High Common-Mode Voltage, Programmable Gain Difference Amplifier AD628
FEATURES
High common-mode input voltage range ±120 V at VS = ±15 V Gain range 0.1 to 100 Operating temperature range: −40°C to +85°C Supply voltage range Dual supply: ±2.25 V to ±18 V Single supply: 4.5 V to 36 V Excellent ac and dc performance Offset temperature stability RTI: 10 μV/°C maximum Offset: ±1.5 V mV maximum CMRR RTI: 75 dB minimum, dc to 500 Hz, G = +1
FUNCTIONAL BLOCK DIAGRAM
REXT2 +VS
7 6
REXT1
RG
–IN 8
100k Ω
10k Ω G = +0.1 –IN A1 +IN 10k Ω –IN A2 +IN
5
OUT
+IN 1
100k Ω 10k Ω
2 3 4
AD628
VREF
APPLICATIONS
High voltage current shunt sensing Programmable logic controllers Analog input front end signal conditioning +5 V, +10 V, ±5 V, ±10 V, and 4 to 20 mA Isolation Sensor signal conditioning Power supply monitoring Electrohydraulic controls Motor controls
CFILT
Figure 1.
130 120 110 100
CMRR (dB)
90 80 70 60 50 40 30 10 100
VS = ±15V
GENERAL DESCRIPTION
The AD628 is a precision difference amplifier that combines excellent dc performance with high common-mode rejection over a wide range of frequencies. When used to scale high voltages, it allows simple conversion of standard control voltages or currents for use with single-supply ADCs. A wideband feedback loop minimizes distortion effects due to capacitor charging of Σ-Δ ADCs. A reference pin (VREF) provides a dc offset for converting bipolar to single-sided signals. The AD628 converts +5 V, +10 V, ±5 V, ±10 V, and 4 to 20 mA input signals to a single-ended output within the input range of single-supply ADCs. The AD628 has an input common mode and differential mode operating range of ±120 V. The high common mode, input impedance makes the device well suited for high voltage measurements across a shunt resistor. The inverting input of the buffer amplifier is available for making a remote Kelvin connection.
VS = ±2.5V
1k FREQUENCY (Hz)
10k
100k
Figure 2. CMRR vs. Frequency of the AD628
A precision 10 kΩ resistor connected to an external pin is provided for either a low-pass filter or to attenuate large differential input signals. A single capacitor implements a lowpass filter. The AD628 operates from single and dual supplies and is available in an 8-lead SOIC_N or an 8-lead MSOP. It operates over the standard industrial temperature range of −40°C to +85°C.
Rev. G
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2002–2007 Analog Devices, Inc. All rights reserved.
02992-002
02992-001
–VS
AD628 TABLE OF CONTENTS
Features .............................................................................................. 1 Applications....................................................................................... 1 General Description ......................................................................... 1 Functional Block Diagram .............................................................. 1 Revision History ............................................................................... 2 Specifications..................................................................................... 3 Absolute Maximum Ratings............................................................ 7 Thermal Characteristics .............................................................. 7 ESD Caution.................................................................................. 7 Pin Configuration and Function Descriptions............................. 8 Typical Performance Characteristics ............................................. 9 Test Circuits..................................................................................... 