 0.1 1 −3.0 6 75 75 70 77 −12 −15 1 94 100 +3.0 15 0.11 −3.0 6 75 75 70 100 +3.0 15 4 77 +17 +15 −12 −15 1 94 4 +17 +15 440 30 15 0.3 350 15 0.1 +0.01 3 G = +0.1 G = +0.1; to 0.01%, 30 V step 440 30 15 0.3 350 15 0.1 +0.01 3 1 kHz 0.1 Hz to 10 Hz –0.1 RTI of input pins −2.5 +0.1 3 10 +2.5 10 –0.1 −2.5 +0.1 3 10 +2.5 10 220 55 RTI of input pins; G = +0.1 to +100 500 Hz −40°C to +85°C 75 75 70 1 10 −0.1 G = (1 + REXT1/REXT2) G = +1, VOUT = 1 V to 4 V RTI of output amplifier RL = 10 kΩ R L = 2 kΩ 4 +0.1 −0.1 75 75 70 220 55 1 10 4 +0.1 −0.15 0.9 1 1.5 0.2 0.5 +0.15 0.6 4.1 4 3 0.5 −0.15 0.9 1 1.5 0.2 130 130 0.5 +0.15 0.6 4.1 4 3 0.5 VCM = 1 V to 4 V VOUT = 1 V to 4 V Rev. G | Page 5 of 20 130 130 AD628 Parameter POWER SUPPLY Operating Range Quiescent Current TEMPERATURE RANGE 1 2 Conditions Min ±2.25 −40 AD628AR Typ Max +36 1.6 +85 Min AD628ARM Typ Max +36 1.6 +85 Unit V mA °C ±2.25 −40 To use a lower gain, see the Gain Adjustment section. The addition of the difference amplifier and output amplifier offset voltage does not exceed this specification. ⎤ ⎡ ⎢ (0.1)(VCM ) ⎥ 3 Error due to common mode as seen at the output: VOUT = ⎢ ⎥ × [Output Amplifier Gain] . 75 ⎥ ⎢ 10 20 ⎦ ⎣ 4 Greater values of voltage are possible with greater or lesser values of VREF. ⎤ ⎡ ⎢ (0.1)(VCM ) ⎥ 5 Error due to common mode as seen at the output of A1: VOUT A1 = ⎢ ⎥. 75 ⎥ ⎢ 10 20 ⎦ ⎣ Rev. G | Page 6 of 20 AD628 ABSOLUTE MAXIMUM RATINGS Table 3. Parameter Supply Voltage Internal Power Dissipation Input Voltage (Common Mode) Differential Input Voltage Output Short-Circuit Duration Storage Temperature Range Operating Temperature Range Lead Temperature (Soldering, 10 sec) 1 Rating ±18 V See Figure 3 ±120 V 1 ±120 V1 Indefinite −65°C to +125°C –40°C to +85°C 300°C Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. THERMAL CHARACTERISTICS 1.6 TJ = 150°C 1.4 When using ±12 V supplies or higher, see the Input Voltage Range section. POWER DISSIPATION (W) 1.2 8-LEAD MSOP PACKAGE 1.0 0.8 0.6 0.4 0.2 0 –60 MSOP θJA (JEDEC; 4-LAYER BOARD) = 132.54°C/W SOIC θJA (JEDEC; 4-LAYER BOARD) = 154°C/W –40 –20 0 20 40 60 80 100 02992-003 8-LEAD SOIC PACKAGE AMBIENT TEMPERATURE (°C) Figure 3. Maximum Power Dissipation vs. Temperature ESD CAUTION Rev. G | Page 7 of 20 AD628 PIN CONFIGURATION AND FUNCTION DESCRIPTIONS +IN 1 –VS 2 8 –IN +VS 02992-004 AD628 7 TOP VIEW VREF 3 (Not to Scale) 6 RG CFILT 4 5 OUT Figure 4. Pin Configuration Table 4. Pin Function Descriptions Pin No. 1 2 3 4 5 6 7 8 Mnemonic +IN −VS VREF CFILT OUT RG +VS −IN Description Noninverting Input Negative Supply Voltage Reference Voltage Input Filter Capacitor Connection Amplifier Output Output Amplifier Inverting Input