13 Theory of Operation ...................................................................... 15 Applications Information .............................................................. 16 Gain Adjustment ........................................................................ 16 Input Voltage Range................................................................... 16 Voltage Level Conversion.......................................................... 17 Current Loop Receiver .............................................................. 18 Monitoring Battery Voltages..................................................... 18 Filter Capacitor Values............................................................... 19 Kelvin Connection ..................................................................... 19 Outline Dimensions ....................................................................... 20 Ordering Guide .......................................................................... 20
REVISION HISTORY
4/07—Rev. F to Rev. G Changes to Features.......................................................................... 1 Changes to Figure 22...................................................................... 11 Changes to Figure 25...................................................................... 13 Changes to Voltage Level Conversion Section............................ 17 Changes to Monitoring Battery Voltages Section ...................... 18 Changes to Figure 34...................................................................... 18 Changes to Figure 35...................................................................... 19 Updated Outline Dimensions ....................................................... 20 3/06—Rev. E to Rev. F Changes to Table 1............................................................................ 3 Changes to Figure 3.......................................................................... 7 Replaced Voltage Level Conversion Section ............................... 16 Changes to Figure 32 and Figure 33............................................. 17 Updated Outline Dimensions ....................................................... 19 Changes to Ordering Guide .......................................................... 19 5/05—Rev. D to Rev. E Changes to Table 1........................................................................... 3 Changes to Table 2........................................................................... 5 Changes to Figure 33..................................................................... 18 3/05—Rev. C to Rev. D Updated Format................................................................ Universal Changes to Table 1........................................................................... 3 Changes to Table 2........................................................................... 5 4/04—Rev. B to Rev. C Updated Format................................................................ Universal Changes to Specifications ............................................................... 3 Changes to Absolute Maximum Ratings...................................... 7 Changes to Figure 3......................................................................... 7 Changes to Figure 26..................................................................... 13 Changes to Figure 27..................................................................... 13 Changes to Theory of Operation................................................. 14 Changes to Figure 29..................................................................... 14 Changes to Table 5......................................................................... 15 Changes to Gain Adjustment Section......................................... 15 Added the Input Voltage Range Section..................................... 15 Added Figure 30 ............................................................................ 15 Added Figure 31 ............................................................................ 15 Changes to Voltage Level Conversion Section .......................... 16 Changes to Figure 32..................................................................... 16 Changes to Table 6......................................................................... 16 Changes to Figure 33 and Figure 34............................................ 17 Changes to Figure 35..................................................................... 18 Changes to Kelvin Connection Section...................................... 18 6/03—Rev. A to Rev. B Changes to General Description ................................................... 1 Changes to Specifications............................................................... 2 Changes to Ordering Guide ........................................................... 4 Changes to TPCs 4, 5, and 6 .......................................................... 5 Changes to TPC 9............................................................................ 6 Updated Outline Dimensions...................................................... 14 1/03—Rev. 0 to Rev. A Change to Ordering Guide............................................................. 4 11/02—Rev. 0: Initial Version
Rev. G | Page 2 of 20
AD628 SPECIFICATIONS
TA = 25°C, VS = ±15 V, RL = 2 kΩ, REXT1 = 10 kΩ, REXT2 = ∞, VREF = 0 V, unless otherwise noted. Table 1.
Parameter DIFFERENTIAL AND OUTPUT AMPLIFIER Gain Equation Gain Range Offset Voltage vs. Temperature CMRR 3 Conditions G = +0.1 (1 + REXT1/REXT2) See Figure 29 VCM = 0 V; RTI of input pins 2 ; output amplifier G = +1 RTI of input pins; G = +0.1 to +100 500 Hz −40°C to +85°C VS = ±10 V to ±18 V Min AD628AR Typ Max Min AD628ARM Typ Max Unit V/V V/V mV μV/°C dB dB dB (μV/V)/°C dB V V kHz kHz μs V/μs nV/√Hz μV p-p V/V % ppm/°C ppm ppm mV μV/°C kΩ kΩ dB dB dB (μV/V)/°C kΩ %
0.1 1 −1.5 4 75 75 70 77 −120 −120 1 94
100 +1.5 8
0.11 −1.5 4 75 75 70
100 +1.5 8
Minimum CMRR Over Temperature vs. Temperature PSRR (RTI) Input Voltage Range Common Mode Differential Dynamic Response Small Signal Bandwidth −3 dB Full Power Bandwidth Settling Time Slew Rate Noise (RTI) Spectral Density DIFFERENTIAL AMPLIFIER Gain Error vs. Temperature Nonlinearity vs. Temperature Offset Voltage vs. Temperature Input Impedance Differential Common Mode CMRR 4
4 77 +120 +120 −120 −120
1 94
4
+120 +120 600 5
G = +0.1 G = +0.1, to 0.01%, 100 V step
600 5 40 0.3
40 0.3 300 15 0.1 +0.01
1 kHz 0.1 Hz to 10 Hz
300 15 0.1 +0.01
−0.1
3 RTI of input pins −1.5
+0.1 5 5 10 +1.5 8
−0.1
3 −1.5
+0.1 5 5 10 +1.5 8
220 55 75 75 70 1 10 −0.1 4 +0.1 −0.1 75 75 70
220 55
RTI of input pins; G = +0.1 to +100 500 Hz Minimum CMRR Over Temperature −40°C to +85°C vs. Temperature Output Resistance Error
1 10
4 +0.1
Rev. G | Page 3 of 20
AD628
Parameter OUTPUT AMPLIFIER Gain Equation Nonlinearity Offset Voltage vs. Temperature Output Voltage Swing Bias Current Offset Current CMRR Open-Loop Gain POWER SUPPLY Operating Range Quiescent Current TEMPERATURE RANGE
1 2
Conditions G = (1 + REXT1/REXT2) G = +1, VOUT = ±10 V RTI of output amp RL = 10 kΩ RL = 2 kΩ
Min
AD628AR Typ Max
Min
AD628ARM Typ Max
Unit V/V ppm mV μV/°C V V nA nA dB dB V mA °C
−0.15 −14.2 −13.8 1.5 0.2
0.5 +0.15 0.6 +14.1 +13.6 3 0.5
−0.15 −14.2 −13.8 1.5 0.2 130 130