Positive Supply Voltage Inverting Input Rev. G | Page 8 of 20 AD628 TYPICAL PERFORMANCE CHARACTERISTICS 40 8440 UNITS 35 30 25 20 15 10 5 0 –1.6 120 100 140 G = +0.1 % OF UNITS PSRR (dB) 80 –15V 60 +2.5V 40 20 0 0.1 +15V INPUT OFFSET VOLTAGE (mV) 02992-005 –1.2 –0.8 –0.4 0 0.4 0.8 1.2 1.6 2.0 FREQUENCY (Hz) Figure 5. Typical Distribution of Input Offset Voltage, VS = ±15 V, SOIC_N Package 25 8440 UNITS 20 1000 Figure 8. PSRR vs. Frequency, Single and Dual Supplies % OF UNITS 15 10 5 VOLTAGE NOISE DENSITY (nV/√Hz) –78 –82 –86 –90 –94 –98 –102 –106 –110 02992-006 1 10 100 1k 10k 100k CMRR (dB) FREQUENCY (Hz) Figure 6. Typical Distribution of CMRR, SOIC_N Package 130 120 110 100 VOLTAGE NOISE DENSITY (nV/√Hz) Figure 9. Voltage Noise Spectral Density, RTI, VS = ±15 V 1000 CMRR (dB) 90 80 70 60 50 40 10 100 VS = ±15V VS = ±2.5V 1k FREQUENCY (Hz) 10k 100k 02992-007 1 10 100 1k 10k 100k FREQUENCY (Hz) Figure 7. CMRR vs. Frequency Figure 10. Voltage Noise Spectral Density, RTI, VS = ±2.5 V Rev. G | Page 9 of 20 02992-010 30 100 02992-009 0 –74 100 02992-008 1 10 100 1k 10k 100k 1M AD628 40 1s 100 90 9638 UNITS 35 30 NOISE (5µV/DIV) % OF DEVICES 10 0 25 20 15 10 5 02992-011 0 1 2 3 4 5 6 7 8 9 10 TIME (Seconds) GAIN ERROR (ppm) Figure 11. 0.1 Hz to 10 Hz Voltage Noise, RTI 60 50 Figure 14. Typical Distribution of +1 Gain Error 150 UPPER CMV LIMIT COMMON-MODE VOLTAGE (V) 40 30 G = +100 100 –40°C 50 +85°C 0 +25°C VREF = 0V GAIN (dB) 20 10 0 –10 –20 –30 G = +10 G = +1 –50 +85°C –40°C G = +0.1 –100 LOWER CMV LIMIT 02992-012 1k 10k 100k 1M 10M 0 5 10 VS (±V) 15 20 FREQUENCY (Hz) Figure 12. Small Signal Frequency Response, VOUT = 200 mV p-p, G = +0.1, +1, +10, and +100 60 50 40 30 G = +100 100 90 Figure 15. Common-Mode Operating Range vs. Power Supply Voltage for Three Temperatures 500µV VS = ±15V RL = 1kΩ GAIN (dB) 20 10 0 –10 –20 –30 10 G = +10 OUTPUT ERROR (µV) RL = 2kΩ G = +1 RL = 10kΩ 10 0 G = +0.1 4.0V 02992-016 100 1k 10k 100k 1M 02992-013 –40 FREQUENCY (Hz) OUTPUT VOLTAGE (V) Figure 13. Large Signal Frequency Response, VOUT = 20 V p-p, G = +0.1, +1, +10, and +100 Figure 16. Normalized Gain Error vs. VOUT, VS = ±15 V Rev. G | Page 10 of 20 02992-015 –40 100 –150 02992-014 0 5 10 0 AD628 100µV 100 90 VS = ±2.5V RL = 1kΩ 100 90 500mV OUTPUT ERROR (µV) RL = 2kΩ RL = 10kΩ 10 0 10 0 500mV OUTPUT VOLTAGE (V) 02992-017 Figure 17. Normalized Gain Error vs. VOUT, VS = ±2.5 V 4 Figure 20. Small Signal Pulse Response, RL = 2 kΩ, CL = 0 pF, Top: Input, Bottom: Output 500mV 100 3 90 BIAS CURRENT (nA) 2 10 1 0 0 –40 –20 0 20 40 TEMPERATURE (°C) 60 80 100 02992-018 Figure 18. Bias Current vs. Temperature Buffer 15 –40°C 10 –25°C +85°C 5 +25°C Figure 21. Small Signal