0.5 +0.15 0.6 +14.1 +13.6 3 0.5
VCM = ±13 V VOUT = ±13 V
130 130 ±2.25 −40 ±18 1.6 +85
±2.25 −40
±18 1.6 +85
To use a lower gain, see the Gain Adjustment section. The addition of the difference amplifier and output amplifier offset voltage does not exceed this specification. ⎡ ⎤ ⎢ (0.1)(VCM ) ⎥ 3 Error due to common mode as seen at the output: VOUT = ⎢ ⎥ × [Output Amplifier Gain] . 75 ⎢ ⎥ ⎣ 10 20 ⎦
4
⎤ ⎡ ⎢ (0.1)(VCM ) ⎥ Error due to common mode as seen at the output of A1: VOUT A1 = ⎢ ⎥. 75 ⎥ ⎢ 10 20 ⎦ ⎣
Rev. G | Page 4 of 20
AD628
TA = 25°C, VS = 5 V, RL = 2 kΩ, REXT1 = 10 kΩ, REXT2 = ∞, VREF = 2.5 V, unless otherwise noted. Table 2.
Parameter DIFFERENTIAL AND OUTPUT AMPLIFIER Gain Equation Gain Range Offset Voltage vs. Temperature CMRR 3 Minimum CMRR Over Temperature vs. Temperature PSRR (RTI) Input Voltage Range Common Mode 4 Differential Dynamic Response Small Signal Bandwidth – 3 dB Full Power Bandwidth Settling Time Slew Rate Noise (RTI) Spectral Density DIFFERENTIAL AMPLIFIER Gain Error Nonlinearity vs. Temperature Offset Voltage vs. Temperature Input Impedance Differential Common Mode CMRR 5 Minimum CMRR Over Temperature vs. Temperature Output Resistance Error OUTPUT AMPLIFIER Gain Equation Nonlinearity Output Offset Voltage vs. Temperature Output Voltage Swing Bias Current Offset Current CMRR Open-Loop Gain Conditions G = +0.1(1+ REXT1/REXT2) See Figure 29 VCM = 2.25 V; RTI of input pins 2 ; output amplifier G = +1 RTI of input pins; G = +0.1 to +100 500 Hz −40°C to +85°C VS = 4.5 V to 10 V Min AD628AR Typ Max Min AD628ARM Typ Max Unit V/V V/V mV μV/°C dB dB dB (μV/V)/°C dB V V kHz kHz μs V/μs nV/√Hz μV p-p V/V % ppm ppm mV μV/°C kΩ kΩ dB dB dB (μV/V)/°C kΩ % V/V ppm mV μV/°C V V nA nA dB dB
0.1 1 −3.0 6 75 75 70 77 −12 −15 1 94
100 +3.0 15
0.11 −3.0 6 75 75 70
100 +3.0 15
4 77 +17 +15 −12 −15
1 94
4
+17 +15 440 30 15 0.3 350 15 0.1 +0.01 3
G = +0.1 G = +0.1; to 0.01%, 30 V step
440 30 15 0.3 350 15 0.1 +0.01 3
1 kHz 0.1 Hz to 10 Hz
–0.1
RTI of input pins
−2.5
+0.1 3 10 +2.5 10
–0.1
−2.5
+0.1 3 10 +2.5 10
220 55 RTI of input pins; G = +0.1 to +100 500 Hz −40°C to +85°C 75 75 70 1 10 −0.1 G = (1 + REXT1/REXT2) G = +1, VOUT = 1 V to 4 V RTI of output amplifier RL = 10 kΩ R L = 2 kΩ 4 +0.1 −0.1 75 75 70
220 55
1 10
4 +0.1
−0.15 0.9 1 1.5 0.2
0.5 +0.15 0.6 4.1 4 3 0.5
−0.15 0.9 1 1.5 0.2 130 130
0.5 +0.15 0.6 4.1 4 3 0.5
VCM = 1 V to 4 V VOUT = 1 V to 4 V
Rev. G | Page 5 of 20
130 130
AD628
Parameter POWER SUPPLY Operating Range Quiescent Current TEMPERATURE RANGE
1 2
Conditions
Min ±2.25 −40
AD628AR Typ Max +36 1.6 +85
Min
AD628ARM Typ Max +36 1.6 +85
Unit V mA °C
±2.25 −40
To use a lower gain, see the Gain Adjustment section. The addition of the difference amplifier and output amplifier offset voltage does not exceed this specification. ⎤ ⎡ ⎢ (0.1)(VCM ) ⎥ 3 Error due to common mode as seen at the output: VOUT = ⎢ ⎥ × [Output Amplifier Gain] . 75 ⎥ ⎢ 10 20 ⎦ ⎣ 4 Greater values of voltage are possible with greater or lesser values of VREF. ⎤ ⎡ ⎢ (0.1)(VCM ) ⎥ 5 Error due to common mode as seen at the output of A1: VOUT A1 = ⎢ ⎥. 75 ⎥ ⎢ 10 20 ⎦ ⎣
Rev. G | Page 6 of 20
AD628 ABSOLUTE MAXIMUM RATINGS
Table 3.
Parameter Supply Voltage Internal Power Dissipation Input Voltage (Common Mode) Differential Input Voltage Output Short-Circuit Duration Storage Temperature Range Operating Temperature Range Lead Temperature (Soldering, 10 sec)
1
Rating ±18 V See Figure 3 ±120 V 1 ±120 V1 Indefinite −65°C to +125°C –40°C to +85°C 300°C
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
THERMAL CHARACTERISTICS
1.6 TJ = 150°C 1.4
When using ±12 V supplies or higher, see the Input Voltage Range section.
POWER DISSIPATION (W)
1.2 8-LEAD MSOP PACKAGE 1.0 0.8 0.6 0.4 0.2 0 –60 MSOP θJA (JEDEC; 4-LAYER BOARD) = 132.54°C/W SOIC θJA (JEDEC; 4-LAYER BOARD) = 154°C/W –40 –20 0 20 40 60 80 100
02992-003
8-LEAD SOIC PACKAGE
AMBIENT TEMPERATURE (°C)
Figure 3. Maximum Power Dissipation vs. Temperature
ESD CAUTION
Rev. G | Page 7 of 20
AD628 PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
+IN 1 –VS 2
8
–IN +VS
02992-004
AD628
7
TOP VIEW VREF 3 (Not to Scale) 6 RG CFILT 4
5
OUT
Figure 4. Pin Configuration
Table 4. Pin Function Descriptions
Pin No. 1 2 3 4 5 6 7 8 Mnemonic +IN −VS VREF CFILT OUT RG +VS −IN Description Noninverting Input Negative Supply Voltage Reference Voltage Input Filter Capacitor Connection Amplifier Output Output Amplifier Inverting Input Positive Supply Voltage Inverting Input
Rev. G | Page 8 of 20
AD628 TYPICAL PERFORMANCE CHARACTERISTICS
40 8440 UNITS 35 30 25 20 15 10 5 0 –1.6
120 100 140 G = +0.1
% OF UNITS
PSRR (dB)
80 –15V 60 +2.5V 40 20 0 0.1 +15V
INPUT OFFSET VOLTAGE (mV)
02992-005
–1.2
–0.8
–0.4
0
0.4
0.8
1.2
1.6
2.0
FREQUENCY (Hz)
Figure 5. Typical Distribution of Input Offset Voltage, VS = ±15 V, SOIC_N Package
25 8440 UNITS 20 1000
Figure 8. PSRR vs. Frequency, Single and Dual Supplies
% OF UNITS
15
10
5
VOLTAGE NOISE DENSITY (nV/√Hz)
–78
–82
–86
–90
–94
–98
–102
–106
–110
02992-006
1
10
100
1k
10k
100k
CMRR (dB)
FREQUENCY (Hz)
Figure 6. Typical Distribution of CMRR, SOIC_N Package
130 120 110 100
VOLTAGE NOISE DENSITY (nV/√Hz)
Figure 9. Voltage Noise Spectral Density, RTI, VS = ±15 V
1000
CMRR (dB)
90 80 70 60 50 40 10 100
VS = ±15V
VS = ±2.5V
1k FREQUENCY (Hz)
10k
100k
02992-007
1
10
100
1k
10k
100k
FREQUENCY (Hz)
Figure 7. CMRR vs. Frequency
Figure 10. Voltage Noise Spectral Density, RTI, VS = ±2.5 V
Rev. G | Page 9 of 20
02992-010
30
100
02992-009
0 –74
100
02992-008
1
10
100
1k
10k
100k
1M
AD628
40
1s
100 90
9638 UNITS 35 30
NOISE (5µV/DIV)
% OF DEVICES
10 0
25 20 15 10 5
02992-011
0
1
2
3
4
5
6
7
8
9
10
TIME (Seconds)
GAIN ERROR (ppm)
Figure 11. 0.1 Hz to 10 Hz Voltage Noise, RTI
60 50
Figure 14. Typical Distribution of +1 Gain Error
150 UPPER CMV LIMIT
COMMON-MODE VOLTAGE (V)
40 30
G = +100
100 –40°C 50 +85°C 0 +25°C VREF = 0V
GAIN (dB)
20 10 0 –10 –20 –30
G = +10
G = +1
–50 +85°C
–40°C
G = +0.1
–100
LOWER CMV LIMIT
02992-012
1k
10k
100k
1M
10M
0
5
10 VS (±V)
15
20
FREQUENCY (Hz)
Figure 12. Small Signal Frequency Response, VOUT = 200 mV p-p, G = +0.1, +1, +10, and +100
60 50 40 30 G = +100
100 90
Figure 15. Common-Mode Operating Range vs. Power Supply Voltage for Three Temperatures
500µV
VS = ±15V RL = 1kΩ
GAIN (dB)
20 10 0 –10 –20 –30 10
G = +10
OUTPUT ERROR (µV)
RL = 2kΩ
G = +1
RL = 10kΩ
10 0
G = +0.1
4.0V
02992-016
100
1k
10k
100k
1M
02992-013
–40 FREQUENCY (Hz)
OUTPUT VOLTAGE (V)
Figure 13. Large Signal Frequency Response, VOUT = 20 V p-p, G = +0.1, +1, +10, and +100
Figure 16. Normalized Gain Error vs. VOUT, VS = ±15 V
Rev. G | Page 10 of 20
02992-015
–40 100
–150
02992-014
0
5
10
0
AD628
100µV
100 90
VS = ±2.5V RL = 1kΩ
100 90
500mV
OUTPUT ERROR (µV)
RL = 2kΩ
RL = 10kΩ
10 0 10 0
500mV OUTPUT VOLTAGE (V)
02992-017
Figure 17. Normalized Gain Error vs. VOUT, VS = ±2.5 V
4