Pulse Response, RL = 2 kΩ, CL = 1000 pF, Top: Input, Bottom: Output OUTPUT VOLTAGE SWING (V) 100 90 10.0V 0 –40°C –5 +85°C –10 +25°C –25°C 10.0V 10 0 0 5 10 15 OUTPUT CURRENT (mA) 20 25 Figure 19. Output Voltage Operating Range vs. Output Current 02992-019 –15 Figure 22. Large Signal Pulse Response, RL = 2 kΩ, CL = 1000 pF, Top: Input, Bottom: Output Rev. G | Page 11 of 20 02992-022 40µs 02992-021 50mV 4µs 02992-020 50mV 4µs AD628 100 90 100 90 5V 5V 10mV 10 0 02992-023 10mV 10 0 Figure 23. Settling Time to 0.01%, 0 V to 10 V Step Figure 24. Settling Time to 0.01% 0 V to −10 V Step Rev. G | Page 12 of 20 02992-024 100µs 100µs AD628 TEST CIRCUITS HP3589A SPECTRUM ANALYZER +VS 7 –IN 8 10k Ω 10k Ω +IN 5 – OUT 100k Ω –IN G = +0.1 +IN AD829 + G = +100 –IN FET PROBE +IN 1 100k Ω 10kΩ VREF CFILT 2 4 6 AD628 RG 3 – –VS 02992-025 OP177 + Figure 25. CMRR vs. Frequency SCOPE +VS 7 1 VAC +15V –IN 8 10kΩ 10k Ω G = +100 +IN OUT 5 G = +100 20Ω + 100k Ω –IN G = +0.1 +IN AD829 – –IN 1 +IN 100k Ω 10kΩ AD628 2 4 6 VREF 3 CFILT RG 02992-026 –VS Figure 26. PSRR vs. Frequency Rev. G | Page 13 of 20 AD628 HP3561A SPECTRUM ANALYZER +VS 7 CFILT 4 –IN 8 100k Ω 10kΩ 10kΩ +IN 5 OUT +IN 1 100k Ω –IN G = +0.1 +IN 10kΩ –IN AD628 6 VREF 3 2 RG –VS 10kΩ 10kΩ Figure 27. Noise Tests Rev. G | Page 14 of 20 02992-027 AD628 THEORY OF OPERATION The AD628 is a high common-mode voltage difference amplifier, combined with a user-configurable output amplifier (see Figure 28 and Figure 29). Differential mode voltages in excess of 120 V are accurately scaled by a precision 11:1 voltage divider at the input. A reference voltage input is available to the user at Pin 3 (VREF). The output common-mode voltage of the difference amplifier is the same as the voltage applied to the reference pin. If the uncommitted amplifier is configured for gain, connect Pin 3 to one end of the external gain resistor to establish the output common-mode voltage at Pin 5 (OUT). The output of the difference amplifier is internally connected to a 10 kΩ resistor trimmed to better than ±0.1% absolute accuracy. The resistor is connected to the noninverting input of the output amplifier and is accessible at Pin 4 (CFILT). A capacitor can be connected to implement a low-pass filter, a resistor can be connected to further reduce the output voltage, or a clamp circuit can be connected to limit the output swing. The uncommitted amplifier is a high open-loop gain, low offset, low drift op amp, with its noninverting input connected to the internal 10 kΩ resistor. Both inputs are accessible to the user. Careful layout design has resulted in exceptional commonmode rejection at higher frequencies. The inputs are connected