Figure 20. Small Signal Pulse Response, RL = 2 kΩ, CL = 0 pF, Top: Input, Bottom: Output
500mV
100
3
90
BIAS CURRENT (nA)
2
10
1
0
0 –40
–20
0
20 40 TEMPERATURE (°C)
60
80
100
02992-018
Figure 18. Bias Current vs. Temperature Buffer
15 –40°C 10 –25°C +85°C 5 +25°C
Figure 21. Small Signal Pulse Response, RL = 2 kΩ, CL = 1000 pF, Top: Input, Bottom: Output
OUTPUT VOLTAGE SWING (V)
100 90
10.0V
0 –40°C –5 +85°C –10 +25°C –25°C
10.0V
10 0
0
5
10 15 OUTPUT CURRENT (mA)
20
25
Figure 19. Output Voltage Operating Range vs. Output Current
02992-019
–15
Figure 22. Large Signal Pulse Response, RL = 2 kΩ, CL = 1000 pF, Top: Input, Bottom: Output
Rev. G | Page 11 of 20
02992-022
40µs
02992-021
50mV
4µs
02992-020
50mV
4µs
AD628
100 90
100 90
5V
5V
10mV
10 0
02992-023
10mV
10 0
Figure 23. Settling Time to 0.01%, 0 V to 10 V Step
Figure 24. Settling Time to 0.01% 0 V to −10 V Step
Rev. G | Page 12 of 20
02992-024
100µs
100µs
AD628 TEST CIRCUITS
HP3589A SPECTRUM ANALYZER
+VS
7
–IN
8
10k Ω
10k Ω +IN
5
– OUT
100k Ω –IN G = +0.1 +IN
AD829
+ G = +100
–IN
FET PROBE
+IN
1
100k Ω 10kΩ VREF CFILT
2 4 6
AD628
RG
3
–
–VS
02992-025
OP177
+
Figure 25. CMRR vs. Frequency
SCOPE
+VS
7
1 VAC +15V
–IN
8
10kΩ
10k Ω
G = +100 +IN OUT
5
G = +100 20Ω +
100k Ω –IN G = +0.1 +IN
AD829
–
–IN
1
+IN 100k Ω
10kΩ
AD628
2 4 6
VREF
3
CFILT
RG
02992-026
–VS
Figure 26. PSRR vs. Frequency
Rev. G | Page 13 of 20
AD628
HP3561A SPECTRUM ANALYZER +VS
7
CFILT
4
–IN
8
100k Ω
10kΩ
10kΩ
+IN
5
OUT
+IN
1
100k Ω
–IN G = +0.1 +IN 10kΩ
–IN
AD628
6
VREF
3
2
RG
–VS 10kΩ
10kΩ
Figure 27. Noise Tests
Rev. G | Page 14 of 20
02992-027
AD628 THEORY OF OPERATION
The AD628 is a high common-mode voltage difference amplifier, combined with a user-configurable output amplifier (see Figure 28 and Figure 29). Differential mode voltages in excess of 120 V are accurately scaled by a precision 11:1 voltage divider at the input. A reference voltage input is available to the user at Pin 3 (VREF). The output common-mode voltage of the difference amplifier is the same as the voltage applied to the reference pin. If the uncommitted amplifier is configured for gain, connect Pin 3 to one end of the external gain resistor to establish the output common-mode voltage at Pin 5 (OUT). The output of the difference amplifier is internally connected to a 10 kΩ resistor trimmed to better than ±0.1% absolute accuracy. The resistor is connected to the noninverting input of the output amplifier and is accessible at Pin 4 (CFILT). A capacitor can be connected to implement a low-pass filter, a resistor can be connected to further reduce the output voltage, or a clamp circuit can be connected to limit the output swing. The uncommitted amplifier is a high open-loop gain, low offset, low drift op amp, with its noninverting input connected to the internal 10 kΩ resistor. Both inputs are accessible to the user. Careful layout design has resulted in exceptional commonmode rejection at higher frequencies. The inputs are connected to Pin 1 (+IN) and Pin 8 (−IN), which are adjacent to the power pins, Pin 2 (−VS) and Pin 7 (+VS). Because the power pins are at ac ground, input impedance balance and, therefore, commonmode rejection are preserved at higher frequencies.
RG
6
–IN 8
100k Ω
10k Ω G = +0.1 –IN A1 +IN 10k Ω –IN A2 +IN
5
OUT
+IN 1
100k Ω 10k Ω
3 4
02992-028
VREF
CFILT
Figure 28. Simplified Schematic
CFILT +VS
7 4
AD628
–IN 8 100k Ω 10kΩ G = +0.1 –IN A1 +IN +IN 1 100k Ω 10kΩ
2 3 6
10kΩ
+IN A2 –IN
5
OUT
–VS
VREF
RG
REXT3
02992-029
REFERENCE VOLTAGE
REXT2
REXT1
Figure 29. Circuit Connections
Rev. G | Page 15 of 20
AD628 APPLICATIONS INFORMATION
GAIN ADJUSTMENT
The AD628 system gain is provided by an architecture consisting of two amplifiers (see Figure 29). The gain of the input stage is fixed at 0.1; the output buffer is user adjustable as GA2 = 1 + REXT1/REXT2. The system gain is then
INPUT VOLTAGE RANGE
VREF and the supply voltage determine the common-mode input voltage range. The relation is expressed by VCMUPPER ≤ 11 (VS + – 1.2 V) − 10 VREF (2)
GTOTAL
⎛ ⎞ R = 0.1 × ⎜1 + EXT1 ⎟ ⎜R ⎟ EXT2 ⎠ ⎝
VCMLOWER ≥ 11 (VS − + 1.2 V) − 10 VREF
(1)
where: VS+ is the positive supply. VS− is the negative supply. 1.2 V is the headroom needed for suitable performance. Equation 2 provides a general formula for calculating the common-mode input voltage range. However, keep the AD628 within the maximum limits listed in Table 1 to maintain optimal performance. This is illustrated in Figure 30 where the maximum common-mode input voltage is limited to ±120 V. Figure 31 shows the common-mode input voltage bounds for single-supply voltages.
200 150 100 50 0 –50 –100 –150 –200 MAXIMUM INPUT COMMON-MODE VOLTAGE WHEN VREF = GND
At a 2 nA maximum, the input bias current of the buffer amplifier is very low and any offset voltage induced at the buffer amplifier by its bias current may be neglected (2 nA × 10 kΩ = 20 μV). However, to absolutely minimize bias current effects, select REXT1 and REXT2 so that their parallel combination is 10 kΩ. If practical resistor values force the parallel combination of REXT1 and REXT2 below 10 kΩ, add a series resistor (REXT3) to make up for the difference. Table 5 lists several values of gain and corresponding resistor values.
Table 5. Nearest Standard 1% Resistor Values for Various Gains (see Figure 29)
Total Gain (V/V) 0.1 0.2 0.25 0.5 1 2 5 10 A2 Gain (V/V) 1 2 2.5 5 10 20 50 100 REXT1 (Ω) 10 k 20 k 25.9 k 49.9 k 100 k 200 k 499 k 1M REXT2 (Ω) ∞ 20 k 18.7 k 12.4 k 11 k 10.5 k 10.2 k 10.2 k REXT3 (Ω) 0 0 0 0 0 0 0 0
INPUT COMMON-MODE VOLTAGE (V)
0
2
4
6
8
10
12
14
16
To set the system gain to