to Pin 1 (+IN) and Pin 8 (−IN), which are adjacent to the power pins, Pin 2 (−VS) and Pin 7 (+VS). Because the power pins are at ac ground, input impedance balance and, therefore, commonmode rejection are preserved at higher frequencies. RG 6 –IN 8 100k Ω 10k Ω G = +0.1 –IN A1 +IN 10k Ω –IN A2 +IN 5 OUT +IN 1 100k Ω 10k Ω 3 4 02992-028 VREF CFILT Figure 28. Simplified Schematic CFILT +VS 7 4 AD628 –IN 8 100k Ω 10kΩ G = +0.1 –IN A1 +IN +IN 1 100k Ω 10kΩ 2 3 6 10kΩ +IN A2 –IN 5 OUT –VS VREF RG REXT3 02992-029 REFERENCE VOLTAGE REXT2 REXT1 Figure 29. Circuit Connections Rev. G | Page 15 of 20 AD628 APPLICATIONS INFORMATION GAIN ADJUSTMENT The AD628 system gain is provided by an architecture consisting of two amplifiers (see Figure 29). The gain of the input stage is fixed at 0.1; the output buffer is user adjustable as GA2 = 1 + REXT1/REXT2. The system gain is then INPUT VOLTAGE RANGE VREF and the supply voltage determine the common-mode input voltage range. The relation is expressed by VCMUPPER ≤ 11 (VS + – 1.2 V) − 10 VREF (2) GTOTAL ⎛ ⎞ R = 0.1 × ⎜1 + EXT1 ⎟ ⎜R ⎟ EXT2 ⎠ ⎝ VCMLOWER ≥ 11 (VS − + 1.2 V) − 10 VREF (1) where: VS+ is the positive supply. VS− is the negative supply. 1.2 V is the headroom needed for suitable performance. Equation 2 provides a general formula for calculating the common-mode input voltage range. However, keep the AD628 within the maximum limits listed in Table 1 to maintain optimal performance. This is illustrated in Figure 30 where the maximum common-mode input voltage is limited to ±120 V. Figure 31 shows the common-mode input voltage bounds for single-supply voltages. 200 150 100 50 0 –50 –100 –150 –200 MAXIMUM INPUT COMMON-MODE VOLTAGE WHEN VREF = GND At a 2 nA maximum, the input bias current of the buffer amplifier is very low and any offset voltage induced at the buffer amplifier by its bias current may be neglected (2 nA × 10 kΩ = 20 μV). However, to absolutely minimize bias current effects, select REXT1 and REXT2 so that their parallel combination is 10 kΩ. If practical resistor values force the parallel combination of REXT1 and REXT2 below 10 kΩ, add a series resistor (REXT3) to make up for the difference. Table 5 lists several values of gain and corresponding resistor values. Table 5. Nearest Standard 1% Resistor Values for Various Gains (see Figure 29) Total Gain (V/V) 0.1 0.2 0.25 0.5 1 2 5 10 A2 Gain (V/V) 1 2 2.5 5 10 20 50 100 REXT1 (Ω) 10 k 20 k 25.9 k 49.9 k 100 k 200 k 499 k 1M REXT2 (Ω) ∞ 20 k 18.7 k 12.4 k 11 k 10.5 k 10.2 k 10.2 k REXT3 (Ω) 0 0 0 0 0 0 0 0 INPUT COMMON-MODE VOLTAGE (V) 0 2 4 6 8 10 12 14 16 To set the system gain to
AD628_07 价格&库存

很抱歉,暂时无法提供与“AD628_07”相匹配的价格&库存,您可以联系我们找货

免费人工找货